Bounds for Mutual Exclusion with only Processor Consistency

Lisa Highanfand Jalal Kawash
Department of Computer Science, The University of Calgary, Canada, T2N 1N4
Fax: +1 (403) 284 4707, Phone: +1 (403) 220 7696, 220 7681
{higham|kawash}@cpsc.ucalgary.ca

Abstract

Most weak memory consistency models are incapable of supporting a solution to mutual exclusion using
only read and write operations. Processor Consistency—Goodman’s version is an exception. Ahamad
et al.[1] showed that Peterson’s mutual exclusion algorithm is correct for PC-G, but Lamport’s bakery
algorithm is not. In this paper, we derive a lower bound on the number and type (single- or multi-writer)
of variables that a mutual exclusion algorithm must use in order to be correct for PC-G. We show that any
such solution fon processes must use at least one multi-writer msohgle-writers. This lower bound

is tight whenn = 2, and is tight whem > 2 for solutions that do not provide fairness. We show that
Burns’ algorithm is an unfair solution for mutual exclusion in PC-G that achieves our bound. However,
five other known algorithms that use the same number and type of variables are incorrect for PC-G.
A corollary of this investigation is that, in contrast to Sequential Consistency, multi-writers cannot be
implemented from single-writers in PC-G.

1 Introduction

The Mutual Exclusion Problem is the most famous and well-studied problem in concurrency. Following
Silberschatz et al.[13], we refer to this problem as the Critical Section Problem (CSP) to distinguish the
problem from the Mutual Exclusion Property. In CSP, a set of processes coordinate to share a resource, while
ensuring that no two access the resource concurrently. CSP solutions for Sequential Consistent memory have
been known since the 1960s; Raynal [12] provides an extensive survey. In fact, as shown by Lamport [9],
even single-reader single-writer bits suffice to solve the critical section problem, as long as accesses to these
seemingly weak objects are guaranteed to be Sequentially Consistent.

Most weak memory consistency models, however, are incapable of supporting a solution to mutual
exclusion using only read and write operations [6]. An exception is Processor Consistency (abbreviated
PC-GY} as proposed by Goodman and formalized by Ahamad et al.[1], who show that Peterson’s mutual
exclusion algorithm [11] is correct for PC-G. However, Lamport’s bakery algorithm has been shown to fail
for PC-G [1]. We are thus motivated to determine what is necessary and sufficient to solve CSP with only
Processor Consistent Memory with only reads and writes to shared variables. For example, Peterson’s algo-
rithm makes use of multi-writers, variables that can be written my more than one process, while Lamport’s

*Supported in part by the Natural Sciences and Engineering Research Council of Canada grant OGP0041900.

TSupported in part by a Natural Sciences and Engineering Research Council of Canada doctoral scholarship and an Izaak Walton
Killam Memorial scholarship.

1Several variants of Processor Consistency exist. The one referred to in this paper is due to Ahamad et al.’s[1] interpretation of
Goodman'’s original work [4].

bakery algorithm [7] uses only single-writers, variables that can be written by exactly one process. Are
multi-writers essential?

In this paper, we derive bounds on the number and type (single- or multi-writer) of variables that a
mutual exclusion algorithm must use in order to be correct for PC-G. Specifically, any PC-G solution for
n processes must use at least one multi-writer arsthgle-writers. We prove that Burns’ algorithm [3],
which uses one multi-writer analsingle-writers, is an unfair solution for mutual exclusion in PC-G. Thus
our bound is tight for unfair solutions to CSP. Since Peterson’s 2-processor algorithm is fair and correct for
PC-G, our bound is tight even for fair solutions whes 2.

We further investigate properties that a solution, using one multi-writenaile-writers, must satisfy
in order to be correct for PC-G. Using these properties, we establish that five algorithms [12], Dekker’s,
Dijkstra’s, Knuth’s, De Bruijn’s, Eisenberg and MacGuire’s, are incorrect for PC-G. All of these have been
developed for Sequential Consistency (SC) [8], and all use one multi-writem singdyle-writers. However,
most of these algorithms are fair solutions for CSP in SC. The only fair solution we have found for PC-G is
Peterson’s which usas— 1 multi-writers and single-writers.

Since multi-writers are required to solve CSP in PC-G, a corollary of our investigation is that, in contrast
to Sequential Consistency, multi-writers cannot be implemented from single-writers in PC-G.

The PC-G model is defined in Section 2; and CSP is defined in Section 3. Section 4 provides a template
for our impossibility proofs, which is used to establish our lower bounds in Section 5. The major results in
Section 5 have been automatically verified using the SPIN model checker [5].

2 The Model

A multiprocess system can be modeled as a collection of processes operating on a collection of shared data
objects. For this paper, the shared data objects are variables supporting only read and write operations,
wherer (x)v andw(x)v denote, respectively, a read operation of variatieturningv and a write operation
to x of valuev. An operation can be decomposed into invocation (performed by processes) and response
(returned by variables) components.

It suffices to model @rocessas a sequence of read and write invocations, amiiliprocess systeias
a collection of processes together with the shared variables. Henceforth, we denote a multiprocess system
by the pair(P,J) whereP is a set of processes adds a set of variables. Arocess computatiors the
sequence of reads and writes obtained by augmenting each read invocation in the process with its matching
response. Amultiprocess) system computatisra collection of process computations, one for each process
in the collection. LetO be all the (read and write) operations in a computation of a sysked). Then,
O|p denotes all the operations that are in the process computation of pqoeeBs O|x denotes all the
operations that are applied to varialile J, andO|w denotes all the write operations.

A sequence of read and write operations to variatikevalid if and only if each read in the sequence
returns the value of the most recently preceding write. Given any collection of read and write opéa@ations
on a set of variable3, alinearization of Ois a (strict) linear ordeér(O, i>) such that for each variablein
J, the subsequend®|x, i>) of (O, i>) is valid.

Let O be a set of operations in a computation of a sys{®nd). Define theprogram order denoted
(O, %), by 01%02 if and only if o, follows 0, in the computation op.

A (memory) consistency modsla set of constraints on system computations. A sygfed) satisfies
memory consistenc if every computation that can arise from it meets all the constraini3. iThree

2A (strict) partial order (simply, partial order) is an anti-reflexive, transitive relation. Denote a partial order by &Rir.
The notatiors;R$ means(s;, sp) € R. A (strict) linear orderis a partial ordefS R) such thatvx,y € S x#y, eitherxRyor yRx

memory consistency models are defined here: Sequential Consistency (SC) [8], Pipelined-Random Access
Machine (P-RAM)[10], and PC-G [1].

Definition 2.1 Let O be all the operations of a computation C of a multiprocess syéiedn. Then C
satisfiesSCif there is a linearizationO, i>) such that(O,@) C (O, %).

Definition 2.2 Let O be all the operations of a computation C of a multiprocess sy Then C satis-
fiesP-RAM if for each process g P there is a linearizatior{O|pU O|w, i>) such thatO|pUO|w, ﬂ) C
(OlpUOW).

Definition 2.3 Let O be all the operations of a computation C of a multiprocess syé§iedn. Then C
satisfiesPC-Gif for each process g P there is a linearizatior{O|pU O|w, i>) such that

1. (O|puOw, ™) C (O]puOjw, %), and

2. Vg e P andvx € J, (Ojw]x,) = (Owjx, —%).

Let A andD be an algorithm and a memory consistency model, respectively. Theolves CSP for D
if for every systentSthat satisfie®D, A solves every instance of CSP 8n

3 Critical Section Problem

We denote a CSP problem by C8PWheren is the number of processes in the system. Each process has
the following structure:

repeat
<remainder-
<entry>
<critical section>
<exit>

until false

A solution to CSPY{), n > 2, must satisfy the following properti&s
e Mutual Exclusion: At any time there is at most one process in<tsritical sectior>.
e Progress:|If at least one process is kentry>, then eventually one will be irtcritical sectiorn>.

e Fairness:If a procesgis in <entry>, thenp will eventually be in<critical sectiorn>.

30ther forms of defining solution properties are possible as is given by Attiya et al.[2].

4 Template for Impossibility and Lower Bound Proofs

We will use the partial computations 1, 2, and 3 defined below. First, assume for the sake of contradiction
that there exists an algorithi that solves CSIj for a given memory consistency mod&, for n > 2.

This solution must work when exactly two processes, gandg, are participating and the rest engaging

in <remainder-. If A runs withpin <entry> and withqin <remainder>, then by the Progress property,

p must enter its<critical section> producing a partial computation of the form of Computation 1, where
denotes the empty sequence aﬂd}lenotes thé" operation ofp.

Computation 1 { g ;E,o‘z’,...,ofj (pisinits < critical section>)

Similarly, if A runs withg's participation only, Progress guarantees that Computation 2 exists.

. p:A

Computation 2 L . .
P { g:0;,03,...,0' (qisinits < critical section>)
Now, consider Computation 3 where baitandq are participating, but both are in thedrcritical sectiorn>.
By assumption, both computations 1 and 2 both safisfyf we can show that Computation 3 also satisfies
memory consistency conditidp, the desired contradiction is achieved, since mutual exclusion is violated.
This implies thatA does not exist.
. p p p

. : isini ritical ion

Computation 3 p_ 0&’0(%’ ’oqk (p' s 'ts <C_Fca SeCFO >)
g:0;,0,,...,0 (qisinits < critical section>)

None of the arguments in the following theorems depends on the Fairness property, so the impossibilities
include unfair solutions as well. Furthermore, none of these argument depends on the size of variables. So,
these results apply to unbounded variables as well.

5 Bounds on CSP for PC-G

Ahamad et al.[1] proved that Peterson’s algorithm [11], which was originally developed for SC systems,
solves CSP(2) for PC-G. Given algorithAy that solves CSP(2) for PC-G an algorithdyq that solves
CSP() for PC-G, wheren > 2, can be constructed frody, by building a tournament tree. Processes are
partitioned into sets of size two each. For each Agis used to select a “winner”. The winners are again
partitioned into sets of size two, ad can be used in this manner repeatedly until only one winner remains.
Thus we conclude that there is an algorithm that solves QS&(PC-G.

This section further investigates bounds and restrictions on these PC-G solutions.

5.1 Type of Variables

A multi-writer variable (simply, multi-writer) can be updated by any number of processes in the system,
while asingle-writervariable (simply, single-writer) can be updated by exactly one designated process.

We show that the use of multi-writers is crucial to solve CSP on PC-G. First we need the following
lemma.

Lemma 5.1 In a systen{P,J) where J consists entirely of single-writers, PC-G is equivalent to P-RAM.

Proof: Obviously, PC-G is at least as strong as P-RAM. We show that without the use of multi-writer

variables, P-RAM is at least as strong as PC-G.(C¢pUO|w, i>) and(O|quUO|w, i>) be linearizations
for pandq € P that are guaranteed by P-RAM. Since, for any variadde], there is only one process, say

s, that writes tax, and both(O|puU O|w, i>) and(O|qu O|w, i>) have all these writes toin the program
order ofs, the order of the writes ta in (O|pU O|w,i>) is the same as the order of the writesxtin
(Olqu O|w, i>). Therefore, the definition of PC-G (Definition 2.3) is satisfied. |

CSP, however, is impossible for P-RAM:
Theorem 5.2 There does not exist an algorithm that solves CSP(n) for P-RAM, eveaZ.n

Proof: Assume that there is an algorithtnthat solves CSPj for P-RAM. Then computations 1 and 2
exist. Define the following sequences foandq, respectively, for Computation 3.

L
(O|puOlw, —%) = ((0}, ...,0), (0], ...,o") [w)

L
(OlquOlw, —) = ((0], ...,0'), (0F, ..., 0f) [w)

Clearly, each preserveesrcﬁ as required by the definition of P-RAM. Also, each is a linearization because the
first part (for instancecof, ...,olf)) corresponds to a possible computation, and the second part (for instance,
(o‘j,...,olq)|w) contains only writes. Thus, Computation 3 is P-RAM. Therefore, our assumption must have
been in error and does not exist.]

Theorem 5.3 There does not exist an algorithm that uses only single-writers and solves CSP(n) for PC-G,
even if n= 2.

Proof. This follows immediately from Lemma 5.1 and Theorem 5.2. |

Ahamad et al.[1] also prove that Lamport’s Bakery algorithm [7], which uses only single-writers, is
incorrect for PC-G. The consequence of Theorem 5.3 is that any CSP solution for PC-G must use at least
one multi-writer.

Multi-writer variables can be constructed from single writer variables in a SC memory system[14].
However, this is not the case in PC-G.

Corollary 5.4 Multi-writers cannot be implemented from single-writers in PC-G memory system.

Proof: Peterson’s algorithm solves CSP for PC-G using multi-writers, and there is no solution with only
single writers by theorem 5.3. Hence, multi-writers cannot be constructed from single-writers in PE-G.

5.2 Number of Variables

After showing that at least one multi-writer is required by a CSP solution for PC-G, a natural question is
what is the minimum number of variables needed to solve 6)SB(PC-G?

Theorem 5.5 There does not exist an algorithm that uses fewer than n single-writers and one multi-writer
and solves CSP(n) for PC-G, for anyn2.

Proof: Assume that there is an algorithinthat uses fewer tham single-writers and one multi-writer and
solves CSH) for PC-G. Since there areprocesses, the pigeon-hole principle ensures that there is at least
one process, sap, that does not write to any single-writer variable. Computations 1 and 2 must exist. We
show that Computation 3 satisfies PC-G.
Let oiq beq's first write to the multi-writer. The following are the required PC-G linearizationsgofand
g.
(OlpUOIW, %) = (0f,++,0f, (0], o) W)

L
(O|QUO|W,—q>) = (0?_" o ’oiqfl’ (0][?7' e aOIF())|\N’Oiqa' e 70|q>'

Both sequences maintain program order. Moregversequence is valid because it consists of Computation
1 followed by only writes byg. Also, g's sequence is valid because the segm%nt- . ,oiqf1 does not contain
any writes to the multi-writer. Sincpdoes not write to the single-writer, the segm@fp ‘. ,olf) |w contains
only writes to the multi-writer. The segmeoﬁ, “e ,olq starts with a write to the multi-writer over-writing
any changes the segme(nf, e ,olf)|w caused. Therefore both are linearizations.
Also, each linearization listp’s writes to the multi-writer followed byy's. Since onlyqg writes to any
single-writers, the two linearizations also agree on the order of this variable. So, both linearizations agree
on the order of writes for each variable (Condition 2 of Definition 2.3). |

Whenn = 2, the bound of theorem 5.5 is tight, even if all variables are allowed to be multi-writers.
Theorem 5.6 Two variables are insufficient to solve C3pPfor PC-G.

Proof: Assume that there is an algorithfnthat uses exactly 2 variables, sagndy, (even multi-writers)

and solves CSP(2) for PC-G. Then, computations 1 and 2 exist. We show that Computation 3 satisfies PC-G.
Partition p's computation of Computation 3 into subsequerggsy,, ..., S} where each subsequeng?

is defined by:

1. % contains all operations fromf up to but not including the first write by, Iabeledogl.

2. §,i > 1, contains all operations fromf;, up to but not including the first write, labele§. ,, such

thatof, andof,,, are applied to different variables.

i+17

Partitiong’s computation of Computation 3 into subsequen§gs,, ..., S similarly.
The subsequencsg is either empty or consists entirely of reads returning initial values. Each subse-
quenceSIo (i > 1) starts with a write and all the writes ﬁi‘? are applied to the same variable. If the writes
in S° are applied to, S is calledx-gender; otherwise, it is calleggender. Note thag’ (§') alternate in
gender.
To show that Computation 3 satisfies PC-G, we consider two cases (the other two cases are symmetric).

S/ is anx-gender butS] is ay-gender: Define(O|puO|w, i>) and(O|qu O|w, i>) as follows.
(OlpuOw, %) = (S, (P &, (SHiw, &, -+, (§Hw Sy,)
(0lquow —%) = (&, ()iw, &, (w &, -+, (P, Sy,)

Clearly, (O|pU O|w, i>) and (O|qu O|w, i>) maintain program order. They are also valid because, for
eachi > 1, § (respectively,§') is of the same gender &, ; (respectivelys' ;). SinceS' andS’ ; are of

the same gender, additt§’)|w immediately befores’, ; does not affecp’s computation becauég’+1 starts
with a write that obliterates the changes causedS}yjw; similarly for S andS' ;.

| Algorithm | Year | |P| | Variables| flag Values| Fairness Delay

Dekker’s 1965| n=2 n+1 2 00
Dijkstra’s 1965| n>2 n+1 3 00
Knuth's 1966 | n>2 n+1 3 211
De Bruijn’s 1967 | n>2| n+1 3 (> —n)/2
Eisenberg and MacGuire’s 1972| n> 2 n+1 3 n—1
Burns’ 1981 | n>2 n+1 2 00
Peterson’s 1981|n>2| 2n-1 2 (n>—n)/2

Figure 1: Well known CSP algorithms for SC

The order on the writes win p’s linearization is:

(S, (SHW, -, ()W, (S)W, -+, (wherei is odd)

which is the same order maintained ¢g linearization. The same appliesyo Therefore, Condition 2 of
Definition 2.3 is also satisfied.))
S and S/ are both x-gender: Define(O|pu Ojw,—) and (O|qu O|w, —) as follows.

(OlpUO, %) = (S, S5, (SHiw, S, -, (Hw, S,)
(Olquopw,—%) = (, S (Dw <, (D)w &, -, (Phw, Lo)

Similar analysis to the previous case shows that these are PC-G linearizations.
Thus, in all cases, Computation 3 is PC-G, and our assumption must have been in error. |

Since at least one multi-writer is necessary to solve CSP for PC-G, and since two multi-writers are
insufficient to solve CSP(2) for PC-G, and since Peterson’s Algorithm for CSP(2) uses exactly two single-
writers and one multi-writer, we conclude the following.

Corollary 5.7 Two single-writers and one multi-writer are the necessary and sufficient number and type of
variables required to solve CSB(for PC-G.

5.3 Onthe General Case

By theorems 5.3 and 5.5, an algorithm that solves @pfe¢f PC-G must use at leastsingle-writers and

one multi-writer. Most algorithms that solve C3#Pfor SC use exactly this number and type of variables.
In particular, all the algorithms discussed in this section (except Peterson’s whicm sgage-writers
andn — 1 multi-writers) use the same number of variables: one multi-writee§) andn single-writers.
Furthermore, each process writes and readsh, and each procedss associated with the single-writer
flaglil. Every procesy # i readsflagl[i]. These algorithms are quoted in Appendix A and listed in
Figure 1, which characterizes each algorithm by four attributes: number of pro¢Bsses, number of
variables, number of values thattaag variable can be assigned, and delay. The delay is an upper bound
on the number of times processes enter their critical sections before a certain process gets the opportunity to
enter its critical section. When the there is no upper bound on the fairness @glalyg algorithm is prone

to starvation, and is thus unfair.

Although this number of variables is a necessary requirement for a PC-G solution, we show next that
most of these algorithms do not solve CBFbr PC-G. First, we provide sonreles-of-thumithat allows
us to nail down certain properties of correct solutions for PC-G. Then, these rules are used to show that
Dekker’s, Dijkstra’s, Knuth's, De Bruijn’s, and Eisenberg and MacGuire's fail to solve QS&(PC-G.

Lemma 5.8 Any algorithm that uses exactly n single-writers and one multi-writer and solves CSP(n) for
PC-G must satisfy each of the following properties:

1. Each process writes one single-writer at least once @mtry>.

2. Each process must write the multi-writer at least onceentry>, and this write cannot be the last
operation in<entry>.

3. Each process must read every other single-writex.entry>.

Proof: We follow the proof template given in Section 4.

1. Assume it is not the case; then there is at least one procesp, &t does not write to any single-
writer. The linearizations used in Theorem 5.5 apply.

2. Assume that a procegseither does not write the multi-writer igentry> or does write the muilti-
writer exactly once and this write operationdg. Under this assumption, Computation 3 satisfies
PC-G as shown by the following linearizations.

L
(O|puOw, —%) = (af,...,0f_,(0],...,0)|w, o)

L
(OlauOlw, —) = (0], ...,9{", (0F, .., 0) W)

Both maintain program order and are valid. They also maintain the same order on the writes to the
multi-writer, which is simplyqg's writes thenol'f. Note that this case is equivalent to the case where
multi-writer is written in the<critical section> rather than incentry>.

3. Assume, for the sake of contradiction, that there is a progetizat does not read some single-writer
of another procesp. The linearizations of Theorem 5.5 apply.

Corollary 5.9 The following CSP algorithms do not solve CSP(n) for PC-G, ever=iPn

. Dijkstra’s Algorithm

. Dekker’s Algorithm

1
2
3. De Bruijn’s Algorithm
4. Knuth’s Algorithm

5

. Eisenberg and MacGuire’s Algorithm

Proof. First, note that all these algorithms ussingle-writers and one multi-writer.
In Dijkstra’s Algorithm, if the multi-writerturn is initially p, p enters its<critical sectiorn> without
writing to the multi-writer. In Dekker’s and Bruijn’s algorithms, the multi-writer is only written<dexit>.
In Knuth’s, and in Eisenberg and MacGuire’s algorithms, the multi-writer is only written as the last step in
<entry>. By Lemma 5.8(2), all of these algorithms are incorrect for PC-G.
[|

Theorem 5.10 Burns’ Algorithm is an unfair CSP(n) solution for PC-G.

Proof: Mutual Exclusion: Assume for the sake of contradiction that there exists some PC-G computa-
tion of Burns’ Algorithm where two processes, sand j, execute in theik critical section> concurrently.
Then,i (respectively,j) must readtlag[j] (respectivelyflag[il) to befalseat line 11 before entering its
<critical section> as shown by the following computation.

i: ... r(flaglj]l)false < critical section >

Computation 4 { j: ... r(flaglil)false < critical section >

Note that any time a process, sgyexecutes av(flagli])true, the next operation it executes is a
w(turn)i. Letw(turn)i be the last write operation tourn thati executes before entering itscritical
section> (This write could be performed at line 2 or 8.) Similarly, {etturn)j be the last write taurn
that j did before entering it critical sectiorn>.

Since Computation 4 satisfies PC-G, there must exist two linearizati@is,) O|W,i>) and (O|j U
Olw, i>), such that both agree on the order of writesden. Without loss of generality, supposgturn)i
precedesv(turn)j in both linearizations. Sino®(turn) | R r(£flaglil])false(by program order)yv(turn)i

b, r(flagli])false There must be some writg(f1lagl[i])true, such that this write is the last write by
i that precedesv(turn)i in j's view. Sincew(turn)i is the last write byi before it enters its<critical
section>, w(flag/[i])true must be the last write tblag[i] beforei enters its<critical section>. By tran-
sitivity, this write is the most recent write filag [i] that precedes(f1ag[i])falsein j’s view, contradicting

the validity of (O|j U O|w, i>). Therefore, Burns’ algorithm satisfies Mutual Exclusion for PC-G.

Progress: If only one process is participating, then it will enter theritical section>. So assumen
processes, € m< n, are participating in a computation of Burns’ Algorithm such that none of them is able
to progress to<critical section>. We show this is impossible. By PC-G, all processes must agree of the
order of the writes taurn, and eventuallyn— 1 of them will seeturn different from their own identifiers;
therefore, allm— 1 processes enter the body of the while loop. At least one process will fail the test on line 4
skipping the while loop. This is because of the total order on the writesia that all processes agree on.
Since there is at least one process, gdhiat does not engage in the while loop, we must have the following,
wherei # j:

W(turn)i i>W(1:urn) i N (turn)j.
Sincew(flag[j])true precedesv(turn)j in program order, we conclude:
. Li .
w(flag[j])true—>r(flaglj])true.

Therefore, lines 7 and 8 are unreachable ifemlessj makes progress teexit-. So, i is repeatedly

executing lines 4 and 5 and(flag[i])false of line 5 must eventually appear {©|j UO|w,—), and
consequentlyj enters its<critical section>.

N Processes

shared objects
flag[O .. n—1] in {true, falsé, single-writer
turn in {0,---,n—1}, multi-writer

<entry>
1 flagli]l < true
2 turn < |
3 repeat
4 while (turn # i) do
5 flaglil « false
6 if (Vj#i, not flagl[jl) then
7 flaglil « true
8 turn < i
9 end-if
10 end-while
11 until (Vj#i, not flagljl)

<critical section>

<exit>
12 flagli]l « false

Figure 2: Burns’ CSP unfair solution

Processes have unique identifiers from the{Bet--,n— 1}, wheren is the total number of processes.
The algorithm is given by specifying theentry> and<exit> sections of processi € {0,---,n—1}.

Fairness: To see that Burns’ algorithm is unfair for PC-G, we show it’s unfair even foft ®Gnsider
the Computation 5 which represents a starvation scenario, where the segments enclosed by square brackets
can be repeated indefinitely.

i [w(flaglil)true WMturn)ir(turn)ir(flaglj])false
< critical section > w(flagli])falsg

j: w(flag[jl)true W(turn)j [r(turn)i w(flag[j])false
r(flagli])true]

Computation 5

The following is an SC linearization(O, i>) = (wj(flagljl)true wj(turn)j [w;(flaglil)true
Wi (turn)i ri(turn)irj(turn)i wj(flaglj])false rj(flaglil)true ri(flag[j])false < critical section >
w;i(flagli])falsg. Operations are subscripted by the corresponding process id. The segment enclosed in
square brackets is the part of the computation being repeated indefinitely.
[|

6 Conclusion

Any solution to CSRY{) for PC-G must use at least one multi-writer ansingle-writers. This lower bound
is tight whenn = 2. Burns’ algorithm, which uses one multi-writer amdingle-writers is an unfair solution

41t is common knowledge that Burns’ algorithm is unfair even for SC.

10

for PC-G. Itis not clear to us yet whether a fair solution can be constructed using only one multi-writer and

n single-writers. If not, then to tighten the lower bound in the general case, impossibility proofs will have to
exploit fairness. Many other algorithms that use the same number and type of variables as Burns’ have been
shown to fail for PC-G. Finally, Peterson’s algorithm, which usesl multi-writers andn single-writers,

is correct and fair for PC-G.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]
[14]

M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor consisteRegcln
5th Int'l Symp. on Parallel Algorithms and Architecturgmges 251-260, June 1993. Technical Report
GIT-CC-92/34, College of Computing, Georgia Institute of Technology.

H. Attiya, S. Chaudhuri, R. Friedman, and J. L. Welch. Shared memaory consistency conditions for non-
sequential execution: Definitions and programming strate@kSM Journal of Computind7(1):65—
89, February 1998.

J. E. Burns. Symmetry in systems of asynchronous process@odn22nd Symp. on Foundations of
Computer Scien¢ggages 169-174, 1981.

J. Goodman. Cache consistency and sequential consistency. Technical Report 61, IEEE Scalable
Coherent Interface Working Group, March 1989.

G. J. Holzmann. The model checker SPINEEE Trans. on Software Engineering3(5):1-5, May
1997.

J. Kawash. Limitations and Capabilities of Weak Memory Consistency Systé&hd. dissertation,
Department of Computer Science, The University of Calgary, January 2000.

L. Lamport. A new solution of Dijkstra’s concurrent programming probleBommunication of the
ACM, 17(8):453-455, August 1974.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. on Computer€-28(9):690-691, September 1979.

L. Lamport. The mutual exclusion problem (parts | and Wpurnal of the ACM33(2):313-326 and
327-348, April 1986.

R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory. Technical Report 180-88, Depart-
ment of Computer Science, Princeton University, September 1988.

G. L. Peterson. Myths about the mutual exclusion probleriormation Processing Letterd2(3):115—
116, 1981.

M. Raynal. Algorithms for Mutual ExclusionThe MIT Press, 1986.
A. Silberschatz, J. L. Peterson, and P. B. Galdperating System Conceptadddison Wesley, 1991.

P. M. B. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardwarec.In
27th Symp. on Foundations of Computer Scied886.

11

A CSP Algorithms

For each of the following CSP algorithms, processes have unique identifiers from tf@-sefn — 1},
wheren is the total number of processes. The algorithms are given by specifyingeihey> and <exit>
sections of processi € {0,---,n—1}.

A.1 Peterson’s Algorithm

Two Processes

shared objects
flag[0 .. 1] in {true, falsé, single-writer
turn in {0,1}, multi-writer

<entry>

flaglil « true

turn + j

while (flag[j]l and turn = j) do nothing

<critical section>

<exit>
flagli]l « false

N Processes

shared objects
flag[0 .. n—1] in {-1 .. n—2}, single-writer
turn[0 .. n—2] in {0 .. n—1}, multi-writer

<entry>
for k = 0 to n—2 do
flagli]l « k
turn[k] « i
while (Vj#i, flagl[jl >k and turn[k] = i) do nothing

<critical section>

<exit>
flagli] + -1

A.2 Dekker’s Two-process Algorithm

2 Processes

shared objects
flag[0 .. 11 in {true, fals¢, single-writer
turn in {0,1}, multi-writer

<entry>
flagli]l « true
while (flag[j]l) do
if (turn = j) then
flagli] « false
while (turn = j) do nothing
flagli]l « true
end-if
end-while

<critical section>

<exit>

12

turn + |
flagli]l « false

A.3 Dijkstra’s Algorithm

N Processes

shared objects
flag[0 .. n—1] in {idle, requesting, in-Cs, single-writer
turn in {0,---,n—1}, multi-writer

<entry>
repeat
flagli]l « requesting
while (turn # i) do
if (flaglturn] = idle) then
turn « i
end-while
flag[i] « in-cs
until (Vj#i, flagljl # in-cs

<critical section>
<exit>

flagli]l « idle

A.4 Knuth’s Algorithm

N Processes

shared objects
flag[0 .. n—11 in {idle, requesting, in-Cs, single-writer
turn in {0,---,n—1}, multi-writer

<entry>
repeat
flagli]l « requesting
j < turn
while (j#i) do
if (flagl[j]l # idle) then
j < turn
elsej + (j—1) mod n
end-while

flag[i] « in-cs
until (Vj #i, flagljl # in-cs
turn < i

<critical section>
<exit>

turn < (i—1) mod n
flagli]l < idle

A.5 De Bruijn’s Algorithm

N Processes

shared objects
flag[0 .. n—1] in {idle, requesting, in-Cs, single-writer
turn in {0,---,n—1}, multi-writer

<entry>
repeat
flag[il « requesting

13

j < turn

while (j#i) do
if (flagl[j]l # idle) then
j « turn
elsej « (j—1) mod n
end-while

flag[i] « in-cs
until (Vj#i, flagljl # in-cs

<critical section>

<exit-

if (flaglturn] = idle and turn = i) then
turn < (turn—1) mod n

end-if

flagli]l < idle

A.6 Eisenberg and MacGuire’s Algorithm

N Processes

shared objects
flag[0 .. n—11 in {idle, requesting, in-Cs, single-writer
turn in {0,---,n—1}, multi-writer

<entry>
repeat
flagli]l « requesting
j < turn
while (j#i) do
if (flagl[j]l # idle) then
j « turn
elsej « (j+1) mod n
end-while
flag[i] « in-cs
until ((Vj #i, flagljl # in-c9 and (turn = i or flag[turn] = idle))
turn <« |

<critical section>

<exit>

j « (turn+1) mod n

while (j # turn and flag[j] = idle) do
j « (j+1) mod n

end-while

turn ¢« j

flagli] « idle

14

