
Bounds for Mutual Exclusion with only Processor Consistency

Lisa Higham�and Jalal Kawash†

Department of Computer Science, The University of Calgary, Canada, T2N 1N4

Fax: +1 (403) 284 4707, Phone: +1 (403) 220 7696, 220 7681

fhigham|kawashg@cpsc.ucalgary.ca

Abstract

Most weak memory consistency models are incapable of supporting a solution to mutual exclusion using
only read and write operations. Processor Consistency–Goodman’s version is an exception. Ahamad
et al.[1] showed that Peterson’s mutual exclusion algorithm is correct for PC-G, but Lamport’s bakery
algorithm is not. In this paper, we derive a lower bound on the number and type (single- or multi-writer)
of variables that a mutual exclusion algorithm must use in order to be correct for PC-G. We show that any
such solution forn processes must use at least one multi-writer andn single-writers. This lower bound
is tight whenn= 2, and is tight whenn� 2 for solutions that do not provide fairness. We show that
Burns’ algorithm is an unfair solution for mutual exclusion in PC-G that achieves our bound. However,
five other known algorithms that use the same number and type of variables are incorrect for PC-G.
A corollary of this investigation is that, in contrast to Sequential Consistency, multi-writers cannot be
implemented from single-writers in PC-G.

1 Introduction

The Mutual Exclusion Problem is the most famous and well-studied problem in concurrency. Following
Silberschatz et al.[13], we refer to this problem as the Critical Section Problem (CSP) to distinguish the
problem from the Mutual Exclusion Property. In CSP, a set of processes coordinate to share a resource, while
ensuring that no two access the resource concurrently. CSP solutions for Sequential Consistent memory have
been known since the 1960s; Raynal [12] provides an extensive survey. In fact, as shown by Lamport [9],
even single-reader single-writer bits suffice to solve the critical section problem, as long as accesses to these
seemingly weak objects are guaranteed to be Sequentially Consistent.

Most weak memory consistency models, however, are incapable of supporting a solution to mutual
exclusion using only read and write operations [6]. An exception is Processor Consistency (abbreviated
PC-G)1 as proposed by Goodman and formalized by Ahamad et al.[1], who show that Peterson’s mutual
exclusion algorithm [11] is correct for PC-G. However, Lamport’s bakery algorithm has been shown to fail
for PC-G [1]. We are thus motivated to determine what is necessary and sufficient to solve CSP with only
Processor Consistent Memory with only reads and writes to shared variables. For example, Peterson’s algo-
rithm makes use of multi-writers, variables that can be written my more than one process, while Lamport’s
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bakery algorithm [7] uses only single-writers, variables that can be written by exactly one process. Are
multi-writers essential?

In this paper, we derive bounds on the number and type (single- or multi-writer) of variables that a
mutual exclusion algorithm must use in order to be correct for PC-G. Specifically, any PC-G solution for
n processes must use at least one multi-writer andn single-writers. We prove that Burns’ algorithm [3],
which uses one multi-writer andn single-writers, is an unfair solution for mutual exclusion in PC-G. Thus
our bound is tight for unfair solutions to CSP. Since Peterson’s 2-processor algorithm is fair and correct for
PC-G, our bound is tight even for fair solutions whenn= 2.

We further investigate properties that a solution, using one multi-writer andn single-writers, must satisfy
in order to be correct for PC-G. Using these properties, we establish that five algorithms [12], Dekker’s,
Dijkstra’s, Knuth’s, De Bruijn’s, Eisenberg and MacGuire’s, are incorrect for PC-G. All of these have been
developed for Sequential Consistency (SC) [8], and all use one multi-writer andn single-writers. However,
most of these algorithms are fair solutions for CSP in SC. The only fair solution we have found for PC-G is
Peterson’s which usesn�1 multi-writers andn single-writers.

Since multi-writers are required to solve CSP in PC-G, a corollary of our investigation is that, in contrast
to Sequential Consistency, multi-writers cannot be implemented from single-writers in PC-G.

The PC-G model is defined in Section 2; and CSP is defined in Section 3. Section 4 provides a template
for our impossibility proofs, which is used to establish our lower bounds in Section 5. The major results in
Section 5 have been automatically verified using the SPIN model checker [5].

2 The Model

A multiprocess system can be modeled as a collection of processes operating on a collection of shared data
objects. For this paper, the shared data objects are variables supporting only read and write operations,
wherer(x)v andw(x)v denote, respectively, a read operation of variablex returningv and a write operation
to x of valuev. An operation can be decomposed into invocation (performed by processes) and response
(returned by variables) components.

It suffices to model aprocessas a sequence of read and write invocations, and amultiprocess systemas
a collection of processes together with the shared variables. Henceforth, we denote a multiprocess system
by the pair(P;J) whereP is a set of processes andJ is a set of variables. Aprocess computationis the
sequence of reads and writes obtained by augmenting each read invocation in the process with its matching
response. A(multiprocess) system computationis a collection of process computations, one for each process
in the collection. LetO be all the (read and write) operations in a computation of a system(P;J). Then,
Ojp denotes all the operations that are in the process computation of processp 2 P; Ojx denotes all the
operations that are applied to variablex2 J, andOjw denotes all the write operations.

A sequence of read and write operations to variablex is valid if and only if each read in the sequence
returns the value of the most recently preceding write. Given any collection of read and write operationsO

on a set of variablesJ, a linearization of Ois a (strict) linear order2 (O;
L

�!) such that for each variablex in

J, the subsequence(Ojx;
L

�!) of (O;
L

�!) is valid.
Let O be a set of operations in a computation of a system(P;J). Define theprogram order, denoted

(O;
prog
�!), by o1

prog
�!o2 if and only if o2 follows o1 in the computation ofp.

A (memory) consistency modelis a set of constraints on system computations. A system(P;J) satisfies
memory consistencyD if every computation that can arise from it meets all the constraints inD. Three

2A (strict) partial order (simply, partial order) is an anti-reflexive, transitive relation. Denote a partial order by a pair(S;R).
The notations1Rs2 means(s1;s2) 2R. A (strict) linear orderis a partial order(S;R) such that8x;y2 S x 6= y, eitherxRyor yRx.
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memory consistency models are defined here: Sequential Consistency (SC) [8], Pipelined-Random Access
Machine (P-RAM)[10], and PC-G [1].

Definition 2.1 Let O be all the operations of a computation C of a multiprocess system(P;J). Then C

satisfiesSC if there is a linearization(O;
L

�!) such that(O;
prog
�!)� (O;

L
�!).

Definition 2.2 Let O be all the operations of a computation C of a multiprocess system(P;J). Then C satis-

fiesP-RAM if for each process p2P there is a linearization(Ojp[Ojw;
Lp
�!) such that(Ojp[Ojw;

prog
�!)�

(Ojp[Ojw;
Lp
�!).

Definition 2.3 Let O be all the operations of a computation C of a multiprocess system(P;J). Then C

satisfiesPC-Gif for each process p2 P there is a linearization(Ojp[Ojw;
Lp
�!) such that

1. (Ojp[Ojw;
prog
�!)� (Ojp[Ojw;

Lp
�!), and

2. 8q2 P and8x2 J, (Ojwjx;
Lp
�!) = (Ojwjx;

Lq
�!).

Let A andD be an algorithm and a memory consistency model, respectively. Then,A solves CSP for D
if for every systemS that satisfiesD, A solves every instance of CSP onS.

3 Critical Section Problem

We denote a CSP problem by CSP(n) wheren is the number of processes in the system. Each process has
the following structure:

repeat
<remainder>
<entry>
<critical section>
<exit>

until false

A solution to CSP(n), n� 2, must satisfy the following properties3:

� Mutual Exclusion: At any time there is at most one process in its<critical section>.

� Progress: If at least one process is in<entry>, then eventually one will be in<critical section>.

� Fairness: If a processp is in <entry>, thenp will eventually be in<critical section>.

3Other forms of defining solution properties are possible as is given by Attiya et al.[2].
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4 Template for Impossibility and Lower Bound Proofs

We will use the partial computations 1, 2, and 3 defined below. First, assume for the sake of contradiction
that there exists an algorithmA that solves CSP(n) for a given memory consistency model,D, for n� 2.
This solution must work when exactly two processes, sayp andq, are participating and the rest engaging
in <remainder>. If A runs withp in <entry> and withq in <remainder>, then by the Progress property,
p must enter its<critical section> producing a partial computation of the form of Computation 1, whereλ
denotes the empty sequence andop

i denotes theith operation ofp.

Computation 1
�

p : op
1;o

p
2; :::;o

p
k (p is in its < critical section>)

q : λ

Similarly, if A runs withq’s participation only, Progress guarantees that Computation 2 exists.

Computation 2
�

p : λ
q : oq

1;o
q
2; :::;o

q
l (q is in its < critical section>)

Now, consider Computation 3 where bothp andq are participating, but both are in their<critical section>.
By assumption, both computations 1 and 2 both satisfyD. If we can show that Computation 3 also satisfies
memory consistency conditionD, the desired contradiction is achieved, since mutual exclusion is violated.
This implies thatA does not exist.

Computation 3
�

p : op
1;o

p
2; :::;o

p
k (p is in its < critical section>)

q : oq
1;o

q
2; :::;o

q
l (q is in its < critical section>)

None of the arguments in the following theorems depends on the Fairness property, so the impossibilities
include unfair solutions as well. Furthermore, none of these argument depends on the size of variables. So,
these results apply to unbounded variables as well.

5 Bounds on CSP for PC-G

Ahamad et al.[1] proved that Peterson’s algorithm [11], which was originally developed for SC systems,
solves CSP(2) for PC-G. Given algorithmA2 that solves CSP(2) for PC-G an algorithmAn that solves
CSP(n) for PC-G, wheren� 2, can be constructed fromA2 by building a tournament tree. Processes are
partitioned into sets of size two each. For each set,A2 is used to select a “winner”. The winners are again
partitioned into sets of size two, andA2 can be used in this manner repeatedly until only one winner remains.
Thus we conclude that there is an algorithm that solves CSP(n) for PC-G.

This section further investigates bounds and restrictions on these PC-G solutions.

5.1 Type of Variables

A multi-writer variable (simply, multi-writer) can be updated by any number of processes in the system,
while asingle-writervariable (simply, single-writer) can be updated by exactly one designated process.

We show that the use of multi-writers is crucial to solve CSP on PC-G. First we need the following
lemma.

Lemma 5.1 In a system(P;J) where J consists entirely of single-writers, PC-G is equivalent to P-RAM.
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Proof: Obviously, PC-G is at least as strong as P-RAM. We show that without the use of multi-writer

variables, P-RAM is at least as strong as PC-G. Let(Ojp[Ojw;
Lp
�!) and(Ojq[Ojw;

Lq
�!) be linearizations

for p andq2 P that are guaranteed by P-RAM. Since, for any variablex2 J, there is only one process, say

s, that writes tox, and both(Ojp[Ojw;
Lp
�!) and(Ojq[Ojw;

Lq
�!) have all these writes tox in the program

order ofs, the order of the writes tox in (Ojp[Ojw;
Lp
�!) is the same as the order of the writes tox in

(Ojq[Ojw;
Lq
�!). Therefore, the definition of PC-G (Definition 2.3) is satisfied.

CSP, however, is impossible for P-RAM:

Theorem 5.2 There does not exist an algorithm that solves CSP(n) for P-RAM, even if n= 2.

Proof: Assume that there is an algorithmA that solves CSP(n) for P-RAM. Then computations 1 and 2
exist. Define the following sequences forp andq, respectively, for Computation 3.

(Ojp[Ojw;
Lp
�!) = h(op

1; :::;o
p
k );(o

q
1; :::;o

q
l )jwi

(Ojq[Ojw;
Lq
�!) = h(oq

1; :::;o
q
l );(o

p
1; :::;o

p
k )jwi

Clearly, each preserves
prog
�! as required by the definition of P-RAM. Also, each is a linearization because the

first part (for instance,(op
1; :::;o

p
k )) corresponds to a possible computation, and the second part (for instance,

(oq
1; :::;o

q
l )jw) contains only writes. Thus, Computation 3 is P-RAM. Therefore, our assumption must have

been in error andA does not exist.

Theorem 5.3 There does not exist an algorithm that uses only single-writers and solves CSP(n) for PC-G,
even if n= 2.

Proof: This follows immediately from Lemma 5.1 and Theorem 5.2.

Ahamad et al.[1] also prove that Lamport’s Bakery algorithm [7], which uses only single-writers, is
incorrect for PC-G. The consequence of Theorem 5.3 is that any CSP solution for PC-G must use at least
one multi-writer.

Multi-writer variables can be constructed from single writer variables in a SC memory system[14].
However, this is not the case in PC-G.

Corollary 5.4 Multi-writers cannot be implemented from single-writers in PC-G memory system.

Proof: Peterson’s algorithm solves CSP for PC-G using multi-writers, and there is no solution with only
single writers by theorem 5.3. Hence, multi-writers cannot be constructed from single-writers in PC-G.

5.2 Number of Variables

After showing that at least one multi-writer is required by a CSP solution for PC-G, a natural question is
what is the minimum number of variables needed to solve CSP(n) for PC-G?

Theorem 5.5 There does not exist an algorithm that uses fewer than n single-writers and one multi-writer
and solves CSP(n) for PC-G, for any n� 2.
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Proof: Assume that there is an algorithmA that uses fewer thann single-writers and one multi-writer and
solves CSP(n) for PC-G. Since there aren processes, the pigeon-hole principle ensures that there is at least
one process, sayp, that does not write to any single-writer variable. Computations 1 and 2 must exist. We
show that Computation 3 satisfies PC-G.

Let oq
i beq’s first write to the multi-writer. The following are the required PC-G linearizations forp and

q.

(Ojp[Ojw;
Lp
�!) = hop

1; � � � ;o
p
k ;(o

q
1; � � � ;o

q
l )jwi

(Ojq[Ojw;
Lq
�!) = hoq

1; � � � ;o
q
i�1;(o

p
1; � � � ;o

p
k)jw;o

q
i ; � � � ;o

q
l i:

Both sequences maintain program order. Moreover,p’s sequence is valid because it consists of Computation
1 followed by only writes byq. Also,q’s sequence is valid because the segmentoq

1; � � � ;o
q
i�1 does not contain

any writes to the multi-writer. Sincepdoes not write to the single-writer, the segment(op
1; � � � ;o

p
k)jw contains

only writes to the multi-writer. The segmentoq
i ; � � � ;o

q
l starts with a write to the multi-writer over-writing

any changes the segment(op
1; � � � ;o

p
k)jw caused. Therefore both are linearizations.

Also, each linearization listsp’s writes to the multi-writer followed byq’s. Since onlyq writes to any
single-writers, the two linearizations also agree on the order of this variable. So, both linearizations agree
on the order of writes for each variable (Condition 2 of Definition 2.3).

Whenn= 2, the bound of theorem 5.5 is tight, even if all variables are allowed to be multi-writers.

Theorem 5.6 Two variables are insufficient to solve CSP(2) for PC-G.

Proof: Assume that there is an algorithmA that uses exactly 2 variables, sayx andy, (even multi-writers)
and solves CSP(2) for PC-G. Then, computations 1 and 2 exist. We show that Computation 3 satisfies PC-G.

Partitionp’s computation of Computation 3 into subsequencesSp
0;S

p
1; :::;S

p
u where each subsequenceSp

i
is defined by:

1. Sp
0 contains all operations fromop

1 up to but not including the first write byp, labeledop
α1.

2. Sp
i , i � 1, contains all operations fromop

αi up to but not including the first write, labeledop
αi+1, such

thatop
αi andop

αi+1 are applied to different variables.

Partitionq’s computation of Computation 3 into subsequencesSq
0;S

p
1; :::;S

q
r similarly.

The subsequenceSp
0 is either empty or consists entirely of reads returning initial values. Each subse-

quenceSp
i (i � 1) starts with a write and all the writes inSp

i are applied to the same variable. If the writes
in Sp

i are applied tox, Sp
i is calledx-gender; otherwise, it is calledy-gender. Note thatSp

i (Sq
i ) alternate in

gender.
To show that Computation 3 satisfies PC-G, we consider two cases (the other two cases are symmetric).

Sp
1 is anx-gender butSq

1 is ay-gender: Define(Ojp[Ojw;
Lp
�!) and(Ojq[Ojw;

Lq
�!) as follows.

(Ojp[Ojw;
Lp
�!) = hSp

0; (S
q
0)jw; Sp

1; (S
q
1)jw; Sp

2; � � � ; (S
q
i )jw; Sp

i+1; � � �i

(Ojq[Ojw;
Lq
�!) = hSq

0; (S
p
0)jw; Sq

1; (S
p
1)jw; Sq

2; � � � ; (S
p
i )jw; Sq

i+1; � � �i

Clearly, (Ojp[Ojw;
Lp
�!) and(Ojq[Ojw;

Lq
�!) maintain program order. They are also valid because, for

eachi � 1, Sp
i (respectively,Sq

i ) is of the same gender asSq
i+1 (respectively,Sp

i+1). SinceSq
i andSp

i+1 are of
the same gender, adding(Sq

i )jw immediately beforeSp
i+1 does not affectp’s computation becauseSp

i+1 starts
with a write that obliterates the changes caused by(Sq

i )jw; similarly for Sp
i andSq

i+1.
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Algorithm Year jPj Variables flag Values Fairness Delay

Dekker’s 1965 n= 2 n+1 2 ∞
Dijkstra’s 1965 n� 2 n+1 3 ∞
Knuth’s 1966 n� 2 n+1 3 2n�1�1
De Bruijn’s 1967 n� 2 n+1 3 (n2�n)=2
Eisenberg and MacGuire’s 1972 n� 2 n+1 3 n�1
Burns’ 1981 n� 2 n+1 2 ∞
Peterson’s 1981 n� 2 2n�1 2 (n2�n)=2

Figure 1: Well known CSP algorithms for SC

The order on the writes tox in p’s linearization is:

(Sp
1)jw; (S

q
2)jw; � � � ; (S

p
i )jw; (S

q
i+1)jw; � � � ; (wherei is odd)

which is the same order maintained byq’s linearization. The same applies toy. Therefore, Condition 2 of
Definition 2.3 is also satisfied.
Sp

1 and Sq
1 are both x-gender: Define(Ojp[Ojw;

Lp
�!) and(Ojq[Ojw;

Lq
�!) as follows.

(Ojp[Ojw;
Lp
�!) = h(Sq

0)jw; Sp
0; (S

q
1)jw; Sp

1; � � � ; (S
q
i )jw; Sp

i ; � � �i

(Ojq[Ojw;
Lq
�!) = hSq

0; Sq
1; (S

p
0)jw; Sq

2; (S
p
1)jw; Sq

3; � � � ; (S
p
i )jw; Sq

i+2; � � �i

Similar analysis to the previous case shows that these are PC-G linearizations.
Thus, in all cases, Computation 3 is PC-G, and our assumption must have been in error.

Since at least one multi-writer is necessary to solve CSP for PC-G, and since two multi-writers are
insufficient to solve CSP(2) for PC-G, and since Peterson’s Algorithm for CSP(2) uses exactly two single-
writers and one multi-writer, we conclude the following.

Corollary 5.7 Two single-writers and one multi-writer are the necessary and sufficient number and type of
variables required to solve CSP(2) for PC-G.

5.3 On the General Case

By theorems 5.3 and 5.5, an algorithm that solves CSP(n) for PC-G must use at leastn single-writers and
one multi-writer. Most algorithms that solve CSP(n) for SC use exactly this number and type of variables.
In particular, all the algorithms discussed in this section (except Peterson’s which usesn single-writers
andn�1 multi-writers) use the same number of variables: one multi-writer (turn) andn single-writers.
Furthermore, each process writes and readsturn, and each processi is associated with the single-writer
flag[i]. Every processj 6= i readsflag[i]. These algorithms are quoted in Appendix A and listed in
Figure 1, which characterizes each algorithm by four attributes: number of processesjPj = n, number of
variables, number of values that aflag variable can be assigned, and delay. The delay is an upper bound
on the number of times processes enter their critical sections before a certain process gets the opportunity to
enter its critical section. When the there is no upper bound on the fairness delay (∞), the algorithm is prone
to starvation, and is thus unfair.
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Although this number of variables is a necessary requirement for a PC-G solution, we show next that
most of these algorithms do not solve CSP(n) for PC-G. First, we provide somerules-of-thumbthat allows
us to nail down certain properties of correct solutions for PC-G. Then, these rules are used to show that
Dekker’s, Dijkstra’s, Knuth’s, De Bruijn’s, and Eisenberg and MacGuire’s fail to solve CSP(n) for PC-G.

Lemma 5.8 Any algorithm that uses exactly n single-writers and one multi-writer and solves CSP(n) for
PC-G must satisfy each of the following properties:

1. Each process writes one single-writer at least once in<entry>.

2. Each process must write the multi-writer at least once in<entry>, and this write cannot be the last
operation in<entry>.

3. Each process must read every other single-writer in<entry>.

Proof: We follow the proof template given in Section 4.

1. Assume it is not the case; then there is at least one process, sayp, that does not write to any single-
writer. The linearizations used in Theorem 5.5 apply.

2. Assume that a processp either does not write the multi-writer in<entry> or does write the multi-
writer exactly once and this write operation isop

k . Under this assumption, Computation 3 satisfies
PC-G as shown by the following linearizations.

(Ojp[Ojw;
Lp
�!) = hop

1; :::;o
p
k�1;(o

q
1; :::;o

q
l )jw;o

p
ki

(Ojq[Ojw;
Lq
�!) = hoq

1; :::;o
q
l ;(o

p
1; :::;o

p
k )jwi

Both maintain program order and are valid. They also maintain the same order on the writes to the
multi-writer, which is simplyq’s writes thenop

k . Note that this case is equivalent to the case where
multi-writer is written in the<critical section> rather than in<entry>.

3. Assume, for the sake of contradiction, that there is a process,q, that does not read some single-writer
of another processp. The linearizations of Theorem 5.5 apply.

Corollary 5.9 The following CSP algorithms do not solve CSP(n) for PC-G, even if n= 2:

1. Dijkstra’s Algorithm

2. Dekker’s Algorithm

3. De Bruijn’s Algorithm

4. Knuth’s Algorithm

5. Eisenberg and MacGuire’s Algorithm
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Proof: First, note that all these algorithms usen single-writers and one multi-writer.
In Dijkstra’s Algorithm, if the multi-writerturn is initially p, p enters its<critical section> without

writing to the multi-writer. In Dekker’s and Bruijn’s algorithms, the multi-writer is only written in<exit>.
In Knuth’s, and in Eisenberg and MacGuire’s algorithms, the multi-writer is only written as the last step in
<entry>. By Lemma 5.8(2), all of these algorithms are incorrect for PC-G.

Theorem 5.10 Burns’ Algorithm is an unfair CSP(n) solution for PC-G.

Proof: Mutual Exclusion: Assume for the sake of contradiction that there exists some PC-G computa-
tion of Burns’ Algorithm where two processes, sayi and j, execute in their<critical section> concurrently.
Then,i (respectively,j) must readflag[ j] (respectively,flag[i]) to befalseat line 11 before entering its
<critical section> as shown by the following computation.

Computation 4
�

i : : : : r(flag[ j])false < critical section >

j : : : : r(flag[i])false < critical section >

Note that any time a process, sayi, executes aw(flag[i])true, the next operation it executes is a
w(turn)i. Let w(turn)i be the last write operation toturn that i executes before entering its<critical
section> (This write could be performed at line 2 or 8.) Similarly, letw(turn) j be the last write toturn
that j did before entering its<critical section>.

Since Computation 4 satisfies PC-G, there must exist two linearizations,(Oji [Ojw;
Li
�!) and (Oj j [

Ojw;
Lj
�!), such that both agree on the order of writes toturn. Without loss of generality, supposew(turn)i

precedesw(turn) j in both linearizations. Sincew(turn) j
L j
�! r(flag[i])false(by program order),w(turn)i

L j
�! r(flag[i])false. There must be some writew(flag[i])true, such that this write is the last write by
i that precedesw(turn)i in j ’s view. Sincew(turn)i is the last write byi before it enters its<critical
section>, w(flag[i])truemust be the last write toflag[i] beforei enters its<critical section>. By tran-
sitivity, this write is the most recent write toflag[i] that precedesr(flag[i])falsein j ’s view, contradicting

the validity of(Oj j [Ojw;
Lj
�!). Therefore, Burns’ algorithm satisfies Mutual Exclusion for PC-G.

Progress: If only one process is participating, then it will enter the<critical section>. So assumem
processes, 2�m� n, are participating in a computation of Burns’ Algorithm such that none of them is able
to progress to<critical section>. We show this is impossible. By PC-G, all processes must agree of the
order of the writes toturn, and eventuallym�1 of them will seeturn different from their own identifiers;
therefore, allm�1 processes enter the body of the while loop. At least one process will fail the test on line 4
skipping the while loop. This is because of the total order on the writes toturn that all processes agree on.
Since there is at least one process, sayj, that does not engage in the while loop, we must have the following,
wherei 6= j:

w(turn)i
Li
�!w(turn) j

Li
�!r(turn) j:

Sincew(flag[ j])trueprecedesw(turn) j in program order, we conclude:

w(flag[ j])true
Li
�!r(flag[ j])true:

Therefore, lines 7 and 8 are unreachable fori unless j makes progress to<exit>. So, i is repeatedly

executing lines 4 and 5 andw(flag[i])false of line 5 must eventually appear in(Oj j [Ojw;
Lj
�!), and

consequentlyj enters its<critical section>.
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n Processes

shared objects
flag[0 :: n�1] in ftrue, falseg, single-writer

turn in f0; � � � ;n�1g, multi-writer

<entry>
1 flag[i]  true
2 turn  i
3 repeat
4 while (turn 6= i) do
5 flag[i]  false
6 if (8 j 6= i, not flag[ j]) then
7 flag[i]  true
8 turn  i
9 end-if
10 end-while
11 until (8 j 6= i, not flag[ j])

<critical section>

<exit>
12 flag[i]  false

Figure 2: Burns’ CSP unfair solution

Processes have unique identifiers from the setf0; � � � ;n�1g, wheren is the total number of processes.

The algorithm is given by specifying the<entry> and<exit> sections of processi, i 2 f0; � � � ;n�1g.

Fairness: To see that Burns’ algorithm is unfair for PC-G, we show it’s unfair even for SC.4 Consider
the Computation 5 which represents a starvation scenario, where the segments enclosed by square brackets
can be repeated indefinitely.

Computation 5

8>><
>>:

i : [w(flag[i])true w(turn)i r (turn)i r (flag[ j])false
< critical section > w(flag[i])false]

j : w(flag[ j])true w(turn) j [r(turn)i w(flag[ j])false
r(flag[i])true]

The following is an SC linearization.(O;
L

�!) = hwj(flag[ j])true wj(turn) j [wi(flag[i])true
wi(turn)i r i(turn)i r j(turn)i w j(flag[ j])false rj(flag[i])true ri(flag[ j])false < critical section >

wi(flag[i])false]. Operations are subscripted by the corresponding process id. The segment enclosed in
square brackets is the part of the computation being repeated indefinitely.

6 Conclusion

Any solution to CSP(n) for PC-G must use at least one multi-writer andn single-writers. This lower bound
is tight whenn= 2. Burns’ algorithm, which uses one multi-writer andn single-writers is an unfair solution

4It is common knowledge that Burns’ algorithm is unfair even for SC.

10



for PC-G. It is not clear to us yet whether a fair solution can be constructed using only one multi-writer and
n single-writers. If not, then to tighten the lower bound in the general case, impossibility proofs will have to
exploit fairness. Many other algorithms that use the same number and type of variables as Burns’ have been
shown to fail for PC-G. Finally, Peterson’s algorithm, which usesn�1 multi-writers andn single-writers,
is correct and fair for PC-G.
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A CSP Algorithms

For each of the following CSP algorithms, processes have unique identifiers from the setf0; � � � ;n�1g,
wheren is the total number of processes. The algorithms are given by specifying the<entry> and<exit>
sections of processi, i 2 f0; � � � ;n�1g.

A.1 Peterson’s Algorithm
Two Processes

shared objects
flag[0 :: 1] in ftrue, falseg, single-writer

turn in f0;1g, multi-writer

<entry>
flag[i]  true
turn  j
while (flag[ j] and turn = j) do nothing

<critical section>

<exit>
flag[i]  false

n Processes

shared objects
flag[0 :: n�1] in f�1 :: n�2g, single-writer

turn[0 :: n�2] in f0 :: n�1g, multi-writer

<entry>
for k = 0 to n�2 do

flag[i]  k
turn[k]  i
while (8 j 6= i, flag[ j] � k and turn[k] = i) do nothing

<critical section>

<exit>
flag[i]  �1

A.2 Dekker’s Two-process Algorithm
2 Processes

shared objects
flag[0 :: 1] in ftrue, falseg, single-writer

turn in f0;1g, multi-writer

<entry>
flag[i]  true
while (flag[ j]) do

if (turn = j) then
flag[i]  false
while (turn = j) do nothing
flag[i]  true

end-if
end-while

<critical section>

<exit>
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turn  j
flag[i]  false

A.3 Dijkstra’s Algorithm
n Processes

shared objects
flag[0 :: n�1] in fidle, requesting, in-csg, single-writer

turn in f0; � � � ;n�1g, multi-writer

<entry>
repeat

flag[i]  requesting
while (turn 6= i) do

if (flag[turn] = idle) then
turn  i

end-while
flag[i]  in-cs

until (8 j 6= i, flag[ j] 6= in-cs)

<critical section>

<exit>
flag[i]  idle

A.4 Knuth’s Algorithm
n Processes

shared objects
flag[0 :: n�1] in fidle, requesting, in-csg, single-writer

turn in f0; � � � ;n�1g, multi-writer

<entry>
repeat

flag[i]  requesting
j  turn

while ( j 6= i) do
if (flag[ j] 6= idle) then

j  turn

else j  ( j�1) mod n
end-while
flag[i]  in-cs

until (8 j 6= i, flag[ j] 6= in-cs)
turn  i

<critical section>

<exit>
turn  (i�1) mod n
flag[i]  idle

A.5 De Bruijn’s Algorithm
n Processes

shared objects
flag[0 :: n�1] in fidle, requesting, in-csg, single-writer

turn in f0; � � � ;n�1g, multi-writer

<entry>
repeat

flag[i]  requesting
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j  turn

while ( j 6= i) do
if (flag[ j] 6= idle) then

j  turn
else j  ( j�1) mod n

end-while
flag[i]  in-cs

until (8 j 6= i, flag[ j] 6= in-cs)

<critical section>

<exit>
if (flag[turn] = idle and turn = i) then

turn  (turn�1) mod n
end-if
flag[i]  idle

A.6 Eisenberg and MacGuire’s Algorithm
n Processes

shared objects
flag[0 :: n�1] in fidle, requesting, in-csg, single-writer

turn in f0; � � � ;n�1g, multi-writer

<entry>
repeat

flag[i]  requesting
j  turn

while ( j 6= i) do
if (flag[ j] 6= idle) then

j  turn
else j  ( j+1) mod n

end-while
flag[i]  in-cs

until ((8 j 6= i, flag[ j] 6= in-cs) and (turn = i or flag[turn] = idle))
turn  i

<critical section>

<exit>
j  (turn+1) mod n
while ( j 6= turn and flag[ j] = idle) do

j  ( j+1) mod n
end-while
turn  j
flag[i]  idle
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