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Abstract

The integration of a viral genome into the host genome has a major impact on the
trajectory of the infected cell. Integration location and variation within the associated
viral genome can influence both clonal expansion and persistence of infected cells.
Methods based on short-read sequencing can identify viral insertion sites, but the
sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a
method that leverages long reads to identify insertion sites and sequence their
associated viral genome. We apply the technique to exogenous retroviruses HTLV-1,
BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.

Keywords: Viral genome, Integration site analysis, Clonal expansion, NGS, Long-read
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Background
The integration of viral DNA into the host genome is a defining feature of the retro-

viral life cycle, irreversibly linking provirus and cell. This intimate association facilitates

viral persistence and replication in somatic cells and with integration into germ cells

bequeaths the provirus to subsequent generations. Considerable effort has been

expended to understand patterns of proviral integration, both from a basic virology

stand point and due to the use of retroviral vectors in gene therapy [1]. The application

of next-generation sequencing (NGS) over the last ~ 10 years has had a dramatic im-

pact on our ability to explore the landscape of retroviral integration for both exogen-

ous and endogenous retroviruses. Methods based on ligation mediated PCR and

Illumina sequencing have facilitated the identification of hundreds of thousands of in-

sertion sites in exogenous viruses such as human T cell leukemia virus-1 (HTLV-1) [2]

and human immunodeficiency virus (HIV-1) [3–6]. These techniques have shown that

in HTLV-1 [2], bovine leukemia virus (BLV) [7], and avian leukosis virus (ALV) [8]
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integration sites are not random, pointing to clonal selection. In HIV-1, it has also be-

come apparent that provirus integration can drive clonal expansion [3, 4, 6, 9], magni-

fying the HIV-1 reservoir and placing a major road block in the way of a complete

cure.

Current methods based on short-read sequencing identify the viral insertion point,

but the proviral genome associated with that integration site is largely unexplored.

Whether variation in the provirus influences the fate of the clone remains difficult to

investigate. Work in HTLV-1 points to the potential importance of such variation as

studies using long-range PCR [10] and biotin capture probes [11] have shown that de-

fective proviruses are selected for in both HTLV-1 induced adult T cell leukemia

(ATL) and asymptomatic HTLV-1 carriers. Methods such as Full-Length Individual

Proviral Sequencing (FLIPS) have been developed to identify functional proviruses [12],

but without identifying the provirus integration site. More recently, matched integra-

tion site and proviral sequencing (MIP-Seq) and multiple-displacement amplification-

single-genome sequencing (MDA-SGS) allowed the sequence of individual proviruses

to be linked to the integration site in the genome [6, 13]. However, these methods rely

on whole genome amplification of isolated HIV-1 genomes, with separate reactions to

identify the integration site and sequence the associated provirus [6]. As a result, these

methods are quite labor intensive, limiting the number of proviruses one can reason-

ably interrogate.

Retroviruses are primarily associated with the diseases they provoke through the in-

fection of somatic cells. Over the course of evolutionary time they have also played a

major role in shaping the genome. Retroviral invasion of the germ line has occurred

multiple times, resulting in the remarkable fact that endogenous retrovirus (ERV)-like

elements comprise a larger proportion of the human genome (8%) than protein coding

sequences (~ 1.5%) [14]. With the availability of multiple vertebrate genome assemblies,

much of the focus has been on comparison of ERVs between species. However, single

genomes represent a fraction of the variation within a species, prompting some to take

a population approach to investigate ERV–host genome variation [15]. While capable

of identifying polymorphic ERVs in the population, approaches relying on conventional

paired-end libraries and short reads cannot capture the sequence of the provirus be-

yond the first few hundred bases of the proviral long terminal repeat (LTR), leaving the

variation within uncharted.

In contrast to retroviruses, papillomaviruses do not integrate into the host genome as

part of their lifecycle. Human papillomavirus (HPV) is usually present in the cell as a

multicopy circular episome (~ 8 kb in size); however, in a small fraction of infections, it

can integrate into the host genome leading to the dysregulation of the viral oncogenes

E6 and E7 [16]. Genome wide profiling of HPV integration sites via capture probes and

Illumina sequencing has also identified hotspots of integration indicating that disrup-

tion of host genes may also play a role in driving clonal expansion [17]. As a conse-

quence, HPV integration is a risk factor for the development of cervical carcinoma

[18]; however, its study is hampered by the unpredictability of the breakpoint sites in

the integrated HPV genome. This limits the applicability of approaches based on

ligation-mediated PCR and short-read sequencing.

The application of NGS as well as Sanger sequencing before has had a large impact

on our understanding of both exogenous and endogenous proviruses. The development
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of long-read sequencing, linked-read technologies, and associated computational tools

[19] have the potential to explore questions inaccessible to short reads. Groups investi-

gating long interspersed nuclear elements-1 (LINE-1) insertions [20] and the koala

retrovirus, KoRV [21], have highlighted this potential and described techniques utilizing

the Oxford Nanopore and PacBio platforms, to investigate insertion sites and retroele-

ment structure.

To more fully exploit the potential of long reads, we developed Pooled CRISPR In-

verse PCR sequencing (PCIP-seq), a method that leverages selective cleavage of circu-

larized DNA fragments carrying proviral DNA with a pool of CRISPR guide RNAs,

followed by inverse long-range PCR and multiplexed sequencing on the Oxford Nano-

pore MinION platform. Using this approach, we can now simultaneously identify the

integration site and track clone abundance while also sequencing the provirus inserted

at that position. We have successfully applied the technique to the retroviruses HTLV-

1, HIV-1, and BLV, endogenous retroviruses in cattle and sheep, and HPV18.

Results
Overview of PCIP-seq (pooled CRISPR inverse PCR-sequencing)

The genome size of the viruses targeted ranged from 6.8 to 9.7 kb; therefore, we chose

to shear the DNA to ~ 8 kb in length. In most cases, this creates two fragments for each

provirus, one containing the 5′ end with host DNA upstream of the insertion site and

the second with the 3′ end and downstream host DNA. Depending on the shear site,

the amount of host and proviral DNA in each fragment will vary (Fig. 1a). To facilitate

identification of the provirus insertion site via inverse PCR we carry out intramolecular

ligation, followed by digestion of the remaining linear DNA. To selectively linearize the

circular DNA containing proviral sequences (this helps increase PCR efficiency), re-

gions adjacent to the 5′ and 3′ LTRs in the provirus are targeted for CRISPR-mediated

cleavage. We sought a balance between ensuring that the majority of the reads con-

tained part of the flanking DNA (for clone identification) while also generating suffi-

cient reads extending into the midpoint of the provirus. We found that using a pool of

CRISPR guides for each region increased the efficiency and by multiplexing the guide

pools and PCR primers for the 5′ and 3′ ends we could generate coverage for the ma-

jority of a clonally expanded provirus in a single reaction (Fig. 1b). The multiplexed

pool of guides and primers leaves coverage gaps in the regions flanked by the primers.

To address these coverage gaps, we designed a second set of guides and primers. Fol-

lowing separate CRISPR cleavage and PCR amplification, the products of these two sets

of guides and primers were combined for sequencing (Fig. 1c). This approach ensured

that the complete provirus was sequenced (Fig. 1d).

Identifying genomic insertions and internal variants in HTLV-1

Adult T cell leukemia (ATL) is an aggressive cancer induced by HTLV-1. It is generally

characterized by the presence of a single dominant malignant clone, identifiable by a

unique proviral integration site. We and others have developed methods based on

ligation-mediated PCR and Illumina sequencing to simultaneously identify integration

sites and determine the abundance of the corresponding clones [2, 7]. We initially ap-

plied PCIP-seq to two HTLV-1 induced cases of ATL, both previously analyzed with
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our Illumina-based method (ATL2 [7] and ATL100 [22]). In ATL100, both methods

identify a single dominant clone, with > 95% of the reads mapping to a single insertion

site on chr18 (Fig. 2a, b and Table 1). Using the integration site information, we ex-

tracted the PCIP-seq hybrid reads spanning the provirus/host insertion site, uncovering

a ~ 3600 bp deletion within the provirus (Fig. 2c).

In the case of ATL2, PCIP-seq showed three major proviruses located on chr5, chr16,

and chr1, each responsible for ~ 33% of the HTLV-1/host hybrid reads. We had previ-

ously established that these three proviruses are in a single clone via examination of

the T cell receptor gene rearrangement [7]. However, it is interesting to note that this

was not initially obvious using our Illumina-based method, as the proviral insertion site

on chr1 falls within a repetitive element (LTR) causing many of the reads to map to

multiple regions in the genome. If multi-mapping reads are filtered out, the chr1 inser-

tion site accounted for 13.7% of the remaining reads, while retaining multi-mapping

produces values closer to reality (25.4%). In contrast, the long reads from PCIP-seq

allow unambiguous mapping and closely matched the expected 33% for each insertion

site (Fig. 2d), highlighting the advantage long reads have in repetitive regions. Looking

at the three proviruses, proviral reads revealed all to be full length. Three de novo mu-

tations were observed in one provirus and a single de novo mutation was identified in

the second (Fig. 2e).

Fig. 1 Overview of the PCIP-seq method. a Simplified outline of the method. Only 5′ LTR-containing circles
and fragments are represented. Detailed outline available in Supplementary Methods. b A pool of CRISPR
guide-RNAs targets each region, the region is flanked by PCR primers. Guides and primers adjacent to 5′
and 3′ LTRs are multiplexed. c As the region between the PCR primers is not sequenced, we created two
sets of guides and primers (sets A and B). Following circularization, the sample is split, with CRISPR-
mediated cleavage and PCR occurring separately for each set. After PCR, the products of the two sets of
guides and primers are combined for sequencing. d Distribution of coverage across a BLV provirus (red line)
and host DNA (blue line) in an expanded clone. Gray boxes: LTRs. The large drops in coverage adjacent to
the LTRs correspond to the region between the PCR primers. The colored lines represent SNPs in the
host genome
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Insertion sites identified in samples with multiple clones of low abundance

The samples utilized above represent a best-case scenario, with ~ 100% of cells infected

and a small number of major clones. We next applied PCIP-seq to four samples from

BLV infected sheep (experimental infection [23]) and three cattle (natural infection) to

explore its performance on polyclonal and low proviral load (PVL) samples and com-

pared PCIP-seq to our previously published Illumina method [7]. PCIP-seq revealed all

samples to be highly polyclonal (Additional file 1: Fig. S1 and Table 1) with the number

of unique insertion sites identified varying from 172 in the bovine sample 560 (1 μg

template, PVL 0.644%) to 17,903 in bovine sample 1053 (6 μg template, PVL 23.5%). In

general, PCIP-seq identified more insertion sites, using less input DNA than our

Fig. 2 PCIP-seq applied to ATL. a In ATL100, both ligation-mediated PCR with Illumina sequencing
(targeting the 5′ and 3′ LTRs) and PCIP-seq with Nanopore show a single predominant HTLV-1 insertion site.
b Reads from both approaches have been mapped to a custom genome where the HLTV-1 provirus has
been incorporated into the host genome. The long PCIP-seq Nanopore reads show this provirus has a ~
3600 bp internal deletion, removing the binding sites of the guides/primers adjacent to the 5′ LTR. c
Internal deletion confirmed via long range PCR and Illumina sequencing (gray reads map to a single
position, the white reads map to both LTRs). d ATL2 clonality pie charts generated from ligation-mediated
PCR with Illumina- and PCIP-seq-based sequencing data. The ATL2 tumor clone contains three proviruses
inserted in chr 1, 5, and 16 (green, orange and blue slices respectively) named according to the
chromosome inserted into. The provirus on chr1 (green slice) is inserted into a repetitive element (LTR) and
short reads generated from host DNA flanking the insertion site by Illumina sequencing map to multiple
positions in the genome. Filtering out multi-mapping reads causes an underestimation of the abundance of
this insertion site (13.6%, left pie-chart). This can be partially corrected by retaining multi-mapping reads at
this position (25.4%, central pie-chart). However, that approach can cause the potentially spurious inflation
of other integration sites (red slice 9%). The long PCIP-seq reads can span repetitive elements and produce
even coverage for each provirus without correction (right pie chart). e Screen shot from IGV shows
representative PCIP-seq reads coming from the three proviruses (named chr 1, chr16, and chr5) and
mapped to four distinct regions of the HTLV-1 proviral genome at positions where de novo mutations
were observed
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Illumina-based method (Additional file 1: Table S1). Comparison of the results showed

a significant overlap between the two methods. When we consider insertion sites sup-

ported by more than three reads in both methods (larger clones, more likely to be

present in both samples), in the majority of cases > 50% of the insertion sites identified

in the Illumina data were also observed via PCIP-seq (Additional file 1: Table S1).

These results show the utility of PCIP-seq for insertion site identification, especially

considering the advantages long reads have in repetitive regions of the genome.

Identifying SNPs in BLV proviruses

Portions of the proviruses with more than ten supporting reads (PCR duplicates re-

moved) were examined for SNPs with LoFreq [24]. For the four sheep samples, the var-

iants were called relative to the pBLV344 provirus (used to infect the animals). For the

bovine samples 1439 and 1053, custom consensus BLV sequences were generated for

each and the variants were called in relation to the appropriate reference (SNPs were

not called in 560). Across all the samples, 3209 proviruses were examined, 934 SNPs

were called, and 680 (21%) of the proviruses carried one or more SNPs (Additional

file 1: Table S2). We validated 10 BLV SNPs in the ovine samples and 15 in the bovine

via clone-specific long-range PCR and Illumina sequencing (Additional file 1: Fig. S2).

For Ovine 221, which was sequenced twice over a two-year interval, we identified and

validated three instances where the same SNP and provirus were observed at both time

points (Additional file 1: Fig. S2). We noted a small number of positions in the BLV

Table 1 Number of unique insertion sites (IS) identified via PCIP-seq

Sample
name

Virus Host PVL Template
μg

Raw
reads

Chimeric
reads (%)

Pure host / pure
viral reads

Insertion
sites

Largest
clone (%)

ATL2 HTLV-1 HSA nd 4 81,219 68.21 0.0037 / 31.8 160 49.5

ATL100 HTLV-1 HSA 106 4 4838 64.14 9.16 / 26.7 13 89.624

233 BLV OAR 78.3 7 524,698 53.4 0.04 / 46.53 5311 5.22

221 (022016) BLV OAR 63 4 180,276 67.14 3.59 / 29.27 8023 0.625

221 (032014) BLV OAR 16 4 32,266 68.69 0.11 / 31.20 5374 0.279

220 BLV OAR 3.8 2 44,876 67.38 0 / 32.62 1352 3.55

1439 BLV BosT 45 3 181,055 70.52 0.19 / 29.29 5773 1.17

560 BLV BosT 0.644 1 6802 69.83 1.12 / 29.06 172 4.59

1053 BLV BosT 23.5 6 367,454 72.13 0.04 / 27.83 17,903 0.353

HIV_U1 HIV-1 HSA 200 2 94,086 54.66 2.75 / 42.59 728 47.2

Jurkat U1–
0.1

HIV-1 HSA 0.2 5 252,913 43.33 0.04 / 56.62 4 71.7

Jurkat U1–
0.01

HIV-1 HSA 0.02 5 234,421 43.33 0.04 / 56.52 2 90.2

Jurkat neg HIV-1 HSA 0 5 12,137 0 100 / 0 0 0

02006 HIV-1 HSA 0.46 12 240,641 51.63 1.10 / 47.27 158 7.82

06042 HIV-1 HSA 0.56 8 226,685 21.18 0.41 / 78.41 73 4.77

HPV18_PX HPV18 HAS nd 4 180,550 21.36 0.29 / 78.35 55 nd

HPV18_PY HPV18 HAS nd 4 82,807 0.09 0.05 / 99.86 19 nd

Chimeric reads reads containing host and viral DNA, cover the integration site, Pure host/pure viral reads reads containing
either host or viral DNA, do not include the integration site, Largest clone % insertion site with highest number of reads
in that sample, PVL proviral load. (Percentage cells carrying a single copy of integrated provirus or number proviral
copies per 100 cells)
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provirus prone to erroneous SNP calls. By comparing allele frequencies from bulk Illu-

mina and Nanopore data, these problematic positions could be identified and excluded

(Additional file 1: Fig. S3a).

Approximately half of the SNPs (47.1% sheep, 51.6% cattle) were found in multiple

proviruses. Generally, SNPs found at the same position in multiple proviruses were

concentrated in a single individual, indicating their presence in a founder provirus or

via a mutation in the very early rounds of viral replication (Additional file 1: Fig. S3b).

Alternatively, a variant may also rise in frequency due to increased fitness of clones car-

rying a mutation in that position. In this instance, we would expect to see the same

position mutated in multiple individuals. One potential example is found in the first

base of codon 303 (position 8155) of the viral protein Tax, a potent viral transactivator,

stimulator of cellular proliferation and highly immunogenic [25]. A variant was ob-

served at this position in five proviruses for sheep 233 and three for sheep 221 as well

as one provirus from bovine 1439 (Fig. 3a). Using less stringent criteria for the inclu-

sion of a proviral region (> 10 reads, not filtered for PCR duplicates), we found 34 pro-

viruses in the ovine and 3 in the bovine carrying a variant in this position. The majority

of the variants observed were G-to-A transitions (results in E-to-K amino acid change);

however, we also observed G-to-T (E-to-STOP) and G-to-C (E-to-Q) transversions. It

has been previously shown that the G-to-A mutation abolishes the Tax protein transac-

tivator activity [25, 26]. The repeated selection of variants at this specific position sug-

gests that they reduce viral protein recognition by the immune system, while preserving

the Tax proteins’ other proliferative properties.

Patterns of provirus-wide APOBEC3G [27] induced hypermutation (G-to-A) were

not observed in BLV. However, three proviruses (two from sheep 233 and one in bo-

vine 1053) showed seven or more A-to-G transitions, confined to a ~ 70-bp window in

the first half of the U3 portion of the 3′LTR (Additional file 1: Fig. S4). The pattern of

mutation, as well as their location in the provirus, suggests the action of RNA adeno-

sine deaminases 1 (ADAR1) [28, 29].

PCIP-seq identifies BLV structural variants in multiple clones

Proviruses were also examined for structural variants (SVs) using a custom script and

via visualization in IGV (see “Methods”). Between the sheep and bovine samples, we

identified 66 deletions and 3 tandem duplications, with sizes ranging from 15 to 4152

bp, with a median of 113 bp (Additional file 1: Table S3). We validated 14 of these via

clone-specific PCR (Additional file 1: Fig. S5). As seen in Fig. 3b, SVs were found

throughout the majority of the provirus, encompassing the highly expressed micro-

RNAs [30] as well as the second exon of the constitutively expressed antisense tran-

script AS1 [31]. Only two small regions at the 3′ end lacked any SVs. More proviruses

will need to be examined to see if this pattern holds, but these results again suggest the

importance of the 3′LTR and its previously reported interactions with adjacent host

genes [7].

Identifying HIV-1 integration sites and the associated provirus

Despite the effectiveness of combination antiretroviral therapy (ART) in suppressing

HIV-1 replication, cART is not capable of eliminating latently infected cells, ensuring a
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viral rebound if cART is suspended [32]. This HIV-1 reservoir represents a major obs-

tacle to a HIV cure [33], making its exploration a priority. However, this task is compli-

cated by its elusiveness, with only ~ 0.1% of CD4+ T cells carrying integrated HIV-1

DNA [34]. To see if PCIP-seq could be applied to these extremely low proviral loads,

we initially carried out dilution experiments using U1 [35], an HIV-1 cell line contain-

ing replication-competent proviruses [36]. PCIP-seq on undiluted U1 DNA found the

major insertion sites on chr2 and chrX (accounting for 47% and 41% of the hybrid

reads respectively) and identified the previously reported variants that disrupt Tat func-

tion [37] in both proviruses (Additional file 1: Fig. S6a). In addition to the two major

proviruses, we identified an additional ~ 700 low abundance insertion sites (Table 1),

including one on chr19 (0.8%) reported by Symons et al. [36] that is actually a product

of recombination between the major chrX and chr2 proviruses (Additional file 1: Fig.

S6b). We then serially diluted U1 DNA in Jurkat cell line DNA. PCIP-seq was carried

out with 5 μg of template DNA where U1 represents 0.1% and 0.01% of the total DNA.

We also processed 5 μg of Jurkat DNA in parallel as a negative control. We were able

to detect the major proviruses on chr2 and chrX in both dilutions. We estimate that in

the 0.01% dilution, we captured ~ 3.2% of the proviruses present in the original sample

(Additional file 1: Fig. S7a and Table 1). No reads mapping to HIV-1 were observed in

the negative control (Additional file 1: Fig. S7b and Table 1).

Fig. 3 Variation in the BLV provirus. a Screen shot from IGV shows representative reads from a subset of
the clones from each BLV-infected animal with a mutation in the first base of codon 303 in the viral protein
Tax. Reads were mapped to the BLV proviral reference. Dotted red line shows approximate position within
the BLV proviral genome represented below. b Structural variants observed in the BLV provirus. Deletions
(blue bars) and duplications (red bars) in BLV proviruses identified in both ovine and bovine samples
sequenced by PCIP-seq are represented below the BLV proviral genome
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We next carried out PCIP-seq on DNA extracted from the CD4+ T cells of two HIV-

1-infected patients (06042 and 02006) on long-term cART (Additional file 1: Table S4).

Using 8 μg of template DNA, we identified 73 unique integration sites in 06042. In

02006, using 12 μg template DNA, we identified 158 (Fig. 4 and Additional file 2).

Examination of the shear sites in the reads at each integration site via IGV allowed us

to differentiate between integration sites sequenced from a single provirus and a pro-

virus in clonally expanded cells, where multiple shear sites in the host genome can be

observed.

We validated the integration sites of 5 proviruses using clone-specific PCR (Add-

itional file 2). In the majority of the integration sites, only a subset of the associated

provirus is sequenced; however, it was still possible to identify 12 proviruses from

06042 and 52 in 02006 with large deletions (Additional file 1: Fig. S8a and Additional

file 2). Additionally, we generated approximately 500 kb of HIV provirus sequence that

can be linked to specific integration sites. In 02006, we found four clonally expanded

full-length proviruses with reads covering the entire provirus (Additional file 2). One

contained a ~ 115 bp deletion just upstream of gag, disrupting the packaging signal (Ψ)

(Additional file 1: Fig. S8b). Two of them had sufficient coverage to generate a consen-

sus sequence of the full-length provirus, and both appear to be intact (Additional file 3).

One maps to a segmentally duplicated region just below the centromere on chr10 and

chr1 respectively, while the other has flanking sequence that matches the satellite re-

peats of the centromeres of chr13, chr14, chr21, and chr22. Both patients had four inte-

gration sites in intron 1 of STAT5B, all were in the same transcriptional orientation as

STAT5B (Fig. 4). An enrichment of HIV-1 integrations in this region has previously

been reported [3, 4, 6], with recent work showing them to cause insertional activation

of STAT5B, which favors T regulatory cell persistence [38].

In order to explore a way of reducing the amount of starting DNA for HIV-1-

infected primary samples, we carried out multiple displacement amplification (MDA)

prior to carrying PCIP-seq. Using 10 ng and 100 ng of DNA as template for MDA, we

generated ~ 10 μg of amplified DNA and used 4 μg of this as template for PCIP-seq.

For 02006, we identified 13 integration sites in the 100 ng MDA sample and 3 in the

10 ng MDA. Two of the 10 ng MDA integrations were also observed in the 100 ng

MDA sample, giving a total of 14 integration sites for both. All but 4 of these provi-

ruses had been identified by PCIP-seq in the previous libraries. For 06042, we identified

23 proviruses in the 100 ng MDA and 2 in the 10 ng MDA sample (25 in total). Only

one of these proviruses had been seen in the in the previous PCIP-seq libraries from

this patient (Additional file 2). The differing levels of overlap between libraries suggests

a higher proportion of clonally expanded cells in patient 02006, a trend that was also

visible in the non MDA PCIP-seq libraries (Additional file 2).

Identifying full-length and polymorphic endogenous retroviruses in cattle and sheep

ERVs in the genome can be present as full length, complete provirus, or more com-

monly as solo-LTRs, the products of non-allelic recombination [39]. At the current

time, conventional short-read sequencing, using targeted or whole genome approaches,

cannot distinguish between the two classes. Examining full-length ERVs would provide

a more complete picture of ERV variation, while also revealing which elements can
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produce de novo ERV insertions. As PCIP-seq targets inside the provirus we can pref-

erentially amplify full length ERVs, opening this type of ERV to study in larger numbers

of individuals. As a proof of concept, we targeted the class II bovine endogenous retro-

virus BERVK2, known to be transcribed in the bovine placenta [40]. We applied the

technique to three cattle, of which one (10201e6) was a Holstein suffering from choles-

terol deficiency, an autosomal recessive genetic defect recently ascribed to the insertion

of a 1.3 kb LTR in the APOB gene [41]. PCIP-seq clearly identified the APOB ERV in-

sertion in 10201e6 and in contrast to previous reports [41] shows it to be a full-length

element (Additional file 1: Fig. S9). We identified a total of 67 ERVs (Fig. 5), with eight

present in all three samples (Additional file 1: Table S5). We validated three ERVs via

long-range PCR and Illumina sequencing (Additional file 1: Fig. S10). We did not find

any with an identical sequence to the APOB ERV, although the ERV BTA3_115.3 has

an identical LTR sequence, highlighting that the sequence of the LTR cannot be used

to infer the complete sequence of the ERV (Additional file 1: Fig. S11).

We also adapted PCIP-seq to amplify the Ovine endogenous retrovirus Jaagsiekte

sheep retrovirus (enJSRV), a model for retrovirus-host co-evolution [42]. Using two

sheep (220 and 221) as template, we identified a total of 48 enJSRV proviruses (Fig. 5)

(33 in 220 and 38 in 221, with 22 common to both) and of these ~ 54% were full length

(Additional file 1: Table S6). We validated seven proviruses via long-range PCR and

Illumina sequencing (Additional file 1: Fig. S12).

Fig. 4 Location of HIV-1 proviral integration sites identified by PCIP-seq in patients on cART. a HIV-1 proviral
integration sites identified by PCIP-seq in two HIV-1 patients (02006 and 06042). Black lines represent
integration sites where the portion of the provirus sequence shows no evidence of a large deletion, and
red lines indicate sites where a large deletion was observed in the provirus. Detailed information for each
HIV-1 integration site identified by PCIP-seq is available in Additional file 2. b A hotspot of proviral
integration in intron 1 of STAT5B. Arrows represent individual proviruses (02006 = blue, 06042 = orange), and
direction indicates the orientation of the provirus. All proviruses have the same transcriptional orientation
as STAT5B
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Extending PCIP-seq to human papillomaviruses (HPV)

The majority of HPV infections clear or are suppressed within 1–2 years [43]; however,

a minority evolve into cancer, and these are generally associated with integration of the

virus into the host genome. This integration into the host genome is not part of the

viral lifecycle and the breakpoint in the viral genome can occur at any point across its

8 kb circular genome [18]. As a consequence, the part of the viral genome found at the

virus host breakpoint varies considerably, making the identifying of integration sites dif-

ficult using existing approaches [18]. The long reads employed by PCIP-seq mean that

even when the breakpoint is a number of kilobases away from the position targeted by

primers we should still capture the integration site. As a proof of concept, we applied

PCIP-seq to two HPV18-positive cases (HPV18_PX and HPV18_PY) using 4 μg of

DNA extracted from left over Papanicolaou tests (Pap smear). We identified 55 integra-

tion sites in HPV18_PX and 19 integration sites in HPV18_PY (Additional file 1: Table

S7). In HPV18_PY, the vast majority of the reads only contained HPV sequences, and

the integration sites identified were defined by single reads, suggesting little or no

clonal expansion (Table 1). In HPV18_PX most integration sites were again defined by

a single read; however, there were some exceptions (Additional file 1: Table S7). The

most striking of these was a cluster of what appeared to be three integration sites lo-

cated within the region chr3:52477576-52564190 (Fig. 6a). The unusual pattern of read

coverage combined with the close proximity of the virus-host breakpoints indicated

that these three integration sites were connected. Long-range PCR with primers span-

ning positions α-β and α-γ showed that a genomic rearrangement had occurred in this

clonally expanded cell (Fig. 6a). Regions α and β are adjacent to one another with HPV

integrated between; however, PCR also showed regions α and γ to be adjacent to one

another, again with the HPV genome integrated between (Fig. 6b). The sequence of the

virus found between α-β looks to be derived from the α-γ virus as it shares a break-

point and is slightly shorter (Fig. 6b). This complex arrangement suggests that this re-

arrangement was generated via the recently described “looping” integration mechanism

[18, 44]. The α and β breakpoints fall within exons of the NISCH gene while the γ

Fig. 5 Location of endogenous retroviruses identified by PCIP-seq in cattle and sheep genomes. Based on
three cattle and two sheep. Black lines represent full-length proviruses, and red lines represent proviruses
containing large deletions. Detailed information for each integration site identified by PCIP-seq is available
in Tables S5 and S6
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breakpoint falls within exon 27 of PBRM1 (Fig. 6c), a gene previously shown to be a

cancer driver in renal carcinoma [45] and intrahepatic cholangiocarcinomas [46].

Discussion
In the present report, we describe how PCIP-seq can be utilized to identify insertion

sites while also sequencing parts of and in some cases the entire associated provirus,

and confirm this methodology is effective with a number of different retroviruses as

well as in HPV. For insertion site identification, the method was capable of identifying

more than ten thousand BLV insertion sites in a single sample, using ~ 4 μg of template

DNA. Even in samples with a PVL of 0.66%, it was possible to identify hundreds of in-

sertion sites with only 1 μg of DNA as template. The improved performance of PCIP-

seq in repetitive regions further highlights its utility, strictly from the standpoint of in-

sertion site identification. In addition to its application in research, high-throughput se-

quencing of retrovirus insertion sites has shown promise as a clinical tool to monitor

ATL progression [22]. Illumina-based techniques require access to a number of capital-

intensive instruments. In contrast, PCIP-seq libraries can be generated, sequenced, and

analyzed with the basics found in most molecular biology labs; moreover, preliminary

results are available just minutes after sequencing begins [47]. As a consequence, the

method may have use in a clinical context to track clonal evolutions in HTLV-1-

infected individuals, especially as the majority of HTLV-1-infected individuals live in

regions of the world with poor biomedical infrastructure [48].

One of the common issues raised regarding Oxford Nanopore data is read accuracy.

Early versions of the MinION had read identities of less than 60% [49]; however, the

development of new pores and base calling algorithms make read identities of > 90%

achievable [50]. Accuracy can be further improved by generating a consensus from

multiple reads, making accuracies of ~ 99.4% [50] possible. Recently, Greig et al. [51]

compared the performance of Illumina and Oxford Nanopore technologies for SNP

identification in two isolates of Escherichia coli. They found that after accounting for

variants observed at 5-methylcytosine motif sequences only ~ 7 discrepancies remained

between the platforms. It should be noted that as PCIP-seq sequences PCR amplified

DNA, errors generated by base modifications will be avoided. Despite these improve-

ments in accuracy, Nanopore-specific errors can be an issue at some positions (Add-

itional file 1: Fig. S3a). Comparison with Illumina data is helpful in the identification of

problematic regions and custom base calling models may be a way to improve accuracy

in such regions [50]. More generally, we compensated for the higher error rate in

Nanopore reads by only calling SNPs in regions of the provirus covered by more than

10 non-PCR duplicated reads (due to PCR duplicates coverage at these positions was

generally substantially higher than 11×). Continued improvements in base calling ac-

curacy and the development of new pores [52] mean these requirement are likely to be

overly conservative in most instances. In the current study, we focused on SNPs ob-

served in clonally expanded BLV proviruses. For viruses such as HIV-1, which have

much lower proviral loads, more caution will be required as the majority of proviral se-

quences will be generated from single provirus, making errors introduced by PCR more

of an issue. To address this concern, we carried out Illumina sequencing of the two

HIV patient PCIP-seq libraries in order to call SNPs in the host DNA flanking the inte-

gration sites as proxy for the provirus itself (Additional file 1, Supplementary Note 2,
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Effect of coverage on SNP calling). Our data indicates that as coverage decreases the

number of false negatives increases (rises to ~ 19% at 20×); however, there was no con-

comitant increase in false positives. Finally, while we have utilized Nanopore in the

current study, PCIP-seq libraries could equally be sequenced using high accuracy long

reads on the Pacific Biosciences platform [53]. As these reads have accuracies on a pair

with Illumina reads, they would allow larger numbers of proviruses to be examined for

SNPs.

When analyzing SNPs from BLV, the most striking result was the presence of

the recurrent mutations at the first base of codon 303 in the viral protein Tax, a

central player in the biology of both HTLV-1 [48] and BLV [54]. It has previously

been reported that this mutation causes an E-to-K amino acid substitution which

ablates the transactivator activity of the Tax protein [25]. Collectively, these obser-

vations suggest this mutation confers an advantage to clones carrying it, possibly

contributing to immune evasion, while retaining Tax protein functions that con-

tribute to clonal expansion. However, there is a cost to the virus as this mutation

prevents infection of new cells due to the loss of Tax-mediated transactivation of

the proviral 5′ LTR making it an evolutionary dead end. It will be interesting to

see if PCIP-seq can provide a tool to identify other examples of variants that in-

crease the fitness of the provirus in the context of an infected individual but hin-

der viral spread to new hosts. Additionally, the technique could be used to explore

the demographic features of the proviral population within and between hosts, how

these populations evolve over time and how they vary.

Fig. 6 HPV integration site in an expanded clone. In this expanded clone HPV shows evidence of “looping”
integration [18, 44] whereby noncontiguous genomic sequences are brought adjacent to one another. a
PCIP-seq reads mapping to a ~ 87-kb region on chr3 revealed three HPV-host breakpoints. The large
number of reads suggests expansion of the clone carrying these integrations. b PCR was carried out with
primer pairs matching regions α and β, as well as α and γ. Both primer pairs produced a ~ 9 kb PCR
product. Nanopore sequencing of the PCR products show the HPV genome connects these breakpoints. c
Schematic of the breakpoints with the integrated HPV genome. This conformation indicates that this
dramatic structural rearrangement in the host genome was generated via “looping” integration of the
HPV genome
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A second notable observation in BLV is the cluster of A-to-G transitions observed

within a ~ 70-bp window in the 3′ LTR. Similar patterns have been ascribed to ADAR1

hypermutation in a number of viruses [28], including the close BLV relatives HTLV-2

and simian T cell leukemia virus type 3 (STLV-3) [55]. Given the small number of

hypermutated proviruses observed, it appears to be a minor source of variation in BLV,

although it will be interesting to see it this holds for different retroviruses and at differ-

ent time points during infection.

Like the situation in HTLV-1/BLV, a number of methods based on linker-

mediated PCR and Illumina sequencing have been developed to identify HIV-1 in-

tegration sites [3, 38]. Due to the limited number of cells carrying the HIV-1 pro-

virus in patients undergoing cART, the number of integration sites typically

recovered is generally low. For example, using DNA from 54 patients (1 μg for

each), Cesana et al. [38] recovered 198 unique integration sites (median 3 integra-

tion sites per patient). Maldarelli et al. [3] recovered a median of 135 integration

sites per patient/timepoint analyzed (using 9 μg of DNA as template). As the pro-

viral loads of the samples in these studies are not given, a direct comparison of re-

sults is not possible; however, our recovery of 73 integration sites using 8 μg of

template in 06042 and 158 using 12 μg in 02006, falls within the range observed in

these studies. The integration sites recovered represent approximately 1.06% and

2.95% of the proviruses present in the starting DNA for patient 06042 and 02006

respectively (Additional file 2, Additional file 1: Table S8). For 02006, this is close

to the 3.2% estimated from the dilution experiment using U1 cells. The lower effi-

ciency in 06042 may be due to suboptimal guide and primer design. This high-

lights that PCIP-seq will be sensitive to the performance of primers and guides,

especially in HIV-1 due to the polymorphic nature of the proviruses. Nevertheless,

taken with the results for BLV/HTLV-1, it appears that PCIP-seq and methods

based on ligation-mediated PCR followed by short read sequencing identify com-

parable numbers of integration sites, while PCIP-seq has the added advantage of

sequencing within the provirus and in some cases the entire associated provirus

(Additional file 1: Table S1 and S8).

More recently, it has been shown that DNA-capture-seq approaches using biotin cap-

ture probes and short reads can successfully identify integration sites in HTLV-1-

infected patients [11] and HIV-1-infected cell lines [56]. In cases where highly ex-

panded clones are present or where deletions affect the 5′ or 3′ ends of the provirus

(which generates reads spanning the breakpoint and integration site), it is possible to

link a variant to a provirus at a specific integration site. However, when the variant falls

inside the provirus, beyond the reach of reads that contain both host and viral DNA (~

700 bp), this is not possible. One of the first methods to address this problem was inte-

gration site loop amplification (ISLA) [4]. This method relies on diluting the sample to

a point where each well contains on average 3 HIV-1 proviruses. Each well is then sub-

jected to multiple rounds of linear PCR, exonuclease digestion, multiple rounds of ex-

ponential PCR, gel electrophoresis, and finally Sanger sequencing of the integration site

and a portion of the env gene. As only ~ 30% of the wells are positive, if large numbers

of integration sites are examined the cost and labor involved becomes substantial.

PCIP-seq is more economical per integration site, while also having the advantage

of generating proviral sequence (~ 500 kb in this experiment) that can be linked to
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specific integration sites (Additional file 2). More recently, others [6, 13] have de-

veloped methods to capture the entire proviral sequence as well as the associated

integration site. However, these methods require even more extreme dilutions than

ISLA, requiring that each well contains a single provirus. These wells are then sub-

jected to whole genome amplification and split. Half of the DNA is then used for

ISLA or another technique to identify the integration sites, while the other half is

used to amplify the provirus via clone specific primers or with primers that en-

compass the majority of the provirus. This approach is obviously capable of captur-

ing full-length provirus and the associated integration site, but is even more costly

and labor intensive than ISLA alone, making it impractical to investigate more than

a handful of patients.

Only a small fraction of proviruses (~ 2.4%) in the HIV-1 reservoir are intact, yet

these are more than sufficient for the disease to rebound if antiretroviral therapy is

interrupted [5]. As strategies are developed to target these intact proviruses, it will

be essential to distinguish between intact and defective proviruses [5]. Due to the

low proviral load and limited clonal expansion observed in patients on long-term

cART, the majority of HIV-1 proviruses captured by PCIP-seq are only partially se-

quenced (on average ~ 2.4 kb). Nevertheless, despite this limitation, it is still pos-

sible to classify many as defective due to the presence of deletions or

hypermutation. Additionally, in the case of patient 02006 (on cART for 15 years),

we were able to generate sequences of two intact full-length proviruses present in

clonally expanded cells. These proviruses are integrated within highly repetitive/

heterochromatic regions and as a result they are likely to be resistant to reactiva-

tion. Recently, Jiang et al. [57] observed that 20.7% of intact proviral sequences are

imbedded in centromeric satellite or microsatellite DNA, while Einkauf et al. [6]

showed an enrichment of intact HIV-1 proviruses in non-genic chromosomal posi-

tions. These results indicate that proviruses integrated into parts of the genome

that provide an unfavorable environment for viral expression are protected against

recognition by the host immune system, favoring their survival in patients on long-

term cART.

In the current study, we focused our analysis on retroviruses and ERVs. However,

as this methodology is potentially applicable to a number of different targets, we

extended its use to HPV as a proof of concept. It is estimated that HPV is respon-

sible for > 95% of cervical carcinoma and ~ 70% of oropharyngeal carcinoma [58].

While infection with a high-risk HPV strain (HPV16 and HPV18) is generally ne-

cessary for the development of cervical cancer, it is not sufficient and the majority

of infections resolve without adverse consequences [43]. The use of next-

generation sequencing has highlighted the central role HPV integration plays in

driving the development of cervical cancer [18]. Our results show that PCIP-seq

can be applied to identify HPV integration sites in early precancerous samples.

This opens up the possibility of generating a more detailed map of HPV integra-

tions as well as potentially providing a biomarker to identify HPV integrations on

the road to cervical cancer.

Looking beyond viruses tested in the current study, hepatitis B virus (HBV) is an

obvious candidate for PCIP-seq. Like HPV, it has a circular DNA genome that in-

tegrates into the host genome with variable breakpoints in the viral genome. HBV
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integrations contribute to genomic instability and play a key role in driving hepato-

carcinogenesis [59]. Other potential applications include determining the insertion

sites and integrity of retroviral vectors [60] and detecting transgenes in genetically

modified organisms. We envision that in addition to the potential applications out-

lined above many other novel targets/questions could be addressed using this

method.

Conclusions
The genomic location of viral integration as well as variation within the virus plays a

role in determining the fate of infected cells. Up to now, linking the sequence of the

viral genome to a specific integration site and measuring the abundance of the corre-

sponding clone has been difficult. We have shown that PCIP-seq can identify integra-

tion sites while sequence part and in many cases all of the associated provirus. For

BLV, we identified thousands of SNPs and dozens of structural variants within inte-

grated viruses. In HIV-1-infected patients, we identified intact HIV-1 provirus. Finally,

we show that PCIP-seq is also adaptable to HPV, where it can identify integrations at

early time points that are associated with clonal expansion.

Methods
Samples

Both the BLV-infected sheep [7] and HTLV-1 samples [7, 22] have been previously

described. Briefly, the sheep were infected with the molecular clone pBLV344 [23],

following the experimental procedures approved by the University of Saskatchewan

Animal Care Committee based on the Canadian Council on Animal Care Guide-

lines (Protocol #19940212). The HTLV-1 samples [7, 22] were obtained with in-

formed consent and the full study protocol received approval from the institutional

review board of the Necker Hospital, University of Paris, France (CPP Ile de France

II, CNIL: number 1692254, registration number 000001072), in accordance with

the Declaration of Helsinki. The BLV bovine samples were natural infections, ob-

tained from commercially kept adult dairy cows in Alberta, Canada. Sampling was

approved by VSACC (Veterinary Sciences Animal care Committee) of the Univer-

sity of Calgary: protocol number: AC15-0159. The bovine 571 used for ERV identi-

fication was collected as part of this cohort. The two sheep samples used for

Jaagsiekte sheep retrovirus (enJSRV) identification were the BLV-infected ovine

samples (220 and 221 (032014)), with a PVL of 3.8 and 16% respectively. PBMCs

were isolated using standard Ficoll-Hypaque separation. The DNA for the bovine

Mannequin was extracted from sperm, while the DNA for bovine 10201e6 was ex-

tracted from whole blood using standard procedures. The HIV-1 U1 cell line DNA

sequenced without dilution was provided by Dr. Carine Van Lint, IBMM, Gosselies,

Belgium. The HIV-1 U1 cell line dilutions in Jurkat were generated at Ghent Uni-

versity Hospital. HIV-1-positive primary PBMCs were collected at the Ghent Uni-

versity Hospital from two HIV-1-positive individuals (patients 02006 and 06042,

Additional file 1: Table S4) on cART for 15 and 8 years respectively. Patient PBMC

samples were de-identified and the full study was approved by the Ethics Commit-

tee of Ghent University Hospital (Reference number: 2016/0457). HPV material
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was prepared from PAP smears obtained from HPV-infected patients at the CHU

Liège University hospital. Both patients were PCR positive for HPV18, HPV18_PY

was classified as having Atypical Squamous Cell of Undetermined Significance

(ASC-US), while HPV18_PX was classified as having Atypical Glandular Cells

(AGC). Patients provided written informed consent and the study was approved by

the Comité d’Ethique Hospitalo-Facultaire Universitaire de Liège (Reference num-

ber: 2019/139). No statistical test was used to determine adequate sample size and

the study did not use blinding.

CD4 enrichment of HIV-1 patient PBMCs

CD4+ T cells were enriched from PBMCs by negative MACS selection using the Easy-

Sep™ Human CD4+ T Cell Isolation Kit (STEMCELL Technologies SARL, Grenoble,

France), according to the manufacturer’s instructions.

PCIP-seq

Total genomic DNA isolation was carried out using the Qiagen AllPrep DNA/

RNA/miRNA kit (BLV-, HTLV-1-, and HPV-infected individuals) or the Qiagen

DNeasy Blood and Tissue Kit (HIV-1 patients) according to the manufacturer’s

protocol. High molecular weight DNA was sheared to ~ 8 kb using Covaris g-

tubesTM (Woburn, MA) or a Megaruptor (Diagenode), followed by end-repair

using the NEBNext EndRepair Module (New England Biolabs). In the case of

MDA, 10 ng and 100 ng of DNA from HIV-1 patient samples was used as template

for the illustra GenomiPhi V2 DNA Amplification Kit. The resultant amplified

DNA was then treated the same as the equivalent amount of genomic DNA. Intra-

molecular circularization was achieved by overnight incubation at 16 °C with T4

DNA Ligase. Remaining linear DNA was removed with Plasmid-Safe-ATP-

Dependent DNAse (Epicenter, Madison WI). Due to the inefficiency of intramo-

lecular ligation 85–90% of the starting DNA is lost during this step. Guide RNAs

were designed using chopchop (http://chopchop.cbu.uib.no/index.php). The EnGen™

sgRNA Template Oligo Designer (http://nebiocalculator.neb.com/#!/sgrna) provided

the final oligo sequence. Oligos were synthesized by Integrated DNA Technologies

(IDT). Oligos were pooled and guide RNAs synthesized with the EnGen sgRNA

Synthesis kit, S. pyogenes (New England Biolabs). Selective linearization reactions

were performed with the Cas-9 nuclease, S. pyogenes (New England Biolabs). (Add-

itional file 1, Supplementary Text, rationale behind using of CRISPR-cas9 to cleave

the circular DNA). PCR primers flanking the cut sites were designed using primer3

(http://bioinfo.ut.ee/primer3/). For HIV-1 samples, we first sequenced the parts of

the provirus flanking the LTR and the consensus sequence of these regions was

used to select a set of primers and guides tailored to the population of proviruses

in the patient. Primers were tailed to facilitate the addition of Oxford Nanopore in-

dexes in a subsequent PCR reaction. The linearized fragments were PCR amplified

with LongAmp Taq DNA Polymerase (New England Biolabs) and purified using 1×

AmpureXP beads (Beckman Coulter). A second PCR added the appropriate Oxford

Nanopore index. PCR products were visualized on a 1% agarose gel, purified using

1× AmpureXP beads and quantified on a Nanodrop spectrophotometer. Indexed
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PCR products were multiplexed and Oxford Nanopore libraries prepared with ei-

ther the Ligation Sequencing Kit 1D (SQK-LSK108) or 1D^2 Sequencing Kit (SQK-

LSK308) (only the 1D were used). Resulting libraries were sequenced on Oxford

Nanopore MinION R9.4 or R9.5 flow cells respectively. The endogenous retrovirus

libraries were base called using albacore 2.3.1, all other PCIP-seq libraries were

base called with Guppy 3.1.5 (https://nanoporetech.com) using the “high accuracy”

base calling model. For the endogenous retrovirus libraries, demultiplexing was car-

ried out via porechop (https://github.com/rrwick/Porechop) using the default set-

ting. The HIV, HTLV-1, BLV, and HPV PCIP-seq libraries were subjected to a

more stringent demultiplexing with the guppy_barcoder (https://nanoporetech.com)

tool using the --require_barcodes_both_ends option. The output was also passed

through porechop, again barcodes were required on both ends, adapter sequence

was trimmed, and reads with middle adapters were discarded. Oligos used can be

found in Additional file 4. A step by step description of PCIP-seq library prepar-

ation can be found in Additional file 1: Supplementary Methods.

Identification of proviral integration sites in PCIP-seq

Reads were mapped with Minimap2 [61] to the host genome with the proviral genome

as a separate chromosome. In-house R-scripts were used to identify integration sites

(IS). Briefly, chimeric reads that partially mapped to at least one extremity of the pro-

viral genome were used to extract virus-host junctions and shear sites. Junctions within

a 200-bp window were clustered together to form an “IS cluster,” compensating for se-

quencing/mapping errors. The IS retained corresponded to the position supported by

the highest number of virus-host junctions in each IS cluster. Clone abundance was es-

timated based on the number of reads supporting each IS cluster. Reads sharing the

same integration site and same shear site were considered PCR duplicates. Custom

software, code description, and detailed outline of the workflow are available on

Github: https://github.com/GIGA-AnimalGenomics-BLV/PCIP.

Measure of proviral load (PVL) and identification of proviral integration sites (Illumina)

PVLs and integration sites of HTLV-1- and BLV-positive individuals were deter-

mined as previously described in Rosewick et al. [7] and Artesi et al. [22]. PVL

represents the percentage of infected cells, considering a single proviral integration

per cell. Total HIV-1 DNA content of CD4 T cell DNA isolates was measured by

digital droplet PCR (ddPCR; QX200 platform, Bio-Rad), as described by Rutsaert

et al. [62] (Additional file 1, Supplementary Methods) and data was analyzed with

ddpcRquant [63].

Variant calling

After PCR duplicate removal, proviruses with an IS supported by more than 10 reads

were retained for further processing. SNPs were identified using LoFreq [24] with de-

fault parameters, only SNPs with an allele frequency of > 0.6 in the provirus associated

with the insertion site were considered. We also called variants on proviruses supported

by more than 10 reads without PCR duplicate removal (this greatly increased the num-

ber of proviruses examined). This data was used to explore the number of proviruses
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carrying the Tax 303 variant. Deletions were called on proviruses supported by more

than 10 reads without PCR duplicate removal using in house R-scripts. Briefly, sam-

tools pileup [64] was used to compute coverage and deletions at base resolution. We

used the changepoint detection algorithm PELT [65] to identify genomic windows

showing an abrupt change in coverage. Windows that showed at least a 4-fold increase

in the frequency of deletions (absence of a nucleotide for that position within a read)

were flagged as deletions and visually confirmed in IGV [66].

HIV-1 proviral sequences

Sequences of the two major proviruses integrated in chr2 and chrX of the U1 cell line

were generated by mapping the reads from both platforms to the HIV-1 provirus, iso-

late NY5 (GenBank: M38431.1), where the 5′LTR sequence is appended to the end of

the sequence to produce a full-length HIV-1 proviral genome reference. The sequence

was then manually curated to produce the sequence for each provirus. To check for re-

combination, reads of selected clones were mapped to the sequence from the chrX pro-

virus and the patterns of SNPs examined to determine if the variants matched the chrX

or chr2 proviruses.

The consensus HIV-1 sequences for both patients were generated using the medaka

consensus tool (https://github.com/nanoporetech/medaka), followed by manual correc-

tion guided by Illumina reads generated from the same PCIP-seq library. The Illumina

libraries were prepared as described in Durkin et al. [31]. The consensus sequences of

two full-length proviruses from 02006 were also generated via medaka consensus with

manual correction. Hypermutation of the provirus was initially identified by manually

inspecting the reads in IGV, the consensus sequence of the provirus was checked for

hypermutation with Hypermut (https://www.hiv.lanl.gov/content/sequence/

HYPERMUT/hypermut.html). We determined if the proviral sequences were intact

using the Gene Cutter tool (https://www.hiv.lanl.gov/content/sequence/GENE_

CUTTER/cutter.html). Proviruses that did not contain a frameshift or stop codons not

observed in the consensus sequence generated for patient 02006 were classified as in-

tact. Deletions in the HIV-1 proviruses were identified by manual inspection of the in-

tegration site and proviral reads in IGV.

Endogenous retroviruses

The sequence of bovine APOB ERV was generated by PCR amplifying the full-length

ERV with LongAmp Taq DNA Polymerase (New England Biolabs) from a Holstein suf-

fering from cholesterol deficiency. The resultant PCR product was sequenced on the

Illumina platform as described below. It was also sequenced with an Oxford Nanopore

MinION R7 flow cell as previously described [31]. Full-length sequence of the element

was generated via manual curation. Guide RNAs and primer pairs were designed using

this ERV reference. For the Ovine ERV, we used the published enJSRV-7 sequence [42]

as a reference to design PCIP-seq guide RNAs and PCR primers. As the ovine and bo-

vine genome contains sequences matching the ERV, mapping ERV PCIP-seq reads back

to the reference genome creates a large pileup of reads in these regions. To avoid this,

we first used BLAST [67] to identify the regions in the reference genome containing
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sequences matching the ERV, we then used BEDtools [68] to mask those regions. The

appropriate ERV reference was then added as an additional chromosome in the

reference.

PCR validation and Illumina sequencing

Clone-specific PCR products were generated by placing primers in the flanking DNA

as well as inside the provirus. LongAmp Taq DNA Polymerase (New England Biolabs)

was used for amplification following the manufacturer’s guidelines, and resultant PCR

products were sequenced (Additional file 1, Supplementary Methods). To examine

SNPs in host DNA, the PCIP-seq libraries generated from the HIV-1 patients were

sheared to ~ 400 bp followed by sequencing on an Illumina MiSeq instrument (Add-

itional file 1, Supplementary Methods).

BLV references

The sequence of the pBLV344 provirus was generated via a combination of Sanger and

Illumina-based sequencing with manual curation of the sequence to produce a full-

length proviral sequence. The consensus BLV sequences for the bovine samples 1439

and 1053 were generated by first mapping the PCIP-seq Nanopore reads to the

pBLV344 provirus. We then used Nanopolish [69] to create an improved consensus.

PCIP-seq libraries sequenced on the Illumina and Nanopore platform were mapped to

this improved consensus visualized in IGV and manually corrected.

Genome references

Sheep: OAR3.1 Cattle: UMD3.1 Human: hg38 For HTLV-1 integration sites hg19 was

used. HPV18: GenBank: AY262282.1 Sequences of the proviruses can be found in Add-

itional file 3.
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