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Abstract 

Binocular data typically arise in ophthalmology, where pairs of eyes are screened, 

through some diagnostic procedure, for the presence of certain diseases or patholo-

gies. Treating the eyes as independent and adopting the usual approach in estimating 

the sensitivity and specificity of a diagnostic test ignores the correlation between the 

eyes, and may consequently yield incorrect estimates, especially of the standard er-

rors. 

This thesis proposes a likelihood-based method of accounting for the correlations 

between eyes and estimating sensitivity and specificity using a model for binocular or 

paired binary outcomes. Estimation of model parameters via maximum likelihood is 

outlined and approximate tests are provided. The efficiency of the model is assessed 

both theoretically and by a simulation study. An extension of the methodology to 

the case of several diagnostic tests, or the same test measured on several occasions, 

which arises in multi-reader studies, is given. A further extension to the case of 

multiple diseases is outlined as well. Data from a study on diabetic retinopathy are 

analyzed to illustrate the methodology. 
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Chapter 1 

Introduction 

1.1 Background of the Thesis 

While early treatment of diseases contribute significantly to controlling health care 

costs, many of the diagnostic tests that allow for early disease detection can be 

enormously expensive, preventing health care providers from adopting them on a 

routine basis. However, with recent advances in technology, more and more cost-

effective diagnostic testing procedures have been made available to practitioners. 

The evaluation of the accuracy of these methods has become a major undertaking 

for medical researchers, as inaccurate diagnoses can be financially disastrous. 

This thesis is motivated by a study conducted in Alberta, Canada, on the use of 

high-resolution digital photography to screen diabetic patients for treatable retinopa-

thy. Screening is a special case of diagnostic testing that enables medical practition-

ers to detect diseases at their early stages before patients manifest full-blown clinical 

symptoms. The popularity of screening programmes has led to improved early inter-

vention for and treatment of diseases resulting in substantial health care cost savings. 

In countries like Canada, where distances are great, the cost of travel necessitates 

screening at a distance, thereby allowing only those patients in need of treatment to 

travel to a specialist. A teleophthalmology system allowing for distance screening of 

diabetic retinopathy based on digital images of patients' eyes is a potentially cost-

effective alternative to clinical examination. The purpose of the study was thus to 
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evaluate whether diabetic retinopathy can be identified with high-resolution digital 

photography and whether this identification correlates well with the accepted gold 

standard of clinical examination. 

We summarize in section 1.2 the commonly used methodologies for investigating 

the accuracies of binary diagnostic tests. Because patients in many efficacy studies 

may contribute several test results, as when both eyes are screened for retinopathy, 

there is a need to adopt appropriate methodologies that account for the ultra-patient 

correlation. A number of regression techniques have recently been developed for 

correlated diagnostic data arising from multiple tests on the same patient. We review 

these regression approaches for clustered binary data in section 1.2. We also describe 

in section 1,3 data from a diabetic retinopathy study (Rudnisky et al., 2002) used to 

illustrate the methods developed in the thesis. The chapter concludes with a brief 

description and overview of the thesis. 

1.2 Review of Literature 

The accuracy of a medical test for diagnosing the presence or absence of a disease 

can be described by its sensitivity and specificity with respect to a traditionally used 

and accepted test regarded as a 'gold standard.' Sensitivity is the probability that 

the new test indicates presence of the disease when the gold standard indicates that 

it is present while specificity is the probability that the new test indicates absence 

of the disease when the gold standard indicates that it is absent. Denoting by Y 

and D the respective binary variables representing test result and disease status as 

determined by the gold standard, the test's sensitivity and specificity are then given 
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by P(Y = lID = 1) and P(Y = OlD = 0), respectively (Zhou et al., 2002). 

It is commonplace in diagnostic studies to have patients undergo several diagnos-

tic tests or be subjected to the same test on repeated occasions. While test results 

from different patients are still independent, those from the same patient are now 

correlated. A statistical problem facing researchers involved in such studies concerns 

the proper accounting in the analysis of the correlation among measurements taken 

from the same patient. 

In the diabetic retinopathy study, for example, digital images of both left and 

right eyes of patients are screened for retinopathy. The binocular structure of the 

data impacts on the analysis, as an eye tends to have a greater correspondence with 

the fellow eye than with eyes of another patient. While it is possible to estimate a 

test's sensitivity and specificity on an eye-specific basis, thereby effectively ignoring 

the inter-eye correlation, incorrect inferences are likely to result from underestimated 

standard errors (Glynn and Rosner, 1992). 

There has been previous work on the estimation of sensitivity and specificity and 

their standard errors in the context of clustered binary diagnostic data. These in-

clude simple adjustments to standard errors introduced by Rao and Scott (1992) and 

Donner and Mar (1993) to account for the intra-cluster correlation, and a weighted 

estimator proposed by Lee and Dubin (1994) for handling unbalanced cluster sizes. 

A similar approach based on weighting was recently discussed by Leite and Nicolosi 

(1998) in the context of logistic regression analysis of binocular ophthalmologic data. 

Smith and Hadgu (1992) described a regression method based on the generalized 

estimating equations (GEE) approach (Liang and Zeger, 1986) to deal with clustered 

binary diagnostic data. Alm (1997) reported that for moderate to large samples, 
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and moderate intra-cluster correlation, Smith and Hadgu's (1992) GEE estimator 

outperforms those proposed by Lee and Dubin (1994), Donner and Kiar (1993), and 

Rao and Scott (1992). 

A number of likelihood-based approaches have also been proposed in the litera-

ture for handling clustered binary data. Hujoel et al. (1990) adopted a commonly 

used correlated binomial model (Prentice, 1988; Bahadur, 1961) and applied it to 

model oral site-specific outcomes in a periodontal disease diagnostic study. Bonney 

(1987) considered a regressive logistic model for ordered binary data, such as those 

encountered in longitudinal studies. Qu et al. (1988) and Connolly and Liang (1988) 

introduced a class of conditional logistic regression models, which includes the poly-

chotomous logistic regression model of Rosner (1984) as a special case. This was 

later extended by Rosner (1989) to the case of clustered binary data with several 

levels of nesting. See also Qaqish and Liang (1992) and Leflcopoulou et al. (1989). 

More recently, Betensky and Whittemore (1996) generalized the quadratic ex-

ponential model (Zhao and Prentice, 1990) to analyze clustered multivariate binary 

data on familial cancers of the ovary and breast. 

Several authors have also considered the beta-binomial model (Haseman and 

Kupper, 1979) for correlated binary data. Prentice (1986) modeled the joint distrib-

ution of correlated binary data in the presence of covariates using a generalization of 

the beta-binomial model. Sutradhar and Das (1997) proposed another generalization 

for multivariate longitudinal binary data based on generalized linear models. 

Prentice (1988) gave a simple joint distribution for binocular and paired binary 

data which is completely determined by specification of its marginal probabilities 

and correlation. The model was first given by Bahadur (1961) and was recently used 
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by Sutradhar and Sutradhar (2001) in the context of classification. Lipsitz et al. 

(1990) likewise proposed maximum likelihood methods for analyzing paired binary 

data. 

A likelihood-based approach based on Prentice's (1988) model is developed in the 

thesis to estimate the sensitivity and specificity of binocular binary diagnostic tests. 

The model has a simple form which is completely specified by the marginal proba-

bilities of the binary outcomes and their correlation, and has a neat extension to the 

multi-reader multi-disease setting. Because of this, straightforward likelihood-based 

estimation and inference readily apply. While Zhao and Prentice's (1990) quadratic 

exponential model can be used as well to model the joint distribution of the binocular 

binary outcomes, their model considers conditional log-odds ratios as measures of 

associations and requires the computation of a normalizing constant. The number of 

odds ratios and the computational demands of calculating the normalizing constant 

can be prohibitive when the numbers of readers and diseases are large, so that a 

fully-likelihood based approach becomes infeasible. In contrast, the model we adopt 

in the thesis can reasonably easily handle this case via likelihood theory. The model 

of Prentice (1988) is also closely linked to the beta-binomial model. 

The proposed method is applied to data from the diabetic retinopathy study 

(Rudnisky et al., 2002), which is discussed in the next section. 

1.3 Diabetic Retinopathy Data 

The study involved about a hundred diabetic patients in Alberta, Canada, who were 

referred to a comprehensive retina practice in Edmonton. The study protocol re-
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quired that patients be clinically examined on the same day they underwent digital 

photography by a trained ophthalmic photographer using a high-resolution digital 

camera. The digital images were stored uncompressed and then graded by expe-

rienced readers at least two months after they were taken. They were assessed in 

random order, with a minimum of two months in between review of the left eye 

images and those of the right eyes to minimize reader recall. 

In order to screen for treatable diabetic retinopathy among the patients, several 

pathologies that are indicative of retinal thickening were identified as either present 

(positive) or absent (negative). The pathologies considered included clinically sig-

nificant macular edema (CSME), microaneurysms, intra-retinal hemorrhage, hard 

exudates, and other diseases of note. Contact lens biomicroscopy (CLBM), the clin-

ical examination considered to be the 'gold standard' for most, but not all, of the 

pathologies considered, was performed on all the patients by retinal specialists to 

determine disease status. Digital images of the patients' eyes were graded by at 

least two specialists and patients were diagnosed as either positive or negative for 

the pathologies. 

Table 1.1: Data Set-up for One Pathology and Two Readers 

Reader 1 Reader 2 
Patient left eye right eye left eye right eye 
1 Y1L1 Y1R1 Y1L2 Y1R2 
2 Y2L1 Y2R1 Y2L2 

N YNL1 YNR1 YNL2 YNR2 
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The data set-up for a single pathology with two readers is displayed in Table 

1.1, where YiLk and YjRk denote the binary test results for the left and right eyes of 

patient i = 1,... , N, respectively, as graded by reader k = 1, 2. The data set-up 

for the case of two pathologies with two readers is presented in Table 1.2, where 

YiLkv and YiRkv represent the binary test results for the left and right eyes of patient 

i = 1,... , N, respectively, as graded by reader k = 1,2 for pathology v = 1, 2. The 

design can be considered as a full paired-patient-paired-reader design, whereby all 

digital images of patients' left and right eyes underwent grading by every reader. 

Table 1.2: Data Set-up for Two Pathologies and Two Readers 

Reader 1 Reader 2 
Patient left eye right eye left eye right eye 

1 Y1L11 Y1R11 YU21 1R21 

Y1L12 Y1R12 Y1L22 Y1R22 
2 Y2L11 Y2R11 Y2L21 Y2R21 

Y21,12 Y2R12 Y2L22 Y2R22 

N YNL11 YNR11 YNL21 YNR21 
YNL12 YNR12 YNL22 YNR22 

The objective of the study was to compare digital photography to CLBM in the 

screening of treatable retinopathy among diabetic patients. While digital photog-

raphy provides a cost-effective distance screening system, adequate identification of 

potentially treatable retinopathy should be ensured before widespread implementa-

tion. 

Data from the study are used to illustrate the proposed methods for estimating 

sensitivity and specificity for binocular binary diagnostic data. 
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1.4 Overview of the Thesis 

The objective of this thesis is to develop a likelihood-based approach for analyzing 

binocular data in the context of diagnostic testing. 

Chapter 2 describes a model for the joint distribution of single-reader binocu-

lar diagnostic data and discusses maximum likelihood estimation of sensitivity and 

specificity along with their standard errors. Strengths as well as limitations of the 

model are highlighted and its performance relative to the crude approach, which 

ignores the intra-pair correlation, is investigated. The methodology is applied to 

data from the diabetic retinopathy study to illustrate its utility. 

Chapter 3 gives an extension of the model to the case of multiple readers. The 

extended model introduces a random effect to account for the inter-reader correla-

tion. Likelihood estimation is discussed and an extension to the case of multiple 

pathologies is outlined. The methodology is again illustrated using data from the 

diabetic retinopathy study. 

Finally, a summary of the results of the thesis is presented in Chapter 4. Promis-

ing areas for future research are identified as well. 



Chapter 2 

Analysis of Binocular Diagnostic Data: Case of 

Single Reader 

2.1 Introduction 

Binocular binary diagnostic data typically arise in ophthalmology, where pairs of eyes 

are screened, through some diagnostic test, for the presence of certain abnormalities 

or pathologies. In the diabetic retinopathy study described in Chapter 1, for example, 

the diagnostic test involves digital images of patients' eyes that are 'diagnosed' by a 

trained reader for certain pathologies. Treating the eyes as independent and adopting 

the usual crude approach in estimating the sensitivity and specificity of the diagnostic 

test ignores the correlation between the eyes, and may consequently yield incorrect 

estimates, especially of the standard errors (Leite and Nicolosi, 1998). 

In this chapter, we focus on the simplest case of one pathology and one reader and 

develop a model (Prentice, 1988) for the joint distribution of the binocular binary 

diagnostic data to estimate the sensitivity and specificity of the diagnostic test. 

The model is completely determined by its marginal probabilities and the inter-eye 

correlation, allowing for ordinary-likelihood-based estimation in arbitrary parametric 

settings. 

We also propose a marginal regression approach to model the sensitivity and 

specificity of the binary diagnostic test (Leisenring et al., 1997; Smith and Hadgu, 

9 
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1992). Consider a binary test that screens for the presence (positive) or absence 

(negative) in a patient's left and right eyes for a pathology. Define YL and Yj as 

the respective binary variables representing the test results for the left and right 

eyes, with Yj = 1 or 0 according as the result is positive or negative, j = L, R. For 

patient i, let Dij and Xjj denote disease status, as determined by the gold standard, 

and covariates for eye j = L, R, respectively. A general marginal regression model 

for sensitivity 7roj and specificity lrij based on eye j is then 

= 1JD,xj) =g(/9,D1,x) = 
sensitivity if Dij = 1 

1 - specificity if Dij = 0 

where /3 is a vector of regression coefficients. This marginal regression model can 

now be embedded into a model for the joint distribution of YL and YtR to facilitate a 

full likelihood-based approach to estimation and inference. We define such a model 

in the next section. 

2.2 Single-Reader Model for Binocular Diagnostic Data 

If p is the correlation between the left and right eyes of a patient, a model for the 

joint distribution of the binocular binary outcome (YL, YR )T is given by 

P(YL =yL,YR = YR) = + P(YL PL)(YR  PR)1 
'PLqLPRqR H PjYj  

j=L,R 

(2.1) 

where qj = 1 - p (Prentice, 1988). Note that model (2.1) arises from Bahadur's 

model (Aerts et al., 2002; Bahadur, 1961) and is completely specified by the marginal 



11 

probabilities pj = P (Yj = 1), j = L, R, and the inter-eye correlation p . To ensure 

that (2.1) is a proper joint probability distribution, the inter-eye correlation p needs 

to satisfy the following restriction: 

max VpLpR ,   <p < mm qLqR . 1PRqL IpLqR •1 

qLqR PLPR} f V ' V PRqR —  (2.2) 

From (2.1), we can see that when p = 0, the model reduces to the independent 

Bernoulli model, where YL and YR are assumed independent and each follow a 

Bernoulli distribution with success probability p, j = L, R. Thus, (2.1) general-

izes the independent Bernoulli model to the case of binocular binary outcomes. 

For eye j = L, R, we define a generalized linear model for pj with covariates D 

and x3 as 

pi = p(D,x) 

= h'(fio +181D1+/3Tx1 ), (2.3) 

with h(.) defined as some link function, usually taken as the logistic or probit link. 

Model (2.3) then allows us to model the sensitivity 7r1 = P (Yj = 1IDa = 1, xj) and 

specificity ?roj = 1 -. P (Yj = I I Dj = 0,x) of the test for eye j as follows: 

= P(Dj = 1,x) 

= h'(,60 +,61 + 

= q(Dj = 0,x) 

= 1_h_l(/3o+$Tx ). 

(2.4) 

(2.5) 
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In the case of a logistic link function, (2.4) and (2.5) reduce to 

exp (/3° + /3 + /3TX) 

= 

1+exp(/30 +/3T x) 

In many applications, the covariate x3 is usually measured at the patient-level, so 

that XL = xR. This implies that 1r1L = 7r1R = ir1 and IVOL = lroR = lro. That is, the 

sensitivity and specificity of the diagnostic test is independent of the particular eye 

under consideration. We assume that this is the case in what follows. 

2.2.1 Likelihood Representation 

Suppose N patients undergo diagnostic testing on both left and right eyes for some 

pathology. Let {yji, yjj, DL, DR, x}, i = 1,... , N, denote the observed data. As-

suming pi = p, the likelihood function is given by 

L = U [1 + PHjL,R (y + 9ij Ni - 1})1 IT (  e:5  '\ \/°iL0iR ] •:i':1 + Oij (2.6) 

where Ojj = 0 (h') = p/(1 - p) is the odds for eye j = L, R of patient i, and 

h 1 = h'(fio +,8,D  + /3Tx1). The log-likelihood function is then 

ln,n, 

kk' 

£'(/3,fi,/3, p}xj), 
k,k'=O,l m,m'=O,l i=1 

(2.7) 

where n'i' is the number of observations for which YL = k, YR = k', DL = in, 

and DR = m', with £kk J'' their corresponding log-likelihood contribution. Table 2.1 
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displays the cross-classification of the binocular data according to the results of the 

test and the actual disease status for the left and right eyes, with /3 = 0. 

Table 2.1: Assessment of Presence (+) or Absence (-) of a Pathology in the Left (L) 
and Right (R) Eyes of N Patients 

Disease  Test  
Status L + R+ L - R+ L + a- L - R— Total 
L + R+ nil n il n n00 
L - R+ n 01 n°1 10 oi Ol il 01 n01 n00 

10 10 10 L + R— nil nol n10 n00 n 

L - R-  n 00 00 10 00 n°0 11 n01 n00 n00 

Total n11 n01 n10 n00 N 

A natural link function for binary data is the logistic link function. For this 

link function and assuming there are no other covariates except disease status 

the log-likelihood function can be expressed in terms only of the parameters 00 = 

e 0, 0i = o+th, and p. In this case, .7r1i = 7r, = 0/(1+ 0) and 7r0 = 7ro = 1/oo, for 

i=1,••• ,N. 

2.2.2 Parameter Estimation and Inference 

Since the joint distribution is completely specified, we outline in this section a 

full likelihood-based estimation method that yields maximum likelihood estimates 

(MLE) of the parameters. 

Let t1T = (aT, p), where aT = (/30, /31,/3T)• Define @)) = 5/5T as the score 

function and £() = D2/th0iT as the Hessian matrix. The MLE 77 T = (&T is 

the solution of the likelihood equations j) = 0T• We solve these iteratively via the 
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Newton-Raphson updating scheme 

{t+1) = (t) - p ((t))]  27 -1 [• ((t))] T, 
(2.8) 

where 3 is the estimate of il at iteration t = 1, 2, •... The respective MLEs of 7li 

and ir0 are then F, = h'( 0 +$) and ?o = 1— h—'(1 ), with large-sample standard 

errors obtained via the delta method. 

It can be easily verified that 3 is consistent and asymptotically multivariate nor-

mal with mean 27 and covariance matrix given by the inverse of the information 

matrix I(i) = E [—(ii)]. Standard asymptotic methods to perform hypothesis 

tests concerning 21 readily apply. In particular, suppose we wish to test the hypothe-

sis H : ir1 ≥ 4 (i.e., the test has sensitivity of at least 4100%). Upon assuming h(.) 

is the logistic link and 0 = 0, it is clear from the parametrization in the previous sec-

tion that this hypothesis is equivalent to H0 al i7  log (T4)' with a = (1, 1, o)T, 

This can be easily tested with Wald's statistic given by 

aT— log (4)  
aTI 1()a 

Under H0, we have Z - N(0, 1) and we reject if Z < za, the 100(1 - a)th percentile 

of the standard normal distribution. 

2.2.3 Strengths and Weaknesses of Model 

A strength of model (2.1) is that the joint distribution of the binocular data is 

completely determined by the marginal probabilities and the intra-pair correlation. 



15 

Hence, the regression parameters in (2.3) have marginal interpretations. This implies 

that the resulting parameter estimates have the same regression parameter interpre-

tations as they would if each binary outcome is analyzed separately. In addition, 

model (2.1) has convenient marginal and conditional distributions. 

The approach of completely specifying the joint distribution of YL and YR leads 

to straightforward likelihood estimation upon specification of parametric forms for 

the marginal probabilities. This affords us a whole battery of likelihood-based proce-

dures for model inference and validation. Moreover, unlike GEE (Qaqish and Liang, 

1992; Lefkopoulou et al., 1989) and other quasi-likelihood approaches which can-

not handle non-randomly sampled data, a fully specified likelihood function for the 

binocular diagnostic data can be easily adapted to non-random sampling schemes 

like case-control data, a common occurrence in clinical and epidemiological studies 

in ophthalmology. 

However, model (2.1) has some drawbacks that may render it unsuitable for other 

applications. The requirement that probabilities be nonnegative places constraints 

on the range of the intra-pair correlation p. Allowing the marginal probabilities 

to depend on patient-level covariates may severely restrict p into admitting mostly 

positive values. This, however, is not a serious issue in ophthalmological studies, as 

the inter-eye correlation is generally positive. 

While model (2.1) can be readily extended to the general clustered binary data 

setting (Prentice, 1988), the resulting expression leads to a number of issues in 

estimation. Aside from stringent constraints on correlation parameters, likelihood 

estimation of regression coefficients becomes computationally infeasible. However, a 

generalization of model (2.1) to the multi-reader binocular data structure displayed 
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in Tables 1.1 and 1.2 is still possible. By introducing random effects in (2.3), we 

can account for inter-reader and inter-pathology correlations among the clustered 

binocular data. This is adopted in Chapter 3. 

In summary, model (2.1) is most appropriate for analyzing binocular binary data, 

like those that arise in ophthalmology. It provides a useful alternative to the com-

monly used method which assumes independence of the eyes. This latter approach 

can be very inefficient in applications, as we show in the next section. 

2.3 Asymptotic Relative Efficiency 

In this section, we examine the potential gains in efficiency of model (2.1) over the 

crude approach which ignores the correlation p. For simplicity, we assume a logistic 

link and consider the case with j60 = 0 and /3 = 0. 

For the crude method, we fit an ordinary logistic regression given by log [p/(]. - p)] = 

/31D, where D = 0, 1, is disease status and p = P(Y = lID). Note that in this case, 

the eyes are assumed to be independent (i.e., p = 0). The asymptotic variance of 

the MLE $j of 81 is given by avar($jC) = [niiri(1 - 7r1)] ' , where n.1 is the num-

ber of observations such that D = 1, and ir1 = exp (/3)/[1 + exp (3)]. Letting 

= 2N = flj + no, with no the number of observations such that D = 0, we get 

N*avar (•10 -4  
)tiri(1 .—ir1)' 

(2.9) 

as N* oo, where ) = P(D = 1), the incidence rate. Assuming A = r1 (i.e., the 

sensitivity of the test is high for a common disease and low for a rare disease) and 



17 

taking 61 = 1, we get 

urn N*avar () - (1+ e)3  
N*,00 - e2 (2.10) 

Consider next model (2.1). Note that, conditional on mm', n' follows a bino-

mial distribution with parameters mm' and P(YL = 1, YR = 11 DL = m, DR = m'). 

The asymptotic covariance matrix of 81 and p given by Ii',, involves only the mar-

ginal row counts mm', such that 

mm' 

N P(DL = m, DR = m'), 

as N —p oo. Assuming DL and DR have joint distribution given by (2.1) with 

marginal probabilities P(Dj = 1) = ir for j = L, R, and correlation 5 = p, and 

taking ,8 = 1, we have for the MLE PJM of /3 

where 

C1P4+C2P3+C3P2+C4P+C5  

urn Navar (n) = CGp5+C7p4+CSp+C9p2+CiOp+Cji 

N—+oo (1+e)3  
e2 

for p 0 0 

for p=0 

c1 = 4e_3"2(1 + e)4(e2 + 6e3 + e4 - 4e7/2 - 4e5/2) 

C2 = 46_3/2(1 + e)4(e + 262 + 5e3 + e912 + e512 - 4e3/2 + 10e7/2) 

C3 = 46312(1 + e)4(9e7/2+ 1065/2 + 563/2 - - 662 - e) 

C4 = 4&3/2(1 + e)4(3631'2 - 65/2 - 5e7/2 - 562 - 2e - 1) 

C5 = 4e_3/2(1 + e)4 (e'/2 - 9e512 - 663/2) 

(2.11) 
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C6 = 6+562 —6e _664+5e5+66_463/2+8e712_4e11/2 

C7 = e 3462 - 6e + 5e - 27e - 4e6 + 8e312 + 865/2 + 3267/2 + 869/2 + 8611/2 

C8 = 3e + 27e2 + 18e + 42e4 + 27e + lie6 + 4e1/2 - 16e512 - 1667/2 + 286912 

cg = lie + 8262 + 26e + 59e + i39e - 86112 - 2463/2 - 486512 + 8e712 + 3 

c10 = 863/2 + 1665/2 - 24e712 - 8e - 2862 - i2e - 20e - 60e 

cil = —4e - 3662 - iO8e - iO8e. 

Since N* = 2N and taking p = S, the asymptotic relative efficiency of m, the 
MLE of 81 based on model (2. 1), relative to the crude MLE ,8, is 

(r) 
ARE(p) = urn avar 

N--boo avar (m) I  2limN Navar() -'00 Navar(iJ°) for p 0 

1 for p=0 
(2.12) 

Note that (2.12) is a function of p, the correlation between YL and YR. Expression 

(2.12) simplifies to the ratio of (2.11) to (2.10) in the special case /3 1. 

Figures 2.1 to 2.3 plots (2.12) for a range of positive values of p at various fixed 

values of /3k. The choice of positive p values is in accordance with the common 

scenario encountered in ophthalmology, where the left and right eyes are generally 

positively correlated. It is clear that ARE(p) is an increasing function of p, implying 

that 01, the MLE based on model (2.1), is always more efficient than the crude MLE 

. The plots indicate that the gains in efficiency will be greatest when the binocular 

outcomes are highly correlated. Thus, failure to account for the inter-eye correlation 
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o:i 0.2 0.3 0.4 
iSo 

0.5 0.6 07 

Figure 2.1: Plot of ARE(p) against p for j9 = —1, —1.5, and )30 = 0 

can result in quite substantial losses in efficiency in estimating the test's sensitivity 

r1. This could then lead to invalid inferences in the form of underestimated p-values 

and confidence intervals that are too narrow (Leite and Nicolosi, 1998). 

2.4 Simulation Study 

To examine the performance in finite samples of the MLEs of ir0 and ir1 based on 

model (2.1) and assess the accuracy in finite samples of the large-sample standard 

error estimates described in section 2.2.2, we carried out a series of simulation exer-

cises using binocular diagnostic data generated from model (2.1). We compare these 

with those obtained using the crude method. 

The results of three such simulations illustrate the performance of the estimates 

for different sample sizes. Tables 2.2 to 2.4 are based on 500 simulated data with 
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Figure 2.2: Plot of ARE(p) against p for ,31 = —0.01, —0.5, and,30 = 0 

sample sizes N = 100 and 200 from the model (2.1). Table 2.2 corresponds to the 

case with p = 0.1 and -7r0 = 7r, = 0.9. Table 2.3 corresponds to the case with p = 0.4 

and 7ro = = 0.7, while Table 2.4 to p = 0.8 and ir0 = 7r, = 0.55. The data are 

generated using the following algorithm: 

1 Fix p. Calculate = P(DL = dL, DR = dR) using model (2.1) with P(DL = 

1) = P(DR = 1) = 0.5 and correlation p. 

2 Generate a U(0, 1) random variable U, and I (0,0) if U < pD00 
(0,1) ifp00 ≤U<p+pD 01 

(DL, DR) = 
(1,0) if pD + p ≤ U <0D0 + 0D1 + D 

(1,1) ifp+p+p<U<1 
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Figure 2.3: Plot of ARE(p) against p for ,61 = —2, —2.5, and ,60 = 0 

3 Fix ,@o and 81 (to get 7ro = ir1). Calculate PYLY = P(YL = YL, YR = yR) using 

model (2.1) with P(Yj = 1) =  e/3o+ 1 D3 l+PO+I3lDI j = L, R, and correlation p. 

4 Generate a U(0, 1) random variable U, and 

(YL,YR) = {
(0,0) if U<p00 

(0,1) ifpoo≤U<poo+PO, 

(1,0) if Poo +Poi ≤ U < Poo + Poi +Pio 

(1,1) if Poo + POI +pio ≤ U< 1 

5 Go to (1) and repeat N times. 

A check for condition (2.2) was built into the program codes to ensure that the p 

estimates satisfy the bound. When a p estimate failed to lie within the bounds, it is 

replaced by the midpoint of the interval. A more efficient approach would be to use 
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Fisher's z-transform r = log[(1 + p)/(1 - p)j to remove the constraints. 

The means of the 500 sets of estimates and standard errors were calculated. In 

addition, the empirical standard deviation of the estimates were computed and the 

relative efficiency, defined as the ratio of the average standard error to the empirical 

standard deviation, was determined. The same thing was done for the crude method 

based on 2N = 200,400 observations. 

These simulations suggest that the MLEs based on model (2.1) perform well 

in finite samples. Except for the intra-pair correlation estimate , we find little 

bias in the estimates and the standard error estimates were able to capture the true 

variability of the estimates. This can be seen in the uniformly high relative efficiencies 

in all cases. Note that the relative efficiencies of estimates based on model (2.1) are 

higher than those of the crude method. As p increases, the relative efficiencies from 

the crude method decrease while those from model (2.1) generally increase. This 

is to be expected as model (2.1) takes account of the correlation between the eyes. 

The crude method tends to underestimate the standard errors because it effectively 

assumes that there are more subjects providing independent information than is in 

fact the case. 

While some bias appears in the estimates the bias generally decreased with 

increasing p. For instance, in the case p = 0.1, the p estimates yielded a relative bias 

of (bias/p) x 100 = 81.5% for N = 100, a relatively high value. However, the relative 

bias went down to 12.5% for p = 0.4 and —0.075% for p = 0.8, with N = 100. The 

same observation holds for N = 200. Finally, we note that the bias in appears 

in other applications as well (Heagerty and Lele, 1998) and could be minimized by 

working with Fisher's z-transform r = log[(1 + p)/(l - p)] instead of p. This needs 
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to be studied further for the proposed methodology. 

Table 2.2: Relative Efficiency of Estimates based on 500 Simulated Datasets using 
Model (2.1) and using Crude Method with p = 0.1, it0 = it1 = 0.9 

Estimate SE SD Relative 
N = 100 (Mean) (Mean) (Empirical) Efficiency 
Model it1 0.9048 0.0290 0.0310 0.9355 

itO 0.9032 0.0290 0.0310 0.9355 
p 0.1815 0.2080 0.1768 1.1765 

Crude it1 0.9025 0.0280 0.0315 0.8762 
ito 0.9008 0.0272 0.0291 0.9347 

N=200 
Model it1 0.9027 0.0210 0.0200 1.0350 

ItO 0,9021 0.0210 0.0200 1.0350 
P 0.1990 0.1198 0.1343 0.8920 

Crude it1 0.9003 0.0200 0.0201 0.9801 
ito 0.8998 0.0200 0.0203 0.9704 

The implication of ignoring the inter-eye correlation is clear: failure to adjust for 

this correlation in any statistical analysis may lead to potentially incorrect inferences. 

2.5 Application to Diabetic Retinopathy Data 

We illustrate the methodology described in this chapter on the diabetic retinopathy 

data. Specifically, we consider the pathology microaneurysm. Table 2.5 shows the 

data concerning the presence (+) or absence (-) of microaneurysm in the left and 

right eyes of 92 diabetic patients. 

The parametric model was applied to these data with p(D) = P(Yij = 1ID) 

specified as a binary logistic regression model with parameters fib and flu, and with 
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Table 2.3: Relative Efficiency of Estimates based on 500 Simulated Datasets using 
Model (2.1) and using Crude Method with p = 0.4,70 = 7r, = 0.7 

Estimate SE SD Relative 
N = 100 (Mean) (Mean) (Empirical) Efficiency 
Model ir1 0.7116 0.0470 0.0493 0.9533 

,7r0 0.7091 0.0470 0.0493 0.9533 
p 0.4531 0.0923 0.1069 0.8634 

Crude ir1 0.7006 0.0420 0.0506 0.8300 
ir0 0.6977 0.0420 0.0516 0.8198 

N=200 
Model ir1 0.7098 0.0310 0.0314 0.9968 

ir0 0.7114 0.0310 0.0314 0.9968 
p 0.4402 0.0605 0.0767 0.7888 

Crude 7r, 0.6996 0.0280 0.0308 0.9123 
iro 0.7015 0.0280 0.0323 0.8731 

inter-eye correlation p. 

Table 2.6 displays the MLEs of these parameters and their standard errors along 

with those from the crude method. We note that the inter-eye correlation = 0.1059, 

while statistically significant, suggests a weak association between the left and right 

eye diagnoses for microaneurysm. Because of this, the estimates based on the crude 

method are very close to those from model (2.1). For example, both approaches 

yielded estimates of sensitivity and specificity for the test of about 84% and 95%, 

respectively. Note however, that the standard errors of estimates from model (2.1) 

are generally larger than those of estimates using the crude method. This is to be 

expected in view of the results reported in sections 2.3 and 2.4. 

Our proposed approach based on model (2.1) of analyzing the data is more gen-

eral than the crude method, and reduces to the crude method when the eyes are 
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Table 2.4: Relative Efficiency of Estimates based on 500 Simulated Datasets using 
Model (2.1) and using Crude Method with p = 0.8, ro = ir1 = 0.55 

Estimate SE SD Relative 
N = 100 (Mean) (Mean) (Empirical) Efficiency 
Model 7r, 0.5588 0.0560 0.0582 0.9588 

,7r0 0.5542 0.0560 0.0582 0.9588 
p 0.7994 0.0545 0.0511 1.0665 

Crude ir1 0.5479 0.0440 0.0598 0.7324 
-7r0 0.5431 0.0440 0.0573 0.7679 

N=200 
Model ir1 0.5592 0.0430 0.0418 1.0263 

7ro 0.5598 0.0430 0.0418 1.0263 
p 0.8037 0.0410 0.0412 0.9951 

Crude qr1 0.5466 0.0340 0.0433 0.7852 
ir0 0.5474 0.0340 0.0442 0.7647 

independent. If, by our method, the inter-eye correlation p turns out to be not 

very different from 0, like in the case of microaneurysm above, then we may assume 

independence of the eyes, and the crude method will suffice. 

2.6 Discussion 

Clinical trials and epidemiological studies in ophthalmology often deal with data 

regarding the presence or absence of binocular findings. These data are taken from 

patients who usually contribute measurements from both eyes. In this chapter, we 

investigate the accuracy of a binary diagnostic test as determined by its sensitivity 

and specificity. 

We propose a likelihood-based method of estimating sensitivity and specificity 
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Table 2.5: Assessment of Presence (+) or Absence (-) of Microaneurysm in the Left 
(L) and Right (R) Eyes of N = 92 Diabetic Patients 

Disease Test 
Status L + R+ L - R+ L + R— L- R— Total 
L+R+ 38 8 3 2 51 
L—R+ 1 1 0 1 3 
L+R— 2 0 2 2 6 
L—R— 0 1 0 31 32 
Total 41 10 5 36 92 

Table 2.6: Maximum Likelihood Estimates of Parameters from Model (2.1) and the 
Crude Method for Microaneurysm 

Model Crude 
Parameter 

00 
PI 
P 
111 

ir0 

Estimate SE Estimate SE 
-2.8452 0.5400 -2.8478 0.5143 
4.4729 0.6044 4.4900 0.5752 
0.1059 0.2407 
0.8359 0.0380 0.8378 0.0350 
0.9451 0.0280 0.9452 0.0266 

using a parametric model that accounts for the inter-eye correlation. Estimation of 

model parameters via MLE is outlined and approximate hypothesis tests concerning 

the parameters are provided. The relative efficiencies of estimates based on the 

model was assessed theoretically and by simulation. Results reveal that treating the 

eyes as independent may lead to incorrect estimation of the standard errors, thereby 

resulting to invalid inferences. An application in a diabetic retinopathy study is used 

to illustrate the method. 



Chapter 3 

Analysis of Binocular Diagnostic Data: Case of 

Multiple Readers 

3.1 Introduction 

Many diagnostic studies involve either subjecting patients to a number of tests or 

to a single test on several occasions. This is the situation when, for example, the 

diagnosis depends on the subjective assessment of a so-called reader, in which case, 

the study protocol requires that at least two readers diagnose a patient to avoid 

reader bias. Another scenario when this occurs involves subjecting patients to a 

battery of tests, as is done in screening programs. 

Consider the diabetic retinopathy study described in Chapter 1, where left and 

right eyes of patients are evaluated by several readers for a number of retinopathy-

related pathologies based on the same images. In addition to the inter-eye correla-

tion induced by the binocular nature of the data, two other sources of correlation 

are present in this case. Because readers rely on the same image of the eye, their 

diagnoses are potentially correlated. Moreover, because the pathologies are all re-

lated to retinopathy, it is very likely that the presence or absence of one influences 

the presence or absence of another. Thus, diagnoses for the pathologies based on the 

same eye are correlated. Note that the diagnoses in this setting are nested within 

pathologies and within readers. 

27 
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One approach to estimating the sensitivity and specificity of a diagnostic proce-

dure like the one described above is to ignore the inter-reader correlation and simply 

average the results from separate analyses via model (2.1) of data from each of the 

readers. Similarly, one can pretend that the pathologies are independent, and carry 

out separate analyses based on model (2.1) of each of the pathologies. 

These approaches, however, can prove to be inefficient and hence, inadequate in 

practice. An obvious remedy would be to use a multivariate model for nested binoc-

ular binary data (e.g., Rosner, 1989). In this chapter, we instead extend model (2.1) 

to this situation by including random effects to account for the other sources of cor-

relation, as is done in measurement reliability studies (Dunn, 1992). For simplicity, 

we assume in the next section that we have only one pathology and several readers; 

the case with more than one pathology is straightforward but more computationally 

involved. 

3.2 Extension of Single-Reader Model to Several Readers 

Diagnoses by several readers of the same digital image of a patient's eye could well be 

correlated due to the similarity of reader diagnoses caused by certain characteristics, 

besides disease status, inherent to the subject. This correlation can be explained 

by the addition to model (2.1) of an unobserved random variable which varies from 

patient to patient. This is done in what follows. 

Let T i-' N(O, 1) be a latent standard normal variable which varies across patients. 

Then the jth eye (j = L, R) diagnosis Yjk from the kth reader (k = 1,..• , K) is 

assumed to depend on the disease status D3, the latent variable T, and the covariates 
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x, through a generalized linear model 

Pik(t) = P(}k = 1(D,t,x) 

= p(D3,t,x3) 

= h'(,60 + i31D + /32kt +/3Tx). (3.1) 

To define the joint distribution of (YL1, YRl)T,. , (YjR) y)T, we assume that the 

diagnoses of the readers are independent of each other, conditional on (DL, D R )T, 

X = {XL, XR}, and T. Hence, the conditional joint distribution of (YLk, YRk)T, k = 

1,... , K, is given by 

P(YLk = YLk, YRk = YRk, \/kIDL, DR, t, x) 

K 

= HP(YLk = YLk,YRk = YRkIDL,DR,t,X) 
k=1 

= ft 1+ p{YLk - PLk(t)}{YRk - PRk(t)}  

k=1 \/PLk (t)qLk(t)pRk (t)qRk (t) 

X f[ {pjk(t)Phik [qJ()]l_Vik . (3.2) 
j=L,R 

The unconditional joint distribution of (YLk, YRk)T, k = 1,... , K, is the average of 

(3.2) over T, that is, 

P(YLk = YLk, YRk = YRk, VkIDL, DR, x) 
f + 00 K I P{YLk PLk(t)}{YRk PRk(1)}l 

= H 1+ 1  pLk(t)qLk(t)pRk(t)qRk(t) ] L 

X H [p3k(t)P" [q(t)]l_Yu1 d'(t), (33) 
j=L,R 

where (.) is the standard normal cumulative distribution function. We can use 

the joint distribution in (3.3) to get the inter-reader pairwise correlations. With 
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l'+00 ' 
Pik = J_00 pjk(t)d1)(t), '7jk2 = J_+00, pk(t)qk(t)dI(t) + var[pk(t)], and 

( I 1 + p{1-pLk(t)H1- (t)}  1 
f d(t) for j' L, k = J 1-00 PLk /LLk,j'k' = \/pLk(t)qLk(t)pRk(t)qnk(t)j 

_CO 7(t)J)i'1'(t)d(t) for fo L, k 0 k' 

these correlations are as follows: 

p(YLk, 'k') = 

(ULk,j'k' - /JLk/2j'k1) (uLko'k')' 

(pLk,Rk /LLk,URk) (oLkuRk')-1 

1 

for j'L,k 0 k' 

for j'L,k=k' 

for j' = L, k = k' 

Note that p(YLk, Yjiw) represents the unconditional correlation between readings by 

two different readers (k 0 k') and P(YLk, YRk) the unconditional correlation between 

the left and right eye readings by the same reader. 

Assuming T is independent of Dj and XL = XR = x, then the unconditional 

probability Pjk = P(Yjk = 1jD, x) = p(D, x) is the average value of Pik (t) over T 

given by 

+0 

Pik = 1 00 h-'(Po +thD +fl2kt+flTX)d(t). (3.4) 

Because ophthalmologists are generally interested in coming up with measures of 

accuracy independent of the particular reader conducting the diagnostic procedure, 

we can assume 62k = /32 for all k = 1,... , K. The sensitivity and specificity are 

+00 

71 = f oo h'(,60 + 01 +/32t+/3Tx)d(t), (3.5) 



31 

and 

+00 

lro = 1 - j h-1 (,8,) + 132t + Tx )d(t) (3.6) 

Note that our approach parallels that adopted by Hadgu and Qu (1998) and Qu et 

al. (1996) in analyzing diagnostic data with an imperfect gold standard. 

3.2.1 Likelihood Representation 

Suppose N patients undergo diagnostic testing on both left and right eyes for some 

pathology by several readers. Let {YjLk, YiRk, DL, DR, Xi}, for k = 1,... , K and 

i = 1,... , N, denote the observed data. 

The likelihood contribution of patient i is 

Li = I fj [qjj (tj)]'k ii + - PiL(tl)} {YiRk - PiR(ti)}i 
00 k,j L d(t). 

The log-likelihood function is then 

N 00 

= log ( j [f J t'Lij [p..(t.)lViik 1-Yijk 
co 

< [1 + p {yiLk - PIL(ti)} {YiRk - pIR(t)}l ] d (ti) (3.7) 

The integrals in (3.7) may be evaluated by Gauss-Hermite quadrature techniques 

(Lesaifre and Spiessens, 2001). The method simply replaces the integration by a 

summation over a finite number Q of Gaussian quadrature points usually taken to 

be 10 or 20. Maximum likelihood for (3.7) is outlined in section 3.2.2. 
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3.2.2 Parameter Estimation 

Define 27T = (aT,p), where aT = (,60"61"62 "8T). To get the MLE of 27, we first 

evaluate the log-likelihood function (3.7) via Gauss-Hermite quadrature method, 

then numerically maximize it with respect to 27. 

Let t1,... , tiç, i = 1,. ,N, be the Gaussian quadrature points. Then, 

£ se 
N /Q 

log ( Wiq [J \1 WZ3' 2q1J Yjr [qjj(tjq)]lhuir 

i=1 \q=1 j,r 

X (YiLr Pj(tjq)} {YiRr - PiR(tiq)}  

\/PiL(tiq)qiL (tiq)piR(tiq)qiR(tiq) I 7 (3.8) 

where the weights Wjq, q = 1,... , Q; i = 1,... , N, depend only on Q and the 

standard normal density. 

If £ is the right-hand side of (3.8), the (approximate) MLE 10 of 71 is obtained by 

solving the (approximate) score equations £* () = 8e*/aT = 0T via the Newton-

Raphson algorithm. The usual properties of MLEs still apply to in this case, and 

large-sample inference is carried out in standard fashion. 

3.3 Extension to Several Pathologies 

It is possible to extend model (3.3) further to the case of several pathologies as 

follows. To account for inter-pathology correlation, define another latent variable 

U r.F N(O, 1), independent of T, which varies across patients. Then, given Dj,, the 

disease status for pathology v = 1,.. , V, T, and U, we have p1 (t, u) = h 1(,80 + 

f31D +,62t + i3u), where we assumed /32 = ,62k for all k = 1,... , K, and that no 

other covariates are available. The sensitivity and specificity of the test for pathology 
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V = 1,•.. ,V, are then given by 

-1-00 -f-C -00 

00 

7rJV = h 1(o + th +,6,t + 3u)d(t)d(u), (3.9) 

+00 +00 

= 1 - f oo f h'(130 + Pt + 3u)d(t)d(u). (3.10) 

To define the joint distribution of (YLk0, YRkv)T, v = ..... , V;k = 1,... , K, we 

assume the diagnoses across readers and across pathologies are independent of each 

other, conditional on (D1,,,, DRV)T, T, and U. Hence, we get the conditional joint 

distribution as 

P(YLkv = 7JLkv)YRkv = yRkV,Vk,vIDL,DRV,Vv;t,u) = J.J JJ [p(t,u)]" 
k,v j=L,1 

x Pv{YLkv PLkv(t,U)}{YRkv pRk(t,U)}] 

\/PLkv(t, u)qLk(t, u) pRkv (t, u)qRk(t, u) 

where Pv is the inter-eye correlation for pathology v = 1,'.. , V. With p, and 

defined similarly as in section 3.2, and 

/iL1v,j'kFv 

l 
= { JRPPRV [i +  PLV}{1 PRv} j d(t)d(u) for j' £, k' 1, v = 

fRPiVPi'V1 (t) 1)(u ) for j' £ or k 

where Pjv = p(t, u) and R = (—cc, +oo) x (—cc, +oc), we have 

= 

(/1L1v,R1v IJL1v/2R1v) (ULv0Rv)-1 

(/2L1v,j'k'v' pLvp'j'v') (oi,o'')_' 

1 
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Note that P(YLkV, YRkv), Vk, denotes the unconditional correlation between the left-

and right-eye readings for the same pathology by the same reader while p(YL1, 'k',,') 

denotes the unconditional correlation between readings for the same or different 

pathologies by the same or different readers. 

The log-likelihood function becomes 

+oo +00 

£ = log ([ / fi u1)]vuiko 

i:=1 \./ -00 J 00 j,k,v 

+ Pv {YiLkv -  PiLv (ti,  u)} {yiRkv PiRv(ti, u)}] 
qiLv  u)p R (t, uj)] d(t)d(u)) 

Gaussian-Hermite quadrature methods can again be used to approximate £ and a 

numerical algorithm (e.g., Newton-Raphson algorithm) can be used to numerically 

solve the resulting (approximate) score equations to obtain the (approximate) MLEs 

= (&T,.), where &T = 

3.4 Application to Diabetic Retinopathy Data 

We now apply the proposed methodology in section 3.2 to data from the diabetic 

retinopathy study. Specifically, we consider the pathology microaneurysm, and con-

sider data from two readers. 

Table 2.5 in Chapter 2 shows the left- and right-eye microaneurysm evaluations 

by Reader 1. The following Table 3.1 displays the evaluations by another reader, 

Reader 2. 

We apply model (3.3) to the two sets of readings to account for the correlation 

between the two readers, using a logistic link. The MLEs are presented in Table 3.2 
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Table 3.1: Assessment by Reader 2 of Presence (+) or Absence (-) of Microaneurysm 
in the Left (L) and Right (R) Eyes of N = 92 Diabetic Patients 

Disease Test 
Status L + R+ I' - R+ L + R— L - R— Total 
L+R+ 45 2 1 3 51 
L—R+ 1 1 0 1 3 

2 0 4 0 6 
1 2 1 28 32  

Total 49 5 6 32 92 

along with their standard errors. From the Z values, it is clear that /32 is significantly 

different from zero, which means that there does exist inter-rater correlation. 

Table 3,2: MLEs of Parameters of Model (3.3) for Microaneurysm based on 2 Readers 

Parameter Estimate SE Z  
00 -5.2561 1.3584 -3.8693 

9.6060 2.2866 4.2010 
/32 3.5834 0.9933 3.6076 
P -0.0581 0.2673 -0.2174 

0.8616 0.0674 12.7834 
70 0.9054 0.0620 14.6032 

We can now compare the results from the crude method, model (2.1), and model 

(3.3) concerning the sensitivity and specificity of the test. For the crude method and 

model (2.1), the average value of the estimates for the two readers were calculated. 

The estimates are presented in Table 3.3. 

Results from Table 3.3 indicate the close correspondence between estimates from 
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Table 3.3: Comparison of the MLEs of Sensitivity and Specificity of Test for Diag-
nosing Microaneurysm Using the Three Methods 

95% CI 
Parameter Estimate SE Lower Upper 

Crude 0.8739 0.0222 0.8304 0.9174 
Method ir0 0.9178 0.0226 0.8735 0.9621  
Model 7rj 0.8784 0.0240 0.8314 0.9254 
(2.1) ir0 0.9193 0.0235 0.8732 0.9654 
Model 7ri 0.8616 0.0674 0.7295 0.9937 
(3.3) 70 0.9054 0.0620 0.7839 1.0269 

the crude method and those from model (2.1). This is to be expected as is quite 

small. Observe that the standard errors from model (3.3) are larger than those from 

the other two methods. This is not surprising because model (3.3) accounts for 

the correlation between the readers, thus adding another source of variation in the 

analysis. Note as well the wider confidence intervals for ir1 and 7ro based on model 

(3.3). 

Therefore, treating the readers as independent ignores the correlation between the 

readers, and may consequently yield incorrect estimates, especially of the standard 

errors. Model (3.3) avoids this by accounting for this source of variation in the 

analysis. 

3.5 Discussion 

Clinical trials and epidemiological studies in ophthalmology often deal with data 

regarding the presence or absence of binocular findings on a number of eye pathologies 
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as determined by one or more trained specialists. These data are taken from patients 

who usually contribute multiple measurements on several pathologies from both eyes. 

In this chapter, we investigate the sensitivity and specificity of binary diagnostic tests 

when the diagnoses are determined by several readers. 

We propose a likelihood-based method of estimating sensitivity and specificity us-

ing an extension of model (2.1) described in Chapter 2 that accounts for correlations 

besides the inter-eye correlation. The extension was achieved by including random 

effects to account for additional sources of correlation in the data, such as those be-

tween readers and those between pathologies. Estimation of model parameters was 

carried out via maximum likelihood estimation. 

An application to data from the diabetic retinopathy study on one pathology and 

two readers is used to illustrate the method. Results reveal that treating the readers 

as independent may lead to incorrect estimation of the standard errors, thereby 

resulting in invalid inferences. 



Chapter 4 

Conclusion 

4.1 Summary 

The analysis of clustered binary diagnostic data is not straightforward because of a 

lack of standard models for the joint distribution of the variables. Besides the ad-hoc 

approach of carrying out separate analyses for the binary variables in the data, which 

are clearly deficient in many applications, a number of model-based alternatives have 

been previously proposed. We propose another model-based approach in this thesis 

which is particularly suited to binocular diagnostic data that arise in clinical and 

epidemiological studies in ophthalmology. 

This thesis focuses on two main issues arising in multi-reader and multi-disease 

binocular diagnostic studies: how to account for inter-reader and inter-pathology cor-

relations while at the same time incorporating the correlation between the binocular 

outcomes. The general approach taken in this thesis was a model-based one that 

relies on specifying a model for the joint distribution of the variables. Inferences 

are then developed for the parameters of the model. The approach is motivated 

by the need to account for the different sources of correlations in the data such as 

those between readers and between diseases or pathologies. This approach should 

be preferred to those that carry out separate analyses for the binary variables, as 

it provides a systematic and non-ad hoc way of analyzing the data and results in 

substantial gains in efficiency. 

38 
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A model, previously discussed by Prentice (1988), is adopted in Chapter 2 to 

model the joint distribution of binocular binary diagnostic data. The model is com-

pletely determined by the marginal probabilities and the correlation between the 

binocular outcomes. Maximum likelihood estimation is outlined for the model, and 

large-sample inferential techniques are briefly discussed. The approach is illustrated 

by an application using data from a diabetic retinopathy study concerning a cer-

tain retinopathy-related pathology among diabetic patients as evaluated by a single 

reader. Estimates derived from the approach are shown, both theoretically and em-

pirically via simulations, to be more efficient than those from the crude method, 

which ignores the intra-pair correlation. 

In Chapter 3, an extension of the approach is introduced. The extension is accom-

plished by the addition of a random effect to account for the inter-reader correlation 

in multi-reader studies. A further extension to the case of several pathologies is also 

outlined, showing the flexibility of the method. Data from the diabetic retinopathy 

study involving two readers are again used to illustrate the usefulness of the method. 

4.2 Future Research 

Several issues still need to be addressed concerning the proposed method. 

It would be interesting to investigate the performance of the methodology in 

cases where the sensitivity and specificity of the binocular binary diagnostic test are 

quite different, as when one is high and the other low. The simulations conducted 

only considered those cases where the two are the same, which is not very common 

in practice. Additional simulation studies thus need to be carried out to provide a 
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clearer picture of the performance of the methodology in various scenarios. 

While complete specification of the likelihood function can be advantageous in 

many situations, there is always the danger of misspecification that can lead to invalid 

inferences. A way of checking the validity of our model thus needs to be developed. 

It is important that the robustness properties of the model be investigated. 

There is also the matter of computations. The model can easily become unwieldy 

as the numbers of readers and pathologies increase. In cases where there are quite 

a number of readers and pathologies under consideration, evaluating the likelihood 

can prove to be computationally demanding. More efficient and easily implementable 

algorithms need to be developed for such cases. 

Finally, many pathologies studied in the diabetic retinopathy study considered 

in the thesis do not have perfect gold standards for determining true disease status. 

A further extension of the method for analyzing multi-reader and multi-pathology 

studies wherein some of the pathologies lack a perfect gold standard, should be a 

welcome contribution to this area. 
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