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ABSTRACT 

This study explores and analyzes the detailed operations of lithologic classification 

from.remote sensing images and geophysical data using feedforward neural networks. A 

set of experiments was designed and performed to test the dependence of classification 

accuracy on various parameters. The variables used in the experiments are various 

combinations of input channels, the number of output classes, the number of hidden nodes, 

the training sample sizes, and the training coefficients (i.e. the momentum factor and the 

learning rate). The input channels consist of different types of images generated from 

gravity, magnetic, gamma ray spectrometry data and remote sensing images such as 

Thematic Mapper, radar and SPOT. 

Through the analysis of classification accuracy with increased number of iterations, 

we demonstrated that the optimal choice of input channels is the most critical factor in 

achieving better accuracy result. The classification accuracy may be maximized by choosing 

an optimal combination of input data layers. When training the network, the size of 

individual training samples is more important than the total number of training samples in 

obtaining a satisfactory classification. The classification accuracy is inversely proportional 

to the number of output classes in this geological mapping. Generally speaking, the overall 

average accuracy of classification gets better by increasing the number of iterations to a 

certain degree, however, at the expense of some individual classification accuracy. 

The variance in the individual classification accuracy were found to be significant 

which has lead to some criterion on the selection of the parameters. For lithologic mapping, 

the network should be structured in accordance with the importance of each individual 

class. 
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CHAPTER 1 

INTRODUCTION 

This chapter introduces the framework of this study which has three distinct 

segments: the lithologic mapping, the multi-source data, and the back-propagation neural 

network. It begins by reviewing the relevant aspects of remote sensing's application in 

geology for reconnaissance lithologic mapping. Second, it presents the up-to-date 

developments in the integration of multi-source data, the nature of multi-source data, its 

benefit and difficulty of integration of multi-source data. Third, it introduces the neural 

network technology and its application in classification. Fourth, it lays out the hypotheses 

of this study. It is our intention to better understand the functioning of the neural network 

through analysis of the performance of the classification process. The final section of 

Chapter 1 summarizes the review. 

1.1 Introduction to Geological Remote Sensing 

For decades, geologists have successfully used remote sensing techniques to solve 

a wide variety of specific geologic problems that are difficult to solve by conventional 

methods alone, including mineral and energy resource exploration, nuclear siting and waste 

disposal, and the charting of glacier and shallow seas (Goetz, 1981). 

Geological remote sensing can be defined as the study of the earth using 

electromagnetic radiation (EMR) with wavelengths ranging from ultraviolet (0.3 

micrometer) to microwave (3 meters). In contrast, geophysical remote sensing can be 
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defined as the study of the earth using electromagnetic radiation of wavelengths shorter 

than ultraviolet (X ray, gamma rays, etc.) and longer than microwave (radio) (LeRoy, et 

a!, 1977) together with other methods which do not detect electromagnetic radiation, such 

as magnetic, gravity, sonic and seismic techniques. 

-. The most fundamental application of remote sensing in geology is in the 

augmentation of conventional methods for compiling and interpreting geologic maps of 

large regions. Regional geologic maps are important because they present compositional, 

structural, and chronological information essential for reconstructing the geologic 

evolution. 

Geological maps, usually based on ground traverses, are categorical abstractions of 

the large amount of data available on the ground. They are limited by rock exposure, 

accessibility, and manpower resources. However, remote sensing techniques provide 

certain structural and lithologic information more efficiently than can be acquired on the 

ground. 

Geologists are interested in mapping the regional linear features on images. These 

linear features, called lineaments, appear as linear or curvilinear geomorphic features on 

imagery. Lineaments are often associated with geological structures (faults, fractures or 

shear zones) or lithologic contacts. Lineaments are particularly important in mineral 

resource studies, because many, though not all, ore deposits are localized along fracture 

zones. 

In areas where no geologic map is available but with good rock exposure, geologic 

reconnaissance maps can be compiled from Landsat images because many of the major 

structural and lithologic elements are well displayed. Remote sensing data also contribute to 

a better understanding of areas where considerable detailed geologic mapping is already 
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available. 

1.1.1 Remote sensing and lithology classification 

The spectral reflectance of earth materials is often the most useful and diagnostic 

criterion for lithologic discrimination. The process of "reflection" occurs within one-half 

wavelength of a material's surface, in the molecular structure of the material, and results in 

the instantaneous radiation of EMR. Spectral reflectance is a measure of the distribution of 

electromagnetric energy reflected by a material, and is expressed in images by photographic 

tone or color. Reflectance is a consequence of the chemistry and structure of the material 

modified by environmental factors and the physical condition of the material. 

Remote sensing data represents the reflectance from the upper few micrometers or 

millimeters of the surface because of the high opacity and scattering characteristics of 

natural materials. The opacity in the visible and infrared portions of the spectrum is created 

by high absorption coefficients due to a variety of electronic and vibrational processes 

(Hunt, 1977). The principal constituents of igneous rock-forming minerals and, hence, all 

rocks have neither electronic nor vibrational transitions. The spectral information that 

appears as bands or wings of bands is due to the presence of other minor components that 

are present as impurities (Siegal, 1980). 

In many areas of the world, vegetation cover obscures rock and soil materials, and 

remote sensing techniques must use variations in vegetation patterns as indicators of the 

underlying geologic materials. In some areas, plant species are very selective in associating 

with particular rock material, and geological mapping can be almost completed without 

actually observing the rock material themselves (Taranik, 1983). When rock types are not 

particularly well exposed, or when outcrops do not produce characteristic weathering 

patterns remote sensing technique alone can not predict the lithology of the subsurface 



4 

material. 

The property related to the changes in surface temperature that are induced by 

diurnal solar heating may reveal some information concerning body properties as opposed 

to surface properties. This property, called thermal inertia, is defined as "k p c", where k 

is the thermal conductivity, p is the density, and c is the specific heat, can be analyzed to 

allow measurement up to a depth of about 10 cm or less (Gillespie, et al., 1977). 

The mid-infrared region beyond 8 u m is especially important for geologic mapping 

because spectral emittance variations provide a basis for distinguishing between silicate and 

non silicate rocks and for discriminating among silicate rocks. Near 10 Pm, the 

manifestation of the fundamental S-O stretching vibration are diagnostic of the major types 

of silicates (Lyon, 1965). These two techniques of mid-infrared and thermal inertia can be 

used together to provide considerable fundamental lithologic information. 

The majority of discernible features in the spectra of igneous rocks occurs as a 

result of the presence of iron, its oxidation state, and water. The same is true for 

sedimentary and metamorphic rocks, with the exception of carbonates, which display 

strong absorptions caused by vibrational processes due to the CO;' ion and Al-O-H 

deformation in clay materials (Siegal, et al, 1980). 

The electronic transitions in the visible and near infrared that occur in the transition 

elements, and the charge transfer bands in the ultraviolet, influence the spectral reflectance 

of minerals. It produces a distinguished spectral feature in the visible toward the ultraviolet 

and an absorption band between 0.85 and 0.92 p m associated with the Fe 3+ electronic 

transition. These spectral features are characteristic of iron oxides and hydrous iron oxides, 

collectively referred to as limonite (Siegal, et al, 1980). The limonite in the altered zones is 

an important surface indicator for precious and base metals exploration. 
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Lithology encompasses several different factors such as mineralogy, grain size and 

degree of lithification. Lithology of a formation means that a certain rock type is present in 

a stratigraphic sub-division (Lorenzetti, 1992). Lithological classification maps are useful 

for geological mapping which are often used together with geophysical data for defining 

subsurface configurations. The subsurface configurations are important for all practical 

applications, because the conditions of formation of rock units and structural features 

influence the occurrence of ore and petroleum deposits. The spectral radiance, the spatial 

distribution of landforms and the brightness (average reflectance in the visible and near-

infrared regions) on the imageries are all diagnostic properties of rocks. 

The technique used for structural analysis is based on integration of Landsat data 

with other geological data sets such as gravity, magnetic, subsurface, and production data. 

Geologic mapping with the aid of remote sensing data entails the description of structure, 

lithologic units and geobotanical relationships. 

1.2 The Nature of Multi-source Data 

The rapid development of data acquisition technology has resulted in a large volume 

and diversity of modern multi-source spatial data. The integrated analysis of spatial data 

from multi-sources has become increasingly important in the communities of remote 

sensing and Geographical Information System (GIS), particularly in the development of 

geomatics. Geomatics deals with a wide range of data sets such as remote sensing images, 

geologic or topographic maps, gravity or magnetic maps, Global Positioning Systems 

(GPS), and various thematic maps, etc. 

Spatial data are qualitative or quantitative observations of phenomena in space. In a 

spatial database, the element of spatial information can be defined as T={x, y, z, hi, 

h2,..., h}, giving the values of a set of n spatial variables at location (x, y, z). The variable 
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h1 can be of any data type: nominal, binary, ordinal, interval or ratio. For example, in a 

geologic lithology map, h is in nominal type (e.g., rock type); for an image, each pixel 

records the spectral reflectance (e.g., h is a numerical value). Integration of these two 

different data types could be difficult, because there is a problem to find a mathematical 

model f (value, rock type) which combines a spectral value (e.g., '20') and a rock type 

(e.g. 'A) . The observations provide a set of data, which constitute an image of the 

phenomenon. The analysis of this image, and its synthesis, constructs our understanding 

of the phenomenon, transforming the data into information. 

Different data sets acquired by different methods are recorded at different spatial 

scales. For example, geophysical data, such as gravity or magnetic, are usually point 

measurements or along flight lines for airborne geophysical surveys are measured in 

nominal scale (i.e. values in certain units). However, remote sensing imagery obtained by 

different sensors operating in different spectral regions represent the radiance of surface 

targets in a ratio scale. Both radar and TM data represent high-frequency surface 

information. The low-frequency information are provided by the geophysical data such as 

gravity and magnetic. 

Each data set has its own possibilities and limitations in different applications. 

Different data sets also have different accuracy and resolution, or they differ in quality and 

in the degree of detail of the properties they measures. Data density (e.g. the number of 

measurements per unit area; or the average distance between the measurements), data 

coverage (e.g. the area where data is available), and data distribution (e.g. in terms of its 

regularity, i.e. is the data evenly distributed or not) also varied since detailed survey only 

covers some limited areas and whereas in areas with less interest, the data density is usually 

low. 
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1.2.1 The benefits of integration of multi-source data 

The integration of multi-source data of the same area or object offers the potential 

for great improvement in all forms of image exploitation and especially in improvement of 

classification accuracy because by integration of multi-source data, one can make optimum 

use of the unique characteristics of multi-sources and backgrounds. Integration or 

incorporation of multi-source data can supply supporting identification criteria from 

different data sources to classify the pixels with mixed spectral/ physical features. 

Classification is the following decision problem: given an input vector x decide in 

which of several known classes the input x belongs. The classes are assumed to be 

mutually exclusive and exhaustive. Useful characterizations of the classes are assumed to 

be either unknown or unavailable and must be estimated from a given collection of labeled 

training samples (i.e. input vector corresponding to each class). The absence of a priori 

class characterizations is the major difficulty in classification. Classification can be defined 

as a generalization or abstraction of a certain phenomena in order to improve our 

understanding (Gong, 1994). Classification reduces the level of complexity in spatial data 

and eases the process of decision making. 

Data integration is a process for making different data sets compatible with each 

other. Data incompatibility can include the use of different geographical referencing 

systems, different spatial or temporal coverage, different scale, and different degrees of 

generalization. Integration of multi-source data may not only help to determine the 

quantitative relationships between the various data sets, but also complement the existing 

data sets, reduce the redundancy in order to extract the needed information and to achieve 

the ultimate goal of management, planning, and policy making. 
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1.2.2 The difficulties of integrating multi-source data 

Many geological and geophysical data sets often have only partial coverage because 

it is very expensive to acquire geophysical or geological data in all the areas by geological 

field work or by using conventional geophysical surveys. In almost all cases, the data have 

very different spatial resolution and they are often incomplete and have an unbalanced 

spatial distribution. 

Whenever multiple data sets are available for a region, data compatibility is often a 

problem because the multi-sensor data may have been initially acquired with different 

survey objectives and, thus, may have different temporal and spatial coverage. The 

flightline orientation, length of flightlines, and flightline spacing generally tend to be quite 

different. In addition, due to the great variety in data collection, processing, and 

representation, it results in differences in the reliability, uncertainty and completeness. 

These cause serious difficulties in integration (Gong, 1994). 

1.2.3 Techniques for combining multi-source data 

In the past, integration of multi-source data was considered as an overlap of multi-

layer maps (Burrough, 1986). The concern was in data handling, and it was more 

geometric and topographic in nature than a true integration of multiple data types. More 

recent development in the integration of multi-source data has been directed toward the 

analysis and interpretation of multi-source data for the purpose of management decision 

making. 

There are many approaches to deal with data integration. The most commonly used 

approach is the quantitative approach. The quantitative approaches include the rule-based 

expert system and several types of statistical and mathematical techniques such as Bayesian 

theory (based on statistical and subjective probabilities), Dempster-Shaefer theory of 
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evidence reasoning, and fuzzy set theory (based on fuzzy logic), etc. Evidential theory 

includes the Bayesian theory as a special case. The theory of evidence is a theory of 

probable reasoning because it deals with weights of evidence, and with numerical degrees 

of support based on evidence. 

-. The partial belief function approach is examined by Moon (1990) as a means to 

integrate both geophysical and geological data sets for deposits of iron ore and base metal 

(such as gold and phyrhotite). Theoretically, the Dempster-Shafer methods appears to be a 

suitable method, but in practice the partial belief function is area (or site) dependent. When 

using evidential theory in data integration, one must first be able to reason over possibilities 

and also about the interrelation between the several sets of available data. 

One problem in the use of rule-based expert systems is the knowledge acquisition 

and representation. Most human experts have difficulties in describing their knowledge 

explicitly and completely. Some human knowledge is inexpressible in terms of rules and 

sometimes may not be understandable even though it can be expressed in the if-then type of 

production rules (Hoffman, 1987). 

All these quantitative techniques are highly selective in the type of information they 

can handle. They usually assume the data are either in a discrete (nominal or ordinal) or a 

continuous (interval or ratio) format and thematic classification data can not be used. If the 

data are incomplete or noisy, it is difficult to apply these quantitative techniques. 

Furthermore, some techniques make certain statistical assumptions, such as Gaussian 

distribution. 

The other trend of integrated analysis of heterogeneous spatial data is the 

development of neural computing technology which offers an alternative to the traditional 

statistical methods and rule-based expert systems. Neural networks are receiving a great 
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deal of attention from various fields. Due to its capability of automated learning from 

empirical data with little or no a priori information about the application and its tolerance 

with noisy or incomplete data, neural computing technology has gained enormous 

interdisciplinary popularity in recent years. 

1.3 Neural networks 

Neural networks were originally developed as computational systems that attempt to 

simulate the functionality and decision making process of the human brain. These 

computational systems, implemented in either hardware or software are made up of 

neurons, also called nodes or neurodes, which are inter-connected by weighted links or 

synapses. A neurode is a simple computation unit which maintains only one piece of 

dynamic information (its current level of activation). 

hidden layer 

output layer 

input layer 

the circle represents the neurode 

Fig. 1.1 The structure of a feedforword back-propagation neural network 

A neural network is similar to a computer in that both are general purpose systems 

that can be programmed to perform specific tasks. Programming or training a network to 

perform a specific task requires a training algorithm. Unlike traditional computer programs 
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incorporating algorithms to solve a particular problem, neural networks utilize a learning 

technique to develop an appropriate solution. 

The neural network is "trained" by repeatedly presenting examples of the inputs and 

desired outputs of the problem to be solved. As each example is entered into the network, 

the difference between the. actual output of the network and the desired output is used to 

modify the weights for each interconnection. Training of the neural network (or, 

equivalently, changing the values of the interconnection weights) continues until the actual 

output of all the training examples matches the desired outputs to within some specified 

tolerance. When this is achieved, the neural network is said to be "trained" and is ready to 

accept new inputs to predict the outputs. 

A neural network performs "computations" by propagating changes in activation 

(i.e. level of stimulation) between the processors. The propagation of activation, and thus 

the nature of the "computation" performed by the network, is strongly affected by the 

weights (or strengths) of the numerous connections (or synapses) between the processors. 

Hence, the "program" or definition of the computation, is embodied within: 

- the topology of the network (number of layers, nodes and how the nodes of each layers 

are connected); 

- the connection strengths (or weights) of the network; and 

- the mechanism of activation propagation, i.e. the algorithm for computing the activation 

value of a neurode as a function of its net input. 

There are two main stages in the operation of an entire network: learning and 

recalling. Learning (training) is the process of adapting or modifying the connection 

weights in response to stimuli being presented at the input layer and optionally the output 



12 

layer. How do we choose the connection weights so that the network can do a specific 

task? We will encounter some examples where we can choose the weights a priori if we 

are a little clever. This embeds some information into the network by design. But such 

problems are the exception rather than the rule. In other cases we can often "teach" the 

network to perform the desired computation by iterative adjustments of the strengths of the 

weights. This may be done in two main ways: 

• Supervised learning. The learning is done on the basis of direct comparison of the 

output of the network with known correct answers (or target patterns). This is 

sometimes called learning with a teacher. The network compares its output to the target 

and adapts itself according to the learning rules, that is the network is taught to classify 

input into one of several a priori categories. 

• Unsupervised learning. A learning procedure in which the network is presented a 

set of input patterns. The network adapts itself according to the statistical associations 

in the input patterns. The only available information is in the correlation of the input 

data or signals. For example, Hebbian learning, self-organization or competitive 

learning are three of many unsupervised learning schemes. 

Instead of having to specify every detail of a calculation (like the programmed 

instruction sequence), we simply have to compile a training set of representative examples. 

This means that we can hope to treat problems where appropriate rules are very hard to 

know in advance, as in expert systems and robotics. 

Recalling refers to how the network processes a stimulus presented at its input layer 

and gives answers based on what it has learned during the training stage. 

Rumeihart, et al., (Chs. 1-3 in PDP, 1986) provided an excellent description of the 

basic anatomy of all neural networks which they divide into seven basic aspects: 
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(1) a set of processing units. 

(2) the state of activation of a processing unit. 

(3) the function used to compute output of a processing unit. 

(4) the pattern of connectivity among the processing unit. 

(5) the rule of propagation employed. 

(6) the activation function employed. 

(7) the rule of learning employed. 

These seven basic aspects will be described in more detail in chapter three. 

1.3.1 Back-propagation neural network 

The network topology (i.e. the number of layers, the number of nodes and their 

inter-connectivity) and the rules of learning and propagation and functions of output and 

activation are all variables in a neural network and lead to a wide variety of network types. 

There are basically two broad classes of networks: 

1. Feed forward networks, in which the network nodes in the network are grouped into 

layers and communication is restricted to occur only between layers and in a forward 

direction, no lateral, self- or back-connections are allowed. Examples are: the Perceptron, 

the ADALINE (ADAptive LINear Element) and MADALINE networks, feed-forward 

back-propagation, the Boltzmann machine, and the Cachy Machine. 

2. Other networks in which the links can form arbitrary topologies - any network, if 

feedbackward or recurrent (self- connections) are involved. Examples are: Adaptive 

Resonance Theory (ART) networks, Bi-directional Associative Memory Networks (BAM), 
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recurrent back-propagation network, Hopfield network, etc. From this basic binary 

classification, other subclasses arise due to variances in the activation functions and 

learning rules used. 

Considerable research has been done in the field of multilayer neural networks with 

respect to feedforward network abilities. The Perceptron and the ADALINE and 

MADALINE networks are of substantial historical interest, and have paved the way for the 

development of other neural networks. The feedforward back-propagation neural network 

(BNN) is probably the most widely used neural networks today. It was developed by 

Werbos in 1974, rediscovered by Parker in 1982 (Parker, 1985), and, again, rediscovered 

by Rumelhart et al. in 1986 (Rumeihart et al., 1986). 

The standard (i.e. the feedforward) back-propagation neural network uses a 

Generalized Delta Rule (GDR) with a sigmoid function as its activation function. Back 

propagation is a learning rule for multi-layer feed forward networks in which weights are 

adjusted by backward propagation of the error signal from outputs to inputs. The 

distinguishing features of feedforward back-propagation networks are: 

• multi-layered - the network has a minimum of one layer between the input layer and 

output layer, referred to as the hidden layer. 

• fully-connected - in the restricted class of feed-forward networks under discussion, every 

unit (or input) feeds only and all the units in the next layer. There are no connections 

leading from a unit to units in previous layers, nor to other units in the same layer, nor to 

units more than one layer ahead. 

• uses Generalized Delta Rule (GDR) for supervised learning or training - The learning 

algorithm is based on the minimization of the summed squared error (Least Mean Square 

or LMS) between the actual responses Oj and the associated desired responses d (the 
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delta) of the network over all training examples. 

• uses a sigmoid function as its activation function (See Chapter 3 for a detailed 

explanation). 

-- The training procedure of feedforward error back-propagation neural networks 

involves two stages. In the first stage, the presented training pattern generates a forward 

flow of activation from the input to the output layer. In the second stage, errors in the 

networks output generate a flow of information back to the input layer. It is this feature that 

gives the network its name. Back-propagation is actually a learning algorithm rather than a 

network design. It can be used in a variety of architectures. 

In addition to the learning algorithms, there are several factors involved in neural 

network design. Network structure refers to the number of layers and the organization of 

the layers. The way the processing elements are connected; connections may use feedback 

or feed-forward; networks may have partial or full connectivity. Several networks can be 

cascaded together hierarchically or in some other fashion. 

1.3.2 Application of BNN to geologic or lithology classification 

The back-propagation neural network has many applications in geology. It has been 

applied to the detection of geological lineaments from TM imagery of the Canadian Shield 

by Parikh (1991) using edge images as input and digitized lineament maps as the desired 

output. In the study of Guo (1993), a BNN technique was successfully applied to 

lineament recognition and lithologic classification from aeromagnetic map. However, Guo 

clearly stated that it is difficult to classify lithology using only magnetic data because the 

magnetic field is affected only by magnetic geological bodies. In fact, lithologic 

classification from magnetic fields using BNN is actually a classification of magnetic 

anomalies which are related to different lithologies. In the work of Lorenzetti (1992), a 
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single hidden layer network was used to predict the lithology from P-wave and S-wave 

velocities (V and Vs) with 80 - 90 % accuracy. In his study, the network was trained 

using laboratory measurements of ultrasonic velocities on core samples. Inputs to the 

network are Vp. V5. Poisson's ratio (o), and depth (z). 

-.With regard to the classification of multi-spectral remote sensing data, Bishchof et 

al. (1992) reported that an extension of the basic back-propagation network can incorporate 

textural information without explicit definition of a texture measure. Kanellopouloss et al. 

(1991, 1992) tested the possibility of discriminating a large number (20) of land cover 

classes using neural networks. The average accuracy of 84 % of their results outperformed 

traditional classifiers. Neural network also outperformed evidential reasoning in 

classification of alpine land cover and permafrost active layer depth (Peddle et al. 1994). 

Previous studies on geological mapping from multi-source data using neural 

networks were carried out by An, et al. (1994) and Gong (in press). Gong used 13 input 

layers and one hidden layer to classify four lithologic units in the same area as used in this 

study, and compared the results to those generated by evidential reasoning. Neural network 

results were superior to the results from the evidential reasoning method. In the work of An 

et al. (1994), a total of sixteen input data layers were used with the exception of gravity 

data. Predictions of the same four lithologic units were examined with two training samples 

selected from two different base maps (bedrock map and the outcrop map). 

1.4 Hypotheses 

Geologic lithology mapping traditionally is compiled based on field survey data. It 

is time-consuming and requires a great deal of manpower. In many remote areas, the 

lithology maps have not been completed. Efforts have, therefore, been made to aid the 

geological field mapping in Arctic regions in Canada. Although a relatively high accuracy 
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of classification using neural network technique has been reported in some research work 

(An, 1994; Gong, 1995), the detailed operations of the neural network are not well 

understood in the classification application using multi-source data. 

One phenomenon often noted in applying neural networks to classification is large 

variations in the classification accuracy of individual classes. Questions such as which 

parameter or parameters are primarily responsible for these differences in accuracy (for 

example: learning rate, momentum rate, the number of hidden units, the number of training 

iterations, network stability achieved, and the input data sets) remain unanswered in the 

application of neural networks to the classification of multi-source data ( An, et al., 1994; 

Peddle et al. 1994). The goal of this study is to test the ability of a back-propagation neural 

network to predict the lithology from a multi-source data set and to try to find the answers 

to certain questions raised in An's and Peddle's paper. Also, given a fixed architecture of 

networks, the selection of optimal value of parameters are to be explored. 

Our approach is to design experiments based on the hypotheses stated as follows: 

Hypothesis 1 Classification accuracy may be maximized by choosing an optimal 

combination of input data layers. 

An et al., (1994) considered the importance of a data layer to the lithology 

classification. An attempt was made to test the importance of a data layer to the 

classification. The method they used was to replace the value of one data layer with the 

mean value and then report the final results. In the application of neural networks on 

ecological land systems, Gong et al., (1994) also proposed a rationale for adding and 

dropping input variables in an effort to improve the convergence rate and reduce the mean 

square errors of the neural network. 

This hypothesis states that a result of better accuracy after certain data sets are 
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included is an indication of higher contribution of those data sets and a lower accuracy 

indicates a negative contribution of those data layers. Conversely, if some data layers are 

important to the classification, the classification accuracy drops when those particular data 

sets were excluded from the classification. There would not be any significant changes in 

classification accuracy for data layers that have no importance to the classification with or 

without including them in the input data sets. 

Hypothesis 2 The accuracy of classification is inversely proportional to the 

number of output classes, i.e. the classification accuracy decreases as the network tries to 

'classify more classes. 

Artificial neural networks have been widely used as a classifier in many complex 

classification tasks. In many other applications, such as handwritten zip code (le Cun, 

1989), recognition of sonar targets (Gorman, 1988) or character recognition (Bebis, 1990). 

Their early experimental results show that as the number of classes involved in a 

classification task increases, the classification accuracy of these networks decreases. We 

anticipate that this will also be the case in lithologic classification. 

This will be done by increasing the number of output classes in the classification. 

Hypothesis 3 A larger number of training samples do not guarantee a better 

classification accuracy. 

Training the network is critical to the classification. Training is often carried out 

with a training set consisting of a number of examples drawn from ground observations. 

The amount of data necessary for training a neural network has been explored by Zhuang et 

al. (1994); Heermann (1992); and Wann et al., (1990). Zhuang and Wann reported no 

significant improvement in classification with a higher percentage of training samples. 

However, Heermann suggested that the absolute size of the training set may be important. 
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Intuitively, we would think providing more examples to train the network meaning the 

network will have more knowledge to learn more about the relationship between the 

classes. Is there any relationship between classification accuracy and the size of the training 

samples? We will test this classification's dependency on training size in our study area 

with our data sets. 

This will be done by selection of different training areas from an outcrop map. 

Hypothesis 4 The optimal number of hidden nodes depends on the input data sets. 

An important but difficult problem is to determine the optimal number of hidden 

units needed to provide us with the desired outputs. The difficulty is because an increase in 

the number of the hidden units lessens the output errors for the training examples, but 

increases the errors for novel examples. Murata et al., (1994) suggested using network 

information criterion to determine the number of hidden units. In our designed experiments 

we will test the dependency of the optimal number of hidden nodes on the input data sets. 

Hypothesis 5 The dependence of classification accuracy on the training 

coefficients (i.e. learning rate and momentum factor) is less than the dependence on other 

parameters, such as the input data, the output classes, or the training sample sizes, etc. 

A number of rules to select the training coefficients (learning rate and momentum 

factor) have been reported in different application (Kung & Hwang, 1988; Higashino et al., 

1990). However, these rules have not been widely used. The selection of these coefficients 

has frequently been empirical (Rumelhart & McClelland, 1986; Watrous, 1986). Are these 

parameters equally important in producing higher classification accuracy ? Through our 

designed experiments we will gain more insight into it. 
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1.5 Summary 

This chapter has briefly reviewed the integration of remote sensing and geophysical 

data in geological mapping using neural network and found a need for a more detailed 

study on the performance of the BNN. 

The distribution of rocks or the lithologic information in any area may not be 

predicted from one single data set. The advantage of the neural network approach is that 

there is no prior knowledge about the statistical distributions of classes is needed. 

Neural network is a form of automated pattern recognition in which a set of input 

patterns is related to an output by a transformation encoded in the network weights. They 

are particularly appropriate for applications in which the relationship is unknown (i.e., we 

know what the input is and we know what the output answer should be, but we cannot 

write the mathematical equations which will get us from the input to the output). Neural 

networks provide a practical and convenient pathway to a solution. 

In a way, back-propagation networks operate similarly to linear regression in that a 

least-squares error criteria is used to determine the goodness of fit to the training data. 

Through the non-linear transfer function, back-propagation neural networks are able to 

determine complex non-linear mappings between a set of inputs and target outputs. It is this 

property which makes them especially well suited to the problem of determining lithology 

from various geophysical data and remote sensing images. 



21 

CHAPTER 2 

STUDY AREA AND DATA SOURCES 

This chapter provides a review of the geologic background of the study area, the 

sources and the characteristics of the data used in the study. It also summarizes the 

scientific knowledge of the geologic, geophysical, and the remote sensing technologies. 

2.1 Study. area 

The study area covers approximate 13 km x 13 km in Melville Peninsula, N.W.T. 

in northeastern Canada, approximately between latitudes 68° 49' N and 68° 58' N and 

longitudes 82° 33'W and 82° 50' W (Fig. 2.1). 

Canada 
b — 
bow We y 
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Fig. 2.1 Geographic location of the study area in Melville Peninsula, NorthWest Territories 
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This area was chosen for the study is because that it has little vegetation and 

relatively large areas of unweathered rock outcrop. It makes this area ideal for integration of 

remote sensing and geophysical data. 

2.1.1 Geologic setting 

The geology of Melville Peninsula consists of a highland with Precambrian 

basement gneiss rising above a lowland with flat lying Ordovician carbonate (Schau, 

1993). 

A number of lithologic units have been recognized in the area. The major lithologic 

units are: 

class 1: Precambrian gneiss; 

class 2: the Prince Albert Group (PAG) 

class 3: the Hall Lake Plutonic 

class 4: the Ordovician carbonate (Ship Point Formation). 

Prince Alberta Group is a heterogeneous sequence containing many compositions 

such as acid and metaultramafic volcanogenic rocks, clastic metasediments, iron formation 

and intrusive sills and dikes. PAG is the main target to be identified because this formation 

associated with volcanogenic massive sulfide mineral deposits (An, et al. 1994). The 

plutonic complex is the most homogeneous - consisting of a single lithology - granodiorite, 

rich in potassic feldspars. In excess of 40% of calcium in the Ordovician carbonate is toxic 

to plants and inhibits the vegetation growth thus exposing the white carbonates directly 

(Schau, 1993). 
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2.2 Multi-source data 

The data set used in the study is part of a Digital Data Atlas in the Hall Lake Area, 

Melville Peninsula, Northwest Territories (Schau et. al. 1993). The images contain 512 x 

512 pixels. They were provided and processed by the Geological Survey of Canada (GSC) 

and recorded in a digital format. They include seven channels of Landsat Thematic Mapper 

(TM), one channel of synthetic aperture radar (SAR), one channel of SPOT and different 

types of images generated from gravity, magnetic, and gamma ray spectrometry. The 

geologic outcrop map (Fig. 2.2) was provided by GSC and used as base map for training 

the network. 

The outcrop map was generated from a surficial geology map which is a thematic 

map of surficial materials of marine, alluvial, glacial, outcrop and mixed origin, on which 

the outcrop was shown as one class. This distribution of surface materials were interpreted 

from aerial photographs and ground surveys. 

TM data 

Seven channels of Landsat TM image in the study area with 8 bit radiometric 

resolution were collected on July 14, 1988 and preprocessed and geometrically registered 

to Universal Transverse Mercator (UTM) coordinate base by Geological Survey of Canada 

(GSC). The TM image is characterized by northwest trending white streaks. TM 7 image is 

shown in Fig. 2.3. Table 2.1 is a summary of the source and basic characteristics of each 

data type available for this study. 

Radar Data image 

A C-band (5.66 cm wavelength ) synthetic aperture radar (SAR) data, transmitted 

and received vertically (VV) polarized, were collected by the ERS-1 satellite on August 3, 



unit 1 - Precambrian basement gneiss 

unit 2 - volcanogenic sequence of Prince Albert Group 

unit 3 - the grandodiorite of the Hall Lake plutonic 

unit 4- the Ship-Point formatin of Ordovician carbonate 
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Data layers Spectral resolution (pm) Spatial resolution resampled pixel size 

Landsat TM 1 0.45 - 0.52 30 m x 30 m 

TM  052-060 

TM  063-069 

TM  076-090 

TM  155-175 

TM  2.08-2.35 

TM 6 10.40- 12.5" 120m x 120m 

SPOT 0.51 - 0.73 10 m x 10 m 

ERS 1 Radar- C band 5.66 cm wavelength 30 m x 30 m 

y radiometric: flight line spacing 5 Kin, 

Total exposure 

Potassium (K), 

Uranium (e U), 

Thorium (e Th), 

eU / eTh, 

eU/K, and 

eTh/K 

5000 m x 130 m 30 m x 30m 

Aeromagnetic: 800 m flight line spacing 800 m x 70 m 200 m x 200 m 

Gravity: lOkmxlOkm 200mx200m 

Table 2.1 Data sets available for the study 

1993. The original data was acquired from Radarsat International for GSC, and later was 

geometrically corrected and transformed to 30 m pixels. A low-pass 3 x 3 filtering operator 

was originally used to reduce speckle on the image. This radar image is shown in Fig. 2.3. 

Radar measured microwave backscatter which is expected to generate information of the 

dielectric properties of surface material as well as topography and the surface roughness. 

The variations in dielectric constants of rocks are too small to have a significant effect on 

backscatter and, therefore, the composition of rocks cannot be determined by a direct 

means using imaging radar. However, the roughness of the surface, manifested in the 
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weathering or jointing patterns, may be indicative of rock type in a given climatic 

environment (Daily et al., 1978). 

radar 

Fig. 2.3 TM 7 and radar image 

The Gamma ray spectrometer data image 

Different rock types have different characteristic concentrations of radioactivity; 

thus concentrations calculated from gamma ray spectrometry data can be used to help 

identify zones of consistent lithology and contacts between contrasting lithologies 

(Charbonneau et al., 1976). Gamma radiation in the energy range of interest, 1.46 to 2.62 

MeV, is strongly attenuated by most materials, including water and overburden. In areas 

with thick overburden, attenuation theoretically limits the utility of gamma ray spectrometry 

data for geological mapping since radiation may be due to transported material unrelated to 

the bedrock. Variations in elemental ratios related to lithology are difficult to detect from 

individual radio-element images because the radio-element concentrations are strongly 

correlated. 
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Gamma ray spectrometry data were collected in this area by the GSC. The airborne 

gamma ray spectrometer surveys were flown in the north-south direction at a flight line 

spacing of approximately 5 km and recorded at 130 m intervals. Gamma ray spectrometry 

provides a method for estimating uranium (U), thorium (Th), and potassium (K) 

concentrations in material near the surface of the earth. Uranium and thorium 

concentrations are determined by measurement of gamma radiation from daughter elements 

in their respective decay series. To indicate that uranium and thorium isotope concentrations 

are assumed to be in equilibrium with their decay products, the calculated concentrations 

are called equivalent uranium (eU) and equivalent thorium (eTh). The uranium and thorium 

are preceded by the symbol "e" for equivalent. 

The intensity of gamma rays in traversing matter decreases exponentially with 

distance. For practical geophysical purposes gamma radiation may be taken to be entirely 

absorbed by 1 to 2 meters of rock. 

The seven radiometric data sets are: total exposure rate, concentration of potassium 

(K), equivalent uranium eU, and equivalent thorium eTh (as shown in Fig. 2.4), and the 

ratios eU I eTh, eU / K and eTh / K. The gamma ray spectrometer data represent 

measurements of gamma ray flux. The total exposure rate represents the total exposure rate 

of gamma ray photons produced by radiometric emitters which includes potassium, 

daughter products of uranium and thorium. The potassium content is determined from the 

gamma ray photons emitted by K40 whereas uranium (eU) are measured indirectly from 

the gamma ray photons emitted by daughter product B214 and thorium (eTh) are measured 

from the gamma ray photons emitted by daughter product TI208 (Schau et al., 1993). 

The total exposure rates were recorded in micro Roentgens per hour. The Roentgen 

is the quantity of gamma radiation which produces 2.08 x i09 pairs of ions per cm3 of air 

at Normal Temperature and Pressure (NTP). The concentration of potassium (K) is 
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generally expressed as percentage, whereas the concentrations of uranium (eU) and 

thorium (eTh) are expressed in equivalent parts per million (ppm). 

The relative concentration of radioelements, corresponding to eU, eTh, and K 

concentration of radioelements, provide information on the surface cover material and often 

is related to lithological variations (Broome et al., 1987). Duval (1983) suggested that the 

ratios of concentration of radioelements suppress the variations due to soil moisture and 

those related to differences in altitude. 

Minute traces of radioactive minerals are present in all igneous and sedimentary 

rocks. There is a large difference between the radioactivity of basalts and granites. Granites 

have a remarkably high content of K 40 This fact is of great consequence because granites 

are very common rocks and the gamma radiation from their potassium produces a 

radioactive background which may make it difficult to locate uranium and thorium ores. 

Sometimes the radioactivity of potassium feldspars in pegmatite dikes may be 

misinterpreted as being due to a concentration of uranium and thorium. 

The original data were interpolated into a 500 rn grid from flight line spacing of 5 

kin, and the pixel values were then linearly stretched between 0 and 255 and read into a 

PCI image file with 30 m x 30 m resampling (Schun, 1989), as shown in Figure. 2.4. All 

these data sets were compiled, gridded, registered, and geometrically corrected to a UTM 

topographic base map by GSC. 

Aeromagnetic data image 

Rocks are made up of basic building blocks known as minerals. From a 

macroscopic point of view, most rock-forming minerals are non-magnetic. Of rock-

forming minerals, only a few minerals, such as magnetite (FeO3), limonite (FeTiO3), and 

pyrrhotite (FeS) have significant magnetic properties; magnetic rocks are those which 



29 

contain these magnetic minerals. The magnetism of a rock is made up of two components: 

the remnant magnetism (or permanent magnetism) and the induced magnetism. The 

magnetism induced in a rock is proportional to the ambient earth's magnetic field by a 

proportionality constant known as magnetic susceptibility. The total magnetism of a given 

rock is the vector sum of the remnant and induced magnetism components. Most 

sedimentary rocks are considered as non-magnetic since they contain negligible quantities 

of magnetic minerals. Most basic igneous rocks have high magnetic susceptibilities. Acid 

igneous rocks and metamorphic rocks can have highly variable susceptibilities which can 

range from negligible to extremely high. Magnetic anomalies, therefore, originated from 

either basement source or intrasedimentary volcanic sources. The magnetic susceptibility of 

a rock is proportional to the volume percent of magnetic minerals. 

The aeromagnetic data were collected approximately 300 m above the mean terrain 

surface, along flight line spacing at about 800 in, with one sample approximately every 70 

m. The data set was interpolated onto a 200 m grid and the pixel values were linearly 

stretched into 0 to 255 pixel values as shown in Fig. 2.4. 

Gravity data image 

Gravity instruments measure the earth's gravitational acceleration. After corrections 

are made to the measured gravity from the latitude and elevation at each gravity station, the 

corrected gravity differences (known as Bouguer gravity anomalies) are related to 

variations in subsurface rock densities. Gravity measurements can be used to direct ore 

reserve calculations for some massive sulfide ore bodies. 

The gravity data were collected at stations approximately 10 km apart. The original 

unit was in milligals, later were linearly stretched into 0 to 255 pixel values. The sample 

spacing of the gravity data is very coarse compared to other data. It amounts to only four 
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true readings in whole area of study as shown in Figure 2.4. 

Training patterns 

The training patterns used in this study were extracted from the geological outcrop 

map. Since the vegetation has covered some of the outcrop in the area, this geologic 

outcrop map shows areas of rock outcrop subtracted the possible vegetated areas by using a 

Landsat TM vegetation index defined as (TM4 -TM3) I (TM4 + TM3) (Chung, 1993). The 

vegetation index map was classified into one class and was visually corrected on air 

photos. 

Fig. 2.4 Geophysical data sets: gamma ray thorium, aeromagnetic and gravity 
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CHAPTER 3 

METHODOLOGY AND EXPERIMENTAL PROCEDURES 

This chapter has two distinct segments. The first details the algorithm of the back-

propagation neural network. The second outlines the experiments to be followed. The 

experimental design follows directly from the hypotheses given in Chapter one. 

3.1 Fundamentals of neural networks 

Set of processing units 

All neural networks are composed of a set of simple processing units, called nodes 

or neurodes. All processing in a neural network is carried out by these nodes (i.e. there is 

no centralized control mechanism that computes values for nodes). Processing units may 

represent a specific concept or a piece of knowledge, such as features, letters, etc. (the idea 

is that one processing unit is equal to one concept); and an indescribable part of a larger 

concept (Rumelhart, et al., ch. 2; Hinton, et al., ch. 3., in PDP, 1986). 

Neural networks are envisioned to be collections of individual processors, each 

capable of a few simple computations (multiplication, adding inputs, computing a new 

activation level, or comparing input to a threshold value) with control being completely via 

the passing of output between the processing units. The main tasks associated with a 

processing unit is to receive input from its neighbors (i.e. those processing units to which it 

is connected), compute an output, and send that output to its neighbors. Such a system is 

inherently parallel, because many processing units can be carrying out their computations at 
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the same time. 

The processing units in a neural network can be classified as one of three types: 

1. input units, which receive input from external sources, compute their activation level, 

compute their output as a function of activation level, and transmit this output to the rest 

of the network, 

2. output units, which upon receipt of input from the rest of the network, compute and 

broadcast their output to external receivers and 

3. hidden units, which only receive input from, and broadcast their computed output to, 

units within the network (i.e. no "outside" contact). 

Processing units are usually organized into layers with full or random connections 

between successive layers. A hierarchical network structure is essential. The network must 

have a minimum of three layers: an input layer, to accept patterns from the outside world, 

an output layer to present the network's responses back to the outside world, and one 

middle (or hidden) layer. 

State (level) of activation 

After the net input calculated at each unit, each unit then has an activation level a 

which is most often represented as a continuous quantity between 0 and 1 (0 for inactive, 1 

for active). The activation levels of all processing units (the input unit activation levels, the 

output unit activation levels and the activation levels of the hidden units) in a network 

represent the state of the network (Rumeihart, et. al., ch. 2 and ch. 8 in PDP, 1986). 
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Output function employed 

Each processing unit transmits its output to its neighbors. This output is determined 

from the level of activation of the processing unit, and usually with a scalar value between 

0 and 1. Associated with each processing unit is an output function f which defines how 

the output value for the processing unit is determined from its activation. Hence, for unit i 

of any layer, the relationship between the activation level (aj) and output value 01 can be 

described mathematically as follows: 

Oj = f [ail 
(3.1) 

In some neural network models, the output function, f, is unity. This means the 

output is the same as the activation function. In other neural network models, the output 

functions is a threshold function, i.e., a unit produces no output unless the activation 

exceeds some predefined level of activation (Rumeihart, et. al., 1986). 

Pattern of connectivity among the processing units 

Processing units are connected to other processing units and communicate with 

each other via these connections. There are no connections between nodes in the same 

layer. It is this pattern of connectivity and the strengths of the connections that mostly 

influences how a network will response (the various rules for activation, output, etc., will 

also affect how a network actually responds, but for a constant set of rules, the topology 

and connection strength will most affect what it computes). 

The weight of a connection, wilc, going from the unit in ith layer to a unit in the kth 

layer , can be positive, negative or zero. If Wj,k is positive, the ith unit encourages the 

activation in kth unit (represented as an arrow), if Wj,k is negative, the ith unit discourages 

the activation of kth unit and ith unit has no effect on the activation in kth unit if Wik is 
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zero. The absolute value of the weight, I Wik I , represents the strength with which the ith 

unit excites or inhibits the kth unit. 

Memories are stored or represented in a neural network in the pattern of variable 

interconnection weights among the neurodes. 

Rule of propagation employed 

As stated previously, these processing units compare their output using their output 

function and then communicate that output to their neighbors. The rule of propagation 

describes how the inputs impinging on a unit (i.e. the outputs from other processing units) 

and the strengths of the connections are combined to compute the net input, Si, to the 

processing unit. Most often, this rule is simply a weighted summation, described 

mathematically as follows for a set of N inputs: 

N 
= I Wj,kOk +b, 
k=1 

(3.2) 

where Wj,k is the weight of the interconnection from ith unit to kth unit and Ok is the output 

from kth unit in the previous layer or the input in the current layer, bi is a bias associated 

with ith unit. 

Activation function employed 

The activation function, F, defines how the net input received by a unit i is 

combined with its current level of activation to compute a new level of activation. The net 

input is typically the sum of the weighted inputs of the neurode. The activation function 

which is continuous and bounded is usually expressed mathematically as follows: 

a i-new = F[a i-old, Si] (3.3) 
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However, in simple network the activation function is equated to the value of the 

net input arriving at the processing unit i: 

ajnew = S (3.4) 

and is-true for all feed-forward networks. Fig 3.1 shows a typical unit. The computation of 

a processing unit is split into two components. First, is a linear component that computes 

the weighted sum of the unit's values. Second, is a nonlinear component activation 

function, f, that transforms the weighted sum into the final value that serves as the unit's 

activation value, aj. Usually, all units in a network use the same activation function. 

Fig. 3.1 A simple processing unit 

The input, activation, and output functions of a neurode in a back-propagation network can 

usually be combined into one function, the transfer function. From eqns (3.1), (3.2), and 

(3.4) we know that the output is an explicit function of the input: 

N 
O1=f(SO =f( E Wj,kOk +b) 

k=1 

(3.5) 

where Ok are all the input nodes (the outputs from previous layer) to node i. For the 

purpose of simplification, bj is often set to 0. 
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Rule of learning employed 

The learning rule defines how the network is modified in response to experience 

(i.e. training cases presented to the system). There are three ways that the network could be 

modified: 

1) Modify the strength of the existing connections between processing units; 

2) Develop new connections between the processing units; and 

3) Remove existing connections between the processing units; 

The second and the third types of network can be considered as special cases of the 

first. The most common forms of learning rules are Hebbian learning and the delta rule. 

3.1.1 Back-propagation neural network algorithm 

The back-propagation neural network (BNN) algorithm requires a pre-determined 

pattern for the output layer of the network. It also requires a single set of weights and 

biases that will satisfy all the input-output sets of combinations presented to it. The input is 

a set of observations and the outputs are the desired class membership values d={di, 

d2,..., dk}. The process of obtaining the weights and bias is network learning, which is 

essentially the same as supervised training. During network training, the elements in a set 

of observations X={xi, x2, ..., xk) correspond to the nodes in the input layer. When the 

input (or the observation) X is fed into the network, the network will adjust the weights 

according to the designed learning rule such that the desired outputs can be obtained. Once 

this adjustment been achieved, another pair of input-output is presented and the network is 

to learn that association again. 

The algorithm of BNN aims at minimizing the average sum-squared error between 
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the network output and the desired output. This algorithm allows the problem of 

representing information by path weights to be reformulated into a problem of minimizing 

an error function. Both the ADALINE and the Perceptron use a binary (1, -1) transfer 

function. However, BNN uses a sigmoid function as a transfer function. In the beginning 

of training, random initial values are assigned to all the connection weights. The perceptron 

adjusts its weights according the difference between the target and the actual output. The 

learning rule of the back-propagation networks is the Generalized Delta Rule, which is a 

generalized form of the LMS (Least Mean Square) rule. The distinguishing feature between 

Delta Rule and the Generalized Delta Rule is that the error is used to affect not just one set 

of weights (input-to-output, as with the ADALINE), but two sets of weights (input-to-

hidden, and hidden-to-output). 

The Generalized Delta Rule uses the chain rule from differential calculus to calculate 

the way in which these weights (and thresholds) depend on each other. This is typically 

done in two stages. First, starting at the output layer, the network adjusts the weights 

between the hidden and output layers. In the second stage, the connection weights between 

the input and the hidden layers are adjusted. The back-propagation method uses the 

adjustments and values to the hidden-to-output weights to help determine the changes made 

to the input-to-hidden weights. 

To obtain an average sum-squared error, we sum the errors over all neurodes. The 

error E for each input pattern p is defined as the sum of the squared error at each of the 

outputs: 

Ep(dp —O,)2 

and the total error E is the sum over all input patterns 

(3.6) 
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' ( . (dp,z -°)2) (3.6.1) 

where 

z -- is the index that ranges over all output nodes 

p is the index that ranges over all input patterns 

is the desired output for input pattern p at the ith node 

is the actual output for input pattern p at the ith node. 

Since the output Oj is a function of net inputs Sj, Eqns. (3.1) and (3,4), 4nd Sj is a 

function of the weights, therefore the error Ep is function of the weights. We would drop 

the subscript of p to indicate E as any one particular input pattern. The usual gradient 

descent algorithm suggests changing each Wij by an amount 4W,1 proportional to 

i.e. 

4W,3 = —11aE/aW (3.7) 

By employing the gradient descent method, we can calculate the partial derivative of E with 

respect to each weight and then add up the partial derivative of E for each input sample. For 

each input sample, we want to find an efficient way to compute (the partial derivative 
dWij 

of E with respect to where the weight, W j, is a weight connecting the ith layer of 

nodes to the jth layer of nodes. The effect of W,1 on error E, is expressed through the 

intermediate variable, Oj, the output 0fth node as 

9E ao - dOj dE 

awif - dof dW, - dW,3 d03 
(3.8) 
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O is determined by adding up all inputs to node j and passing the result through a threshold 

function. Hence, 

Oj= f(S9 = f (IOjWjj) 

therefore, 

dO3 = df(S) dS = df(S1) 

aw dS aw ds oi 

Substituting this result back into eqn (3.8), we get the following key equation 

dE  0. df(S)dE 
aWjj - dS ao 

Note 

derivative, 

that the partial derivative, dE 

(3.9) 

(3.10) 

can be expressed in terms of the partial 

in the next layer closer to the output layer, so that 
dOf; 

dE dE d0j, dOk dE 
= E-. -I-

d0 k dOk d°i k dO d0k 
(3.11) 

where Ok is again determined by adding up all the input node k and passing the result 

through a threshold function. since 5k = Oj Wik, hence, 
J 

dOkdf(Sk) dSk jW  df(Sk)  
dOf - dSk °j jk dSk 

(3.12) 

dE 
Substituting this result back into the equation for -a-, yields the following, additional 

key equation: 

dE df(Sk) dE 
-= Wjk dSk dOk 

(3.13) 
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In summary, the two key Eqns (3.10) and (3.13) have two important consequences: 

first, the partial derivative of system error E with respect to a weight depends on the partial 

derivative of E with respect to the following output; and second, the partial derivative of E 

with respect to the output depends on the partial derivatives of E with respect to the outputs 

in the-next layer. From these results we can conclude that the partial derivative of E with 

respect to any weight in the ith layer must be given in terms of computations already 

required on layer to the right in the jth layer. 

The partial derivative of E with respect to each output in the final layer is derived from 

(3.6): 

(3.14) 
dOj 

So far, the derivative of the threshold function f is not calculated. If we choose a 

sigmoid function for the threshold function: 

f(S)= 1 (3.15) 
1+e 

the derivative df(S) is the slope of this function 
dS 

df(S) d  1  
( 

dS dS 1+e 

=(1+e -S. )2e=f(Sj) (1-f(Sj)) 

=Oj(l-Oj) (3.16) 

Usually, the derivative is expressed in terms of each node's output Oj = f (Si), rather 

than the sum of the inputs Sj. 
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Now Eqn. (3.7) can be written as follows: 

for the nodes in the output layer: aE-= (d —°) 

for the nodes in the hidden layer dE dE --=1 Wjk Ok(l - Ok) 
Ok 

Once we compute the weight changes for each input sample combination, then we have 

to add up the weight changes suggested by individual input pattern combinations. Then we 

can make changes to the weights. The weight changes should depend on the learning 

rate, 17 , that should be as large as possible to encourage rapid learning, but not so large as 

to cause changes to output values that considerably overshoot the desired values. 

The above back-propagation equations are incorporated into the following back-

propagation procedures. To train a network by the back-propagation rule the procedures 

are: 

1. select a learning rate 17 

2. initialize weights Wj with random values. For each sample input, compute the result 

output using 

Oj =f(S) = f(O1W), 

where Oj are all the input nodes to node j. 

3. compute dE—for  nodes in the output layer using 
aOj 
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dE 
- (d —Oz) 

4. compute ---- for all other nodes using 
ciO 

WJk Ok(1—Ok)-dE 
k dOk 

5. compute weight changes for all weights using 

AWjj =-r, 
dOj 

6. add up the weight changes for all sample inputs, and change the weights. 

For back-propagation network, we must choose a sigmoid function for f. A more 

general form of the sigmoid function such as 

f(S) - 1  
1+ e °'°° 

(3.15.1) 

which is continuous and differentiable (an important property for use in back-propagation 

learning), is used to maintain the value of activation for a processing unit within the bounds 

of 0 and 1. Here ) is a gain parameter, which is often set to 1. The parameter 0 serves as 

a threshold or bias. The effect of a positive 0 is to shift the activation function to the right 

along the horizontal axis. Some nodes may be easily activated to generate a high output 

value when e0is small and 0 is low. On the contrary, when 9 is large, a node will have a 

slower response to the net input Si. These effects are illustrated in Fig. 3.2. 

The minimization technique stated above is called gradient search, an iterative 

technique which involves a random set of weight values, evaluating the outputs in feed 

forward manner and propagate the "errors" backward to previous layers. The development 
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of the back propagation algorithm provided a mathematical means for presenting the 

appropriate synaptic strength. Each input to the network is multiplied by the connection 

weights connecting it to processing elements in the hidden layer. A sum of these products 

is taken and passed through a non-linear transfer function such as a sigmoid function that 

compresses a wide domain of inputs to a limited range of outputs. The output of this 

sigmôid function is passed to the output layer where it is multiplied by the connection 

weights between the hidden layer and the output layer, and again a sum of products is taken 

to generate the output for the network. 

f(%) 

1.0 

06 

0.6 

0.4 

0.2 

0.0 

2 

small °0 

'large 00 

.1 0 

f(Si) = 1  
1+ e0'5' —Gj)/Oo 

2 Si 

Fig. 3.2 The sigmoidal activation function, with modification of bias and shape 

Rumeihart, Hinton, and Williams (1986) suggest the addition of a momentum term 

to modify the adjustment of weights in order to keep the change in weight 4Wu at the 

(n+1)th iteration similar to the change undertaken at the nth iteration. That is: 

4W2y (n+1) AW+a.1 Ii W(n) (3.19) 

where a is a momentum factor that can take on values between 0 and 1. The parameter a. 

can be called a smoothing factor since it smoothes the rapid changes of the weights. The 
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changes in weight, 4 Wu(n+1), is used to indicate the weight change at the (n+1)th 

iteration, and 4W1(n) indicates the weight change at nth iteration. 

3.1.2 Network operations 

The neural network operations can be conceptualized as two separate operations: 

layer operations or the normalization and network operations which includes the training 

and recalling. 

3.1.2.1 Normalization 

For a back-propagation neural network, each input can take on any value between 

zero and one. That is, the input pixel values are continuous and normalized between the 

values of zero and one. The input nodes simply distribute the signal along multiple paths to 

the nodes in the hidden layers. The output of each input of each input layer is exactly equal 

to the normalized input and is in the range of 0 to 1. 

The resolution used for each channel was eight bits (i.e. intensities in the range 

[0,2551). Then the input data normalized to the range of [0, 11. This normalization is 

achieved by finding the maximum and minimum in each channel and applying the 

following linear transformation to the original data: 

new data value = 
original  data - minimum value 

maximum value - minimum value 

The BNN neural network algorithm was adapted from Pao (1989). 

3.1.2.2 Software 

This study employs neural network software implemented on the Sun Workstation 

in the remote sensing lab, at the Department of Geomatics Engineering. It was supplied by 

PCI Inc as part of their EASI/PACE image processing software. This software consists of 
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three programs: nncreat, nntrain and nnclass. These programs are used respectively for 

creating and building the synaptic network, training the network, and classification by the 

network. The programs can handle up to 16 input image channels. 

3.2 Experiments to test the hypotheses 

In geological mapping, each rock unit (or class) represents meaningful information 

about the depositional environment. Even with a small population one particular class may 

be more important than others if it is an indicator of certain mineral deposits. The 

population of classes is not a concern in lithology mapping. However, in the classification 

of land-cover or land-use, the small areas are usually neglected. 

The experiments for this study follows from the hypotheses laid down in Chapter 

1. The experiments are based on various sets of data input, architecture network and 

training coefficients. In this study, more emphasis will be placed on the classification 

accuracy of the individual classes since some classes may be more important than others. 

The process of classification (i.e. with increase of iteration number) is also what we will 

focus on. 

These experiments were intended to reconstruct the lithologic map over the entire 

area from the available remote sensing data and airborne geophysical data. The training 

sample sets were extracted from the geologic outcrop map in the area. Six lithologic classes 

were identified in the area. The more important classes are: 

class 1 - PreCambrian gneiss, 

class 2- PAG (Prince Albert Group), 

class 3 - Hall Lake plutonic, and 
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class 4- SPF ( Ship Point Formation) 

Among these classes, class 2 (PAG) is the most important class since it is 

associated with the massive sulfide mineral deposit in the area (An. et al., 1994). 

3.2.1-- Training the network 

The performance of a feed forward BNN classifier and its convergence rate are 

affected by several variables. The following are a list and explanations of these input 

variables and training coefficients used in the experiments to test the hypotheses. 

Input variables 

The number of layers in the network (or the number of hidden layers). 

• The number of input nodes for classification: Usually the number of input nodes will 

equal the number of input data sets (or channels). 

• The number of output nodes: The number of nodes in the output layer will equal the 

number of classified output classes. 

• The number of nodes in the hidden layer: The hidden layer forms an ii-dimensional space 

where n is the number of nodes in the hidden layer. The hidden layer allows the network 

to form its own internal representation of the data. The internal representation is the 

foundation on which the decision boundaries are formed (Rumelhart et al.,, 1986) With 

too few hidden nodes, the network may not contain sufficient degrees of freedom to form 

a representation. The learning algorithm, since it is based on a heuristic, may also 

improperly train hidden nodes. With too many hidden nodes, the computation is 

expensive and may lose the generalization ability of the network. Therefore, a balance 

must be drawn. 
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The size of the training samples: The amount of data used for training a neural network 

affects the accuracy and efficiency of the neural network classifier. Determining the 

number of training samples required for a satisfactory classification can be difficult. If 

the training samples is insufficient, the training set may not contain enough information 

for -the neural network to find an optimal classification rule to correctly classify the 

unknown data. However, if the number of training samples is too large, it becomes too 

difficult to train the neural network. 

• Momentum factor a: The momentum factor ranges from 0 to 1 and usually takes on 

values between 0.5 and 0.9. A large a speeds up the training. 

• The learning rate fl: The learning rate is very critical for a successful training, if it is too 
large, the networks will oscillate and will not converge. If 1 is too small, the network 

might learn very slowly or might not converge. In many examples in the literature, the 

reported range of 11 's that successfully produce rapid training is fairly small (Rumeihart 

& McClelland, 1986). Techniques that adaptively adjust fl as the network trains have 

been developed to increase convergence speed (Jacobs, 1988 and others), but they have 

not found widespread use. 

• The iteration number n: Each iteration consists of a forward pass, in which the nodes 

(processing units) compute their activation value, starting at the input layer, and 

propagate them forward to the next layer, and a backward pass, in which error signals are 

propagated backward through the network, starting at the output layer, and weights are 

changed to reduce the difference between the desired (target) output and the current 

output. 

3.3 Experimental design 

Several experiments are designed to gain insight into the network operation to 
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examine the multiple dependencies of the accuracy on training parameters, input channels 

and output classes. Classification commonly display significantly different accuracy levels 

among classes being differentiated. These differences may be due to variable strength of 

relationship between class memberships and spectral response characteristics, varying level 

of scene complexity. In all the experiments, only three layers (i.e. a single hidden layer) 

were used. 

Each experiment is described separately in the following: 

Experiment set I To test hypothesis 1 - classification accuracy may be maximized by 

choosing an optimal combination of input data sets (nodes). In order to examine whether 

the amount of information inherent in the available data have contributed to the lithologic 

classification, we will make the input data channels as the variable in the training and keep 

the other parameters constant. The number of nodes in the input layer equates to the 

number of input data channels. 

The sets of data inputs selected are listed below: 

1. 15 channels - TM 1 to TM 7, SPOT, radar, gravity, magnetic, and total exposure, K, 

eU, and eTh 

2. 10 channels - TM 5, 6, 7, radar, gravity, magnetic, total exposure, K, eU, and eTh. 

3. 7 channels - TM 7, gravity, magnetic, total exposure, K, eU, & eTh 

4. 15 channels - TM 5, 6, 7, radar, SPOT, gravity, magnetic, TT, K, eU, eTh, eU / eTh, 

eTh / K, eU / K and mag / rad 

The network parameters are kept constant as follows: momentum factor a =0.9, 



49 

learning rate Ti = 0.01, the number of hidden nodes is 30. 

In these experiments, four output classes of the network are the four lithologic 

units: unit 1 - Precambrian gneiss; unit 2 - Prince Albert Group; unit 3- Hall Lake Plutonic; 

and unit 4 - Ordovician carbonate. Since more diagnostic spectral information about the 

compOsition of minerals and rocks were provided in the short-wavelength infrared region 

than the visible and near-infrared regions (Goetz, 1981), we suspect the importance of TM 

1, 2, 3, and 4 in aiding the detection of lithology. We showed two sets of the same number 

of input data sets (15 channels), one (network #1) with TM 1, 2, 3, and 4 as input data 

sets, another one (network # 4) without TM 1 to TM 4. We expect to obtain a better 

classification accuracy results with network #4 when comparing with the results from 

network # 1. We will also compare the results from another networks (#3 and #2): 10 

and 7 channels (without TM 5, 6, and radar) of input data as stated above. We expect to 

obtain little difference in classification accuracies from these two networks. 

Experiment set II To test hypothesis 2: the classification accuracy decreases as the 

network tries to classify more classes. Since we want to classify the lithology, the output 

classes will be the lithologic units from the outcrop map. The output nodes are determined 

by the number of lithology units to be classified. Two experiments are trained and tested 

with four and six lithological classes respectively. The additional classes are indicated as 

unit 5 and unit 6 in the geological outcrop map. We expect to obtain a less accurate 

classification result with six output classes than the four output classes. 

Experiment set III To test hypothesis 3: a larger number of training samples do not 

guarantee a better classification accuracy. The selection of training samples from geologic 

outcrop map entails picking many small subsets of the image representing examples of 

desired classification. Each class contains multiple small regions from the overall image. 

The small regions were selected to incorporate variations in the data within a given class 



50 

such that each training pixel is unique and all pixels contain new information to the network 

to learn. The training samples available for each class reflect the intrinsic variability of the 

class. 

The number of pixels and the percentage of training samples of each individual 

classes, are shown in the Table 3.1. 

Class 1 

gneiss 

Class 2 

PAG 

Class 3 

plutonic 

Class 4 

SPF 

Total 

Outcrop map 354 5837 9203 2232 17626 

(2%;_ ) 
17626 (33.1%) (52.2%) (12.7%) (100%) 

Training 107 882 1240 805 3034 

#1 (15%) (13%) (36%) 
3034 

(17%; ) (30%;) 
354 17626 

Training 39 675 571 226 1511 

#2 (11%;.I) (12%) (6%) (10%) 
1511 

(9% 
17626 

Table 3.1 Number and percentage of training samples in the experiments 

A neural network is trained separately with 9 and 17 percent of the image data, that 

is a total of 1511 pixels (approximately 9 % of 17626 outcrop pixels) and a total of 3034 

pixels (approximately 17% of 17626 outcrop pixels) of samples from outcrop map were 

used in training the network. Training set #2 has more training samples for class 2 (675 

samples ) than class 3 (only 571 samples) although class 3 covers almost twice the area as 
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class 2 (9203 pixels vs 5837 pixels). We would not expect the classification accuracy from 

training # 1 is better than the result from training #2. 

Experiment set I\ The following experiments are designed to test hypothesis 4: 

the optimal number of hidden nodes depends on the input data sets. The variables are the 

number of hidden nodes and various number of input layers as shown in table 3.2. 

Number of 

input layers 

Variable (parameter) 

1 15 Number of hidden nodes :10, 20, 30, 40, 50 

2 10 Number of hidden nodes :10, 20, 30, 40, 50 

3 7 Number of hidden nodes :10, 20, 30, 40, 50 

Table 3.2 Variables in the fourth set of experiments 

where 

15 channels includes: TM 5, 6, 7, radar, SPOT, gravity, magnetic, TI', K, eU, eTh, 

eU/eTh, eTh / K, eU I K and mag I rad, 

10 channels includes: TM 5,6,7, radar, gravity, magnetic, total exposure, K, eU, and eTh, 

7 channels includes: TM 7, gravity, magnetic, total exposure, K, eU, & eTh. 

As stated in the Chapter 1, there is a phenomenon called "over-fitting" which 

occurred when the output errors for the training examples is lessened but the errors for 

novel examples increase. For instance, suppose that we have two networks, one which has 
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ten hidden nodes and another which has one hundred hidden nodes. After enough training 

with a thousand examples, the large network, which has a hundred hidden units, may 

produce better outputs for the training examples than the small one, but it may emit worse 

outputs for inexperienced inputs. Generating accurate outputs for known inputs competes 

against predicting accurate outputs for unknown inputs. The other disadvantage of more 

hidden nodes is longer training time for the network. 

We expect that the optimal number of hidden nodes depends on the input data sets. 

We also expect the optimal number of hidden nodes is higher if using more input data 

layers. 

Experiment set V To test the hypothesis 5: the dependence of classification accuracy 

on the training coefficients (learning rate and momentum factor) is less than the dependence 

on other parameters, such as the input data, the output classes, or the training sample sizes, 

etc.. We will compare the classification results when the only variable is momentum factor 

or the only variable is the learning rate as shown in Table 3.3. We expect that the variation 

in classification accuracy among various momentum factors is less than the accuracy 

variations in all previous experiments. We expect the same with various learning rates. 

Input 

channels 

Variables 

1 10 Momentum factors a : 0.9, 0.8, 0.7, 0.6, 0.5 

2 10 Learning rate 1: 0.01, 0.005, 0.001 , 0.0005 

Table 3.3 Variables in the fifth set of experiments 
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Figure 3.3 is the schematic diagram of an back-propagation neural network used to predict 

lithology. 

hidden layer 

input layer 

gravity 

TM  
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Information flow 

node 

output layerS 
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class 2: PAG 

class 3: Plutonic 

class 4: SPF 

Figure 3.3. The schematic diagram of a back-propagation neural network used to predict 

lithology. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter presents the results and interpretation of the experiments. In order to 

evaluate the true classification accuracy, the testing area is the whole area excluding the 

training area, and the classification results are plotted against the iteration number at 100 

iteration intervals. 

Accuracy evaluation of the classification results are based on the total percent 

correct, both for all the classes and for individual class. There are two ways to calculate the 

accuracy for all classes: average accuracy and overall accuracy. The average accuracy is the 

mean value of all the individual accuracy and the overall accuracy is the average value of all 

individual accuracy times the number of total number of pixels of that individual class. 

4.1 Experimental results and discussion 

In all experiments, class 1 (gneiss) which accounts for 2 % of total pixels (354 of 

17626) was always classified with 100 % accuracy. This can be explained by its gross 

radiometric signature: the granitic I gneissic units are moderately to highly radioactive. 

Experiment I To test hypothesis 1 - classification accuracy may be maximized by 

choosing an optimal combination of input data channels. 

Results Four different combinations of input data sets (10 channels, 7 channels, 

and two different combinations of 15 channels) were used in the classification. The results 
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are shown in Fig. 4.1 ( for class 2 and 3), Fig. 4.2 ( for class 4) and Fig. 4.3. ( for 

average and overall accuracy). 

Discussion As we expected, the network #4 (without TM 1, 2, 3, and 4 as input data 

sets) produced the highest average and overall classification accuracies, and highest 

accuracy for class 2 and 3, with exception for class 4. The network (#1) which includes all 

TM channels as its input data channels produced less accurate classification results than 

those results from networks (#2 and #3) with 10 or 7 input layers. 

The exceptional high accuracy for class 4 (when using all TM channels as input 

sets) is because the high concentration of calcium in the Ship Point Formation inhibited the 

vegetation growth therefore they are easily detected from TM images. Figures 4.1, 4.2 and 

Fig. 4.3 clearly show that geophysical data sets contain more lithologic information the 

network needed in the classification. Because the spectral features of most rock types and 

derived soils are not very distinctive in the visible and near-infrared wavelength region, 

explains why the inclusion of TM 1 to TM 4 has little contribution to the classification 

accuracy. It also indicates that indiscriminately increasing the number of input data sets may 

produce less accurate results. The number of input data layer is not the factor that produces 

higher classification results, but more relevant input data would aid the improvement in 

classification accuracy. The input data sets should contain information relevant to the rock 

lithology to significantly affect the classification accuracy. The average and overall 

accuracies of network #3 and #2 are very close just as we expected. 

Our experiments support hypothesis 1. F. 
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Fig. 4.1 Comparison of accuracy results for class 2 and class 3 with four sets of input data. 
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Fig. 4.2. Comparison of accuracy results for class 4 with four sets of input data. 
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Fig. 4.3. Comparison of average and overall accuracy results with four sets of input data. 
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Experiment II To test hypothesis 2 - the accuracy of classification decreases as 

more classes being classified. The neural network of the first experiment classifies only 

four rock units, and the second neural network has six output rock units with four units in 

common. 

Results The classification results of the four common classes for both experiments 

are plotted against the number of iterations as shown in Fig. 4.4 and Fig. 4.5. 

Discussion As we expected, there is an overall decrease in accuracy for the second 

network (six output classes). The greatest decrease in accuracy is in class 2 (13 %), and a 

9% decrease for class 4, with an exception of class 3 (an increase of 2 %). Generally 

speaking, the results show that the average and overall classification accuracy decrease as 

the number of output classes increases, but it is not always true for every individual class. 

Experiment III To test hypothesis 3 - a larger number (or the size) of training 

samples does not guarantee a better classification accuracy. In our experiments we used 

two sets of training samples as summarized in the Table 3.1 in Chapter three. 

Results When training with smaller samples (training #2, with training samples 9 % 

of total pixels), the classification accuracy of class 2 and class 4 unexpectedly increased 4 

% and 11%, respectively. However, the classification accuracy for class 3 decreased 

almost 20 % (Fig. 4.6). About 2 % greater for the average accuracy and 9 % for overall 

accuracy when training with larger sample size (training #1) (Fig. 4.7). 

Discussion From Table 3.1 we noticed that the population is unbalanced among the 

classes. Class 3 accounts for 52% of the total pixels (9203 of 17626), class 2 (5837 

pixels) accounts for 33% and class 4 (2232 pixels) accounts for 13 % of the total 

population. Class 1 is very small, only 2 %, but the classification remains at 100% 
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Fig. 4.5. Comparison of average and overall accuracy for different output classes 
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accuracy. When comparing the classification accuracy among the classes, the average and 

overall accuracy tend to get better with larger training samples (training #1, 17% training 

samples). However, the accuracy of each individual class does not behave in the same 

fashion. If we count only the total number of training samples then the result of average 

and overall classification accuracy contradict the hypothesis. If we look at each individual 

class, hypothesis 3 is true, that is the larger number of training samples does not guarantee 

a better classification accuracy. 

Because a complicated class might involve a wider range of input data, intuitively, a 

greater variety of training samples would needed for a complicated class. In this study, the 

second unit, PACi, contains rocks with very different spectral and geophysical properties 

and involves more complicated input pattern. While the third unit, Hall Lake Plutonic, has 

relatively consistent geophysical and spectral properties and thus involves relatively 

consistent input data. As a result, the training #2, which has 675 samples (12 %) of unit 2, 

571 samples (6%) of unit 3 and 226 samples (10%) of unit 4, produced an improvement in 

classification accuracy for class 2. Although the third class - HLP covers an area about 

twice as large as the PAG, if we choose greater variety of training samples of unit 2 (675 

samples) than unit 3 (571 samples) we would get a better classification accuracy for unit 2. 

Class 1 

(354) 

Class 2 

(5837) 

Class 3 

(9203) 

Class 4 

(2232) 

Total 

(17626) 

Training #1 107(0.6%) 882( 5%) 1240(7%) 805 (4.5%) 3034(17%) 

Training #2 39 (0.2%) 675(4%) 571(3.1%) 226(1.3%) 1511 (8.6%) 

Table 4.1 Percentage of training samples for each individual class. 
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Table 4.1 summarizes the percentage of each individual class in terms of total pixels 

(17626). 

Training #1 has 7 % training samples of class 3 which covers more than half of the 

total area, however, training #2 only has 3 % training samples of class 3. This explains 

why the average and the overall classification accuracy for training # 1 is better - because 

the overall training samples is larger in training #1. It also explains why the class 2 

classification accuracy of training #2 is better because the training samples for class 2 is 

larger in training #2. 

It is the relative percentage of training samples between the classes which affects the 

individual classification accuracy not the number of the total training samples which 

influence the individual classification accuracy. From this experimental result we would 

conclude that if we want to increase the classification accuracy of certain class we should 

provide greater variety of training samples from that particular class. 

Experiment IV To test hypothesis 4- the optimal number of hidden nodes depends 

on the input data sets. As described in the previous chapter, four sets of experiments have 

been executed to test the hypothesis. 

Results Fig. 4.8 to Fig. 4.11 present the classification result for two networks with 

different sets of input channels. The variable is the number of hidden nodes. The 

classification accuracy curve for different momentum factors are plotted in Figs. 4.8 and 

4.9. The classification accuracy curve for different learning rates are plotted in Figs. 4.10 

and 4.11. 

Discussion As we expected, the optimal number of hidden nodes is dependent on the 

input data layers as shown in Figs. 4.8 to 4.11 and the classification accuracy has a larger 



66 

100 

input layers: 10 
variable: no. of hidden nodes 

input layers: 15 
variable: no. of hidden nodes 

95 -  90- 
I ::= 

80- 

75 

class 2 -pag 

II • •..• •.. 

' S-- 

ri •... .,.S . •, : 
S • 

-S. 

class 2 -pag 

---------------------
I 
I 
I 

I. 

I . 
I. • 

I I 
0 0 0 

0 0 
SI, 

o 0 CO o o o 
o si, 0 Sn 
— -. c4. c-i 

no. of iterations 

I I I I 
0 0 0 0 
0 0 0 0 
Sn 2 

no. of iterations 

no. of hidden nodes 20 

30 

40 

50 

Fig. 4.8. Comparison of classification results for class 2 when using two sets of input data 

(10 and 15 channels) and the number of hidden nodes are varied. 



67 

Cz I 

input layers: 10 
variable: no. of hidden nodes 

input layers: 15 
variable: no. of hidden nodes 

100 

95 -

90-

85 -

so-

75 

class 3 - plutoninC 

,.,-. 

I .o 
I, 

:: •....... 

I I I I 
0 0 
0 0 

v -I 0 

no. of iterations 

I 

00 
0 
in 
c-a 

class 3 - plutonic 

, ........ . ....... 

I:, •1 

0 
0 
v-I 

no. of iterations 

no. of hidden nodes 20 

30 

40 

50 

0 
0 

Fig. 4.9. Comparison of classification accuracy for class 3 when using two sets of input 

data (10 and 15 channels) and the number of hidden nodes are varied. 



68 

100.05  

95.05-

90.05 -

85.05 -

80.05 -

75.05 

input layers: 10 
variable: no. of hidden nodes 

input layers: 15 
variable: no. of hidden nodes 

class 4 - spf 

It'........ 

I 

I - 

0 
I I I 

0 0 
0 0 
Ir  kn 

no. of iterations 

t 'S 

S. 

S ..- . 

S 

class 4 - spf 

 I 

tn 

in o o o o 
0 0 

no. of iterations 

no. of hidden nodes 20 

30 

40 



69 

100 

95 

90 

85 

- y41iIhle: learning rate 
input channels: 10 

variable: learning rate 
input channels: 10 

80 

75 
C 

average accuracy 

CO 
C 
I'-' 

C 
C 
C 

no. of iterations 
no. of iterations 

overall accuracy 

- ..r:... 

$ I 

I' 
; ,J 
I, 

0.0005 

  0.001 

  0.005 

0.01 

Fig. 4.11. Comparison of average and overall accuracies when training with 
different learning rates. 



70 

variation among various number of hidden nodes for the network with 15 input channels 

than the network with 10 channels (also true for 7 channels). For the network of 15 input 

layers, 40 hidden nodes produced the best accuracy, and with 10 input layers, 50 hidden 

nodes seems to be the optimal number of hidden nodes. Unfortunately, the rule of thumb 

of twice the number of input data sets being the optimal number of hidden nodes (Gong, in 

press) seems not suitable in this study. The optimal number of hidden nodes in this study is 

in the range of three or four times of the number of input data channels. 

Experiment V The dependence of accuracy on the training coefficients (learning 

rate and momentum factor) is less than the dependence on other parameters, such as the 

input data, the output classes, or the training sample sizes, etc. 

Results Fig. 4.12 shows the classification accuracy at various learning rates and 

Fig. 4.13 shows the classification accuracies at various momentum rates. The learning rate 

has similar performance as the momentum factor: the larger the learning rate, or the larger 

the momentum rate, the faster the network reaches its maximum classification accuracy. 

The momentum factor as a function of iteration number (N) at two different learning rates 

TI (0.01 and 0.005) are plotted in Fig. 4.14. The relationship of learning rate as a function 

of iteration at two different momentum factors is shown in Fig. 4.15. 

Discussion As we expected, the variation among the various momentum rates is about 

1% for both average and overall accuracy. It has the least variation among all the 

experiments. The momentum rate affects the learning speed and the convergence rate. As 

the momentum factor increases, the number of iterations necessary to be less than the fixed 

error decreases. The relationship between the momentum factor and the iteration is 

approximately linear. The effect of learning rate TI is to change the slope but not the 

intercept. Hence, a "slow" learning neural network will require more iterations to achieve 

the same error ( was set at 0.035) than a "fast" learning neural network. In order to evaluate 
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training sample set and with the testing sample vs. the iteration number, as shown in figure 

4.16. 

Accuracy of testing area 
vs 

Accuracy of training area 

105 

100-

95 — 

85-

80-

75 

(2) training 
•,cw.re.. - — - . r da -7t___ - 

(3) 

\.. 2 

I! average 

it' • C . 

: . .• 

C 
I I I 
o o o 
CO 

C to 

- 

no. of iterations 

  class2 

(c1ass2 -training) 

class3 

(c1ass3-training) 

average 

(average -training) 

Fig.4. 16. Comparison of classification accuracies of training set and testing set. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

5.1 Summary 

This study has analyzed the performance of various neural networks in lithologic 

classification by increasing the number of iterations. Our approach gives us insights to 

better understand the various dependencies of classification accuracy on different training 

parameters. All classifiers considered in this study are of "supervised" type. We used the 

same training set (except in the second set of experiments) and assessed the performances 

of various networks on the same test set. 

5. 1.1 Summary of the findings 

In order to use neural networks for pixel classification, the values of the spectral 

channels have to be mapped into a set of input neurons. This is the so called "data 

representation" or "input coding". Different coding techniques have been proposed in the 

literature (Bischof, 1992). We have adopted the simplest one: one input neuron per input 

channel. The following are the findings: 

Finding 1 The selection of input data sets has a significant effect on classification 

accuracy. The classification results are sensitive to the choice of input channels. 

Back-propagation is easily modified to accommodate more channels or to include 

spatial and temporal information. The input layer can simply be expanded to accept the 
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additional data. Expansion of the input greatly increases the computation (on the order of 

N2), if the size of the input is doubled, the required computations will be four times as 

great. Therefore, new channels of information should not be added indiscriminately. 

Finding 2 The objective of the network seems to aim at the improvement of the overall 

and the average accuracy rates. 

After a certain number (1000 to 1500) of iterations, the network reaches its best 

classification results. More iterations do not always improve the accuracy rate. Generally 

speaking, the overall and the average accuracy of classification get better, however, at the 

expense of some individual classification accuracies. 

Finding 3 An improvement of classification accuracy in the training set does not imply 

an improvement in classification accuracy of the testing set 

This is so called "over-fitting". A good network architecture should increase both 

the classification accuracies of the training set and the testing set as the learning proceeds. 

In our study, the classification accuracy achieved by the network classifiers were nearly 

100% for the training set for all classes. The training error, which was defined as the 

number of misclassified samples in the training data, was reduced very quickly when the 

number of iterations was less than 300. 

Finding 4 There is no general criteria for designing a suitable network architecture. 

Some prior knowledge about the input data sets and their relevance with the output classes 

would aid the choice of the input layers. 

Finding 5 The variance in the individual classification accuracy was found to be 

significant which has lead to some criteria on the selection of the parameters. For lithologic 

mapping the network should be structured in accordance with the importance of each 
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individual classes. In this study area, the class 2 is of higher concern. 

5.2 Conclusions 

Lithologic units are rarely homogeneous, and are masked by various amounts of 

soil, vqgetation, colluvium, organic debris and transported surficial materials, which mask 

and alter the spectral characteristics of the underlying rocks. Soil cover and other surficial 

deposits can greatly affect the spectral appearance of the ground and can mask structural 

features and other indicators useful for lithologic identification. By far the most significant 

problem in dealing with surficial materials is caused by the phenomenon of material 

transport. Water, ice , and wind are active transporting agents, capable of moving objects 

and materials of all sizes for great distances. Therefore, surficial deposits of this nature do 

not reflect the composition of the underlying material or bedrock. These factors make 

selection of representative training areas extremely difficult, especially in areas of highly 

dissected terrain. In this study area, these factors have been lessened because of its large 

non-vegetation area The geologic map produced showed a fairly good correspondence with 

existing geologic map. 

All experiments carried out in these study are based on the concerned parameters, 

such as the network structure (the number of nodes in the input layer, the nodes in the 

hidden layer, and the nodes in the output layer), and the training coefficients (momentum 

factor, learning rate), the training condition (the training sample selection). The initial 

weights and the choice of activation also have influence on the final solution. For lithologic 

mapping, the network should be structured in accordance with the importance of each 

individual class. 

Although our experiments were not designed to make recommendations about these 

parameters, we do gain some in-depth understanding of the neural network performance. 
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There is not a good way to determine a lower bound for its quantity. The network was 

done simply by trial and error. Once the decision of activation function is made, with the 

same network architecture, a number of selections would generate similar classification 

accuracy. 

-. The neural networks approach is attractive because formal models do not have to be 

constructed to capture the complexity and variability of the objects to be detected. And the 

ability to learn is not dependent on assumptions about underlying statistical distributions. 

Neural network approach is well suited for multi-source image analysis and classification 

of lithology. 



80 

BIBLIOGRAPHY 

Abrams, M. J., R. P. Ashley, L.C. Rowan, A.F.H. Goetz; and A.B. Kahle. 1977. 

Mapping of Hydrothermal Alteration in the Cuprite Mining District, Nevada, Using 

Aircraft Scanner Images for the Spectral Region 0.46 gm to 2.36 urn. Geology, 

Vol. 5, pp. 713-718. 

An, P., W.M. Moon, and G.F. Bonham-Carter. 1992. On Knowledge-based Approach of 

Integrating Remote Sensing, Geophysical and Geological Information. 

IGARSS'92, Houston, Texas, May 1992, pp. 34-38. 

An, P. and Chang-Jo. F. Chung. 1994. Neural Network Approach for Geological 

Mapping: Technical Background and Case Study. Canadian Journal of Remote 

Sensing, Vol. 20, No. 3. pp. 293-301. 

Azimi - Sadjadi, M. R., S. Chaloum, and R. Zoughi. 1993. Terrain Classification in SAR 

Images using Principal Components Analysis and Neural Networks. IEEE 

Transactions on Geoscience and Remote Sensing, Vol. 31, No. 2, pp. 511-515. 

Benediktsson, J.A., P.H Swain, and O.K. Esroy. 1993. Conjugate-gradient Neural 

Networks in Classification of Multi-source and Very-high-dimensional Remote 

Sensing Data. International Journal of Remote Sensing, Vol. 14, No. 15, pp. 

2883-2903. 

Bischof, H., W. Schneider, and A.J. Pinz. 1992. Multi-spectral Classification of Landsat-

Images Using Neural Networks. IEEE Transactions on Geoscience and Remote 

Sensing, Vol. 30, No. 3, pp. 482-490. 



81 

Broome, H. J. 1990. Generation and Interpretation of Geophysical Images with Examples 

from the Rae Province, Northwestern Canada Shield. Geophysics. Vol. 55, No. 8, 

pp. 977-997. 

Burrough, P. 1986. Principles of Geographical Information Systems for Land Resources 

- Assessment. Oxford, University Press, Oxford, UK. 

Charbonneau, B.W., P.G. Killeen, J.M. Carson, G.W. Cameron, and K.A. Richardson. 

1976. Significance of Radioelement Concentration Measurements Made by 

Airborne Gamma Ray Spectrometry Over the Canadian Shield. In Exploration for 

Uranium Ore Deposits: International Atomic Energy Agency, Vienna, pp. 35-53. 

Chen, J., P. Gong, J. Nie, and J.A.R. Blais. 1993. Application of Neural Networks in 

Forest Ecological Classification. Technical Papers of ASPRE/ACSM Annual 

Convention, New Orleans, Louisiana, Vol. 3, pp. 65-71. 

Chung, C.F., P. Gong, A. N. Rencz, and M. Schau. 1993. Geological Mapping in 

Melville Peninsula, Northwest Territories, Canada Using Multi-source Remote 

Sensing and Geophysical Data. IGARSS'93, Tokyo, Japan, August 18-21, 1993, 

pp. 913-916. 

Civco, D. L. 1993. Artificial Neural Networks for Land-Cover Classification and 

Mapping. International Journal Geographical Information Systems, Vol. 7, No. 2, 

pp. 173-186. 

Crick, F. 1989. The Recent Excitement about Neural Networks, Vol. 337, pp. 129-132. 

Daily, M., C. Elachi, T. Farr, and G. Schaber. 1978. Discrimination of Geologic Units in 

Death Valley using Dual Frequency and Polarization Imaging Radar Data. 

Geophysical. Research Letters, Vol. 5, pp. 889-892. 



82 

Dreyer, P. 1993. Classification of Land Cover Using Optimized Neural Nets on SPOT 

Data. Photogrammetric Engineering and Remote Sensing, Vol. 59, No. 5, pp. 617-

621. 

Duval, J.S. 1983. Composite Color Images of Aerial Gamma-Ray Spectrometric Data. 

• Geophysics, Vol. 48, pp. 722-735. 

Eliason, T.P., T.J. Donovan, and P.S. Chavez, Jr.. 1983. Integration of Geologic, 

Geochemical, and Geophysical Data of the Cement oil field, Oklahoma, Using 

Spatial Array Processing. Geophysics, Vol. 48, N. 10, pp. 1305-1317. 

Freeman, J.A. and D.M. Skapura, 1991. Neural Networks: Algorithms, Applications and 

Programming Techniques, Addison - Wesley, New York. 

Gillespie, A.R. and A.B. Kahle. 1977. Construction and Interpretation of A Digital 

Thermal Inertia Image. Photogrammetric Engineering and Remote Sensing, Vol. 

43, pp. 983 - 1000. 

Goetz, Alexander F.H. and L. Rowan. 1981. Geologic Remote Sensing. Science, Vol. 

211, pp. 781-791. 

Gong, P. 1993. Remote Sensing and Image Analysis. Lecture Notes, Department of 

Geomatics Engineering, The University of Calgary, 200p. 

Gong, P., A. Zhang, J. Chen, R.J. Hall, and I.G.W. Corns. 1994. Ecological Land 

Systems Classification Using Multi-source Data and Neural Networks. GIS' 94 

Symposium, Vancouver, B.C. February, 1994. 

Gong, P. 1994. Integrated Analysis of Spatial Data from Multiple Sources- An overview. 

Canadian Journal of Remote Sensing, Vol. 20, No. 4, pp. 349-359. 



83 

Gong, P. Integrated Analysis of Spatial Data from Multiple Sources: using Evidential 

Reasoning and Artificial Neural Network Techniquesfor Geological Mapping. 

Photogrammetric Engineering and Remote Sensing (in press). 

Graham, D.F. and Bonham-Carter G.F. 1993. Airborne Radiometric Data: A Tool for 

-. Reconnaissance Geological Mapping Using a GIS. Photogrammetric Engineering 

and Remote Sensing, Vol. 59, No. 8, pp. 1243-1249. 

Guo, Yi, R.O. Hanse, and N. Harthill. 1992. Feature Recognition from Potential Fields 

Using Neural Networks. SEG (the Society of Exploration Geophysics) Expanded 

Abstracts. pp. 1 - 5. 

Heermann, P.D. and N. Khazenie. 1992. Classification of Multi-spectral Remote Sensing 

Data Using a Back-Propagation Neural Network. IEEE Transaction on Geoscience 

and Remote Sensing, Vol. 30, N. 1, pp. 81-88. 

Hepner, G.F., T. Logan, N. Ritter, and N. Bryant. 1990. Artificial Neural Network 

Classification Using Minimal Training Set. Photogrammetric Engineering and 

Remote Sensing, Vol. 56, No. 4, pp. 469-473. 

Higashino, J., B.L. deGreef, and E.H.J. Persoon. 1990. Numerical Analysis and 

Adaptation Method for Learning Rate of Back-propagation. Proceedings of 

International Joint Conference on Neural Networks, Vol. 1. pp. 627-630. 

Hoffman, R. 1987. The Problem of Extracting the Knowledge of Experts from the 

Perspective of Experimental Psychology. Al Magazine, Vol. 8, pp. 53-67. 

Hunt, G.R. 1977. Spectral Signatures of Particular Minerals in the Visible and Near 

Infrared. Geophysics, Vol. 42, pp. 501 - 513. 



84 

Hutchinson, C.F. 1982. Techniques for Combining Landsat and Ancillary Data for Digital 

Classification Improvement. Photogrammetric Engineering and Remote Sensing, 

Vol. 48, No. 1, pp. 123 - 130. 

Kanellopoulos, I. A. Varfis, G.G. Wilkinson and J. Megier. 1991. Classification of 

Remotely-Sensed Satellite Images Using Multi-layer Perceptron Networks. 

Artificial Neural Networks, T. Kohonen, K. Kakisara, 0. Simula, and J. Kangas 

(Eds.). Vol. 2, pp. 1067-1074. Amsterdam, North-Holland. 

Kanellopoulos, I. A. Varfis, G.G. Wilkinson and J. Megier. 1992. Land Cover 

Discrimination in SPOT HRV Imagery Using an Artificial Neural Network - A 20-

Class Experiment. International Journal of Remote Sensing, Vol. 13, No. 5, pp. 

917-924. 

Kershaw, C.D. 1987. Discrimination Problems for Satellite Images. International Journal 

of Remote Sensing, Vol. 8, No. 9, pp. 1377-1383. 

Kontoes, C., G.G. Wilkinson, A. Burrill, S. Goffredo, and J. Megier. 1993. An 

Experimental System for the Integration of GIS Data in Knowledge-based Image 

Analysis for Remote Sensing of Agriculture. International Journal Geographical 

Information System, Vol. 7, No. 3, pp. 247-262. 

Kung, S.Y., and J. N. Hwang. 1988. An Algebraic Projection Analysis for Optimal 

Hidden Units Size and Learning Rates in Back-Propagation Learning. Proceedings 

of International Joint Conference and Neural Networks, Vol. 1, pp. 363-370. 

le Cun, Y., W.R. Gardner, H.P. Graf., D. Henderson, R.E. Howard, and W. Hubbard. 

1989. Neural Network Recognizer for Hand-Written Zip Code Digits. In Advances 

in Neural Information Processing Systems 1, D.S. Touretzky, (Eds.) pp. 321-331. 



85 

Morgan Kaufmann, San Mateo, California. 

Legg, Christopher. 1992. Remote Sensing and Geographic Information Systems: 

Geological Mapping, Mineral Exploration and Mining. Ellis Horwood Limited, 

West Sussex, England. 166p. 

LeRoy, L.W., D.O. LeRoy, and J.W. Raese, (Eds.), 1977. Subsurface Geology: 

Petroleum, Mining, Construction, 4th edition, pp. 767-789. 

Liu, Z.K. and J.Y. Xiao. 1991. Classification of Remotely-sensed Image Data using 

Artificial Neural Networks. Int. J. Remote Sensing, Vol. 12, No. 11, pp. 2433 - 

2438. 

Lorenzetti, E.A. 1992. Predicting Lithology from Vp and Vs Using Neural Networks. 

SEG (the Society of Exploration Geophysics) Expanded Abstracts. pp. 14- 17. 

Lyon, R.J.P. 1965. Analysis of Rocks by Spectral Infrared Emission ( 8 to 25 microns). 

Economic Geology, Vol. 60. pp. 715 - 736. 

Maren, A., C. Harston and R. Pap. 1990. Handbook of Neural Computing Applications. 

Academic Press Inc. 

McCormack, M.D., David E. Zaucha, and Dennis W. Dushek. 1993. First-Break 

Refraction Event Picking and Seismic Data Trace Editing Using Neural Networks. 

Geophysics, Vol. 58. No. 1, 67-78. 

Moon, Wooil M. 1990. Integration of Geophysical and Geological Data Using Evidential 

Belief Function. IEEE Transaction on Geoscience and Remote Sensing, Vol. 28, 

No. 4, pp. 711-720. 

Murata, Noboru, Shuji Yoshizawa, and Shun-ichi Amari. 1994. Network Information 



86 

Criterion-Determining the Number of Hidden Units for an Artificial Neural 

Network Model. Transactions on Neural Networks, Vol. 5, No. 6, November 

1994. pp. 865- 872. 

Pao,?. 1989. Adaptive Pattern Recognition and Neural Networks. Addison and Wesley: 

-.New York. 

Parikh, J., J.S. DePonte, M. Damodaran, A. Karageorgiou; P. Podaras. 1991. 

Comparison of Back-propagation Neural Networks and Statistical Techniques for 

Analysis of Geological Features in Landsat Imagery, SPIE, Vol. 1469. pp. 526-

538. 

PCI, 1992. PACE C Programming's Manual Version 5.0a. 'Richmond Hill, Ontario, 

Canada 

Peddle, D.R., G.M. Foody, A. Zhang, S.E. Franklin, E.F. LeDrew. 1994. Multi-source 

Image Classification II: An Empirical comparison of Evidential Reasoning and 

Neural Network Approaches. Canadian Journal. of Remote Sensing, Vol. 20, No. 

4, pp. 396-407. 

Richards, J.A., D.A. Landgrebe, and P.H. Swain. 1982. A Means for Utilizing Ancillary 

Information in Multispectral Classification. Remote Sensing of Environment, Vol. 

12, pp. 463 - 477. 

Rowan, L.C., A.G.H. Goetz, and R.P. Ashley. 1977. Discrimination of Hydrothermally 

Altered and Unaltered Rocks in Visible and Near-infrared Multi-spectral Images. 

Geophysics, Vol. 42. pp. 522-535. 

Rumeihart, D.E., G.E. Hintom, and R.J. Williams. 1986. Learning Internal 

Representations by Error Propagation., In Parallel Distributed Processing - 



87 

Explorations in the Microstructure of Cognition, Vol. 1, Edited by D.E. Rumeihart, 

J.L. McClelland, The MIT Press: Massachusetts, pp. 318-362. 

Salu, Y., and J. Tilton. 1993. Classification of Multi-spectral Image Data by Binary 

Diamond Neural Network and by Non-parametric, Pixel-by-Pixel Methods. IEEE 

Transaction on Geoscience and Remote Sensing, Vol. 31, No. 3, pp. 606-616. 

Schau, M., A.Rencz, L. Dredge, C.F. Chung and L. Choriton, 1993. Digital Data Atlas, 

Hall Lake Area, Melville Peninsula, Northwest Territories. Geological Survey of 

Canada, Open File 2786. 

Schau, Mikkel, Dredge, L. Rencz, A.N., and C.F. Chung. 1993. Effect of Surficial 

Geolgy on Remotely Sensed Data of Bedrock in Northern Canada; IGARRS' 93, 

Tokyo, Vol. 4, pp. 2113-2115. 

Shafer, G. A. 1976. Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, 

NJ. 

Siegal, B.S. and A.R. Gillespie (Eds.). 1980. Remote Sensing in Geology. John Wiley & 

Sons, Inc. New York. 

Srinivasan, A. and J.A. Richards, 1990. Knowledge-based Techniques for Multi-source 

Classification. International Journal of Remote Sensing, Vol. 11, No. 3, pp. 505-

525. 

Sui, D.Z. 1994. Recent Applications of Neural Networks for Spatial Data Handling. 

Canadian Journal of Remote Sensing, Vol. 20, No. 4, pp. 368-378. 

Swain, P.H. and S. M. Davis, 1978. Remote Sensing: the Quantitative Approach. 

McGraw Hill, New York; USA. 396p. 



88 

Taranik, J. V. 1983. Geological Remote Sensing: Landsat, Shuttle, and Beyond. 

Exploration and Economics of the Petroleum Industry. Matthew Bender & Co., pp. 

185-197. 

Werbós, P. 1974. Beyond Regression: New Tools for Prediction and Analysis in 

-Behaviora1 Sciences. Ph.D. Dissertation, Harvard University, Cambridge, 

Massachusetts. 

Yin, Yongyuan and Xiaomei Xu. 1991. Applying Neural Net Technology for Multi-

objective Land Use Planning. J. of Environmental Management, Vol. 32, pp. 349-

356. 

Zhuang, X., B.A. Engel, D.FLozano-Garcia, R.N.Fernandez, and C.J. Johannsen. 1994. 

Optimization of Training Data Required for Neuro-Classification. International 

Journal of Remote Sensing, Vol. 15, No. 16, pp. 3271-3277. 

Zhu, A-Xing and L. Band. 1994. A Knowledge-Based Approach to Data Integration for 

Soil Mapping. Canadian Journal of Remote Sensing, Vol. 20, No. 4, pp. 408-418. 


