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Abstract

Diagnostic and screening studies in ophthalmology frequently involve binocular data

where pairs of eyes are evaluated, through some diagnostic procedure, for the presence

of certain diseases or pathologies. It is usually sufficient in practice that at least one

eye is positively diagnosed for the patient to be sent for further and more extensive eye

examination. More relevant diagnostic accuracy measures in these cases are therefore

the probability of at least one correct positive diagnosis in patients with one or both

eyes truly diseased and the probability of two correct negative diagnoses for patients

with both eyes truly un-diseased. The former is analogous to sensitivity and the latter

to specificity. Predictive values may be similarly re-defined.

The thesis proposes these new sensitivity and specificity measures as alternatives

to conventional ones for paired binocular binary diagnostic data arising from screening

studies with cross-sectional sampling. The measures are defined for flexible models

based on copulas and extensions of existing models for correlated binary data. The

proposed methodology is illustrated with data from a study on diabetic retinopathy.
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Chapter 1

Introduction

1.1 Thesis background

Patients frequently undergo several diagnostic tests or are subjected to the same test

on repeated occasions. This is especially true in situations where test outcomes are

reader-based assessments, in which case two or more readers are necessary to mini-

mize, if not eliminate, so-called reader bias. Simply assuming that the test results are

independent is unwise, since there are correlations among the resulting evaluations.

For instance, test results from the same patient are frequently correlated while test re-

sults from different patients are still independent, as in the diabetic retinopathy study

described below. The proper accounting of associations which intuitively exist between

measurements taken from fellow eyes of a patient is an interesting statistical question.

Failure to account for such correlations by treating eyes as independent may con-

sequently yield incorrect inferences. Since valid information contained in correlated

observations is less than expected from independent observations, underestimation

of standard errors (SEs) could happen, yielding inflated Type I errors of significance

tests. Thus, methods that account for this correlation are needed.

The development of this thesis is motivated by a study on diabetic patients in Al-

berta, Canada, who suffer from treatable diabetic retinopathy. The study entailed

screening for the presence or absence of certain ophthalmologic pathologies such as

clinically significant macular edema (CSME), microaneurysms, intra-retinal haemor-

rhage, and others, that are indicative of retinal thickening [1]. Due to advances in

digital imaging in recent years, this diagnosis can be performed at a distance using
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digital images, a cost-effective screening approach for health-care burdens compared

to the accepted ‘gold standard’ of contact lens biomicroscopy to identify patients who

need further assessment. In such a tele-ophthalmologic screening system, digital im-

ages of patients’ eyes are read remotely by specialists, and patients are diagnosed as

either positive or negative for diseases. As a result, only patients who need treatment

would have to travel to specialists in urban centres like Edmonton and Calgary so that

transportation cost is also reduced. For example, in Canada, where a disproportionate

number of diabetic patients are aboriginal Canadians living in reserves in far-flung re-

mote areas, sending retinal specialists on remote clinics can be costly and inefficient.

Using distance evaluation of retinopathy-related pathologies based on digital images of

diabetic patients eyes is a potentially cost-effective alternative to clinical examination.

However, before wide implementation of any potential new diagnostic methodology,

its accuracy must first be examined. The purpose of the study is thus to determine

whether diabetic retinopathy can be identified with high-resolution stereoscopic digi-

tal photography, and whether this identification correlates well with the accepted gold

standard of clinical examination.

The data set-up for the case of one pathology, one reader, and N patients is shown

in Table 1, where Yi1L and Yi1R indicate the binary test results (i.e., 1 for positive,

0 for negative) for the left (L) and right (R) eyes, respectively, of patient i = 1, · · · ,N.

Furthermore, let Yi2L and Yi2R denote the true disease status (i.e., 1 for positive, 0 for

negative) for the left and right eyes, respectively, of patient i, as determined by the gold

standard. Note that there are correlations between the reader diagnoses and between

the disease status of fellow eyes.

The accuracy of a medical test for diagnosing the presence (positive) or absence

(negative) of a disease can be described by several measures, the most common of

which are given by the test’s sensitivity and specificity with respect to a traditionally
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Table 1.1: Data set-up for a pathology with one reader for the left and right eyes of N
patients.

Patient Diagnosis Disease status
Left eye Right eye Left eye Right eye

1 Y11L Y11R Y12L Y12R
...

...
...

...
...

i Yi1L Yi1R Yi2L Yi2R
...

...
...

...
...

N YN1L YN1R YN2L YN2R

adopted test regarded as the ‘gold standard.’ Sensitivity is the probability that the

new test indicates presence of the disease when the gold standard indicates that it

is present, while specificity is the probability that the new test shows absence of

disease when the gold standard also gives a negative result. Given binary variables

Y1 and Y2 denoting the respective results from the new test and the disease status as

determined by the gold standard, with 0 and 1 indicating negative and positive results,

respectively, the new test’s sensitivity and specificity are then given by Sen = P(Y1 =

1|Y2 = 1) and Sp = P(Y1 = 0|Y2 = 0), respectively. The sensitivity Sen and specificity

Sp are also known by several names. For example, Sen is also referred to as the true

positive fraction (TPF) or the true alarm rate (TAR), while 1−Sp is called the false

positive fraction (FPF) or the false alarm rate (FAR); Sen is also known as the hit rate

in engineering applications. In statistical hypothesis testing, Sen is known as the

statistical power while Sp corresponds to the statistical significance.

From a statistical point of view, there is no difference between screening and diag-

nostic tests; they are used interchangeably in the context of statistics, with both treated

as medical tests. While this may be appropriate in many applications, screening for

diseases based on paired organs (e.g., fellow ears, fellow eyes) calls for a modification of

the above conventional measures of diagnostic accuracy. This is because, in practice,
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a positive screening test can be allowed to be somewhat less than perfect, and in fact,

is traditionally followed not by treatment but by a confirmatory diagnosis via a better,

possibly more expensive and more invasive, test. Hence, a diabetic patient in the above

study, for example, needs only to be correctly positively screened for retinopathy in

one eye, instead of both eyes, before he or she can be sent for further examination.

That is, a screening test in this case requires only that its ‘partial’ TPF be ‘acceptably

high’. Conversely, a diabetic patient should be considered ‘negative’ for a disease only

when both his eyes are negatively screened, which suggests that the screening test’s

‘full’ FPF (i.e., both negative eyes are screened as negative) be ‘acceptably low’.

The above modifications are necessary even in the case of exchangeability, where

one organ is indistinguishable from the other. While diagnostic accuracy measures

such as Sen and Sp do not depend on the particular organ in this case, a joint measure

akin to the partial TPF and full FPF above is useful in capturing the diagnostic power

of screening tests. The main objective of this thesis is thus to propose new diagnostic

accuracy measures for screening tests based on paired organs. The new ‘binocular’

measures are defined for two particular models for correlated binocular binary out-

comes. The first model is an extension of the so-called common correlation model

(CCM) and the second is constructed from the Gaussian copula. We discuss these

models in Chapters 2 and 3 after we present a brief review of the literature in what

follows.

1.2 Literature review

Traditional estimation methods that ignore correlations in clustered diagnostic data

have been shown to be inadequate as they underestimate standard errors and lead to

incorrect estimates [2]; methods that account for these correlations are thus needed.
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There has been previous work that address this problem on the estimation of sen-

sitivity and specificity and the calculation of their estimates’ standard errors in the

context of clustered binary diagnostic data. These include simple adjustments to

standard errors; likelihood-based approaches via beta-binomial models [3,4], various

correlated binomial models, and the common correlation model (CCM) for binary data;

and regression-based methods such as the generalized estimating equations (GEE)

approach [5], variations of logistic regression, and generalized linear models (GLMs)

with specified joint distribution. Before we review statistical approaches for incorpo-

rating correlation in binocular (or paired) data settings, further details on diagnostic

and screen tests for binocular settings, especially in ophthalmological studies, are

discussed below.

1.2.1 Diagnostic and screening tests for binocular data settings

While multivariate methods such as multiple regression for normally distributed data

or multiple logistic regression for binary data are commonly used in epidemiologic

research, they are often not directly suitable for ophthalmological (or otolaryngological)

studies because these methods work under the assumption of independence between

individual sample points. Yet eyes are the fundamental units of analysis in these

applications, and frequently exhibit strong correlations between outcomes on the right

and left eyes (or ears) [4]. A number of strategies for dealing with this problem in

binocular diagnostic data in ophthalmology include the following [4]:

1. analyze data on an eye-specific basis by ignoring the inter-eye correlation;

2. analyze data on a patient-specific basis by using the result only from the better (or

worse) eye, or the left (or right) eye;

3. analyze data on a patient-specific basis by using the average or difference of results
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for fellow eyes; or

4. analyze data on an eye-specific basis without ignoring the correlation between fellow

eyes.

The first strategy considers that a sample of N patients contribute data from 2N

independent eyes, if the data are available from both eyes for each patient. When

correlation exists between fellow eyes from the same patient, the analysis usually

yield invalid inferences; for instance, p-values of significance tests are too low, thus

misstating the true significance. In addition, the standard errors of estimates are also

too low, which yield confidence intervals that are too narrow.

The second strategy is applicable but inefficiently uses data, since 50% of the ob-

servations are discarded. Additionally, it may lead to definitional problems when

several eye-specific correlated variables are under study. For instance, in the diabetic

retinopathy study, it is possible for one patient to have the left eye showing absence of

CSME and presence of microaneurysms, and the right eye showing presence of CSME

and absence of microaneurysms. Finally, if the right and left eyes are treated sepa-

rately, differing results may be obtained. Therefore, the standard for ‘better’ becomes

problematic and should be carefully considered.

The third strategy also represents a valid but inefficient method of analysis because

averaging precludes some eye-specific covariates, which is often of primary interest,

and differencing only allows eye-specific covariates. In addition, like the second strat-

egy, this strategy becomes inapplicable when there are missing data.

The fourth strategy is potentially the best but most difficult to use in practice. Since

it utilizes data on both eyes and accounts for the correlation between fellow eyes in

performing significance tests and constructing confidence intervals, it yields the most

complete analysis of the data. The difficulty here lies in specifying a flexible model
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for the data on both eyes that incorporates the association between fellow eyes. Most

recent research have focused on this strategy with particular efforts to analyze data

on fellow eyes marginally as well as to account for their correlations. We adopt this

strategy in this thesis and consider two models for the correlated binocular binary

diagnostic data from the diabetic retinopathy study described above.

1.2.2 Statistical analysis of binocular data

1.2.2.1 Adjustments to standard errors

Models based on independence assumptions between fellow eyes usually overstate the

informative sample size. Asymptotic theory on maximum likelihood estimates (MLEs),

for example, states that asymptotic standard errors are inversely related to
√

N, where

N is the number of patients (i.e., clusters). An overstated sample size thus leads

to underestimated standard errors, thus yielding inflated Type I errors and p-values

for significance tests. Adjustments to standard errors as a remedy for this problem

can be interpreted as adjustments to the effective sample size. These include simple

adjustments to standard errors introduced in [6, 7] to account for the intra-cluster

correlation, and a weighted estimator proposed in [8], for handling unbalanced cluster

sizes. All these methods utilize weighted sample sizes calculated based on data, and

standard errors are obtained according to weighted coefficients. While they provide

simple calculations by weighted estimation, which work with any kind of correlation

structure, these calculations fail to provide correlation estimates and are incapable of

dealing with data with varying cluster sizes. They have been shown to be inferior to

GEE in moderate to large samples and moderate intra-cluster correlations [9].

1.2.2.2 Regression-based approaches

Regression models are commonly adopted in diagnostic studies, since analyses based

on them allow direct incorporation of covariate effects, making comparison among dif-
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ferent tests straightforward. Such models often consist of two parts, the marginal

models and the joint distribution for likelihood representation. For example, poly-

chotomous logistic regression was adapted to correlated ophthalmologic data in [4].

A similar approach based on weighting was recently discussed in [10] in the context

of logistic regression analysis of binocular ophthalmologic data. A regression method

based on the GEE approach [11] to deal with clustered binary diagnostic data is de-

scribed in [5,12,13]. A hybrid marginal GLM based on a correlated binary distribution

to estimate sensitivity and specificity in binocular settings is studied recently in [14].

Although GEE methods yield consistent and asymptotically normally distributed esti-

mates, one drawback is the dearth of model selection and assessment criteria.

1.2.2.3 Model-based approaches

Several families of distributions for correlated binomial data can be adopted for the

study of diagnostic sensitivity and specificity. An extension to the common correla-

tion model (CCM) was recently introduced in [15], where simple and easy-to-calculate

estimates of measures of diagnostic accuracy for binocular binary data were studied.

The method is based on the CCM for correlated binary data [16], which was previ-

ously studied in [17]. The methodology is flexible enough to delineate the different

associations in the binocular data; in addition, it yields convenient marginalization

properties, and thus can be viewed as generalizing other simpler commonly used bi-

nary data models [15]. One disadvantage of the model is that it works under the

assumption of exchangeability of the binocular data.

1.2.2.4 Copula-based approaches

An alternative strategy involves the use of copulas, as recently discussed by [18],

among others. While not new, applications of copulas to discrete data [18–23] have

only recently been elucidated and clarified in [24]. Problems arising from the use of
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copulas to construct discrete distributions were discussed in [25], where practioners

are cautioned that ‘‘everything that can go wrong, will go wrong.’’ As showed in [24], a

number of complications arise from the direct application of copula models to discrete

data. A number of recent work on correlated data analysis with biostatistical appli-

cations [26, 27] have adopted copula functions to indirectly specify associated joint

distributions. This is only a recent phenomenon in modeling correlated outcomes

in health and medicine, and unresolved issues, both methodological and practical,

abound, especially as they apply to discrete data.

These models all rely on likelihood-based estimation that incorporate intra-cluster

correlations; they are flexible and lend themselves easily to straightforward adaptations

of conventional asymptotic tests. However, restrictions on parameter spaces such as

those for correlations might be a drawback of these models, as when only positive

correlations are permitted by a model. Moreover, the asymptotic theory of MLEs may

break down when some boundary conditions are not met, a distinct possibility in

models with restricted parameter spaces.

1.3 Thesis overview

This thesis is concerned with the development of models and associated methodologies

for the analysis of correlated binocular binary diagnostic data and is motivated by the

diabetic retinopathy study described in Section 1.1. It entails the construction of joint

models that flexibly represent the complex dependence structures that characterize

the nature of relationships between eye measurements on the same patient.

The approach adopted in the first part of the thesis makes use of the extended CCM

(ECCM) to model the data from the diabetic retinopathy study. The general formulation

of the model includes the well-known beta-binomial model as well as the correlated
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binomial models in [28]. The second part of the thesis is based on a model constructed

from the Gaussian copula, which is used to analyze the same data. Modified sensitivity

and specificity measures for binocular data from the two models are introduced and

their estimation is illustrated via the diabetic retinopathy data.

The thesis is organized as follows. Chapter 2 develops the ECCM and includes a

discussion of model properties and of the binocular measures of diagnostic accuracy.

Chapter 3 begins with a brief review of copula models, followed by a discussion of

the copula model for binary binocular diagnostic data; an adaptation of the binocular

measures of diagnostic accuracy is studied via a simulation study. In chapter 4,

the methodologies are applied to data from the diabetic retinopathy study. Finally,

Chapter 5 concludes the thesis with brief discussion of the merits and demerits of the

proposed methodologies, and identifies some promising future work.

10



Chapter 2

Extended common correlation model

2.1 Introduction

The extended common correlation model (ECCM) is a simple model for correlated binoc-

ular binary data that yields easy-to-calculate estimates of measures of diagnosis ac-

curacy along with their corresponding standard errors [15]. It is a generalization of

the CCM for correlated binary data introduced in [16] and was first introduced in [17].

This general formulation of the CCM includes the well-known beta-binomial model as

well as the correlated binomial models in [28]. The model is flexible enough to delin-

eate the different correlations in the binocular data; in addition, it yields convenient

marginalization properties which include other simpler commonly used binary data

models as special cases [15].

The chapter studies the ECCM for correlated binocular binary diagnostic data and

uses it to obtain new binocular measures of diagnostic accuracy as alternatives to

conventional measures. The chapter is organized as follows. Section 2.1 discusses

the development of the ECCM for a cross-sectional diagnostic study involving paired

organs; specifically, the setting of the retinopathy study in Chapter 1 is adopted to

fix ideas. Section 2.2 explores the properties of ECCM, including its marginal distri-

butions. Section 2.3 adopts the method of moments estimation for the model. These

moments estimates are then used in Section 2.4 to develop new binocular versions of

sensitivity and specificity, two measures of diagnostic accuracy most commonly used

in applications. Finally, a small-scale empirical comparison of the new and conven-

tional measures is reported in Section 2.6.
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2.2 Model development

Define Yi1L and Yi1R as 1 (i.e., positive), if the reader indicates the presence of the disease

in the left and right eyes, respectively, of patient i = 1, · · · ,N, and as 0 (i.e., negative),

otherwise. Furthermore, let Yi2L and Yi2R denote the true disease status (equal to 1,

if positive, and 0, if negative) of the left and right eyes, respectively, of patient i, as

determined by the gold standard. We assume a cross-sectional design, where both

diagnosis and status are determined for a patient after enrolment. Random effects are

used to flexibly model the joint distribution of Yi1L, Yi1R, Yi2L, and Yi2R, and to capture

the key features of the correlations between them. For j = 1,2, let the random effect

Pj = P(Yi jL = 1|Pj) = P(Yi jR = 1|Pj) be the common conditional probability of a positive

result, and let the conditional distribution of (Yi jL,Yi jR)
>, given the random effects

Pj, be a CCM with intra-pair correlation κ j. Assuming (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

> are

conditionally independent, given the random effects, the unconditional joint probability

P̀ 1r1`2r2 = P(Yi1L = `1,Yi1R = r1,Yi2L = `2,Yi2R = r2) is then given by

P̀ 1r1`2r2 =
∫ 1

0

∫ 1

0
P(Yi1L = `1,Yi1R = r1|p1)P(Yi2L = `2,Yi2R = r2|p2)

× fP1,P2(p1, p2)d p1d p2, (2.1)

where fP1,P2(p1, p2) = fP1(p1) fP2(p2){1+(p1−π1)(p2−π2)/
√

var(P1)var(P2)} is the joint

density of P1 and P2 in canonical form [29], fPj(·) is the density of Pj, π1 = P(Yi1L = 1) =

P(Yi1R = 1) is the probability of a positive diagnosis by the reader, and π2 = P(Yi2L =

1) =P(Yi2R = 1) is the prevalence of the disease. Taking Pj ∼ beta(α j = (1−ρ)π j/ρ,β j =

(1−ρ)(1−π j)/ρ), with ρ as a ‘‘correlation’’ parameter, it is shown in [17] that (2.1)

reduces to 9 distinct probabilities, which can be written in terms of κ1, κ2, and the

non-central product moments

ψ(m1,m2) = E(Pm1
1 Pm2

2 ) = E(Pm1
1 )E(Pm2

2 )

{
1+

(γ
(m1)
1 −π1)(γ

(m2)
2 −π2)

ρτ

}
, (2.2)
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where τ2 = π1π2(1−π1)(1−π2),

E(Pm j
j ) =

Γ(α j +m j)Γ(α j +β j)

Γ(α j)Γ(α j +β j +m j)
and γ

(m j)
j =

(1−ρ)π j +ρm j

(1−ρ)π j +(1−ρ)(1−π j)+ρm j
,

with Γ(·) as the gamma function. These 9 distinct probabilities are given as follows:

P1111 = (1−κ1)(1−κ2)ψ(2,2)+(1−κ1)κ2ψ(2,1)+κ1(1−κ2)ψ(1,2)+κ1κ2ψ(1,1)

P1110 = P1101 = κ1(1−κ2){ψ(1,1)−ψ(1,2)}+(1−κ1)(1−κ2)ψ(2,1)

−(1−κ1)(1−κ2)ψ(2,2)

P1100 = (1−κ1)ψ(2,0)+κ1ψ(1,0)− (1−κ1)(2−κ2)ψ(2,1)

+(1−κ1)(1−κ2)ψ(2,2)−κ1(2−κ2)ψ(1,1)+κ1(1−κ2)ψ(1,2)

P1011 = P0111 = (1−κ1)(1−κ2){ψ(1,2)−ψ(2,2)}+(1−κ1)κ2{ψ(1,1)−ψ(2,1)}

P1010 = P1001 = P0110 = P0101 = (1−κ1)(1−κ2){ψ(1,1)−ψ(1,2)

−ψ(2,1)+ψ(2,2)}

P1000 = P0100 = (1−κ1)ψ(1,0)− (1−κ1)(2−κ2)ψ(1,1)+(1−κ1)(1−κ2)ψ(1,2)

−(1−κ1)ψ(2,0)+(1−κ1)(2−κ2)ψ(2,1)− (1−κ1)(1−κ2)ψ(2,2)

P0011 = (1−κ2)ψ(0,2)− (2−κ1)(1−κ2)ψ(1,2)+(1−κ1)(1−κ2)ψ(2,2)+κ2ψ(0,1)

−(2−κ1)κ2ψ(1,1)+(1−κ1)κ2ψ(2,1)

P0010 = P0001 = (1−κ2){ψ(0,1)−ψ(0,2)}− (2−κ1)(1−κ2)ψ(1,1)

+(2−κ1)(1−κ2)ψ(1,2)+(1−κ1)(1−κ2)ψ(2,1)− (1−κ1)(1−κ2)ψ(2,2)

P0000 = 1− ∑
(`1,r1,`2,r2)6=(0,0,0,0)

P̀ 1r1`2r2.

A potential drawback of the ECCM is the exchangeability assumption P1010 = P0101 =

P1001 = P0110, which suggests that perfect agreement between diagnosis and disease

status for exactly one eye is equally likely as perfect disagreement. It is quite possible

that this assumption may not hold in cases concerning chronic diseases. Note that

this equivalence arose from the assumption of exchangeability of fellow eyes, and as
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such, can possibly be remedied by adopting a richer family of densities for P1 and P2

in model (2.1); generalized versions of the beta distribution [30] involving additional

parameters for added flexibility are possible choices.

2.3 Model properties

We list the properties of the ECCM below. Note that the ECCM possesses certain

desirable and convenient marginalization properties, which yield the CCM as a special

case.

Property 2.1. The unconditional marginal distribution of (Yi jL,Yi jR)
> is a CCM with intra-

pair correlation ρ j = ρ +κ j(1−ρ) and common probability π j of a positive result.

It is easy to show by direct marginalization [17] (or by integrating out Pj in the

conditional CCM for (Yi jL,Yi jR)
> given Pj) that the unconditional marginal probabilities

P(Yi jL = ` j,Yi jR = r j) = ∑` j′ ,r j′
P̀ 1r1`2r2 are given by

P(Yi jL = 1,Yi jR = 1) = π
2
j +ρ jπ j(1−π j)

P(Yi jL = 1,Yi jR = 0) = P(Yi jL = 0,Yi jR = 1) = (1−ρ j)π j(1−π j)

P(Yi jL = 0,Yi jR = 0) = (1−π j)
2 +ρ jπ j(1−π j).

Note that the above is a CCM with intra-pair correlation ρ j and common success prob-

ability π j. In this sense, model (2.1) can be viewed as an extension of CCM to paired

binocular binary data. Note as well that the ECCM implicitly assumes exchangeability

of Yi jL and Yi jR.

Property 2.2. The conditional intra-pair correlation κ j between Yi jL and Yi jR, given the

random effect Pj, can be expressed as κ j = (ρ j−ρ)/(1−ρ), so that κ1 can be interpreted

as a Cohen’s kappa-like [31, 32] measure of agreement between the reader’s left- and
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right-eye diagnoses, and κ2 can be represented as the corresponding agreement between

the disease status of fellow eyes.

Property 2.2 follows directly from Property 2.1, since ρ j = ρ +κ j(1−ρ). Note that

ρ1 = ρ if and only if κ1 = 0, which indicates the conditional independence between the

reader’s diagnoses, given P1. The unconditional correlation ρ1 between the diagnoses

can then be mainly attributed to the parameter ρ. Similarly, ρ2 = ρ if and only if

κ2 = 0, which implies the conditional independence of disease status of fellow eyes,

given P2, and suggests that the main source of association is ρ [15]. Indeed, as we

show in Property 2.3 below, the parameter ρ is in fact a correlation.

Property 2.3. The parameter ρ is the correlation between the number Yi1· =Yi1L +Yi1R of

diagnosis-positive eyes and the number Yi2· = Yi2L +Yi2R of status-positive eyes.

Property 2.3 easily follows from model (2.1) and Property 2.1. The correlation ρ thus

provides a global measure of association between the diagnoses and the disease status

of fellow eyes. To ensure that the joint probabilities P̀ 1r1`2r2 determined by model (2.1)

define a proper probability distribution (i.e., the probabilities are non-negative and

sum to unity), the correlation ρ must satisfy the following inequality

1
κ1κ2

max
{
− 1

π1π2
,− 1

(1−π1)(1−π2)

}
≤ ρ ≤ 1

κ1κ2
min

{
− 1

π1(1−π2)
,− 1

(1−π1)π2

}
;

see [17] for a proof.

An advantage of the ECCM in (2.1) is that the joint distribution of the binocular

data (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

> is completely determined by the marginal densities

of P1 and P2. Beta distributions are very versatile so that by choosing beta marginal

densities for P1 and P2, a variety of uncertainties regarding their distributions (hence,

in Yi jL and Yi jR, j = 1,2) can be usefully modelled [33].
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Table 2.1: Joint probability distribution of Yi1· = Yi1L +Yi1R and Yi2· = Yi2L +Yi2R.

y1
y2 P(Yi1· = y1)0 1 2

0 p00 p01 p02 p0·
1 p10 p11 p12 p1·
2 p20 p21 p22 p2·

P(Yi2· = y2) p·0 p·1 p·2 1

2.4 Moments estimation

Suppose ny1y2 is the number of patients having y1 = 0,1,2 eyes diagnosed as positive

by the reader and y2 = 0,1,2 eyes with positive status, so that ∑
2
y1=0 ∑

2
y2=0 ny1y2 = N.

Let θθθ = (θ1, · · · ,θ5)
> = (π1,π2,ρ1,ρ2,ρ)

>, and putting py1y2 = P(Yi1· = y1,Yi2· = y2) with

py1·=∑
2
y2=0 py1y2 and p·y2 =∑

2
y1=0 py1y2, then py1y2 in Table 2.1 can be represented by the

following: p00 = P0000, p10 = P1000 +P0100, p20 = P1100, p01 = P0001 +P0010, p11 = P1010 +

P1001 +P0101 +P0110, p21 = P1110 +P1101, p02 = P0011, p12 = P0111 +P1011, and p22 = P1111.

Then, their moments estimates are given by p̂00 = n00/N, · · · , p̂22 = n22/N.

To obtain the moments estimate of θθθ , we need to express the parameters in θθθ in

terms of the probabilities py1y2 so that we can apply the plug-in principle. Under the

assumption of exchangeability of fellow eyes, the probability θ1 = π1 = P(Yi1L = 1) =

P(Yi1R = 1) = P1··· = P·1·· of positive diagnosis can be calculated as follows:

θ1 =
1
2
{p10 + p11 + p12 +2(p20 + p21 + p22)} .

Similarly, we have θ2 = π2 = {p01+ p11+ p21+2(p02+ p12+ p22)}/2, where π2 = P(Yi2L =

1) = P(Yi2R = 1) = P··1· = P···1 is the prevalence of disease.

In addition, the correlations θ3 = ρ1 = corr(Yi1L,Yi1R) and θ4 = ρ2 = corr(Yi2L,Yi2R)

between left- and right-eye diagnoses and between left- and right-eye status, respec-
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tively, can be calculated as follows:

θ3 =
p20 + p21 + p22−θ 2

1
θ1(1−θ1)

= 1− p10 + p11 + p12

2θ1(1−θ1)

θ4 = 1− p01 + p11 + p21

2θ2(1−θ2)
.

Finally, noting that E(Yi j·) = 2π j and var(Yi j·) = 2π j(1−π j)(1+ρ j), j = 1,2, the corre-

lation θ5 = ρ = corr(Yi1·,Yi2·) can be expressed as

θ5 =
E(Yi1·Yi2·)−θ1θ2

2
√

θ1θ2(1−θ1)(1−θ2)(1+θ3)(1+θ4)
,

where E(Yi1·Yi2·) = p11 + 2p12 + 2p21 + 4p22. From the above derivations, it is clear

that θθθ is a function of p = (p00, · · · , p22)
>, and the moments estimate θ̂θθ of θθθ is easily

obtained by plug-in method using p̂ = (p̂00, · · · , p̂22)
>. With ny1· = ny10 +ny11 +ny12 and

n·y2 = n0y2 +n1y2 +n2y2, the moment estimates of θ1, · · · ,θ5 are

θ̂1 = π̂1 =
1

2N
(n1·+2n2·)

θ̂2 = π̂2 =
1

2N
(n·1 +2n·2)

θ̂3 = ρ̂1 = 1− n1·

2Nθ̂1(1− θ̂1)

θ̂4 = ρ̂2 = 1− n·1
2Nθ̂2(1− θ̂2)

θ̂5 = ρ̂ =
n11 +2n12 +2n21 +4n22−4Nθ̂1θ̂2

2Nτ̂

√
(1+ θ̂3)(1+ θ̂4)

,

where τ̂2 = θ̂1θ̂2(1− θ̂1)(1− θ̂2). Estimates of κ1 and κ2 can likewise be written as

κ̂1 = (θ̂3− θ̂5)/(1− θ̂5) and κ̂2 = (θ̂4− θ̂5)/(1− θ̂5).

From standard asymptotic theory, it follows that θ̂θθ has an asymptotic multivariate

normal distribution with mean θθθ and covariance matrix

ΣΣΣ
θ̂θθ

=
1
N

(
∂θθθ

∂p

)
(D−pp>)

(
∂θθθ

∂p

)>
,

where D= diag(p). Alternatively, the bootstrap method can be used to obtain standard

errors for the estimates [15]. Corresponding estimates P̂̀ 1r1`2r2 of the joint probabilities

P̀ 1r1`2r2 are similarly obtained by plug-in method [15].
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2.5 Measures of screening accuracy

The accuracy of a medical test for diagnosing the presence or absence of a disease

can be described by several measures, the most common of which are given by the

test’s sensitivity and specificity with respect to the true disease status as determined

by a traditionally used and accepted test regarded as a ‘gold standard’. In practice,

ophthalmologists are generally interested in coming up with measures of accuracy

independent of the particular eye under consideration. This implies that SenL = SenR

and SpL = SpR, i.e., the sensitivity and specificity of the diagnostic test is independent

of the left eye or the right eye. This is true under the the so-called exchangeability

assumption for fellow eyes, which holds for the ECCM. Given that Sen = P(Yi1L =

1|Yi2L = 1) = P(Yi1R = 1|Yi2R = 1) and Sp = P(Yi1L = 0|Yi2L = 0) = P(Yi1R = 0|Yi2R = 0), we

get the following:

Sen =
∑

1
`1=0 ∑

1
`2=0 P̀ 11`21

∑
1
`1=0 ∑

1
r1=0 ∑

1
`2=0 P̀ 1r1`21

=
∑

1
r1=0 ∑

1
r2=0 P1r11r2

∑
1
`1=0 ∑

1
r1=0 ∑

1
r2=0 P̀ 1r11r2

=
P·1·1
P···1

=
P1·1·
P··1·

(2.3)

Sp =
∑

1
`1=0 ∑

1
`2=0 P̀ 10`20

∑
1
`1=0 ∑

1
r1=0 ∑

1
`2=0 P̀ 1r1`20

=
∑

1
r1=0 ∑

1
r2=0 P0r10r2

∑
1
`1=0 ∑

1
r1=0 ∑

1
r2=0 P̀ 1r10r2

=
P·0·0
P···0

=
P0·0·
P··0·

. (2.4)

A test’s sensitivity Sen and specificity Sp are the two most common measures of its

diagnostic accuracy. For diagnostic studies with exchangeable paired organs, it may

be sufficient to consider only these two measures to gauge a diagnostic test’s accuracy.

However, when screening for diseases in paired organs, a positive result of a screening

test in practice is usually followed, not directly by treatment, but with further, more

definitive diagnostic procedures. Hence, in screening a particular condition in a binoc-

ular setting as in the diabetic retinopathy study, where fellow eyes are screened for

retinopathy-related pathologies, it is usually enough that at least one eye is diagnosed
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as positive in order that a patient is sent for further and more extensive eye examina-

tion. Conversely, it is necessary that both eyes be diagnosed as negative before the

patient can be declared as negative for the disease, and thus, in no need of further

examination. As such, conventional sensitivity and specificity as defined in (2.3) and

(2.4) fail to capture the true screening accuracy of binocular screening tests; hence,

more relevant diagnostic measures are required in these cases. We introduce new

binocular measures of screening accuracy in the next section.

2.5.1 Binocular accuracy measures

For screening tests involving paired organs resulting in binocular binary diagnostic

data, we define the binocular sensitivity bSen as the probability of at least one correct

positive diagnosis in patients with one or both eyes truly diseased; we likewise define

the binocular specificity bSp as the probability of two correct negative diagnoses for

patients with both eyes truly un-diseased.

For the binocular sensitivity bSen, we can consider three distinct scenarios as

follows:

b1Sen = P(Yi1L = Yi1R = 1|Yi2L = Yi2R = 1)+P(Yi1L = 0,Yi1R = 1|Yi2L = Yi2R = 1)

+P(Yi1L = 1,Yi1R = 0|Yi2L = Yi2R = 1) =
P1111 +P0111 +P1011

P··11

b2Sen = P(Yi1L = 1,Yi1R = 0|Yi2L = 1,Yi2R = 0) =
P1010

P··10

b3Sen = P(Yi1L = 0,Yi1R = 1|Yi2L = 0,Yi2R = 1) =
P0101

P··01
.

We can then define bSen as a weighted average of b1Sen, b2Sen, and b3Sen:

bSen = w1b1Sen+w2b2Sen+w3b3Sen,

where 0≤ w1,w2,w3 ≤ 1 and w1 +w2 +w3 = 1. That is, bSen is a convex linear combi-
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nation of b1Sen, b2Sen, and b3Sen. For the rest of the chapter, we choose to use

w1 =
P··11

P··11 +P··10 +P··01
w2 =

P··10

P··11 +P··10 +P··01
w3 =

P··01

P··11 +P··10 +P··01
,

that is, the weights are the marginal probabilities P··11, P··10, and P··01, normalized so

that they sum to 1. In this case, the binocular sensitivity bSen is given by

bSen =
P1111 +P0111 +P1011 +P1010 +P0101

P··11 +P··10 +P··01
(2.5)

The binocular specificity is defined in a straightforward way as follows:

bSp = P(Yi1L = Yi1R = 0|Yi2L = Yi2R = 0) =
P0000

P··00
. (2.6)

Corresponding estimates of the binocular accuracy measures bSen and bSp are ob-

tained directly by plugging estimates in Section 2.4 into (2.5) and (2.6). Using standard

asymptotic theory as in Section 2.4, the estimate (b̂Sen, b̂Sp)> of (bSen,bSp)> follows,

for large N, an approximate bivariate normal distribution with mean (bSen,bSp)> and

covariance matrix obtained by the delta method from ΣΣΣ
θ̂θθ
.

2.5.2 Conventional vs. binocular accuracy measures

In this section, we investigate the relationships, if any, between the conventional sen-

sitivity and specificity Sen and Sp, respectively, and their binocular counterparts bSen

and bSp. As discussed in Section 2.5.1, the conventional accuracy measures may not

capture the true screening accuracy of a screening test, since the diagnostic outcomes

arising from the paired organs (i.e., fellow eyes) necessitate measures that incorporate

the binocular nature of the diagnoses, even in the case of exchangeability. Intuitively,

we expect the conventional measure to be at least as high as the binocular measure,

since the former is based on the marginal distribution while the latter arises from the

joint distribution. This observation is generally confirmed in what follows.
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Table 2.2: Results for Sen, Sp, bSen, and bSp, for the ECCM with π1 = π2 = 0.6,0.5,0.4,
ρ1 = ρ2 = 0.8,0.6,0.5, and ρ = 0.5,0.3.

π1 = π2
ρ1 = ρ2 = 0.8 ρ1 = ρ2 = 0.6 ρ1 = ρ2 = 0.5

ρ = 0.5 ρ = 0.3 ρ = 0.5 ρ = 0.3 ρ = 0.5 ρ = 0.3

0.6

Sen 0.800 0.720 0.800 0.720 0.800 0.720
Sp 0.700 0.580 0.700 0.580 0.700 0.580
bSen 0.744 0.670 0.703 0.634 0.687 0.621
bSp 0.675 0.544 0.658 0.513 0.653 0.499

0.5

Sen 0.750 0.650 0.750 0.650 0.750 0.650
Sp 0.750 0.650 0.750 0.650 0.750 0.650
bSen 0.686 0.595 0.642 0.558 0.625 0.545
bSp 0.728 0.617 0.712 0.588 0.708 0.575

0.4

Sen 0.700 0.580 0.700 0.580 0.700 0.580
Sp 0.800 0.720 0.800 0.720 0.800 0.720
bSen 0.630 0.523 0.584 0.487 0.567 0.475
bSp 0.781 0.691 0.768 0.665 0.764 0.654

Noting that

Sen =

(
P1010 +P1011 +P0111 +P1111 +P0101

P··11 +P··10 +P··01

)(
P··11 +P··10 +P··01

P··11 +P··10

)
+

P1110−P0111−P0101

P··11 +P··10
,

so that we get the following relationship between Sen and bSen:

bSen =

(
P··11 +P··10

P··11 +P··10 +P··01

)
Sen− P1110−P0111−P0101

P··11 +P··10 +P··01
.

Since Sen≥ (P··11 +P··10)Sen/(P··11 +P··10 +P··01), it follows that

bSen < Sen− P1110− (P0111 +P0101)

P··11 +P··10 +P··01
. (2.7)

From (2.7), it is clear that we have bSen = Sen if and only if P··01 = 0 and

P1110 = P(Yi1L = Yi1R = Yi2L = 1,Yi2R = 0)

= P0111 +P0101

= P(Yi1L = 0,Yi1R = Yi2L = Yi2R = 1)

+P(Yi1L = 0,Yi1R = 1,Yi2L = 0,Yi2R = 1).
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Using the expressions for P̀ 1r1`2r2 given in Section 2.2, the condition P1110 =P0111+P0101

is equivalent to the following for the ECCM:

(1−κ1)(1−κ2){ψ(1,1)−ψ(2,1)} = (1−κ2){ψ(2,1)−ψ(2,2)}

−κ1{ψ(1,2)−ψ(2,2)}.

Therefore, if κ2 = 1 and κ1 = 0, then P1110 = P0111 +P0101. In addition, by Property 2.1,

P··01 = P(Yi2L = 0,Yi2R = 1) = (1−ρ2)π2(1−π2) so that P··01 = 0 if and only if ρ2 = 1 if

and only if κ2 = 1. Hence, a sufficient (but not necessary) condition for bSen = Sen is

that κ2 = 1 and κ1 = 0.

To derive the relationship between Sp and bSp, we proceed as follows. Using the

patient’s left eye, (2.4) gives

Sp− P0001 +P0100 +P0101

P··00 +P··01
=

(
P··00

P··00 +P··01

)
bSp.

Since the joint probabilities P̀ 1r1`2r2 determined by (2.1) define a proper probability

distribution, we get the following inequality:

Sp >

(
P··00

P··00 +P··01

)
bSp. (2.8)

Note that this holds as well for the patient’s right eye, since P··01 = P··10, by the assump-

tion of exchangeability of fellow eyes under the ECCM. By Property 2.1 of the ECCM,

we get

Sp > {1−π2(1−ρ2)}bSp, (2.9)

where ρ2 = corr(Yi2L,Yi2R). It then follows that we have bSp=Sp if and only if ρ2 = 1 (i.e.,

κ2 = 1) and P0001 =P0100 =P0101 = 0. Therefore, a sufficient (but not necessary) condition

for bSp = Sp is that κ1 = κ2 = 1. This makes sense because if the left- and right-eye

diagnoses as well as the left- and right-eye disease status are perfectly associated, one

needs to consider only one of the fellow eyes, in which case the binocular nature of the

data may be ignored.
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2.6 Empirical comparisons of Sen, Sp, bSen, and bSp

In this section, the conventional measures Sen and Sp and the binocular measures

bSen and bSp are calculated for various ECCMs. The following parameter configura-

tions for the ECCM are considered: π1 = π2 = 0.6,0.5,0.4, ρ1 = ρ2 = 0.8,0.6,0.5, and

ρ = 0.5,0.3, with number N = 1000 of patients. These parameter configurations are

relatively common in diagnostic studies in ophthalmology, such as diabetic retinopa-

thy study described earlier. They also define proper joint probability distributions for

the binocular data.

As shown in Table 2.2, Sen and Sp, on the one hand, do not depend on ρ1 and ρ2,

since they are marginal measures and are based only on one eye. This is possible be-

cause of exchangeability, which holds for the ECCM. However, for screening purposes,

it is not enough to consider only one eye; as pointed out earlier, it is sufficient for at

least one diseased eye to be diagnosed correctly to have a patient declared ‘positive’ for

further testing, and for both negative eyes to be correctly diagnosed before a patient

can be declared ‘negative’, and therefore in no need of further examination. By ignor-

ing the correlation between fellow eyes and using only their marginal distributions to

define the accuracy measures, it is not possible to jointly evaluate the diagnoses for

the fellow eyes.

The binocular measures bSen and bSp, on the other hand, depend on all the

parameters. As expected from the conditions obtained in Section 2.5.2, we have Sen >

bSen and Sp>bSp. In addition, it appears that the difference between the conventional

and binocular measures becomes large as ρ1 = ρ2 get small; the same observation holds

as ρ decreases. Note that these results are implied by the relationships between the

two sets of measures derived in Section 2.5.2.

Lest we think that Sen > bSen and Sp > bSp always hold, note that this is not
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always the case. In fact, it is quite easy to construct an ECCM for which Sen < bSen,

say. This is true, for example, for the ECCM with πi1 = 0.7, πi2 = 0.6, ρ1 = ρ = 0.6, and

ρ2 = 0.9.
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Chapter 3

A Gaussian copula model for paired binocular binary data

3.1 Introduction

Copulas have attracted a lot of interest among researchers recently [18,34], due mainly

to the flexibility they provide in analysing a wide array of correlated data settings. In

practice, statisticians often know very little about the joint behaviour of outcomes but

can specify their marginal behaviours reasonably well, as is the case with correlated

binary data. Copulas provide a means of assembling a joint distribution when only

its margins are known. The approach embeds univariate marginal cumulative distri-

bution functions (CDFs) FY1(·), · · · ,FYp(·) of random variables (RVs) Y1, · · · ,Yp, into their

corresponding p-dimensional CDF FY1,··· ,Yp(·) via a copula C(·) as follows:

FY1,··· ,Yp(y1, · · · ,yp) = C(u1, · · · ,up),

where uk = FYk(yk) is the observed value of the so-called probability integral transform

(PIT) Uk = FYk(Yk), k = 1, · · · , p. The meta distribution FY1,··· ,Yp(·) is thus specified via its

margins and a copula that ‘‘glues’’ them together; in parametric contexts, the margins

FYk(·) need not come from the same parametric families, allowing researchers great

flexibility in modelling different non-Gaussian data. However, such distribution is

unique only if the RVs involved are continuous. The same is not true for discrete (e.g.,

binary) RVs, in which case the copula is only uniquely identified on the Cartesian

product of the ranges of the margins [24]; moreover, the uniformity of the PITs, a

condition for Sklar’s Theorem [18], does not hold in the discrete case. In fact, the class

of possible copulas can be quite large, especially in the binary case. Note, however,

that from a modeling perspective, the non-uniqueness of the copula is not an issue, as
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the parameters of the model are still identifiable and the copula still corresponds to a

proper multivariate distribution. However, common rank-based association measures

like Kendall’s tau, while margin-free in the purely continuous case, may now depend

on the margins, and the range of their possible values may be restricted — severely in

some cases — rendering interpretations of such measures problematic.

The chapter proposes a Gaussian copula approach to model the paired binocular bi-

nary diagnostic data, like those from the diabetic retinopathy study. For models based

on the Gaussian copula, correlations between outcomes are not modeled directly; in-

stead, correlations are incorporated for the normal scores Φ−1{FYk(Yk)}= Φ−1(Uk) and

Φ−1{FYk′ (Yk′)} = Φ−1(Uk′), which are transformations of the original variables, where

Φ−1(·) is the standard normal quantile function (i.e., the inverse of Φ(·), the standard

normal CDF). Recent work in [35, 36] enable practitioners to recover an estimate of

corr(Yk,Yk′) given an estimate of the normal correlation corr{Φ−1(Uk),Φ
−1(Uk′)}.

The chapter is organized as follows. Section 3.2 briefly reviews copula models

and describes the development specifically of the Gaussian copula model. Section

3.3 adopts the Gaussian copula to directly construct a joint distribution for the paired

binocular binary data (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

> discussed in Chapter 2. Properties of

and estimation via maximum likelihood for the model are discussed. Adaptations of the

binocular measures of screening accuracy introduced in Chapter 2 are also presented.

Finally, Section 3.6 discusses the results of simulations on the relative bias, relative

efficiency, and asymptotic normality of the MLEs for the model parameters.

3.2 Brief review of copula

A number of recent work on correlated data analysis in biostatistical applications have

adopted copula functions to indirectly specify the associated joint distributions. This
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is only a recent phenomenon in modelling correlated outcomes in health and medicine,

and unresolved issues, both methodological and practical, abound, especially as they

apply to discrete data.

The basic idea in copula modelling is to assemble a joint distribution from uniform

margins via a copula function. Given a continuous RV Y , and its CDF FY (·), one

can easily see that the PIT U = FY (Y ) follows a uniform distribution on [0,1]. Thus,

modelling the joint distribution of RVs Yi, i = 1, · · · ,N, by using their marginal CDFs

FYi(·), is equivalent to modelling the joint distribution using the marginal uniform RVs

Ui = FYi(Yi) [37].

Consider the 2-dimensional case of (possibly dependent) continuous RVs Y1 and Y2,

with corresponding CDFs FY1(·) and FY2(·). Let FY1,Y2(·) be the joint CDF of Y1 and Y2,

so that

FY1,Y2(y1,y2) = P(Y1 ≤ y1,Y2 ≤ y2).

Let U1 = FY1(Y1) and U2 = FY2(Y2), where U1 and U2 are uniform RVs on [0,1]. Note that

the association between U1 and U2 is described by their joint CDF C(u1,u2) = P(U1 ≤

u1,U2 ≤ u2). It follows that the joint CDF is given by the following:

FY1,Y2(y1,y2) = P{FY1(Y1)≤ FY1(y1),FY2(Y2)≤ FY2(y2)} = C(u1,u2), (3.1)

where u1 = FY1(y1) and u2 = FY2(y2). Thus, the joint CDF FY1,Y2(·) of Y1 and Y2 is equiva-

lent to the joint CDF C(·) of marginally uniform RVs U1 = FY1(Y1) and U2 = FY2(Y2); thus

a 2-dimensional copula C(·) : [0,1]2→ [0,1] can be defined with the following properties:

(i) for every u1,u2 ∈ [0,1], C(u1,0) =C(0,u2) = 0, C(u1,1) = u1 and C(1,u2) = u2;

(ii) for every u1,u′1,u2,u′2 ∈ [0,1] such that u1 ≤ u′1 and u2 ≤ u′2, C(u′1,u
′
2)−C(u′1,u2)−

C(u1,u′2)+C(u1,u2)≥ 0.
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By uniformity of PITs, Y1 = F−1
Y1

(U1) and Y2 = F−1
Y2

(U2), so that C(u1,u2) = P{F−1
Y1

(U1)≤

F−1
Y1

(u1),F−1
Y2

(U2) ≤ F−1
Y2

(u2)} = FY1,Y2(y1,y2). Hence, to a specified joint distribution

with continuous margins, a unique function C(·) is associated. Copulas thus provide

a strategy of specifying a joint distribution when only margins are known or easily

constructed.

3.2.1 Gaussian copula

The choice of copula reflects the margins’ dependence structure, which is captured

by a dependence parameter embedded in the copula. A number of copula families

have been studied in the literature, each imposing a variety of ways of modelling the

dependence between margins [38]. One such family is the Gaussian family [39]. It has

been widely used in applications because of its convenient marginal and conditional

properties.

In the bivariate case, with Φρ̃(·) as the standard bivariate normal CDF, with zero

means and unit variances, and correlation coefficient ρ̃, the Gaussian copula function

is given by

Φρ̃{Φ−1(u1),Φ
−1(u2)} =

∫
Φ−1(u1)

−∞

∫
Φ−1(u2)

−∞

1

2π
√

1− ρ̃2

×exp
{
−s2 + t2−2ρ̃st

2(1− ρ̃2)

}
dsdt. (3.2)

The parameter ρ̃ is not the correlation between Y1 and Y2; instead, it is the normal cor-

relation given by ρ̃ = corr{Φ−1(U1),Φ
−1(U2)}, i.e., the correlation between the normal

scores Φ−1(U1) and Φ−1(U2), and it determines the degree of dependence between Y1

and Y2. With continuous margins Y1 ∼ FY1(·) and Y2 ∼ FY2(·), and with PITs U1 = FY1(Y1)

and U2 = FY2(Y2) whose joint CDF is given by (3.2), the joint CDF FY1,Y2(·) of Y1 and Y2 is

FY1,Y2(y1,y2) = Φρ̃(Φ
−1{FY1(y1)},Φ−1{FY2(y2)}). (3.3)
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If Y1 and Y2 are both normal RVs, then the joint distribution of Y1 and Y2 is exactly

standard bivariate normal with correlation ρ̃. One of the advantages of the Gaus-

sian copula is that it can be easily extended to higher dimensions to construct the

multivariate Gaussian copula

FY1,··· ,Yp(y1, · · · ,yp) = ΦR̃(Φ
−1{FY1(y1)}, · · · ,Φ−1{FYp(yp)}),

where ΦR̃(·) is the standard multivariate normal CDF with correlation matrix R̃, which

may be flexibly parametrically specified according to the data’s dependence structure

[39].

In the case of multivariate binary-{0,1} RVs Yk ∼ FYk(·), i = k, · · · , p, the multivariate

Gaussian copula ΦR̃(·) is uniquely determined only in the product range RFY1
×·· ·×

RFYp
, where RFYk

is the range of FYk(·). The joint probability distribution of Y1, · · · ,Yk is

then

P(Y1 = y1, · · · ,Yp = yp) =
1

∑
j1=0
· · ·

1

∑
jp=0

(−1)p+ j1+···+ jpΦR̃{Φ
−1(u1 j1), · · ·Φ

−1(up jp)}, (3.4)

where uk0 = FYk(yk) and uk1 = FYk(y
−
k ) = limy↑yk FYk(y) [40]. Note that even though (3.4)

is unique only in RFY1
×·· ·×RFYp

, it is still a proper multivariate distribution in that

P(Y1 = y1, · · · ,Yp = yp)≥ 0 and ∑y1,··· ,yp P(Y1 = y1, · · · ,Yp = yp) = 1. However, as in many

multivariate discrete distributions, the condition ∑y1,··· ,yp P(Y1 = y1, · · · ,Yp = yp) = 1

restricts the correlations ρ̃kk′ in R̃ to lie in possibly narrow ranges [hu
kk′,h

`
kk′], with

hu
kk′ �−1 and h`kk′ � 1, in addition to the conventional assumption that they be such

that R̃ is positive definite.

3.3 Model for paired binocular binary outcomes

Let π1 j = P(Yi1 j = 1) be the probability of a positive diagnosis for eye j = L,R, of patient

i, and let π2 j = P(Yi2 j = 1) be the corresponding probability that the patient’s eye j is
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positive. Note that unlike in the ECCM, we do not assume exchangeability of fellow

eyes, unless π1L = π1R and π2L = π2R. Adopting the joint probability (3.4) given by the

Gaussian copula, the joint probability P̀ 1r1`2r2 = P(Yi1L = `1,Yi1R = r1,Yi2L = `2,Yi2R = r2)

is then given by

P̀ 1r1`2r2 =
1

∑
j1=0
· · ·

1

∑
j4=0

(−1)4+ j1+···+ j4ΦR̃
{

Φ
−1(u1L j1),Φ

−1(u1R j1),

Φ
−1(u2L j1),Φ

−1(u2R j4)
}
, (3.5)

where, for example, u1L0 = P(Yi1L ≤ `1) and u1R1 = lim`↑`1 P(Yi1L ≤ `) = P(Yi1L ≤ `1−1),

for `1 = 0,1; note that for `1 = 0, u1L0 = P(Yi1L ≤ 0) = 1−π1L and uiL1 = 0, and for `1 = 1,

we have u1L0 = P(Yi1L ≤ 1) = 1 and uiL1 = 1−π1L. In addition, we assume the following

form for R̃:

R̃ =



1 ρ̃1 ρ̃3 0

1 0 ρ̃4

1 ρ̃2

1


, (3.6)

where ρ̃1 = corr(Φ−1{FYi1L(Yi1L)},Φ−1{FYi1R(Yi1R)}) is the correlation between the normal

scores of reader diagnoses of fellow eyes, ρ̃2 = corr(Φ−1{FYi2L(Yi2L)},Φ−1{FYi2R(Yi2R)})

is the correlation between the normal scores of the status of fellow eyes, and ρ̃3 =

corr(Φ−1{FYi1L(Yi1L)},Φ−1{FYi2L(Yi2L)}) and ρ̃4 = corr(Φ−1{FYi1R(Yi1R)},Φ−1{FYi2R(Yi2R)})

are the correlations between the normal scores of reader diagnoses and disease sta-

tus of the left and right eyes, respectively. Note that Yi1 j ∼ bernoulli(π1 j) and Yi2 j ∼

bernoulli(π2 j), j = L,R. Note as well that the normal correlations ρ̃1, ρ̃2, ρ̃3, and ρ̃4 are

proxies for the respective Pearson’s correlations ρ1 = corr(Yi1L,Yi1R), ρ2 = corr(Yi2L,Yi2R),

ρ3 = corr(Yi1L,Yi2L), and ρ4 = corr(Yi1R,Yi2R), where for example, we have

corr(Yi2L,Yi2R) =
cov(Yi1L,Yi1R)√

var(Yi1L)var(Yi1R)
=

P(Yi1L = Yi1R = 1)−π1Lπ1R√
π1Lπ1R(1−π1L)(1−π1R)

. (3.7)
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A final remark concerns the marginal distributions of (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

>.

Since the Gaussian copula is closed under marginalization, it follows that the (marginal)

distributions of (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

> are given by the bivariate Gaussian copula

and are of the same form as (3.5).

Table 3.1: Comparison of true joint probabilities P̀ 1r1`2r2 and corresponding relative
frequencies for the Gaussian copula model with π1L = 0.53, π1R = π2L = π2R = 0.5, and
ρ̃1 = ρ̃2 = 0.82, ρ̃3 = ρ̃4 = 0, for N = 1000.

Joint True Relative Frequencyprobability value frequency

P0000 0.1561 0.1390 139
P0001 0.0376 0.0420 42
P0010 0.0376 0.0410 41
P0100 0.0333 0.0400 40
P1000 0.0454 0.0400 40
P0101 0.0080 0.0070 7
P0110 0.0080 0.0060 6
P1001 0.0109 0.0110 11
P1010 0.0109 0.0160 16
P0011 0.1561 0.1790 179
P1100 0.1682 0.1510 151
P1110 0.0405 0.0330 33
P1101 0.0405 0.0540 54
P1011 0.0454 0.0440 44
P0111 0.0333 0.0390 39
P1111 0.1682 0.1580 158

3.3.1 Maximum likelihood estimation

Consider N patients providing paired binocular binary diagnostic data (Yi1L,Yi1R)
> and

(Yi2L,Yi2R)
>, i = 1, · · · ,N. With θθθ = (π1L,π1R,π2L,π2R, ρ̃1, ρ̃2, ρ̃3, ρ̃4)

>, the likelihood func-

tion L(θθθ) is represented as

L(θθθ) =
1

∏
`1=0

1

∏
r1=0

1

∏
`2=0

1

∏
r2=0

P
n`1r1`2r2
`1r1`2r2

, (3.8)

31



where n`1r1`2r2 is the number of patients with Yi1L = `1,Yi1R = r1,Yi2L = `2,Yi2R = r2. The

corresponding log-likelihood function `(θθθ) = log L(θθθ) is then

`(θθθ) =
1

∑
`1=0

1

∑
r1=0

1

∑
`2=0

1

∑
r2=0

n`1r1`2r2 log P̀ 1r1`2r2 . (3.9)

Putting s(θθθ) = ∂`(θθθ)/∂θθθ as the score function, the MLE θ̂θθ of θθθ is obtained by solving

s(θθθ) = 0 iteratively via a Newton-Raphson updating scheme. Using (3.5), the elements

of s(θθθ) of the Gaussian copula model are as follows:

∂

∂πk j
`(θθθ) =

1

∑
`1=0

1

∑
r1=0

1

∑
`2=0

1

∑
r2=0

(
n`1r1`2r2

P̀ 1r1`2r2

)
∂

∂πk j
P̀ 1r1`2r2, (3.10)

for k = 1,2, and j = L,R; and

∂

∂ ρ̃m
`(θθθ) =

1

∑
`1=0

1

∑
r1=0

1

∑
`2=0

1

∑
r2=0

(
n`1r1`2r2

P̀ 1r1`2r2

)
∂

∂ ρ̃m
P̀ 1r1`2r2, (3.11)

for where m = 1, · · · ,4.

With the help of symbolic computing software, the Hessian H(θθθ) = ∂ 2`(θθθ)/∂θθθ∂θθθ
>

of (3.9) can be obtained; however, such usually tedious work can be undertaken au-

tomatically by numerical algorithms embedded in many statistical software. Usual

properties of MLEs still apply in this case: under standard regularity conditions, θ̂θθ

is a consistent estimate of θθθ and asymptotically follows a multivariate normal distri-

bution with mean θθθ and covariance matrix given by the inverse of the Fisher infor-

mation matrix IN(θθθ) = E{−H(θθθ)} = E{s(θθθ)s>(θθθ)}. Frequently in practice, the Fisher

information matrix is estimated by the observed Fisher information s(θ̂θθ)s>(θ̂θθ), or by

−H(θ̂θθ), in which case standard errors of estimates are obtained from the diagonals of

{s(θ̂θθ)s>(θ̂θθ)}−1 or −H−1(θ̂θθ).

Corresponding estimates of SenL = P(Yi1L = 1|Yi2L = 1) and SenR = P(Yi1R = 1|Yi2R =

1), the respective left- and right-eye sensitivities, and of SpL = P(Yi1L = 0|Yi2L = 0) and

SpR = P(Yi1R = 0|Yi2R = 0), the respective left- and right-eye specificities, are obtained
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Table 3.2: Relative bias (in %), standard deviation (SD), large-sample standard error
(SE), and relative efficiency of MLEs for θθθ and the accuracy measures for the Gaussian
copula model with π1L = 0.53, π1R = π2L = π2R = 0.5, ρ̃1 = ρ̃2 = 0.82, ρ̃3 = ρ̃4 = 0, for
N = 1000.

Parameter True Mean Relative SD SE Relative
value estimate bias efficiency

π1L 0.5300 0.5303 0.0549 0.0049 0.0047 0.9708
π1R 0.5000 0.5478 3.5594 0.0047 0.0048 1.0160
π2L 0.5000 0.5178 3.5671 0.0056 0.0056 0.9903
π2R 0.5000 0.5079 1.5834 0.0057 0.0056 0.9903

ρ̃1 0.8200 0.8389 2.2989 0.0050 0.0050 0.9984
ρ1 0.6105 0.6331 3.7074 0.0058 0.0059 1.0251
ρ̃2 0.8200 0.8389 2.2989 0.0050 0.0051 1.0257
ρ2 0.6120 0.6104 0.2625 0.0059 0.0060 1.0099

SenL 0.5300 0.5303 0.0542 0.0049 0.0048 0.9850
SenR 0.5000 0.5178 3.5609 0.0047 0.0046 0.9774
SpL 0.4670 0.4697 0.0617 0.0049 0.0048 0.9866
SpR 0.5000 0.4822 3.5554 0.0047 0.0047 1.0035
bSen 0.4453 0.4485 0.7157 0.0040 0.0040 0.9784
bSp 0.3874 0.3844 0.7658 0.0043 0.0044 1.0132

directly by plug-in method using the MLEs π̂1L, π̂1R, π̂2L, π̂2R, ̂̃ρ1, ̂̃ρ2, ̂̃ρ3, and ̂̃ρ4.

Standard errors are then calculated from the large-sample covariance matrix obtained

by the delta method as

cov(ηηη) =

(
∂ηηη

∂θθθ

)
I−1
N (θθθ)

(
∂ηηη

∂θθθ

)>
, (3.12)

where ηηη = (SenL,SenR,SpL,SpR)
>.

3.4 Binocular accuracy measures

Without assuming exchangeability of fellow eyes, SenL 6= SenR and SpL 6= SpR because

the joint probabilities are such that P0001 6= P0010, P0100 6= P1000, P1110 6= P1101, P1011 6=

P0111, P0010 6= P0001, and P1010 6= P1001 6= P0101 6= P0110. In such a case, we obtain SenL,
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SenR, SpL, and SpR as follows:

SenR =
P·1·1
P···1

=
P0101 +P0111 +P1101 +P1111

P··11 +P··01
(3.13)

SenL =
P1·1·
P··1·

=
P1010 +P1011 +P1110 +P1111

P··11 +P··10
(3.14)

SpR =
P·0·0
P···0

=
P0000 +P0010 +P1000 +P1010

P···0
(3.15)

SpL =
P0·0·
P··0·

=
P0000 +P0001 +P0100 +P0101

P··0·
. (3.16)

Note that in the absence of exchangeability, sensitivities and specificities need to

be calculated separately for each of the fellow eyes. This presents an inconvenience

to practitioners, since a single measure is preferred in clinical practice. The binocular

sensitivity and specificity bSen and bSp defined in Chapter 2 become even more rele-

vant in this case, as they yield eye-independent accuracy measures that, at the same

time, incorporate the association between fellow eyes.

It is easy to show the following relationships between the two sets of accuracy

measures:

bSen = (w1 +w3)SenR +(w1 +w2)SenL−
P1111 +P1110 +P1101

P··11 +P··01 +P··10
(3.17)

bSp =
1
2

(
1+

P··10

P··00

)(
SpR−

P0010 +P1000 +P1010

P··00 +P··10

)
+

1
2

(
1+

P··01

P··00

)(
SpL−

P0001 +P0100 +P0101

P··00 +P··01

)
, (3.18)

where w1, w2, and w3 are the weights defined in Chapter 2, and (3.18) follows by adding

the following:

SpR =

(
P··00

P··00 +P··10

)
bSp+

P0010 +P1000 +P1010

P··00 +P··10

SpL =

(
P··00

P··00 +P··01

)
bSp+

P0001 +P0100 +P0101

P··00 +P··01
.

MLEs of bSen and bSp are obtained by plug-in method due to the invariance property

of MLEs. The corresponding tandard errors are calculated by delta method or by the

bootstrap approach.
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Table 3.3: Comparison of true joint probabilities P̀ 1r1`2r2 and corresponding relative
frequencies for the Gaussian copula model with π1L = 0.45, π1R = 0.5, π2L = 0.43, π2R =
0.52, and ρ̃1 = 0.7, ρ̃2 = 0.34, ρ̃3 = ρ̃4 = 0.21, for N = 1000.

Joint True Relative Frequencyprobability value frequency

P0000 0.1502 0.1620 162
P0001 0.0913 0.0910 91
P0010 0.0595 0.0620 62
P0100 0.0451 0.0430 43
P1000 0.0332 0.0270 27
P0101 0.0600 0.0600 60
P0110 0.0092 0.0100 10
P1001 0.0102 0.0120 12
P1010 0.0307 0.0290 29
P0011 0.0962 0.1020 102
P1100 0.0993 0.0960 96
P1110 0.0738 0.0720 72
P1101 0.0807 0.0740 74
P1011 0.0286 0.0300 30
P0111 0.0386 0.0330 33
P1111 0.0931 0.0970 97

3.5 Simulation study

In this section, we report the results of simulations to explore the small sample prop-

erties of MLEs for the Gaussian copula model, including the accuracy measures.

The simulations are based on paired binocular binary diagnostic data (Yi1L,Yi1R)
>

and (Yi2L,Yi2R)
>, i = 1, · · · ,N, with joint probabilities P̀ 1r1`2r2 from (3.5). Given N,

data on disease status Yi2L and Yi2R and on diagnoses Yi1L and Yi1R, for fixed θθθ =

(π1L,π1R,π2L,π2R, ρ̃1, ρ̃2, ρ̃3, ρ̃4)
>, are generated using the following algorithm:

1. generate uniform random number Ui and assign people to the respective group by

using the probabilities calculated in Step 1;

2. obtain the MLE of θθθ = (π1L,π1R,π2L,π2R, ρ̃1, ρ̃2, ρ̃3, ρ̃4)
> using the optimization func-

tion optim in R with ‘‘method=Nelder-Mead’’, where the function pmvnorm in R
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Table 3.4: Relative bias (in %), standard deviation (SD), large-sample standard error
(SE), and relative efficiency of MLEs for θθθ and the accuracy measures for the Gaussian
copula model with π1L = 0.45, π1R = 0.5, π2L = 0.43, π2R = 0.52, ρ̃1 = 0.7, ρ̃2 = 0.34,
ρ̃3 = ρ̃4 = 0.21, for N = 2000.

Parameter True Mean Relative SD SE Relative
value estimate bias efficiency

π1L 0.4500 0.4691 4.2422 0.0037 0.0036 0.9811
π1R 0.5000 0.5105 2.1001 0.0035 0.0035 0.9992
π2L 0.4300 0.4276 0.5481 0.0035 0.0035 0.9971
π2R 0.5200 0.5324 2.3867 0.0039 0.0039 1.0063

ρ̃1 0.7000 0.7217 3.1004 0.0059 0.0060 1.0275
ρ1 0.4915 0.5116 4.1626 0.0054 0.0055 1.0068
ρ̃2 0.3400 0.3349 1.4919 0.0089 0.0090 1.0063
ρ2 0.1709 0.1672 1.9094 0.0040 0.0038 0.9636
ρ̃3 0.2100 0.2078 1.0592 0.0061 0.0059 0.9712
ρ3 0.1325 0.1323 1.0830 0.0040 0.0039 0.9807
ρ̃4 0.2100 0.2078 1.0592 0.0061 0.0059 0.9712
ρ4 0.0928 0.0927 0.2459 0.0055 0.0056 1.0337

SenL 0.5265 0.5456 3.6373 0.0042 0.0040 0.9742
SenR 0.5462 0.5558 1.7507 0.0044 0.0043 0.9904
SpL 0.6080 0.5880 3.2871 0.0042 0.0044 1.0485
SpR 0.5464 0.5369 1.6848 0.0045 0.0044 0.9861
bSen 0.3737 0.3740 0.0963 0.0042 0.0043 1.0141
bSp 0.4585 0.4483 2.1739 0.0040 0.0041 1.0211

is used to evaluate the 4-dimensional multivariate normal CDF to evaluate P̀ 1r1`2r2

in (3.5);

3. go to 1 and repeat R = 1000 times.

For computational convenience, we re-parametrize ρ̃m as Fisher’s z-transformation

η̃m = log{(1+ ρ̃m)/(1− ρ̃m)}, to remove the constraints on ρ̃m; this implies that ρ̃m =

(e2η̃m − 1)/(e2η̃m + 1). For each of the parameter configurations, R = 1000 simulation

repeats are used to examine the performance in finite samples of MLEs and their

large-sample standard errors described in Section 3.3.1. Given a parameter θh and an
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estimate θ̂h, the relative bias (in %) and relative efficiency of θ̂h are

Relative bias of θ̂h =

(
Mean of θ̂h – θh

θh

)
×100%

Relative efficiency of θ̂h =
Mean of SE(θ̂h)

Empirical SD of θ̂h
,

where the mean of θ̂h is obtained as the average of the R= 1000 realizations of θ̂h. All the

Gaussian copula models considered in the simulations yield valid joint distributions

for (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

>, in that the joint probabilities P̀ 1r1`2r2 are all positive and

sum to one. In fact, this is the main criteria for selecting the parameter configurations

in the simulations, since it is imperative that the resulting joint distributions be proper

distributions.

Table 3.1 displays a comparison of the joint probabilities and their correspond-

ing empirical relative frequencies for the Gaussian copula model with π1L = 0.53,

π1R = π2L = π2R = 0.5, and ρ̃1 = ρ̃2 = 0.82, ρ̃3 = ρ̃4 = 0, for one repeat with N = 1000

patients; note that P̀ 1r1`2r2 > 0 and ∑`1,r1,`2,r2 P̀ 1r1`2r2 = 1, so that the joint probability

distribution of (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

> is a valid distribution. Table 3.2 shows the

empirical performance of the MLEs in terms of relative bias and relative efficiency.

Inspection of the parameter-specific biases of θ̂h clearly indicates that maximum like-

lihood estimation yields reasonably unbiased estimates. This result is to be expected

based on theoretical arguments, considering that N = 1000, a fairly large sample size.

The parameter-specific relative efficiencies in Table 3.2 are likewise very close to one,

indicating that the MLEs for the Gaussian copula model have large-sample standard

errors which reflect the true sampling variability.

Table 3.3 displays a comparison of the joint probabilities and their corresponding

empirical relative frequencies for the Gaussian copula model with π1L = 0.45, π1R = 0.5,

π2L = 0.43, π2R = 0.52, and ρ̃1 = 0.7, ρ̃2 = 0.34, ρ̃3 = ρ̃4 = 0.21, for one repeat with

N = 1000 patients; note that P̀ 1r1`2r2 > 0 and ∑`1,r1,`2,r2 P̀ 1r1`2r2 = 1, so that the model
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Table 3.5: Relative bias (in %), standard deviation (SD), large-sample standard error
(SE), and relative efficiency of MLEs for θθθ and the accuracy measures for the Gaussian
copula model with π1L = 0.45, π1R = 0.5, π2L = 0.42, π2R = 0.52, ρ̃1 = 0.7, ρ̃2 = 0.33,
ρ̃3 = 0.13, ρ̃4 = 0.22, for N = 2000.

Parameter True Mean Relative SD SE Relative
value estimate bias efficiency

π1L 0.4500 0.4689 4.1914 0.0028 0.0028 0.9956
π1R 0.5000 0.5147 –4.6892 0.0028 0.0027 0.9830
π2L 0.4200 0.4274 1.7643 0.0026 0.0025 0.9990
π2R 0.5200 0.5375 3.3664 0.0030 0.0031 1.0128

ρ̃1 0.7000 0.7278 3.9715 0.0046 0.0045 0.9950
ρ1 0.4865 0.5068 4.1737 0.0043 0.0044 1.0322
ρ̃2 0.3300 0.3221 –2.4023 0.0066 0.0067 1.0049
ρ2 0.1701 0.1630 –4.1582 0.0024 0.0025 1.0129
ρ̃3 0.1300 0.1358 4.4378 0.0074 0.0077 1.0447
ρ3 0.0827 0.0862 4.1474 0.0047 0.0044 0.9326
ρ̃4 0.2200 0.2096 –4.7119 0.0037 0.0042 1.1401
ρ4 0.1075 0.1029 –4.3370 0.0039 0.0040 1.0185

SenL 0.4983 0.5186 4.0696 0.0039 0.0038 0.9756
SenR 0.5934 0.5709 –3.7984 0.0033 0.0032 0.9709
SpL 0.5851 0.5683 –2.8651 0.0035 0.0032 0.9293
SpR 0.5138 0.5352 4.1621 0.0035 0.0035 0.9936
bSen 0.3760 0.3611 –3.9786 0.0025 0.0025 0.9971
bSp 0.4267 0.4385 2.7584 0.0030 0.0029 0.9782

is a proper one. Table 3.4 shows the empirical performance of the MLEs in terms

of relative bias and relative efficiency. Inspection of the parameter-specific biases of

θ̂h clearly indicates that the MLEs are asymptotically unbiased. Again, this result is

to be expected based on theoretical arguments, since N = 1000 is fairly large. The

parameter-specific relative efficiencies in Table 3.4 are all uniformly close to unity,

again indicating that the standard errors of the MLEs for the Gaussian copula model

can be captured quite well.

Figures 3.1 and 3.3 depict the histograms of MLEs π̂1L, π̂1R, π̂2L, and π̂2R, along

with MLEs ρ̂1, ρ̂2, ρ̂3, and ρ̂4 for the Pearson’s correlations (those for ρ̃1, · · · , ρ̃4 are not
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Figure 3.1: Histograms of MLEs for the Gaussian copula model with π1L = 0.45, π1R =
0.5, π2L = 0.43, π2R = 0.52, ρ̃1 = 0.7, ρ̃2 = 0.34, ρ̃3 = ρ̃4 = 0.21, for N = 1000

reported anymore), and the resulting MLEs of conventional and binocular accuracy

measures, for the Gaussian copula model considered in Table 3.4. QQ plots for the

MLEs are also shown in Figures 3.2 and 3.4. Both histograms and QQ plots indicate

support for normality of MLEs.

Finally, Table 3.5 reports the empirical bias and efficiency of the MLEs for the case

where ρ̃3 6= ρ̃4 such that ρ̃3 6= 0 and ρ̃4 6= 0; the same conclusions apply here as in

Tables 3.2 and 3.4.

From Tables 3.2, 3.4, and 3.5, we can see that both binocular measures bSen and

bSp are less than either of their eye-specific counterparts. In fact, they are smaller

than the average of the left- and right-eye measures. The same observations apply
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Figure 3.2: QQ plots of MLEs for the Gaussian copula model with π1L = 0.45, π1R = 0.5,
π2L = 0.43, π2R = 0.52, ρ̃1 = 0.7, ρ̃2 = 0.34, ρ̃3 = ρ̃4 = 0.21, for N = 1000.

to the results displayed in Table 3.4. While it is clear that a single measure based

on exchangeability will not suffice in this case (as the left- and right-eye measures are

clearly different), using single eye-specific measures Sen j and Sp j is not what clinicians

prefer in practice. Binocular measures are especially advantageous in this regard.
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Figure 3.3: Histograms of accuracy measures SenL, SenR, SpL, SpR, bSen, and bSp for
the Gaussian copula model with π1L = 0.45, π1R = 0.5, π2L = 0.43, π2R = 0.52, ρ̃1 = 0.7,
ρ̃2 = 0.34, ρ̃3 = ρ̃4 = 0.21, for N = 1000.
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Figure 3.4: QQ plots of accuracy measures SenL, SenR, SpL, SpR, bSen, and bSp for
the Gaussian copula model with π1L = 0.45, π1R = 0.5, π2L = 0.43, π2R = 0.52, ρ̃1 = 0.7,
ρ̃2 = 0.34, ρ̃3 = ρ̃4 = 0.21, for N = 1000.
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Chapter 4

Application to diabetic retinopathy data

4.1 Introduction

In this chapter, data from the diabetic retinopathy study in [1] are used to illustrate the

calculation of the new binocular measures of screening accuracy for the two models

studied in Chapters 2 and 3, namely, the ECCM and the Gaussian copula model.

The study involved N = 94 diabetic patients in Alberta, Canada. Its purpose was to

compare high-resolution digital photography with contact lens biomicroscopy (CLBM)

for screening retinal thickening and other retinopathy-related pathologies. On the

same day after the patients underwent clinical retinal examination with CLBM, which

is considered to be the ‘gold standard’, by a retinal specialist, they received high-

resolution stereoscopic digital imaging of the macula. The digital images were stored

uncompressed and then graded by an experienced reader at least two months after

they were taken. They were assessed in random order, with a minimum of two months

in between review of the left eye images and those of the right eyes to minimize reader

recall. Retinal thickening as well as several pathologies that are indicative of retinal

thickening were marked as either present (positive) or absent (negative). These patholo-

gies included CSME, microaneurysms, intra-retinal haemorrhage, hard exudates, and

others. The results were then compared with those from CLBM. Digital photography

provides a cost-effective tele-ophthalmology system, given that adequate identification

of potentially treatable retinopathy be ensured before wide implementation.

In what follows, the pathologies macular edema and hard exudate are considered.

Macular edema pertains to the thickening and swelling of the eye’s macula due to fluid
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Table 4.1: Number ny1y2 of patients with y1 diagnosis-positive eyes and y2 status-
positive eyes for the pathologies macular edema and hard exudate.

Macular edema Hard exudate

y1
y2 ny1· y1

y2 ny1·0 1 2 0 1 2

0 42 2 3 47 0 42 5 1 48
1 6 10 2 18 1 4 8 5 17
2 3 2 24 29 2 1 3 25 29

n·y2 51 14 29 94 n·y2 47 16 31 94

and protein deposits, while hard exudate involves the leakage of fluid and lipoprotein

into the retina of the eye. We first adopt the ECCM to model the data, thus assuming

exchangeability of left- and right-eye diagnoses. The Gaussian copula model is then

applied to the data without the exchangeability assumption, with eye-specific sensi-

tivity and specificity along with their binocular analogues. Table 4.1 displays the data

concerning the numbers ny1y2 of patients with y1 = 0,1,2 eyes diagnosed as positive

by the reader, and y2 = 0,1,2 eyes with positive status for a pathology from a total of

N = 94 diabetic patients.

4.2 Results for ECCM

The ECCM in Chapter 2 is adopted in what follows to model the paired binocular binary

diagnostic and status data in Table 4.1. Estimates shown in Table 4.2 are moments

estimates of the parameters of the ECCM for the pathologies macular edema and hard

exudate; the large-sample standard errors of the estimates for the two pathologies are

also reported. The estimates yield a valid joint distribution for the paired binocular

binary data, as the estimated joint probabilities P̂̀ 1r1`2r2 sum to one and are all positive.

The fellow-eye status correlation estimates of ρ̂2 = 0.6855 and ρ̂2 = 0.6498 for mac-

ular edema and hard exudate, respectively, suggest a moderately strong correlation
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between the disease status of the left and right eyes [15]. Also, the reader diagnoses

of the two pathologies for the left and right eyes appear to be reasonably moderately

correlated, as indicated by the correlation estimates ρ̂1 = 0.6030 and ρ̂1 = 0.6235 for

macular edema and hard exudate, respectively. The aggregate correlations ρ̂ = 0.7467

for macular edema and ρ̂ = 0.8231 for hard exudate indicate that the associations

can be mainly attributed to the correlation between the aggregate counts of diagnosis-

positive and status-positive eyes of patients [15].

Estimates of measures of diagnostic accuracy are also shown in Table 4.2. The esti-

mated sensitivity is 0.8693 for macular edema and 0.8783 for hard exudate. In addition,

the estimated specificity is in the range between 88% and 94% for both pathologies. In

contrast, the estimates of binocular sensitivity and specificity range from 76% to 94%

for both pathologies, a slightly wider range compared to their conventional versions.

Note that, on the one hand, the conventional sensitivity and specificity, while based on

the joint distribution of the diagnosis and status data (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

>, are

effectively only marginal measures. The binocular measures, on the other hand, are

joint measures that consider both left- and right-eye diagnoses simultaneously along

with the corresponding left- and right-eye status. As such, they provide more complete

evaluations of the screening accuracy of the test.

4.3 Results for Gaussian copula model

In this section, the Gaussian copula model in Chapter 3 is adopted to analyze the

examination results in Table 4.1. We first consider the full model with both ρ̃3 6= 0

and ρ̃4 6= 0. We then consider the reduced models with ρ̃4 = 0, and with ρ̃3 = ρ̃4 = 0.

Estimates shown in Tables 4.3, 4.4, and 4.5 are the MLEs obtained by maximizing the

joint likelihood of model in (3.8) and (3.9); also shown are their large-sample standard

45



Table 4.2: Moments estimates and their large-sample standard errors (SE) for the
ECCM for pathologies macular edema and hard exudate.

Parameter Macular edema Hard exudate
Estimate SE Estimate SE

π1 0.4062 0.0384 0.4010 0.0324
π2 0.3853 0.0423 0.4166 0.0219

ρ1 0.6030 0.0805 0.6235 0.0667
ρ2 0.6856 0.0767 0.6498 0.1155
ρ 0.7467 0.0435 0.8231 0.0372

Sen 0.8693 0.0443 0.8784 0.0447
Sp 0.8842 0.0282 0.9399 0.0194

bSen 0.7597 0.0373 0.7558 0.0513
bSp 0.8568 0.0360 0.9374 0.0246

errors calculated using the bootstrap method with B = 100 bootstrap samples. The

estimates yield valid joint distributions for the paired binocular binary data, since the

estimated joint probabilities P̂̀ 1r1`2r2 sum to one and are all positive.

Noting that the reduced copula models are nested within the full model, it is

straightforward to determine which of the models provide the best fit via standard

likelihood ratio tests. For example, we can test H0 : ρ̃4 = 0 against H1 : ρ̃4 6= 0 to

determine if the improvement in the model fit provided by the full model over the

reduced model with ρ̃4 = 0 is statistically significant. The same can be done to com-

pare the two reduced models. With p-value = 0.0002 (log-likelihood =−189.92 for full

model vs. log-likelihood =−196.05 for reduced model with ρ̃4 = 0) and p-value = 0.026

(log-likelihood =−195.79 for full model vs. log-likelihood =−197.82 for reduced model

with ρ̃4 = 0), respectively, for macular edema and hard exudate for the test H0 : ρ̃4 = 0

against H1 : ρ̃4 6= 0, we determined that the full model is statistically significantly

better than the reduced model with ρ̃4 = 0, which in turn is statistically significantly

better than the reduced model with ρ̃3 = ρ̃4 = 0 for both pathologies, with p-values≈ 0;

in this latter test, log-likelihood = −196.05 (−197.82) for reduced model ρ̃4 = 0 vs.
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Table 4.3: MLEs and their large-sample standard errors (SE) for the full copula model
for pathologies macular edema and hard exudate.

Parameter Macular edema Hard exudate
Estimate SE Estimate SE

π1L 0.3432 0.0026 0.4213 0.0024
π1R 0.4182 0.0027 0.4797 0.0027
π2L 0.4283 0.0025 0.5024 0.0022
π2R 0.2304 0.0029 0.4332 0.0029

ρ̃1 0.4551 0.0051 0.5709 0.0044
ρ1 0.2937 0.0045 0.3840 0.0040
ρ̃2 –0.1501 0.0074 0.2052 0.0072
ρ2 0.1375 0.0028 0.2293 0.0024
ρ̃3 0.7074 0.0070 0.5167 0.0066
ρ3 0.4886 0.0043 0.3430 0.0042
ρ̃4 0.5396 0.0009 0.5006 0.0043
ρ4 0.5169 0.0043 0.4337 0.0040

SenL 0.6116 0.0041 0.5897 0.0043
SenR 0.7932 0.0029 0.7040 0.0032
SpL 0.8576 0.0028 0.7488 0.0032
SpR 0.7553 0.0041 0.7293 0.0037
bSen 0.5905 0.0024 0.5851 0.0021
bSp 0.6448 0.0028 0.5758 0.0027

log-likelihood = −210.53 (−213.2) for reduced model with ρ̃3 = ρ̃4 = 0, for macular

edema (hard exudate). The discussion below is thus confined to results for the full

model.

From Table 4.3, the fellow-eye status correlation estimates of ρ̂2 = 0.1375 and

ρ̂2 = 0.2293 for macular edema and hard exudate, respectively, suggest a relatively

weak positive correlation between the left- and right-eye disease status. Also, the

reader diagnoses for left- and right-eyes for the two pathologies are similarly associ-

ated, as indicated by the correlation estimates ρ̂1 = 0.2937 and ρ̂1 = 0.384 for macular

edema and hard exudate, respectively. The estimated correlations between diagnosis

and disease status for the same eyes given by ρ̂3 and ρ̂4, for the left and right eyes,

respectively, range between 0.48 and 0.51 for macular edema and between 0.34 and
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0.43 from hard exudate.

Also shown in Table 4.3 are the MLEs of sensitivity of left and right eyes ŜenL =

0.6116 and ŜenR = 0.7932, respectively, for macular edema, which are comparable to

Ŝen= 0.8693 obtained from the the ECCM; as well, note that ŜenL 6= ŜenR, i.e., the sen-

sitivities are not the same for the left and right eye, thus indicating that exchangeability

does not hold. Similarly, the MLEs of specificity of left and right eyes are ŜpL = 0.8576

and ŜpR = 0.7553, respectively, for the pathology macular edema. These again com-

pare favourably with Ŝp = 0.8841 in Table 4.2 for the ECCM. The same conclusion can

be made for the pathology hard exudate. These reinforce the earlier conclusion based

on the sensitivities that the exchangeability of fellow eyes does not hold.

MLEs of the binocular diagnostic measures are also displayed in Table 4.3. Observe

that while b̂Sen < min{ŜenL, ŜenR} and b̂Sp < min{ŜpL, ŜpR} for both macular edema

and hard exudate. Note that in the absence of exchangeability, the binocular measures

provide only a pair of measures, like in the usual diagnostic scenario, in contrast to

the conventional measures that rely on four eye-specific measures that may not be

appealing to clinical practitioners.

4.4 Discussion

In this chapter, data from the diabetic retinopathy study were used to illustrate the

calculation of the proposed binocular measures of screening accuracy using the ECCM

and the Gaussian copula model discussed in Chapters 2 and 3. Results of the anal-

yses provide helpful illustrations of the application of the proposed methodologies.

While the results are generally the same for the two sets of accuracy measures in the

case of the ECCM, results for the Gaussian copula indicate that the assumption of

exchangeability of fellow eyes under the ECCM does not hold. In addition, not only
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are the left- and right-eye sensitivities and specificities quite different, the two sets

of measures (i.e., {ŜenL, ŜenR, ŜpL, ŜpR} and {b̂Sen, b̂Sp}) yielded estimates that differ

substantially in magnitudes. This suggests that the binocular measures should be

preferred in practice when screening paired organs, since they simultaneously con-

sider the two organs and incorporate the organs’ correlation, thus providing a better,

more complete and more unified assessment of screening tests for paired organs.
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Table 4.4: MLEs and their large-sample standard errors (SE) for the reduced copula
model for pathologies macular edema and hard exudate with ρ̃4 = 0.

Parameter Macular edema Hard exudate
Estimate SE Estimate SE

π1L 0.3534 0.0025 0.3432 0.0028
π1R 0.3872 0.0027 0.4182 0.0027
π2L 0.3761 0.0022 0.4283 0.0024
π2R 0.2198 0.0026 0.2304 0.0027

ρ̃1 0.6614 0.0048 0.4551 0.0046
ρ1 0.4540 0.0025 0.2933 0.0025
ρ̃2 –0.4099 0.0075 –0.1502 0.0072
ρ2 0.0639 0.0029 0.1373 0.0031
ρ̃3 0.5064 0.0059 0.7074 0.0067
ρ3 0.3316 0.0045 0.4885 0.0044

SenL 0.5568 0.0009 0.6111 0.0009
SenR 0.7261 0.0011 0.7932 0.0010
SpL 0.7694 0.0036 0.8574 0.0037
SpR 0.7676 0.0032 0.7556 0.0041
bSen 0.4721 0.0036 0.5907 0.0037
bSp 0.6423 0.0036 0.6451 0.0036

Table 4.5: MLEs and their large-sample standard errors (SE) for the reduced copula
model for pathologies macular edema and hard exudate with ρ̃3 = ρ̃4 = 0.

Parameter Macular edema Hard exudate
Estimate SE Estimate SE

π1L 0.3854 0.0125 0.3832 0.0117
π1R 0.4145 0.0128 0.4173 0.0117
π2L 0.3578 0.0124 0.4278 0.0101
π2R 0.3818 0.0136 0.4056 0.0094

ρ̃1 0.7924 0.0193 0.8348 0.0115
ρ1 0.5780 0.0200 0.6237 0.0133
ρ̃2 0.8501 0.0185 0.8518 0.0118
ρ2 0.6408 0.0193 0.6461 0.0118

SenL 0.3854 0.0129 0.3832 0.0120
SenR 0.4146 0.0134 0.4172 0.0117
SpL 0.6146 0.0125 0.6167 0.0112
SpR 0.5854 0.0130 0.5827 0.0115
bSen 0.3544 0.0127 0.3530 0.0110
bSp 0.4984 0.0193 0.5089 0.0126
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Chapter 5

Conclusion

5.1 Summary

The primary purpose of this thesis was to introduce new binocular accuracy measures

as alternatives to conventional measures that can be used to evaluate screening tests

in studies involving paired organs (e.g., eyes, ears). Particular attention is given to

cross-sectional designs where both diagnoses and disease status are determined after

study enrolment or sampling. Specifically, we considered screening/diagnostic studies

yielding paired binocular binary data (Yi1L,Yi1R)
> and (Yi2L,Yi2R)

>, where the former

pertains to the left- and right-organ diagnoses and the latter to the left- and right-

organ disease status.

To define the new binocular measures, we considered two models, namely, the ex-

tended common correlation model (ECCM) and one generated directly from the Gaus-

sian copula. The first relies on the assumption of exchangeability of fellow organs while

the second is more flexible. However, while the ECCM lends itself easily to moments

estimation, thus obviating the need for iterative calculations of estimates, numerically

implemented maximum likelihood estimation is readily adapted to the Gaussian cop-

ula model. Standard asymptotic results for MLEs and moments estimates apply, so

that traditional large-sample standard errors can be used.

Binocular versions of sensitivity and specificity are defined and obtained for the

ECCM and the Gaussian copula model. Under exchangeability, the binocular mea-

sures represent a simultaneous assessment of accuracy of binocular screening tests

in contrast to common sensitivity and specificity that, although independent of eyes,
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are based on marginal evaluations. As such, they fail to consider the joint assess-

ments of the paired organs. This becomes a problem in practice, where it is enough

for screening tests to have at least one organ to be positive before a patient is sent for

further confirmatory testing.

Without the assumption of exchangeability of fellow organs, the binocular mea-

sures are still to be preferred to eye-specific sensitivities and specificities for the fol-

lowing reasons. One, they provide the usual pair of measures ‘binocular sensitivity’

and ‘binocular specificity’, akin to the traditional sensitivity-specificity pair, while con-

ventional eye-specific measures yield four values, a sensitivity-specificity pair for each

organ. This is not attractive to practitioners and clinicians, since they usually prefer

as few measures as possible.

Two, the binocular measures provide a more complete and unified means of evalu-

ating the screening accuracy of tests by accounting for the correlation between fellow

organs. They are also based on a joint assessment of the paired organs, and the result

on one of the organs is therefore considered in relation to that of the other.

Comparisons between the conventional and binocular sensitivity and specificity

were also carried out for both models. While values for the measures were close in

many cases, it is entirely possible that they will be quite different from the conventional

measures. Such cases are potentially tricky since the two sets of accuracy measures

may lead to divergent results. In such an event, we believe that the binocular measures

should take precedence.

Simulation studies conducted to investigate the relative bias, precision of estimates

(i.e., moments estimates for the ECCM and MLEs for the Gaussian copula model), and

asymptotic normality show good performance of the methodology. We also illustrated

our proposed methodology via data from a retinopathy diabetic study.

The proposed methodology studied in this thesis provides a viable alternative ap-
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proach to conventional ways of assessing diagnostic accuracy of screening tests for

paired organs. The binocular versions of sensitivity and specificity reflect the way

screening tests are conducted in practice. They overcome the shortcomings of conven-

tional measures.

5.2 Future research

A number of issues related to the manner the data are modelled should be further

explored in a future work. In practice, multiple readers are used to screen or diagnose

not one but several diseases, which are likely correlated. In the diabetic retinopathy

study, for example, at least two readers evaluate the presence or absence of several

retinopathy-related eye pathologies. This gives rise to issues concerning associations

between different pathologies, repeated evaluation by readers, and possible correla-

tions within family members. While this setting can be conceptually accommodated

within the Gaussian copula framework studied in the thesis, a careful study of the

correlation structure is essential; in addition, computational difficulties need to be

addressed. Efficient algorithms for estimation will require study in depth. The inter-

pretation of correlation parameters is an important issue in copula modelling. Finally,

diagnostic studies often rely on certain generally accepted ‘gold standards,’ diagnostic

tests used to establish the true disease status of patients. However, such tests may not

always exist, or even if they do, they may be costly to apply to all patients. Random

effects models, for instance one that involves latent classes, might be one potential

solution. This may be explored in a future work.
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