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Abstract 

The fast-growing technology of large scale wind turbines demands control systems 

capable of enhancing both the efficiency of capturing wind power, and the useful life of the 

turbines. Control based on    performance is an approach to deal with persistent exogenous 

disturbances which have bounded magnitude (  -norm) such as realistic wind disturbances and 

turbulence profiles.  

In this study, we use a linear matrix inequality (LMI) approach for solution of the   -

optimal control problem. We develop an LPV model of a variable-speed variable-pitch (VS-VP) 

wind turbine in the transition region (between power point tracking and power regulation 

regimes). Then, we derive an LPV   -optimal controller using LMI methods. 

We also develop an efficient method for computing the   -norm of a closed-loop system. 

As the control synthesis problem is non-convex, we use the proposed method to design optimal 

output feedback controllers for a linear model of a wind turbine at different operating points 

using genetic algorithm (GA) optimization. The locally optimized controllers were interpolated 

using a gain-scheduled technique with guaranteed stability. The controller is tested with 

comprehensive simulation studies on a 5 MW wind turbine using FAST software. The proposed 

controller was compared with a well-tuned PI controller. The results show improved power 

quality, and decrease in the fluctuations of generator torque and rotor speed.  
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Chapter 1: Introduction 

 

1.1 Wind Turbine Systems 

 

Today, wind turbine systems are one of the fastest growing technologies. In order to be 

competitive, optimizing control systems are used in large-scale wind turbines. These systems 

enable the wind turbine to work efficiently and produce the maximum power output in varying 

wind conditions while keeping torque variations low so as to avoid fatiguing structural 

components. In addition, because wind turbines are usually installed in remote areas such as 

offshore installation, these control systems can be used in condition monitoring for the purpose 

of maintenance. A thorough review of the advances in wind turbine control systems is performed 

in Bianchi et al. (2007). 

Wind turbines are facing turbulent winds with varying speed. In high wind speeds, in 

order to prevent conditions such as overrunning, a control mechanism should limit the speed of 

rotation of the blades. In large wind turbines, blades with variable pitch angle are used. Active 

control of blade pitch angle can limit the rotor speed by changing the angle of attack in the 

blades to reduce aerodynamic lift and also, in limiting cases, to cause stall effects. In addition, 

pitch control can enable the system to track the optimal tip-speed-ratio to have the maximum 

power output in different wind conditions. In smaller wind turbines, passive control of the rotor 

speed is used to limit the speed of wind turbine using stall effect in a certain wind speeds. The 

disadvantage of passive stall control of wind turbine is that it causes more stress in blades and 

reduces their lifespan. In addition, it wastes the useful wind power because of the drop in 

aerodynamic torque caused by the stall effect in the blades (Bianchi et al. 2007). 
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In recent decades, fixed speed generators were common in wind turbines because of low 

cost and capability of direct connection to the grid with specific frequency. As a consequence of 

using fixed speed generators, wind turbines had to work at a certain speed. Therefore, they could 

not adapt to variable wind speeds to track optimal rotor speed or the so-called optimal tip-speed-

ratio. To be more adaptable to variable wind speeds and to be more efficient, variable speed wind 

turbines with variable speed generators, which can be connected to the grid via electronic 

convertors, are the modern choice of alternative technologies. These convertors enable the 

generator to work in variable speed with a frequency which is isolated from the grid frequency. 

Therefore, control on the turbine speed for tracking the optimal rotor speed becomes possible 

(Achermann, 2005). Although, fixed speed wind turbines with stall controlled blades prevailed in 

large wind turbines for many years, recently, with a fast growth in the wind turbine industry, 

variable speed wind turbines with variable pitch blades are successful options because of their 

efficiency to capture more wind power and capability to achieve higher power qualities. 

Moreover, as the size of wind turbines increases, concerns about mechanical stresses in the 

blades and the structure and also failure of wind turbine components like the drive-train 

increases. Therefore, variable speed wind turbines with an active control of the rotor speed and 

blade pitch angle can alleviate the loads and stresses on the different parts of the wind turbines. 

As a result, higher power efficiency, longer lifespans, and improved power quality makes these 

wind turbines competitive economically, despite their higher initial costs (Burton et al. 2001, 

Hansen et al. 2005). 

As shown in Fig. 1.2, the wind turbine control system consists of several subsystems. The 

aerodynamic block shows the conversion of wind force to mechanical torque in blades. The 

mechanical subsystem consists of two blocks. Drive-train block describes the conversion of the 
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mechanical torque in the rotor to the rotational speed in the generator. The structure block 

describes the movement of tower, basement and mechanical parts in the nacelle because of thrust 

force of wind. The electrical subsystem shows the conversion of mechanical power of rotating 

shaft to electricity in the generator and connection to the grid. Actuator subsystem describes the 

dynamics of servomotors used for pitch control and the dynamics in yawing.        

 

Figure 1.1 Wind turbine with horizontal axis. 

 

Figure 1.2 Subsystem-level block diagram of a variable-speed, variable-pitch (VS-VP) wind 

turbine. 
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Energy capture, power quality, and mechanical loads are the three main control 

objectives in wind turbine. These control objectives are briefly discussed in the following 

paragraphs: 

1.1.1 Energy Capture 

  The generation capacity of a wind turbine, which determines the amount of wind energy 

capture, is restricted to the physical and economic constraints. The ideal power curve for a typical wind 

turbine at different wind speeds is shown in the Fig. 1.3. It is observed that the range of operation of wind 

turbine is limited to minimum wind speed,     , and maximum wind speed,     . At wind speeds below  

     and above     , the turbine is kept at rest. Although, wind energy can be captured at these speeds, 

considering the mechanical loads and power quality and cost of maintenance, it is more economical in the 

long term to keep the wind turbine at rest in these conditions. In addition, most of the energy is captured 

at nominal wind speeds and very low and very high wind speed conditions are rare (Bianchi et al. 2007).  

 

Figure 1.3 Ideal power curve. 

 

Above the rated wind speed    , the captured power in the ideal power curve remains 

constant. The maximum power capture at    and higher wind speeds is limited to the size of 

wind turbine and its generation capacity. However, using larger turbines increases cost per kW.  

As is shown in Fig.1.3, three regions can be identified in the range of operation of wind turbine.  

For the wind speeds below the rated wind speed, wind turbine captures the maximum available 
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power of the wind flow. As shown in equation below, it is a cubic relation relative to the wind 

speed, theoretically. This region is specified as Region I.  

         
       (

 

 
)          

                                          (1.1) 

In Region III, which is called the rated power area, the power is kept constant. In this 

region, there is more wind power available than the captured power. Therefore, turbine works at 

lower efficiency with power coefficient less than      
. Region II is a transient region between 

Regions I and III. A control strategy for Region II that alleviates the transient loads while 

ensuring reasonable power efficiency is important so that we will discuss it extensively in Ch. 3 

of this thesis. In some designs, this region is ignored by connecting the maximum power region 

to the constant power region (Bianchi et al. 2007). 

 

Figure 1.4 The power coefficient surface as a function of tip-speed-ratio and pitch angle. 
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1.1.2 Mechanical Loads 

As the wind turbine works at its maximum capacity, more mechanical loads are 

induced in different parts that decrease the useful life of the turbine and cause fatigue in the 

components. Consequently, the long term cost of power generated increases. Therefore, 

alleviation of mechanical loads should be considered along with the other control objectives.  

Static and dynamic loads are two type of mechanical loads induced in wind turbine. 

Static load is the result of aerodynamic forces induced by mean wind speed. In wind turbine 

design, dynamic loads are more important. The temporal distribution of wind speed field over the 

area swept by the blades induces dynamic loads in different parts. As a consequence, variation in 

the aerodynamic torque and also variation in the loads on the turbine structure and drive-train 

happens. As an alternative classification, dynamic loads can be divided to low frequency and 

high frequency loads. Transient loads which are induced by turbulence and gusts are low 

frequency loads. These loads are very important especially in the higher wind speeds and should 

be considered in the control strategy for determining the components rating. If a tight control 

strategy is designed in order to just follow the steady-state control curve, it induces a significant 

amount of extra loadings. High frequency loads are caused by cyclic loads around the peaks at 

multiples of rotor speed and propagate through the drive-train. They can excite vibration modes 

of some parts of the turbine. As the size of turbine increases, there are more moving bodies that 

may be affected by high frequency vibration. Control strategy has a critical effect on damping 

these harmful vibrations. For example, pitch control may excite some resonance modes in the 

turbine structure that should be monitored and considered in the control system design (Battista 

et al. 2000, Leithead and Connor 2000, Sørensen et al. 2005).   
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1.1.3 Power Quality  

Important factors for power quality are stability of voltage and frequency at the point of 

connection to the grid and by emission of flicker. Low power quality can cause additional costs 

of investment in power lines. Frequency variations are result of power balance. If the load on the 

generator is more than the power supplied to it, the generator will decelerate and the frequency 

reduces. The inverse happens if the power demand be less than power supplied to the generator. 

Then the rotor accelerates and the frequency goes up. However, for the case of small-scale wind 

farms that connect to the network this problem does not occur. For large scale wind farms and 

also isolated farms, power balance can cause frequency variances that should be regulated. 

Therefore, monitoring and conditioning of power quality should be considered in the control 

systems design (Lalor et al. 2005, Larsson 2000, Muljadi and Butterfield 2001). 

 

1.2 Control Design for Wind Turbines 

 

In 1970s and 1980s, several large wind turbines were designed using fixed speed 

synchronous generators.  These wind turbines had stiff drive train and large rotor with high 

inertia.  The classical control design in this era for wind turbine was based on Proportional-

Integral-Derivative (PID) approach. It was found that the turbulent wind flow easily excites the 

first torsion mode of large drive-trains. Several control designs were proposed to regulate the 

power output and also add damping to the closed loop system using pitch control (Kos 1978, 

Rothman 1978, Svensson and Ulen 1982, Hinrichsen and Nolan 1984, and Wasynczuk et al. 

1981). 
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In the later wind turbine control designs, Linear Quadratic Regulator (LQR) approach 

was used to alleviate the load on mechanical components like drive-train, tower, and blades in 

addition to regulating the power. Liebst (1985) designed a LQR control for KAMeWa wind 

turbine with blade flap, lag, and pitch; drive-train torsion; generator torsion; and tower bending 

were the wind turbine DOF modeled in the study. Mattson (1984) used a state estimator in 

combination with LQR to overcome the limit in measurement of the states needed in the 

controller. He designed the controller based on the linear model containing drive-train torsion 

and tower fore-aft bending DOF.  

The flexible structure of wind turbine and the aerodynamic forces which act on the wind 

turbine are highly nonlinear. In pitch control, the input gain that is the partial derivative of 

aerodynamic torque, vary at different operating points with wind speed, rotor speed, and pitch 

angle. Therefore, one controller which is designed based on the linear model at one operating 

point may result in poor performance at other operating points or even an unstable closed-loop 

system (Wright, 2004).  To address this problem several scheduling or switching techniques have 

been suggested to design multiple controllers at different turbine operation points. Some work 

has been performed to design gain-scheduled and switching controllers by Kraan (1992) and 

Bianchi et al. (2007). However, switching between controllers may raise some problems 

regarding the stability and performance at switching points. However, there are some gain-

scheduling and linear parameter varying methods, which guarantee the stability in switching 

between local controllers like the study by Bianchi and Pena (2011), Xie and Eisaka (2004), and 

Apkarian et al. (1995). Wind speed can be used as scheduling parameter in wind turbine 

controllers.  The anemometers which are installed on the nacelle, can measure the wind speed. 

However, anemometers measure the wind speed at one point and the downstream wind flow 
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behind the blades is affected by the turbine structure itself. Therefore, wind speed measurement 

is not accurate and is not well-correlated to the wind speed that is experienced by wind turbine 

blades. This makes the practical implementation of controller scheduling difficult. Ehlers et al. 

(2007) and Østergaard et al. (2007) have addressed this problem by introducing indirect 

estimation of effective wind speed.  

1.2.1 Gain-Scheduling Techniques 

Wind turbines are nonlinear systems. Gain scheduled controllers are one of the well-known 

tools that make it possible to use linear control theory for these nonlinear systems. Gain 

scheduling strategies are widely used in practice (Rugh and Shamma, 2000). The design of gain 

scheduled controller is in three steps: 

1. For a collection of operating points, the LTI models of nonlinear plant are derived and 

parameterized by scheduling parameters. These variables may be functions of operating 

points. 

2. The LTI controller is designed for each LTI model. Any appropriate linear control 

method that stabilizes the plant can be used in this step. Design objectives can be stated 

in terms of bounds on the induced norms of certain input-output operators such as design 

of LTI controller using H∞-control or   -optimal control synthesis that will be presented 

in the following chapters. 

3. Finally, the gain scheduling strategy is planned. One simple method is switching or 

interpolating between the LTI controllers according to the scheduling parameters. But, 

these methods cannot guarantee the stability and performance of the real nonlinear 

system. However, in several studies, gain scheduling methods with guaranteed stability 

have been developed. Designing the controllers in the framework of linear parameter 
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varying (LPV) systems, is one of the well-established gain-scheduling techniques with 

guaranteed stability and performance.  

1.2.2 Adaptive Control 

             Adaptive control is another modern approach that is used in nonlinear systems like wind 

turbines. Adaptive control allows the controller gains adapt to changing conditions. Some work 

was performed by Bossanyi (1987), Freeman and Balas (1999) for adaptive control of wind 

turbines. Also, in studies by Mayosky and Cancelo (1999), Boukhezzar and Siguerdidjane 

(2009), and Jafarnejadsani and Pieper (2013), neural networks are used for adaptive control of 

large-scale wind turbines. Jafarnejadsani et al (2013) proposed an adaptive control based on 

Radial-Basis-Function (RBF) neural network (NN) which is for different operation modes of 

variable-speed variable-pitch (VS-VP) wind turbines including torque control at speeds lower 

than rated wind speeds, pitch control at higher wind speeds, and smooth transition between these 

two modes. The adaptive neural network control approximates the non-linear dynamics of the 

wind turbine based on input/output measurements and ensures smooth tracking of optimal tip-

speed-ratio at different wind speeds. The robust NN weight updating rules were obtained using 

Lyapunov stability analysis. The validity of results was verified by simulation studies on a 5 MW 

wind turbine simulator (Jafarnejadsani et al. 2013). 

1.2.3 Modeling and Simulation 

To develop and validate analytical codes for wind turbine loads and response predictions, 

several studies has been performed and a thorough review of wind turbine design codes can be 

found in Molennar (2003). FAST (Fatigue, Aerodynamics, Structures and Turbulence) is one of 

aero-elastic wind turbine simulators. In our study, the proposed control method was validated 

using the FAST software. FAST code was first developed at Oregon State University (Wilson et 
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al. 1999) and validated and refined by National Renewable Energy Laboratory (NREL). For 

simulation, we used the parameters of the NREL-Offshore-Baseline-5MW wind turbine which 

was developed by Jonkman et al. (2009) at NREL. In addition, an aerodynamic subroutine 

package named AeroDyn (Laino and Hansen 2003) that was developed at University of Utah is 

used in FAST. The AeroDyn subroutine calculates the aerodynamic forces on a wind turbine 

blade that is the core element in wind turbine simulation code.   

      In this study, FAST was used for both extraction of the linear model for control design 

and for closed –loop simulation. We extracted linear model of wind turbine in a few operating 

conditions based on just a subset of the total modeling DOF contained in FAST including 

flexible drive-train, generator torsion, and aerodynamic forces. However, additional DOF can be 

switched on in the FAST. The effect of unmodeled modes and controller design based on 

addition of DOF in steps was studied by Wright (2004) in detail.  Wright applied modern state-

space control design methods to a two-bladed teetering hub upwind machine at the National 

Wind Technology Center (NWTC). The design objective was to regulate turbine speed and 

enhance damping in several low-damped flexible modes of the turbine. Starting with simple 

control algorithms based on linear models, complexity was added incrementally until the desired 

performance was firmly established. 

 

1.3   -Optimal Control Synthesis 

 

The majority of the results in robust control considers quadratic-type performance and 

stability criteria and also    signal norms,    and    system norms, and also integral quadratic 

constraints. Overviews on robust control are given in Skogestad and Postlethwaite (2005) and in 
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Sanchez-Pena and Sznair (1998).  The quadratic criterion has been successfully applied to many 

real-world problems and it can address the system behaviour in terms of energy, dissipativity, or 

frequency- domain properties. However, some other time-domain properties such as control 

error, the response overshoot, and the maximum values of control inputs can only be addressed 

indirectly by quadratic criteria and with numerous design iterations.  The mentioned time-

domain properties can be addressed directly using    signal norm 

‖ ‖          |     |                                                 (1.2) 

  -norm measures the maximum amplitude of the components    of a signal vector   over time.  

To obtain a corresponding measure for a stable system  , often the so-called   -gain  

‖ ‖           ‖ ‖   
‖  ‖ 

‖ ‖ 
                                         (1.3) 

is used. The gain characterizes the worst- case amplitude of the system output      

normalized by the maximum amplitude of the input   under the assumption of zero initial 

conditions.  In other words, the   -gain describes how well a system attenuates persistent 

disturbances and stabilizing controller can be designed based on the minimization of the   -

gain. As a common situation, it is desired to keep   small if   is the control error. It can be shown 

that, for LTI systems, the   -gain is equal to the   -norm of the system’s impulse response.  

Therefore, the name   -optimal control is used for the field of   -gain disturbance attenuation. 

In addition, many other control objectives such as set-point control, following the reference 

commands, minimization of resource consumption, or filtering problems can be addressed in   -

gain framework. In this work we use discrete-time design approach to propose an efficient 

computation method for   -gain of the closed-loop system and we develop the procedure for 

optimization of the controller based on search-based optimization methods such as genetic 
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algorithms. In addition, we used linear matrix inequality (LMI) approach to find an upper bound 

on the   -gain and designing the   -optimal controller for continuous-time systems.  

While there are a vast amount of contributions in the field of robust linear control 

concerned with    and    control, the   -optimal control has also seen a number of basic and 

promising results. The synthesis methods proposed so far in the control literature treat nominal 

control design in terms of linear programs (LPs) and also norm computations. In summary, 

although there have been a number of basic results, the literature has paid less attention to    

control than to quadratic-type performance frameworks. 

Although, some promising works have been performed for designing the output feedback 

control in   -norm framework using linear programing, these approaches requires too much 

computational effort to calculate the   -norm and also the theory to come up with convex 

optimization problem is very difficult and in some type of problems impossible. In addition, the 

proposed output feedback controllers in    control literature usually results in high order output 

feedback controllers. In this study, we propose a method for approximation of   -norm that 

results in a new norm calculation which, as shown in this study, represents desirable 

characteristics of the   -norm. This new norm can be computed efficiently, so it is possible to 

use search-based optimizations such as genetic algorithms, because the computational cost of   -

norm calculation of output feedback-controlled closed loop system is low. Therefore, the 

controller parameters can be optimized using  search-based methods  without concerning about 

convexity of the problem or any conservatism that are usually imposed for simplification of the 

non-convex problems to the convex optimization problems, which can be solved using 

approaches such as LMIs or LPs.   
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The main concern in the robust control is to certify the stability of an uncertain system 

and to quantify its performance. The uncertainty may be real parametric, LTI, linear time varying 

(LTV), or nonlinear. During the last three decades, numerous methods have been developed for 

analysis of linear systems subject to different classes of uncertainties or perturbations.  There are 

two main approaches to robust control problems. First, there is the small gain approach, where 

stability and performance are investigated using scaled system norms and uncertainties with 

bounded   - or   -gain or bounded   - or   -gain are particularly well-studied. Some important 

contributions can be found in Doyle and stein (1981), Packard and Doyle (1993), Shamma 

(1994), Khammash and Pearson (1991), Dahleh and Kammash (1993), and Dahleh and Diaz-

Bobillo (1995). The second main approach to robust analysis relies on Lyapunov stability and 

performance characterizations via dissipation inequalities, Riccati equations, and LMIs. Some 

contribution in state-space realization of different type of uncertainties using the mentioned 

approach can be found in Helmersson (1995), Gahinet (1996), Apkarian and Tuan (2000), 

Scherer (2000b). 

Although, there have been a number of results on uncertain systems in   -control 

literature, there are still many open questions. In our study, the goal is to design a   -optimal 

control for the nonlinear system of wind turbine that is modeled as a linear parameter varying 

(LPV) system. Some contributions in investigation on conditions to compute the   -gain of 

systems with parametric uncertainties or the upper bound can be found in the work of Rieber et 

al. (2006b) and Rieber et al. (2008). We briefly review on the nominal    performance analysis, 

to set the computational approaches into prospective. Also, conservative upper bound on   -gain 

is presented using LMI method. As part of our contribution in this study, we came up with new 

upper bound in the problem of computing   -gain. Although, the proposed upper bound may not 



 

15 

be less conservative compared to the so-called star norm or the one suggested in the work of 

Rieber (2007), the computation of our proposed upper bound is very efficient, so that it is 

suitable in some search-based optimizations of the controller based on    performance.  In 

addition to computational efficiency, the new upper bound conveys the desired characteristics of 

the   -gain. In an example, we have studied our new method for computation of   -gain using a 

discrete-time state-space model of an aircraft system.   

1.3.1   -Optimal Controller Synthesis 

    control problem was formulated in Barabanov and Granichin (1984) and Vidyasagar 

(1986). The standard    control problem formulation treats finite-dimensional discrete-time LTI 

plant G as described in the following development. Consider the state-space realization 

[

      
    
    

]  [
     

        

        

] [

    
    
    

]                                        (1.4) 

where         is the states vector,          is the measurement input, and         is 

the disturbance input. Also, it is assumed that         is stabilizable and        is detectable 

that is necessary and sufficient for the existence of a stabilizing LTI output-feedback controller   

with realization  

[
       

    
]  [

    

    
] [

     

    
]                                          (1.5) 

Note that   is the closed-loop map from    to  . The control design goal is to find the 

internally stabilizing controller such that the closed-loop    performance ‖ ‖  is minimized. 

The well-known Youla Parameterisation (Youla et al. 1976) of all stabilising controllers can be 

used to convert the problem into a more tractable form. In Appendix A ,the Youla 
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Parameterisation is described in more detail. All asymptotically stable closed-loop transfer 

matrices are written as 

 ̂     ̂     ̂    ̂    ̂                                             (1.6) 

where  ̂ is a free stable parameter, and  ̂,  ̂, and  ̂ are the fixed stable transfer matrices. Finally 

the standard    control problem can be formulated as a minimization problem 

     
    

     ‖       ‖                                           (1.7) 

This optimization problem is an infinite-dimensional with infinitely many constraints. 

Some solutions to this problem can be found in Dahleh and Pearson (1987b), Diaz-bobillo and 

Dahleh (1993), Dorea and Hennet (1997), and Khammash (2000). We briefly discuss the 

Khammash   -scaled method. All stable   parameters can be parameterizad by infinite sequence  

                     corresponding to  ̂                         

A restriction on   can be imposed to make the problem finite-dimensional.  It can be assumed 

that        for     and ‖ ‖     for some given   and    so that it leads to the 

suboptimal problem  

 ̅     
    

     
‖       ‖  

             for     and ‖ ‖                                          (1.8) 

In this solution of this suboptimal problem,   ̅  is an upper bound on the   -gain 

(Khammash, 2000).This problem can be transformed into a finite-dimensional LPs that allow 

computationally efficient controller synthesis.  The main drawback of the approaches based on 

linear programing is that they result in high order controllers especially in larger-sized problems. 

Some practical application of    control can be found in Spillman and Ridgely (1997), Malaterro 



 

17 

and Khammash (2000), Rieber et al. (2005b). To the knowledge of the author, application of    

framework in wind turbine control system is only investigated extensively in our report.   

 

1.4   -Optimal Control of a LPV model of VS-VP Wind Turbine in the Transition Region 

 

In control of the wind turbines, wind acting on the blades is an exogenous disturbance. 

Although, this disturbance is persistent and has infinite energy, it has bounded magnitude 

(Dahleh and Diaz-Bobillo 1995). In   -optimal control, the   -norm is the criterion used to 

measure the input disturbances and output signals. Therefore, time-domain performance 

specifications like overshoot, bounded magnitude, bounded slope, and actuator saturation can be 

directly addressed (Schuler et al. 2010). 

The fast-growing technology of large scale wind turbines demands control systems 

capable of enhancing both the efficiency of capturing wind power, and the useful life of wind 

turbines. There exists a transition region between the torque control strategy at low wind speed, 

and the pitch control strategy used at high wind speed. This study treats the problems of ensuring 

smooth transition between these strategies, and capturing maximum power around the nominal 

operating point in transition region. Control based on   -norm performance is an approach to 

deal with persistent exogenous disturbances like infinite energy (  -norm) and bounded 

magnitudes (  -norm) wind disturbances facing wind turbines. In addition, time-domain 

performance measures such as overshoot and actuator saturation can be directly addressed by   -

optimal control. In this work, a state-feedback controller is derived by means of a linear matrix 

inequality (LMI) solution of an upper bound on the    -norm of the closed loop system. We 

developed a LPV model of variable-speed variable-pitch (VS-VP) wind turbine in the transition 
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region. This LPV model provides a suitable framework for a LMI approach. The LPV model 

results in a set of parameterized LMIs (PLMIs) with quadratic parameter dependence which are 

transformed into LMIs using a relaxation technique. Then, we tested the proposed parameter-

dependent feedback controller with simulation of a simplified model of a 5MW wind turbine.  

Over the operation range of wind turbines at different wind speeds, three regions can be 

identified. At low wind speeds (Region I), the wind turbine captures maximum power using 

torque control to track the optimum rotor speed. At high wind speeds (Region III), the wind 

turbine works at constant rotor speed and the power generation is kept constant at rated power by 

means of active pitch control. A transition region (Region II) exists near the rated wind speed 

where the controller switches between the maximum-power and rated-power regions. The 

transition region includes the nominal best operating point of the wind turbine realizing 

maximum extraction at the rated value of power. Therefore, in addition to smooth transition 

between Regions I and III, the power generation efficiency is an important control objective in 

the Region II. The wind turbine dynamics exhibit poor controllability around the nominal 

operating point, because of switching between the two different control systems at low and high 

wind speed regions (Bianchi et al. 2007). There are strategies that propose controllers for the 

entire range of operation. However, these strategies are potentially conservative. Here, we design 

a controller for transition region which satisfies the control objectives, i.e. maximum energy 

capture while rotor speed and generator torque do not exceed their rated values in the presence of 

wind gusts as external disturbances. This control allows a smooth transition between two 

separate controllers that are being designed for low and high wind speed regions. 

In this work we drive a linear parameter varying (LPV) model of the nonlinear dynamics 

of a wind turbine in the transition region. This LPV model provides a second order 
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approximation of the derive-train dynamics, which is more accurate than a linear model because 

it is able to capture the extremum point that exists in the turbine’s torque characteristics in the 

transition region. This eliminates the problem of poor controllability in the transition region. 

LPV wind turbine model was presented in Bianchi et al. (2007). In Rieber et al. (2005) and 

Rieber and Allgower (2003), the   -optimal control designed in the framework of LPV systems. 

Linear matrix inequalities (LMIs) are a well-established method in control to solve 

problems, which involve matrix variables. LMIs allow the efficient consideration of optimization 

criteria such as    and   -constraints for performance and robustness in the design of 

controllers (Schuler and Weiland, 2004). In this study, we take the LMI approach to   -optimal 

control problem to find an upper bound on   -norm. In a few papers such as Abedor et al. (1996) 

and Khosravi and Jalali (2008), the LMI constraints on   -norm are presented and the controllers 

are derived.   -optimal control is first treated in the work of Dahleh and Diaz-Bobillo (1995) and 

Dahleh and Pearson (1987). A novel synthesis method was developed by Khammash (2000).  To 

derive the feedback controller for a closed loop system with   -optimal matrix inequalities, we 

used techniques and tools described in Turner et al. (2007) for transforming the matrix inequality 

problem into suitable LMI-format for solution. 

 

1.5 Gain-Scheduled   -Optimal Control of a VS-VP Wind Turbine at High Wind Speeds 

Using Genetic Algorithms 

 

In order to alleviate mechanical load and improving the power quality, recent large-scale 

wind turbines operate with active pitch control combined with variable speed generator 

(Ackermann and Soder, 2002 and Gardner et al. 2003).  In more simple control of variable-speed 
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variable-pitch (VS-VP) wind turbines, the generator torque and pitch angle are controlled 

separately. In low wind speed, the pitch angle is fixed while the torque control makes it possible 

for wind turbine to operate at variable speed to capture the maximum wind power. At high wind 

speeds, the pitch control limits the captured wind power and the rotor speed while the generator 

torque is unchanged (Constant torque strategy in Region III) (Bossanyi 2000). The constant 

torque in high wind speeds results in higher pitch activities for regulation of the generated power, 

so that it induces extra load in the components. Therefore, constant torque at high speeds does 

not fully exploit the capabilities of VSVP wind turbines.  

In some works such as Leithead and Connor (2000), two independent feedback loops are 

designed to track the speed reference and the torque reference for the cases that both pitch 

control and generator torque are active simultaneously. However, this decentralized approach 

does not get optimal results. A multivariable or centralized approach in which the pitch angle and 

generator torque are involved simultaneously for an optimal control design, can perform better. 

In this report, we use the multivariable approach to design the pitch and torque controls in a     

performance framework and using the gain-scheduling techniques for the LPV model of the 

wind turbine at high wind speeds (Region III).  

1.5.1 Gain-Scheduling with Guaranteed Stability 

In numerous applications in nonlinear systems, gain-scheduling has successfully been 

used. In this method, the linear model of nonlinear system is obtained at different operating 

points and linear controller is designed for each region of operation. Based on the value of 

scheduling parameters, the controllers are changed. However, there is a concern in stability and 

performance of system in switching between controllers. Some works have been performed to 

improve the stability and performance such as imposing certain dwell time (Hespanha and Morse 
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1999). The well-established linear parameter varying (LPV) systems theory can guarantee the 

stability and performance in the whole range of operation. The problem of this method is the 

computational effort needed to obtain the LPV controller that limits application of LPV to lower 

order systems. Also, all the controllers are designed simultaneously, so that the performance at 

design points may be degraded. In some applications, it is desired to design the optimal 

controller at each operating point independently (Bianchi and Pena 2011). Some work on the 

controllers designed independently can be found in Chang and Ramussen (2008), Stilwell and 

Rugh (2000), Blanchini et al. (2009), Hespanha and Morse (2002). Bianchi and Pena (2011) 

presented a methodology which considers the interpolation of LTI controllers designed for 

different operating points in order to produce a gain-scheduled controller. They formulated a 

stability-preserving interpolation scheme with a performance level guarantee in the state-space 

framework.  In this study, we used the gain-scheduling technique proposed by Bianchi and Pena 

(2011) for interpolation of   -optimal controllers designed for each wind turbine operating point 

at different wind speeds in Region III. We also established the measure of performance level in 

the interpolating points to the    performance case using LMIs as     performance case was the 

only one discussed in Bianchi and Pena (2011). In addition, we derived the equivalent stability 

criteria in terms of LMIs for discrete-time systems as in Bianchi and Pena (2011), the stability 

criteria was presented only for continues-time systems.  

1.5.2 Control Optimization Using Genetic Algorithms  

The optimal control problems of the type described above are generally solved 

numerically. The earlier numerical methods were based on finding a solution of the two-point 

boundary value problem given by the Euler-Lagrange equation which is necessary condition for 

optimality, or satisfies Hamilton-Jacobi-Bellman equation, which is sufficient condition of 
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optimality. These methods are called indirect methods. Some of the main drawbacks of indirect 

methods are given in Fabin (1996) and Fabin (1998). Most of recent works on optimal control 

problem, use direct methods, in which, the optimal solution is obtained by direct minimization of 

the performance index subject to constraints. The direct methods can be applied by using 

discretization technique or parameterization technique. However, the direct methods are less 

accurate than indirect method and sometimes have several minima (Fabin 1996 and Fabin 1998). 

In   -optimal control problems, the minimization problem of the   -gain of the closed 

loop system can be transformed to a linear programing (LP) problem with efficient numerical 

solution as discussed in Kammash (2000). However, these LP approaches result in high order 

controllers that limits their practical applications (Rieber et al., 2007).  Therefore, in this study 

we decided to use a search-based optimization such as genetic algorithms (GAs). In   -optimal 

control problem, the optimization objective function is a nonlinear function with variables from 

parameterization of matrices in the state-space realization of output-feedback controller. Using 

GAs we can numerically solve the optimization problems with nonlinear objective functions and 

large number of variables.  Another advantage of using GAs for   -optimal control problem is 

that we can arbitrarily choose the order of the output-feedback controller based on our desired 

control performance. Some works such as Abo-Hammour et al. (2011) are useful for the solution 

of optimal control problems using GAs. 

As described in Goldberg (1989), Sakar and Modak (2004), Sim et al. (2000), Davidor 

(1991), and Abo-Hammour et al. (2002), Genetic Algorithms (GAs) can be distinguished from 

other calculus-based and enumerative methods for optimization. In GAs, a population of 

individuals are used for searching the optimal solution. This population –based nature of GAs 

has two main advantages. First, GAs can be implemented on parallel machines, which reduces 
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the CPU time required for finding the optimal solution. Second, information concerning different 

regions of the solution space is passed actively between individuals by crossover procedure that 

makes GA a robust optimization method for optimization of nonlinear functions with many 

variables. The memory space occupied is proportional to the size of population in GAs that is a 

drawback of GAs. In addition, because of the large computational effort that is required for some 

optimization problems using GAs, especially in sequential machines, these methods may be 

disadvantageous in real time applications. But in off-line solutions, such as the   -optimal 

control of wind turbines that we are interested in, the accuracy of the solution is much more 

important than the time required for the solution.  

1.5.3 Basic Description of Genetic Algorithm 

Genetic algorithms (GAs) are inspired by natural evolution. The first step of many 

genetic algorithms starts with a set of solutions (chromosomes) called a population. Using 

GA operators (such as mutation and crossover), a new set of solutions (offspring) are 

generated. The new solutions are selected based on their fitness. Therefore, more suitable 

solutions have more chance to reproduce. This process is repeated until some condition (for 

example, number of generations or improvement of the best solution) is satisfied. The basic 

GA can be summarised in the following steps: 

1. Generation of random population of   solutions (chromosomes). Often, a binary string is 

used for encoding of chromosomes. The whole string can represent a number or each bit 

can represent some characteristic of the solution.  

2. Evaluation of the fitness,     , of each chromosome   in the population. 

3. A new population is created by repeating following steps 3.1 to 3.4 until the new 

population is complete. 
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3.1 Selection of two parent chromosomes from a population, so that the ones with 

better fitness have higher probability of being chosen. Roulette wheel selection 

and rank selection are two examples of many methods for selection of best 

chromosomes. 

3.2 Crossing over the parent chromosomes to form a new offspring with a crossover 

probability. If no crossover was performed, the offspring is an exact copy of the 

parents. The simplest way to realize a crossover is to choose randomly some 

crossover point and copy from one parent everything before this point and then 

copy from the second parent everything after a crossover point. Also, there are 

multi-point crossover methods. 

3.3 After a crossover is performed, mutation takes place. Mutation is made to prevent 

the GA from falling into a local extreme. With a chosen mutation probability, 

mutation randomly changes the new offspring. For binary encoding, we can 

switch a few randomly chosen bits from 1 to 0 or from 0 to 1. 

3.4 Place the new offspring in the new population. There is a high chance of losing 

the best chromosome when creating a new population by crossover and mutation. 

In order to keep best solutions, the best chromosome (or a few best chromosomes) 

is first copied to the new population. (Elitism)  

4 The new complete population is used for a further run of the algorithm. 

5 If the termination condition is satisfied, the algorithm is stopped and the best solution of 

last generation is returned. 

6 If the termination condition is not satisfied, go to step 2. 

 

http://www.obitko.com/tutorials/genetic-algorithms/selection.php
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1.6 Contributions of Thesis 

 

The main contributions of thesis are 

 Introducing   -optimal control approach to deal with the wind disturbances and 

turbulence profiles in control of large VS-VP wind turbines. 

 Providing literature review of control design for wind turbines and   -optimal control 

problem. (Chapter 1 and 2) 

 A Presentation of linear matrix inequality (LMI) solution of the   -optimal control 

problem and obtaining optimal control for state-feedback control case.(Chapter 2 and 3) 

 Proposing a new computationally efficient method for calculation of   -norm.(Chapter 2) 

 Developing a LPV model of aerodynamic and drive-train dynamics of a VS-VP wind 

turbine in the transition region (Chapter 3).  

 Derivation of the LMIs for    performance in theorem 4.2 and presentation of theorem 

4.1 for discrete-time systems. (Chapter 4) 

 

1.7 Organization of Thesis  

 

 Chapter 1: A comprehensive overview of wind turbine systems and literature review of control 

design for wind turbines and also overview of   -optimal control are presented. 

 Chapter 2: Different approaches for solution of   -optimal control problem in the literature are 

presented. Linear matrix inequality (LMI) solution of the   -optimal control problem is 

explained. As an example of the LMI approach,   -optimal PI gains for a state-feedback 
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controlled system is obtained. We proposed a new computationally efficient method for 

calculation of   -norm.  

 Chapter 3: A novel LPV model of aerodynamic and drive-train dynamics of a VS-VP wind 

turbine in the transition region is developed and the state-space realization of the control system 

is presented. A state-feedback controller is derived based on    performance by minimizing the 

upper bound problem on the   -norm using a LMI approach.  

 Chapter 4: The linear model of a wind turbine is derived at different operating points in Region 

III (the rated power region at high wind speeds). Next, we find local output feedback controllers 

at each operating point. The local controllers are optimized based on    performance using 

genetic algorithm method. Finally, a gain-scheduling technique with guaranteed stability is 

presented in order to interpolate the local controllers.  

 Chapter 5: The proposed gain-scheduled   -Optimal control is validated by implementing the 

controller on the FAST wind turbine simulation software and the    controller is compared with a 

well-tuned PI controller.  

 Chapter 6: The summary of thesis and a few suggestions for future work are presented. 
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Chapter 2:   -Optimal Control Synthesis 

  

 In this chapter,   -optimal control is introduced and the linear matrix inequality (LMI) 

solution of the   -optimal control problem is presented. As an example of the LMI approach, we 

obtain   -optimal PI gains for a state-feedback controlled system. Then, methods found in the 

literature for calculation of the   -norm and its upper and lower bounds are detailed. Next, we 

propose a computationally efficient method for calculation of   -norm. Finally, using an aircraft 

model, we compared the accuracy and computation speed of our new method for calculation of 

  -norm with some standard methods found in the literature. Also, in the aircraft example, we 

design optimal controllers for the system based on   -performance,   - performance, and   - 

performance and then we simulate the closed-loop system responses. 

 

2.1 Introduction to   -Optimal Control 

 

Consider an LTI discrete-time system,  , with state-space description  

[

      
    
    

]  [
     

        

        

] [

    
    
    

]                                       (2.1)  

where      denotes states and       defines reference signals and disturbances.       is 

the control input,       is the performance output, and       is the measurement. 

Assumptions in this description are stabilizability of the pair         and detectability of the pair 

      . The exogenous disturbances belong to   
 , which is the space of vector-valued bounded 

signals              with      [             ]
  and the norm 
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 ‖ ‖               |     |                                           (2.2)  

This means that the signals in this space have finite amplitude but not necessarily finite energy. 

Also, the space of matrix-valued right-sided absolutely summable real sequences is denoted by 

  
   , with a norm 

‖ ‖           ∑ ∑ |      |
 
   

 
                                        (2.3) 

To measure the worst-case signal amplification, the   -gain between input   and the output   of 

a system is introduced, which is the   -induced norm of the system operator     
    

 , 

defined by 

‖ ‖                   
‖  ‖ 

‖ ‖ 
                                      (2.4) 

For an LTI operator or transfer function, the   -induced norm is the   -norm of its 

impulse response matrix. The ultimate purpose of   -optimal control is to find an LTI controller 

 , that stabilizes the closed-loop transfer function and minimizes the   -norm.   is the 

argument of the optimization objective function resulting in the smallest size of transfer function 

as 

       ‖      ‖                                                 (2.5) 

where        is the closed loop       impulse response matrix. 

 

2.2 LMI Solution of the   -Optimal Control Problem 

 

A well-known approach to   -optimal control is using LMIs to find an upper bound on 

the   -norm. Considering the system  

{
 ̇       
       

                                                        (2.6) 
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where      is the state, and       is the input and       is the output. Assuming     is 

the transfer function that defines a mapping from bounded amplitude inputs      to the 

bounded amplitude outputs     , then a relevant    performance criterion is the peak-to-peak 

or   -induced norm of this transfer function 

‖   ‖           ‖ ‖   
‖ ‖ 

‖ ‖ 
                                    (2.7) 

An upper bound,  , of the peak-to-peak gain is given in Scherer and Weiland (2004) and 

Khosravi and Jalali (2008). The matrix inequality constraints in the following theorem are used 

to find the upper bound   for the system with state-space realization Eq. (2.6).   

 

Theorem 2.1: If there exists          and     such that  

[
           

      
]                                                (2.8) 

[
     

         

    
]                                                  (2.9) 

then the peak-to-peak or   -induced norm of the system is smaller than  , i.e. ‖   ‖       . 

Because of conservatism, the inverse of the theorem is not true.    is the only non-linear 

term in the matrix inequalities (2.8) and (2.9). To overcome this problem for a fixed      , we 

test whether the resulting LMIs are feasible; if yes, the bound   on the peak-to-peak norm has 

been assured; if the LMIs are not feasible, we choose another     and repeat the test (Scherer 

and Weiland, 2004). 

It is advantageous to find the best possible (least conservative) upper bound on the peak-

to-peak norm. For this purpose, a line-search over     to minimize       (the minimum value 

of   if      is held fixed) is performed. Minimizing       subject to LMI constraints leads to a 
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convex optimization problem with extensive and efficient solutions. The line-search leads to the 

best achievable upper bound 

                                                                   (2.10) 

A lower bound on the peak-to-peak norm is the   -norm. The conservatism of the 

proposed LMI method can be estimated by calculating the   -norm of the transfer function 

from   to  , i.e. ‖   ‖ . This minimal achievable   -norm denoted by   . The actual optimal 

peak-to-peak gain must be in the interval [     ] and a small interval suggests that the upper 

bound is close to the actual peak-to-peak gain (Scherer and Weiland, 2004).   In Sec. 2.3, we 

present an example of control design using the LMI approach. Also, in Ch. 3, we derive the state 

feedback controller for a wind turbine system using the LMI approach presented in this section.  

 

2.3 Obtaining   -Optimal PI Gains for a State-Feedback Controlled System Using the LMI 

Approach 

 

We  can derive the optimal proportional (P) and integral (I) gains for a state feedback 

controlled system to optimize the    performance of the closed-loop system using the LMIs of 

Theorem 2.1. In this section, we present a procedure to transform the optimal control design 

problem to an optimization problem with LMI constraints. Consider the system 

{
 ̇             
                     
                    

                                                 (2.11) 

In the realization (2.11), we assumed that       and      .This assumption applies to many 

practical problems as it means that the performance measure is not subject to exogenous signals 
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(such as noise) and there is no direct feed through of the control inputs to the measured outputs. 

We consider a feedback control rule which composed of proportional and integral of states 

        ∫                                                        (2.12) 

where,   is the control input,   is the vector of states,    is the proportional gain, and    is the 

integral gain.  We define a new state-space realization of the closed loop system with augmented 

states as expressed below 

                  ∫                  [
  

  
]                                (2.13) 

Closed loop system:                   {
 ̇  [

          

  
]  [

  

 
] 

  [             ]               
   

                                  (2.14) 

By substituting the closed-loop matrices in the LMIs of Theorem 2.1, the   -optimal control 

problem for a system with PI control can be stated in terms of the matrix inequalities below 

[
[
          

  
]
 

   [
          

  
]     [

  

 
]

[
  

 
]
 

    

]              (2.15) 

[
   [             ]

 

        
[             ]    

]                (2.16) 

Assuming a matrix structure,   [
   
   

], at the expense of some conservatism, we can 

simplify the inequalities (2.15) and  (2.16) as 

[

           
   

                           

  
   

          

  
       

]             (2.17) 
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[
 
 
 
                  
                      

                   
    

    
 

                             
    

 

     
             

                     
                 ]

 
 
 

                          (2.18) 

The following Schur complement lemma is used to transform matrix inequalities (2.17) and 

(2.18) to LMIs.  

 

Lemma 2.1: The inequalities:  

                                                             (2.19) 

are equivalent to the LMI: 

[
        

         
]                                                         (2.20) 

               

Using Lemma 2.1, we can rewrite Eq.(2.17) in the form  

[
           

   
               

 

 
      

            

  
   

         

]       (2.21) 

Using the fact that if     (positive definite), then       , and also assuming     , then 

multiplying the both sides of the inequality (2.21) by  [
  

   

   
  ]   , where     

  , we 

obtain 

[
          

   
           

 

 
    

        

   
   

     
]                  (2.22) 

Using the Schur complement Lemma 2.1 again, we can rewrite Eq. (2.22) as 

[

          
   

                   

   
   

      

  
     

]                     (2.23) 
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Using Schur complement Lemma 2.1, we can rewrite Eq. (2.18) as 

[
    

 

 
   

    
    

             
 

 
   

    
    

         

 
 

 
   

    
                

 

 
   

    
         

]               (2.24) 

Multiplying both sides of the first inequality in Eq. (2.24) by  [
  

   

   
  ]    , where     

  , 

we obtain 

[
   

 

 
    

     
    

               
 

 
    

     
    

          

 
 

 
    

    
                 

 

 
    

    
          

]     (2.25) 

Using Lemma 2.1, we obtain 

[
 
 
                                

                               

                             
     

    
 

                                            
    

 

        
                    

                         
                     ]

 
 
 

              (2.26) 

Defining new variables       and J=   , we can rewrite Eqs. (2.23) and (2.26) as given in 

Eqs. (2.27) and (2.28), respectively.  

[

           
                

    
      

  
     

]                             (2.27) 

[
 
 
                              

                             

                              
       

 

                                              
 

           
                    

                         
                        ]

 
 
 

                        (2.28) 

The LMI minimization problem setup for obtaining a state-feedback PI-controller with 

  -optimal criterion, is summarized in the following optimization problem 
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Optimization problem: 

                  

                

[

           
               

    
      

  
     

]    

[
 
 
                              

                             

                              
       

 

                                              
 

           
                    

                         
                        ]

 
 
 

               (2.29) 

where,                 are variables and the PI gains can be obtained by the relations  

                                                                (2.30) 

The only term that has multiplication of two variables is   . To solve this problem and 

having all the inequalities linear, we perform a line-search over     to minimize      , (the 

minimum value of  ) if      is held fixed; Note that calculation of       indeed amounts to 

solving a LMI problem. The line-search leads to the best achievable upper bound. 

  

2.4 Computing   -Norm and its Upper and Lower Bounds for Discrete-Time Systems 

 

          Suppose a discrete-time LTI system of dimention       without uncertainties has the 

impulse response                . From a state-space realization 

[
      

    
]  [

  
  

] [
    

    
]                                           (2.31) 

with           , the Markov parameters of the impulse response are computed as  

     {
                       

                
                                           (2.32) 
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Then, the   -gain is obtained as the   -norm of  , i.e. 

‖ ‖     
      

∑ ∑|      |

 

   

  

   

  

         
∑ ∑ |      |

 
   

  
             

∑ ∑ |      |
 
     

  
                  (2.33) 

Due to the sub-additive property of the max-operator, where        are the components of the 

matrix      . By construction we can state that        and 

   ‖ ‖                                                     (2.34) 

The value of ‖ ‖  is approximated by truncation as ‖ ‖     provided that     , which is the 

  -norm of the truncated remainder is sufficiently small.  

2.4.1 Star-Norm Performance 

               To compute the   -gain of the system  , one has to obtain the impulse response of  . 

Since getting the solution may be computationally expensive, another possibility is to use 

cheaper upper bounds. To this end, a linear matrix inequality condition is introduced to 

characterize the so-called star-norm and hence to determine an upper bound on the peak induced 

norm (Rieber et al., 2007). 

 

Theorem 2.2: Consider the system   with the realization above, and       . Suppose there 

exist            and     satisfing  

[
           

           
]                                               (2.35) 

[
             

              
]                                     (2.36) 

then 
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 ‖ ‖       for ‖ ‖      , and moreover ‖ ‖          , 

 ‖ ‖   √    and 

   has all its eigenvalues in the open unit disk.  

 

The value   appearing in Theorem 2.2 is an upper bound on the system’s peak-induced norm. 

The smallest achievable   is called the star norm ‖ ‖  of  . Mathematically speaking, 

‖ ‖            such that            hold. Hence ‖ ‖         ‖ ‖  and 

‖ ‖  √  ‖ ‖         √  ‖ ‖                                       (2.37) 

2.4.2 Computing an Upper Bound on the   -Norm of an Impulse Response Tail 

               In this section, we present the method in Rieber et al. (2007) for computing an upper 

bound on   -norm. To compute an upper on      , one can use Theorem 2.2. To this end, 

observe that the impulse response tail                        is the impulse response 

of  

[
       

     
]  [      

     
] [

     

     
]                                    (2.38) 

Hence      ‖    ‖
 
 is the upper-bounded by using a star-norm computation as follows 

 

Corollary 2.1: Consider the system with the realization of Eq. (2.38) and       . Suppose 

there exist            and     satisfing  

[
               
                           

]                                 (2.39) 

[
                

                              
]                      (2.40) 
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Then,        √  , and   has its eigenvalues in the open unit disk. 

 

2.5 A New Computationally Efficient Method for Computing   -Norm  

 

The following is a novel method for computing the   -norm of a discrete time system 

which will be shown to be computationally efficient. Consider the discrete-time LTI system in 

Eq. (2.31). Using a linear matrix transformation,  , which is composed of the eigenvectors 

corresponding to the eigenvalues of matrix   , we can decouple the system so that 

                                                                     (2.41) 

{
 ̇                  
                            

                                             (2.42) 

where,            [
    
   
    

]

   

 is a diagonal matrix,          |    
,    

    |    , and     |     
. Note that the eigenvalues and the transformation matrix,  , may 

have complex entries. We also assume that   is not singular and inverse matrix is available. 

Therefore, we should have non-repeating eigenvalues as the condition of using this method. The 

closed-loop system has impulse response                      . The Markov parameters of 

the impulse response are computed as  

      {
                          

     
               

                                       (2.43) 

Then, the   -norm of    is 

‖  ‖           
∑ ∑ |    

   | 
   

  
                                   (2.44) 

for    , 
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    [    

     ] [
    
   
    

]

   

[

    

 
    

]      
  
       

       
  
       

  (2.45) 

Using the inequality |   |  | |  | |, we obtain 

∑ |    
   |

 

   

 |    
|  |    

    
       

    
|  |    

  
     

       
  
     

|      

|    
|  |    

    
|    |    

    
|  |    

  
     

|    |    
  
     

|     

|    
|  |    

    
|    |  |

  |  |
      |    

    
|    |  |

  |  |
        (2.46) 

For a stable system, |  |           . The sum of the geometric sequences with infinite 

terms,   |  |  |  |
    

 

  |  |
 for |  |           . Therefore  

‖  ‖     
      

∑ ∑ |    
   |

 

   

  

   

 

    
      

{
(|    

|    |     
|)  

|    
|

  |  |
(|    

|    |     
|)   

                                                                         
|    

|

  |  |
(|    

|    |     
|)

}                                                 

(2.47) 

The linear transformation does not change the transfer function, i.e.     . 

Therefore, ‖  ‖  ‖ ‖ . In fact, the relation (2.47) can be used for calculation of the upper 

bound on the   -norm. In this new method, we can avoid the calculation of the series with 

infinite terms as in Eq. (2.33) to calculate the   -norm of the system. The number of terms which 

should be calculated for a reasonable approximation of the   -norm in Eq. (2.33) depends on the 

dynamics of the system and the sampling time of the discrete-time system. For high sampling 

rates, approximation of   -norm requires a larger number of the series terms in the Eq. (2.33) to 
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be summed. Therefore, the Eq. (2.33) for calculation of   -norm for high sampling rates is 

computationally expensive, whereas the upper bound which we proposed in relation (2.47), is 

independent of sampling rate and is computationally efficient. In the following example, we 

compare the accuracy and computation time of our proposed method and the truncated series for 

  -norm computation. 

Suppose that the state-space realization (2.31) represents a feedback controlled closed-

loop system. Then, the system parameters     
     

     
    in the relation (2.47), are functions of 

feedback control parameters in  . In order to optimize the controller parameters (   based on the 

   performance, the upper bound in Eq. (2.47) can be used as the objective function of 

optimization and the feedback control parameters are the variables of the optimization. The 

computationally efficient objective function allows us to use search-based optimization methods 

such as genetic algorithms (GAs). In Ch. 4, we use GAs to design   -optimal control for a wind 

turbine system.  Therefore, the minimization problem can be summarized below 

 

Minimization Problem 

Find        
                

    S.t.  |  |                                             (2.48) 

        
      

{
(|    

|    |     
|)  

|    
|

  |  |
(|    

|    |     
|)   

                                                                        
|    

|

  |  |
(|    

|    |     
|)

}                                                      

(2.49) 

‖ ‖                                                            (2.50) 
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This constrained optimization problem can be converted to an unconstrained problem 

using penalty methods, e.g., adding a penalty term such as     |  |             , where 

     {
         
         

 and     is the penalty weight, to the objective function in Eq. (2.49). 

Therefore, for the control parameters which the closed-loop system is unstable i.e. |  |   , a 

large constant is added to the objective function as penalty. 

 

2.6 Example:   -Optimal Control Design for an Aircraft Model Using Genetic Algorithm  

 

 In this example, we use our proposed method of Sec. 2.5 for calculation of an upper 

bound on   -norm. We consider an output feedback dynamic controller for the aircraft system 

and then we optimize the controller using GA method. We also use the truncated series,     in 

Eq. (2.33) to compute the   -norm. We compared the accuracy and the computation speed for 

calculation of   -norm. We obtained the first order, second order, and third order dynamic output 

feedback controllers for the aircraft model using the two methods .The results for the first-order 

controller are given in Figs. 2.1-2.3.  

The discrete-time state space realization of the aircraft model is listed below  

  [

 
 ̇
 
]  [

               
          

                 
]    [

  

  
]  [

        
        

]    

[
 
 
 
 
  

  ̇
  

   

   ]
 
 
 
 

 

  [
             
            
            

]     [
        
         
        

]     [
              
              
            

]     
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   [
   
   
   

]      [
      
      
      

]      [
  

     
     

]   

   [
   
   
   

]      [
        
 
 

 
 

 
 

 
 

   
 

 
   

]      [
  
 
 

 
 
]              (2.51) 

The sampling time for this discrete-time system is 0.01 seconds. Considering an output feedback 

dynamic controller           , where 

  {
                    

                         
                                      (2.52) 

The state-space realization of closed-loop system is 

{
 ̇           
           

          [
 
 
]                                      (2.53) 

    [
            

      
]      [

          

     
]      [               ]  

                                                           (2.54) 

Using GA method, we found the optimal values of   ,   ,   , and    in order to minimize the 

upper bound on   -norm based on our calculation methods.  

First order controller: (Number of control variables: 12) 

   [     ]    [               ]    [
     
      

]    

   [                
                  

]                                         (2.55) 
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Figure 2.15The accuracy of    -norm  computation is compared between  the two methods. For 

the new method, the approximation error does not depend on N (truncation number), whereas for 

the truncated series, the accuracy increases with N. 

 

 

Figure 2.26The   -norm computation time for optimization purpose is compared between the 

two methods. For the new method, the computation time is independent of  N (the truncation 

number), whereas the for the truncated series, the computation speed increases with N. 
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Figure 2.37Unit step response of the feedback controlled aircraft system with first order 

dynamic controller.   

 

              We also obtained optimized higher order dynamic controllers. Similar results were 

obtained for second order and third order controllers. But, the higher order controllers have a 

higher number of variables and the   -norm computation time was slightly longer. 

               Next, we synthesized   -optimal state-feedback controllers for the aircraft system using 

optimization based on different   -norm approximation methods. The results of optimization are 

summarized in the Tab. 2.1. Moreover, we optimized the state-feedback controller based on   -

norm, and   -norm criteria and the results are presented in the following. 
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Table 2.1 The optimized state-feedback gains, the computation speed, and the accuracy of 

different methods for approximation of   -norm are given. 

  -gain calculation 

method 

 New upper bound   -norm approximation 

(N=50) 

  -norm approximation  

(N=200) 

Optimized feedback 

controller gains 
[                
                  

] [
                 
                    

] [                 
                

] 

Coomputation time 

per evaluation 

0.000091 seconds 0.000602 seconds 0.002572 seconds 

The optimal 

 value 

0.8005 0.4696 0.6529 

Actual   -norm 

(N=inf)  

0.7800 1.6246 0.6548 

 

              In Tab. 2.1, we obtained the optimal feedback controller gains using three methods (our 

new upper bound and the truncated series with N=50 and N=200 terms) for approximation of   -

norm of closed-loop system. Tab. 2.1 suggests that the truncated series with N=50 does not 

provide an accurate approximation of   -norm of the closed-loop system. For N=200, the 

approximation is closer to the actual value of the   -norm. Compared to the new method, using 

truncated series with N=200, we obtained 19.1% lower values for the   -norm which means 

better result in terms of minimization. However, the computation speed is 28.3 times higher 

using the new method. 
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Figure 2.48Unit step response of the closed-loop system. 

 

               In the following, we briefly introduce the   -norm and   -norm. In addition to   -

norm, we used the   -norm and   -norm to optimize the state-feedback gains of the aircraft 

system controller. In the Figs. (2.5) and (2.6), the impulse response and step response of the 

feedback controlled aircraft system which is optimized using different performance criteria, are 

simulated using SIMULINK software. 

 

  -norm 

               The   -norm of a stable continuous system with transfer function     , is the root-

mean-square of its impulse response, or equivalently 

‖ ‖  √
 

  
∫      (           )  

  

  
                                     (2.56) 
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This norm measures the steady-state covariance (or power) of the output response      to 

unit white noise inputs  . Actually, for a unit intensity input, white noise process, the steady-

state variance of output , , is ‖ ‖ . 

‖ ‖ 
                                                             (2.57) 

 

  -norm 

               The infinity norm is the peak gain of the frequency response, that is, 

‖ ‖      |     |     (SISO case)                                        (2.58) 

‖ ‖          |     |     (MIMO case)                                    (2.59) 

where         denotes the largest singular value of a matrix. The    (or RMS) gain from   

 ,       
‖ ‖ 

‖ ‖ 
, is equal to  ‖ ‖ , where the   -norm of a signal  , that is square integrable 

(    ), is defined as 

‖ ‖  (∫            
  

  
)
 

                                                 (2.60) 

              Note that the weighted   -norm does not actually give element-by-element bounds on 

the components of performance output,  , based on element-by-element bounds on the 

components of input,  . The precise bound it gives is in terms of Euclidean norms of the 

components of   and  . Therefore, if realistic multivariable performance objectives are to be 

represented by a single MIMO   -norm objective on a closed-loop transfer function, additional 

scalings are necessary. However, the   -norm can provide element-by-element bounds on the 

maximum of components of input and output.  
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Table 2.2 The state-feedback control gains of the aircraft system are optimized based on   -

performance,   - performance, and   - performance.   -norm,   -norm, and   -norm of 

the closed-loop system for different optimized feedback gains are given. 

Performance 

Criterion 

Optimized State-Feedback 

Control Gains 

  -norm of 

System 

  -norm 

of System 

  -norm 

of System 

New Method [                
                  

] 0.7800 0.1361 0.8000 

  -Performance [                 
                

] 0.6548 0.2031 0.7067 

  - Performance [               
                

] 1.0711        0.7299 

  - Performance [
                 
                

] 1.1885 0.1736 0.4766 

 

             Tab. 2.2 indicates that the various specific criteria do indeed minimize the closed loop 

system with respect to their slected norm measure. For example, using an   criteria, the 

minimum   -norm of 0.6548 is found. When the closed loop is designed for a different criterion 

the norm is higher as seen looking down the column.  The new method of computing the   -

norm, which does not guarantee optimality but rather only works with an upper bound, gives 

somewhat worse performance (0.7800 versus 0.6548). It is also noteworthy that using the new 

computationally efficient method gives good relative performance using the other standard norm 

measures looking across the top row of Tab. 2.2.  In the following figures, we simulated the 

response of feedback controlled discrete-time model of aircraft for different feedback gains 

which were obtained based on different perforemance criteria. The impulse response and the step 

response of the closed-loop system is shown in the Figs. 2.5-2.6. The objective of optimization 

of the feedback gains is to minimize the system’s gain between disturbance input and the 

performance output. Therefore, the responses with smaller peaks are more desirable when we 

apply impulse and step inputs. 
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Figure 2.59The unit impulse response of state-feedback controlled aircraft system. The feedback 

gains are optimazed based on   -norm,   -norm, and   -norm criteria. The performance 

output vector (z) for each state-feedback controller is shown. 

 

 

Figure 2.610The unit step response of the state-feedback controlled aircraft system. The feedback 

gains are optimized based on   -norm,   -norm, and   -norm. The performance output vector 

(z) for each state-feedback controller is shown. 
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               Note that the impulse input has bounded energy or bounded    -norm, whereas the step 

input has bounded magnitude or   -norm. As shown in Fig. 2.5,  the impulse response of the 

feedback controlled system which is optimized based on an   -norm criterion has smaller peaks. 

But the step response (Fig. 2.6) of the feedback controlled system which is optimize based on the 

  -norm (or the new method) criterion has smaller peaks. In addition, as indicated in the Figs. 

2.5-2.6, the response of  the closed-loop systems which are optimized based on the new method 

and the accurate calculation of the   -norm are very similar. These results validate our proposed 

method as a reliable approximation of the   -norm. 
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Chapter 3:   -Optimal Control of a LPV Model of VS-VP Wind Turbine in the Transition 

Region 

 

This Chapter is organized as follows: a novel LPV model of aerodynamic and drive-train 

dynamics of a VS-VP wind turbine in the transition region is developed and the state-space 

realization of the control system is presented. Then, a state feedback controller based on    

performance is derived by minimizing the upper bound problem on the   -norm using an LMI 

approach. Next, the LPV control strategy is presented and the controller is implemented on the 

LPV model and simulation results are given. 

 

3.1 LPV Model of Wind Turbine in the Transition Region 

 

The developed wind turbine control structure consists of  

1) electrical subsystem (inner loop) with fast time response including the generator and 

pitch actuator  

2) mechanical subsystem (outer loop) with much slower time response including 

aerodynamics and drive-train.  

 

      This defines a cascaded structure (Boukhezzar and Siguerdidjane, 2009). Our concern in 

this study is the outer loop that provides the reference inputs of the inner loop. The main equation 

expressing the aerodynamic and rotor speed is given by 

  ̇                                                                (3.1) 
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where,    is the rotor speed,   is the wind speed, and   is the blade pitch angle.   is the 

aerodynamic torque induced in the blades.     is the electrical torque applied in the generator.    

is given by 

         
 

 
           

 
                                              (3.2) 

where  , the so-called tip-speed ratio is given by  

  
  

 
                                                                (3.3) 

   is the power coefficient.    is a function of tip-speed ratio and pitch angle. The 

following relation is a mathematical model for    given by Hui and Bakhshai (2008) 

          (
  

  
       )  

   
                                      (3.4) 

 

  
 

 

       
 

     

        
                                               (3.5) 

                                             

To develop the LPV model, we utilize the second order Taylor expansion of nonlinear 

term,  , near the vicinity of a mid-operating point in the transition region, as presented in the 

following  

 ̂     ̅         ̂     ̅        ̂     ̅     ̂        ̅                     (3.6) 

          ( ̅  ̅  ̅)   ( ̂  ̂  ̂)  ̅    ( ̅  ̅  ̅)                     (3.7) 

  ̇̂   ( ̂  ̂  ̂)   ̂                                              (3.8) 

 ( ̂  ̂  ̂)     ̂     ̂     ̂  
 

 
    ̂  

 

 
    ̂

  
 

 
    ̂      ̂ ̂      ̂ ̂      ̂ ̂      (3.9) 

where              are partial derivatives that are evaluated at the point ( ̅  ̅  ̅) and  ̂  ̂   and 

 ̂ are deviations from  ̅  ̅ and  ̅. We define  ̂     and  ̂     as the scheduling parameters of 
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the LPV model. This introduces a quasi-LPV model, because  ̂ is a state variable and a LPV 

parameter. Rotor speed and pitch angle can be accurately measured online. In this model, wind 

speed is viewed as exogenous disturbance. By rearranging (3.9)  

 ( ̂  ̂  ̂)        ̂        ̂        ̂  
 

 
    ̂

                     (3.10) 

where             and 

         
 

 
      

 

 
     

         
 

 
      

 

 
      

                           

                                    (3.11) 

           The VS-VP control strategy for capturing maximum power is illustrated in Fig. 3.1. 

According to this strategy, the reference rotor speed for optimum power tracking is 

 ̂  {

     ̂ 

 
             ̂   ̂  

 ̂                     ̂   ̂  

                                        (3.12) 

where,  ̂  is the rated rotor speed and  ̂  
 is the wind speed that the optimal rotor speed first 

hits the rated rotor speed.  ̂  is the filtered wind speed. A low-pass filter               

with time constant  , eliminates high frequency noise in the wind speed measurement. Moreover, 

the derivative of the reference rotor speed,  ̇̂ , will be kept bounded in the fast wind speed 

variations, because | ̇̂ |  |  |      . In the transition region, two inputs are acting; generator 

torque and pitch angle are the control inputs that are acting independently. Therefore, for better 

controllability and optimum power tracking in the transition region, we can define the reference 

input torque of Eq. (3.13) for generator to track the ideal torque curve as shown in Fig. 3.1(c).  

 ̂  {
   

           
   ̂ 

 ̂              
   ̂ 

            (  
 

 
      |   

    
)                    (3.13) 
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Figure 3.111The control strategy at transition region. (a) The ideal rotor speed curve. Control 

inputs, pitch angle (b) and generator torque (c) at different wind speeds. 

 

Defining  ̃   ̂   ̂  and  ̃    ̂    ̂  as the tracking errors and using Eq. (3.10), we 

can rewrite Eq. (3.8) as   

 ( ̇̂   ̇̃)       ( ̃   ̂ )        ̂        ̂  
 

 
    ̂

  ( ̃    ̂ )       (3.14) 

The state-space realization of the LPV wind turbine model is 

{

 ̇                           

                                       

                                      

                                     (3.15) 
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where 

  [
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   [ ]    ̃           [
 ̂

 ̃  

]                                       (3.16) 

Disturbances and reference inputs vector,  , and performance output vector,  , are 

normalized based on their maximum values so that for ‖ ‖    in the transition region, the 

optimal control objective is ‖ ‖   . 

 

3.2 Controller Design  

 

3.2.1 LMI Approach to   -Optimal Control 

A well-known approach to   -optimal control is using LMIs to find an upper bound on 

the   -norm. Considering the system below 

{
 ̇       
       

                                                        (3.17) 

where      is the state, and      is the input and      is the output. Assuming     is 

the transfer function that defines a mapping from bounded amplitude inputs      to the 
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bounded amplitude outputs     , then a relevant    performance criterion is the peak-to-peak 

or   -induced norm of this transfer function 

‖   ‖           ‖ ‖   
‖ ‖ 

‖ ‖ 
                                    (3.18) 

An upper bound,  , of the peak-to-peak gain is given in Scherer and Weiland (2004) and 

Khosravi and Jalali (2008). The matrix inequality constraints in the following theorem are used 

to find the upper bound   for the system with state-space realization Eq. (3.17).   

 

Theorem 3.1: If there exists          and     such that  

[
           

      
]                                                (3.19) 

[
     

         

    
]                                                  (3.20) 

Then the peak-to-peak (or   -induced) norm of the system is smaller than  , i.e. ‖   ‖      

 . 

Because of conservatism, the inverse of the theorem is not true.    is the only non-linear 

term in the matrix inequalities (3.19) and (3.20). To overcome this problem for a fixed    , we 

test whether the resulting LMIs are feasible; if yes, the bound   on the peak-to-peak norm has 

been assured; if the LMIs are not feasible, we choose another     and repeat the test (Scherer 

and Weiland, 2004). 

It is advantageous to find the best possible (least conservative) upper bound on the peak-

to-peak norm. For this purpose, A line-search over     to minimize       (the minimum value 

of   if      is held fixed) is performed. Minimizing       subject to LMI constrains leads to a 
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convex optimization problem with extensive and efficient solutions. The line-search leads to the 

best achievable upper bound 

                                                                   (3.21) 

A lower bound on peak-to-peak norm is the   -norm. The conservatism of the proposed 

LMI method can be estimated by calculating the   -norm of the transfer function from   to  , 

i.e. ‖   ‖ . This minimal achievable   -norm denoted by   . The actual optimal peak-to-peak 

gain must be in the interval [    ] and a small interval suggests that the upper bound is close 

to the actual peak-to-peak gain (Scherer and Weiland, 2004).    

3.2.2 Derivation of State-Feedback Controller 

 Now, we can derive a state-feedback controller        for the general system  

[
 ̇
 
 
]  [

     

        

        

] [
 
 
 
]                                               (3.22) 

where      denotes states and       defines reference signals and disturbances.       is 

the control input,       is the performance output and       is the measurement. The 

matrix   is the feedback gain. In this work, we use the assumption that the system is srictly 

proper, i.e.        and      . In addition to simplifying the manipulation, the assumption is 

valid for the typical wind turbine models.  In the following, to derive the feedback controller for 

the closed loop system, we use some techniques to transform matrix inequalities into a suitable 

LMI-format for solution. The closed loop system is given by 

{
 ̇              

                       
                                                 (3.23) 

We substitute the closed loop system matrices in Eqs. (3.19) and (3.20) as 
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[
                        

  
     

]                             (3.24) 

[
             

        
            

]                              (3.25) 

 

The following lemma is used to transform matrix inequalities (3.24) and (3.25) to LMIs. 

According to Schur complement lemma, 

 

Lemma 3.1: The inequalities:  

                                                             (3.26) 

Are equivalent to LMI: 

[
        

         
]                                                         (3.27) 

Using Lemma 3.1, we can rewrite (3.24) in the following form. It is assumed that      

and    . 

                      
 

 
     

                         (3.28) 

          Therefore, we can multiply both sides of inequality (3.28) by         as given below 

                        
 

 
    

                        (3.29) 

We define new variable      and use Lemma 3.1 to obtain 

[
                       

  
    

]                              (3.30) 

   is the only nonlinear term in matrix inequality (3.30), This problem can be treated as 

discussed before. Therefore, the matrix inequality (3.30) is suitable for LMI minimization 



 

58 

problem with   -norm performance. Note that, the feedback gain can be obtained by the relation 

      . 

Using the same procedure, we can obtain the LMI equivalent to the matrix inequality 

(3.25).  Using the Schur complement lemma for Eq. (3.25), we obtain 

[
   

 

 
                    

       
]                          (3.31) 

Because of diagonal elements, the inequality (3.31) is equivalent to  

      
 

 
                                                              (3.32) 

Multiplying both sides of the first inequality in Eq. (3.32) by         and using the 

new variable      , we obtain 

   
 

 
                                                         (3.33) 

or 

[
             

            
]                                      (3.34) 

The LMI minimization problem setup for obtaining a state-feedback controller with   -

optimal criterion, is summarized in the following optimization problem 

Optimization Problem: 

                  

                 

[
                       

  
    

]     

[
             

            
]                                     (3.35) 
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where          and   are variables and the feedback gain can be obtained by relation  

                                                               (3.36) 

3.2.3 Derivation of LPV State-Feedback Controller 

Application of matrix inequalities for LPV system will result in parameterized LMIs 

(PLMIs). Therefore, the LPV problem solution involves infinitely many LMIs associated with 

each value of the parameter  . PLMIs are still very complex and the general solutions are open 

research problems. However, there are some relaxation techniques to transform (potentially 

conservatively) PLMIs to standard LMIs. By enforcing some constraints of a geometric nature 

on the functional dependence in  , it is, however, possible to reduce the problem to solving a 

finite number of LMIs. As the system matrices in LPV models have linear parameter 

dependence, we can assume an affine form for the PLMI decision variables, so that the resulting 

PLMIs have quadratic parameter dependence. The following proposition in Apkarian and Tuan 

(1998), can be utilized for this class of PLMIs.  

 

Proposition 3.1 (Multi-convexity Property): Consider the function  

             ∑        
 
    ∑            

 
    ∑   

        
 
             (3.37) 

where       ,         
      

    is a convex polytope of r vertices and      ,         

and         are symmetric affine functions of the decision variable x. Then, 

                                                                  (3.38) 

whenever the following finite set of LMIs 

 (     
)                                                        (3.39) 

                                                               (3.40) 
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holds. 

 

            In the wind turbine LPV model, system matrices       and    are linearly dependent on 

the scheduling parameters           . As presented below, the decision matrix variables of 

LMIs in Eq. (3.35) are assumed to be in affine form as in Eq. (3.41). Although, imposing the 

constraint on the decision variable to be a linear function of scheduling parameters causes 

conservatism, the resulting PLMIs for    criterion have quadratic parameter dependence as in 

Eq.  (3.37).   

               

               

               

               

               

         (    )
  

                                                (3.41) 

The ideal pitch angle-rotor speed diagram is illustrated in Fig. 3.2. At low wind speeds 

(Region I), the pitch angle is constant (     . At high wind speeds (Region III), the rotor 

speed is kept constant at    while the pitch angle increases to limit the aerodynamic torque. As 

shown in the Fig. 3.2, to specify a convex domain of variation of system parameters in LPV 

model of wind turbine at transition region (Region II), we need a polytope with at least three 

vertices.      
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Figure 3.212Ideal pitch angle (     -rotor speed (      diagram. A convex polytope 

specifies the parameter-variation domain for LPV model of wind turbine. 

 

3.3 Simulation Results  

 

In this section, results of simulation of implementing the LPV state-feedback controller 

on a simplified nonlinear model of wind turbine introduced earlier in this chapter. A step wind 

speed input (from 10 to 11 m/s) as exogenous disturbance is applied to the wind turbine model 

and the performance of the LPV state-feedback controller is shown in the Fig. 3.3. In this 

chapter, we did not use the FAST wind turbine simulation software, as our simplified non-linear 

wind turbine model with limited DOF, provides a more clear results in terms of validation of the 

mathematical development in this chapter. In the following chapter, we extensively present the 

simulation results using the FAST software to validate the peformance of the gain-scheduled    

controller which we develop in the next chapter.  



 

62 
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Figure 3.313Response of wind turbine control system to a step wind speed input. (a) rotor speed 

vs. time. (b) Generator torque input vs. time. (c) Pitch angle vs. time. (d) Normalized 

performance output vs.  time. 

 

 

Figure 3.414Peak magnitude of output performance at different input frequencies ( ̂  

          ) in the logarithmic scale. 
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As shown, the normalized performance output is small ‖ ‖    . Therefore, we can 

conclude that the tracking errors do not exceed their specified maximum value. The frequency 

response of the control system to wind speed disturbance ( ̂           ) is shown in Fig. 3.4, 

as the peak magnitude of performance output is plotted. The largest induced gain in the system is 

observed in the torques response with a peak amplification of      near a frequency          . 

 

3.4 Conclusion 

 

In this chapter, an LPV wind turbine model is developed for control synthesis over the 

transition region. An LPV and    -optimal state-feedback controller is proposed for VS-VP wind 

turbines in the transition region. The parameter-varying feedback gains of the controller are 

designed so that the    -based time-domain performance measures are optimized. As the results 

suggest, in presence of different persistent disturbances, the performance output shows small 

tracking errors. In addition to disturbance rejection and guaranteed stability over the transition 

region, the multivariable   -optimal control of pitch actuation and generator torque, results in a 

smooth and consistent transition between the maximum power region and the rated power 

region.  
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Chapter 4: Gain-Scheduled   -Optimal Control Design for a Wind Turbine at High Wind 

Speeds 

 

In this chapter, we first derive the linear model of a wind turbine at different operating 

points in Region III (the rated power region at high wind speeds). Next, we find local output 

feedback controllers at each operating point. The local controllers are optimized based on    

performance using genetic algorithm method. Then, we present a gain-scheduling technique with 

guaranteed stability in order to interpolate the local controllers. 

 

4.1 A Linear Model of Wind Turbine at Different Operating Points 

 

Linear models for a wind turbine system can be expressed as 

 ̇                                                                (4.1) 

                                                                (4.2) 

In the model which is used in this study, the first drive-train torsion mode as well as the 

rotor and the generator speeds are being considered. Higher order state-space models of wind 

turbines include more degree of freedoms (DOFs). In this study, we modeled a limited number of 

dynamical equations in the wind turbine systems. However, the control design procedure we 

proposed in this chapter can be easily used for higher order wind turbine models.  For this model, 

it is assumed that the control input is perturbation in blade pitch angle    (the pitch angles of all 

blades are identical). The disturbance input is the perturbation in the uniform component of wind 

speed over the rotor disk,   . It is also assumed that generator speed is the measured control 

signal. 
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In the standard state-space realization of the wind turbine model, wind speed is the 

exogenous disturbance and the performance output consists of the deviation of rotor speed from 

the rated rotor speed, variation of pitch angle, and the rate of change of the pitch angle. The 

purpose of control optimization is to regulate power generation while less control effort is 

applied on the system. Therefore, variation of pitch angle which is a control input and its rate of 

change were considered in the performance output. We use constant power strategy in Region III 

operation. The pitch angle is the control input and the generator torque varies so that the 

electrical power output remains constant i.e.    
    

  
, in which,      is the nominal power 

capacity of the generator in the rated power region,    is the generator speed and    is the 

generator torque. Therefore, the  generator torque variation which is another control input is also 

considered in the performance output by choosing the deviation of rotor speed from the rated 

rotor speed as a performance output. In addition, the power output is maintained constant.    

Using   -optimal control we can minimize the closed-loop system gain between the 

disturbance input and the performance output. Also, the performance output can be easily 

normalized based on the maximum allowable value of the performance variables in the presence 

of bounded-magnitude disturbances. In   -optimal control the   -norm of the input and outputs 

are measured. In fact, one of advantages of the   -optimal control is that we can address the 

maximum of errors and rates of changes using   -norm of the inputs and the outputs. The state-

space realization which we used for the control design is given by 



 

67 

[
 
 
 
 
 ̇ 

 ̇ 

 ̇ 

  

 ̇ 

̇
]
 
 
 
 

 

[
 
 
 
 

                                            
    ⁄         ⁄                               

    ⁄

 
 

   ⁄   
 
 

    ⁄     ⁄      ⁄         

 
 

    ⁄  

      ⁄     ⁄ ]
 
 
 
 

[
 
 
 
 
  

  
  
  

  ]
 
 
 
 

 

[
 
 
 
 

 
 

        ⁄

 
 ]

 
 
 
 

  

     
 

[
 
 
 
 

 
 
 

   ⁄

     ⁄ ]
 
 
 
 

[  ]                                                              

  [      ]

[
 
 
 
 
  

  
  
  

  ]
 
 
 
 

 [ ]
  

     
 [ ][  ] 

  [

       ⁄                      
                       
              ̇   ⁄

]

[
 
 
 
 
  

  
  
  

  ]
 
 
 
 

 [
 
 
 
]

  

     
 [

 
      ⁄

 

] [  ]    (4.3) 

The states in the realization of Eq. 4.3 are: 

   : drive-train torsion        , 

   : generator speed variation      , 

   : drive-train torsion rate (     )    ̇   ̇  , 

  : pitch angle variation  

  : rate of change of pitch angle 

   and   represent the rotational inertia of the rotor and generator about the spin axis, 

respectively and 
 

 
 

 

  
 

 

  
 . The parameter   is the partial derivative of the aerodynamic torque 

     with respect to rotor speed         
   

   
 . 

 

  
 is the pitch control input gain, in which   is the 

partial derivative of the aerodynamic torque with respect to the pitch angle   , (
   

  
 . 

 

  
 is the 
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disturbance input gain, in which   represents the partial derivative of rotor aerodynamic torque 

with respect to the wind speed     , 
   

  
.    is the drive-train torsional spring constant and    is 

the torsional damping constant. The constant   
    

   
   

, is the approximation of the partial 

derivative of the generator torque with respect to the generator speed in the vicinity of the rated 

generator speed     
 . In fact, the constant   represents the effect of the constant power strategy 

in the linearized model of wind turbine. 

In order to provide a reasonable pitch activity with low rate of change at high wind 

speeds in Region III of wind turbine operation, we augmented the pitch angle variation and the 

rate of pitch angle change to the state-space model of wind turbine. We used first-order filters for 

measurement of the pitch angle variation and its rate of change to add these variables in the state-

space model of wind turbine as given in the following  

 ̇   
 

  
   

 

  
                                                        (4.4) 

 ̇   
 

  
   

 

  
                                                        (4.5) 

where,    and    are the time constants of the first order filters. Moreover,      ,      ,  ̇   , 

and       are the maximum values of rotor speed variation, pitch angle variation, pitch angle 

rate of change, and wind speed variations, respectively. These constants are used to normalize 

the performance output and disturbance input vectors.  The parameters of the NREL-Offshore-

Baseline-5MW wind turbine which can be found in Jonkman et al. (2009) are used for 

simulation.  NREL-Offshore-Baseline-5MW is a variable-speed variable-pitch (VS-VP) wind 

turbine with a nominal power rating of 5 MW, hub height of 90 m, and has three blades with 

rotor diameter of 126 m. The main parameters of the wind turbine are summarized in Tab. 4.1. 
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We used the FAST software to obtain the linear model of wind turbine at three different 

operating points at wind speeds of 12, 18, and 24 m/s. The numerical values of the state-space 

realization above at three different wind speeds in the rated power region (Region III) and also 

the constants, which we used to design a controller for our particular model of wind turbine 

(NREL-Offshore-Baseline-5MW) are given in the following list.  
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[
 
 
 
 

 
 
 
  
   ]

 
 
 
 

      [
                 
              
              

]        [
 
 
 
]      [

 
  
 

]          (4.7) 
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Operating point  =1: 12 m/s wind speed 
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                                                                    (4.9) 

Operating point  =2: 18 m/s wind speed 
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                                                                  (4.10) 

Operating point  =3 : 24 m/s wind speed 
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                                                                  (4.11) 

 

Table 4.13NREL-Offshore-Baseline-5MW wind turbine characteristics. 

Rating 5 MW 

Rotor Orientation, Configuration Upwind, 3 Blades 

Control Variable Speed, Variable Pitch 

Rotor, Hub Diameter 126 m, 3 m 

Hub Height 90 m 

Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11m/s, 25 m/s 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

Rotor Mass 110,000 kg 

Optimal Tip-Speed-Ratio 7.55 

Rated Generator Torque 43,100 Nm 

Maximum Generator Torque 47,400 Nm 

Rated Generator Speed 1174 RPM 

 

The value of pitch angle at different steady operating points       is interpolated as a 

function of wind speed,   as given below 

                                                             (4.12) 

                                                           (4.13) 

In Ch. 2, we developed the   -optimal control design for discrete-time systems. In order 

use our proposed procedure for wind turbine system, we need to transform the state-space 

realizations above to discrete-time. We can develop the discrete-time state-space realization of 

the wind turbine by a first order approximation of the equations. The new discrete-time system 

matrices can be related to the continues-time matrices as follows 
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                                                          (4.14) 

where,   ,     , and      are the discrete-time system matrices,   is the identity matrix same size 

as  , and    is the sampling time which can be arbitrarily chosen a small value for more accurate 

approximation. The order of error in the approximation is proportional with    . The other 

system matrices are exactly the same for discrete-time and continue –time systems.  

4.2 Gain-Scheduled   -Optimal Control 

 

             In this study we used the gain-scheduling technique proposed in Bianchi and Sanchez-

Pena (2011) for interpolation of individually optimized local controllers. This approach provides 

guaranteed stability and its advantage over LPV approach is that we can design local controllers 

for each operating point individually for optimized performance. Also LPV method results in 

high-order controllers and derivation of the optimal controller demands a high computational 

effort. As discussed in Ch. 2, we proposed a new computationally efficient method for 

approximation of the   -norm of discrete-time system. We used this new method to derive the 

  -optimal controller using genetic algorithm (GA). Therefore, we found the discrete-time 

equivalent of the theory presented in Bianchi and Sanchez-Pena (2011) for interpolation of gain-

scheduled controllers. In the following, we present the theory for discrete-time systems.  

              The nonlinear dynamics of  a system can be discribed by a set of linear models at each 

operating point as 

   {

                                   

                                       

                                                    

                    (4.15) 
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The operation region is parameterized by a set of points             
 , that divides the region 

  into a set of sub-regions    defined by the vertices             
 . Any point      can be 

expressed as a convex combination of vertices   , i.e., 

  ∑   
  

   
                                                       (4.16) 

where, ∑   
  

   
   and     ,       ,     ,       . The parameterized model of the 

system can be described by a linear combination of state-space realizations corresponding to the 

vertices    

     {

                                      

                                          
                                                             

              (4.17) 

where  

[
         

           
]  ∑      

  

   
[
      

         
]                          (4.18) 

                   is the coordinate corresponding to   . In this model,               are assumed 

to be constant. However, when they are parameter time-varying, a method to enforce these 

requirements consists of filtering the control input and the output through low-pass filters having 

sufficiently large bandwidths. By this technique, the parameter trajectory is shifted into the state 

matrix      (Bianchi and Sanchez-Pena, 2011). Stabilizing controllers with optimized 

performance can be designed independently at each plant    

   {
                            

                  
                              (4.19) 

   {
                          

                                 
                          (4.20) 
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             Then, the objective is to formulate an interpolation for local state-space realization such 

that the gain-scheduled controller  

     {
                            

                                  
                              (4.21) 

stabilizes the plant      at any point    . Note that the order of      is different from order 

of local controllers.  

              In the following, a systematic method to find the interpolation of the local controllers is 

presented. The gain-scheduled controller stabilizes the system      at any point    . This 

interpolation improves the performance at design points while the stability and performance level 

are guaranteed during the transition between controllers. Also, an LMI method is used to 

optimize the    performance at intermediate points that guarantees certain performance level at 

intermediate points. The following theorem gives the gain-scheduled controller that stabilizes 

system at all points. The proof of this theorem can be found in Appendix A. 

 

Theorem 4.1: Given a set of linear plants and a set of stabilizing controllers, if there exists 

positive definite matrices          and    ,  and matrices    and   , such that  

[
           

           
   

]                                         (4.22) 

[
        

    
     

]                                                       (4.23) 

[
             

           
   

]                                      (4.24) 

 for all          

     [
                 

           
]                                          (4.25) 
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then, the following gain-scheduled controller stabilizes plant for all    , and its state-space 

matrices are 

      ∑     [
                        ̃   

  ̃         

]

  

   

 

      ∑     [
         

 ̃   
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                                             (4.26) 

 ̃            
    ̃      [

         

    
]   ̃    [             ]  

   

       
   

         
        

                                   (4.27) 

              

The gain-scheduling technique suggested in Bianchi and Sanchez-Pena (2011), can address the 

performance level at intermediate points in addition to guaranteed stability.   

 In the following, the problem setup for optimization of the gain-scheduled controller is 

addressed using LMI approach. It results in achieving the best    performance possible in the 

intermediate points without degrading the performance at the design points. For the    

performance case, the LMIs constraints were derived in Bianchi and Sanchez-Pena (2011). We 

used the same procedure to drive the LMIs for    performance.  In the following theorem, the 

LMI constraints for    performance optimization are discussed. Imposing a block-diagonal 

structure on    , at the expense of certain conservatism, the research for realization reduces to 

the following result.  
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Theorem 4.2: Given a set of plants and a set of controllers, ‖  (           )‖ 
   . If there 

exist positive definite matrices        , and   , real parameters     and    , matrices    

and              , such that    matrix inequalities below are satisfied, then the controller 

with the state-space presented in theorem 4.1, quadratically stabilizes the plant for any point 

   , and guaranties a performance level ‖ ‖  √  ‖ ‖ , with    √  ,           , 

and   is the number of control inputs.  
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   (4.29) 

where 

     [
                 

           
]       [

         

    
]       [             ] 

                                                             (4.30) 

               

             Note that Theorem 4.2 is presented for continuous-time systems. Also, the matrix 

inequalities above produce a non-convex problem, because some terms in the inequalities in Eqs. 
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4.28-4.29 involve multiplication of matrix variables. Therefore, the variables cannot be found 

simultaneously using an LMI approach. Nevertheless, note that I/O behavior at all vertices are 

unaffected by particular selection of     and    based on Youla parameterization results. 

Therefore, it is sensible to replace the matrices obtained from the stabilization problem in 

Theorem 4.1 (Bianchi and Sanchez-Pena, 2011). Moreover, the terms                 are non-

linear. However, the problem can be solved as follows: 

 

1) Given the controllers      , find   ,   , and the    variables    and    satisfying the 

LMIs in theorem 4.1, and compute        
   and      

               . 

 

2) Assign the previous computed    and    in the LMIs in theorem 4.2 and find   ,   , and 

the    variables     . 

 

3) For fixed    , solve the obtained linear matrix inequalities, if the LMIs are infeasible, 

one has to pick another. If the LMIs are feasible, the bound   on the peak-to-peak norm 

has been assured. 

 

4) To find the best possible upper bound on the peak-to-peak norm, perform a line-search 

over     under the LMI constraints to minimize      , the minimal value of    if 

    is held fixed. The line search leads to the best upper bound 

                                                                 (4.31) 
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4.3 Obtaining the   -Optimal Controllers Using Genetic Algorithms 

 

In order to derive the optimized local controllers at each operating point (at wind speeds 

of 12, 18, and 24 m/s), we used the Matlab optimization toolbox to find the matrices of output 

feedback controller. We used the genetic algorithm (GA) method to search for optimal 

parameters. The    norm of the output feedback controlled closed-loop system is the objective 

function for optimization. The number of optimization parameters (the value of matrices in the 

state-space model of output feedback controller) depends on the order of the output feedback 

controller. In the GA optimization, in each evaluation, some values are assigned to the control 

parameters, and the value of    norm of the closed-loop system is calculated. The new method 

which was suggested in Ch. 2, decreases the computation time for evaluation of    norm, so that 

the time and calculations required for GA optimization decreases significantly. 

Some details regarding the options for genetic algorithm solver in MATLAB 

optimization toolbox are given in the following. The population type is set to be double vector. 

Population type specifies the type of the input to the fitness function. The population size can 

change in a wide range. For this problem, population size of 100 to 500 was chosen. Uniform 

function was used to create the initial population. Uniform function creates a random initial 

population with a uniform distribution. We can specify the initial score and initial range of 

variables. However we used default for these options. The scaling function specifies the function 

that performs the scaling. We chose rank function which scales the row scores based on the rank 

of each individual rather than its score. The rank of an individual is its position in the sorted 

scores. The selection function chooses parents for the next generation based on their scaled 

values from the fitness scaling function.  We chose stochastic uniform selection function which 
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lays out a line in which each parent corresponds to a section of the line of length proportional to 

its expectation. Elite count was set to 2. It specifies the number of individuals that are guaranteed 

to survive to the next generation. 0.8 was chosen for crossover fraction which specifies the 

fraction of the next generation that crossover produces. Mutation produces the remaining 

individuals in the next generation. The Gaussian mutation function chosen for the problem in this 

study.  Mutation functions make small random changes in the individuals in the population, 

which provide genetic diversity and enable the genetic algorithm to search a broader space. 

Gaussian adds a random number to each vector entry of an individual. This random number is 

taken from a Gaussian distribution centered on zero. Crossover combines two individuals, or 

parents, to form a new individual, or child, for the next generation. We chose scattered crossover 

function which creates a random binary vector. Then selects the genes where the vector is a 1 

from the first parent, and the genes where the vector is a 0 from the second parent, and combines 

the genes to form the child. Stopping criteria determines what causes the algorithm to terminate. 

Number of generations and stall generation were set to 1000. Generations specifies the maximum 

number of iterations the genetic algorithm performs. If the weighted average change in the 

fitness function value over stall generations is less than function tolerance, the algorithm stops. 

The function tolerance was set to e-6. The time limit was set to infinity.  

We found the first order and the second order output feedback   -optimal controllers for 

each operating point. As the higher order controllers did not improve the    performance, it is 

preferred to use lower order controllers (first order in this case). Note that, although the local 

controllers are first order, the interpolated gain-scheduled controller has higher order (in the wind 

turbine case, the order of controller is 11) as expressed in Theorem 4.1. The system matrices of 

the first-order controllers which we obtained and also the best value of   -norm at each operating 



 

79 

point are given in the following. In the next chapter, we present the simulation results of 

implementing the gain-scheduled   -optimal controller on the non-linear model of wind turbine 

using FAST software. 

Operating point  =1 : 12 m/s wind speed 

     [      ]      [      ]      [      ]      [       ]   

                                                                        (4.32) 

Operating point  =2: 18 m/s wind speed 

     [      ]      [      ]      [      ]      [       ]  

                                                                          (4.33) 

Operating point  =3 : 24 m/s wind speed 

     [      ]      [      ]      [      ]      [       ]  

                                                                          (4.34) 

where,            ,     , and                are system matrices of optimized local controllers and 

   is the   -norm of the closed loop system. Now, having the linear model of wind turbine at 

each operating point and the corresponding optimized local controllers, we can use Theorem 4.1, 

to find the stabilizing gain-scheduled controller for wind turbine system. We used Matlab 

software to find feasible solutions for LMI constrains in Theorem 4.1. Then, LMI variables can 

be used to derive the interpolation for local controllers with guaranteed stability as presented in 

Theorem 4.1. 
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Chapter 5: Result of Simulation of Gain-Scheduled   -Optimal Control on a 5MW Wind 

Turbine at High Wind Speeds 

 

In this chapter, we present the simulation results. The proposed gain-scheduled   -

Optimal control is implemented on the model using a SIMULINK interface provided in the FAST 

software. The results are shown in the following figures. The specification of the 5MW wind 

turbine model we use for simulation was given in Tab. 4.1. Wind inputs to these simulations are 

TurbSim-generated (Jonkman and Buhl, 2006)         grids of IEC Class A Kaimal-spectrum 

turbulence, sampled every 50ms, with a logarithmic vertical wind profile corresponding to a 

roughness length of 3 cm. Each simulation is 600 seconds in length; results are computed based 

on the final 500s of each simulation in order to eliminate the effect of initial conditions. 

We performed the simulation for 6 different fully turbulent wind profiles with average 

speeds of 14, 16, 18, 20, 22, 24 m/s (in region III).  We compared the performance of our 

proposed controller with a well-tuned PI controller. This PI-controller is developed by Jonkman 

et al. (2009) for the NREL-Offshore-Baseline-5MW model of wind turbine which we used for 

our simulation study. To quantify the power quality, rotor speed and generator torque 

fluctuations we used statistical standard deviations in order to compare the PI and    controls. 

Finally, the conclusion for this simulation study is presented at the end of this chapter.  

 

5.1 Simulation results at Different Wind Speeds 

 

Figs. 5.1-5.6 show the wind speed input (effectively a disturbance input to this system 

relative to a constant wind speed at the chosen operating condition), the rotor speed, the 
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generator torque (one control input), electrical power output and the blade pitch angle (second 

control input) for each of the following nominal wind speeds: 14, 16, 18, 20, 22 and 24 m/s. In 

all cases, both the    and PI control results are shown. 

Simulation results for average wind speed of 14 m/s: 

 

 

(b) 

(a) 
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(c) 

(d) 
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Figure 5.115   and PI control of NREL-Offshore-Baseline-5 MW wind turbine in the rated 

power area (Region III) are compared at average wind speed of 14 m/s. (a) Wind speed profile, 

(b) Rotor speed, (c) Generator torque,  (d) Electrical power output, and (e) Pitch angle are shown 

in a time interval of 10 minutes. 

 

Simulation results for average wind speed of 16 m/s: 

 

(e) 

(a) 
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(b) 

(c) 
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Figure 5.216   and PI control of NREL-Offshore-Baseline-5 MW wind turbine in the rated 

power area (Region III) are compared at average wind speed of 16 m/s. (a) Wind speed profile, 

(b) Rotor speed, (c) Generator torque,  (d) Electrical power output, and (e) Pitch angle are shown 

in a time interval of 10 minutes. 

 

 

 

 

(d) 

(e) 
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Simulation results for average wind speed of 18 m/s: 

 

 

(a) 

(b) 
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(c) 

(d) 
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Figure 5.317   and PI control of NREL-Offshore-Baseline-5 MW wind turbine in the rated 

power area (Region III) are compared at average wind speed of 18 m/s. (a) Wind speed profile, 

(b) Rotor speed, (c) Generator torque,  (d) Electrical power output, and (e) Pitch angle are shown 

in a time interval of 10 minutes. 

 

Simulation results for average wind speed of 20 m/s: 

 

(e) 

(a) 
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(b) 

(c) 
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Figure 5.418   and PI control of NREL-Offshore-Baseline-5 MW wind turbine in the rated 

power area (Region III) are compared at average wind speed of 20 m/s. (a) Wind speed profile, 

(b) Rotor speed, (c) Generator torque,  (d) Electrical power output, and (e) Pitch angle are shown 

in a time interval of 10 minutes. 

 

 

 

 

(d) 

(e) 
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Simulation results for average wind speed of 22 m/s: 

 

 

(a) 

(b) 
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(c) 

(d) 
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Figure 5.519   and PI control of NREL-Offshore-Baseline-5 MW wind turbine in the rated 

power area (Region III) are compared at average wind speed of 22 m/s. (a) Wind speed profile, 

(b) Rotor speed, (c) Generator torque,  (d) Electrical power output, and (e) Pitch angle are shown 

in a time interval of 10 minutes. 

 

Simulation results for average wind speed of 24 m/s: 

 

(e) 

(a) 
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(b) 

(c) 
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Figure 5.620   and PI control of NREL-Offshore-Baseline-5 MW wind turbine in the rated 

power area (Region III) are compared at average wind speed of 24 m/s. (a) Wind speed profile, 

(b) Rotor speed, (c) Generator torque,  (d) Electrical power output, and (e) Pitch angle are shown 

in a time interval of 10 minutes. 

 

We can observe the advantages of the gain scheduled   -optimal control over the PI 

control, especially at higher wind speeds. As shown in the figures, the fluctuation in the rotor 

speed and generator torque has significantly reduced by our proposed controller (as shown in 

(d) 

(e) 
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Tab. 5.1). Therefore, the    controller alleviates the mechanical loads induced in the drive-train 

and the turbine structure, so that it enhances the useful life of the wind turbine. In addition, the 

generator torque-time figures indicate that the generator torque reaches the maximum torque 

several times using PI control, but the torque saturation rarely happens under    control (it only 

occurs in the case of the average wind speed of 14 m/s). Frequent operation at maximum 

generator torque induces high stresses in the mechanical components and may cause overheating 

in the electric circuits. As shown in the pitch angle-time figures, the    control has slightly more 

pitch activity than the PI control. However, the difference in  pitch activities are negligible as the 

pitch rate is always less than 2 degree/sec under both controllers which is safely less that the 

allowed pitch rate (for large wind turbines the maximum pitch rate is about 5 degrees/sec). 

Moreover, as shown in the electrical power output-time figures, implementing the    control, has 

significantly improved the power quality compared with the PI control. These results meet the 

main purpose of this research which is the application of    control to minimize the effect of 

persistent disturbances in the control systems such as turbulent wind in wind turbine systems. 

 

5.2 Analysis of Simulation Results Using Statistical Tools 

 

 We used the standard deviation and the average of the data from simulation to compare 

the performance of the PI and     controls. The standard deviation is commonly used to measure 

the spread or dispersion of data around the mean. The mean and standard deviation for a set of   

data    are 

Mean:     ̅  
∑  

 
                                                              (5.1) 
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Standard deviation:     √
∑  ̅    

 

   
                                                    (5.2) 

In the Tab. 5.1, we calculated the standard deviation and the average of rotor speed, 

generator torque, and the power output for six different simulations for average wind speeds of 

14, 16, 18, 20, 22, and 24 m/s. 

 

Table 5.14The average and standard deviation of the rotor speed, power output, and the 

generator torque at different wind speeds. 

Average 

Wind 

Speed 

(m/s) 

Average and Standard 

Deviation of Rotor Speed 

(RPM) 

Average and Standard 

Deviation of Power Output 

(kW) 

Average and Standard 

Deviation of Generator 

Torque (kN.m) 

  -Control PI-Control   -Control PI-Control   -Control PI-Control 

14 Ave=12.0484 

STD=0.8536 

Ave=12.0946 

STD=0.5027 

Ave=4960.3 

STD=126.1512 

Ave=4944.4 

STD=241.5105 

Ave=43.1035 

STD=2.3866 

Ave=42.6875 

STD=2.4785 

16 Ave=12.2323 

STD=0.6000 

Ave=12.0951 

STD=0.5934 

Ave=4998.3 

STD=16.6186 

Ave=5000.2 

STD=39.4159 

Ave=42.7162 

STD=2.0049 

Ave=43.2130 

STD=2.0696 

18 Ave=12.1777 

STD=0.4350 

Ave=12.0945 

STD=0.6510 

Ave=5000.0 

STD=12.2776 

Ave=4998.0 

STD=45.9396 

Ave=42.8714 

STD=1.4101 

Ave=43.2147 

STD=2.2391 

20 Ave=12.1438 

STD=0.3562 

Ave=12.0929 

STD=0.7094 

Ave=5000.0 

STD=14.2666 

Ave=4994.6 

STD=56.0099 

Ave=42.9751 

STD=1.0911 

Ave=43.2098 

STD=2.3927 

22 Ave=12.1378 

STD=0.3034 

Ave=12.0919 

STD=0.7593 

Ave=5000.0 

STD=15.7840 

Ave=4991.1 

STD=65.0365 

Ave=42.9824 

STD=0.9275 

Ave=43.2005 

STD=2.5119 

24 Ave=12.1723 

STD=0.3056 

Ave=43.1873 

STD=2.6010 

Ave=4999.9 

STD=17.2607 

Ave=4988.1 

STD=74.9502 

Ave=42.8638 

STD=0.9600 

Ave=43.1873 

STD=2.6010 
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Figure 5.721The standard deviation of rotor speed fluctuations around the rated rotor speed under 

   and PI controls is shown at different wind speeds. 

 

Figure 5.822The standard deviation of power output fluctuations around the rated power under    

and PI controls is shown at different wind speeds. 

 

Figure 5.923The standard deviation of generator torque fluctuations around the rated generator 

torque under    and PI controls is shown at different wind speeds. 
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As shown in Figs. 5.7-5.9, our proposed gain-scheduled   -optimal controller has better 

performance compared to the well-tuned PI controller in reducing the standard deviations. The 

decrease in the standard deviations means that the fluctuations in the rotor speed, the generator 

torque, and the power output has been reduced. Therefore, the gain-scheduled   -optimal 

controller can alleviate the mechanical loads induced in the wind turbine components by 

minimizing the effect of turbulent wind disturbances. Also, values of the rotor speed, power 

output, and generator torque are very close to the rated values in the Region III, 12.1 RPM, 

5MW, and 43kN.m, respectively.  

As shown in the Figs. 5.7-5.9, at lower wind speeds with the average of 14 m/s, the 

performance of our proposed controller is not much better than the PI-controller. These ranges of 

wind speeds are close to the rated wind speed (11.5 m/s) in the transition region and the wind 

turbine may enter Region I. As we designed our controller to operate at high wind speeds in 

Region III, the controller performance is lower at wind speeds close to the rated wind speed.  

However, as our controller is designed based on gain scheduling, we can easily extend the range 

of operation of the controller to the lower wind speeds in the region I and the transition region 

(region II).  
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Chapter 6: Summary and Suggestions 

 

6.1 Summary  

 

The fast-growing technology of large scale wind turbines demands control systems 

capable of enhancing both the efficiency of capturing wind power, and the useful life of the 

turbines. Control based on    performance is an approach to deal with persistent exogenous 

disturbances which have bounded magnitude (  -norm) such as realistic wind disturbances and 

turbulence profiles. In Ch. 1, a comprehensive overview of wind turbine systems and literature 

review of control design for wind turbines and also overview of   -optimal control were 

presented. 

In Ch. 2,   -optimal control was introduced and the linear matrix inequality (LMI) 

solution of the   -optimal control problem was presented. As an example of the LMI approach, 

we obtained   -optimal PI gains for a state-feedback controlled system. Then, methods found in 

the literature for calculation of the   -norm and its upper and lower bounds were detailed. Next, 

we proposed a computationally efficient method for calculation of   -norm. Finally, using an 

aircraft model, we compared the accuracy and computation speed of our new method for 

calculation of   -norm with some standard methods found in the literature. Also, in the aircraft 

example, we designed optimal controllers for the system based on   -performance,   - 

performance, and   - performance and then we simulated the closed-loop system responses. 

In Ch. 3, a novel LPV model of aerodynamic and drive-train dynamics of a VS-VP wind 

turbine in the transition region was developed and the state-space realization of the control 

system was presented. Then, a state feedback controller based on    performance was derived by 
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minimizing the upper bound problem on the   -norm using an LMI approach. Next, the LPV 

control strategy was presented and the controller implemented on the LPV model and simulation 

results are given. 

In Ch. 4, we first derived the linear model of a wind turbine at different operating points 

in Region III (the rated power region at high wind speeds). Next, we found local output feedback 

controllers at each operating point. The local controllers were optimized based on    

performance using genetic algorithm method. Then, we presented a gain-scheduling technique 

with guaranteed stability in order to interpolate the local controllers. 

In Ch. 5, we presented the simulation results. The proposed gain-scheduled   -Optimal 

control was implemented on the model using a SIMULINK interface provided in the FAST 

software. We performed the simulation for 6 different fully turbulent wind profiles with average 

speeds of 14, 16, 18, 20, 22, 24 m/s (in region III).  We compared the performance of our 

proposed controller with a well-tuned PI controller. The results show improved power quality, 

and decrease in the fluctuations of generator torque and rotor speed. These results meet the main 

purpose of this research which is the application of    control to minimize the effect of persistent 

disturbances in the control systems such as turbulent wind in wind turbine systems. 

 

6.2 Suggestions  

 

 In this work, we used genetic algorithms to obtain all the matrix entries of an output 

feedback controller. For higher order of controllers, the number of optimization variables 

increases. Therefore, searching for stabilising controllers becomes computationally 
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expensive. For future work, an algorithm which improves the optimization of output-

feedback controllers using methods such as genetic algorithm is useful. 

 In this study, we obtained the gain-scheduled   -optimal control for Region III (high 

wind speeds). Extending the LPV model of wind turbine and the optimal gain-scheduled 

control for the full range of operation of wind turbine including Regions I, II, and III is 

recommended for future work.   

 The theorem (4.2) allows us to optimize the performance level of gain scheduled 

controller at interpolating points. In this work, we obtained the LMI constraints of    

performance for continues-time systems which cannot be used for discrete-time systems. 

Therefore, we suggested that an equivalent of LMIs in Theorem (4.2) is obtained for 

discrete-time systems. 

 Higher order model of wind turbine which includes more DOFs, can be considered for 

optimal control design in future work. Large wind turbines are flexible structures with 

many moving components.  Consideration of some of these dynamic equations in the 

wind turbine model is very important for designing optimal control. 
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Appendixes: Q-Parameterization 

 

This section describes Q-Parameterization (or Youla Parameterization) which is a 

fundamental result of linear control theory. This theory has been developed by Kucera (1972) 

and Youla et al. (1976). The theory provides an affine parameterization of the set of all closed –

loop transfer matrices which can be obtained by using a stabilizing finite order LTI controller in 

a standard finite order LTI feedback optimization setup. Here, we give a discrete-time 

description, but the same formulas hold in continuous time as well. 

 

Lemma A.1: Let a system G with state-space realization  

[

      
     
    

]  [
     

        

        

] [

    
     
    

]                                       (A.1) 

be given, and let F and L be such that       and       are asymptotically stable. Then all 

internally stabilizing finite-dimensional LTI output-feedback controllers      are given by a 

linear fractional transformation (LFT) 

 ̂      (           )                                                  (A.2) 

with  ̂     ,    (      ̂   )   , and 
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]                     (A.3) 

Furthermore, all internally stable closed-loop maps        are given by 

 ̂     ̂     ̂    ̂    ̂   ,                                        (A.4) 

where 
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 ̂    [
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]          (A.5)  
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Appendixes: Proof of Theorem (4.1) 

 

In this section, the proof for the Theorem (4.1) is presented. The continuous-time 

description of the theorem and its proof can be found in Binanchi and Sunchez-pena (2011).  

 

Lemma A.2: Given a set of matrices    associated to each vertex of the convex hull   

           
 , the following statements are equivalent. 

(i)    has its eigenvalues in the open unit disk for all      
 

(ii) There exists    matrix transformations    such that the LPV matrix 

 ̃    ∑       ̃ 
  

   
 ∑            

    

   
                         (A.6) 

has its eigenvalues in the open unit disk for all     , with          in   ∑     
  

   
 

such that ∑   
  

   
  . 

 

We use Lemma A.2 to prove Theorem 4.1. According to Youla parameterization, 

assuming       , any stabilizing controller  ̃  for the plant       can be expressed as a linear 

fractional transformation (LFT): 

  ̃       (           )  [
 ̃     ̃   

      
 ̃     ̃   

]                                  (A.7) 
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]                              (A.8) 
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with      has its eigenvalues in the open unit disk. After some algebraic manipulations, it can be 

proved that, if  

      [

                           

                              
     
         

    
    

     
         

    
          

]                       (A.10) 

the controllers  ̃     are input to output equivalent to the original local controllers      . Note 

that      corresponds to the   matrix of closed-loop system   (           ), Hence       is 

stable if the controller       stabilize      . Then, replacing the controller matrices (LFT 

interconnection between (A.8) and (A.10)) in the closed-loop matrix 

      [
      ̃        ̃   

 ̃      ̃   

]                                        (A.11) 

And applying a similarity transformation, the following result is obtained 

    ∑      [

      

           

                

]
  

   
                               (A.12) 

with             ,               and               .  

Next, to ensure stability at any point in  , a matrix       must be computed such that 

                     . Due to the block triangle structure of       , the previous inequality 

is satisfied if the following three inequalities hold 

∑      (                    )   
  

   
,                              (A.13) 

∑      (                    )   
  

   
,                               (A.14) 

∑      (                    )   
  

   
,                               (A.15) 

with                                    . 
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Taking into account that      are stable matrices by construction and the result in lemma A.2, if 

       
     , inequality (A.14) is equivalent to (4.23). On the other hand, using the vertex 

property (Apkarian et al.,1995), (A.13) and (A.15) can be reduced to prove the existence of 

positive definite matrices    and      
   which satisfy (4.22) and (4.24) at each      

, with 

        and        . Note that we also used Schur complement lemma to obtain the 

equivalent LMIs for inequalities (A.13)-(A.15). 

 

 

 

 

 

 

 

 


