
Getting Back to Back:
Alternate Behaviors for a Web Browser’s Back Button

Saul Greenberg
Department of Computer Science

University of Calgary
Calgary, Alberta
Canada T2N 1N4
+1 403 220 6087

saul@cpsc.ucalgary.ca

Andy Cockburn
Department of Computer Science

University of Canterbury
Christchurch
New Zealand

+64 3 364 2362
andy@cosc.canterbury.ac.nz

Cite as:
Greenberg, S. and Cockburn, A. (1999). Getting Back to Back: Alternate Behaviors for a Web
Browser's Back Button. Proceedings of the 5th Annual Human Factors and the Web Conference,
Held at NIST, Gaithersburg, Maryland, USA, June 3th.

Electronic availability:
See www.cpsc.ucalgary.ca/grouplab/papers/



Getting Back to Back 1 Greenberg and Cockburn

Getting Back to Back:
Alternate Behaviors for a Web Browser’s Back Button

Saul Greenberg
Department of Computer Science

University of Calgary
Calgary, Alberta
Canada T2N 1N4
+1 403 220 6087

saul@cpsc.ucalgary.ca

Andy Cockburn
Department of Computer Science

University of Canterbury
Christchurch
New Zealand

+64 3 364 2362
andy@cosc.canterbury.ac.nz

ABSTRACT
This paper concerns the ubiquitous Back button found in
most Web browsers. First, we outline why Back is an
effective method for revisiting WWW pages: a) It allows
rapid return to very recently visited pages, which comprise
the majority of pages a person wishes to return to; b) People
can use it even with a naïve model of the way it works; c)
People usually keep it on permanent display because it is
visually compact; and d) Back works via a simple ‘click
until the desired page is recognized’ strategy. Second, we
investigate the behavior of Back. The typical stack-based
behavior underlying Back is problematic because some
previously seen pages are not reachable through it. To get
around this problem, we offer several alternate behaviors of
the Back button, all based upon a recency model. The
advantage of recency is that all previously seen pages are
now available via Back. Because trade-offs exist, we
present both problems and prospects of these different Back
behaviors in various navigational situations.

Keywords . History, page revisitation, reuse, navigation,
browser design, world wide web, hypertext.

1. INTRODUCTION
A person’s ability to find and navigate effectively to new
information and to new web sites is extremely important,
and this has driven many researchers to understand both
how people navigate within the Web, and how Web sites
and browsers should be designed (e.g., Rosenfeld and
Morville 1998; Forsythe, Grose and Ratner 1997; Sano
1996; Nielsen 1995). Equally important, however, is a
person’s ability to return to pages and sites he or she has
already seen: page revisitation is a regular and surprisingly
strong navigational occurrence. Tauscher and Greenberg
(1997), for example, found that around 60% (sd = 9%) of
all pages an individual visits are to pages they have visited
previously.

Given this statistic, we believe that Web browsers should
go to great lengths to support effective page revisitation.
Indeed, most browsers do provide revisitation support
through various mechanisms: the Back and Forward

buttons, history lists, bookmark facilities, and even site
maps that graph the various sites and pages that a person
has visited (see survey by Cockburn and Jones 1997;
Tauscher and Greenberg 1997).

In spite of the many revisitation mechanisms now available
on browsers, it is the Back button whose use predominates:
Tauscher and Greenberg (1997) discovered that pressing
the Back button comprised over 30% of all navigational
acts. In contrast, other revisitation facilities are used
infrequently e.g., < 3% for bookmarks, and < 1% for
history systems.

In spite of this heavy use, the behavior of the Back button
has changed little from the version first seen in NCSA’s
Mosaic. As well, the rationale behind its design has been
lost in time. Our goal in this paper is to get back to the
design premises underlying the Back button, to analyze its
advantages and disadvantages, and to look at alternate
behaviors for the way this button could work.

In the section that follows, we briefly outline why Back
(and its Forward partner) is, in principle, a good method for
returning to many (but not all) previously seen pages. We
also discuss when and why it fairs well against other
revisitation methods. The subsequent section defines and
analyzes the current stack-based Back behavior. In the
remaining sections, we propose and analyze alternate
behaviors based upon a recency model. We caution that no
firm recommended behavior of the Back button will be
offered: each behavior has both advantages and
disadvantages to particular situations.

2. WHY BACK IS A GOOD REVISITATION METHOD
In this section, we discuss several reasons why Back and
Forward are an effective method for revisiting pages. These
buttons allow rapid return to very recently visited pages.
People can use them even when they have a naïve
understanding of the way they work. People usually keep
these buttons on permanent display because they are
visually compact. Finally, the buttons work via a simple
‘click until the desired page is recognized’ strategy.



Getting Back to Back 2 Greenberg and Cockburn

2.1 The Recency Phenomenon
We stated previously that around 60% of all personal page
navigations are revisits. A further question is: how many of
these are to pages a person has seen recently, and how
many are those to pages seen long ago? For recently seen
pages, it is reasonable to expect a person to use some type
of Back button, for those pages are reachable with only a
few clicks. For pages seen long ago, the many clicks and
page reviews required would make the Back button
onerous.

To answer this question, Tauscher and Greenberg (1997)
analyzed sequences of individual users’ page visits to
produce the recurrence distribution. This frequency
distribution plotted the times the next page visited was in
fact a revisit to each of the following: the previous page;
one seen two pages ago; one seen three pages ago; and so
on. They found that 58% of these subject’s page visits are
to pages seen previously, with the rest being to new pages.
They also found a very strong recency effect, where the
most recently visited pages are the most likely to be visited
next. For example, there is an 39% chance that the next
URL visited will match a member of a set containing the 6
previous submissions. Increasing the size of the set
increases the probability only slightly: there is a 43%
chance when the set includes the last 10 pages seen, 48%
for the last 20 and 52% for 50. As a reminder, the
maximum possible probability is 58%, as the other 42% of
page visits are to new pages.

The implications of Tauscher and Greenberg’s finding are
clear. Because of the strong recency effect, there is a very
strong chance that a person can return to the desired
previously seen page with fairly few button clicks (note that
this assumes an ‘ideal’ model of Back behavior, which is
actually not the case as discussed in later sections).
However, we caution that other revisitation methods are
still required (history lists, graphical browsers, search
engines, etc.) as some—admittedly few—of the desired
pages may have been seen long ago (see Cockburn and
Greenberg 1999 for a companion paper that discusses this
issue).

2.2 Robust Use in Spite of Naïve Models
As will be described in Section 3, current commercial
systems use a stack to implement Back and Forward button
behavior: the effect is that a person can use these buttons to
move up and down the single hierarchical path captured by
the stack, but cannot use it to revisit any pages that
branched off that path as these are popped off the stack.

In spite of this algorithmically simple model, most people
have quite naïve models of how the stack-based Back and
Forward buttons actually behave. When Cockburn and
Jones (1996) asked eleven computer professionals about
Back button behavior, only one knew that it was based on a
stack, with most others incorrectly thinking it modeled a
simple history list of all pages visited. They were then given

a simple navigational task, the critical component which
was to select a link on page A to a child page A1; go back to
A (using Back); and then select another link to child page
A2. They were then asked whether they could return to page
A1 via the Back button. Eight of the eleven predicted—
incorrectly—that Back would return them to that page.
They were completely unaware that page A1 had been
popped off the stack, and were surprised when they tried to
follow through on their prediction.

What is surprising about these findings is that people—in
spite of their naïve models—are capable of using the Back
and Forward buttons regularly (cf. Back accounts for over
30% of all navigational acts). All this indicates that the
Back button is a robust revisitation device in spite of the
poor mental models people have of its actual behavior, and
in spite of its occasional (from the user’s point of view)
failure to bring them back to pages they had recently
visited.

2.3 Visual Economy
Forward and Back are relatively simple in that they require
only two buttons to allow a person to navigate to and from
previously seen pages. These buttons are modest in size,
fitting comfortably within most browser toolbars. While
users can customize their browser to remove these buttons,
we suspect that most keep them around.

In contrast, other revisitation schemes are expensive in
terms of screen demands. Most rely on separate or tiled
optional windows to present a list, tree or graph (see
surveys by Cockburn and Jones 1997; Tauscher and
Greenberg 1997).

Given today’s limited screen space and a person’s overhead
for window management, we suspect that people are
reluctant to keep these add-on windows on permanent
display. This may account partially for the poor use of the
history window observed in Mosaic (<1% of all
navigational actions). We suspect that these windows are
raised for occasional use and then put away. Once ‘out of
sight’, people are less likely to go through the effort of
raising them for routine page revisitation. In comparison,
the visual economy of the Back and Forward buttons means
that they will be kept on the display, where they serve as an
easily activated method for page revisitation.

2.4 Recognition instead of Decision Making
Back and Forward work by displaying the appropriate page
in the browser window. In common use, one merely keeps
clicking on the button until the desired previously-visited
page is recognized. Other revisitation schemes (e.g., history
lists) require considerably more cognitive overhead.

First, most other revisitation schemes represent individual
pages in an abstracted form, which people may find difficult
to match to the page they are looking for.



Getting Back to Back 3 Greenberg and Cockburn

• URLs. Some systems represent pages as a list or graph
of URLs. While some URLs are meaningful to people,
most are not. Some sites use cryptic names in the URL
path that do not reflect the page content; others have
URL paths that do not reflect the navigational page
structures (i.e., the directory/file structure does not
match the page/sub-page navigation); and others use
dynamic pages producing what looks like nonsense
URLs.

• Titles. Some systems display the label specified by the
page <title> tag. These too have problems in practice.
Title names often do not match the de facto title i.e., the
prominent text or graphics appearing at the top of a
page. Titles may be missing. They are often incorrect, as
can happen when a person copies and modifies an old
page but forgets to  revise the title. Titles may not
follow a naming convention that ties together related
pages. Finally some sites use a single title for all the
pages within it

• Thumbnails. A few systems use a graphical miniature of
a page. When these thumbnails are small, it may be
difficult to distinguish one page from another. Even if
the thumbnail were large enough to give a good sense of
its graphical characteristics (which introduces space
concerns), people may still have problems when they
visit typographically similar pages.

The second problem with other visitation schemes is that
people still have to find the desired page within some kind
of graphical representation. This may be a linear list (e.g.,
Netscape’s history window), a hierarchical indented list
(e.g., Microsoft’s Internet Explorer 4.0 history pane), or a
graph (e.g., Mosaic-G by Ayers and Stasko 1995; or
WebNet by Cockburn and Jones 1996). All these demand
decision time when searching for the desired candidate
amongst other competitors.

It should be apparent that the Back and Forward buttons are
far simpler in comparison. They present the page itself
rather than a page abstraction, thus avoiding the problem of
people having difficulty recognizing the page from its
abstract description. They present pages one by one,
making the decision a simple choice of deciding if the
current page is the one being looked for.

2.5 Summary
In this section, we argued that the Back and Forward
buttons have many positive characteristics, especially when
compared to other revisitation techniques. First, they are a
simple way to return to very recently visited pages, which in
practice accounts for the majority of all page revisits a
person wants to do. Second, they seem to work well even
though people have naïve models of their behavior. Third,
they are visually compact, which means that people are
likely to keep them on permanent display. Finally, they
promote finding a previous page by a simple ‘click until the
desired page is recognized’ strategy. While other strategies

may be more effective for finding pages visited long ago,
Back suffices for most cases.

3. STACK-BASED BEHAVIOR
The navigation model underlying the Back and Forward
buttons found in the two major web-browsers (Netscape
and Microsoft Internet Explorer) is based on a stack of
visited pages. We will illustrate the stack (and other)
behaviors by showing how people can navigate through the
small set of pages illustrated in Figure 1.

3.1 Description
The stack has three different types of operations, as
illustrated in Figure 2 and described below.
1. Clicking or typing links adds a page to the stack top.
2. Clicking the Back and Forward browser buttons moves

the stack pointer down and up the stack respectively,
displaying the page at that stack location. The actual
stack contents are not altered when navigating with
these buttons.

3. When the user is inside the stack (at any position on the
stack other than the top) and selects or types a link on a
web page, all entries on the stack above the current
position are popped off the stack before the new page is
added. Pages popped off the stack cannot be revisited
using the Back and Forward buttons.

For example, let us say a person follows the page links from
pages a through e in order (Figure 1), then goes back to
page c by pressing Back twice, and then selects a new link
on page c to page i. We will use the notation x→y, where
‘→’ means that the person has selected or typed a link on
page x to go to page y, and y⇐x which means backtrack
from page y to page x via the Back button.

Figure 2a shows the stack after a person executes
a→b→c→d→e, where all pages were added at the stack
top. In Figure 2b, the two clicks of the Back button
(e⇐d⇐c) moves the stack pointer down the stack to c.
Going from c→i pops pages d and e off the stack (Figure
2c), and then adds page i to its top (Figure 2d). Thus pages
d and e are no longer reachable through the Back /Forward
buttons.

3.2 Advantages and Disadvantages of the Stack Model
The power of the stack technique is derived from the
pruning of navigational branches that automatically occurs
when users use Back followed by link selection. Essentially,
each click of the Back button moves up one level of a tree
of navigational branches (Figure 1), and selecting a link
from a position within the tree removes the lower level
branches. For example, in the navigational trace described
above, the other lower level 4 and 5 branches below page c
disappeared as soon as another child of c was selected.

It could be argued that this approach has merits in its
relationship to likely user needs: after exploring a branch



Getting Back to Back 4 Greenberg and Cockburn

and selecting a new path of interest the user may no longer
need the previous branch of exploration. This is a risky
argument, however, which makes assumptions about both
the structure of the web-site and the needs (and memory
capabilities) of the user.

First, there are many cases where people do want to revisit
pages seen on an old (and now no longer available) branch.
Using the example above, if a person wanted to go back to
page e from page i, they could no longer do it via the Back
button as page e has been pruned off the list.

Next, we could argue that the Back button isn’t really
required for this case, because the person can first use Back
to go from i⇐c, and then use the normal links to navigate
c→d→e. While reasonable for short pages with few links
and short navigational paths, this could become onerous for
more complex situations. Some pages can be long and
complex: recalling and finding the correct link within the
page could be difficult. Similarly, if the person followed a
complex navigational path to get to a particular page, it
could be challenging to remember and/or reconstruct that
path later on.

Third, and as discussed in Section 2.2, current systems do a
poor job of communicating the tree-pruning behaviour of
the stack to its users (Cockburn and Jones 1996). The labels
Back and Forward have affordances of linearity, rather than
of a tree. There are few cues at the interface to help users
distinguish between the underlying semantics of page
display using link selection (popping the stack and adding
to the new stack-top) versus the semantics of page display
using the Back and Forward buttons (moving within the
stack). It is not surprising, therefore, that many users
periodically find that they have ‘lost’ pages on the history
‘list’.

Summarising the pros and cons of stack-based navigation:
✔ It implements a ‘simple’ interface that requires only two

buttons (Back and Forward).
✔ The automatic pruning of the stack of previous pages

may remove branches and pages that are no longer
needed (as when people just want to move ‘up’ the tree).

✔ People are able to use it even with incomplete
understanding.

✗ Users cannot return to pages that have been popped off
the stack.

✗ The model is poorly communicated to users through the
interface. Consequently, people are surprised when
pages ‘disappear’.

✗ It introduces two different semantics for page display:
link-selection which pops items off the stack, before
adding the new page to the stack top; and page
revisitation with Forward and Back which moves
through the stack of previously visited pages without
altering it.

4. PURE RECENCY-BASED BEHAVIOR
Perhaps the greatest disadvantage of stack-based navigation
is that it does not provide a complete history of previously
visited pages. As an alternative, we could provide a
complete history of previously visited pages by having
Back and Forward move a person through a recency-based
history list, where the buttons simply navigate through the
pages in reverse order to how they were seen. Surprisingly,
the design of a button interface to complete history lists is
not as simple as might be expected. Although forming a list
of all of the pages that a user visits is trivial, designing a
simple yet comprehensible interface to list traversal is
complex. In this section, we will explore several models of
Back based on variants of a recency-ordered history list.

4.1 Pure Recency
Recency-based Back seems like a simple concept. For every
page visited, add it to the top of the list. Pressing Back
returns to the previous page, adding it to the list as well.
Unfortunately, this does not work.

Consider the navigational path a→b→c→d. A natural state
to expect of the internal history list would be {a, b, c, d}
where more recent pages are added on the right. Now the
person wants to backtrack to page b, and it is reasonable

SDJH H

SDJH G

SDJH F

SDJH E

SDJH D

Push
abcde

a) User visits pages a-e,
in order

SDJH H

SDJH G

SDJH F

SDJH E

SDJH D

Move
pointer

b) User clicks Back
twice…

SDJH H

SDJH G

SDJH F

SDJH E

SDJH D

Pop

c) User selects link to i,
which pops d & e off
the stack…

Push i

SDJH L

SDJH F

SDJH E

SDJH D

d) …and pushes i onto
it.

Figure 2.  An example navigational trace and its effect on
the stack. Note that previously visited pages d and e are no
longer available on the stack.

D

E

H

F

J

G

M

I

L

Level 1

Level 2

Level 3

Level 4

Level 5 K

Figure 1 . An example page structure. Bolded pages are
hubs, all others are spokes.



Getting Back to Back 5 Greenberg and Cockburn

(but wrong!) to expect this to take two clicks: d⇐c⇐b. On
the first click from d⇐c, we return as expected to page c.
The history list will now be {a b,c,d,c}, as c has just been
visited. When Back is clicked again, the resulting action is
c⇐d rather than the expected c⇐b. The list is now
{ a,b,c,d,c,d}. Subsequent clicks of Back simply cycle
between pages d and c.

The cause of this problem is that we are treating the Back
action as a normal navigational act that adds backtracked
pages to the history list. This would be good if it worked.
Since it does not, we have to treat Back differently, as
discussed in the following sub-sections.

As a side discussion, the management of duplicate entries in
the history list is an issue that must be addressed. Allowing
duplicate pages means that the system can offer a literal
representation of the order of pages that the user has seen.
The disadvantage is that the list could become
unnecessarily long and repetitious. Instead, we suggest
pruning duplicate pages by keeping only a single copy of it
in its most recent position on the list: this keeps recently-
revisited pages near the top. Tauscher and Greenberg
(1997) analyzed this, and found that substantially fewer
Back presses would be required to return to a desired page
when duplicates are pruned. For example, if the user
navigates through pages z→a→b→c→b→a, a strict
sequential history list would contain {z,a,b,c,b,a}, while a
sequential history list with duplicates retained only in its
last position would be {z,c,b,a}: backtracking to z is clearly
quicker in the later case. Indeed, this later scheme has been
taken up by some commercial browsers: Netscape 4 uses it
in their history window (but not with Back). In the
remainder of this paper, we will use recency with duplicates
removed. Unfortunately, removing duplicates from the
history list does not overcome the problem of cycling
between the last two pages on the list.

4.2 Recency: Adding Spokes Only
We can modify Back and Forward to move a pointer
through the history list. This displays the page at that
location but does not alter the list contents. Regardless of
the position of the pointer within the list, when the user
clicks on a link to a new page, the page is added to the end
of the list and any elder duplicates are removed from the
list. While similar to how a stack works, the fact that no
pages are ‘popped off’ means that all previously seen pages
are available via Back.

However, this scheme is not efficient for hub and spoke
navigation. To explain, people often visit a central page (a
hub), navigate one of the many links to a new page (the
spoke), return to the hub, go to the next spoke and so on
(Catledge and Pitkow 1995). Example hub pages are home
pages, tables of contents, search result lists, and so on. The
scheme above, while adequate for simple backtracking, is
poor for hub and spoke navigation because the hub moves

further and further away from the front of the list as spokes
are visited.

Consider, for example, the user actions over the pages in
Figure 1 where they move sequentially from a to the hub d,
and then hub-and-spoke browse from page d to a series of
spoke pages e, f, g and h. After arriving at e, the history list
is {a,b,c,d,e}. The person returns to d by clicking Back and
then selects the next spoke link to f: the history list is now
{ a,b,c,d,e,f}. To visit spoke g, the Back button must now be
clicked twice to return to the hub d and link g selected,
giving a history list {a,b,c,d,e,f,g}. If the person then wants
to go to h, returning to hub d now requires three clicks.
Thus the user's actions to visit all four siblings after first
arriving on page d are d→e⇐d→f⇐e⇐d→g⇐f⇐e⇐d→h,
making a total of ten user actions. In contrast, the stack-
based technique requires only seven actions to visit the
same set of pages, as previous siblings were popped off:
d→e⇐d→f⇐d→g⇐d→h. In general, to visit n spoke links
from a page, the recency with spokes behavior requires

∑n i1  user actions while the stack-based mechanism

requires only 2n - 1.

In summary, this scheme introduces one significant
advantage and one significant disadvantage not found in
stack-based navigation or pure recency.
✔ The list of previously visited pages is complete because

no pages are popped off the list. Therefore users are
guaranteed to be able to revisit pages already
encountered during their browsing session by using the
Back button.

✗ The order of page entries on the history list can be
severely different from the order of page visitation. This
effect will greatly reduce browsing efficiency in certain
navigation tasks, such as hub and spoke.

4.3 Recency with Hub-and-Spoke Enhancement
The next version modifies the previous one to
accommodate simple hub and spoke navigation. As before,
the Back and Forward buttons just move a pointer through
the list. Link selection, however, has different semantics.
When the user selects a link on a page, both the current
page and the new page are added to the end of the history
list. The result is that the nearest hub page is always
accessible with one click on the Back button.

Reconsider again the user's actions in navigating from page
a to d, and then to d’s four sibling links e, f, g, and h. As
before, the user navigates from a to e by link selection
giving a history list of {a,b,c,d,e}. She then returns to hub d
by clicking Back once and then selects the link to page f.
This moves both the current page d and the new page f to
the end of history list, giving a history list {a,b,c,e,d,f}.
Similarly, going to pages g and h only require a single click
back to the hub. Thus, the full navigational sequence from d
to its four sibling links is identical to that of the stack-based
paradigm: d→e⇐d→f⇐d→g⇐d→h. In general, to visit n



Getting Back to Back 6 Greenberg and Cockburn

sibling links from a page requires 2n - 1 user actions.
Unlike the stack, however, the person can use Back to reach
other visited spokes by going beyond the hub page.

The additional advantages and disadvantages of this hub-
and-spoke enhanced technique in comparison to those of
the previous technique are as follows.
✔ Improved efficiency in hub-and-spoke browsing,

matching the existing stack-based mechanism at 2n-1
user actions to visit n links emanating from a page.

✗ True temporal ordering is not maintained. Consider the
navigation actions a→b→c→d→e⇐d⇐c→i. The order
of pages seen in the browser display (with duplicates
removed) is {a,b,e,d,c,i}. However, the order of pages
on the hub and spoke history list is {a,b,d,e,c,i}. Longer
navigational paths can result in even larger
inconsistencies between the contents of the history list
and the order in which pages were presented to the user.
Thus pressing Back after this sequence does not reflect
the true time-based sequence of pages seen.

✗ Navigating back up the tree may mean extra navigation
through intervening children. The stack-based approach
moved people directly up the tree (i.e., through only
parent hub pages), while hub and spoke recency may
insert some spoke pages between the hubs.

4.4 Recency with Temporal Ordering Enhancement
As just mentioned, the recency schemes described so far
introduce an inconsistency between the order of page
revisitation using the Back and Forward buttons and the
order in which the pages were most recently presented to
the user. We can, however, introduce a new temporal
ordering scheme that ensures that the order of revisitation
matches the order in which pages have been presented to
the user. The idea is that Back and Forward actions move
through the history list as before, but that selecting a new
link reorders the list to the true temporal sequence. We
implemented this technique by maintaining a second pure
recency list that traces the order of pages seen when a
person navigates the primary history list using Back and
Forward. As soon as the user displays a new page
(presumably by selecting a page link), the contents of the
secondary list are added in order to the main history list.
For example, a→b→c→d→e produces the main list
{ a,b,c,d,e}. Going from e⇐d⇐c creates a second list {d,c}.
As soon as the person selects the new link c→i, d and then
c are added to the main list giving {a,b,e,d,c,i}  which is the
correct temporal sequence. This scheme works over any
number of Back and Forward actions.

In summary, the additional advantages and disadvantages of
recency with temporal ordering in comparison to hub-and-
spoke recency are as follows:
✔ After a new link is selected, Back and Forward will

navigate through a temporally correct history list of
previously viewed pages.

✗ This method still combines movement through a list (via
Back and Forward) with temporal ordering (via new link
selection). There is a risk that users will find the re-
ordering of pages on the history list unpredictable. This
may not be a big problem, because we suspect that most
users will use the Back and Forward buttons in a
mechanical fashion, repeatedly clicking the buttons until
they recognize the desired page.

✗ As with other recency methods, navigating back up the
tree may require extra navigation through intervening
children.

5. SUMMARY AND FUTURE WORK
We have articulated the reasons why the Back button is a
good interface for revisiting pages. However, we raised
questions about the current stack-based behavior underlying
Back: while generally effective, problems arise when
people use Back only to find that the desired page has
‘disappeared’. Given the high use of Back by millions of
people, research resulting in even a small improvement in
its use is warranted.

Next, we presented several recency-based Back behaviors
as alternatives to the stack. Each has both merits and
problems, and we do not yet know which behavior
(including the stack) is best overall. The next step is to
evaluate the effectiveness of each behavior. We need to
know how usable they are in various navigation scenarios,
and how people react to them.

Of course, we can combine behaviors to produce a hybrid
system. For example, we have implemented and are testing
a hybrid system that combines stack and recency behavior
along with an optional history list and bookmarking system
(Figure 3). The system controls and responds to the
Microsoft Internet Explorer web browser (although shown
as an add-on window, the final system would work within
the Explorer by replacing its current buttons and by adding
a frame). The system optionally displays the recency-
ordered history list without duplicates (bottom frame),
allowing a person to select an item directly from the list.
The icons on the left indicate whether or not the person

Figure 3.  A Hybrid history system.



Getting Back to Back 7 Greenberg and Cockburn

followed any links from a particular page (arrows vs. no
arrows) and how often a person has returned to that page
(icons for frequently visited pages gradually fill with
yellow). Selecting an icon transforms the item into a
dogear—a lightweight bookmark—as illustrated by the
turned down corner on the icon. Pages can be filtered by the
dynamic query slider on top: as it is moved to the right,
pages are filtered by frequency until only dogeared pages
are shown. Similarly, users can filter by text by typing in a
text fragment in the entry box at the top right.  More
permanent bookmarks are created by moving pages to the
upper frame. The Back and Forward buttons implement
recency with temporal ordering (Section 4.4), where the
pointer movement is shown by bolding the current item
(e.g., the user has gone back to the now-bolded second item
in the list “Home page for…”). The Up and Down buttons
implement the old stack-based behaviors, with the name
change reflecting the fact that the stack moves people up
and down the navigational hierarchy. Finally, the Visits
button displays a localized history list as a menu. That is,
the menu displays in time order all the spokes that have
been accessed from the current hub page.

While there is much left to do, we believe research on Web
navigation requires further steps Backwards (pun intended).

ACKNOWLEDGMENTS
The work of Shaun Kaasten and Linda Tauscher prodded us
to develop the ideas underlying this paper: we owe them
our thanks. The National Science and Engineering Research
Council (NSERC) of Canada funded this research.

REFERENCES
Ayers, E. and Stasko, J. (1995) Using graphic history in

browsing the World Wide Web. Proceedings of the 4th

International World Wide Web Conference.
www.w3.org/pub/Conferences/WWW4/Papers2/270/,
December 11-14, Boston.

Catledge, L. Pitkow, J. (1995) Characterizing browsing
strategies in the World Wide Web. Computer Systems
and ISDN Systems: Proceedings of the 3rd International
World Wide Web Conference. April 10-14, Darmstadt,
Germany, Vol. 27, pp. 1065-1073.

Cockburn, A. and Greenberg, S. (1999). Beyond the ‘Back’
button: Issues of page representation and organisation in
graphical Web navigation tools. Research Report 99-640-
03, Department of Computer Science, University of
Calgary, Calgary, Alberta, Canada. Paper plus 6.5 minute
video. www.cpsc.ucalgary.ca/grouplab/papers.

Cockburn, A. and Jones, S. (1996) Which way now?
Analysing and easing inadequacies in WWW navigation.
International Journal of Human-Computer Studies
45.(1), pp. 105-129.

Cockburn, A. and Jones, S. (1997) Design issues for World
Wide Web navigation visualisation tools. Proceedings of
RIAO’97: The Fifth Conference on Computer-Assisted
Research of Information. McGill University, Montreal,
Quebec, Canada, June 25-27, pp. 55-74.

Forsythe, C., Grose, E. and Ratner, J. (Eds.) (1997) Human
Factors and Web Development. LEA Press.

Nielsen, J. (1995) Multimedia and Hypertext: The Internet
and Beyond. Academic Press.

Rosenfeld, L. and Morville, P. (1998) Information
Architecture for the World Wide Web. O’Reilly &
Associates

Sano, D. (1996) Designing large-scale web sites: A visual
design methodology. Wiley Computer Publishing.

Tauscher, L. and Greenberg, S. (1997) How people revisit
Web pages: Empirical findings and implications for the
design of history systems. International Journal of
Human Computer Studies, Special issue on World Wide
Web Usability 47(1), pp. 97-138.


