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Abstract

Purpose is a key concept in privacy policies and has been mentioned in major privacy laws and regulations.
Although some models have been proposed for enforcing purpose-based policies, little has been done in
de�ning formal semantics for purpose and therefore an e�ective enforcement mechanism for policies has
remained a challenge. In this paper, we develop a framework for formalizing and enforcing purpose-based
privacy policies. Purpose is formally de�ned as the dynamic situation of an action within the network of
inter-related actions in the system. Accordingly, we propose a modal-logic language for formally expressing
constraints about purposes of actions which can be used to model purpose-based policies. The semantics of
this language are de�ned over an abstract model of activities in the system which is directly derivable from
business processes.

Based on this formal framework, we discuss some properties of purpose and show how some well-known,
as well as new forms of purpose constraints can be formalized using the proposed language. We also show
how purpose-based constraints can be tied to other access control policies in the system. Finally, we present
a model-checking algorithm for verifying whether a given state of the system complies with a given set of
policies, followed by a discussion of how this can be used in an actual implementation of a purpose reference
monitor.

Keywords: Purpose, Semantics, Purpose-Based Policies, Privacy, Modal Logic, Work�ow, Petri Net
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1

Introduction

�As he looked back upon man moving through

history, he was haunted by a feeling of loss.

So much had been surrendered and to such

little purpose! �

Oscar Wilde, The Picture of Dorian Gray

As storing and processing data in electronic form becomes more and more prevalent, privacy concerns
are on the rise and have become a major issue in developing nearly every electronic system. Personal and
private data is growingly turned into electronic form in traditional and emerging applications and services
(such as social networks, electronic health records, cloud storage services, online banking, etc.) thereby
making data vulnerable to unauthorized usage by various parties. To address such concerns, privacy policies
were introduced as a means to formulate the rules that govern the use of data and express what data can be
used, by what parties, to what extent, and in what manner. De�ning privacy policies and enforcing them is,
therefore, a crucial step in developing nearly every electronic system nowadays to ensure that private data
will remain safe and reliable.

Purpose of use is one of the core concepts in privacy policies, mentioned in major privacy laws and
regulations in di�erent jurisdictions such as Canada's Federal Privacy Act (1983) and the U.S. Privacy
Act (1974). Informally, purpose refers to the user's intention for using data; for example, an employee in an
online retailer may use a customer's home address for the purpose of shipping an ordered good, or a physician
in a research institute may use some of the data in a patient's health record for research purposes. Many
privacy policies contain rules and restrictions about purpose of data access; for example, an online customer
may like to allow access to her email address only for the purpose of sending order con�rmation and billing
information, and not for marketing, or, the government may decide to prohibit using an applicants' ethnic
background information for the purpose of making hiring decisions. A purpose-based privacy policy is the
set of such rules that stipulate whether or not access should be allowed, based on its purpose.

Enforcing such policies requires a purpose-based access control system in which purpose of access is a
major factor in deciding whether or not access should be allowed. This enables making di�erent decisions
based on the purpose of access, even to the same data item and by the same user. For example, the policy
may allow an online store employee to use a customer's email address for the purpose of sending the bill, but
prohibit access to the same data and by the same person/role, for other purpose such as email marketing.
Traditional access control systems are unable to enforce such rules.

Identifying purpose of access is also important in mitigating the risk of privacy breach by insiders by
preventing authorized users from abusing their authorized access rights. For example, a bank teller is usually
given the permission to query bank customers by name and account number, which is useful in cases where a
customer wants to deposit money to another customer's account �since double-checking the receiver account's
information is helpful to ensure the money is transferred to the right recipient. In a traditional access control
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system, this will result in granting the teller role read access to all customers' account information. A more
advanced system may add more restrictions such as limiting this access right to business hours or within the
premises of the branch, but none of these policies can prevent a malicious teller from taking advantage of the
granted permission and pry into a friend or family member's account information. A purpose-based policy,
however, can prevent this by restricting the granted access right only to the legitimate purposes (such as
money deposit) and thus, denying access when it is not for one of the legitimate purposes. Various similar
cases can be identi�ed in other business systems where access rights need to be granted but only for certain
purposes; for example access of university authorities to student academic records, physicians to medical
records, and employees to customer information.

1.1 Semantics of Purpose

There are two main components in a purpose-based access control system:

• Expression: A mechanism for expressing access control rules based on the purpose of access.

• Enforcement : A mechanism for identifying the purpose of a requested access, so that it can be veri�ed
against the policy rules to decide whether to allow or deny access.

An e�ective mechanism for any of the above cases requires de�ning formal semantics for purpose, i.e.
de�ning what it means to have a purpose in terms of the artefacts of an information system.

Without formal semantics, as it is the case in most existing models, purposes are merely opaque labels
(i.e. character strings) with little or no semantics. Formal de�nitions are often evaded with the excuse that
they are application-speci�c details beyond the scope of the access control system. The resulting ambiguity
of the meaning of purposes makes them prone to arbitrary interpretation that may sometimes be against
data subjects' interests and lead to violation of privacy. For example, the privacy policy of a company may
state that data collected from customers could be used for the purpose of web browsing, which is informally
explained as: information may be exchanged automatically for the purpose of browsing web pages[56]. With
general and ambiguous statements like that, it remains unclear what exactly this purpose entails, how it
must be enforced, and under what conditions one can say it is violated. Each company may interpret this
in its own way and so, a user who is asked to consent to such a purpose cannot make an informed decision.
Similarly, due to this ambiguity, an auditing authority will not be able to accurately decide whether the
company has honoured its promise about the purpose of use.

A framework with formal semantics for purpose establishes a uni�ed vocabulary and a clear and granular
language among the policy makers, policy enforcers and the auditors so that all parties can have a clear
understanding of what purpose-based policies mean, how they must be enforced, and what constitutes a
violation.

A central issue in purpose enforcement is to identify the purpose of a requested access, so that it can be
veri�ed against the policy rules. Existing models assume that purpose is either declared by the user who
requests access, or is decided based on her role or assigned task. Most of these mechanism are insu�cient
for identifying purpose of access as we will discuss in Section 2.1 and identifying the purpose of an action in
an information system has remained a challenge. A formal de�nition of semantics can result in an e�cient
method for identifying the purpose of access based on the existing artefacts in an information system, and
thereby an e�ective enforcement mechanism for purpose-based policies.

Once the purpose of a requested access is identi�ed, it must be veri�ed against the purpose-based policies.
In most existing models, this comes down to simple string matching, since purposes are treated as character
strings. Some of the more advanced models consider a hierarchy of purposes in such veri�cation (see Sec-
tion 2.1). Formal semantics lead to a formal mechanism for accurately de�ning under what conditions the
purpose of an access complies with the corresponding policies.
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1.2 Contributions

Our work contributes a framework for formally expressing and enforcing purpose-based policies. This in-
cludes:

• De�ning formal semantics for purpose, based on the dynamic situation of an action within a network
of other related actions in the system and discussing some of its important properties.

• De�ning a modal-logic language for formally expressing purpose-based policies based on an abstract
model of business processes and proving that the semantics of this language correspond to the semantics
of purpose.

• Showing how well-known, as well as some new types of purpose constraints can be formulated using
this language and discussing how such constraints can be linked to other access control rules to form
more complex policies.

• Developing an algorithm to enforce formally-expressed purpose-based policies in a work�ow-based
information system and discussing how it can be used to implement di�erent variations of of a purpose
reference monitor.

1.3 Roadmap

Figure 1.1 shows the roadmap for the rest of this paper.

Section 2 Review of the related work.

Section 3 A walk-through of the framework and the big picture of its components

and how it can be used in practice.

Section 4 The conceptual basis for de�ning semantics of purpose.

Section 5 A formal model of the activities and their relations in an information

system based on a formal work�ow de�nition language.

Section 6 A modal logic language for expressing purpose constraints.

Section 7 Discussing di�erent types of purpose constraints, how they can be mod-

elled using the modal logic language, and how they can be tied to

broader access control policies.

Section 8 Discussing the algorithm for checking whether a given system complies

with given purpose constraints.

Section 9 Discussing how the framework can be implemented and what issues

must be considered in the course of an example case.

Sections 10 Concluding remarks and some future work.

Figure 1.1: The roadmap for the rest of this paper.
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2

Related Work

2.1 Purpose

Purpose has been mentioned by major privacy legislations, such as Canada's Federal Privacy Act (1983),
the U.S. Privacy Act (1974) as well as domain-speci�c laws and business guidelines and standards, such as
the OECD Guidelines [55], the Canadian Personal Information Protection and Electronic Documents Act
(PIPEDA, 2000), and the U.S. Health Insurance Portability and Accountability Act (HIPAA, 1996). These
laws and guidelines and similar ones in other �elds and jurisdictions specify restrictions about usage of data
that are based on the purpose of use. Accordingly, purpose has been considered as a major factor in privacy-
aware access control models [76, 39, 18, 54, 11, 27, 53] and policy languages such as P3P [56], EPAL [29],
and XACML [72].

The existing models of purpose propose mechanisms for both expressing and enforcing purpose-based
policies which we will review in this section. We argue that, comparatively, our framework is more expressive
than the existing models, encompasses their features and addresses their shortcomings as mentioned below.

Most existing models simply include purpose as a concept without de�ning formal semantics. Purposes
are often treated as labels (i.e. a character string) that are associated to an action with no or little semantic
connection to other entities in the information system. Some models have proposed some form of semantic
relation among purposes in the form of a generalization/specialization tree or lattice [14, 18, 67]. Also, some
models have suggested semantic connections between purposes and user/roles or activities in the system
which will be discussed below.

2.1.1 Expressing Purpose-Based Policies

The existing models for purpose, usually rely on either a data-centric or a rule-centric approach to expressing
purpose-based policies. In a data-centric approach, the policy is formed around data, i.e. each data item
is associated with the purpose constraints that apply to them [55, 72, 31, 18]. The form of such purpose-
constraints is often simple and limited to a black/white list of unauthorized/authorized purposes. Although
data-centric policies are perhaps the most commonly used form of purpose-based policies, they are not
the only form as we will see in Section 7.2. Moreover, black/white lists are very limited forms of purpose
constraints and there are other forms as we will discuss in Section 7.

The rule-based approach taken by some models [29, 33, 43] allows de�ning rules composed of autho-
rized/unauthorized combinations of subjects, resources, actions and purposes. This is a more expressive
form of policy which is closer to our approach, although we support more expressive rules that might con-
tain contextual parameters, complex conditions and obligations as in a general access control language (see
Section 7.2).

7



2.1.2 Enforcement

The method by which the purpose of an access control request is identi�ed very much depends on how the
semantics of purpose is de�ned. Since for the most part, formal semantics has not been de�ned for purposes
in the existing literature, this has remained a challenging issue. The existing propositions fall under three
categories: self-declaration, user- or role-based, and task- or action-based. We review these approaches brie�y.

Self-Declaration

Several authors have proposed that the initiator of an access request declare the purpose for which she or
he wishes to access the data her- or himself [32, 44, 66]. This approach is based on trusting the requester to
honestly declare their purpose of access and obviously will not prevent a malicious user from circumventing
the information's intended purpose by claiming a false purpose.

User- and Role-Based Approach

A greater number of authors have proposed to assign purposes to particular users [25, 77], or to the roles of
a role-based access control system [46, 19, 50, 57, 61, 74, 75, 34, 30]. Thus only users with the marketing
privilege, or who are members of the marketing role, for example, are permitted to request access to data
for marketing purposes. This approach presumes a correspondence between purposes and users/roles which
is not necessarily a valid assumption. As we have argued in [43], there are many examples where members
of the same role may have di�erent purposes; a user with the bank teller or manager role, for example, can
have di�erent purposes based on di�erent activities that they perform as part of their job. So, this is not
a sound approach unless the meaning of roles are stretched to model purposes in which case they will no
longer be roles in the original sense as a set of permissions required in a job function.

Task- and Action-Based Approach

The conceptual link between purposes and actions, which is the basic assumption of our approach, has been
observed by a number of researchers. Tschantz et. al. de�ne purpose semantics based on a plan of related
actions and verify a purpose of an action by how much it contributes to the realization of the purpose of the
plan [63, 64]. van Sataden et. al. suggest that purpose names can be taken from the verbs in a standard
dictionary [65]. Similarly, Powers et. al. mention that business purposes are a form of high-level action
and argue that in high-level privacy policies instead of referring to low-level actions such as read or write,
high-level business purposes such as treatment or diagnosis are used [59].

In the context of an object-oriented system, Yasuda et al. associate purpose with the calling method in
which context the action is being performed [76]. For example, if the housekeeping method of an object of
type Person calls the withdraw method of a Bank Account object, it indicates that the money withdrawal
is for the purpose of housekeeping. This is consistent with our de�nition of purpose of type A which refers
to a higher-level more abstract activity of which the current action is a part (see Section 4).

In their development of a formal semantics for privacy policies, Breaux and Antón propose to model
purpose as an auxiliary related action [17]. For example, the policy that data is collected for the purpose
of marketing is taken to mean the primary action of data collection is related to the auxiliary action of
marketing that happens later. This is very similar to our notion of purpose as a future action. A similar
approach by Al-Fedaghi relates purposes to generic data processing activities in the lifecycle of the data [10].

HL7 Reference Information Model (�RIM�) speci�cations, a standard data model used in designing many
healthcare systems, mentions the has-reason relation between two actions for specifying that one is the
reason for the other [36]. In this design, reason is similar to purpose of an action, especially in its sense as
a future action. More recent e�orts at HL7 to expand support for privacy use this as one of the bases for
de�ning a vocabulary for purpose of use [21].

There has been a few proposals [31, 33, 20, 43] that suggest associating purpose with the units of work
in a system. They argue that tasks or work�ows, can be used to identify the purpose of an action by looking
at the higher-level unit of work in which it takes place. The higher-level unit of work is basically equivalent
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to our de�nition of more abstract actions, so this approach is consistent with the �rst type of purpose as
de�ned in Section 4. Our work extends these earlier approaches by considering both meanings of purpose
as a future action and a more abstract activity, so, it is more general and encompasses these approaches.
Moreover, our model also supports multiple purposes for a single action which is a one of the contributions
of our work.

2.2 Obligation

A di�erent line of research on obligations in access control systems is also concerned about actions and how
they are related to future actions (e.g. [35, 38]). This bears some similarity to the subset of our model that
deals with purpose as future actions. But our model is also concerned about other relations among actions
which are not of interest in the study of obligations. Also, even in the study of future actions we do not
follow a strict linear notion of time and our model also considers multiple alternative future actions. As the
formal language, we use modal logic to articulate the relations among actions. Temporal logic, which is a
type of modal logic, has been used previously to formalize obligations policies [35].

2.3 Work�ow

We de�ne the purpose semantics in the context of the actions and activities in an information system. This is
usually modelled in the form of business processes and work�ows. There are a number of open standards for
work�ow de�nition (e.g. BPEL4WS [15] and WS-BPEL [70]) as well as many proprietary work�ow languages;
van der Aalst and ter Hofstede have reviewed and evaluated a number of these proprietary systems [5].

Using Petri nets as a formal basis for work�ows has been the focus of attention since the early nineties [28,
8], especially because of the formal semantics which facilitates simulation, validation and formal analysis of
the work�ows. Our model is largely based on YAWL, a work�ow modelling language based on Petri nets [6].
For a survey of the use of Petri nets in modelling business processes see [49].

On the other hand, enforcing purpose-based policies �ts in the broader category of work�ow authorization
as it deals with purpose-based constraints in work�ows. Although we do not discuss the classic work�ow
authorization problems in this work, we brie�y study the links between purpose-based policies and other
work�ow authorization policies such as role-based constraints. Work�ow authorization is a broad research
area and has been studied by many researchers (e.g. [12], [13], and [22]).

Our model of actions also bears similarities to control �ow graph used to model the network of function
calls in programs in programming languages which can be considered as low-level work�ows in a program
code [9]. Temporal logic, which is a type of modal logic has been used to model control �ow policies in a
similar way to our framework [45]. Our model also bears some similarities with the hierarchical planning in
the arti�cial intelligence literature [60].
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3

Walk-Through: A Medical Research

Institute

In this section, we discuss, in the course of an example, the big picture of our proposed framework and
its components and describe the steps needed to be taken to formulate and enforce purpose-based privacy
policies in practice. We will eventually get back to this example at the end of this paper in Section 9 and
discuss further details and implementation-level considerations.

Case: Clinical Research Institute Based on a case we studied and discussed in a previous work, we
consider an institute conducting medical research on health records [42]. This organization has several
research projects which use the data from the health records residing at a nearby hospital. The practice
is called re-purposing in which the patients are asked whether or not they agree that their data, originally
collected for medical treatment purposes, be used for various clinical research purposes. Records are chosen
based on the patient's consent, and also their relevance to the research, depending on the medical conditions
and other factors such as age, gender, lifestyle, genetic traits, and the like. Current projects are focused on
liver-related diseases such as hepatitis and liver cancer.

Patient consent, which is either an existing electronic document in a local or remote database, or a
submitted form upon arrival to the hospital, speci�es the policies governing the use of the patient's health
records, including the corresponding purpose-based policies. The research institute needs to ensure that
aside from complying with the organizational policies, the use of each individual medical record in all stages
of research complies with the patient-speci�c consent.

Step 1: Setting Up the Vocabulary To unify the use of terms across all components of the framework,
it is necessary to agree on a common terminology for naming activities and their attributes. This also
establishes a common language that connects the activities and their attributes to the policy language.
The vocabulary must be developed with the help of domain experts but in some business domains, there
are standard vocabularies that enable a common terminology across di�erent systems. SNOMED-CT, for
example, is a standard nomenclature for clinical terms which includes an extensive hierarchy of clinical
procedures, ranging from administrative procedures such as insurance authorization, to detailed treatment
procedures such as home visit for intramuscular injection [62]. Another vocabulary we have used in this
paper is the NCI Thesaurus which de�nes the terminology used in clinical research [52].

In the case of the research institute we study, some of the standard terms are: translational research,
human subject research, correlative study, laboratory test, immunologic procedure, and hepatitis immunity
test. Note that these labels are not all at the same level of abstraction and, for example, translational
research is a much broader term than immunologic procedure. The vocabulary contains all actions at all
di�erent levels of abstraction.

10



Step 2: Modelling Activities and Their Relations The next step is to de�ne the activities in the
system and their relations in the form of business processes. In many organizations, activities are already
organized in the form of well-de�ned business processes which are often modelled and automated as work-
�ows; so, this is usually an existing artefact. For modelling the relations among activities we use hierarchy
nets, a formal model for work�ows that supports modelling the hierarchical and sequential relations between
activities. This will be discussed in Section 5.

The activities should also be labelled by the terms de�ned in the vocabulary. For example, a research
procedure that performs a correlational study on hepatitis immunology test should be assigned the labels
hepatitis immunity test and correlative study. These labels explain what the task does using the standard
vocabulary.

In the research institute example, there are various work�ows that are hierarchically organized in the
form of di�erent activities in di�erent research projects. Figure 9.4 shows an example of these work�ows.

Step 3: Formulating the Policies The policy is a set of rules that restrict purposes of actions. These
rules can be expressed as formulas in the language. The atomic propositions are the terms from the vo-
cabulary (shown in italics in the examples below) and the modal operators provide the suitable tools for
expressing constraints on purposes. These operators are part of the modal logic language de�ned in Section 6.
A more elaborate discussion of the policy is given in Section 7.

In our running example of the research institute, general policies are set by the authorities and record-
speci�c policies are set by the patients. Some examples of such policies are:

• �genetic tests are only allowed for the purpose of cancer research.�

• �No access for any research purposes is allowed to my record.�

• �I allow access to my record for the purpose of liver cancer study.�

• �I do not allow any access to my record for the purpose of immunological analysis which is for research
purposes.�

Step 4: Policy Enforcement Having modelled the system and formulated the corresponding policies,
our �nal goal is to ensure that the system complies with the policies. Since policies are formulated using a
formal language whose semantics are de�ned based on the formal model of system activities, the formulas in
the language have a clear meaning in terms of the action in the system and their relations. The framework
includes a model-checking algorithm that can verify whether the system satis�es given policies. This will be
discussed in Section 8. More details about the implementation of a model-checking algorithm in the form of
an actual reference monitor are discussed in Section 9.
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4

Conceptual Basis

Purpose is a characteristic attributed to an intentional action and refers the rationale behind it; everyday
usages of purpose usually presume a sense of teleology concerning the goal pursued by performing an action
and its ultimate outcome. One may ask or talk, for example, about the purpose of reading a book, increasing
salaries, or collecting health information. The purpose of reading a book may be to entertain, increasing
salaries could be done to keep and encourage high-quality workforce, and health information may be collected
to perform medical research. To diversifying our vocabulary, in this paper we use the terms, action, activity
and procedure synonymously:

De�nition 1. Action, Activity, Process: A low-level or high-level operation in the system. Activity
and process are often used when the operation is more high-level and is composed of other more �ne-grained
actions. We use sub-activity or sub-process to refer to such components.

The use of the word purpose in the natural language and examples of purposes mentioned in privacy-
related standards and guidelines show that purpose often refers to some high-level activity, for example
website and system administration, marketing, and research [56, 21, 73, 26, 40]. The close semantic relation
between purpose and action has also been observed by others in the literature as was mentioned in Section 2.1.

More speci�cally, there are two types of relations between actions that imply a purpose:

Purpose as a High-Level Activity In some contexts, purpose refers to a more abstract, semantically
higher-level activity, and so, performing an action for some purpose actually means performing it as a part,
or a sub-activity, of that higher-level action. For example, when the patient's insurance information is
accessed for the purpose of hospital admission, it means that this action is a part of the more abstract
hospital admission procedure which includes several other actions, such as printing an admission wrist band.
Similarly, when a bank clerk requests to check a customer's credit history for the purpose of evaluating a loan
application, it implies that checking the credit history is part of the evaluating process for a loan application.
We refer to this type of relation as the A-relation (`A' for abstract).

Sometimes, purpose is used to refer to very general desired states of a�airs; in such cases we assume that
purpose actually refers to the high-level process of reaching that state; for example, doing something for the
purpose of happiness can be interpreted as doing something as part of the very abstract high-level process
of pursuing happiness.

Purpose as a Future Action Sometime, purpose indicates that an action is performed as a prerequisite
of a future action. For example, when a university professor requests for cash advance for the purpose of
conference registration, it means that receiving the cash advance is a prerequisite to the action of registering
for the conference and it will follow once the cash advance is received. We refer to this relation as the
F-relation (`F' for future).

Thus, the purpose of an action lies in its situation within a larger context containing other related actions
which can be modelled as a network of inter-related actions. This is in line with some of the philosophical
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literature on the meaning of intention which propose that intentions refer to future plans, and an agent's
purpose is the basis to explain and predict its future behaviour [16]. On this basis and inspired by the
planning literature in arti�cial intelligence literature, we refer to this as a plan of actions [60]. Based on the
points mentioned above, we de�ne purpose as follows:

De�nition 2. Purpose: Purpose refers to the attributes of either a higher-level activity of which the action
is a part, or an activity happening in future for which the action is a prerequisite.

Later on, in Section 5 and 6, we present a formal model for representing plans and give a formal de�nition
for the part-of (A-) and prerequisite-of (F-) relations.

For example, in the plan of Figure 4.1, consider action T41, look up receiver's information. It is a
prerequisite, and therefore for the purpose of con�rming the receiver's identity (T42). Also, it is a part, and
therefore for the purpose of double-checking receiver's identity (T4). Likewise, it is for the purpose of transfer
from card (T ′) and deposit (T ′′). Moreover, assuming that transfer from card (T ′) is associated with the
attribute in-branch transactions (as opposed to an online transaction via the online banking system) it can
also be said that action looking up receiver's information is for the purpose of an in-branch transaction since
it is part of an activity with that attribute.

4.1 Transitivity and Multiple Purposes

Intuitively, the purpose of a purpose for an action is also its purpose. For example, if the purpose of studying
is to pass the exam, and passing the exam is for the purpose of getting a degree, it follows that the purpose
of studying is also getting a degree. This property, straightforwardly holds for purposes resulting from either
A- or F- relations since they are both transitive, i.e. a prerequisite of a prerequisite of p is also a prerequisite
of p, and a part of a part of p is also a part of p. We will later prove in Theorem 5 that combinations of
A- and F-purposes can be reduced to simple A- and F-purposes, and thus, purpose, regardless of its type, is
transitive.

As a result, one important feature in our framework is that an action can often be associated with
several tangentially-related purposes. For example, in the money deposit example, accessing a customer's
information is associated with a number of purposes including: con�rming receiver's identity, double-checking
receiver's identity, transfer from card, deposit, and in-branch transaction.

Most of the time, an action has many purposes at di�erent levels of abstraction, since it is part of a plan
that in turn leads to, or is part of, other plans. These plans can be traced up to the point that they fall
out of the scope of the information system. For example, the deposit in the above example might itself be
part of the registration process for a course, which is in turn a prerequisite for passing the course, which is
in turn part of the plan for �nishing a university degree which might be a prerequisite for getting a well-paid
job and so on. To the best of our knowledge, this feature has been left unnoticed in the existing literature
and all of the models for purpose of which we are aware assume a single purpose for each action. Capturing
this broader aspect of purposes is one of the contributions of our framework.

4.2 Inferring and Enforcing Purpose

Although initially, purpose of an action is in the agent's mind, it eventually emerges as di�erent cascaded
plans and shapes the agent's behaviour and the sequence of activities. Therefore, the set of inter-related
actions performed by an agent can disclose its purpose. In other words, zooming out and considering the
bigger picture can reveal the plan, and thereby the purpose. For example, when the bank teller looks up
a customer's information, considering this action alone and in isolation does not reveal the purpose, but
looking at the context of the action and the sequence of actions that take place before and after it, can
reveal what the purposes are. Conversely, it is possible to enforce a purpose by ensuring that the user is
committed to a speci�c plan. The purpose of double checking receiver's identity, for example, can be enforced
by ensuring that the teller follows the process shown in Figure 4.1.
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Figure 4.1: The plan for money deposit in a bank system. The solid arrows show the order of execution, and
the dashed arrows show actions that are part of a more abstract higher-level action.

Generally, in order to enforce purposes, the system must guarantee that a) all authorized activities in the
system are de�ned in the form of plans, and b) access to data is possible only in the course of well-de�ned
plans and no isolated arbitrary action is allowed. This is further discussed in Section 9.
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5

Modelling Plans

Organizations usually perform their functions in the form of well-de�ned activities called business processes
which are often modelled and automated as work�ows. Work�ow is an automated business process in the
form of a sequence of tasks to achieve a business objective [37] which is often de�ned using a work�ow
de�nition language. The work�ow de�nitions model a group of activities in the system and their relations,
and so, naturally match the plans as we discussed them in Section 4. As we discussed in Section 2, various
work�ow de�nition languages exist with di�erent features. Because of its formal basis and wide academic
literature, we will rely on a Petri net-based language. Our model is largely based on Yet Another Work�ow
Language (�YAWL�), a popular work�ow de�nition language in academia as well as business [6], although we
only use a selected subset of the language with direct relevance to our framework for purpose-based policies.

5.1 Petri Nets

Petri net is a formal tool for de�ning the structure of a network and its dynamics and is used in di�erent �elds
such as concurrent programming and communications. Petri nets are also suitable for process modelling and
formalizing work�ows.

The structure of a Petri net is de�ned in the form of a bipartite graph with two sets of nodes, places and
transitions, and the set of edges that connect them [58]. Places represent the passive parts of the system
and therefore hold the system state while transitions indicate its active parts and model how the state may
change. The �ow relation is a set of directed arcs that connect some transitions to some places (transitions'
output places) and some places to some transitions (transitions' input places). The set of input and output
places/transitions of a transition/place n are respectively shown as •n and n•. Graphically, places and
transitions are often shown respectively as circles and squares. The structure of a Petri net is, thus, de�ned
as follows:

De�nition 3. A Petri net is a triple 〈P, T, F 〉 in which:

• P and T are respectively the set of places and transitions, and P ∩ T = ∅.

• F ⊆ (P × T ) ∪ (T × P ) is the �ow relation.

For a given Petri net P, the set of places, transitions, and the �ow relation are respectively shown as
PLAC (P), TRAN (P), and FLOW (P).

5.2 Work�ow Net (WN)

Petri nets corresponding to a work�ow need to have some constraints and some extensions in order to �t the
needs of work�ow de�nition. This has led to the de�nition of work�ow nets (�WNs�). Our de�nition here is
based on YAWL with some minor modi�cations [2, 6].
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AWN is a Petri net in which transitions correspond to work�ow tasks. Transitions in a WN are, therefore,
sometimes referred to as tasks. Every WN has two special places and two special transitions called source
and sink place and transition, shown as pc, tc, pk, and tk which correspond to the beginning and end of a
work�ow. The source place does not have an input and is the only input to the source transition. The sink
place does not have any output and is the only output of the sink transition. All nodes (place or transition)
reside on a path from the source place to the sink place.

Note that any work�ow with multiple start/end tasks can be adapted into this format by adding a unique
source/sink transition that is connected respectively to all the start/end tasks via a number of intermediate
places.

Every transition in a WN is assigned a split and a join type which specify its behaviour respectively
when there are more than one outgoing or incoming paths [68]. An AND-split is used for parallel routing
and causes all the following paths to be activated concurrently, whereas an XOR-split is used for selective
routing and results in activation of only one of the following paths. Likewise, an AND-join causes the
transition to wait for all preceding paths before activation while a transition with an XOR-join is activated
after the conclusion of any of its predecessors. The split/join type is immaterial where there is only one
outgoing/incoming path from/to the transition. As a default, we assume the AND type in such cases. We
do not discuss the case of free OR splits/joins as they can be reduced to a combination of AND and XOR
splits/joins. More details about run-time behaviour of joins and splits will be given in Section 5.4.

Following the graphical notation of YAWL [2, 6], we show AND-splits as , XOR-splits as , AND-
joins as , and XOR-joins as .

On this basis, a WN is formally de�ned as follows:

De�nition 4. Work�ow Net (WN): a triple 〈P, S, J〉 in which P is a Petri net with the following properties,
and S and J are mappings from transitions to their split/join types, i.e. TRAN (P ) 7→ {XOR,AND}.

1. There exist two special places, pc, pk, and two special transitions, tc, tk such that: •pc = ∅, pc• = {tc},
•tc = {pc}, pk• = ∅, •pk = {tk}, and tk• = {pk}.

2. With the exception of source and sink places, every place has exactly one input and one output.

3. Every transition t and place p reside on a path from pc to pk.

4. There is no unstructured loops in P (de�ned below).

Besides the structural properties mentioned above, a WN that correspond to a valid work�ow must also
have some dynamic properties which are discussed in Section 5.6.2.

5.2.1 Structured Loops

Loops are necessary constructs in modelling activities and thus, a work�ow language must support them.
On the other hand, allowing arbitrary loops leads to di�culties and complications in work�ow analysis often
without actually adding much practical value to the expressive power of the language.

To address this issue, we choose the practical approach of supporting only structured loops (also known
as structured cycles [7]), a loop with single well-de�ned entry and exit. This type of loops which correspond
to structured loops in programming languages (such as while, and for ; as opposed to goto) are su�cient for
modelling most work�ows; moreover, arbitrary loops can almost always be converted to structured loops. An
elaborate study of this conversion problem and the loops which cannot be converted has been done in [47].

As shown in Figure 5.1, a structured loop O is formed by adding a loop place pl to a work�ow net w via
which the sink transition of w (tk) is connected to its source transition (tc), i.e. •pl = tk and pl• = tc. We
refer to this path as the loop path or return path of the loop, as opposed to tkpk which is the loop's exit path.
Also, the split type of the sink transition and the join type of the source transition are changed to XOR
which enables the execution of the source transition after the sink transition. The loop can be connected to
the rest of the work�ow using the source and sink place.
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Figure 5.1: Constructing a structured loop (right) based on a work�ow net (left).

Note that this de�nition is recursive, i.e. the underlying WN on which basis the loop is constructed may
contain other structured loops. Also, note that this de�nition simulates a repeat-until loop �which we have
chosen for its simplicity� but can straightforwardly be used to implement a while- or for -like loop as well.

5.3 Hierarchy Nets (HN)

Work�ow nets are suitable for modelling individual work�ows but they cannot model the part-of relations
where a high-level activity is broken down to its sub-activities, like the dashed lines in Figure 4.1. To cover
this, we de�ne hierarchy nets (�HNs�), based on the similar concepts in YAWL.

A hierarchy net, H, is composed of a set of WNs, W , together with the hierarchy relation, H, which
re�nes abstract transitions (a.k.a composite), in the form of lower-level work�ow nets (a.k.a. sub-nets). For
example, in Figure 4.1, the composite task T4 is a decomposed into the sub-net containing T41 and T42.

In each hierarchy net, there is one single most high-level WN, known as the root, which is not a sub-net
of any other tasks and is shown as R. The hierarchy relation maps every composite task to a distinct WN
(injective) and, except the root, leaves no WNs out (surjective). Moreover, it is free of circular mappings
and has a tree structure. Note that for simplicity and without loss of generality, we only allow one sub-net
for each composite task. Should a composite task need to be mapped to multiple sub-nets, they can be
modelled as a single WN made of AND-ing or XOR-ing all of them.

The set of all transitions of a hierarchy net H is shown as TH, or T where the context is clear. Similarly,
the set of all places in H is shown as PH, or P. We also use T AND

H and T XOR
H to show to the set of all

transitions with the split type AND and XOR respectively. Similarly, ANDTH and XORTH are used for joins.
A hierarchy net H is formally de�ned as:

De�nition 5. Hierarchy Net: A hierarchy net is a triple (W,R,H), where:

• W is a set of WNs,

• R ∈W is the most high-level work�ow or the root,

• H : T → W\{R}, hierarchy function, is a bijective function which maps all composite transitions
onto low-level work�ow nets. Moreover, the following relation is a directed tree: {(w1, w2) ∈ W 2|∃t ∈
TRAN (w2).(t, w1) ∈ H}.

5.3.1 Policy Components of a Hierarchy Net De�nition

A work�ow de�nition usually includes some constraints on activities such as authorized roles, input data
type, and temporal/spatial constraints for the execution of each task. We do not include these in the work�ow
de�nition and consider them as part of the access control policy. Such constraints can be modelled as a set
of action-centric authorization policies, which may also be linked to purpose constraints, as discussed in
Section 7.2.

5.4 Operational Semantics

The state of a Petri net is de�ned based on assigning abstract objects called tokens to its places and is also
known as a marking. For a Petri net with n places, p1 · · · pn, a marking µ is shown as an n-tuple 〈x1 · · ·xn〉
in which xis represent the number of tokens residing at pi.
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Operational semantics of a Petri net are de�ned based on �ring of transitions. A transition can be �red
when it is enabled, i.e. when there is tokens in its input places. When �red, a transition removes tokens from
its input places and produces tokens at its output places which results in a new marking. This is shown as:

µj
t−→ µj+1 in which t is the �red transition and µj and µj+1 are the marking of the Petri net respectively

before and after the �ring.
Firing a transition in a HN is equivalent to the execution of the corresponding task in the work�ow. An

XOR-join transition is enabled when there is a token in one of its input places; an AND-join transition,
however, is enabled when all of its input places contain a token. When �red, an XOR-split transition creates
a token in only one of its output places, whereas an AND-split transition creates a token in all of its output
places. If at a given marking, multiple transitions are enabled, any one of them may be �red and the order
is not deterministic.

The execution of a WN starts from the initial marking in which a token resides in its source place enabling
the source transition. After �ring the source transition, the execution continues by �ring other transitions
based on the semantics of AND and XOR splits and joins as de�ned above. A �nite execution concludes at
the �nal marking, when a token arrives at the sink place �right after �ring the sink transition. Note that,
as it will be discussed in Section 5.6.1, we only consider the �nite �ring sequences.

In a given execution of a WN, the sequence of transitions �red between the initial and �nal markings is
called a �ring sequence. The �ring sequence q = t1 · · · tn, for examples, corresponds to:

µ1
t1−→ µ2

t2−→ · · ·µn
tn−→ µn+1

in which µ1 is the initial marking and µn+1 is the �nal marking. We refer to the sequence µ1 · · ·µn+1 as the
marking sequence corresponding to q and show it as M(q).

We use Qw to show the set of all possible �ring sequences of a given work�ow net w. This is sometimes
called the language of the Petri net, since it is the set of all possible strings generated by the Petri net if
a symbol is assigned to each of its transitions [51]. Note that the existence of AND or XOR splits results
in di�erent possible �ring sequences that in case of XOR-split, capture di�erent choices, and in case of
AND-split, di�erent orders of execution.

5.4.1 Operational Semantics of a HN

We de�ne the operational semantics of a HN based on its extension. The extension of a HN is a WN in
which composite tasks are expanded to their sub-nets to re�ect the run-time execution of the tasks. It can
be straightforwardly shown that the extension of a hierarchy net is a work�ow net. Running a HN is de�ned
as running its extension, according to the operational semantics of work�ow nets discussed above.

Given a hierarchy net H, its extension is shown as EXT (H) and is made by running the following steps for
every composite task t that is re�ned to sub-net w. Figure 5.2 shows an example of a HN and its extension.

• Two new auxiliary tasks te and tx and two auxiliary places pe and px are added to the HN which
respectively indicate entry to, and exit from t. These are similar to call and return instructions in
programming languages.

• Transition t and its sub-net w are added as parallel paths between te and tx, i.e. t is connected to te as
output, and to tx as input, via two auxiliary places. Also, the source place of w is connected as output
to te and its sink place is connected as input to tx. The split-type te of and join-type of tx is AND.

• The network between te and tx replaces t in the WN, i.e. all the input places of t are connected as
input to te and all its output places are connected as output to tx. Also, the join-type of te and the
split-type of tx is the same as t.
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Figure 5.2: An example of a hierarchy net (a) and its extension (b). The auxiliary places and transition are
shaded and the A-relation is shown with dashed lines.

Formally, if we use Cp(w) and Kp(w) to respectively refer to the source and sink places of w:

PLAC (EXT (H)) = PLAC (H) ∪ {pe, px}
TRAN (EXT (H)) = TRAN (H) ∪ {te, tx}

T AND
EXT(H) = T

AND
H ∪ {te}

ANDTEXT(H) =
ANDTH ∪ {tx}

FLOW (EXT (H)) = FLOW (H)\{(u, v)|u = t ∨ v = t}∪
{(te, pe), (pe, t), (t, px), (px, tx), (te, C(w)), (K(w), tx)}∪
{(u, te)|u ∈ •t} ∪ {(tx, v)|v ∈ t•}

t ∈ T AND
H =⇒ tx ∈ T AND

EXT(H)

t ∈ T XOR
H =⇒ tx ∈ T XOR

EXT(H)

t ∈ ANDTH =⇒ te ∈ ANDTEXT(H)

t ∈ XORTH =⇒ te ∈ XORTEXT(H)

5.5 Structural Properties

A plain Petri net does not support split- and join-types and its operational semantics are de�ned so that
a transition is enabled if there is at least one token in each of its inputs, and after �ring the transition, a
token is produced in all its outputs. In other words, the operational semantics of plain Petri nets are de�ned
as if all splits and joins are of type AND. For analysing the structural properties of WNs, and in order to
be able to use the results already studied for plain Petri nets in the literature, we can convert a WN to an
equivalent plain Petri net with no splits or joins of type XOR, as shown in Figure 5.3.

It is easy to see that the resulting Petri net from converting a WN according to such process is a special
type of Petri net known as free-choice Petri net. A free-choice Petri net is a type of Petri net in which for
any two transitions t1 and t2, •t1 ∩ •t2 6= ∅ implies •t1 = •t2. Considering Figure 5.3, the only case where
transitions may share inputs is the case for an XOR-split transition in which case all such transitions share
the same set of inputs.
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Figure 5.3: Converting (a) XOR joins and split, (b) AND join and XOR split, and (c) XOR join and AND
split to plain Petri net structures (adapted from [2]). The case for n predecessor/successor is similar.

This structural property has some major results about the complexity and the dynamic properties of
WNs as we will discuss below.

5.6 Dynamic Properties

Besides the structural properties mentioned in Section 5.2, there are some constraints about the dynamic
behaviour of a valid WN.

5.6.1 Finiteness

A loop can potentially cause in�nite �ring sequences should it take the loop path for an in�nite number of
times and never leave it by taking the exit path. We assume, on the other hand, that structured loops in
WNs eventually take their exit path after a �nite number of iterations. As a result, all �ring sequences of a
WN are �nite.

5.6.2 Soundness

A sound WN is possible to complete, terminates properly, and does not include dead tasks [2, 4]:

• Possibility of completion: Starting from the initial marking, there is always a �ring sequence that leads
to the �nal marking.

• Proper termination: When the work�ow reaches its �nal marking (i.e. there is a token in pe) there
must not be any token in any other places.

• No dead transition: For every transition t, there exists a �ring sequence from the initial marking that
leads to a marking where t is enabled.

Note that possibility of completion does not guarantee completion for every possible �ring sequence; an
in�nite �ring sequence is still possible since a particular instance of a WN may never choose the path to
completion. But as we mentioned above, we additionally assume that a all WNs eventually terminate, i.e.
all of their �ring sequences are �nite.

Also, note that the structural property that all the tasks be on a path from pc to pk does not guarantee
that there is no dead transitions since the way splits and joins are designed might cause a task to be impossible
to run although it statically resides on a path from pc to pk.
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Intuitively, soundness requires some sort of balance between the joins and splits, so that every time some
parallel paths are started using an AND split, they must be synchronized with an AND-join, and likewise
for the XOR splits. An imbalance between split and join types leads to violation of the proper termination
property, for example, if an AND split is not balanced with an AND join, one of the parallel paths may
get to the sink place of the work�ow net while the other paths are still in progress, leading to an improper
termination.

It can be shown straightforwardly by induction that if all the work�ow nets in a HN are sound, its
extension is sound.

Moreover, it has been shown that if a Petri net is free-choice, its soundness can be veri�ed in polynomial
time [1]. Further analysis and results about the soundness property can be found in [4].

5.6.3 Persistence

The second property of WNs, makes a work�ow de�nition similar to a marked graph, a type of Petri net
in which there is only one incoming and one outgoing edge to and from each place [51]. This causes WNs
to have an important run-time property that if a number of transitions are enabled at a marking, �ring
one of them does not disable others, i.e. once a transition is enabled, it is removed from the set of enabled
transitions only when it is �red. This property is called persistence and can be proved straightforwardly by
noticing that in order that an already-enabled transition t′ be disabled after �ring t, �ring t must remove a
token from one of the inputs of t′. Since �ring t can only remove tokens from the inputs of t it follows that
t and t′ share an input place which contradicts the second property of WNs according to their de�nition.

5.6.4 Safety

Safety is a dynamic property of a Petri net that ensures that in all possible markings, there is at most one
token in every place. An important property of free-choice Petri nets is that their soundness implies safety.
For a proof, see [1].

5.7 Example

Figure 5.2 shows an example of a hierarchy net with two composite tasks each of which are expanded to a
sub-net and the corresponding extension. Some of the possible �ring sequences for this net are as follows.

T1T2T
e
4T4T41T42T

x
4 T5

T1T
e
3T31T32T3T

x
3 T

e
4T4T41T42T

x
4 T5

T1T
e
3T31T3T32T

x
3 T

e
4T41T4T42T41T42T4T

x
4 T5

5.8 Composition of Sound Work�ows

Since the dynamic properties of WNs are not de�ned based on its structure, in this section we discuss an
inductive compositional de�nition for a class of Petri nets which are always guaranteed to be valid WNs, i.e.
satisfy both the required structural and dynamic properties. The proof for such result will be straightforward
using structural induction. We call this class W.

Note that this process is not comprehensive, i.e. there are sound WNs that are not in W, but the
constructs provided for making work�ows in W cover most common patterns in programming and work�ow
design and thus give a basic guide for designing valid WNs.

We de�ne the atom work�ow net, shown as wa, as the simplest WN with a single transition t and two
places p1 and p2 such that FLOW (wa) = {(p1, t), (t, p2)}. Using CT , KP , CP , and KT to indicate the source
and sink transitions and places of a WN, we have: CT (wa) = KT (wa) = t, CP (wa) = p1, and KP (wa) = p2.

21



The composition is based on 5 operators, de�ned in the rest of this section, each of which can be applied
to one or two WNs to create a more complex WN. W is inductively de�ned as the minimal set such that:

wa ∈ W (the atom work�ow net)

w1 ∈ W ≥ 2 =⇒ λ(w1) ∈ W (loop)

{w1, w2} ⊆ W =⇒ ρ(w1, w2, t) ∈ W (t ∈ TRAN (w1)) (re�ne)

{w1, w2} ⊆ W =⇒ σ(w1, w2) ∈ W (sequence)

{w1, · · · , wn} ⊆ W =⇒ π(w1, · · · , wn) ∈ W (parallel)

{w1, · · · , wn} ⊆ W =⇒ χ(w1, · · · , wn) ∈ W (choice)

5.8.1 Loop (λ)

This operator makes a loop of the given WN as de�ned in Section 5.2.1 and then adds a new pair of source
and sink transitions (tc and tk) and places (pc and pk). The reason for adding this additional nodes is to
make the resulting network �t the de�nition of the WN (with distinct source and sink places and transitions).

PLAC (λ(w)) = PLAC (w) ∪ {pc, pk, pl}
TRAN (λ(w)) = TRAN (w) ∪ {tc, tk}
FLOW (λ(w)) = FLOW (w) ∪ {(pc, tc), (tc, CP (w)), (KP (w), tk), (tk, pk), (KT (w), pl), (pl, CT (w))}
CT (λ(w)) = tc, CP (λ(w)) = pc

KT (λ(w)) = tk,KP (λ(w)) = pk

5.8.2 Re�ne (ρ)

This operators re�nes the transition t in w1 to the work�ow net w2. The structure is similar to what we
discussed in Section 5.4.1.

5.8.3 Sequence (σ)

Sequencing two WNs is putting one after the other, so that the sink place of w1 is merged with the source
place of w2.

PLAC (σ(w1, w2)) = (PLAC (w1) ∪ PLAC (w2))\{CP (w2)}
FLOW (σ(w1, w2)) = (FLOW (w1) ∪ FLOW (w2) ∪ {(KP (w1), CT (w2))})\{(CP (w2), CT (w2))}
CT (σ(w1, w2)) = CT (w1), CP (σ(w1, w2)) = CP (w1)

KT (σ(w1, w2)) = KT (w2),KP (σ(w1, w2)) = KP (w2)

5.8.4 Parallel (π)

Paralleling a number of WNs means putting them in parallel branches enclosed between two new transitions
tc and tk where split type of tc and the join type of tk is AND. The source and sink transition for the
resulting WN are tc and tk and a new pair of places pc and pk are also added which will be the source and
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sink places of the new WN. Let w′ = π(w1, · · · , wn)

PLAC (w′) =

n⋃
i=1

PLAC (wi) ∪ {pc, pk}

TRAN (w′) =

n⋃
i=1

TRAN (wi) ∪ {tc, tk}

FLOW (w′) =

n⋃
i=1

FLOW (wi) ∪
n⋃
i=1

{(tc, CP (wi))} ∪
n⋃
i=1

{(KP (wi), tk)} ∪ {(pc, tc), (tk, pk)}

CT (w
′) = tc, CP (w

′) = pc

KT (w
′) = tk,KP (w

′) = pk

5.8.5 Choice (χ)

The structure of the choice operator is completely similar to the parallel with the exception that the split/join
type between the branches is XOR.

5.9 A- and F- Relation

The two purpose relations introduced in Section 4 can be directly recognized based on the de�nition of a
work�ow net: the F-relation corresponds to the �ow relation of the Petri net that sequences tasks in a certain
order, and the A-relation corresponds to the hierarchy relation that expands composite tasks to sub-nets.

One consideration is about the structured loops. The return path for a loop can hardly indicate a purpose
relation; for example, consider the loop in the example of Figure 4.1: although it makes sense to assume
looking up receiver's info is for the purpose of con�rming the receiver's identity, the reverse, i.e. to assume
that con�rming the identity is for the purpose of lookup, does not seem to make much sense. Moreover,
assuming that the return path of the loop indicates a prerequisite (F-) relation causes a conceptually counter-
intuitive case of circular prerequisites where the sink transition is a prerequisite for the source transition (pc
is for the purpose of pk) while the source transition is also a prerequisite for the sink transition (pk is for
the purpose of pc). On this basis, we believe that the return path of a loop merely indicates a temporal
precedence and not a prerequisite relation with purpose implications.

Assuming O(PH) is the set of all loop places for all the structured loops in the HN, the F-relation is
formally de�ned based on the extension of H as follows. We use FH for the F-relation of the hierarchy net H:

De�nition 6. F-Relation: the F-relation connects every pair of transitions that are connected to each
other via a non-loop place in the extension of H:

FH =
{
(t1, t2) ∈ T 2

H | ∃p ∈ PLAC (EXT (H)). p 6∈ O(PH) ∧ {(t1, p), (p, t2)} ⊆ FLOW (EXT (H))
}

(5.9.1)

The A-relation is de�ned for the hierarchy net H = 〈W,R,H〉 as follows. We use AH to refer to the
A-relation of the hierarchy net H:

De�nition 7. A-Relation: the A-relation maps every transition of a sub-net to the composite transition
it expands.

AH = {(t1, t2) ∈ T 2
H | ∃w ∈W ; t1 ∈ TRAN (w) ∧ (t2, w) ∈ H}. (5.9.2)

Note that the direction of A is the opposite to that of H, i.e. the edges start from the low-level transitions.
The A- and F-relations can be thought of as the edges of a graph which de�nes the relations between

the actions in a work�ow. This graph, which can be extracted from work�ow de�nitions is equivalent to the
action graph as de�ned in [41].
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6

The Modal Logic Language

Modal logic languages include quanti�ers (or synonymously, operators) to particularize an assertion to
speci�c modes such as the where, when, or how of the assertion. For example, temporal quanti�ers modify
the meaning of a proposition to speci�c times.

Modal logic languages are usually de�ned based on the Kripke semantics [48] which assumes the universe
is composed of a number of possible worlds (also referred to as states or nodes), some of which are reachable
from some others as de�ned by an accessibility relation.

A work�ow de�nition happens to perfectly match this pattern: it gives a model of the world in which
work�ow tasks correspond to di�erent possible worlds, and the F- and A-relations de�ne di�erent types
of accessibility between them. Moreover, typical modal logic operators seem to be suitable for modelling
reachability properties which are closely related to the meaning of purpose as discussed in Section 4. These
reasons justify our decision to choose modal logic as the basis of a language for expressing rules about
purposes of actions. In the rest of this section we discuss the modal logic language and its formal syntax
and semantics.

6.1 Types of Modality

The language we de�ne is based on three di�erent types of modality each with two possible modes. Ac-
cordingly, every modal operator in the language has three semantic elements which specify the mode of
the operator with respect to each of the three modality types (see Figure 6.1). This leads to 23 possible
operators, however, only six of them are meaningful as we will discuss later and shown in Figure 6.2.

A- and F-Particularity This type of modality quanti�es whether the assertion is based on A- or F-
accessibility. An assertion based on F-relation refers to the future states while an assertion based on A-
relation refers to the broader context in which an action takes place. For example, the assertion in-branch
transaction, when quanti�ed by F, means an in-branch transaction will follow in future, and when quanti�ed
by F, means we are currently part of, or in the course of an in-branch transaction.

[F] (font)
Possible vs. Certain

(bracket type)
Universal vs.
Existential

F vs. A

Figure 6.1: The notational convention for the modal operators.
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Possible Certain
A F A F

Universal - [F] [A] [F]
Existential - 〈F〉 〈A〉 〈F〉

[F] 〈F〉
[F] 〈F〉
[A] 〈A〉

Figure 6.2: Summary of the modal operators and types of modalities covered in the language (left) and the
dual operators (right).

Possibility vs. Certainty As a result of non-determinism in the work�ow model about the future tasks,
an assertion about the future can be quanti�ed based on its certainty. A certain assertion is guaranteed to
be true regardless of the non-deterministic nature of the future whereas a possible assertion may be true or
false �but not guaranteed to be false. For example, in an academic journal publication work�ow, eventual
publication of the paper is a possibility while sending a noti�cation email to the author is certain. Note that
these two modes are the dual of one another, i.e. that an assertion is possibly true means its negation is not
certain. We use bold typeface (like F) for representing certainty and blackboard bold typeface (like F) for
possibility.

Note that in the case of F-relation, the existence of XOR-splits introduces some non-determinism in the
progression of work�ows, since when an XOR-split is encountered the work�ow may proceed to any of the
following branches thereby making the exact run-time sequence of transitions indeterminable. Therefore,
F-operators can be of either certain or possible type. Since such non-determinism does not exist in the case
of the A-relation, there is no possible A-operators.

Existentiality vs. Universality The span of the truth of an assertion is another type of modality, i.e.
whether an assertion is true at all states or only in some. A universal assertion is true for all states, while an
existential assertion is true at some states, i.e. there exists some state at which it is true. For example, in a
clinical work�ow for a lab test it might be true that all activities are done within the geographical location of
the clinic, but in a clinical consultation work�ow involving an external clinic, some activities happen outside
the clinic's premises. Note that these two concepts are the dual of one another, i.e. that an assertion is
existentially true means it is not universally false. We represent existential operators with angle- (like 〈〉)
and universal operators with square-brackets (like []).

6.1.1 Common Types of Assertion

Of all the modal quanti�ers in the language shown in Figure 6.2 which are created by combining di�erent
types of modalities, some of them are more important in formulating purpose-based policies which are the
focus of this paper:

Inevitably: This type of assertion says that something is certainly true at some following state. This
type of assertion, which is modelled by 〈A〉 and 〈F〉 operators, can be used to model purpose requirement
as discussed further in Section 7.1.1.

Invariably: This type of assertion says that something is certainly true for all following states. Purpose
prohibitions are assertions of this type for they require that the negation of some purpose certainly holds
true in all following states. This is further discussed in Section 7.1.2. The [F] and [A] operators can model
this kind of assertion.

Potentially: This type of assertion says that something is possibly true at some following state. Intuitively,
this is the dual of invariably, for when an assertion is not guaranteed to be true in all following states, it
means that its negation is possible to happen at some point. So, purpose prohibitions can also be expressed
as negation of this type of assertions which can be modelled by 〈F〉 and 〈A〉 operators.

25



Potentially Always: This type of assertion says that something is possibly true at all following states.
Intuitively, this is the dual of inevitably, for when an assertion is not guaranteed to be true at some point, it
means that there is the possibility that its negation be the case at all following states. For example, if medical
treatment cannot be guaranteed to follow as a purpose, it means that ¬(medical treatment) is possibly true
in all following states. The semantics of [F] and [A] match this type of assertions.

6.2 De�nition of the Language

Formal semantics for the language de�ne the truth value of every formula based on a model. We de�ne the
model to be a work�ow de�nition given in the form of a hierarchy net, together with a labelling function, L
that gives the truth or falsehood of atomic propositions at each transition. This is given as a function that
maps each atomic proposition p to L(p), the set of transitions at which it holds true.

We de�ne the truth value of a formula φ by de�ning the set of transitions at which φ holds true, in the
context of the hierarchy net H and the labelling function L; this is shown as [[φ]]H,L, or [[φ]] where the context
is clear.

In the context of H and L, we say a transition t satis�es the formula φ if and only if t ∈ [[φ]]H,L. Similarly,
in the context of L, a hierarchy net H satis�es φ if and only if:

∀t ∈ TH, t ∈ [[φ]]H,L

In this section, we �rst give the formal de�nition of the syntax and semantics of the language and
then present further discussion about the semantics. Finally, we show that the semantics for the language
correspond to the semantics of purpose and the language in fact can express rules about purposes as de�ned
in Section 4.

6.2.1 Formal De�nition

The syntax is de�ned as the following context-free grammar, in which p is any atomic proposition:

φ ::= > | p | ¬φ | φ ∧ φ | 〈A〉φ | 〈F〉φ | 〈F〉φ (6.2.1)

We assume that unary operators take precedence over binary operators and we use parentheses where
necessary.

In the context of the hierarchy net H, whose set of all transitions is referred to as T , [[φ]] is de�ned
inductively as the smallest �xed point satisfying the following. The PRE functions are de�ned later in this
section:

[[>]] = T . (6.2.2)

[[p]] = {t ∈ T | p ∈ L(t)}. (6.2.3)

[[¬φ]] = T \[[φ]]. (6.2.4)

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]. (6.2.5)

[[〈A〉φ]] = [[φ]] ∪ PREA([[〈A〉φ]]). (6.2.6)

[[〈F〉φ]] = [[φ]] ∪ PREF ([[〈F〉φ]]). (6.2.7)

[[〈F〉φ]] = [[φ]] ∪ PRE∃F ([[〈F〉φ]]). (6.2.8)

Note that as we will show in Section 8.3, such �xed point exists. For further discussion of �xed points
see [69].
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The following derived forms are de�ned to facilitate expressing more complex formulas:

⊥ def
= ¬> (6.2.9)

φ1 ∨ φ2
def
= ¬(¬φ1 ∧ ¬φ2) (6.2.10)

φ1 → φ2
def
= ¬(φ1 ∧ ¬φ2) (6.2.11)

[A]φ
def
= ¬〈A〉(¬φ) (6.2.12)

[F]φ
def
= ¬〈F〉(¬φ) (6.2.13)

[F]φ def
= ¬〈F〉(¬φ) (6.2.14)

6.2.2 Pre-Image Functions

The semantics of the modal operators are de�ned recursively using the pre-image functions which enable a
step-by-step way for de�ning the transitions that satisfy a formula.

For the A-relation, PREA(S) is de�ned on S, a set of transitions, as the set of transitions whose immediate
successors along the A-edges are in S. Note that in A, there is at most one immediate successor for any
given transition.

PREA(S) = {t ∈ T | ∃t′ ∈ S.(t, t′) ∈ A} (6.2.15)

For the case of F-relation, we de�ne two pre-image functions: the existential pre-image of S returns the
set of nodes that have at least one immediate successor in S along F-edges, while the universal pre-image of
S returns the nodes that all of their immediate successors are in S.

PRE∃F (S) = {t ∈ T | ∃t′ ∈ T .(t, t′) ∈ F ∧ t′ ∈ S} (6.2.16)

PRE∀F (S) = {t ∈ T | ∀t′ ∈ T .(t, t′) ∈ F ⇒ t′ ∈ S)} (6.2.17)

For example, in Figure 6.3 we have:

PRE∃F ({T2, T5}) = {T1, T3}
PRE∀F ({T2, T3}) = {T1, T6}

6.2.3 Recursive De�nition of Modal Operators

The intuitive meaning of 〈A〉φ is that φ is true at the current or some following transition along the A-edges,
which can be rephrased recursively as: φ is true at the current transition, or 〈A〉φ holds at the immediate
A-successor (see Lemma 1). So, we de�ne the set of transitions satisfying 〈A〉φ as the union of those that
satisfy φ and those whose A-successor satis�es 〈A〉φ which considering the de�nition of PREA can be written
as:

[[〈A〉φ]] = [[φ]] ∪ PREA([[〈A〉φ]]). (6.2.18)

Similarly, the intuitive meaning of 〈F〉φ is that either the current transition satis�es φ or one of the possible
future transition does, which can be rephrased recursively as: φ is true at the current transition, or one of
the immediate F-successors satisfy 〈F〉φ (see Lemma 1). So, we de�ne the set of transitions satisfying 〈F〉φ
as the union of those that satisfy φ and those with at least one immediate F-successor that satis�es 〈F〉φ:

[[〈F〉φ]] = [[φ]] ∪ PRE∃F ([[〈F〉φ]]) (6.2.19)

The intuitive meaning of 〈F〉φ is that either the current or some certain future transition along the
F-edges satis�es φ. Considering the split-type, we know that in the case of an AND split, all of the successor
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T1

T2{t}

T3

T4

{q, p}

T5{p}

T6

T7

Figure 6.3: The e�ect of split types on the interpretation of quanti�ers. The callouts show the labelling
function with the atomic propositions p, q, and t.

transitions will be activated, so it is enough if at least one of them satis�es 〈F〉φ, so, the existential pre-image
function is applicable. For XOR splits, however, it is not determined which succeeding transition will ensue,
so, in order to ensure that 〈F〉φ is certainly satis�ed in future paths, we have to ensure all of the following
transitions satisfy 〈F〉φ which means we have to apply the universal pre-image function. Thus, the set of
all transitions satisfying 〈F〉φ can be recursively de�ned as the union of those that satisfy φ, those with
split-type AND with at least one immediate F-successor that satis�es 〈F〉φ, and those with split-type XOR
whose all immediate F-successors satisfy 〈F〉φ:

[[〈F〉φ]] = [[φ]] ∪ (TAND ∩ PRE∃F ([[〈F〉φ]])) ∪ (TXOR ∩ PRE∀F ([[〈F〉φ]])). (6.2.20)

To simplify this, we de�ne PREF (S) which separates the nodes with AND- or XOR-split and applies the
appropriate pre-image function to them:

PREF (S) = (TAND ∩ PRE∃F (S)) ∪ (TXOR ∩ PRE∀F (S)) (6.2.21)

Using this, we can simplify (6.2.20) as:

[[〈F〉φ]] = [[φ]] ∪ PREF ([[〈F〉φ]]) (6.2.22)

As an example, consider the work�ow of Figure 6.3 again. Since node T3 has split-type XOR, and both
of its immediate successors satisfy p, they both satisfy 〈F〉p and thus, it follows that T3 satis�es 〈F〉p. Now,
since T1 has split-type AND and hence it will proceed to T3 in any case, and T3 satis�es 〈F〉p, we can be
assured that T1 satis�es 〈F〉p. Note that, had T1 had split-type XOR, we would have to ensure that T2
satis�es 〈F〉p as well. On the other hand, T3 does not satisfy 〈F〉q, since the work�ow may proceeds to T5
after T3 and T4 may never happen. Nonetheless, T3 satis�es 〈F〉q since T4 may possibly follow.

Note that any transition with no successor along F-edges (i.e. the sink transition in the root WN of H)
is (vacuously) a member of PRE∀F , but since we assumed in Section 5 that the split-type of such transitions
is always AND, it is �ltered out by the intersection in (6.2.20).

6.2.4 The Importance of Splits

Split types have an important e�ect in evaluating the future states and thus purposes. A model such as
our previous model of action graphs [41] which does not consider the split types could at times be too
conservative and block innocuous work�ows that do not actually violate the policy. Consider the example of
Figure 6.3 and the policy that t is a required purpose for T1, i.e. T1 is not allowed unless in the case that t is
one of its purposes. With a model in which the split-types are abstracted away and hence not considered in
the evaluation, the safe decision is to reject this work�ow, since it might violate the policy (the split type for
T1 could be XOR and after executing T1 the work�ow might take the path to T3 and never reach a transition
where t is true). Considering the split types, therefore, is important for an accurate evaluation.

6.3 Dynamic Semantics: Linking the Modal Operators to Purpose

So far, we have de�ned a modal logic language based on the static structure of the work�ows. But in order
to be able to model purpose-based policies with this language, we have to show that the semantics of this
language correspond to the the meaning of purpose.
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Our intuitive understanding of purpose is based on the order of occurrence for actions in the system as
we de�ned in Section 4: a possible/certain F-type purpose p means that there is a possible/certain action
in future which has the property p, and an A-type purpose means there is an activity with the property p of
which the current action is a part. These can be formally de�ned over the set of all possible �ring sequences
of a hierarchy net and result in a set of semantics de�nition which we call the dynamic semantics.

In this section, we de�ne and discuss the dynamic semantics and show that they are equivalent to the
semantics of the modal operators and thus, the modal operators do model purpose-based constraints as we
understand them.

The following notational conventions are de�ned to facilitate these de�nitions:

• QH: the set of all possible �ring sequences for the hierarchy net H.

• qi (where q is a �ring sequence): the transition at the ith location of q.

• M(q): the marking sequence corresponding to the �ring sequence q.

• Mi(q): the ith marking in M(q). Note that for any i we have: Mi(q)
qi−→Mi+1(q).

• LOOP(t, t′): a Boolean functions that speci�es whether tt′ is the return path of a loop, i.e. whether
∃pl ∈ O(PH). {(t, pl), (pl, t′)}⊂FLOW (EXT (H)).

• E(µ): the set of transitions that are enabled at the marking µ.

6.3.1 Formal De�nition

We de�ne the dynamic semantics as [[[φ]]]H,L which represents the transitions satisfying φ in the context of
the hierarchy net H and the labelling function L. We drop the subscripts where the context is clear. For
convenience, we assume that non-composite tasks are also expanded to a small net including an entry, main
and exit task, similar to the way explained in Section 5.4. Note that this assumption does not cause any
loss of generality and is only for the purpose of keeping the de�nitions easy to express.

[[[>]]] = T . (6.3.1)

[[[p]]] = {t ∈ T | p ∈ L(t)}. (6.3.2)

[[[¬φ]]] = T \[[[φ]]]. (6.3.3)

[[[φ1 ∧ φ2]]] = [[[φ1]]] ∩ [[[φ2]]]. (6.3.4)

[[[〈A〉φ]]] = {t| ∀q ∈ Q(qi= t→ ∃u∈ [[[φ]]] ∃k>i ∃j<i (qj = ue ∧ qk = ux))}. (6.3.5)

[[[〈F〉φ]]] = {t| ∀q ∈ Q (qi= t→ ∃j≥ i (qj ∈ [[[φ]]]))}. (6.3.6)

[[[〈F〉φ]]] = {t| ∃t′. t′ ∈ [[[φ]]] ∧ t ∗ t′}. (6.3.7)

The de�nition of  ∗ is given later below.

6.3.2 Discussion

The dynamic semantics for >, atomic propositions and the logical connectives are de�ned to be identical to
the static semantics.

The intuitive meaning of an A-purpose, shown as 〈A〉φ, is that the action performed as part of an activity
that satis�es φ.

De�nition 8. Part-of: An action is said to be part of an activity if and only if it always happens between
that activity's start and end.
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Thus, we de�ne [[[〈A〉φ]]] as the set of transitions that in every possible �ring sequence occur between the
start and end of a transition that satis�es φ.

The intuitive meaning for a possible F-purpose, shown as 〈F〉φ is that the action is possibly a prerequisite
to another action that satis�es φ. Thus, we de�ne [[[〈F〉φ]]] as the set of all transitions t that, in at least one
possible �ring sequence, are the prerequisite of a transition that satis�es φ. Prerequisite is de�ned as:

De�nition 9. Prerequisite-of: Action t′ is said to be a prerequisite of action t if and only if there exists a
�ring sequence in which enabling t depends on the �ring of t′, i.e. if t′ did not occur, t would not be enabled,
except in the case of the return path of a loop.

The return path of a loop does not imply a prerequisite relation as we discussed in Section 5.9. On this
basis, the direct prerequisite of t in q is the transition whose �ring enables t. This is shown as t′  H t and
formally de�ned below. The re�exive transitive closure of  H, shown as  ∗H captures the broader meaning
of prerequisite-of as de�ned above which includes direct and indirect prerequisites.

t′  H t i� ∃q∈QH∃i. qi= t′ ∧ t 6∈E(Mi(q)) ∧ t∈E(Mi+1(q) ∧ ¬LOOP(t, t′). (6.3.8)

Theorem 1 states that the dynamic de�nition of prerequisite-of is equivalent to the formal de�nition of
F-relation given in Section 5; i.e. the dynamic and static de�nition of prerequisite-of are equivalent:

Theorem 1. The dynamic and static de�nitions of prerequisite-of are equivalent, i.e., for a given hierarchy
net H: (t′  ∗H t)⇐⇒ (t′, t) ∈ F ∗H

Proof. See Appendix A.

The intuitive meaning for a certain F-purpose, shown as 〈F〉φ is that the action will certainly lead to
another action that satis�es φ. Thus, we de�ne [[[〈F〉φ]]] as the set of transitions t that, in every possible
�ring sequence lead to a transition that satis�es φ.

6.3.3 Equivalence of Dynamic and Static Semantics

Theorem 2 states that the dynamic and static semantics are equivalent, and so, the static semantics of the
modal operators match the intuitive meaning of purposes de�ned by the dynamic semantics.

Theorem 2. For any formula φ, any hierarchy net H and labelling function L, we have: [[φ]]H,L = [[[φ]]]H,L.

Proof. See Appendix A.
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7

Purpose-Based Policies

Traditional access control policies are a collection of rules that stipulate what action can be performed
by what subjects on what data resources and under what contextual (a.k.a environment) conditions [71].
Purpose-based policies add purpose as an additional decision factor in such rules so that the policy can ad-
ditionally specify constraints about the purposes of access. We de�ne a purpose constraint, or synonymously
a plain purpose policy as:

De�nition 10. Purpose Constraint (Plain Purpose Policy): a restriction about the purposes of access
which can be modelled as a formula belonging to the modal logic language de�ned in Section 6.

A purpose-based access control policy is de�ned as:

De�nition 11. Purpose-Based Access Control Policy: a set of access control rules including restric-
tions on actions, subjects, data resources, environment, and their attributes that additionally, include some
purpose-based constraints.

In other words, a purpose-based policy is created by linking a purpose constraint to a traditional access
control policy. Note that we do not discuss the formal semantics of access control policies in this paper and
our discussion of formal semantics is restricted to plain purpose-based policies (see Section 6).

In this section we discuss purpose-based policies by introducing di�erent types of purpose constraints
and how they can be modelled using our modal logic language. Subsequently, we discuss the di�erent ways
in which purpose constraints can be tied to access control rules to create a general purpose-based access
control policy.

7.1 Types of Purpose Constraints

In this section we discuss some typical forms of purpose constraints and how they can be expressed using the
modal logic language. Some of these forms have been discussed in the literature before, but we also propose
some new forms that are the contribution of this work.

7.1.1 Required Purposes

One of the most common types of purpose constraints is to require a certain purpose, i.e. access is allowed
only if it is for a speci�c purpose. For example:

• A patient may require the purpose of medical treatment for access to her or his health record, so, access
will not be allowed for any other purposes, such as research or training.

• An online store's customer may restrict access to her or his home address to the purpose of product
delivery, so, access is not allowed for any other purposes such as marketing.
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A required purpose p can be modelled using the certain operators, so, depending on whether F- or A-
purpose is intended, it can be modelled using 〈A〉p or 〈F〉p, and if the type of purpose does not matter it
can be modelled as:

〈A〉p ∨ 〈F〉p

Theorem 3 states that these two operators can cover any type of certain purposes, i.e. any other combination
of A- and certain F-purposes is covered by 〈A〉p ∨ 〈F〉p.

Theorem 3. Any combination of certain F- and A- purposes which includes both operators, is equivalent
to the disjunction of a certain F- or an A-purpose, i.e. for any n > 1 we have:

[[〈X1〉 · · · 〈Xn〉φ]] = [[〈A〉φ ∨ 〈F〉φ]] (Xi ∈ {A,F})

given that ∃i, j. Xi = F ∧Xj = A.

Proof. See Appendix A.

Since our model supports multiple purposes for an action (see Section 4), it is possible to require more than
one purpose. For example, requiring both the purpose of order-processing and delivery can be formulated
as:

(〈A〉order-processing ∨ 〈F〉order-processing) ∧ (〈A〉delivery ∨ 〈F〉delivery)

7.1.2 Forbidden Purposes

Another common type of constraint is to forbid some purposes, i.e. access is denied if it is for a certain
purpose. For example:

• An online store's customer may wish to forbid access to her or his home address for the purpose
of marketing.

• A patient may wish to forbid access to her or his psychological health information for the purpose
of research.

• A hospital may prohibit access to any patients' health record for the purpose of medical treatment by
any user in the role of admin assistant.

Forbidding p is basically equivalent to ruling out the possibility of p, so it can be modelled as the negation
of a possible operator. So, depending on whether F- or A-purpose is intended, it can be modelled using ¬〈A〉p
or ¬〈F〉p, and if the type of purpose does not matter it can be modelled as:

¬(〈A〉p ∨ ¬〈F〉p)

Theorem 4 states that these two operators can cover any type of possible purposes, i.e. any other combination
of A- and possible F-purposes is covered by 〈A〉p ∨ 〈F〉p.

Theorem 4. Any combination of possible F- and A- purposes which includes both operators, is equivalent
to the disjunction of a possible F- and an A-purpose, i.e. for any n > 1 we have:

[[〈X1〉 · · · 〈Xn〉φ]] = [[〈A〉φ ∨ 〈F〉φ]] (Xi ∈ {A,F})

given that ∃i, j. Xi = F ∧Xj = A.

Proof. See Appendix A.

Theorem 5 says that any combination of certain F-, possible F-, and A-type operators can be covered by
their disjunction.
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Theorem 5. Any combination of A-, certain F- and possible F- purposes that include all the three operators,
is equivalent to the disjunction of a possible F- and an A-purpose, i.e. for any n > 2 we have:

[[〈X1〉 · · · 〈Xn〉φ]] = [[〈A〉φ ∨ 〈F〉φ]] (Xi ∈ {A,F,F})

given that ∃i, j, k. Xi = F ∧Xj = F ∧Xk = A.

Proof. See Appendix A.

Logical combinations of forbidden and required purposes can model more complex constrains.

7.1.3 A- vs. F- Purposes

The type of purpose (A- vs. F-) often does not matter in the purpose constraints and they usually apply
equally to both F- and A-purposes. But there are cases where such distinction matters. For example,
consider the case of an admin assistant in a hospital. The policy may want to prohibit this role from
partaking in activities that are directly part of a treatment procedure, and yet allow activities that lead to
some treatment. Therefore, this role is allowed to have a treatment purpose of type F but not of type A,
which can be modelled as ¬〈A〉treatment.

As another example, a patient, or an organizational policy may wish to restrict access to the sensitive
parts of her or his record to the activities that are directly part of a treatment procedure rather than
activities that lead to such procedures such as hospital admission. This can be modelled as 〈A〉treatment.

7.1.4 Order-Based Constraints

The order of the purposes of an action can sometimes be important in a purpose-based policy. For example,
suppose that an insurance company pays for di�erent portions of the expenses for the purpose of surgery,
depending on whether the surgery is in turn for the purpose of treatment, birth control, or cosmetics. In such
cases, not only is it important that these purposes be present, but they also must be in a speci�c order. In
the above example, suppose that the policy requires that in order to �le a claim for full reimbursement, the
purpose of surgery must be present and be in its turn for the purpose of treatment, which can be formulated
as:

〈F〉(surgery ∧ (〈F〉treatment ∨ 〈A〉treatment))∨
〈A〉(surgery ∧ (〈F〉treatment ∨ 〈A〉treatment))

Note that a simpler rule requiring both surgery and treatment does not necessarily describe the same re-
quirement since it can be satis�ed even when surgery and treatment both appear but in the reverse order.
Consider the treatment activities that might be performed to control the blood pressure of a hypertensive
patient to prepare her or him for a cosmetic surgery. In this case, both treatment and surgery are among
the purposes of these activities but the order is not as desired by the policy. A more complex example of
order-based constraints which deals with possible orders is given in Section 9.

7.2 Linking to Other Access Control Policies

By tying a purpose constraint to other access control rules, a purpose-based policy can be created. The
purpose constraints can be formulated using the modal logic language developed in our framework and an
existing access control policy language can be extended so that the purpose constraints can be formulated
alongside, and in connection with other access control rules. Some of the most common forms of such policies
are discussed in this section. We use the eXtensible Access Control Markup Language (�XACML") [71].
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<Rule Effect="Deny"> Deny access if

<Target>
<Subjects>
<Subject>

<SubjectMatch MatchId="function:string-equal">
<AttributeValue DataType="string">
admin assistant
</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject:role"

DataType="string"/>
</SubjectMatch>

subject.role=admin assistant

and

</Subject>
</Subjects>
</Target>

<Condition FunctionId="function:not">
<Apply FunctionId="evaluate-modal-formula">
<AttributeValue DataType="modal-formula">
<Not>
<ADiamond>treatment</ADiamond>
</Not>
</AttributeValue>
<ActionAttributeDesignator AttributeId="workflow-ctx"

DataType="workflow"/>
</Apply>
</Condition>

if the purpose (type A) is treatment

(i.e. the work�ow context does

not satisfy ¬〈A〉treatment).

</Rule>

Figure 7.1: An example of a subject-centric policy modelled in XACML which forbids purpose of treatment
for users with the role admin assistant.

7.2.1 Action-Centric Policies

Action-centric policies are the result of tying a purpose constraint to a speci�c (type of) action. The general
form of such policies is to require a certain purpose constraint to hold as a condition for allowing an action.
For example, the policy for using a printer in an o�ce might require that printing is only allowed for the
purpose of billing con�rmation �thereby deny using the printer for other purposes. Or, an organizational
policy may prohibit any remote action (i.e. over the Internet) for the purpose of research but allow this
purpose for local actions.

Since actions and their attributes are already modelled in our language, this form of policy can be
modelled within the modal logic language in the form of an implication like the following:

action id/attribute→ φ.

It is still possible, however, to use the facilities of the access control language to model this kind of
policies in case a particular action's id or its attributes are not captured in the modal logic vocabulary but
are available in the broader vocabulary used by the access control policy language.

7.2.2 Subject-Centric Policies

A subject-centric purpose-based policy expresses some constraints about the purposes that certain subjects
can claim. A black/whit list of unauthorized/authorized purposes for roles is a simple form of this type of
policy. For example, a hospital's policy may stipulate that admin assistant role cannot perform any actions
for the purpose (type A) of treatment as shown in Figure 7.1. More complex policies can be expressed using
other attributes, for example, a policy may require that in order to access data for the purpose of genetic
analysis the subject should have the physician role and at least 5 years of experience in the practice.

7.2.3 Data-Centric Policies

Data-centric policies are composed of linking some purpose constraints to certain data resource, so that any
action on the data by any subject must satisfy the purpose constraints. This is a very common approach for
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purpose-based policies and has been adopted by many models and standards [72, 18]. A black/white list of
unauthorized/authorized purposes (a.k.a intended purposes [18]) attached to a data resource is the simplest
form of this kind of policies. For example, a patient consent can require that the medical record shall not
be used for the purpose of marketing.

More complex policies can be formed by considering other attributes of the data resource, for example,
a patient can stipulate that if the data item in her/his record is labelled with reproductive health it cannot
be accessed for any purposes other than medical treatment, or a jurisdictional authority may prohibit the
purpose of research for the health record of patients younger than 18 years, unless the patient's legal guardian
consents otherwise. An example of a data-centric policy modelled in XACML is shown in Figure 9.3.

7.2.4 Environment-Centric Policies

Likewise, environment-centric policies tie a purpose constraint to some environmental attributes such as time
or location. For example, a policy may require that the purpose of marketing is not authorized for access
outside business hours, or the purpose of public health is only authorized when access is requested within a
particular country or province.

7.2.5 Compound Policies

Complex policies can be formed by combining action-, subject-, data- and environment-centric rules. For
example, a subject-data-environment-based policy may restrict purpose of research to users with the role of
physician and only on anonymized data and within the location of the organization premises.

In the most general form, a policy speci�es a constraint on subject, data, action, environment, and a
purpose rule which is the approach taken by some privacy policy languages such as the Enterprise Privacy
Authorization Language (�EPAL") [29]. All the other kinds of policies discussed above are especial cases for
this general form.

However, modelling policies in more speci�c forms such as the ones discussed earlier is an e�cient way
of organizing them and facilitates �nding the corresponding policies to an access request. For example,
data-centric policies can be checked easier since the applicable policies for a data item can be fetched and
checked whenever the data item is about to be used.

7.2.6 Purpose-Based Obligations

Obligations are commitments that should be incurred as a result of granting access [35]. A purpose-based
obligation is an obligation that is triggered based on some purpose constraints. For example, an obligation
may require the record to be anonymized before access for research purposes is allowed. Or, a fee might be
charged, or noti�cation/audit information produced, every time some personal data is used for the purpose
of marketing. This type of policies can be modelled using an access control policy language that supports
obligations (e.g. XACML) in similar ways to the above cases.

7.3 Policy Origins

Policies may have di�erent origins and set by di�erent policy makers. The decision as to who has the authority
to make what kind of policies and in what domain belongs to the purview of administrative policies which
also decide how di�erent policies from di�erent origins need to be combined, and in case of any con�icts,
reconciled.

Jurisdictional policies are very high-level policies that apply to all systems in a certain jurisdiction. For
example, a federal or provincial policy may stipulate that a patient's health record information must not be
used for the purpose of marketing without her or his prior consent.
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Organizational policies are policies that apply to all the activities within an organization. For example,
to strengthen privacy, a hospital may decide that data shall not be accessed for the purpose of research
outside the hospital premises.

Another important source of purpose-based policies is the business rules. For example, in a visit to
optometrist for getting new eye glasses, the doctor or the nurse do not need to check a patient's blood test
results. Thus, the principle of least-privilege requires that access to blood test results be prohibited for the
purpose of optometric procedures.

In many systems, the subject or the owner of the data, has the authority to make some policy decisions
about its usage. For example, a patient usually has the right to make certain decisions about her or his
health data. Or in a social network application, a user who appears in a photo has some rights to make
access control decisions about it, even if she or he is not its owner. Such policies are only applicable to an
individual data item.
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8

Model Checking

The model-checking algorithm answers the question whether or not a given model satis�es a policy. The
model is given as a hierarchy net H together with a labelling function L, and the policy comes in the form
of a formula φ belonging to the modal logic language. The output of the algorithm is a yes-or-no answer
indicating whether the given model complies with the given policy. The algorithm is also capable of a more
�ne-grained veri�cation by specifying whether a particular transition satis�es the policy, i.e. for every t ∈ TH ,
the model-checking algorithm can answer if t ∈ [[φ]]H,L is true.

This answer can then be used by a reference monitor to make an access control decision to allow/deny
a particular action. In this section, we only discuss the model-checking algorithm in the abstract and leave
a discussion of the practical con�guration for packaging this algorithm in the form of a purpose reference
monitor for Section 9.

A straightforward algorithm can compute the extension of H and thereby the F- and A-relations. We
assume that A and F are represented in a suitable data structure so that computing F , F−1, A and A−1

for any given transition take constant time. The labelling function is given as L where L(t) returns the set
of atomic propositions that are true at transition t, and L−1(p) returns the set of transitions at which the
atomic proposition p is true �both in constant time.

The model-checking algorithm should compute [[φ]], the set of nodes that satisfy formula φ; the pair of H
and L satisfy the formula if all the transitions in H satisfy φ, i.e. TH = [[φ]]. Algorithm 1 shows the overall
model-checking algorithm discussed in the remainder of this section.

The core idea of the algorithm is to recursively compute [[φ]] in a bottom-up fashion by computing [[ψi]]
for ψis, the subformulas of φ, and combining the result for smaller subformulas to compute [[ψi]] for larger
subformulas. The post-order traversal of φ's abstract syntax tree provides a suitable ordering of subformulas
for this purpose because all the constituents of a formula appear before itself. Figure 8.2 shows an example.

Based on the formal de�nitions of the semantics in Section 6.2, the base cases are [[>]] and [[p]], and the
cases for the logical operators, [[¬ψ]] and [[ψ1 ∨ ψ2]] are straightforward. So, we only need to discuss the
case of modal operators. Note that we only give the algorithm for the main operators; the case for derived
operators can be reduced to the main operators.

8.1 Computing Pre-Image functions

By �nding F−1 for all the members of a given set, PRE∃F can be computed. Given that F is represented
in a suitable data structure, computing F−1 for each member takes constant time, and thus, computing
PRE∃F (S) takes |S| steps. The case for PREA(S) is similar.

For computing PRE∀F (S), we can compute PRE∃F (S) (in |S| steps) and then loop over all xi's in PRE∃F (S)
to test whether F (xi) ⊆ PRE∃F (S). The latter loop takes at most |F | steps, yielding an overall complexity
of |S| + |F |. Overall, since |S| is bound by the number of transitions (|T |), the complexity of computing
pre-image functions is bound by |T |+ |F |.
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Figure 8.1: A- and F- relations based on the extension of the hierarchy net from Figure 5.2. The callouts
show the labelling function.

→

q ∨

〈A〉 〈F〉

pp

[[ψi]]
ψ1 q {T32}
ψ2 p {T4}
ψ3 〈A〉ψ2 〈A〉p {T4, T41, T42}
ψ4 p {T4}
ψ5 〈F〉ψ2 〈F〉p {T4, T

e
4 , T

x
3 , T2, T3, T32, T31, T

e
3 , T1}

ψ6 ψ3 ∨ ψ5 〈A〉p ∨ 〈F〉p {T4, T41, T42, T
e
4 , T

x
3 , T2, T3, T32, T31, T

e
3 , T1}

ψ7 ψ1 → ψ6 q → (〈A〉p∨〈F〉p) T

Figure 8.2: The abstract syntax tree of the formula q → (〈A〉p∨〈F〉p) and the ordered set of its subformulas
based on its post-order traversal. The right-most column shows the steps of model-checking as explained in
Section 8.4.

8.2 Recursive Model Checking of Diamond Operators

Based on the de�nition of [[〈F〉φ]], it can be computed in a bottom-up fashion by the following steps:

X1 = [[φ]]

X2 = X1 ∪ PREF (X1)

...

Xn = Xn−1 ∪ PREF (Xn−1)

Figure 2 depicts the algorithm for this computation. The right-hand side grows monotonically, Xi−1 ⊆ Xi

for every i, so, Xi grows at each iteration until it settles to T or a subset of it. The loop, thus, halts after
at most n = |T | iterations. And, since the most expensive computation at each iteration is computing the
pre-image function (taking at most |T |+ |F | steps), the overall complexity is bound by |T |(|T |+ |F |).

The cases for [[〈F〉φ]] and [[〈A〉]] are similar, although a bit simpler since they use the PRE∃F and PREA

functions which are less costly to compute.

8.3 Correctness

For all non-recursive operators, the algorithm straightforwardly follows the semantics de�nitions. For the
recursive operators, since they are monotonic functions de�ned over the power set of T , and (2T ,⊆) is a
complete lattice, we can apply the constructive version of Knaster-Tarski �xed-point theorem [69] which
states the smallest �xed-point for such a function can be computed as:

⋃
i∈N f

i(∅). Note that the theorem
also states that the least �xed-point exists, so, there exists an l ∈ N such that i ≥ l =⇒ f i(∅) = f i−1(∅).

8.4 Example

Based on the model given in Figure 8.1 and the formula of Figure 8.2, we show an example of running the
algorithm. The formula has 7 subformulas labelled as ψ1 to ψ7, and the partial results of the computation

38



ALGORITHM 1: The overall model-checking algorithm.
Input: φ, the labelling function L, the model
Output: whether or not the model satis�es φ

Subformulas : An array containing all φ's subformulas resulting from the post-order traversal of its abstract syntax tree)
Results : A map storing the result of [[ψ]] for each subformula ψ

forall the ψ ∈ Subformulas do
switch ψ do

case >
Results[ψ]← T

case is an atomic proposition

Results[ψ]← L−1(ψ)
case has the form ¬ψ1

Results[ψ]← T \Results[ψ1]
case has the form ψ1 ∧ ψ2

Results[ψ]← Results[ψ1] ∩ Results[ψ2]
case has the form 〈A〉ψ1

Results[ψ]← Result of the algorithm discussed in Section 8.2
case has the form 〈F〉ψ1

Results[ψ]← Result of the algorithm discussed in Section 8.2
case has the form 〈F〉ψ1

Results[ψ]← Result of the algorithm discussed in Section 8.2
endsw

end

return (Results[φ] = T )

ALGORITHM 2: Recursive computation of [[〈F〉ψ]] based on [[ψ]].

Input: [[ψ]]
Output: [[〈F〉ψ]]
NewResult← [[ψ]];
OldResult← {};
while NewResult 6= XOld do

OldResult← XNew ;
NewResult← NewResult ∪ PREF (NewResult) ;

end

return NewResult

are shown in the last column on the table in Figure 8.2.
Beginning from [[ψ1]], and [[ψ2]], they are directly given by the labelling function. For [[ψ3]], we follow the

Algorithm 2 involving the following steps:

X1 = [[ψ1]] = {T4}
X2 = X1 ∪ PREA(X1) = {T4} ∪ {T41, T41} = {T4, T41, T41}
X3 = X2 ∪ PREA(X2) = {T4, T41, T41} = X2

Similarly, [[ψ5]] is computed by the following steps:

X1 = [[ψ1]] = {T4}
X2 = X1 ∪ PREF (X1) = {T4} ∪ {T e4 }
X3 = X2 ∪ PREF (X2) = {T4, T e4 } ∪ {T x3 , T2}
X4 = X3 ∪ PREF (X3) = {T4, T e4 , T x3 , T2} ∪ {T3, T32}
X5 = X4 ∪ PREF (X4) = {T4, T e4 , T x3 , T2, T3, T32} ∪ {T e3 , T31}
X6 = X5 ∪ PREF (X5) = {T4, T e4 , T x3 , T2, T3, T32, T e3 , T31} ∪ {T1}
X7 = X6 ∪ PREF (X6) = {T4, T e4 , T x3 , T2, T3, T32, T e3 , T31, T1} ∪ {} = X6.

For ψ6, and ψ7 we use the de�nitions for the logical connectives which eventually leads to [[φ]] = T , i.e. the
model satis�es the formula.
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9

Implementation Considerations

In this section we will discuss di�erent con�gurations for linking the model checking algorithm to an actual
implementation of a reference monitor for access control. Subsequently, we will discuss the system compo-
nents and an example case of how the framework can be implemented to enforce purpose-based policies in
the medical research institute discussed in Section 3.

We assume a work�ow-based information system is in place, i.e. a system in which all authorized
activities are de�ned in the form of work�ows and no isolated or arbitrary access to data outside the context
of work�ows is allowed.

9.1 Model Checking Con�gurations

The enforcement core of the framework is the model-checking algorithm which sits at the heart of a reference
monitor to control access based on the answer from the model-checking algorithm as discussed in Section 8.
This can be implemented in di�erent ways based on the application context. We discuss some of the possible
con�gurations below. To keep our discussion more concise, we only focus on the �rst two cases for the
remainder of this section. Implementing the third case is very similar to the second.

9.1.1 Work�ow-De�nition Reference Monitor

Some high-level overarching policies that govern the use of any data in the system can be checked statically,
and regardless of the data processing context of any particular data item. In such cases, the reference monitor
interferes when a new work�ow de�nition is submitted to the system and veri�es it against all such policies;
violating work�ow de�nitions are rejected. For example, the policy that printing is allowed only for the
purpose of billing con�rmation can be checked statistically by ensuring that in a given work�ow de�nition,
all printing actions are for the said purpose.

9.1.2 Work�ow-Instantiation Reference Monitor

Some more speci�c policies depend on a particular instance of data processing, such as a speci�c data item,
user, or parametrized purposes (see Section 10.1). In such cases, static veri�cation cannot ensure compliance
with the policies because some of the parameters of the policy are not known at work�ow de�nition time.
So, the reference monitor must interfere when these parameters are known, which is typically at the time of
work�ow instantiation. For example, in a data-centric information system where each data item is associated
with its speci�c privacy preference, model-checking should be performed at work�ow instantiation time, when
it is known what data will be used and in what work�ow. This is referred to as the static work�ow execution
model (not to be confused with static model checking discussed above) in which data and users assigned to
each task of the work�ow are determined at the work�ow instantiation time [24].
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9.1.3 Task-Instantiation Reference Monitor

There are cases where the speci�c parameters such as the speci�c data item or user are not known even
at the time of work�ow instantiation and will not be determined until later, once a speci�c activity in the
work�ow instance is about to be performed, i.e. task-instantiation time when the actual parameters of an
instance of a task are determined. This is known as dynamic work�ow execution model [24] in which data
and users assigned to a task can only be determined at the task-instantiation time, a very likely case in
larger work�ows, such as cross-organizational work�ows, or those that span over a long period time.

In such cases, the reference monitor must interfere before running the speci�c task when all the parame-
ters (e.g. the user IDs and data items) are known, and ensure all corresponding policies are followed.

For example, consider the case of a clinical consultation where Alice's medical record is to be sent
to another doctor for a second opinion. On the other hand, as part of her consent, she has decided that
Dr. Bob, who happens to be her neighbour, is not allowed to access her medical record unless for the purpose
of emergency treatment. Since the work�ow is cross-organizational, it is very likely that the identity of the
consulting doctor is not known at work�ow instantiation time, so, the assignment of the consulting doctor
will be delayed until later in the work�ow when the actual consultation task is instantiated. If it happens
that Dr. Bob is selected for consultation, the reference monitor interferes at the time of task instantiation
and rejects the assignment since it violates Alice's consent policy, in which case a di�erent doctor should be
selected to proceed.

Note that when the assignment of task parameters such as users and data items is delayed until task
instantiation time, the work�ow management system must provide the �exibility for alternative assignments
should one particular assignment fail for access control reasons.

9.2 System Components

Figure 9.1 shows the system components and their interactions. The greyed-out components are those that
are not directly part of the implementation of our framework but have important interactions with it.

The data repository stores collected data and the policy database keeps all general and data-speci�c
policies. Each data item in the repository is linked to its corresponding policies in the policy database. The
policy authoring interface enables policy makers and patients (or their authorized delegates) to formulate the
policies governing the use of data. Depending on the type of system and policy authors' level of expertise, a
suitable graphical or textual interface is used to design policies, but the eventual output of this component is
in the form of the modal-logic language de�ned by our framework and will be stored in the policy database.

Since we presume a work�ow-based system, there exists a work�ow de�nitions catalogue that stores
the work�ows de�ned by business process experts. A work�ow management system manages and runs the
work�ow instances. The access control reference monitor also resides within the work�ow management
system. We assume that the system guarantees that all access to data takes place via some work�ow and no
arbitrary access is possible in the system.

The policies and the work�ow de�nitions use a common vocabulary which is de�ned and stored at the
vocabulary database. The vocabulary is de�ned by domain experts and administrators of the system and can
be based on international or business standards where applicable.

The framework is con�gured to be used for implementing a purpose reference monitor (�PRM�) that
monitors two types of operations: work�ow de�nition requests and work�ow instantiation requests. These
are shown in bold typeface in Figure 9.1. Note that the PRM is part of the broader reference monitor of the
system which handles all access control policies and uses PRM whenever a purpose-based constraint needs
to be evaluated.

9.2.1 Work�ow De�nition Request

A work�ow de�nition request is made by a business process administrator and includes the de�nition of
a work�ow as discussed in Section 5 which includes a hierarchy net and possibly other properties such as
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Figure 9.1: System view of the framework: the components and their interaction.

authorized roles, input data type or temporal and spatial constraints for each activity. The PRM, upon
receiving this type of request, checks the work�ow de�nition against overarching policies and rejects it in
case of any non-compliance. Aside from the work�ow de�nition, the request may contain information such
as the user ID of the administrator who is submitting the de�nition and other similar information which are
used by other parts of the access control policy than the purpose constraints.

9.2.2 Work�ow Instantiation Request

A work�ow instantiation request includes the reference to the requested work�ow, together with instance-
speci�c information such as the assignment of users and data items to work�ow activities. As we discussed
in Section 9.1, we assume that all data and user assignments are given at instantiation time, although this
assumption can be easily relaxed in a more extensive implementation.

Upon receiving this type of request, the PRM checks the work�ow de�nition against the instance-speci�c
policies and rejects it in case of any non-compliance. Examples of instance-speci�c policies are the patient's
consent and any parametrized purpose-based policies (see Section 10.1) that rely on runtime parameters
such as user ID or data item ID.

The instantiation request may also include a range of other information such as the identity of requester,
active role and other contextual information such as time and location, which are needed for evaluating the
request against other parts of the access control policy than the purpose constraints.

9.3 Case: A Clinical Research Institute

Back to the case of a clinical research institute of Section 3: assume Alice �a researcher in the hepatitis
research program� needs to perform a correlation analysis between certain demographic information and
immunity to hepatitis �an activity de�ned as the work�ow WF-01 in the system. On the other hand,
the medical record of a patient pseudonymized as PA-01 is stored in the data repository together with
the corresponding consent directive that de�nes the rules governing its use. We discuss the details of the
vocabulary, the patient's consent, the work�ow and labelling function, and the event �ow of the authorization
that takes place in this case.
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Figure 9.2: Some SNOMED and NCI terms used in our example with their hierarchical relations.

9.3.1 Vocabulary

We assume the standard vocabulary in use is based on SNOMED-CT and NCI Thesaurus. SNOMED-CT
is a standard vocabulary for clinical terms [62], and NCI Thesaurus is another vocabulary that provides
the standard terms related to translational and basic medical research [52]. Both vocabularies come in the
form of an ontology and include relations between the terms in the vocabulary. Here, we only consider
the hierarchical generalization-speci�cation or is-a relations. Figure 9.2 shows some of the terms and their
conceptual relations which are used in our example.

9.3.2 Consent Policy

The patient's consent contains a simple data-centric policy in which an order-based purpose-based constraint
(see Section 7.1.4) is linked to a data item. Since the patient is concerned about any kind of analyses that
could lead to revealing the HIV-related information, she or he has decided to prohibit access to the record
for the purpose of immunologic analysis that is in its turn for the purpose of clinical research. Note that
this policy does not prohibit access to the record for other research purposes than immunologic analysis.
For example, the institute can still use the record in other research activities as long as it does not involve
immunologic analyses; for example, in correlation of alcohol/substance abuse and liver cancer. On the other
hand, it does not prohibit access for the purpose of immunologic analysis altogether; the record can still be
accessed for that purpose if it is in turn for other purposes such as treatment.

Figure 9.3 shows the patient's consent directive codi�ed as an XACML rule. The atomic propositions
for immunologic procedure and research activity are shown using their standard codes and the modal logic
formula is encoded in a straightforward XML format.

9.3.3 Work�ow

The work�ow WF-01 is shown in Figure 9.4. It starts by setting up the test instance (T0) and then simply
looping over a number of patients and enrolling each patient in the research procedure (T1), reading and
registering age, gender and ethnicity (T2, T3, and T4) and then proceeding to check and register the immunity
of the patient to hepatitis (T5). When there is enough samples, the work�ow performs some mathematical
correlation analyses (T6) and concludes by saving the results (T7).

The work�ow WF-01 is one of the realizations of the activity testing demographic factors (T ′) which is
in turn one realization of autoimmune hepatitis study process (T ′′).

9.3.4 Labelling

The designer of the work�ow assigns some atomic propositions from the vocabulary to each work�ow task
based on its semantics. In this case, for example, the task check hepatitis immunity is mapped to atomic
proposition hepatitis immunity test from SNOMED-CT. Moreover, the parents of this proposition based on
the ontological relations (shown in Figure 9.2) are also assigned to the task. Similar assignments leads to
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<Rule Effect="Deny"> Deny access if

<Target>
<Resources>
<Resource>
<ResourceMatch MatchId="function:string-equal">
<AttributeValue DataType="string">
PA-01
</AttributeValue>
<ResourceAttributeDesignator
AttributeId="resource:id" DataType="string"/>

</ResourceMatch>

resource id=PA-01, and

</Resource>
</Resources>
</Target>

<Condition FunctionId="function:not">
<Apply FunctionId="evaluate-modal-formula">
<AttributeValue DataType="modal-formula">
<And>
<Not>
<FDiamondMaybe>
<And>
SNOMED:P108267006
<Or>
<ADiamond>NCI:C15429</ADiamond>
<FDiamondMaybe>NCI:C15429</FDiamondMaybe>
</Or>
</And>
</FDiamondMaybe>
</Not>
<Not>
<ADiamond>
<And>
SNOMED:P108267006
<Or>
<ADiamond>NCI:C15429</ADiamond>
<FDiamondMaybe>NCI:C15429</FDiamondMaybe>
</Or>
</And>
</ADiamond>
</Not>
</And>
</AttributeValue>
<ActionAttributeDesignator
AttributeId="workflow-ctx" DataType="workflow"/>

</Apply>
</Condition>

the work�ow context does not
satisfy the following formula:

¬〈A〉(i ∧ (〈A〉r ∨ 〈F〉r)) ∧ ¬〈F〉(i ∧ (〈A〉r ∨ 〈F〉r))
(must not be possibly for immunologic procedure (i)

which is in turn possibly for the purpose of research (r))

</Rule>

Figure 9.3: A sample consent directive formulated in XACML 2.0; the policy says that access to the speci�c
record data is denied if it is possibly for immunologic procedure which is in turn possibly for the purpose of
research activity. Note that the XACML namespaces are removed/summarized for better readability.

the labelling function shown by the callouts in Figure 9.4. Note that since the ontological relations between
labels can be captured in electronic form, propagation of the labelling to the parent labels can be done
automatically by the work�ow de�nition tool.

9.3.5 Event Flow

Alice makes a work�ow instantiation request to run the work�ow WF-01. This includes: the work�ow
de�nition ID, the identi�er of the data items that will be used in the work�ow including that of the patient
pseudonymized as PA-01, as well as the user ID of Alice as the assigned user to all the activities in the
work�ow (which are not important in this particular case since the policy is not based on them).

Upon receiving this request, the PRM fetches the de�nition of WF-01 and also the consent policy of
all the patients whose records are going to be used in this work�ow. This includes PA-01's consent policy,
shown in Figure 9.3 according to which the PRM checks the following modal-logic formula against WF-01
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Figure 9.4: The de�nition of the work�ow WF-01 and the labelling function. The boldfaced labels are
assigned by the work�ow designers and the normal-font labels result from the ontological relations in the
vocabulary.

by running the model-checking algorithm:

¬〈A〉(immunologic procedure ∧ (〈A〉research ∨ 〈F〉research))∧
¬〈F〉(immunologic procedure ∧ (〈A〉research ∨ 〈F〉research))

The result is negative since PA-01's record is accessed in T2 through T5 and given the labelling function
as shown in Figure 9.4, the formula does not hold true in those tasks.

9.4 Discussion

9.4.1 Ontologies and the Granularity Gap in the Vocabulary

As more power is given to data subjects to make policies about the usage of their data, it is often the case
that the policy maker is not a domain experts and does not know the details of �ne-grained technical terms.
For example, an average patient is seldom able to understand the meaning of all medical terms and consent
directives are normally expressed using a high-level vocabulary. As we saw in the example of this section, the
ontological relations in a standard vocabulary can close this granularity gap by linking low-level technical
terms to high-level vocabulary understandable by non-expert policy makers.

Moreover, existence of very granular terms in the vocabulary (such as home visit for intramuscular
injection) makes the assignment of atomic propositions to work�ow tasks less subjective. Note that if there
is only general terms in the vocabulary (such as marketing or research), such assignment will very much
depend on the personal opinion of the work�ow designer and in some cases it may be a challenging and
hard-to-audit decision whether a term corresponds to the semantics of a task. This might in turn lead to
privacy breaches if an organization maliciously stretches the meaning of general terms to apply them to
controversial tasks. Therefore, there can be requirements for the minimum level of granularity of the terms
used by the work�ow designers to avoid hiding behind broad terms and provide transparency and facilitate
auditability.

9.4.2 Translation and Harmonization

As we saw in the case of Section 9, the standard vocabulary plays a crucial role in connecting the policies
to work�ow de�nitions and thereby to their semantic interpretations in a system. Harmonizing vocabularies
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or translating terms from one vocabulary to another is important in case the policies are written using
a di�erent vocabulary than that of the work�ow de�nitions and can enable understanding and enforcing
policies across di�erent domains.
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10

Concluding Remarks and Future Work

In this paper, we developed a framework for expressing and enforcing purpose-based privacy policies. We
de�ned the semantics of the purpose of an action in terms of its dynamic situation among other related
actions. A modal logic was developed to enable expressing constraints about purposes. We justi�ed the
static semantics of this language with the dynamic de�nition of purpose, showed that the two de�nitions
are equivalent and discussed some of the properties of purposes and proved them. We also justi�ed the
language by showing its expressive power in modelling common types of purpose-based policies. A model-
checking algorithm was described to check the compliance of a system with purpose-based policies and its
con�guration in the implementation of a practical access control system was discussed. There are a number
of topics that have the potential for future work which will be discussed in the remainder of this section.

10.1 Parametrized Purposes ∗

Consider the simple case that the policy allows using patient's record for treatment purposes. What is
naturally meant by this policy is that the purpose must be the treatment of the same patient whose record
is being used. If Alice's record, for example, is used by a physician to help with Bob's treatment (for some
genetic analysis if they are siblings), this does not match the intuitive intention of the policy although access
is still for the purpose of treatment.

This example shows that in reality, there is not one single treatment purpose; rather, there is a family
of di�erent purposes of the form treatment-of<x> where x represents a patient. In other words, the simple
purpose of treatment can be parametrized to di�erentiate between treatments of di�erent patients. Alice may
wish to restrict access to her record only to her own treatment, or perhaps to her children and close family
members. There are various other examples for parametrized purposes in di�erent domains; for example,
a customer can specify that her/his home address can only be used for delivery of the ordered product as
opposed to delivery of other things, such as marketing material.

In the general case, supporting parametrized purposes requires introducing variable in the language and
leads to the extension of the language to a modal logic over �rst-order predicate logic which brings about
serious computational problems. However, since in access control we usually deal with simple forms of query,
and often, the number of entities involved is limited, this can be handled by some practical techniques.
Consider the following policy, for example, that requires the purpose of treatment of the same patient for
access to her/his record, and forbids the purpose of anyone else's treatment:

∀x. access(x )→ (〈A〉treatment(x ) ∨ 〈F〉treatment(x ))

∀x, y. (access(x ) ∧ y 6= x)→ ¬(〈A〉treatment(y) ∨ 〈F〉treatment(y))

∗We would like to thank Professor Jörg Denzinger of University of Calgary Department of Computer Science, for an enlight-

ening conversation about this section.
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In such a system, instead of atomic propositions, work�ow activities are assigned to predicates such as
access(x) or treatment(x) in which x is a variable in the work�ow such as the input data.

In the real access control case, we have a work�ow instance with a limited number, and most often only
a few patient's records at stake, say Alice's and Bob's. By limiting the scope of the domain of discourse
to the this single work�ow instance, we can instantiate the policy by replacing the variables and generate
atomic propositions for the speci�c instance:

access_Alice→ (〈A〉treatment_Alice ∨ 〈F〉treatment_Alice)

access_Bob→ (〈A〉treatment_Bob ∨ 〈F〉treatment_Bob)

access_Alice→ ¬(〈A〉treatment_Bob ∨ 〈F〉treatment_Bob)

access_Bob→ ¬(〈A〉treatment_Alice ∨ 〈F〉treatment_Alice)

Likewise, the predicates assigned to the work�ow activities can also be instantiated and turned into
atomic propositions such as access_Alice or treatment_Bob by replacing the variable with the exact value
in the particular work�ow instance. Thus, model checking can be performed as usual using the atomic
propositions and the modal logic formulas.

Note that as the number of patients involved in the work�ow increases, the number of atomic propositions
and the policy instances grow towards explosion, but since we often deal with cases with a limited number of
data items in the database and only a few that get involved in a single instance of the work�ow, we can �nd
a practical solution in most real cases. This assumption is not far from reality since most work�ow systems
assume a case-driven model in which each work�ow instance focuses on one or a few cases as its input [3].

Moreover, handling variables in our language is only limited to the cases where they a�ect some parametrized
purposes and we assume that other variables that do not a�ect purposes are handled outside our language
as discussed in Section 7.2. Thus, we can assume that most purposes are not parametrized and do not need
variables.

10.2 Modi�cation of the Work�ow

There are two types of XOR splits; those that are decided automatically at run-time based on some deter-
ministic variable, and those that are controlled by users. An example of the �rst type, is a reimbursement
approval work�ow with a split that takes two di�erent paths depending on the amount claimed in order
to take higher management's approval should the amount claimed be larger than a certain threshold. An
example of a user-controlled split is the choice of the service by a user at an ATM machine or the type of
tests by a researcher in the course of research work�ow.

Limiting the choices at a user-controlled splits can enable the reference monitor to make an e�ort to
make it possible to run a modi�ed version of the work�ow in which the potentially violating paths are
eliminated from the user-controlled splits. For example, if Alice prohibits the purpose of marketing for her
home address, the reference monitor can disable a path leading to such violation at a user-controlled split,
such as an optional choice to add some marketing material to the package in a delivery work�ow, and allow
the work�ow to instantiate with this modi�cation.

In general, instead of simply giving a yes-or-no answer to the model checking question, a smarter reference
monitor can consider trimming the user-controlled splits in order to make the work�ow compliant to the
policies. We leave this as a topic of future work.

10.3 Purpose-Based Data Adaptation

The normal scenario for access control is to receive a request for a unit of data such as a medical record and
then decide with an authorization answer as to whether or not the access is allowed. This can be slightly
extended to a scenario where data can be modi�ed to make it authorized for the access. For example, when
the policy stipulates that access to blood test information is not allowed for the purpose of research, the
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reference monitor can adapt the data by removing the blood test from the medical record so that the subject
be able to access it. In other words, instead of giving a negative answer to the request, the reference monitor
makes a best e�ort to make the access possible by trying to adapt the data to the polices.

In a slightly di�erent case, the subject can provide the work�ow in the access request and the reference
monitor make an e�ort to �nd data items (or parts thereof) whose policies allow to be used in the given
work�ow. This is particularly helpful in scenarios such as medical research where candidates are sought to be
enrolled in a speci�c work�ow. The reference monitor in such cases can look for the records with a matching
consent directive, and also for records which can be adapted so that the policy matches the work�ow, by
removing the non-matching �elds.

10.4 Satis�ability

Work�ow satis�ability refers to the problem of checking whether it is possible to instantiate a work�ow,
given the constraints related to user-task assignments and other constraints such as separation of duty [23].
It is possible to rede�ne this problem with regard to the purpose constraints, particularly the subject- and
data-centric purpose-based policies, and verify whether a work�ow is possible to instantiate given all the
purpose-based policies that apply to it. We leave this as a future work.
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Appendix A

Proof of Theorems

A.1 Assumptions and Notations

This section brie�y reviews the assumptions that have been made through the paper in order to refresh the
reader's memory before reading the proofs.

• Soundness: all the work�ow nets are assumed to be sound, i.e. are possible to complete, terminate
properly, and do not include any dead tasks (see Section 5.6.2).

• Marked-Graph Structure: all the work�ow nets are assumed to have the structure similar to a marked
graph, i.e. there is at most one input and one output to/from each place (see Section 5.2).

• Persistence: all work�ow nets are assumed to be persistent, i.e. an enabled transition will remain
enabled until it is �red (see Section 5.6.3). This is a direct result of the marked-graph structure.

• Safety: all the work�ow nets are assumed to be safe, i.e. there will be no more than one token at
any given place in any reachable marking from the initial marking (see Section 5.6.4). This is a direct
result of the soundness and the marked-graph structure.

Moreover, we use the following notations:

• QH: the set of all possible �ring sequences for the hierarchy net H.

• qi (where q is a �ring sequence): the transition at the ith location of q.

• M(q): the marking sequence corresponding to the �ring sequence q.

• LOOP(t, t′): a Boolean functions that speci�es whether tt′ is the return path of a loop, i.e. whether
∃pl ∈ O(PH). {(t, pl), (pl, t′)}⊂FLOW (EXT (H)).

• Mi(q): the ith marking in M(q). Note that for any i we have: Mi(q)
qi−→Mi+1(q).

• E(µ): the set of transitions that are enabled at the marking µ.

A.2 Proofs

Lemma 1. The A- and possible F-purposes, are respectively equivalent to an A- or F-path.

(∃t′ ∈ T .(t, t′) ∈ A∗ ∧ t′ ∈ [[φ]])⇔ (t ∈ [[〈A〉φ]])
(∃t′ ∈ T .(t, t′) ∈ F ∗ ∧ t′ ∈ [[φ]])⇔ (t ∈ [[〈F〉φ]])
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Proof. We prove this for F ; the case for A is straightforwardly similar.
(⇐):
Starting from t ∈ [[〈F〉φ]] and by expanding the recursive de�nition of 〈F〉 we have the following. Note

that the de�nition of PRE∃F implies that PRE∃F (S ∪ S′) = PRE∃F (S) ∪ PRE∃F (S
′):

t ∈ [[φ]] ∨
t ∈ PRE∃F ([[φ]]) ∨

t ∈ PRE∃F
2
([[φ]]) ∨

...

t ∈ PRE∃F
n
([[φ]]) (A.2.1)

for some minimal n where PRE∃F
n
([[φ]]) = PRE∃F

n+1
([[φ]]). Note that as we argued in Section 8.3, since

PRE∃F (X) is monotonic function over the power set of T which is a complete lattice, n exists. Now, if we
extend the de�nition of PRE∃F we will have:

(t ∈ [[φ]]) ∨
(∃t1∈T . (t, t1) ∈ F ∧ t1 ∈ [[φ]]) ∨
(∃t1, t2∈T . (t, t1)∈F ∧ (t1, t2)∈F ∧ t2∈ [[φ]]) ∨
...

(∃t1, · · · , tn∈T .(t, t1)∈F ∧ · · · ∧ (tn−1, tn)∈F ∧ tn∈ [[φ]]).

in which each line implies:

∃t′∈T . (t, t′) ∈ F ∗ ∧ t′ ∈ [[φ]]

(⇒):
Replacing the de�nition of F ∗ in ∃t′ ∈ T .(t, t′) ∈ F ∗ ∧ t′ ∈ [[φ]]

∃t1, · · · , tn∈T .(t, t1)∈F ∧ · · · ∧ (tn−1, tn)∈F ∧ tn∈ [[φ]]

which implies tn−1 ∈PRE∃F ([[φ]]), and in turn implies: tn−2 ∈PRE∃F
2
([[φ]]), all the way to t∈PRE∃F

n
([[φ]]).

Thereby, according to the expanded de�nition of 〈F〉 above (in Formula A.2.1): t∈ [[〈F〉φ]].

Lemma 2. If in all possible �ring sequences of H, tn always �res after t1, then t1 is a prerequisite of tn
(n > 1):

∀q ∈ QH (qi = t1 ∧ qj = tn)→ i ≤ j =⇒ t1  
∗ tn

Proof. We prove this by induction over the distance between t1 and tn. If tn appears right after t1 in all
possible �ring sequences, then �ring t1 enables tn, otherwise, tn would be enabled before t1 and thus there
would be some possible �ring sequence in which tn would �re �rst. Note that t1tn cannot be the return path
of any loop, since in that case, tn and t1 would be the source and sink of the underlying work�ow net of the
loop which means there is no way in which t1 can be enabled before tn �res.

Now as the induction hypothesis, we assume that if in all possible �ring sequence tn appears after t1
within the distance of n, then t1  ∗ tn. Now, if tn appears within the range of n + 1, consider the two
cases: b) tn belongs to a structured loop that does not contain t1, a) otherwise; i.e. tn does not belong to a
structured loop, or if it does, t1 is in the same loop.
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Case a: Note that t1 and tn cannot be part of the same loop, otherwise there would be some possible
sequence where tn would �re before t1 after some iteration of the loop. So, t1 does not belong to any loops.
Now, consider that in every possible sequence, there is some transaction uj that enables tn. Since uj enables
tn, and tn is not part of a loop, then uj can never �re after tn since that would require a return path from
tn back to uj . Consider u1, · · · , um which enable tn in di�erent sequences. The join type of tn is either 1)
XOR or 2) AND:

Case 1: If tn's join type is XOR, then each individual uj can enable it, and hence, no uj can appear before
t1, otherwise tn would be possible enable before t1 and there would be a sequence in which tn preceded t1.
On the other hand, uj always appear before tn. Thus, uj always happens within the range of n transactions
after t1 and according to the induction hypothesis t1  ∗ uj , and since uj enables tn and is not in a loop
with it, we also have uj  ∗ tn, thereby: t1  ∗ tn.

Case 2: If tn's join type is AND, then there is at least one uj that never appears before t1, otherwise, if
all ujs could appear before t1, then tn would be possible to enable before t1 and there would be a sequence in
which tn preceded t1. So, there exists some uj that always �re after t1 and before tn, thus within a distance
of n from t1, which according to the induction hypothesis implies t1  ∗ uj . On the other hand uj enables
tn and is not in a loop with it, so uj  ∗ tn, and thereby: t1  ∗ tn.

Case b: Consider the outermost loop of containing tn. Note that such loop cannot contain t1, otherwise
there would be some possible sequence in which tn would �re before t1 after some iteration of the loop.
Since every structure loop is made of an underlying WN, consider the source task of the underlying WN for
the outermost loop and call it t′n and the set transitions u1, · · · , um which enable t′n in all di�erent possible
sequences (except the the sink transaction of the loop). Also, consider that the join type of t′n is necessarily
XOR according to the de�nition of structured loops. So, following a similar argument as Case 1 above proves
that t1  ∗ t′n.

On the other hand, since tn belongs to a loop where t′n is the source, tn will not be enabled unless t′n
�res (this can be proved straightforwardly by contradiction), thus t′n  

∗ tn and thereby t1  ∗ tn.

Theorem 1. The dynamic and static de�nitions of prerequisite-of are equivalent, i.e., for any given hier-
archy net H: (t′  ∗H t)⇐⇒ (t′, t)∈ F ∗H

Proof. (⇒):
Consider the de�nition of t′  t from Section 6.3:

∃q∈QH∃i. qi= t′ ∧ t 6∈E(Mi(q)) ∧ t∈E(Mi+1(q)) ∧ ¬LOOP(t, t′).

Considering the operational semantics, if t is enabled in Mi+1(q) but not in Mi(q), a token must have been
added to one of its input places in Mi+1(q) as a result of �ring t′. Since �ring t′ can only add tokens to its
output places, this implies that one of the output places of t′ is an input place to t:

∃p∈PLAC (EXT (H)). (t′, p)∈ FLOW (EXT (H)) ∧ (p, t)∈ FLOW (EXT (H)) ∧ p 6∈ O(PH)

which according to the de�nition of F implies (t, t′)∈ FH.

t′  t⇐⇒ (t′, t) ∈ FH.

Now, we can write t′  ∗ t as:

t′  t′1  · · · t′n  t

which implies:

(t′, t′1)∈FH ∧ · · · ∧ (t′n, t)∈FH

thereby (t′, t)∈F ∗H.
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(⇐): The assumption that (t′, t) ∈ F ∗H can be rewritten as the existence if the following path in
FLOW (EXT (H)):

t1p1 · · · pn−1tn

in which t1 = t′, tn = t, and none of the pis are in O(PH). Now consider the following discussion for any
tjpjtj+1:

Since there is no dead transition, there is at least one �ring sequence that includes tj and there is at
least one such �ring sequence in which �ring tj produces a token in pj (if the split type of tj is AND this is
always the case whereas if the split type is XOR, this happens in at least one of the �ring sequences). Now,
tj+1 is either (a) an XOR-join or (b) an AND-join transition:

Case a: Since the join type of tj+1 is XOR, a token in pj enables tj+1, unless it has already been enabled,
i.e. there is other tokens in some of its other inputs. Now note that this latter situation contradicts the
safety of the WN since having more than one token behind an XOR join leads to a possible unsafe marking
where more than one token might appear in its output, following numerous �rings. In other words, in a
sound WN as we de�ned it, this cannot happen.

Case b: Since the join type of tj+1 is AND, and since �ring tj produces a token in pj , tj+1 cannot
be already enabled at Mi(q) because that would imply there is already a token in pj which would be two
tokens after �ring t′tj contradicting the safety of the WN. Now, if �ring tj never enables tj+1, and because
tj+1 will eventually �re (otherwise the stuck token behind tj+1 would violate the soundness properties), in
every �ring sequence there must be some other transition uj that eventually enables tj+1. Consider the set
of u1 · · ·um and note that ujtj+1 cannot be the return path of any loops because the split type of tji+ 1
is AND (see the de�nition of structured loops in Section 5.2.1), so, for all js, uj  ∗ tj+1. Now notice that
if all ujs can �re before tj there would be a sequence where all of them �re, producing a token in all other
inputs of tj+1 so that when tj �res, it enables tj+1 which proves our point. If there is at least one uj that
never �res before tj then according to Lemma 2 tj  ∗ uj and since uj  ∗ tj+1, tj  ∗ tj+1.

Now, since we proved that for every tjti+1 in the path, tj  ∗ tj+1, we have t1  ∗ tn, or in other words
t′  ∗ t.

Theorem 2. For any formula φ, any hierarchy net H and labelling function L, we have: [[φ]]H,L = [[[φ]]]H,L.

Proof. We prove this by structural induction. Given [[φ]] = [[[φ]]] as the induction hypothesis, we have to prove:
[[〈A〉φ]] = [[[〈A〉φ]]], [[〈F〉φ]] = [[[〈F〉φ]]], and [[〈F〉φ]] = [[[〈F〉φ]]] (the case for logical connectives is straightforward).

(〈A〉,⊆):
According to Lemma 1 t ∈ [[〈A〉φ]] implies ∃un ∈ T . (t, un) ∈ A∗ ∧ un ∈ [[φ]], thereby:

∃u1, · · · , un ∈ T . (t, u1) ∈ A ∧ (u1, u2) ∈ A ∧ · · · ∧ (un−1, un) ∈ A ∧ un ∈ [[φ]]

If t = un, our point is proven already. Otherwise, since (ui−1, ui) ∈ A, and according to the de�nition of A,
we have: ∃w ∈W. ui−1 ∈ TRAN (w).(ui, w) ∈ H (where W is the set of all WNs in H and H is its hierarchy
relation). Now consider the de�nition of EXT (H). Since all the possible �ring sequences of w start with
its source transition (tc) and end in its sink transition (tk), all other transitions of w including ui−1 appear
between tc and tk. Now, the way we de�ned EXT (H), uei is the only predecessor of tc, and thus its only
prerequisite. Therefore, in all possible �ring sequences if tc appears, it is always after an occurrence of uei ,
and since occurrence of every transition in w is always after tc, it is also always after uei . Likewise, since u

x
i

is the only non-loop successor of tk, it eventually follows every occurrence of tk, and since occurrence of any
other transition in w, including ui−1 is always before tk, it is also always before uxn.

Repeating this argument for other uis eventually leads to proving that in all possible �ring sequences
that contain t, it appears between uej and u

x
j for some 1 ≤ j ≤ n such that uj ∈ [[φ]].

(〈A〉,⊇):
According to the de�nition there exists u such that in all �ring sequences t always occur after ue and ux

always occurs after t. Now consider all such uis (1 ≤ i ≤ m) and let u = u1 for notational convenience. Note
that according to the construction of the EXT (H) as discussed in Section 5.4.1, these are well-formed, i.e.
if uei falls between u

e
j and u

x
j , then u

x
i does too.
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Now consider the inner-most ui, which is um. Since in all �ring sequences t always occur after uem and
uxm always occurs after t, according to Lemma 2 we have: uem  

∗ t and t ∗ uxm, which in turn according to
Theorem 1 imply (uem, t) ∈ F ∗ and (t, uxm) ∈ F ∗. From the structural de�nition of EXT (H), it follows that
t belongs to a WN which is a subnet of um, i.e. ∃w.t ∈ TRAN (w) ∧ (um, w) ∈ H where H is the hierarchy
relation of H. This in turn implies (t, um) ∈ A, according to the de�nition of A.

Now the same argument can be repeated for um−1 all the way to u, based on which we will have:

(t, um) ∈ A ∧ (um, um−1) ∈ A ∧ · · · ∧ (u2, u1) ∈ A

which means (t, u1) ∈ A∗. On the other hand we have u1 ∈ [[φ]], thereby, according to Lemma 1: t ∈ [[〈A〉φ]].

(〈F〉,⊆):
Beginning from t∈ [[〈F〉φ]]:

∃t′∈T . (t, t′) ∈ F ∗ ∧ t′ ∈ [[φ]] (Lemma 1)

∃q∈Qw∃t′∈T . t ∗ t′ ∧ t′ ∈ [[φ]] (Theorem 1)

t∈ [[[〈F〉φ]]] (de�nition of [[[〈F〉φ]]])

(〈F〉,⊇):
Beginning from t∈ [[[〈F〉φ]]]:

∃t′ ∈ T . t′∈ [[φ]] ∧ t ∗ t′

∃t′ ∈ T . t′∈ [[φ]] ∧ (t, t′)inF ∗ (Theorem 1)

t ∈ [[〈F〉φ]] (Lemma 1)

(〈F〉,⊆):
Consider the expansion of the recursive de�nition of [[〈F〉φ]]:

X1 = [[φ]]

X2 = X1 ∪ PREF (X1)

...

Xn = Xn−1 ∪ PREF (Xn−1) (A.2.2)

So, from t ∈ [[〈F〉φ]] it follows that t ∈ Xn for some minimal n for which Xn = Xn+1. Note that as we argued
in Section 8.3 such n exists. Now, we prove by induction over n that t ∈ [[〈F〉φ]] implies t ∈ [[[〈F〉φ]]]. The
base case of n = 1 is straightforward. Now, as the induction hypothesis, assume t ∈ Xn → t ∈ [[[φ]]] and we
prove t ∈ Xn+1 → t ∈ [[[φ]]]. If t ∈ Xn+1 then Xn−1 or PREF (Xn−1). The former case proves our point. For
the latter case, based on the de�nition of PREF we have:

∀t′ ∈ T , (t, t′) ∈ F → t′ ∈ [[〈F〉φ]] if the split type of t is XOR.
∃t′ ∈ T , (t, t′) ∈ F ∧ t′ ∈ [[〈F〉φ]] if the split type of t is AND.

Now, note that all t′s are in Xn, so, based on the induction hypothesis: t′ ∈ [[[φ]]]:

∀q ∈ Q (qi= t
′ → ∃j≥ i (qj ∈ [[φ]]))

If the split type of t is XOR, there exists a t′ following t in F which according to the operational semantics,
will receive a token in its input, and since this token cannot remain stuck behind t′ (as it would violate the
soundness properties), in every possible �ring sequence, if t is present, it will be followed by t′, and since
t′ ∈ [[[φ]]], it follows that t ∈ [[[〈F〉φ]]].
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Similarly, if the split type of t is AND, according to the operational semantics, all the t′s following t in
F receive a token in their inputs, and since this token cannot remain stuck behind t′ (as it would violate the
soundness properties), in every possible �ring sequence, if t is present, it will be followed by one of the t′s
which in any case belongs to [[[〈F〉φ]]]. Thus, t ∈ [[[〈F〉φ]]].

(〈F〉,⊇):
We prove the contrapositive, so, let us assume there exists some t so that t 6∈ [[〈F〉φ]], and we show

t 6∈ [[[〈F〉φ]]]. Consider the sequence A.2.2 again. On its basis, t 6∈ [[〈F〉φ]] implies t 6∈ Xn. Now we show that
beginning from t, a �ring sequence exists in which none of the transitions satisfy φ.

Note that since for all Xis, [[φ]] ⊆ Xi, and thus, for any j and i, tj 6∈Xi implies tj 6∈ [[φ]].
We start from tm and add it to the �ring sequence. We have t 6∈Xn, which implies:

t 6∈Xn−1 ∧ t 6∈PREF (Xn−1)

in which the �rst term implies t 6∈ [[φ]].
Case 1: If the split type of tm is AND, based on the de�nition of PREF we have:

∀u ∈ T . (t, u) ∈ F → u 6∈ Xn−1

which implies:

∀u ∈ T . (t, u) ∈ F → u 6∈ [[φ]].

If u does not exist, i.e. t is the sink transition of the WN, the �ring sequence in complete. Otherwise,
according to the operational semantics, since the split type is AND, all such us appear in the �ring sequence
after t and as we see, none of them satis�es φ.

Case 2: If the split type of t is XOR, based on the de�nition of PREF we have:

∃u ∈ T . (t, u) ∈ F ∧ u 6∈ Xn−1

which implies

∃u ∈ T . (t, u) ∈ F ∧ u 6∈ [[φ]].

According to the operational semantics, since the split type is XOR, in the possible �ring sequence we are
building, we can add only on of the successors of t, so we add u which does not satisfy φ.

Now, consider that u 6∈ Xn−1 implies u 6∈ Xn−2 ∧u 6∈ PREF (Xn−2), we can repeat the above process for
u and grow the �ring sequence.

Since us at each iteration are one step ahead along the edges of F and there is no loops or in�nite paths
in F , this process is bound to get to the sink transition of the WN at some point when the �ring sequence
concludes (note that there is at least one path from each transition to the sink transition according to the
de�nition of WN). Now, since there is no dead transition in the WN, t is bound to �re and we have built
the rest of the �ring sequence from t to the sink. Thus, there exists a �ring sequence that includes t but no
following transitions that is enabled by t satis�es φ.

Lemma 3. The three purpose operators are distributive over disjunction, i.e.

[[〈A〉(φ1 ∨ φ2)]] = [[〈A〉φ1 ∨ 〈A〉φ2]]
[[〈F〉(φ1 ∨ φ2)]] = [[〈F〉φ1 ∨ 〈F〉φ2]]
[[〈F〉(φ1 ∨ φ2)]] = [[〈F〉φ1 ∨ 〈F〉φ2]]

Proof. From t ∈ [[〈F〉(φ1 ∨ φ2)]], and based on Lemma 1, it follows that

∃t′ ∈ T . (t, t′) ∈ F ∗ ∧ t′ ∈ [[φ1 ∨ φ2]]

60



or equivalently (based on the de�nition of the semantics for ∨):

∃t′ ∈ T . (t, t′) ∈ F ∗ ∧ t′ ∈ [[φ1]] ∨ t′ ∈ [[φ2]]

thereby: t ∈ [[〈F〉φ1]] ∪ t ∈ [[〈F〉φ2)]], which, again, based on the de�nition of ∨ is equivalent to t ∈ [[〈F〉φ1 ∨
〈F〉φ2)]]. The reverse argument holds straightforwardly and the case for 〈A〉 is also straightforwardly similar.

Based on the dynamic de�nition, from t ∈ [[〈F〉(φ1 ∨ φ2)]] follows that:

∀q ∈ Q. qi = t→ (∃j. qj = t′ ∧ t ∗ t′ ∧ t′∈ [[φ1 ∨ φ2]])

or equivalently (based on the de�nition of the semantics for ∨):

∀q ∈ Q. qi = t→ (∃j. qj = t′ ∧ (t′∈ [[φ1]] ∨ t′∈ [[φ2]]))

or equivalently:

(∀q ∈ Q. qi = t→ (∃j. qj = t′ ∧ t′∈ [[φ1]]))∨
(∀q ∈ Q. qi = t→ (∃j. qj = t′ ∧ t′∈ [[φ2]]))

thereby: t ∈ [[〈F〉φ1]] ∪ t ∈ [[〈F〉φ2)]], which, again, based on the de�nition of ∨ is equivalent to t ∈ [[〈F〉φ1 ∨
〈F〉φ2)]]. The reverse argument holds straightforwardly.

Lemma 4. Any certain F-purpose is a possible F-purpose. [[〈F〉φ]] ⊆ [[〈F〉φ]]

Proof. Based on Formula A.2.2 and considering the de�nition of PREF , from t ∈ [[〈F〉φ]], it follows that:

∃t′ ∈ T . (t, t′) ∈ F ∗ ∧ t′ ∈ [[φ]]

which according to Lemma 1, implies t ∈ [[〈F〉φ]].

Lemma 5.

1. [[〈A〉〈F〉φ]] = [[〈A〉φ ∨ 〈F〉φ]]
2. [[〈F〉〈A〉φ]] = [[〈A〉φ ∨ 〈F〉φ]]
3. [[〈F〉〈A〉φ]] = [[〈A〉φ ∨ 〈F〉φ]]
4. [[〈A〉〈F〉φ]] = [[〈A〉φ ∨ 〈F〉φ]]
5. [[〈F〉〈F〉φ]] = [[〈F〉φ]]
6. [[〈F〉〈F〉φ]] = [[〈F〉φ]]
7. [[〈A〉〈A〉φ]] = [[〈A〉φ]]
8. [[〈F〉〈F〉φ]] = [[〈F〉φ]]
9. [[〈F〉〈F〉φ]] = [[〈F〉φ]]

Proof. (1,⊆):
From the dynamic de�nition of t ∈ [[〈A〉〈F〉φ]] we have:

∀q ∈ Q. qi = t→ (∃u ∈ T ∃j > i∃k < i. qk = ue ∧ qj = ux ∧ u ∈ [[〈F〉φ]])

And by extending dynamic de�nition of 〈F〉:

∀q ∈ Q. qi = t→ (∃u ∈ T ∃j > i∃k < i. qk = ue ∧ qj = ux∧
(∀q′ ∈ Q. q′l = u→ ∃m ≥ l(qm = u′ ∧ u′ ∈ [[φ]])))
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which implies:

∀q ∈ Q. qi = t→ (∃u ∈ T ∃j > i∃k < i. qk = ue ∧ qj = ux∧
(q′l = u→ ∃m ≥ l(qm = u′ ∧ u′ ∈ [[φ]])))

Note that if u = u′ the above formula already implies t ∈ [[〈A〉φ]]. Otherwise, consider that any �ring
sequence that includes t, also includes the sink transition of its subnet (since the subnet must eventually
conclude). On the other hand, ux is the sole successor of the sink transition of the subnet (according to the
de�nition of the extension of a HN from Section 5.4.1), so, it always follows it. Thus, ux always follows t, and
since there is always some u′ following ux so that u′ ∈ [[φ]], and such u′ always follows t, we have t ∈ [[〈F〉φ]].

(1,⊇):
Based on the static semantics de�nitions, [[φ′]] ⊆ [[〈A〉φ′]]. Letting φ′ = 〈F〉φ proves that [[〈F〉φ]] ⊆

[[〈A〉〈F〉φ]].
On the other hand, t ∈ [[〈A〉φ]] implies that ∃t′. (t, t′) ∈ A∗ ∧ t′ ∈ [[φ]]. Since, according to the static

de�nitions, [[φ]] ⊆ [[〈F〉φ]], it follows that t′ ∈ [[〈F〉φ]] which proves that [[〈A〉φ]] ⊆ [[〈A〉〈F〉φ]]. Thus, both
terms on the right-hand side are subsets of the left-hand side.

(2, ⊆):
From the dynamic de�nition of 〈F〉, it follows from t ∈ [[〈F〉〈A〉φ]] that:

∀q ∈ Q. qi = t→ (∃j ≥ i. qj = t′ ∧ t′ ∈ [[〈A〉φ]])

Replacing the dynamic de�nition of 〈A〉 yields:

∀q ∈ Q. qi = t→ (∃j ≥ i. qj = t′∧
(∀q′ ∈ Q. qk = t′ → (∃u ∈ T ∃l > k∃m < k. qm = ue ∧ ql = ux ∧ u ∈ [[φ]])))

which implies:

∀q ∈ Q. qi = t→ (∃j ≥ i. qj = t′∧
(∃u ∈ T ∃l>j∃m<j. qm = ue ∧ ql = ux ∧ u ∈ [[φ]]))

If t is within the same subnet as t′, then it always �res after the source transition of the subnet which in
turn always �res after ue, thus i ≥ m. On the other hand, since for all q ∈ Q, i ≤ j, and j is always between
l and m, i is always smaller than l. Thus, i is always between l and m which implies t ∈ [[〈A〉φ]].

If t is not on the same subnet, every �ring sequence that contain both t to t′ must also contain the source
transition of t′'s subnet (tc) and thereby ue, since every possible way to get to t′ must �re tc �rst, and the
only way to get to tc is via u

e. Thus, every �ring sequence that include t and t′ also includes ue. On the
other hand, since the split type of ue is AND and it always leads to �ring u, every possible �ring sequence
including ue also includes u; therefore, all the �ring sequences including t also include u and because u ∈ [[φ]],
it follows that t ∈ [[〈F〉φ]].

(2, ⊇):
Based on the static de�nition [[φ′]] ⊆ [[〈F〉φ′]]. Letting φ′ = 〈A〉φ proves that [[〈A〉φ]] ⊆ [[〈F〉〈A〉φ]].
On the other hand, according to the dynamic de�nitions, it follows from t ∈ [[〈F〉φ]] that:

∀q ∈ Q. qi = t→ (∃j. ≥ iqj = t′ ∧ t′ ∈ [[φ]])

Since [[φ]] ⊆ [[〈A〉φ]], it follows that t′ ∈ [[〈A〉φ]], thereby t ∈ [[〈F〉〈A〉φ]]. Thus, both terms on the right-hand
side are subsets of the left-hand side.

(3,⊆):
Based on the result of Lemma 1, [[〈F〉〈A〉φ]] implies:

∃u, v ∈ T . (t, u) ∈ F ∗ ∧ (u, v) ∈ A∗ ∧ v ∈ [[φ]]
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Now, if t belongs to the same subnet as u, it implies that (t, v) ∈ A∗ and thereby t ∈ [[〈A〉φ]]. If t does
not belong to the same subnet, we consider the facts that any path to u from outside the subnet contains
the source transition of the subnet and the only predecessor of the source transition in F is ve, thus, there
is a path from t to ve in F . On the other hand, from the de�nition of EXT (T ), we have (ve, v) ∈ F . So,
(t, v) ∈ F ∗, thereby t ∈ [[〈F〉φ]].

(3,⊇):
Based on the static de�nition [[φ′]] ⊆ [[〈F〉φ′]]. Letting φ′ = 〈A〉φ proves that [[〈A〉φ]] ⊆ [[〈F〉〈A〉φ]].
On the other hand, t ∈ [[〈F〉φ]] implies that ∃t′. (t, t′) ∈ F ∗ ∧ t′ ∈ [[φ]]. Since, according to the static

de�nitions, [[φ]] ⊆ [[〈A〉φ]], it follows that t′ ∈ [[〈A〉φ]] which proves that [[〈F〉φ]] ⊆ [[〈F〉〈A〉φ]]. Thus, both
terms on the right-hand side are subsets of the left-hand side.

(4,⊆):
Based on the result of Lemma 1, [[〈A〉〈F〉φ]] implies:

∃u, v ∈ T . (t, u) ∈ A∗ ∧ (u, v) ∈ F ∗ ∧ v ∈ [[φ]]

Now if u = v, it follows that t ∈ [[〈A〉φ]], otherwise, since ux is the only successor of u in F , (u, v) ∈ F ∗
implies (ux, v) ∈ F ∗. On the other hand, since there is a path from t to the sink transition in its subnet, and
based on the de�nition of EXT (T ) we know that the sink transition is connected to ux, we have (t, ux) ∈ F ∗.
Thus, (t, v) ∈ F ∗, which according to Lemma 1 implies t ∈ [[〈F〉φ]].

(4,⊇):
Straightforwardly similar to (3,⊇).
(5,⊆):
Based on Formula A.2.2, and considering the de�nition of PREF , it follows from t ∈ [[〈F〉〈F〉φ]] that:

∃t′ ∈ T . (t, t′) ∈ F ∗ ∧ t′ ∈ [[〈F〉φ]]

And following Lemma 1 t′ ∈ [[〈F〉φ]] implies:

∃t′′ ∈ T . (t′, t′′) ∈ F ∗ ∧ t′′ ∈ [[φ]]

which, together, and by applying Lemma 1 again imply t ∈ [[〈F〉φ]].
(5,⊇):
Based on the static de�nition [[φ′]] ⊆ [[〈F〉φ′]]. Let φ′ = 〈F〉φ.
(6,⊆):
Based on Lemma 1, 〈F〉, implies:

∃t′ ∈ T . (t, t′) ∈ F ∗ ∧ t′ ∈ [[〈F〉φ]]

Now, based on Formula A.2.2, and considering the de�nition of PREF , it follows from t′ ∈ [[〈F〉φ]] that

∃t′′ ∈ T . (t′, t′′) ∈ F ∗ ∧ t′′ ∈ [[φ]]

which, together, and by applying Lemma 1 again imply t ∈ [[〈F〉φ]].
(6,⊇):
Based on the dynamic de�nition of 〈F〉, it follows from t ∈ [[〈F〉φ]] that:

∃t′ ∈ T . t ∗ t′ ∧ t′ ∈ [[φ]]

From the static de�nitions follows that [[φ]] ⊆ [[〈F〉φ]], so, t′ ∈ [[〈F〉φ]] which implies t ∈ [[〈F〉〈F〉φ]].
(7,⊆):
According to Lemma 1, t ∈ [[〈A〉〈A〉φ]] leads to:

∃t′ ∈ T . t′ ∈ [[〈A〉φ]] ∧ (t, t′) ∈ A∗.
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and thus:

∃t′, t′′ ∈ T . t′′ ∈ [[〈A〉φ]] ∧ (t, t′) ∈ A∗ ∧ (t′, t′′) ∈ A∗

which implies t ∈ [[〈A〉φ]].
(7,⊇):
Based on the static de�nition [[φ′]] ⊆ [[〈A〉φ′]]. Let φ′ = 〈A〉φ.
(8,⊆):
Straightforwardly similar to that of 7.
(8,⊇):
Based on the static de�nition [[φ′]] ⊆ [[〈F〉φ′]]. Let φ′ = 〈F〉φ.
(9,⊆):
Using the dynamic de�nition of 〈F〉, it follows from t ∈ [[[〈F〉〈F〉φ]]] that:

∀q ∈ Q (qi= t→ ∃j≥ i (qj= t′ ∧ t′ ∈ [[[〈F〉φ]]]))

Expanding the de�nition of 〈F〉 again:

∀q ∈ Q (qi= t→ ∃j≥ i (qj= t′ ∧ (∀q′ ∈ Q (q′k= t
′ → ∃l≥k (q′l= t′′ ∧ t′ ∈ [[[φ]]])))))

which implies:

∀q ∈ Q (qi= t→ ∃j≥ i (qj= t′ ∧ (∃l≥j (ql= t′′ ∧ t′′ ∈ [[[φ]]]))))

or equivalently:

∀q ∈ Q (qi= t→ ∃l≥ i (ql= t′′ ∧ t′′ ∈ [[[φ]]])))

thereby t ∈ [[[〈F〉φ]]].
(9,⊇):
Based on the static de�nition [[φ′]] ⊆ [[〈F〉φ′]]. Let φ′ = 〈F〉φ.

Theorem 3. Any combination of certain F- and A- purposes which includes both operators, is equivalent
to the disjunction of a certain F- and an A-purpose, i.e. for any n > 1 we have:

[[〈X1〉 · · · 〈Xn〉φ]] = [[〈A〉φ ∨ 〈F〉φ]] (Xi ∈ {A,F})

given that ∃i, j. Xi = F ∧Xj = A.

Proof. The proof is straightforwardly similar to that of Theorem 5.

Theorem 4. Any combination of possible F- and A- purposes which includes both operators, is equivalent
to the disjunction of a possible F- and an A-purpose, i.e. for any n > 1 we have:

[[〈X1〉 · · · 〈Xn〉φ]] = [[〈A〉φ ∨ 〈F〉φ]] (Xi ∈ {A,F})

given that ∃i, j. Xi = F ∧Xj = A.

Proof. The proof is straightforwardly similar to that of Theorem 5.

Theorem 5. Any combination of A-, certain F- and possible F- purposes that include all the three operators,
is equivalent to the disjunction of a possible F- and an A-purpose, i.e. for any n > 2 we have:

[[〈X1〉 · · · 〈Xn〉φ]] = [[〈A〉φ ∨ 〈F〉φ]] (Xi ∈ {A,F,F})

given that ∃i, j, k. Xi = F ∧Xj = F ∧Xk = A.
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Proof. We prove this inductively over n, the number of the operators where n ≥ 3. The base cases are:

1. φ = 〈A〉〈F〉〈F〉ψ
2. φ = 〈A〉〈F〉〈F〉ψ
3. φ = 〈F〉〈A〉〈F〉ψ
4. φ = 〈F〉〈F〉〈A〉ψ
5. φ = 〈F〉〈A〉〈F〉ψ
6. φ = 〈F〉〈F〉〈A〉ψ

Case 1:

[[〈A〉〈F〉〈F〉ψ]] = [[〈A〉〈F〉ψ]] (Lemma 5)

= [[〈A〉ψ ∨ 〈F〉ψ]] (Lemma 5)

Case 2:

[[〈A〉〈F〉〈F〉ψ]] = [[〈A〉〈F〉ψ]] (Lemma 5)

= [[〈A〉ψ ∨ 〈F〉ψ]] (Lemma 5)

Case 3:

[[〈F〉〈A〉〈F〉ψ]] = [[〈F〉(〈A〉ψ ∨ 〈F〉ψ)]] (Lemma 5)

= [[〈F〉〈A〉ψ ∨ 〈F〉〈F〉ψ)]] (Lemma 3)

= [[〈F〉ψ ∨ 〈A〉ψ]] (Lemma 5)

Case 4:

[[〈F〉〈F〉〈A〉ψ]] = [[〈F〉(〈A〉ψ ∨ 〈F〉ψ)]] (Lemma 5)

= [[〈F〉ψ ∨ 〈A〉ψ]] (similar to case 3)

Case 5:

[[〈F〉〈A〉〈F〉ψ]] = [[〈F〉(〈A〉ψ ∨ 〈F〉ψ)]] (Lemma 5)

= [[〈F〉〈A〉ψ ∨ 〈F〉〈F〉ψ)]] (Lemma 3)

= [[〈F〉ψ ∨ 〈F〉ψ ∨ 〈A〉ψ]] (Lemma 5)

= [[〈F〉ψ ∨ 〈A〉ψ]] (Lemma 4)

Case 6:

[[〈F〉〈F〉〈A〉ψ]] = [[〈F〉(〈A〉ψ ∨ 〈F〉ψ)]] (Lemma 5)

= [[〈F〉ψ ∨ 〈A〉ψ]] (similar to case 5)

Now consider a formula φ with n + 1 consecutive operators applied to ψ (n ≥ 3). It is either the case
that:

1. φ = 〈A〉φ′

2. φ = 〈F〉φ′

3. φ = 〈F〉φ′
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According to the induction hypothesis, [[φ′]] = [[〈A〉ψ ∨ 〈F〉ψ]]. Now we prove that [[φ]] = [[〈A〉ψ ∨ 〈F〉ψ]].
Case 1:

[[φ]] = [[〈A〉φ′]] = [[〈A〉(〈A〉ψ ∨ 〈F〉ψ)]] (induction hypothesis)

= [[〈A〉〈A〉ψ ∨ 〈A〉〈F〉ψ)]] (Lemma 3)

= [[〈A〉ψ ∨ 〈F〉ψ]] (Lemma 5)

Case 2:

[[φ]] = [[〈F〉φ′]] = [[〈F〉(〈A〉ψ ∨ 〈F〉ψ)]] (induction hypothesis)

= [[〈F〉〈A〉ψ ∨ 〈F〉〈F〉ψ)]] (Lemma 3)

= [[〈A〉ψ ∨ 〈F〉ψ]] (Lemma 5)

Case 3:

[[φ]] = [[〈F〉φ′]] = [[〈F〉(〈A〉ψ ∨ 〈F〉ψ)]] (induction hypothesis)

= [[〈F〉〈A〉ψ ∨ 〈F〉〈F〉ψ)]] (Lemma 3)

= [[〈F〉ψ ∨ 〈A〉ψ ∨ 〈F〉ψ]] (Lemma 5)

= [[〈A〉ψ ∨ 〈F〉ψ]] (Lemma 4)
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