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slot” may be accessed.

Section five explains recursion. Recursion is treated as ordinary decomposition, the only new
wrinkle being that the sub-problem has the same as form as the original but will be easier to solve
in that its parameter values are ‘simpler’. In practice this means that several instances of the same
block may exist at the same time and each sub-problem is modelled by its own instance.

In section six, the passing of more complex types of parameters such as arrays and procedures
is explained.

2 Basic Block Structure Within the Run-Time System

When Pascal program execution begins, an instance of the Pascal run-time system is entered. Such
and instance may be depicted with the same block structure and basic relationships as the block
instances created by the user program. This basic pattern will first be defined, then applied to the
run-time system, and then successively refined.

A block is a piece of source text

begin
declarations;
statements;
end;

which describes an action sequence and the local “scratchpad” definitions needed to carry it out.
When a program containing the block is executed, an instance of that block is created every time
program control passes through its initial begin. That instance of the block is deleted when
program control passes through its final end. Several instances of the same block may be created
during program execution. However, each instance of the same block has the same template which
we visualize with three levels as shown in Figure 1.

The three sections are:

a header which furnishes the block with a unique name. It also links it to its environment with a
static link (SL) by pointing to the instance in which this one was defined and a dynamic link
(DL) holding its return address (a program point).

a declaration which has slots for each locally defined quantity (variable, label, procedure, etc)
and its current value (if applicable).We make no assumptions as to the values of declared
quantities prior to their first assignment.

a body which contains the sequence of statements for the program block.

The following program which reads two numbers and computes the sum can be used to show
the program block instance and the extension to the run-time system. d

program add2 (input, output) ;
var x, y, sum : real;

begin
read (x, y);
sum := x + y;



writeln (’Sum = ’, sum);
end.

When program execution starts, the first thing that happens is that a Pascal run-time system
instance is created and entered. It is here that links to the program library can be established
for standard routines like writeln as well as some routines invisible to the user such as parameter
passing routines and processes which are necessary for entering and leaving subroutines. The run-
time system instance also contains certain initializing and clean-up operations which are common
to all Pascal programs. The run-time system instance can be shown using our standard model, as
in Figure 2.

The run-time system provides the link between the execution and the user. In addition, a
marker which will be referred to as sequence control (SC) indicates the current instruction.
When execution begins, sequence control points to ‘initialize’ in the run-time system block instance.
Initializing actions include some accounting, the allocation of memory for the program, and the
opening of input, output and library files. Sequence control is then moved to the next instruction,
‘execute add2’.

At this point, space for the incarnation of the program block is allocated. The block instance
corresponding to the source program is created as shown in Figure 3(a).

When a block instance is produced, two system variables, DL and SL are initialized. These
are shown in the heading of the block instance along with an identifying name. The DL contains
the information which directs the return of sequence control to the run-time system following the
completion of the instructions in instance. The SL indicates the path which must be followed if
a non-local quantity required for the execution of a particular instruction is not contained in the
current instance. Every instance of a block, procedure or function in Pascal possesses such links.
In this case, whereas definitions of z, y and sum can be found locally, there is no local definition
for either read or writeln.

SC, the sequence control indicator is now positioned opposite the first instruction found in the
body of the program which is a read statement. The meaning of the read statement is not in the
current block and the SL pointer is used to locate the next instance in which to search for a meaning
for read. In this case, the SL points to the run-time system instance which contains the Pascal
library. Having then found a match for the instruction, it is executed as the library dictates. If the
user supplies the values of 2.0 and 3.0, these are then mapped to the declarations for z and y in
the program instance.

The process of finding a match for the instruction therefore is one in which the declarations
are searched to see if the quantity is defined. If a match is found, the occurrence is mapped onto
that quantity. The current instance is searched first. If this search is unsuccessful, the SL pointer
is followed to the enclosing instance. This process is repeated until a match is found. The process
is one of binding the instruction to a declaration and can be stated as the following binding rule:

Look for a match for the quantity in the current instance. If a match is found, accept
the match. If no match is found, follow the SL pointer and look for a match in that
instance. This step is repeated until a match is found.

At least one occurrence of the identifier must be found. If the indentifier cannot be found, then
the program would not have compiled since this is the same look-up mechanism used by the Pascal
compiler. The first possible match is taken and other quantities with the same identifier further



back along the SL chain are rendered inaccessible to the current block. The compiler will also
ensure via typing that the identifier is meaningful.

In the example, question marks (?) initially appear for the values of 2, y and sum since no
values have yet been assigned to these quantities. At this point they have unpredictable values
which are dependent on how the machine represents values which are not yet explicitly assigned.
Matches for read and writeln are found in the run-time system instance while matches for sum, z,
and y are found in the program instance. When the first instruction is complete, and assuming
that the values 2.0 and 3.0 were provided as input, these values would have been mapped onto
the declaration portion for x and y replacing the ’?’. The sequence control then moves to the
next statement, (sum := z + y;). The current instance contains the values required to assign a
value to sum. In the next statement, the binding rule will locate writeln in the run-time system
instance and sum in the program instance. Finally, with no further statements, the sequence control
follows the DL pointer to the run-time system and is positioned at the next statement (the one
textually following the one just completed) as shown in Figure 3(b). Various clean-up operations
are then carried out including completion of accounting, closing of files and the release of any other
requested resources back to the operating system. The program instance no longer exists when the
sequence control has exhausted actions of the body of the instance. All quantities declared within
the instance also disappear. When the clean-up is complete, the run-time system instance also
disappears.

3 Extension to Procedures

To keep things simple, we first introduce procedures without arguments. Reduction of code rep-
etition and the capability of increasing flexibility of code segments (modularity considerations)
through the use of procedures will also be included. Finally, functions will be discussed.

3.1 Procedures with no Parameters

The program below contains a simple procedure with no parameters.

program Main (input, output);
var n : integer;

procedure P;
var k : integer;
begin
n:=n+1;
read (k);
writeln (’n= ’, n,’ k= ’, k);
end; {of P}

begin {Main}
n := 0;
P;



P;
end.{of Main}

When this program is executed, the run-time system instance does the normal initializations
and then establishes and enters the program Main as shown in Figure 4.

Two quantities have been declared in Main, n and procedure P. Initially, the value for n is
undefined but when the first instruction in the body of the instance named Main is executed, n
is assigned the value of zero. When sequence control moves to the next instruction, the instance
representing procedure P is created as shown in Figure 5. The run-time system instance should be
well enough understood at this point so it is not shown in full in future diagrams. Instead, it is
represented by using the header only.

At the point that the instance for P is created, the integer k exists although its initial value is
undefined. Sequence control then moves to the first statement of procedure P which results in the
assignment of 1 to n. Since n is not found in the instance P, the binding rule matches its occurrence
to the integer variable in program Main. Note that the value assigned to n also is kept in Main.
In the next statement, the binding rule places k locally but needs to follow the SL pointer back
two steps to locate read. Upon completion of the last statement in P, sequence control returns to
the statement immediately after that indicated by DL and the instance disappears. Thus since the
value of n was stored in Main, it is retained but the value of k is lost when the instance is erased.
When the execution of Main comes to another invocation of P, the initial value for n will be 1
and for k will be unknown until after the read statement. The value of n at the completion of the
first statement will be 2 but whatever the value assigned to k, its value is not retained after the
procedure is complete.

Procedures retain access to their declaration environment regardless of the position of the call
since SL is a static link. This concept often causes problems in understanding programs. The
following example illustrates this concept.

program Main (output);
var x : real;

procedure bumpx;
begin

x :=x + 1.0;
end;

procedure Q;
var x :@ real;
begin
x := 12.0;
bumpx;
end;

begin {Main}
x := 2.0;
Q;

write (’x= ’, x:4:1);



end.

The diagram in Figure 6(a) shows the instances as they exist following the execution of the
second statement in Main, the call to Q. Figure 6(b) shows the instances following the call to
bumpz in Q. Notice that the SL of @ is in Main as is the SL of bumpz since that is were both are
defined. However the DL’s of the two instances refer to program points in different block instances.

During execution of the program, the program instance, Main, is created after the initialization
processes. Real z is undefined in the declarations until it is set to 2.0 by the first instruction.
When @ is called, since the procedure is part of the declarations in Main, this is used to create the
instance called Q. In this instance, there is a real variable z which is undefined initially but which is
given a value of 12.0 when the first instruction in @ is executed. Note that sequence control moves
to the first instruction in the newly created instance each time the creation process is invoked. A
call is now made to bumpz. A search of the declarations in @ does not find a match so the SL
pointer is followed to find the procedure in Main. The SL pointer always points to the instance in
which the match required to create the instance was located. Thus, when bumpz increments z, it
searches first in the bumpz instance and when the match is not found, follows the SL pointer. In
this case, the pointer goes back to Main and it is this declaration of z which is used. Thus z is
incremented to 3.0. As sequence control moves to the next command, two instances are removed
in turn since the last command is end for both bumpz and . When the value of z is written, the
value referenced is the value in the Main program and 3.0 is written.

By using this technique, it is obvious from the diagram produced that there are no declarations
for z in bumpz. The SL pointer which established the link between bumpz and Main when the
procedure instance was created indicates clearly which z is to be incremented. The same z gets
bumped whenever bumpz is called regardless of the position within a procedure or the depth of
nesting since every call has the same SL.

3.2 Procedures with Value Parameters

Procedures can significantly reduce the repetition of code and can also widen the range of applica-
tion through the use of appropriate formal value parameters. Suppose that the output of a program
has four blank lines interspersed to make the result more readable. Without the use of procedures
it is necessary to insert the appropriate code at each point where the four blank lines are required
either as four writeln commands or as a looping construct. Repetition of code can be substantially
reduced by creating a procedure (with no parameters) with the result that a single statement, the
procedure call, can be used to insert the blank lines where required as shown below.

program Main (input, output);

procedure NL4;
var k : integer;

begin
for k := 1 to 4 do
writeln;
end;
begin



NL4;
ceees
NL4;

end.

Thus the procedure reduces redundant code and increases modularity. However, using a proce-
dure with no parameters does not provide the programmer with any flexibility — four blank lines
are always inserted by the procedure call. Altering the procedure to produce 3 or 5 blank lines
can be easily accomplished by changing the terminator for the loop but the problem of producing
a fixed spacing still exists. Suppose that the program is, instead, modified as follows:

program Main (input, output);
var b : integer;
procedure NL;
var k : integer;
begin
for k := 1 to b do
writeln;
end;
begin

There is now more flexibility in how much space is left but it still requires that the amount of
space is part of the code and is fixed for the execution. Some changes can be made by inserting
some sort of variable which will define b during execution, but substantial problems still exist. A
value for b must be determined before each call to the procedure and, more importantly, b is a
global variable which must be accessed through the use of the binding rule. A better option is to
allow the production of a local variable when the procedure is created. Then no declaration of this
variable need be made in the Main program, its value is used only in the procedure and need not
be defined otherwise. Such flexibility is provided by using procedures with value parameters.

The program below provides this capability.

program Main (input, output);
var m : integer;

procedure NL (b : integer);
var k : integer;
begin



for k :=1 to b do
writeln;
end;

begin {Main}
NL (m);

NL (m+3);
end.

Figure 7 shows the program when the call NL (m) is about to be executed. We assume that
the value of m is 5.

In this example, the parameter for NL is called by value. Quantities called by value are treated
as initialized local variables within the instance. Value parameter binding can be regarded as the
assignment of the value in the argument to the local parameter within the instance or

local_par := argument

Therefore, when the instance is created, a scan of the heading for parameters indicates a value
parameter, m. In producing the declarations for the instance, b is assigned the value of m, thus
producing a local value for use in the instance so that the original value of m is used only to assign
the value to the local variable in the instance. The arguments to a procedure are evaluated in the
context of the call.

Thus five lines are inserted in the output, the procedure is erased, and sequence control returns
to the next instruction in the program. When NL is called again, the argument is a variable but
to an expression. In forming the declaration, the value of m+3 is evaluated in the calling instance
and the value 8 is assigned to b. Arguments called by value may be general expressions. They are
always evaluated to a single value on procedure entry.

The important point is that the use of value parameters in the procedure has reduced the
amount code and increased flexibility for the programmer. There is no longer a need for a global
variable to control the amount of space, or the requirement that the variable be reset specifically
within the code. The options for providing a value for the procedure are dramatically increased
and the need for spurious variables eliminated. Parameters which are called by value result in an
initialized local variable. If m has a value of 5 and a call is made to NL(m), the value of 5 is
assigned to the local variable 5. All sorts of changes can be made to b but none of these changes
will be made to m. The value of b vanishes when the procedure is terminated but the value of m
does not.

3.3 Procedures with Reference Parameters
The program below is intended to swap the values of x and y.

program Main (output);
var x, y : real;

procedure swap (r, s : real);
var t : real;



begin

t =13

T := 8;

s := t;
end;

begin {Main}
x := 2.0;
y := 3.0;
swap (x, y);
writeln (x, y :4:1);
end.

On procedure entry, the parameters called by value, r and s, are initialized to 2.0 and 3.0
respectively. Since ¢ is a local variable it will be initialized to an undefined value. Thereafter, r and
s are treated just like the local variable ¢. Immediately prior to the output statement, t = 2.0,s =
2.0 and r = 3.0 and the values have been swapped inside of the procedure. However, on procedure
exit, all the local values created by the procedure vanish including the swapped pair. Obviously,
a different mechanism must be used to enable the values which were swapped in the procedure to
also be available when the procedure no longer exists. This is accomplished by calling the values
by reference rather than by value. The program below shows the MODIFICATION required.

program Main (output);
var x, y : real;

procedure swap (var r, s : real);
var t : real;

begin
t =1,
r := 8;
s = t;
end;

begin {Main}
x = 2.0;
y := 3.0;
swap (x, y);
writeln (x, y :4:1);
end.

Figure 8(a) shows the instance structure when the swap procedure is created and Figure 8(b)
the instance structure after swap has completed.

While the effect of calling by reference is radically different from calling by value, the process
involved in creating the instance is only slightly different. When a value was called by value, a local
variable was created which contained the appropriate value for the called variable. This process
was used in the absence of any quantifier before the parameters in the heading. In this case the

10



reserved word var before the parameters indicates that these are called by reference. In creating
the quantities in the declaration, the local variables are given an address to use rather than setting
aside space for the storage of the quantity within the instance. Reference parameter binding can
then be regarded as assigning the address of the argument to the parameter, or,

parameter := address_of_argument

Assigning an address rather than a value is shown with the symbol @. Thus, the local variable
still has to obtain a value which is done by referencing the address of « which essentially has no
effect on z but it does give t a value which is stored within the instance. When new values are
assigned to variables within the procedure instance which are referenced by address the values are
stored at the address indicated and not within the procedure instance itself. This provides the
capability (and protection) of altering global variables in a controlled fashion since quantities are
accessible to the procedure which exist outside of the procedure instance. Had these variables been
used as global variables within the procedure, the code would be specific to those variables and
access would have been available through application of the binding rule. Specifying the values as
reference parameters thus provides controlled access to the variables outside of the scope of the
binding rule, and provides flexibility which could not be realized using global variables in the code.
When the procedure terminates, reference to the address outside of the instance disappears, local
values also disappear, but the changes made to values outside the instance remain.

4 Functions

Functions operate much like procedures but require additional qualifications. Resources are speci-
fied in a formal parameter list and in this respect are handled in the same way as formal parameters
are handled in procedures. Functions differ from procedures in two ways. First, in the declaration
of the instance, storage for the value produced by the function must also be allocated since functions
do return a single value and this quantity must be available. The type declaration for the function
is a signal that such storage is to be allocated. Second, the return address causes sequence control
to come back to the instruction which called the function in order to complete the instruction
rather than moving to the instruction after the call as is the case in procedures. During implemen-
tation of the function, the position of the function identifier in the code affects what is done. If
the function name appears on the left-hand side of the assignment statement, then this indicates
that the value of the function which has been determined is to be placed in the appropriate storage
location. It is good programming practice to assign a value to the function once only and use local
variables to hold intermediate values if this is necessary because the computation is complex (and
non-recursive). Whenever the function name appears as an expression, it is essentially another call
to the function. The following example will illustrate the operation of functions.

program Main (output);
var ¢ : integer;

function factorial (n : integer) : integer;
var count, ans : integer;

begin
ans := 1;
for count := 2 to n do
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ans := ans * count;

factorial := ans;
end;
begin
c :=3;
¢ := factorial (c);
writeln (c:10);
end.

Figure 9 shows the instance diagram at the point where the value is assigned to the function.

When the function is called, the instance is created. In the function instance, because the
parameter is a call-by-value parameter, the local variable n is assigned the value currently held by
¢ which is accessed through SL. When the function is assigned the value of ans, SL is used to find
the position of the declaration of the function and stores the value in the storage allocated in the
declaration in Main. Sequence control then moves to the end statement, the instance is erased, and
sequence control positioned back at the instruction which called the function.

5 Recursion

As has been shown, execution of Pascal programs proceeds through a process of creating and
disposing of instances as they are needed. It is therefore possible for a procedure (or instance) to call
itself since the format for the creation of the instance exists outside of the calling statement. This
recursive process is often used (and mis-used) in programs. More important, recursive constructs
are often difficult to understand and certainly difficult to debug when they function incorrectly.
Using the methodology discussed in this paper can assist in understanding recursion.

As an example, suppose that an algorithm is being designed to accept a base 10 integer and
covert it to the equivalent binary representation. A method which is often used is to repeatedly
divide by 2 until the quotient is zero while accumulating the remainders as shown below using 13
for the base 10 integer.

2 | 13 remainder 1

2| 6 remainder O

2 r-; remainder 1

2 ;“; remainder 1
o

If the remainders are concatenated in reverse order the binary equivalent is produced. Thus
reading the remainders from bottom to top and concatenating them yields 1101 which is the binary

equivalent of 13.
The whole process can be viewed as follows. A master routine is written to print out the binary
equivalent for 13. Such a routine can be restated so that a routine is called which can print out
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the binary equivalent for 6 (the quotient) and when this is completed a 1 (the remainder) will be
appended. The task which determines the binary equivalent of 6 will initiate a task which will
print the binary equivalent of 3 and which will append a 0 when it is complete. Finally, another
task can be used to print the binary equivalent of 1 and which will append a 1 when completed.
This task just prints out a 1 and then the chain of commands can be unwound.

The program below implements this algorithm recursively to find the binary equivalent of 6.

program convert (input, output);
procedure cvb (n : integer);
var q, r : integer;

begin
q :=n div 2;
r := n mod 2;
if q > 0 then

cvb(q);

write(r : 1);

end;

begin
cvb (6);

end.

The diagram showing the execution at the point where the program has grown to its fullest
extent is shown in Figure 10.

The important point is that each slave’s task is structured exactly as its master. The problem
at each step is simpler in that each time the parameter is halved until eventually the jOb is so
simple that it can be carried out at once.

6 Arrays and Procedures as Parameters

6.1 Arrays

The search for matches, however, requires a specific declaration structure. The search for a match
occurs by looking for a listing of the quantities within the appropriate type in a declaration instance.
Thus type declarations serve to simplify the search. In addition, Pascal requires that any formal
parameter be specified as a single type. This has particular relevance for the use of arrays as formal
parameters.

Arrays can be defined in a var statement such as

x : array [1 .. 10] of integer
y : array [1 .. 10] of integer

Such declarations of structured types are a composite of identifier type and index type, or two
types. While such declarations can be used, the usage is limited to global scope or local declarations.
In order to use the arrays above as formal parameters in procedures (or functions), they must be
redefined as a single new type as shown below:
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type group = array [1 .. 10] of integer

and then declaring z and y as being of type group, the equivalence of the structure of the two
arrays is immediately defined as a single type.

The program below creates a new type called vec and contains calls on routines readvec and
writevec which read in and write out typical vectors.

program norm (input, output);

type vec = array [1..10] of real;
var v, w : vec;

procedure readvec (var x : vec; n : integer);
var k : integer;

begin
for k := 1 ton do
read(x{k]);
end;

procedure writevec (var x : vec; n : integer);
var k : integer;
begin
for k := 1 ton do
writeln(k, x[k]);
end;

begin
readvec (v, 10);
writevec (v, 10;
readvec (w, 10);
writevec (w, 10);
end.

Figure 11 shows the instance structure at the first call on writevec, when the loop has been
entered and the values of k and z/k] are about to be printed. In this case, v is passed by reference
and nis passed by value making local n 10. This means that the formal parameter, z is intialized to
the same value as that in the appropriate value for the vector v which is accessed by address from
the operative procedure so z aliases global v during execution of the procedure body. Whenever
z[k] is written, it is the value of global v/k] that is output. On the second call on writevec, z will
point to the other vector w and its contents will be output.

If the procedure heading for writevec had called z by value rather than by reference, then the
call to print v would have resulted in a local copy of the vector within the procedure instance.
While the results would appear the same to the user, the impact on the machine is a duplicate
copy of the vector. Modifying the readvec procedure so that the z is called by value would not
however provide the same results for the user since the information would have been read into the
local storage for the vector and when the procedure terminated the values would be lost.
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6.2 Procedures

Thus far, we have dealt only with two types of parameters normally used by most Pascal program-
mers — value and reference parameters. A third type, those called by name also form a part Pascal
(and some other high level languages) and the model can assist in understanding and tracing the
execution when these parameters are used.

When a procedures is used in a parameter list, what we essentially do is pass a process to
the current procedure. Any procedure which exists as a parameter is considered as a reference
parameter so that it inherits the environment of the procedure which includes the parameter. This
is necessary since the desired outcome is to use the procedure as an additional process within the
procedure which calls it. Since no procedure exists until it is actually needed, what we do by using
a procedure as a parameter is to create an environment which includes all of the information that is
needed to execute (and thus produce the procedure instance). This is then used when the instance
is actually created.

Consider the following program which uses procedures as parameters. (This is a modification
from van Eijk (1986)). The program builds a binary tree and then prints out all of the paths
through the tree. For brevity, text is given omitting the code required to build the tree.

program Main (input, output);
type tree = “node;
node = record
item : integer;
left, right : tree;
end;
var root : tree;
procedure paths (t : tree; procedure path);
procedure localpath;
begin {localpath}
path;
writeln(t~.item:3);
end; {localpath}

begin {paths}
if t <> nil then
begin {then}
if (t~.left = nil) and (t".right = nil) then localpath;
paths(t”.left, localpath);
paths(t”.right, localpath);
end; {then}
end;

procedure dummy;
begin

writeln(’ ?*);
end;
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begin {Main}
{set up tree}
paths(root, dummy);
end.

The tree used in the execution is the left-heavy binary structure with 5 nodes shown in each of
Figures 12 through 16.

Figure 12 shows program execution when the tree has been established and the first call to
paths is about to be made. Once the instance of Main has been initialised and its DL and SL values
set, program execution starts. In our case, we execute the informal actions set up tree, which we
assume creates the tree shown and assign root to reference it. Figure 12 shows root pointing to the
root of the tree (the node numbered 1) with a dotted line.

The next action carried out by Main is a call to paths. This call results in the creation of a
second instance, named paths{1}, as shown in Figure 13. For textual clarity, we have simplified the
body (Pascal code) of paths{1} by eliminating the conditional code and leaving only the actions
that will be executed. DL of paths{1} points to its return position, the instruction in Main following
the call to path. The template for paths lies within Main, hence the SL of paths{1} is directed
there. The declaration portion of paths{1} is constructed from its template’s parameter list and
local definitions. The first argument, root, is a value parameter and is assigned to ¢ by a copy
operation. From now on, tis treated as though it were just another local variable.

The second argument dummy is a procedure passed by reference. Here the parameter path
receives a descriptor which tells it how to call dummy correctly. This is essentially the same as
treating the procedure as a reference parameter and therefore it is assigned the address of the
procedure which appears as the argument.

A reference type parameter will be shown as a dotted line leading to its argument in the same
way as reference parameters were shown previously. When we call a procedure passed as parameter,
we will need to know its entry point and its operating environment (its SL) in order to make the
call correctly.

paths{1} also contains a local procedure, localpath{#1} and some code. The process of assigning
the contents to the local declarations uses the binding rule and follows SL to locate the information
required to do this assignment. Therefore, dummy retains the environment of Main and all other
accesses are via SL to Main which contains the definition of the procedure required to build the
instance. Note that no instance of a procedure is created until the procedure is called, only the
definitional information exists. Placing the procedure in the parameter list is not a call to that
procedure, it is a process that identifies the environment and location of the task.

Before we carry out the given instructions in the body of pathsl, we insert an extra call on
localpath in order to give a feel for the purpose of this routine, and to cast some light on how we
give meanings to quantities. This call would result in an instance localpath{#0} being created (#0
being used to distiguish this digression from the original) and its body being entered. Its code is

path;
writeln(t~.item : 3);

path results in a call on the parameter to paths{1} being called, an instance dummy is created,
at which time the situation is as depicted in Figure 14. Notice the SL for localpath{0} is paths{1}
for that is where localpaths{0} is both called and defined. The SL for dummy{0} is to Main (that
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is where the template for dummy is defined). We now have enough variety in our display to enable
us to give the binding rule for quantities in its full generality.

Given the operating instance I and the occurrence of a name x. Look in the declaration
part of I, if you find a quantity x defined, then accept that definition. If no match is
found, repeat from the SL of L

Figure 15 shows the next situation when dummy has been called, done its thing (nothing),
and been deleted. We return to localpaths0. Previously, paths was found by following one SL and
matching with the parameter local to paths{1}. From here the binding rule locates writeln in the
RTS, and prints out the value of f.item which is found via the binding rule in this instance.

Our digression is now over and we return to the execution of the program proper inside pathsl.
Since the first node is not nil and not a leaf, the actions in the body collapse to

paths(t”.left, localpath);
paths(t~.right, localpath);

so the next instruction is executed which is another call to paths and the instance paths{2} for
node #2 is created. The DL refers back to the calling statement, and its SL points back to Main.
The arguments to paths{2} are evaluated in the context of the call, that is, inside paths{1}. Thus
when we establish paths{2}, its t-parameter points to node #2, the left link of the t of path{1}, and
its path-parameter to the definition of localpath{ 1} belonging to paths{1}. paths{2} is now entered
and again the if-then infrastructure drops away leaving us with two calls on paths to execute. So
instance paths{3} is created, its links established, and its body entered. This instance focusses via
its parameter t on node #3 which is a leaf node. Both the left and right pointers of its t are nil,
thus here we carry out three actions.

localpath;
paths(t~.left, localpath);
paths(t~.right, localpath);

The total extent of the calls required to process the first three nodes is shown in Figure 16,
where each call to localpath is numbered in order to facilitate explanation.

The binding rule maps the call onto localpath{3}, local to the operating instance. When
instantiated, localpaths{3}, will have its DL and its SL referring back to paths{3}. The body of
localpath{3} first makes a call upon path which is non-local. The binding rule tells us to look first
in paths{3}, where we find the match. It is to localpaths{2} in paths{2}. So another instance,
localpath{2}, is created. Its DL is to localpath{3}, its SL is to paths{2}, and its first action is to
call path. Again no match can be found locally. The non-local match this time is found in paths{2}
and it is to localpath{ 1} in paths. Continuing in this way, we eventually arrive at the most stretched
out situation which is shown in Figure 17.

The dummy instance is executed, reaches its end statement, is then removed and sequence
control returns to the instruction designated by DL. The contents of the root node, #1, are written,
the instance removed, and then the contents of node #2 written. This continues until all the nodes
on the path from the root to node #3 are written.

We have thus achieved what we set out to do which is print the ancestors of leaf node #3 in
order of their longevity. This is accomplished by constructing a chain of localpath instances, each
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one focusing on a specific ancestor node in the tree. Each localpath instance prints its ancestors

first before detailing its own information through writeln(t ".item). The initialisation of localpath

in paths{1} to dummy is a way of limiting the depth of the recursion adopted by the programmer.
Finally, control returns to the third node and execution continues.

7 Summary and Future Directions

We have presented a model which uses the creation and deletion of block instances as a means
of visualizing the execution of a program. Beginning with the basic components of the model,
these have been expanded to show critical features such as scope of variables, parameter passing,
recursion , and the execution of more complex procedures which use procedures as parameters. By
using the concepts of static and dynamic links and the binding rule, the model not only provides
insights into the reasons for certain occurrences of specific coutcomes in programs, it also makes it
possible to trace the execution of more abstract features such as recursion and complex parameters
in procedures. The model allows the user to understand the execution in terms of source code and
blocks instances which mimic what happens at a much lower level within the machine.

The model has immediate utility as a paper and pencil model since it provides a means of
visually describing difficult concepts such as scope, parameter passing (call by reference, value,
and name), and recursion. These can be difficult concepts to understand and the subtleties easily
lost in verbal explanation (see Slonneger (1987), Krumme (1987)). In addition, it serves as a good
introduction to activation records, level, scoping, and binding rules which are required for compilers
and linkers.

The model also offers a paradigm for building a program visualization system. Building an
initial prototype of such a system is currently under way. This system displays the code and the
block instances and allows the use to step through the execution continuously or on command. In
addition, it allows the user to step backward through the execution. Such a system is considered to
be most useful in helping novice programmers with Pascal. However, monitoring program execution
and debugging programs is a constant process for all programmers. A decade ago, Plattner and
Nievergelt (1981:91) stated that:

Monitoring program execution takes up a considerable fraction of a programmer’s time;
it is unlilkely to decrease in importance, since the insight it can provide is complementary
to, and cannot be replaced by, that obtained from static analysis of program texts.

There has been substantial interest recently in providing these graphic interfaces (Meyers, 1989))
and future components of the the current prototype will focus on the experienced programmer and
attempt to use the system as a viable debugging tool with editor and compiler interface.

Finally, the model also has the potential for application to other imperative languages such as
Modula-2 and C and can be extended further to include coroutines and garbage collection issues.
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SC

main

declarations

statement

RUN-TIME SYSTEM

Figure 1

RUN-TIME SYSTEM

System Routines
Pascal Library
program name = add2

end.

initialize ;
|—» execute add2;
clean-up;

Figure 2

System Routines
Pascal Library
program name = add2

initialize +

» execute add2;
clean-up;
end;

SC ——p=read (x,y);

DL | adez |st
x real ?

y real ?
sum real ?

SUM = X +Y;

writeln (sum);
end.

@

Figure 3
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RUN-TIME SYSTEM

System Routines
Pascal Library
program name = add2

SC—]

initialize ;
execute add2;
—> clean-up;
end;
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RUN-TIME SYSTEM  pe—

System Routines
Pascal Library
program name = Main

initialize ;
& axecute Main
clean-up;
end;
DLI Main l SL
n integer ?
procedure P
SC—pPn:=0;
P
P;
end;
Figure 4
RUN-TIME SYSTEM RUN-TIME SYSTENi—] D?UN—TIME SYSTEM
oL [ main | s. &= oL | Main | st oL | main | st o=
n integer ? n integer 1 ninteger 1
procedure P procedure P procedure P
n:=0; n:=0; n:.=0;
| P; P; P;
SC—f> - . - C.
P; P; = P;
ond; end; end;
(b)
oLf{p [s. oLfp st |—
k integer ? k integer ?
SC—l=n=n+1; SC—I=n:=n+1;
read (k); read (k);
writeln (n, k); writeln (n, k);
end; end;
(a) ()
Figure 5
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RUN-TIME SYSTEM RUN-TIME SYSTEM

oL [ man | st | oL | main | st
x real 2.0 x real 2.0
bumpx bumpx
Q Q
X =20; X =20;
> Q; - Q;
writeln; writeln;
end; end;
oLfo s | oL |a|st
x real 12.0 x real 12.0
X =12.0; x =12.0;
SC - bumpx; P bumpx;
end; end;
(a)
DLl bumpx ISL
SC ——Pp x:=x+1.0;
end;
(b)

Figure 6

RUN-TIME SYSTEM

DLI Main I SL fet—

m integer 5
procedure NL

m=5;

=NL (m);

NL (m = 3);
end;

oL f e fsu—

b integer §
k integer ?

8C - for...;
end;

Figure 7
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RUN-TIME SYSTEM

RUN-TIME SYSTEM

oL |Main ISL DL lMain lsx_
y real 3.0 y real 2.0
> x real 2.0; X real 3.0
swap (r, 8) swap (1, 5)
X = 20; X:=2.0;
y:=3.0; y=30;
AL swap (x, y);
writeln; SC ————t» writeln;
end; end;
(b)
DL swap |SL —
t real ?
r real @x
s real @y
SC —ntfm t=1;
r=8;
si=t
end;

(@

Figure 8

RUN-TIME SYSTEM

oL | Main ] sL

¢ integer 3
factorial function

c=3;

¢ := factorial (c);
writeln;

end;

— DLI faciorial | St |—
countinteger 4
ninteger 3
ans integer 6
factorial integer ?

for...; ;
SC —1—» factorial := ans
end;

Figure 9
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RUN-TIME SYSTEM

DLI convert l SL

procedure cvb

»- cVb (6);
end;

oL ob @ |st

ninteger 6
qinteger 3
r integer 0

if q > 0 then
ovb (q):
write (r : 1);
end;

oL | o @ |st
ninteger 3

q integer

r integer 1

if q > 0 then
— cvb (q):
write (r : 1);
end;

o | ob (1) | st

ninteger 1
qinteger 0
r integer 1

if q > 0then cvb (q);
SC =t write (r : 1);
end;

Figure 10
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RUN-TIME SYSTEM

DL norm I SL

> v vec

w vec
procedure readvec
procedure writevec

readvec (v, 10);
= Writevec (v, 10);
readvec (w, 10);
writevec (w, 10);

end;
DL writevec (v, 10) St
X vec @v
ninteger 10
SC —1—»fork :« 1t0 10 do
writeln (k, x [k]);
end;
Figure 11
[ RUN-TIME SYSTEM 1
DL Main SL
tree = *node
node = record
root : tree; ‘

procedure paths

procedure dummy / node #1 \

{sst up tree}

> paths (root, dummy); node #2 node #5
end; / \

node #3 node #4

Figure 12
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RUN-TIME SYSTEM

DLI Main ISL

root : tree;

procedure paths

- procedure dummy

{set up tree}
paths (root, dummy);
end,

DL paths {1}

sL |

t {#1} : tree

procedure path @ dummy
procedure localpath {#1}

SC —

— paths (t*.left, localpath);
paths (tA.right, localpath);
end;

node #1

\/

node #2 b,

node #5

node #3

Figure 13

26




RUN-TIME SYSTEM

DL | Main SL

root : tree;
procedure paths

- procedure dummy

{set up tree}
paths (root, dummy);

end;

DL paths {1} SL

L

t {#1) : tree

procedure path @ dummy
procedure localpath (#1}

localpath {#0};

paths (tA.left, localpath);
paths (tA.right, localpath);
end;

pL| localpath (#0} | st

path;
writeln (tA.item);
end;

DLl dummy |SL

SC ——t> writeln (' ');
end;

Figure 14
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RUN-TIME SYSTEM

DL Main ISL

root : tree;
procedure paths
-» procedure dummy

{set up tree}
Bpaths (root, dummy);
end;

[

DL paths {1} SL

t{#1} : tree
»s++ procedure path @ dummy

node #1 \

N

procedure localpath {#1}

node #2 node #5

localpath {#0}; s
paths (t*.left, localpath); / .,

paths (t*.right, localpath);
end; node #3 node #4

DLI localpath {#0} l SL

path;
SC——1— writeln (t*.item);
end;

Figure 15
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RUN-TIME SYSTEM

DLI Main ]sn_

root : tree;
procedure paths

- procedure dummy

{set up tree}
l»paths (root, dummy);
end;

DL paths {1} SL

{#1} : tree

procedure path @ dummy

—» procedure localpath {#1}

—paths {2} (t*.left {#2},localpath {#1};
paths (t*.right, localpath);

end;
DL paths {2} SL
t{#2} ; ree
procedure path @ localpath {#1}
» procedure localpath {#2}

-paths (3} (1" left {#3},localpath {#2};
paths (t*.right, localpath);
end;

oL paths {3} sL

node #1

t{#3} : tree

-=={+« procedure path @ localpath {#2}

procedure localpath {#3}

SC —

i {leaf} then localpath {#3};
paths (t*.left, localpath);
paths (t*.right, localpath);

end;

Figure 16
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RUN-TIME SYSTEM

Dl.l Main ISL

root : tree; b el

procedure paths
ssssssces [ procedure dummy

E {set up tree}

: p-paths (root, dummy);

E ond;

P o e |s &

: 1{#1) 11760 sennsunsees aseseas -
: :

sasvhassss procedure path @ dummy
4«3 procedure localpath {#1}

-palhs {2} (1*.loft (#2},localpath {#1);
paths (1*.right, localpath);
ond;

DLI pathe {2} | sL
{2} ; tos remeenuees

=« procedure path @ localpath {#1}
§= 3 procedure localpath {#2}

Jesensscsecsnstsacsnsanney

S
.

oaths (3} (t* Jeft {43} localpath (#2);

paths (t*.right, locaipath);
ond;

faeceasancoesscans

§
8

o | paths {3} | |

1{¥3] :tre0 ssnsrass
e « |« procedure path @ localpath (#2)

§
3
g
x

procedure localpath {#3}

L i (loaf} then localpath (#a};
pathe (t*.left, localpath);
paths (t*.right, localpath);
end;

oL | locapath (#3) St

—3path {localpath {#2}
writeln (t*{#3).item);
end;

L7 oL | wocapath (#2} fSL

—3-path {locapath {#1} L
writeln (1*{#2).item);
ond;

L o | tocapatn (#1) Jst

path { locaipath {dummy}};
writeln (t"{#1).item);
end;

o] dummy JsL

5C—hwromt 3 Figure 17

ond;
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