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Abstract 

Forest fire is a natural phenomenon in many ecosystems across the world. One of the most 

important components of forest fire management is forecasting of fire danger conditions. My aim 

was to develop a daily-scale forest fire danger forecasting system (FFDFS) using remote sensing 

inputs over the northern part of Canadian province of Alberta during 2009-2011 fire seasons. In 

this research, I critically analyzed the current operational fire danger forecasting systems and other 

remote sensing-based methods in order to determine the knowledge gaps. In general, the 

operational systems use point-based measurements of meteorological variables and generate 

danger maps upon employing interpolation techniques. It is possible to overcome the uncertainty 

associated with the interpolation techniques by using remote sensing data. It was observed that 

most of the fire danger monitoring systems focused on determining the danger during and/or after 

the period of image acquisition, thus unable to forecast the fire danger accurately. A limited 

number of studies were conducted to forecast fire danger conditions, which could be adaptable. In 

this thesis, I developed FFDFS’s useful for mid-term (i.e., 8-day) and daily-scale forecasting. The 

newly developed 8-day scale FFDFS uses Moderate Resolution Imaging Spectroradiometer 

(MODIS)-derived 8-day composite of surface temperature (TS), normalized multiband drought 

index (NMDI), and normalized difference vegetation index (NDVI). In order to eliminate the data 

gaps in the input variables, I propose a gap-filling technique that considered both of the spatial and 

temporal dimensions. The input variables were calculated during the i period and then integrated 

to forecast the danger conditions into four categories during the i + 1 period. I observed that 

90.94% of the fire fell under ‘very high’ to ‘moderate’ danger classes when compared with Alberta 

Environment and Sustainable Resource Development (ESRD) fire spots. As regards to operational 

perspective, I opted to develop daily-scale FFDFS comprised of MODIS-derived 8-day composite 
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of TS, NDVI, and NMDI; and daily precipitable water (PW). The TS, NMDI, and NDVI variables 

were calculated during i period and PW during j day; and then integrated to forecast fire danger 

conditions into five categories during j+1 day. Results were significant with 95.51% of fires in the 

‘extremely high’ to ‘moderate’ danger classes. Therefore, I infer that the refined FFDFS approach 

developed using remote sensing variables has operational value and can be routinely incorporated 

into meteorological based fire forecasting systems. Therefore, I apprehend that FFDFS could be 

used as an operational one; and has the potential to supplement information to the operational 

meteorological-based forecasting systems.  
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CHAPTER 1 : INTRODUCTION 

 

1.1 Background 

Forest fire is a natural phenomenon in many ecosystems across the world. Forest biomass burning 

occurs in almost all climatic conditions and geographical latitudes (Chuvieco et al., 2008). It is 

considered as an ecological disturbance which is responsible for burning about 350 million 

hectares (ha) of forested land per annum on an average-basis (FAO, 2007). At regional scale, the 

largest forest fire burned areas were found in Africa sub-Saharan (i.e., 200.82 million ha), 

Australasia (i.e., 52.98 million ha), Central and Southeast Asia (i.e., 19.85 million ha), and North 

and South America (i.e., 10.85 million ha), among others during 2000 (GBA, 2000). Several 

countries invest billions on an annual basis in suppression, prevention, and prescribe burning. For 

example, the United States Department of Agriculture Forest Service has spent more than US$ 

14.63 billion; Canada spent US$ 5.91 billion; and Chile expends US$ 0.12 billion, respectively 

during 2000-2010 (González-Cabán, 2013).  

 

Damages from forest fires have direct impact on human lives and livelihoods and also critical to 

the economy. Forest fires have both negative and positive consequences on the ecosystem and 

impacts us in many ways (Bleken et al., 1997; Martell, 2011). In general, they are perceived as a 

threat (Amiro et al., 2009; Huesca et al., 2009; Sifakis et al., 2011; Montealegre et al., 2014), 

because the burning of forest causes: economic losses [e.g., average US$ 2.4 billion per annum 

between 2002 and 2011 period as a result of biomass burning (Chatenoux and Peduzzi, 2012)]; 

release of CO2 into the atmosphere [e.g., the 1997 Indonesian wildfires have released about 13–

40% of average annual global carbon emissions produced by the use of fossil fuels (Page et al., 
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2002)]; and health hazard due to smoke [e.g., inhalation of toxic gases from smoke worsen the 

heart and lung diseases, cough and breath, sore eyes, tears, etc. (Stefanidou et al., 2008)]. In 

addition, large fires can potentially kill the firefighters [e.g., in the United States 1144 firefighters 

killed during the 1994–2004 period (Kales et al., 2007)] and destroy human settlements [e.g., the 

2011 Slave Lake fire in Alberta, Canada has destroyed 40% of the town that includes 454 

dwellings, public library, town hall and office buildings costing CAD$ 700 million (CBS News, 

2011; FTCWRC, 2012)]. However, forest fires have also many benefits such as regulating fuel 

accumulation, regeneration of vegetation by removing fungi and microorganisms, disease and 

insect control, receive more energy through exposure to solar radiation, mineral soil exposure and 

nutrient release (Bond et al., 2005; Ruokolainen and Salo, 2009; Pausas and Paula, 2012; Chu and 

Gao, 2014). In addition, fires also influence the regional biogeochemical processes (e.g., carbon 

cycling), climate change, etc. (Govind et al. 2011). These concerns are attracting a high level of 

interest among researchers in quantifying its impact on forest fire regimes (Flannigan et al., 2009; 

Loehman et al., 2011).  

 

In Canada, forest fire is considered as one of the critical natural disturbances [that represents 

approximately 10% of the global forest (NRCAN, 2014)]. In fact, Canadian forest has experienced 

approximately 8300 fires that burned 2.3 million ha every year on an average during the last 25 

years (NRCAN, 2014). Mostly large fires dominate the burned areas, i.e., each year fire greater 

than 200 ha representing 97% of the burned area. The boreal forested region of Canada occupies 

77% of its forested land and experience recurrent fire disturbances. Figure 1.1 shows the extent of 

boreal forest along with the provincial boundaries and the forest fire occurrences over 200 ha in 

Canada during the period 1980-2013. In order to suppress the fires, Canada has spent in the range 
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CAD $500 million to $1 billion every year on an average during the last decade in order to suppress 

the fires (NRCAN, 2014).   

 

 

 

Figure 1.1: The extent of boreal forested regions in Canada with the provincial boundaries 

and forest burned areas over 200 ha during 1980-2013. 
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One of the most important components of integrated forest fire management is the forecasting of 

fire danger conditions (i.e., probability of fire occurrences). In general, the fire danger conditions 

are dynamic in both space and time (Vasilakos et al., 2009; Chuvieco et al., 2010; Saglam et al., 

2008), and highly dependable on a set of factors. Those include: meteorological variables [e.g., 

temperature, wind speed and direction, relative humidity (RH), precipitation, etc.]; fuel conditions 

(e.g., live and dead fuel load, and fuel moisture content); topography (e.g., elevation, aspect, and 

slope); and sources of ignition such as human interferences (e.g., arson) or natural causes (e.g., 

lightning) (Jain et al., 1996; Chuvieco et al., 2004a; Adab et al., 2013). Among these factors, the 

topography is usually static in the temporal dimension, and influences the fire behavior (i.e., 

intensity and spreading after the ignition) to a large extent (Carlson and Burgan, 2003). As such, 

the fire danger conditions can be depicted as a function of meteorological variables and forest fuel 

conditions (also both of them are highly interrelated); while fire occurrences rely on the source of 

ignition (Wotton, 2009; Running and Coughlan, 1988; Malone et al., 2011). In fact, fire occurrence 

is defined as the number of fires started in a given area over a particular time period, as a function 

of meteorological, fuel conditions and source of ignition (BLM, 2012). Figure 1.2 shows the fire 

triangle that includes the meteorological variables, fuel conditions, and source of ignition as a 

prerequisite of forest fire occurrence. 

 

1.2 Problem statement 

Most of the operational forest fire danger forecasting systems across the world are primarily based 

on meteorological variables (Allgöwer et al., 2003; Abbott et al., 2007). Among the existing 

operational systems, the most prominent ones are the Canadian Fire Weather Index (FWI) System, 
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Figure 1.2: Major factors responsible for forest fire occurrences. 

 

US National Fire Danger Rating System (NFDRS), Australian McArthur Forest Fire Danger 

Rating System (FFDRS), and Russian Nesterov Index. These systems consist of following three  

aspects: (i) acquisition of meteorological variables at point locations over an area of interest; (ii) 

generate the surface maps for the variable of interest using geographic information system (GIS)-

based interpolation techniques (e.g., inverse distance weighting, spline, kriging, etc.); and (iii) 

forecast the spatial dynamics of the fire danger conditions at landscape level. Note that various 

GIS-based interpolation techniques could potentially generate different map outputs using the 

same input variables (Chilès and Delfiner, 2012). In order to eliminate such uncertainties, remote 

sensing-based data have greater advantage over the point-based data as it accounts for the spatial 

variability and can represent information over remote areas (Wang et al., 2013). As such, remote 

sensing platforms are quite often useful for acquiring spatial data in a timely manner, which have 

already been proven as an effective way for monitoring and forecasting fire danger conditions 
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(Ceccato et al., 2001). Thus, several studies incorporated remote sensing derived variables in forest 

fire danger management (Aguado et al., 2003; Bajocco et al., 2010; Chuvieco et al., 2004b; 

Rahimzadeh-Bajgiran et al., 2012). Such attempts could be broadly categorized into two distinct 

groups: fire danger monitoring, and fire danger forecasting. 

 

During the last several decades, remote sensing-based methods have been developed for 

monitoring the fire danger conditions. Most of these methods employed the remote sensing-

derived environmental variables to assess the fire danger conditions during and/or after the fire 

events. As such, these methods would unable to forecast fire danger conditions; however, they 

might be useful in exploiting relationships between environmental variables and fire occurrences. 

In case of forecasting the fire danger conditions, some remote sensing-derived environmental 

variables had also been used, such as surface temperature (TS) and normalized difference 

vegetation index (NDVI: an indicator of vegetation greenness) (Oldford et al., 2003); TS, NDVI 

and water deficit index (WDI: soil and vegetation canopy water stress) (Vidal and Devaux-Ros, 

1995); TS condition prior to fire occurrence (Guangmeng and Mei, 2004); and TS, normalized 

multi-band drought index (NMDI: a measure of water content measurement in the vegetation 

canopy), and temperature–vegetation wetness index (TVWI: an indirect way of estimating soil 

water content) (Akther and Hassan, 2011a). Though these developments demonstrated their 

capabilities of forecasting fire danger conditions, further research is needed to enhance both spatial 

temporal resolutions, predicting the values in the event of cloud-contamination, and incorporating 

other remote sensing-derived meteorological variables (e.g., relative humidity, precipitation, etc.). 

In addition, these systems must be calibrated and validated prior to implementing over a new 

ecosystem of interest. Furthermore, drivers of fires such as deforestation, land use change and 
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extreme climate events have been increasing in both frequency and severity across the globe 

(Souza et al., 2013; Flannigan et al., 2009). Thus, it would be worthwhile to study the fire danger 

conditions in order to develop appropriate fire management strategies to reduce the losses and 

enhance the benefits from wildfires (Stocks et al., 1989; de Groot et al., 2003; Leblon et al., 2012; 

Vadrevu et al., 2012). 

 

1.3 Research objectives 

The overall objective of the research was to develop a forest fire danger forecasting systems 

(FFDFS) and its implementation over the northern boreal forested regions of the Canadian 

province of Alberta. The specific objectives were the: 

(i) comprehensive understanding of  the currently operational fire danger forecasting 

systems and other remote sensing-based methods/system in order to determine the 

knowledge gaps;   

(ii) development of a gap-filling algorithm for the input variables of the FFDFS system to 

enhance the quality of the images; 

(iii) enhancement of a remote sensing-based forest fire danger forecasting system (i.e., 

FFDFS at 8-day scale) developed in an earlier study (Akther and Hassan, 2011a); and 

(iv) development of a remote sensing-based daily-scale FFDFS and implementation over 

the forest dominant regions of Alberta.  
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1.4 Thesis structure 

This thesis has been organized in six chapters (Figure 1.3). Chapter 1 provides background 

information about consequences of forest fires and their impacts; environmental variables those 

are responsible for forest fire; and problem statements of the current systems. This chapter also 

provides the study objectives and structure of this thesis. Chapter 2 presents the literature review 

of the current operational forest fire danger forecasting systems and their limitations; development 

of remote sensing-based danger monitoring and forecasting systems and their functional 

implications as an operational perspective. Chapter 3 explains the major characteristics of the study 

area, input variables and their pre-processing, computation of remote sensing-based indices 

including input variable constraints. Chapter 4 illustrates the development of remote sensing-based 

methods for fire danger forecasting system. It mainly comprises of three sub-sections: (i) 

development of a gap-filling algorithm for the input variables of the FFDFS system; (ii) 

enhancement of FFDFS system at mid-term forecasting (i.e., 8-day); and (iii) development of the 

FFDFS system at daily-scale forecasting. Chapter 5 presents the overall findings of this research 

work. It covers the results for each analyzed component, i.e., (i) status of the input variables after 

implementation of the gap-filling algorithm; (ii) the temporal dynamics of the input variables of 

the FFDFS system; and (iii) evaluation of the FFDFS system both for mid-term (i.e., 8-day) and 

daily-scale forecasting including generation of fire danger maps. Finally, Chapter 6 summarizes 

the research outcomes, and recommendations for further enhancement. This work has led to 

publications in peer-reviewed journals and different chapters highlight the work in much detail.   
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Figure 1.3: Schematic diagram of the chapters of the thesis.  
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CHAPTER 2 : LITERATURE REVIEW 

 

The goals of the literature review were to critically analyse the following four issues, such as (i) 

current operational forest fire danger forecasting systems and their limitations; (ii) remote sensing-

based fire danger monitoring systems and effectiveness as an operational one; (iii) remote sensing-

based fire danger forecasting systems and their functional implications; and (iv) synergy between 

operational forecasting systems and remote sensing-based methods. Thus, the detailed 

understanding about these developments would be worthwhile to progress research in the area of 

fire danger in the context of making them operational. 

 

2.1 Current operational forest fire danger rating system 

Fire danger rating systems have been in operation in many countries around the world, especially 

in Canada, Australia, Russia and the United States (Stocks et al., 1989; Luke and McArthur, 1978; 

Deeming et al., 1978). The danger rating is a systematic process to estimate and integrate the 

variables of interest of the fire environment to quantify the potential of fire start, spread and impact 

in the form of fire danger (Merrill and Alexander, 1987; Sebastián-López et al., 2008; Albini, 

1976; Rothermel et al., 1986; Deeming et al., 1972). These numerical ratings of fire potential are 

used in fire management both in wildfires and prescribed fires. The following sections describe 

the most prominent operational fire danger rating systems and their limitations. 
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2.1.1 Fire Weather Index (FWI) System in Canada 

In Canada, the forest fire danger conditions are calculated on daily basis using a component of 

Canadian Forest Fire Danger Rating System (CFFDRS), that is, known as Fire Weather Index 

(FWI) (van Wagner, 1987). The FWI system has been widely used in Canada for fire danger 

forecasting since the 1980s, which is designed based on the characteristics of the Canadian forested 

ecosystems (CFS, 1984; van Wagner, 1987). It is the most established system, which are being 

implemented in many parts of the world, e.g., New Zealand (Alexander and Fogarty, 2002), Alaska 

(Alexander and Cole, 2001), Mexico (Lee et al., 2002), Argentina (Taylor, 2001), European 

countries (i.e., Sweden, Portugal, Spain) (Granstrom and Schimmel, 1998; San-Miguel-Ayanz et 

al., 2003a; Viegas et al., 1999), and eastern Asia (i.e., Indonesia, Malaysia) (de Groot et al., 2007). 

These wider adaptations have been possible as the FWI system solely uses four meteorological 

variables as input ones (i.e., temperature, wind speed, relative humidity at noon time; and 

accumulated precipitation during earlier 24-h). The FWI system produces six indices on the basis 

of a reference fuel type (e.g., mature pine stands for Canadian ecosystems) (van Wagner, 1987) 

(see Figure 2.1 for details). These indices include: fine fuel moisture code (FFMC) calculated as a 

function of temperature, wind speed, relative humidity, and precipitation; duff moisture code 

(DMC) as a function of temperature, relative humidity, and precipitation; drought code (DC) as a 

function of temperature, and precipitation; initial spread index (ISI) as a function of FFMC and 

wind speed; buildup index (BUI) as a function of the DMC and DC; and fire weather index (FWI) 

as a function of ISI and BUI.  
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Figure 2.1: Simplified schematic diagram of Forest Fire Weather Index System (adapted 

from van Wagner, 1987). 

 

 

2.1.2 McArthur’s Forest Fire Danger Rating System (FFDRS)  

In Australia, a comprehensive Forest Fire Danger Rating System was formulated by McArthur 

(1958) using meteorological conditions to predict the fire spread rate on the basis of the amount 

of dead fuel burning and difficulty of suppressing them. The input variables of the FFDRS are: (i) 

Keetch–Byram Drought Index (KBDI: calculated as a function of average annual precipitation, 

24-h precipitation, and maximum temperature)-based long-term seasonal soil dryness (Keetch and 

Byram, 1968); (ii) daily average temperature, 24-h accumulated precipitation, relative humidity 

and wind speed at 1500 h local time (McArthur, 1967). The FFDRS system consists of four sub-

models (see Figure 2.2): fine fuel availability or drought reason (calculated as a function of KBDI, 

precipitation, and days since precipitation); surface fine fuel moisture (SFFM: derived as a 
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function of relative humidity, and temperature); rate of spread (RS: as a function of wind speed, 

fuel moisture, and fuel availability); and the difficulty of suppression (calculated as a function of 

RS, SFFM and wind speed). Note that several experimental fires were conducted using three 

distinct fuel models (e.g., grassland, eucalypt forest and pine tree) in the development of this 

system. 

 

 

 

Figure 2.2: Schematic diagram of McArthur’s Forest Fire Danger Rating System (adapted 

from McArthur, 1967). 
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2.1.3 Russian Nesterov Index 

The Nesterov Index is a simple Fire Danger Rating System developed by Nesterov in 1949 and 

widely used in the boreal forested regions of Russia. This index is computed based on daily 

observations of meteorological variables, such as dew point temperature, air temperature (Ta) at 

1500 h local time; and the number of dry days since the last precipitation (Figure 2.3). The 

Nesterov’s index considers the sum of all the preceding values in each day having precipitation 

less than 3 mm and the previous day’s index. If the precipitation in a particular day is 3 mm or 

more, then the index is ‘zeroed’ and a new index is computed based on the current day 

meteorological variables (Khan, 2012). Further changes of the Nesterov’s index have been carried 

out by considering the forest fire drought indices or moisture indices PV-1 (i.e., related to moisture 

content of moss/top layer) and PV-2 (i.e., related to moisture content of duff layer) (Vonsky and 

Zhdanko, 1976). 

 

 

Figure 2.3: Schematic diagram of the Russian Nesterov Index. 
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2.1.4 National Fire Danger Rating System (NFDRS) in USA 

The NFDRS operational system was first released for public use in 1972 in the United States. This 

system is a complex operational system that uses a set of user defined constants, several 

meteorological variables, fuel types, both live and dead fuel moisture, and generates output at 

different tiers of operation and illustrated in Figure 2.4 (Burgan, 1988; Deeming et al., 1972; 

Bradshaw et al., 1983). It requires two sets of inputs, such as site description that includes fuel 

model, slope class, live fuel types, climate class, latitude, and average annual precipitation; and 

daily meteorological observations acquired at 1300 h local time that includes dry bulb temperature, 

relative humidity, dew point, wind speed, wind direction, state of weather (illustrating information 

on stage of cloud, precipitation, fog, and thunderstorms/lightning), and solar radiation. In addition 

another index namely KBDI (Burgan, 1988; Andrews et al., 2005) are also used as an external 

response to the system. This system generates two tiers of outputs. Firstly, the intermediate outputs 

(that serve as pre-processor for the next day’s processing) are the estimation of: (i) live fuel 

moisture for woody and herbaceous (i.e., expressed as percentage of the oven dry weight of the 

sample); and (ii) dead fuel moisture (i.e., moisture content of the dead organic fuels on the forest 

floor which consisted of 1-h, 10-h, 100-h and 1000-h time lag fuels derived as function of 

temperature, precipitation, cloudiness and relative humidity). Finally, the NFDRS provides four 

major fire behavior components and indices [calculated by using the Rothermel (1972) 

mathematical fire spread model], i.e., spread component (SC) is the predicted rate of spread 

(calculated as a function of wind speed, slope, fine fuel moisture, live woody fuel moisture); 

ignition component (IC) is the likelihood of a reportable fire from firebrand that needs suppression 

(calculated as function of fine fuel moisture and SC); energy release component (ERC) is the total 

energy released during flaming of a fire (calculated considering the dead and live fuel moisture); 
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and burning index (BI) as function of SC and ERC, which is used as a fire danger indicator by 

most of the fire managers. 

 

 

 

Figure 2.4: Structure of the US National Fire Danger Rating System (adapted from 

Burgan, 1988). 
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2.1.5 Limitations of the operational systems 

All of the major operational systems described in the earlier sub-sections, in general, suffer from 

the following drawbacks, such as: 

(i) All the operational systems are based on point-source meteorological data, located sparsely 

in a vast geographic extent. In general, the forecasting of danger conditions at or near 

meteorological stations resembles more accurate information compared to other parts of 

the landscape. In order to address this, it required installation of more meteorological 

stations (Hijmans et al., 2005; King and Furman, 1976), which would be quite expensive 

in terms of installation and maintenance, data collection and it’s processing. 

(ii) To delineate the spatial dynamics of the fire danger conditions the point-source 

observations of meteorological variables are used in the scope of all of the operational 

systems. In general, GIS based interpolation techniques are adopted to generate the surface 

maps of the variable of interest. It is worthwhile to emphasize that employment of different 

interpolation methods can produce different map outputs using the same input variables 

(Oldford et al., 2006; Leblon, 2005; Longley et al., 2010), thus forecasting of danger 

conditions over a large forested area limits the usability of the operational systems (Leblon 

et al., 2012). 

(iii) All the operational systems except the Russian Nesterov Index consider the dead fuel 

moisture as the danger indicator; however, the fire danger conditions may also depend on 

live fuel moisture conditions (Bajocco et al., 2010; De Angelis et al., 2012; Yebra et al., 

2013). In fact, the live fuel moisture condition is a critical variable in defining fire danger 

conditions as it is closely related to the flammability of the live fuels and also propagation 

characteristics of fire. 
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(iv) Apart from the Russian Nesterov Index system, a limited number of fuel types have been 

considered in the scope of all of the operational systems. These fuel-specific parameters 

(e.g., ignition temperature of woody material, rates of combustion, and extinction of 

moisture from vegetation, etc.) are determined by laboratory-based experiments (Wilson, 

1985, 1990; Byram, 1963; Nelson, 1984). Thus, the characteristics of additional fuel types 

are required to be determined in the event of implementing these systems over other 

ecosystems. 

(v) In the framework of both Australian FFDRS and US NFDRS systems, KBDI has been used 

as a proxy of soil water content. The calculation of KBDI can be improved by incorporating 

the duration and intensity of precipitation (San-Miguel-Ayanz et al., 2003b). 

(vi) In general, the fire danger rating systems are fairly complex from an operational point of 

view and need complex data inputs in most of the instances (Lawler, 2004). 

 

2.2 Remote sensing-based fire danger monitoring 

Remote sensing-based fire danger monitoring is the act of delineating danger conditions at the 

current time. It consists of the following four stages: acquisition of the remote sensing data of 

interest; calculation of remote sensing-derived variables/indices relevant to danger conditions; 

establishment of the relation between remote sensing-derived variables and danger-related 

indicators; and generation of the danger map. In terms of remote sensing-derived variables, these 

can be broadly grouped into several categories, e.g., vegetation greenness; meteorological 

variables; surface wetness conditions calculated by exploiting the relations between TS and 

vegetation indices; and vegetation wetness condition, which are described in the following sub-

sections.  
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2.2.1 Vegetation greenness 

Among the various vegetation greenness-related indices, the commonly used ones are: NDVI (i.e., 

calculated as function of surface reflectance of red [0.60–0.70 µm] and near infrared (NIR) [0.70–

0.90 µm] spectral bands) (Rouse et al., 1973); soil adjusted vegetation index (SAVI: calculated as 

a function of red and NIR spectral bands) (Huete, 1988); global environmental monitoring index 

(GEMI: function of red and NIR spectral bands) (Pinty and Verstraete, 1992); relative greenness 

[RG: function of seasonal dynamics of NDVI or visible atmospherically resistant index (VARI: 

function of blue, green [0.50–0.60 µm] and red spectral bands)] (Burgan and Hartford, 1993; 

Kogan, 1990; Gitelson et al., 2002); and enhanced vegetation index (EVI: function of blue [0.40–

0.50 µm], red and NIR spectral bands) (Huete et al., 2002) (see Table 2.1). Table 2.2 summarizes 

some of the example cases of these vegetation greenness indices in the literature. 
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Table 2.1: List of common vegetation indices used for fire danger monitoring and their 

mathematical formulas. 

Index Abbreviation Formula Reference 

Normalized 

Difference 

Vegetation Index 

NDVI  Rouse et al., 

1973

 

Soil-Adjusted 

Vegetation Index 
SAVI  Huete, 1988

 

Global 

Environmental 

Monitoring Index 

GEMI 

eta(1 0.25eta) 


R
 0.125

1 
R

 

 

eta =  
2(

NIR
2  

R
2 )+1.5 

NIR
 +0.5 

R


NIR

+ 
R
+ 0.5

 

Pinty and 

Verstraete, 

1992 

Visible 

Atmospherically 

Resistant Index 

VARI 


G
 

R


G

+
R
  

B

 Gitelson et 

al., 2002 

Relative Greenness RGNDVI 

NDVIcur NDVImin

NDVImax NDVImin

×100 

Burgan and 

Hartford, 

1993 

Relative Greenness RGVARI 

VARIcur VARImin

VARImax VARImin

×100 Kogan, 1990 

Enhanced 

Vegetation Index 
EVI 

 

2.5 
 

NIR
   

R


NIR

+ 6 
R
+ 7.5 

B
+1

 

 

Huete et al., 

2002

 
Note:  is the surface reflectance values for blue (B), red (R), green (G), and near 

infrared (NIR); L=0.5. 

NDVIcur is the current NDVI value of a pixel; and NDVImin and NDVImax are the 

historical minimum and maximum values of that particular pixel. 

VARIcur is the current VARI value of a pixel; and VARImin and VARImax are the 

historical minimum and maximum values of that particular pixel. 

  

RNIR

RNIR

ρρ

ρρ





 L
Lρρ

ρρ

RNIR

RNIR 



1
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Table 2.2: Example of remote sensing-based vegetation greenness indices used in fire 

danger monitoring studies. 

Indices Sensor Method Locations Reference 

NDVI 

Advanced 

Very High 

Resolution 

Radiometer 

(AVHRR) 

Estimated the dead fuel moisture 

indices (DMC, DC and BUI) of the 

Canadian FWI system over Canadian 

boreal forested ecosystems. In these 

cases, AVHRR-derived 10-day 

composite of NDVI were used. In all 

these studies, the correlations were 

reasonable (i.e., r2 values in the range of 

0.03-0.65).  

 

Northwest 

Territories, 

Canada 

Leblon et 

al., 2001 

Northern Alberta 

and southern 

Northwest 

Territories, 

Canada 

Leblon et 

al., 2007 

Saskatchewan and 

Manitoba, Canada 

Dominguez 

et al., 1994 

AVHRR 

Developed a dynamic fire risk index as 

a function of NDVI and a set of static 

variables (that include proximity to 

road, slope, altitude, and type of 

vegetation cover). In general, the 

decrements in NDVI-values in the 

temporal dimension had an influence on 

the increment of the fire risk. 

Mediterranean 

forests of 

Tenerife Island, 

Spain 

Hernandez-

Leal et al., 

2006 

MODIS 

Calculated monthly-composite of NDVI 

and correlated with the fire frequencies 

determined by MODIS-based hotspot 

data; and found a reasonable accuracy 

(i.e., r2 value of 0.34). 

Mazandaran 

forest, northern 

Iran. 

Ardakani et 

al., 2011 
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Indices Sensor Method Locations Reference 

MODIS 

Commissioned 16-day composite of 

NDVI data during 2001-2006 fire 

seasons. The differences of indices for 

every 16 days were fitted to the fire 

frequencies; and found no relationship.  

Forested regions 

of Galicia and 

Asturias, Spain 

Bisquert et 

al., 2014 

RG 

MODIS 

Calculated as a function of 16-day 

composite of MODIS-derived NDVI 

and VARI. They observed that VARI-

based RG had a strong relationship with 

the observed live fuel moisture (i.e., 

average r2 value of 0.73) over evergreen 

shrubs. They also evaluated VARI-

based RG values in calculating fire 

potential index (FPI) and then compared 

with the MODIS-based active fire 

products. These comparisons revealed 

reasonable correlation (i.e., r2 value of 

0.27). 

Southern 

California, USA 

Schneider 

et al., 2008 

AVHRR 

Calculated from 10-day composite of 

NDVI and determined dead fuel 

moisture codes (i.e., DMC and DC) of 

the Canadian FWI system; and revealed 

good relationships (i.e., r2 value in the 

range of 0.43-0.50). 

Boreal forests of 

Saskatchewan and 

Manitoba, Canada  

Dominguez 

et al., 1994 

Northern boreal 

forests of Alberta 

and southern 

Northwest 

Oldford et 

al., 2006 
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Indices Sensor Method Locations Reference 

Territories, 

Canada 

EVI MODIS 

Used 16-day composite of EVI with day 

of year to quantify fire activity. These 

models were able to differentiate the 

various fire danger levels having about 

5% estimation errors.   

Mediterranean 

forests, north-

west Spain 

Bisquert et 

al., 2011 

Employed the difference between two 

consecutive 16-day composite of EVI; 

and compared with the fire frequency 

during 2001-2006 fire seasons. It 

revealed that these differences were 

having good correlations (i.e., r2 values 

in between 0.62 and 0.84).  

Forested regions 

of Galicia and 

Asturias, Spain 

Bisquert et 

al., 2014 

SAVI, 

VARI 

GEMI 

MODIS 

Used 8-day composite of surface 

reflectance to calculate the vegetation 

indices and compared with fire 

frequencies during 2001-2006; and 

found good correlations for SAVI and 

GEMI (i.e., r2 values in between 0.60 

and 0.81).      

Forested regions 

of Galicia and 

Asturias, Spain 

Bisquert et 

al., 2014 
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2.2.2 Meteorological variables 

Remote sensing-based meteorological variables (e.g., TS, Ta, and RH) were used in monitoring fire 

danger conditions. For example:  

(i) AVHRR 10-day composite of TS images were used in the boreal forests of northern Alberta 

and southern Northwest Territories, Canada (Leblon et al., 2007). The individual 

compositing period and cumulative TS were correlated with the DC values of the Canadian 

FWI system. It was found that the cumulative TS performed better than the individual TS 

(i.e., r2 value in the range of 0.32–0.76);  

(ii) Dead fuel moisture content was estimated using Meteosat Second Generation Spinning 

Enhanced Visible and Infrared Imager (MSG-SEVIRI) remote sensing data in the Iberian 

Peninsula of Spain (Nieto et al., 2010). In this study, two meteorological variables, such as 

the Ta (calculated by exploiting TS and NDVI scatterplot) and RH (as a function of vapor 

pressure and precipitable water content, see equations 2.1–2.3) were derived. These were 

combined to calculate the equivalent moisture content (EMC) of vegetation and observed 

promising results (i.e., mean errors ranging from 1.9 to 2.7%); 

 

ea=g
W( 1)


                                                                                                          (2.1) 

where, 

W = precipitable water; 

g = acceleration of gravity; 

 = exponent of power law that describe the atmospheric profile; 

 = 0.622 is the ratio of specific gas constants of water vapor to dry air; and 
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ea = water vapor pressure. 

e0(T)=0.6108 exp [ 
17.027T

T+273.3
 ]                                                                             (2.2) 

where, 

e0(T)= saturation vapor pressure at temperature T. 

Relative humidity, RH =100
𝑒𝑎

𝑒0
                                                                           (2.3) 

 

(iii) The dead fuel moisture codes of the FWI system (i.e., DC and DMC) were modeled using 

10-day composite of AVHRR TS images over the boreal forests in northern Alberta and 

the southern Northwest Territories of Canada (Oldford et al., 2006). The TS was revealed 

good correlation with the DMC during the spring season (i.e., r2 value of 0.34); and  

(iv) AVHRR-derived monthly composite of TS were used to determine the fire risk indicator 

over the temperate forest in Central Mexico. During the period of November–February, the 

maximum and minimum values of TS were computed and then generated the difference 

between them. These differences were evaluated against the actual fire occurrences and 

found that ~60% of the fires took place when they were between 8 and 15 oC (Manzo-

Delgado et al., 2004). 

 

Usually, both precipitation and humidity related variables derived from meteorological 

observations are an integral part in the frame of the operational forest fire danger forecasting 

systems throughout the world, such as CFFDRS system (van Wagner, 1987), US National Fire 

Danger Rating System (Burgan, 1988), Australian McArthur Forest Fire Danger Rating System 

(McArthur, 1967), and Russian Nesterov Index (Nesterov, 1949). It would be interesting to 
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mention that remote sensing-derived precipitable water (PW)-related variables were also used in 

various fire related studies. Those included: (i) Han et al., 2003 used the AVHRR and GOES-

derived daily PW in conjunction with NDVI and TS to calculate the FWI codes of the CFFDRS 

over the forested land in western Quebec, Canada during 1997; (ii) Sitnov and Mokhov, 2013 

observed that the MODIS-derived PW values were less than the long term monthly average values 

over the fire spots in forested land of European Russia during July-August 2010; and (iii) Nieto et 

al., 2010 used the MSG SEVIRI-derived PW images to calculate relative humidity over Iberian 

Peninsula, Spain during 2005; which was one of the input variable in determining the dead fuel 

specific EMC and compared against the meteorological-based EMCs. 

 

2.2.3 Surface wetness conditions 

For the last two decades, the relationship between vegetation index (VI) and TS variables were 

exploited for estimating the surface wetness conditions. The TS-VIs relationship are generally 

presented in scatter plots that generate either triangular or trapezoidal forms (Hassan et al., 2007) 

(see Figure 2.5). In the literature, several studies had demonstrated the effectiveness of TS–VI in 

monitoring fire danger conditions, e.g.,  

 

(i) 10-day composite of AVHRR-derived NDVI and TS images were used to calculate the 

slope between them that acted as a fire danger indicator (i.e., decrease in slope was related 

to increases in water stress) over the Mediterranean forest in east Spain (Illera et al., 1996). 

The derived slopes were found to detect approximately 68% of the fire events while the 

slopes were having a decreasing trend;  
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Figure 2.5: (a) Triangular and (b) trapezoidal forms based on a relationship between TS 

and VIs (adapted from Sandholt et al., 2002 and McVicar and Jupp, 1998). 

 

(ii) 10-day composite of AVHRR-derived NDVI/TS ratio, RG and accumulated sunshine hours 

(meteorological data) were integrated and found good agreement with the DC values of the 

Canadian FWI system (i.e., r2 value of 0.79) over the Mediterranean forest in south Spain 

(Aguado et al., 2003); 

 

(iii) 8-day composite of AVHRR-derived NDVI and TS in conjunction with the day of year 

were employed for estimating the fuel moisture content as part of fire danger rating over 

the Mediterranean grasslands and shrubs in Spain (Chuvieco et al., 2004c). The model 

showed good agreements with the ground-based estimates of fuel moisture content (FMC) 

(i.e., r2 values greater than 0.8 for both grass and shrubs); and  
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(iv) MODIS-derived 8-day composite of TS and 16-day composite of EVI data were used to 

develop a disturbance index (DI) over a broad range of bioclimatic regions in the western 

United States (Mildrexler et al., 2007). The DI values were generated using the annual 

maximum TS/EVI ratios to multi-year mean values. Under normal conditions (i.e., absence 

of disturbance) the DI value would be ~1.0 and in case of wildfire, it would be >1.0 (i.e., 

TS would increase and EVI would decrease for the current year compared to multi-year 

mean value). Comparison of the DI values (>1.64) against MODIS active fire data and 

other fire perimeter maps found close correspondence. 

 

2.2.4 Vegetation wetness condition 

Several indices representing vegetation wetness conditions [i.e., calculated as a function of NIR 

and shortwave infrared (SWIR) spectral bands] were implemented to determine the fuel moisture 

content as an indicator of fire danger (see Table 2.3). The commonly used indices include: NMDI, 

normalized difference water index (NDWI), simple relation water index (SRWI), normalized 

difference infrared index (NDII), global vegetation moisture index (GVMI), canopy water content 

(CWC), water index (WI), and moisture stress index (MSI). Some of the example cases by use of 

these indices are summarized in Table 2.4. 

 

  



 

29 

Table 2.3: List of common vegetation wetness indices used for fire danger monitoring and 

their mathematical formulas. 

Index Abbreviation Formula Reference 

Normalized 

Difference 

Vegetation Index 

NMDI 
ρ

NIR
 – (ρ

SWIR2
  – ρ

SWIR3
)

ρ
NIR

+  (ρ
SWIR2

  + ρ
SWIR3

)
 

Wang and 

Qu, 2007

 

Normalized 

Difference Water 

Index 

NDWI* 
ρ

NIR
 – ρ

SWIR1

ρ
NIR

 + ρ
SWIR1

 Gao et al., 

1996

 

Simple Relation 

Water Index 
SRWI 

ρ
NIR

 ρ
SWIR1

 Zarco-Tejada 

et al., 2003 

Normalized 

Difference Infrared 

Index 

NDII 

ρ
NIR 

– ρ
SWIR2

ρ
NIR

 + ρ
SWIR2

 Hardisky et 

al., 1983 

Global Vegetation 

Moisture Index 
GVMI 

(ρ
NIR 

+ 0.1) –( ρ
SWIR2

 +0.02)

(ρ
NIR 

+ 0.1) +( ρ
SWIR2

+ 0.02)
 

Ceccato et 

al., 2002a,b 

Water Index WI 
ρ

NIR

 ρ
SWIR1

 Peñuelas et 

al., 1993 

Moisture Stress 

Index 
MSI 

ρ
SWIR2

ρ
NIR

 Hunt and 

Rock, 1989 

Note: ρ is the surface reflectance value of near infrared (NIR), and shortwave infrared 

(SWIR1, SWIR2, and SWIR3 centered at ~1.24, ~1.64, and ~2.14 µm) bands. 
*In the formulation of NDWI, several wavelengths such as ~1.24, ~1.64, and ~2.14 µm can 

be employed. 
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Table 2.4: Example of remote sensing-based vegetation wetness indices used in fire danger 

monitoring. 

Indices Sensor Method Locations Reference 

NDWI MODIS 

Established relations between FMC and: 

(i) 8-day composite of NDWI (Stow et al., 

2005); and (ii) 10-day composite of NDWI 

(Dennison et al., 2005). The agreements 

were reasonable in both of the cases, such 

as r2 value of: (i) 0.50 in case of Stow et 

al., 2005; and (ii) between 0.39 to 0.80 for 

Dennison et al., 2005. 

Chaparral 

shrublands in 

California, 

USA 

Stow et 

al., 2005; 

Dennison 

et al., 

2005 

NDWI, 

NDII, 

GVMI, 

MSI, 

SRWI 

MODIS 

Used 8-day composite for the index of 

interest and compared with the FMC and 

equivalent water thickness (EWT); and 

found good agreements in most of the 

cases (i.e., r2 values in the range of 0 to 

0.81). 

Savanna 

forests in 

Senegal, 

West Africa 

Sow et al., 

2013 

NMDI,  

NDWI 
MODIS 

Employed daily NMDI and NDWI-values 

in detecting forest fires. The performance 

was evaluated against the MODIS-based 

active fire spots during the fire 

occurrences and observed that NMDI 

performed better (i.e., matched with over 

75% of the fire instances). 

Southern 

Georgia, 

USA and 

mixed forests 

in southern 

Greece. 

Wang et 

al., 2008 

GVMI, 

NDVI 
MODIS 

Employed 8-day composite to calculate 

the vegetation water content (VWC) using 

the empirical relationship of GVMI and 

Inner 

Mongolia 

plateau and 

Jiang et 

al., 2012 
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Indices Sensor Method Locations Reference 

EWT. In addition, monthly composite of 

NDVI were also compared with the VWC. 

Both of the indices indicated that their 

lowest values were coincided with the fire 

occurrences during the period of spring 

fires (March to May). 

Song Liao 

plain. 

NDWI, 

CWC 
MODIS 

Compared 8-day composite of these 

indices with the FMC; and found to have 

reasonable relations (i.e., r2 values in the 

range of 0.26 to 0.44).   

Northern 

Utah, USA 

Qi et al., 

2012 

NDII, 

NDWI 
MODIS 

Used 16-day composite and compared 

with the FMC. Multiple regressions was 

performed during the period of 2000-2006 

and found good relationships (i.e., r2 

values in the range of 0.64 to 0.70). 

Chaparral 

shrublands in 

California, 

USA 

Peterson et 

al., 2008 

NDII, 

WI, 

NDWI, 

EWT 

Airborne 

Visible 

Infrared 

Imaging 

Spectrometer 

(AVIRIS), 

MODIS 

Employed both AVIRIS and MODIS-

derived indices during the period 1994-

2004 with the FMC; and found that the 

AVIRIS-derived indices were better 

correlated (i.e., r2 values in between 0.72 

to 0.85) than the MODIS-derived ones 

(i.e., r2 values in between 0.55 to 0.61) 

Shrublands in 

California, 

USA 

Roberts et 

al., 2006 
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2.2.5 Fire danger monitoring using SAR images 

In addition to optical and thermal remote sensing data for monitoring forest fire danger conditions, 

a number of studies had been carried out to assess the possibilities of using Synthetic Aperture 

Radar (SAR). The SAR was used due to its ability to capture images independently from daylight, 

cloud coverage and weather conditions. In particular to forest coverage, the backscatter energy 

received by the sensors depends on the moisture conditions of the forest floor, canopy and 

precipitation events which could be utilized for describing the fire danger conditions. Some such 

studies using SAR images are as follows: (i) ERS-1 SAR data were used to assess the dead fuel 

moisture conditions over the northern boreal forest in Northwest Territories, Canada (Leblon et 

al., 2002); and good relationships were found between the radar backscatter and FWI codes (i.e., 

r2 values in between 0.30 and 0.40 for DMC, DC and BUI); (ii) ERS-1 and ERS-2 SAR-derived 

backscatter values were used to calculate the DC values of the FWI system over boreal forests of 

Alaska, USA (Bourgeau-Chavez et al., 2007); and found to have reasonable agreements (i.e., r2 

values ~0.64); and (iii) Radarsat-1 images were used to extract the backscatter values over the 

northern boreal forest in south-central of Northwest Territories, Canada (Abbott et al., 2007); and 

the comparison of radar backscatter values were found to have a strong relationship with the FWI 

codes (i.e., r2 values in between 0.68 and 0.83, 0.77 and 0.82, 0.72 and 0.86, and 0.62 and 0.85 for 

DMC, DC, BUI, and FWI respectively). 
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2.2.6 Limitations of remote sensing-based monitoring systems 

The review of the remote sensing-based monitoring systems revealed that the accuracies of the 

environmental variables as a fire danger indicator have shown a wide range of r2 values. As fire 

occurrences depend on both meteorological and biophysical variables, thus, the use of single 

variable might not able to show the fire danger conditions appropriately due to the following 

reasons: 

(i) Vegetation greenness-related variables are slow responding ones, which reflects long-term 

conditions (i.e., does not change over short period even though drought persists in 

vegetation) (Leblon et al., 2001; Vicente-Serrano et al., 2012) and relates to several other 

variables, such as sunlight; temperature; soil moisture; and inter and intra species 

competition. 

(ii) The precisions observed using the meteorological variable TS found to be varied 

considerably due to several reasons, e.g., the sensor signals might be saturated due to high 

temperature difference between fires and earth’s surface (Realmuto et al., 2011); low 

spatial resolution of TS might lessen the circumstantial information (Leblon et al., 2007); 

fires manifest a diurnal cycle (Zhang et al., 2011; Beck et al., 2001) which might be biased 

due to observation in fixed time by the sensors; and heterogeneous properties of the 

emissivity of the land surface. 

(iii) Combination of TS–VI would not be suitable over topographically variable terrains 

(Carlson, 2007). It is the case as TS is often lower in high elevation areas compared to low-

lying areas within the same geographical region. As such, employment of non-elevation 

corrected TS images could incorrectly delineate that surface wetness conditions in upland 

areas are wetter than in low-lying areas (Hassan et al., 2007; Akther and Hassan, 2011b). 
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(iv) Application of vegetation wetness condition using NIR and SWIR spectral bands have 

several limitations, such as vegetation moisture estimation is an approximation method 

(both field and remote sensing); difficult to measure EWT at field level (Chuvieco et al., 

2003); relationship between FMC/EWT and vegetation moisture are species-specific (thus 

understanding of biophysical properties of species mixtures would be useful); and SWIR 

generally affected by other factors (e.g., vegetation canopy, illumination and viewing 

positions, and soil characteristics), etc. Also issues like quantification the error-levels of 

the remote sensing-derived FMC values and their implementation in the scope of 

operational fire danger forecasting systems pose enormous challenges (Yebra et al., 2013). 

(v) SAR usually provides higher resolution images, but has an inherent problem of speckles 

which look as a grainy texture due to random constructive and destructive interference 

from the multiple scattering. Other problems that are noticeable includes, e.g., right angle 

surfaces causes double bounce reflection; volume scattering may occur when the radar 

beam penetrates the top most surface; and the brightness of the image increase due to high 

moisture content of the target surface (Moreira et al., 2013). Moreover, the radar operates 

under commercial mode and the revisits time period is quite long (i.e., ERS-1/2 repeat 

cycle is around 35 days compared to Radarsat-1/2 almost 24 days coverage) (Joyce et al., 

2009; Leblon et al., 2012) which limits capturing the temporal dynamics of the moisture 

conditions. On the contrary, some of the optical and thermal remote sensing images (e.g., 

AVHRR, MODIS, Landsat, etc.) are completely free for public uses and also the temporal 

resolution of these images are relatively higher, e.g., AVHRR and MODIS at daily and 

Landsat at 16-days. 
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In addition to the above mentioned limitations of the remote sensing-based fire danger monitoring 

methods, in principle, have suffered much from the operational perspective. Because fire danger 

condition cannot be monitored as it portrays futuristic events (i.e., the occurrences of the fire events 

have not been materialized). However, the fire occurrences could be monitored using the current 

time variables and helpful in assessing the forest fire related disaster. Moreover, MODIS-based 

fire detection data are available at a daily temporal scale which is well accepted, fully operational 

and used by the fire managers for monitoring purposes. So, the remote sensing-based methods 

developed during the past several decades mostly suffer from the forecasting capabilities, and not 

considered as operational ones. 

 

2.3 Remote sensing-based fire danger forecasting systems 

In addition to the above remote sensing-based monitoring techniques described in section 2.2, it 

would be worthwhile to note that a limited number of studies had found in the literature on the use 

of remote sensing in forecasting forest fire danger conditions. In these cases, the remote sensing-

based indicators were calculated prior to the fire occurrences and then compared with the actual 

fire occurrences for validation purposes. Some of such example studies are briefly described in 

Table 2.5. 
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Table 2.5: Brief description of some remote sensing-based fire danger forecasting systems. 

Reference Method Limitations 

Vidal and 

Devaux-Ros, 

1995 

Calculated water stress in vegetation as a fire risk 

indicator over the Les Maures Mediterranean forest in 

southern France. In this study, Landsat TM-derived NDVI 

and TS images were used during dry periods of 1990 and 

1992 as well as the Ta maps generated from point-source 

measurements available at weather stations. The scatter-

plots between NDVI and TS-Ta interpreted to calculate the 

WDI. These plots were having trapezoid shapes and 

defined by dry (i.e., line of highest temperature to NDVI 

that represents an insufficient amount of water for 

evapotranspiration) and wet edges (i.e., representing the 

lowest temperature line to NDVI and have enough 

amount water for evapotranspiration) (Akther and Hassan, 

2011a; Hassan and Bourque, 2009). The comparison 

between the real fire occurrences data and pre-fire WDI 

found that location where WDI ≥ 0.6 coincided with 

100% of the fires. 

The major issue 

was the limited 

use of satellite 

data (i.e., only 

three images). 

Thus, the authors 

intended to 

extend the scope 

of validation, 

which was not 

materialized 

(Vidal, personal 

communication) 

Guangmeng 

and Mei, 

2004 

Used MODIS-derived TS images to evaluate the forest 

fire risk over the evergreen and deciduous forested region 

in northeast China during the period of April-May of 

2003. The TS was evaluated over 20 × 20 pixels around 

the fire site and found an increasing trend at least 3-days 

before fire occurrence.  

The study did not 

quantify the rate 

of increment of 

the TS values. 

Oldford et 

al., 2003 

Employed AVHRR-derived TS and NDVI images for 

mapping the pre-fire forest conditions during 11-day 

period preceding to fire occurrences over the northern 

The TS alone 

might not be 

sufficient enough 
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Reference Method Limitations 

boreal forests in Northwest Territories, Canada. The 

temporal trends of both of the variables revealed that the 

TS-values were increasing at least 3-days earlier than the 

fire occurrences, while NDVI didn’t show clear 

indications. In addition, TS values compared against the 

FWI code derived from meteorological variables; and 

revealed a good relationship for burned (i.e., r2 value of 

0.55) and unburned (i.e., r2 value of 0.65) forested areas. 

for forecasting 

danger conditions 

as such danger 

depends on so 

many other 

biophysical 

variables.   

Bisquert et 

al., 2011 

Used MODIS-based 16-day composite EVI difference 

images and period of year for calculating fire occurrence 

over Galicia, Spain during 2001-2006 and found overall 

accuracy of 58.2% when compared with observed fires. In 

this study, input variable (i.e., EVI of 250  250 m 

resolution) was resampled into low spatial resolution (10 

 10 km). 

Prediction for 16-

day period was 

inappropriate for 

day-to-day 

forecasting 

purposes. 

Akther and 

Hassan, 

2011a  

Commissioned MODIS-derived variables (i.e., TS, NMDI 

and TVWI at 8-day temporal scale) to forecast the forest 

fire danger conditions over the boreal forested region of 

Alberta during 2006-2008. The fire danger forecasting 

system was formulated by integrating all the three 

variables. For example: during i+1 period the fire danger 

conditions would be determined upon comparing the 

instantaneous values of the variable of interest and their 

study area-specific average values during i period. The 

danger would be high if: (i) TS values would be higher or 

equal (i.e., high temperature might favor fire ignition); or 

(ii) NMDI or TVWI values less or equal (i.e., low 

Despite having 

reasonable 

agreements, two 

specific 

shortcomings 

could be noted, 

such as (i) data 

gaps due to cloud 

contamination in 

the input 

variables were 

excluded; and (ii) 
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Reference Method Limitations 

vegetation moisture and/or surface wetness might 

sustenance fire); in comparison to the study area-specific 

average values. As such, four fire danger classes were 

possible, such as (i) very high - all variables designated as 

high danger; (ii) high – at least two variables designated 

as high; (iii) moderate – at least one variable label as 

high; and (iv) low – all variables indicated low danger 

category. The comparison of the above mentioned fire 

danger categories with the real wildfire data (available 

from Alberta Government) revealed that ~91.6% of the 

fires fell under the ‘very high’ to ‘moderate’ categories.  

computation of 

TVWI was 

relatively 

complex and 

highly dependent 

on the skills of 

the professionals 

involved. 

 

 

In order to evaluate the performance of the systems described in the scope of Akther and Hassan 

(2011a), I applied them to forecast the danger conditions during the catastrophic fires in 2011 taken 

place during mid-May, in particular to Slave Lake [that incurred an estimated economic loss of 

$700 million (FTCWRC, 2012)] and Fort McMurray regional fires [responsible for burning of 

595,000 ha of muskeg and bush (Treenotic, 2011)] in Alberta. In the danger map, the input 

variables (i.e., TS, NMDI and TVWI in Figure 2.6) was acquired during May 1–8, 2011. The 

method demonstrated its excellent abilities to forecast these fires (i.e., 100% and 88.7% of the fire 

spots fell under ‘very high’ to ‘high’ danger categories for Slake Lake and Fort McMurray regional 

fires). 
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Figure 2.6: Fire danger map for the period May 9–16, 2011 generated by combining TS, 

NMDI, and TVWI (after Akther and Hassan, 2011a) variables acquired during the prior 8-

day period (i.e., May 1–8, 2011).  
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It would be worthwhile to note that remote sensing-based forecasting systems would be more 

robust upon incorporating other critical variables, such as incident solar radiation, precipitation, 

relative humidity, and wind speed; human induce fire ignition sources and lightning frequency; 

spatially dynamic but temporally static variables, these are elevation, aspect, slope, proximity to 

roads, and vicinity to settlements; impact of long weekend that relates with movement of people 

in particular to forested areas and its relation; phenological stages of the vegetation (i.e., impact of 

climate on vegetation development phases); enhancement of both spatial and temporal resolutions; 

and evaluation of the systems in other ecosystems. 

 

2.4 Synergy between operational forecasting systems and remote sensing-based methods 

The synergy between the operational fire danger forecasting systems and remote sensing-based 

methods are rarely found in the literature due to the variation in temporal (i.e., daily to hourly 

observations of meteorological parameters and remote sensing-derived variables acquired 

depending on the revisit time of the satellites) and spatial (i.e., discrete objects in case of 

meteorological observations and continuous field of observations for remotely sensed data) 

dimensions of the both systems. However, the Wildland Fire Assessment System of US Forest 

Service integrates multitemporal and multi-spatial observations to forecasts a series of 

environmental conditions that delineate fire prone areas (Burgan et al., 1997). It combines fuel 

models, meteorological observations, and remote sensing-derived variable (i.e., NDVI). The 

system has been generating FPI (i.e., synergy between NFDRS described in section 2.1.4 and 

remotely sensed NDVI) on a daily basis since 1990s (Burgan et al., 1996, 1998; Preisler et al., 

2009). 
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In the process of FPI development, there are three input variables (see Figure 2.7). Those include: 

(i) 10-h dead fuel moisture conditions produced as a function of meteorological variables in the 

framework of NFDRS (see Figure 2.4); (ii) RG-derived from AVHRR-based 7-day composite of 

NDVI at 1 km spatial resolution; and (iii) dead fuel moisture of extinction calculated as a function 

of 8-month composites of NDVI (Goward et al., 1990), land cover maps (Loveland et al., 1991), 

and ground-based information about fuel characteristics. Comparison between the FPI and 

standard NFDRS maps have revealed that FPI maps are showing better spatial variability (Burgan 

et al., 1998). In general, this synergy requires several input variables and also complex in nature. 

Thus, adopting this system in another ecosystem would require significant amount of effort. 

 

Figure 2.7: The operational system to produce the fire potential map using remote sensing-

derived variable and National Fire Danger Rating System (see Figure 2.4) (adapted from 

Burgan et al., 1998). 
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2.5 MODIS characteristics 

MODIS is considered as one of the most widely used remote sensor in determining various 

environmental hazards around the world including the forest fire. MODIS instrument is aboard 

with Terra and Aqua satellites. Terra satellite orbits the earth in descending mode (i.e., north to 

south) and acquires data about 10:30 am local time; and Aqua acquires data around 1:30 pm local 

time in an ascending mode (i.e., south to north). MODIS platforms are near polar, sun synchronous, 

and traverse in circular orbit of 705 km above the earth surface with a swath of 2330 km (cross 

track) by 10 km (along track). The MODIS satellite enables us to understand the global dynamics 

and processes occurring on the earth surface (i.e., land and ocean), and lower atmosphere (NASA, 

2011). The characteristics of MODIS sensors and spectral bands are presented in Tables 2.6 and 

2.7.   

 

Among the other multispectral remote sensors (e.g., NOAA-AVHRR, LANDSAT, etc.), MODIS 

is used extensively due to its various advantages over other remotely sensed platforms/sensors.  

The MODIS standard products are preferable by the scientists due to the following reasons: 

(i) MODIS data products are available at high temporal resolution (i.e., daily-scale in most 

parts of the world); 

(ii) MODIS instrument provides high radiometric sensitivity (12 bit) in 36 spectral bands 

ranging a spectrum of 0.4 µm to 14.4 µm. Whereas, AVHRR (10 bit) has 6 spectral bands 

that covers visible (i.e., centered at 0.6 µm), NIR (i.e., centered at 0.86 µm), SWIR (i.e., 

centered at 3.74 µm), and long wave for surface temperature (i.e., 11–12 µm); and 

LANDSAT (8 bit) has 7 spectral bands in the range of 0.5 µm to 12.5 µm with coverage 

of visible, NIR, SWIR, and long wave for surface temperature; 
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(iii) The MODIS data provides higher spatial resolution in various spectral bands that ranges 

from 250–1000 m. On the other hand, the AVHRR images have 1.1 km spatial resolution 

at nadir and 5 km off-nadir. However, LANDSAT data are most preferable as it has higher 

spatial resolution (i.e., 30 m). However, MODIS would more preferable in the event of 

monitoring the earth at higher temporal resolution (i.e., 1-2 days); and 

(iv) MODIS provides reflectance data which are geo-referenced, radiometrically calibrated, 

and atmospherically corrected. Similar remotely sensed data from other platforms require 

such pre-processing to be performed by the individual users.   

Thus, in this research I opted to use various MODIS-based data products (i.e., see details in section 

3.2) in the development of a forest fire danger forecasting system.   

 

Table 2.6: MODIS specifications (NASA, 2011) 

Parameters Specifications 

Orbit 705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. 

ascending node (Aqua), sun-synchronous, near-polar, circular 

Scan rate 20.3 rpm, cross track 

Swath dimensions 2330 km (cross track) by 10 km (along track at nadir) 

Quantization 12 bit 

Spatial resolution 250 m (bands 1-2) 

500 m (bands 3-7) 

1000 m (bands 8-36) 

Repeat cycle 1-2 days 

Design life 6 years 
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Table 2.7: Characteristics of MODIS spectral bands (reflected: 1–19, 26; emitted: 20–25, 

27–36) (NASA, 2011).  

Band 

No. 

Spectral 

resolution 

(µm) 

Major use 

1 0.620–0.670 Absolute Land Cover Transformation, Vegetation Chlorophyll 

2 0.841–0.876 Cloud Amount, Vegetation Land Cover Transformation 

3 0.459–0.479 Soil/Vegetation Differences 

4 0.545–0.565 Green Vegetation 

5 1.230–1.250 Leaf/Canopy Differences 

6 1.628–1.652 Snow/Cloud Differences 

7 2.105–2.155 Cloud Properties, Land Properties 

8 0.405–0.420 Chlorophyll 

9 0.438–0.448 Chlorophyll 

10 0.483–0.493 Chlorophyll 

11 0.526–0.536 Chlorophyll 

12 0.546–0.556 Sediments 

13 0.662–0.672 Atmosphere, Sediments 

14 0.673–0.683 Atmosphere, Sediments 

15 0.743–0.753 Chlorophyll Fluorescence 

16 0.862–0.877 Chlorophyll Fluorescence 

17 0.890–0.920 Aerosol Properties 

18 0.931–0.941 Aerosol Properties, Atmospheric Properties 

19 0.915–0.965 Atmospheric Properties, Cloud Properties 

20 3.660–3.840 Atmospheric Properties, Cloud Properties 

21 3.929–3.989 Atmospheric Properties, Cloud Properties 

22 3.929–3.989 Sea Surface Temperature 

23 4.020–4.080 Forest Fires & Volcanoes 

24 4.433–4.498 Cloud Temperature, Surface Temperature 

25 4.482–4.549 Cloud Temperature, Surface Temperature 

26 1.360–1.390 Cloud Fraction, Troposphere Temperature 

27 6.535–6.895 Cloud Fraction, Troposphere Temperature 

28 7.175–7.475 Cloud Fraction (Thin Cirrus), Troposphere Temperature 

29 8.400–8.700 Mid Troposphere Humidity 

30 9.580–9.880 Upper Troposphere Humidity 

31 10.780–11.280 Surface Temperature 

32 11.770–12.270 Total Ozone 

33 13.185–13.485 Forest Fires & Volcanoes, Surface Temp. 

34 13.485–13.785 Forest Fires & Volcanoes, Surface Temperature 

35 13.785–14.085 Cloud Fraction, Cloud Height 

36 14.085–14.385 Cloud Fraction, Cloud Height 
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CHAPTER 3 : STUDY AREA & DATA PRE-PROCESSING 

 

3.1 Description of study area 

The Canadian province of Alberta is comprised of six natural regions (i.e., ecological units based 

on combined influence of climate, topography, vegetation, soils and geology). Among them, the 

boreal forest alone occupies approximately 58% of the province (Downing and Pettapiece, 2006), 

which often faces recurrent fire disturbances. Every year on an average approximately 1560 fires 

was taken place that was responsible for burning ~196 thousand ha during the period 2003-2012 

(ESRD, 2014). In this research, the northern part of the province is considered as the study area, 

which lies between 52–60 oN latitude and 110–120 oW longitude. It is shown in Figure 3.1 using 

a MODIS-derived annual land cover composite map at 500 m spatial resolution (i.e., MCD12Q1 

v.005) and fire spots from Alberta Environment and Sustainable Resource Development (ESRD). 

The study area is found to have eleven land coverage types (that include water, grasses/cereal 

crops, shrubs, broadleaf crops, savanna, evergreen broadleaf forest, deciduous broadleaf forest, 

evergreen needleleaf forest, deciduous needleleaf forest, non-vegetated, and urban). Among these, 

the four forest types (i.e., evergreen broadleaf forest, deciduous broadleaf forest, evergreen 

needleleaf forest, deciduous needleleaf forest) occupies approximately 75% of the study area, 

which is considered as the region of interest for forecasting the fire danger conditions. 

Topographically, the study area is variable in the range 162–3,596 m above the mean sea level and 

having a general increasing trend from north-east to south-west. The study area experiences cold 

winters and short warm summers; and moderate annual precipitation that increases with elevation. 

Climatically, the study area experiences mean annual temperature that varies in the range -3.6 to 
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1.1 oC; and mean annual precipitation varies in the range 377–535 mm (Downing and Pettapiece, 

2006).  

 

Figure 3.1: (a) Location map of Alberta Province in Canada; (b) extent of study area within 

a MODIS-based land cover map of 2008 and ESRD fire spots during 2009-2011. 
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3.2 Dataset used 

Remote sensing data available from National Aeronautics and Space Administration (NASA) were 

used in the study. MODIS-derived environmental variables were employed for forecasting the 

forest fire danger conditions during 2009-2011 fire seasons [i.e., March–September in the range 

of 89–272 Julian day of year (DOY)]. Those included:  

(i) 8-day composite of TS at 1 km spatial resolution (i.e., MOD11A2 v.005) and its associated 

quality control (QC) information at 1 km spatial resolution. The QC was used to quantify 

the amount of data gaps and/or good quality pixels;  

(ii) 8-day composite of surface reflectance at 500 m spatial resolution (i.e., MOD09A1 v.005); 

which provided surface reflectance at 7 (seven) spectral bands and its associated quality 

assurance (QA) information at 500 m spatial resolution. Among the seven spectral bands, 

the bands centered at 0.645 µm (i.e., red), 0.86 µm (i.e., near infrared [NIR]), 1.64 µm (i.e., 

shortwave infrared [SWIR]), and 2.13 µm (i.e., SWIR) were used. These surface 

reflectance images were used to calculate both NMDI and NDVI. Additionally, the QAs 

were used to quantify the amount of data gaps and/or good quality pixels in the NMDI and 

NDVI images;  

(iii) daily PW at 1 km spatial resolution (i.e., MOD05L2 v.051) and their corresponding 

geolocation images; and  

(iv) annual land cover map at 500 m spatial resolution (i.e., MCD12Q1 v.005) during 2008.  

 

Apart from the satellite data, I also used historical wildfire information from Alberta ESRD during 

2009-2011 fire seasons; and considered those fire spots that burned an area greater than or equal 

to 1 ha. It would be interesting to note that both TS and surface reflectance data (i.e., used to 
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calculate NMDI, and NDVI) could be found at daily scale from MODIS satellite; however, I 

employed their 8-day composite. The prime rationale of considering 8-day composite of TS, 

NMDI, and NDVI was related with the fact that the computation of all these variables would highly 

influence by the atmospheric conditions in particular to the presence of cloud (Wan, 1999; 

Vermote and Vermeulen, 1999). 

 

3.3 Data pre-processing 

The pre-processing of all the input variables which mainly comprised of MODIS-based data 

products, fire spot data, and other relevant GIS data layers were executed in several steps and 

described in the following sub-sections. 

  

3.3.1 MODIS data pre-processing 

The pre-processing of MODIS data were done in four steps which comprised of data download, 

reprojection, mosaic of images, and retrieval of variables of interest. 

 

Downloading of MODIS data 

MODIS Terra TS, and surface reflectance; and their corresponding quality data (i.e., QC and QA) 

were downloaded from the NASA’s Earth Observing System Data and Information System 

(EOSDIS) website. MODIS Terra data was available in Hierarchical Data Format (HDF) with 

various spatial and temporal resolutions as a raster tile. Two raster tile images were selected to 

cover the entire study area; and downloaded the 8-day composite and daily data products. In total 

276 images were downloaded for each year (i.e., 2009–2011) which comprised of 23 periodical 

data of TS and corresponding QC images; 23 periodical data of surface reflectance and their 
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corresponding QA images; and 184 daily PW and their geolocations images. Table 3.1 shows the 

detail of the time periods of data downloaded and their respective DOY.  

 

Table 3.1: List of MODIS data used during the period of 2009-2011. 

Period DOY Dates Period DOY Dates 

8-day composite of TS, surface reflectance; and corresponding QC and QA images 

1 89 – 96 30 Mar – 6 Apr 13 185 – 192 4 Jul – 11 Jul 

2 97 – 104 7 Apr – 14 Apr 14 193 – 200 12 Jul – 19 Jul 

3 105 – 112 15 Apr – 22 Apr 15 201 – 208 20 Jul – 27 Jul 

4 113 – 120 23 Apr – 30 Apr 16 209 – 216 28 Jul – 4 Aug 

5 121 – 128 1 May – 8 May 17 217 – 224 5 Aug – 12 Aug 

6 129 – 136 9 May – 16 May 18 225 – 232 13 Aug – 20 Aug 

7 137 – 144 17 May – 24 May 19 233 – 240 21 Aug – 28 Aug 

8 145 – 152 25 May – 1 Jun 20 241 – 248 29 Aug – 5 Sep 

9 153 – 160 2 Jun – 9 Jun 21 249 – 256 6 Sep – 13 Sep 

10 161 – 168 10 Jun – 17 Jun 22 257 – 264 14 Sep – 21 Sep 

11 169 – 176 18 Jun – 25 Jun 23 265 – 272 22 Sep – 29 Sep 

12 177 – 184 26 Jun – 3 Jul    

Day DOY Dates Day DOY Dates 

MODIS daily PW and geolocation images 

1 89 30 Mar ... ... ... 

2 97 7 Apr ... ... ... 

... ... ... 183 271 28 Sep 

... ... ... 184 272 29 Sep 
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Reprojection of MODIS data 

MODIS data were downloaded in sinusoidal projections system and further processed to convert 

into Universal Transverse Mercator (UTM). MODIS reprojection tool version 4.1 (MRT, 2011) 

and MODIS Swath reprojection tool version 2.2 (MRTSwath, 2010) were used to convert the TS, 

surface reflectance, and their respective quality data; and daily PW images, respectively into Geo-

tiff format. A batch process was run for each set of data, for example: the conversion of TS and 

PW HDF file were converted to Geo-tiff format using the following conversion function (see Plate 

3.1 and Plate 3.2). 

  

Mosaicking of Geo-tiff images 

The geo-tiff data for each period/ day was consisted of two scenes to cover the whole study region. 

Each two scene was mosaicked together to obtain a continuous surface of the variable of interest. 

A subset of each mosaicked image was then created by clipping with the study area boundaries. 

ERDAS Imagine (ERDAS, 2011) software was used to process all of these activities. 
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Plate 3.1: Conversion of MODIS HDF file into Geo-tiff format using MODIS MRT tool 

  

 

 

  

INPUT_FILENAME = C:\...\ MOD11A2.A2009249.hdf 

 

SPECTRAL_SUBSET = (1 1) 

#ORIG_SPECTRAL_SUBSET = (1 1 0 0 0 0 0 0 0 0 0 0) 

 

SPATIAL_SUBSET_TYPE = INPUT_LAT_LONG 

 

SPATIAL_SUBSET_UL_CORNER = ( 60.0 -121.0 ) 

SPATIAL_SUBSET_LR_CORNER = ( 52.0 -109.0 ) 

 

OUTPUT_FILENAME = C:\...\MOD11A2.A2009249.tif 

 

RESAMPLING_TYPE = NEAREST_NEIGHBOR 

 

OUTPUT_PROJECTION_TYPE = UTM 

 

OUTPUT_PROJECTION_PARAMETERS = (  

 0.0 0.0 0.0 

 0.0 0.0 0.0 

 0.0 0.0 0.0 

 0.0 0.0 0.0 

 0.0 0.0 0.0 ) 

 

DATUM = NAD83 

 

UTM_ZONE = 12 

 

OUTPUT_PIXEL_SIZE = 1000 
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Plate 3.2: Conversion of MODIS HDF file into Geo-tiff format using MODIS MRT Swath 

tool 

  

INPUT_FILENAME = C:\...\MOD05_L2.A2009272.1715.051.2010343181719.hdf 

 

GEOLOCATION_FILENAME = C:\...\MOD03.A2009272.1715.005.2010251232647.hdf 

 

INPUT_SDS_NAME = Cloud_Mask_QA; Water_Vapor_Near_Infrared; 

Water_Vapor_Correction_Factors 

 

OUTPUT_SPATIAL_SUBSET_TYPE = LAT_LONG 

OUTPUT_SPACE_UPPER_LEFT_CORNER (LONG LAT) = -121.0 60.0 

OUTPUT_SPACE_LOWER_RIGHT_CORNER (LONG LAT) = -109.0 52.0 

 

OUTPUT_FILENAME = C:\...\MOD05_L2A200927217150512010343181719_grid 

OUTPUT_FILE_FORMAT = GEOTIFF_FMT 

 

KERNEL_TYPE (CC/BI/NN) = NN 

 

OUTPUT_PROJECTION_NUMBER = UTM 

 

OUTPUT_PROJECTION_PARAMETER = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

OUTPUT_PROJECTION_SPHERE = 8 

 

OUTPUT_PROJECTION_ZONE = 12 

 

OUTPUT_PIXEL_SIZE = 1000 
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Retrieval of MODIS TS, surface reflectance, QA, QC, and PW values 

MODIS Terra TS (i.e., MOD11A2) and surface reflectance (i.e., MOD09A1) mosaicked images 

were further processed to generate the surface temperature and surface reflectance values by using 

the science data sets (SDS) of the data products (see Table 3.2). The scale factors were used to 

retrieve the real value of each pixel. Furthermore, the QC SDS of MOD11A2 (i.e., 8-day composite 

of TS) provided information on the algorithm results of each pixel. The QC information depicted 

the quality of each pixel i.e., algorithm results were nominal, abnormal, or if defined conditions 

were met. Such information would help in understanding the quality of retrieval for each pixel and 

could be extracted by observing the flags stored in an 8-bit unsigned integer (i.e., range in between 

0 and 255). Table A2.1 demonstrates the QC SDS for the TS variable explaining each bit 

combination and their quality flags. In addition, the QA SDS of MOD09A1 (i.e., 8-day composite 

of surface reflectance) provided information about the quality of the pixel retrieval at 500 m 

surface reflectance state flags i.e., 16 bit unsigned integer (i.e., range in between 0 and 65535, 

valid range is 0-57343) (see Table A2.2 for details). In this thesis, I evaluated the QC and QA 

images by extracting the decimal value for each pixel and converted it into binary number; and 

then used the SDS flags in identifying the quality of the TS and surface reflectance images. For 

validation of the gap-filling algorithm, I retrieved only the good quality pixels (see section 4.1.2) 

for the variable of interest. 
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Table 3.2: Science data sets (SDS) of MODIS Terra TS, surface reflectance, and PW. 

Science data sets Units Bit Type Fill value 
Valid 

range 

Scale 

factor 

Surface temperature (TS), MOD11A2 

8-day daytime 1 km grid 

TS data 
Kelvin 

16-bit unsigned 

integer 
0 

7500–

65535 
0.02 

QC: daytime TS and 

emissivity 
Bit Field 

8-bit unsigned 

integer 

See Table 

A2.1 
0–255 N/A 

Surface reflectance, MOD09A1 

500 m surface reflectance 

(centered at 0.64, 0.85, 

1.64, and 2.13 µm were 

used) 

Reflectance 
16-bit signed 

integer 
-28672 

-100–

16000 
0.0001 

QA: 500 m state flags Bit field 
16-bit signed 

integer 

See Table 

A2.2 

0–

57343 
N/A 

Precipitable water, MOD05L2 

Daily daytime 1 km grid 

PW data 
Centimeters 

16-bit signed 

integer 
-9999 

0–

20000 
0.001 

MODIS Terra daily PW variable (i.e., MOD05L2) was based on the total column of water vapor 

in the atmosphere; and derived using near-infrared algorithm during the day. The near-IR PW 

usually found to be very sensitive to boundary-layer water vapor, thus ratios of water vapor 

absorbing channels centered near 0.905, 0.936, and 0.94 µm with atmospheric window channels 

at 0.865 and 1.24 µm were used. The pixel values were stored in the SDS as short integer (except 

the geolocation file), and real value was calculated using the scale factor and off set value (see 

Table 3.2). So the following equation was employed to calculate the real value of the pixel for 

each image: 

 Real value = Scale factor  (Pixel value – Offset value)             (3.1) 
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3.3.2 Processing of fire spot data 

Historical wild fire information was downloaded from Alberta ESRD website in MS Excel format 

for the period of 2009–2011. Each file was consisted of several fire related information, such as 

fire number; fire start date; fire location with latitude and longitude; fire burned area; etc. 

Individual data layer was then converted into ArcGIS shape file format using the geographical 

coordinates and transformed into UTM projection system. Relevant attribute information were 

aggregated with the point shape file for further analysis. ArcGIS software was used to convert this 

data into point shape files and all fire spot information were clipped within the study area. 

 

3.3.3 Processing of GIS shape files 

The administrative-based geographic data were download in shape file format, which were freely 

available from Government of Canada website (http://geogratis.gc.ca/api/en/nrcan-rncan/ess-

sst/db83f9d4-40f7-5644-8949-e36616162c0e.html) (NRCAN, 2014). All relevant shape files were 

converted to UTM projection system for further analysis in this research. 

 

3.4 Computation of remote sensing-based indices 

3.4.1 Normalized difference vegetation index (NDVI) 

In general, the chlorophyll content affects the visible red band i.e., relatively low reflectance, but 

high reflectance observed in the NIR band. The normalized band ratio parameter of red and NIR 

bands were used to eliminate seasonal sun angle difference and minimize the effect of atmospheric 

attenuation. Figure 3.2 demonstrated the spectral characteristics of green, dry vegetation, and bare 

soil reflectance. 

http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/db83f9d4-40f7-5644-8949-e36616162c0e.html
http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/db83f9d4-40f7-5644-8949-e36616162c0e.html
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The NDVI is the most widely used index in the history of remote sensing. Its 8-day composite 

values at 500 m resolution were computed using the expression first described in (Rouse et al. 

1973) as follows: 

0.645
ρ

0.86
ρ

0.645
ρ

0.86
ρ

NDVI



                                                                (3.2) 

where, 

𝜌 is the surface reflectance values of the NIR (centered at 0.86 µm) and red (centered at 

0.645 µm) spectral bands.  

 

 

Figure 3.2: The spectral reflectance curves of green, dry vegetation and soil (after Clark et 

al., 1999). 
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3.4.2 Normalized multiband drought index (NMDI) 

It was observed that the leaf water content (Cw) found to be sensitive to MODIS SWIR bands 

centered at 1.24, 1.64, and 2.13 µm; and insensitive at 0.86 µm. Thus, combination of three spectral 

bands, that is, 0.86 µm as the reference, and two other water absorption bands i.e., 1.64, and 2.13 

µm were used for calculating the NMDI. The simulated effect of leaf water content on canopy 

reflectance shown in Figure 3.3 (Wang and Qu, 2007) illustrated that the MODIS SWIR bands 

were sensitive to the change of leaf water content considering the values of chlorophyll content, 

Cab = 40; leaf dry matter content, Cm = 0.01; leaf internal structure, N=1.3; soil moisture, θ = 0.25; 

and leaf area index, LAI = 2. 

 

The NMDI is a relatively new index first described by Wang and Qu (2007). Its 8-day composite 

values at 500-m resolution were computed using the following expression: 
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                                                                (3.3) 

 

where, 

𝜌 is the surface reflectance values of  NIR (centered at 0.86 µm); and SWIR (centered at 

1.64 and 2.13 µm) spectral bands.  
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Figure 3.3: Model simulated canopy spectra at different leaf water content (after Wang and 

Qu, 2007). 

 

3.5 Constraints in relation to the employed input variables 

Here, I employed four MODIS-derived input variables, i.e., 8-day composite of TS, NMDI, and 

NDVI; and daily PW.  In general, the 8-day composite MODIS images were composed from the 

daily scale data as it might reduce the cloud-contamination (that potentially would block the 

surface reflectance and outgoing thermal radiation reaching to the satellite sensor). The use of 

these variables was having several issues, e.g.,: 

 The 8-day composite of TS images were generated by averaging the TS images acquired 

under clear-sky conditions at approximately 10:30 am local time (Wan, 2006). Thus, these 

values might not represent the daily variations and/or maximum temperature;  
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 The 8-day composite of MODIS surface reflectance data used to calculate NMDI and 

NDVI, was generated based on minimum-blue criterion; which coincided with the best 

clear-sky condition day during the composite of interest (Vermote et al., 2011; Descloitres 

and Vermote, 1999). As such, two consecutive 8-day composite images might be apart in 

the range of 2 to 16 days. In addition, NMDI and NDVI variables were less dynamic in 

temporal dimension, i.e., wetness/greenness condition of forest vegetation might not 

change over short time period even though the vegetation would experience stresses 

(Leblon et al., 2001); and  

 The daily PW variable was based on total column of water vapor amounts in the 

atmosphere; and usually found to be very sensitive to boundary-layer water vapor (Gao 

and Kaufman, 2014). Also, relationships between water vapor at different boundary layers 

and fire occurrences were reported in the literature, such as (i) Brotak 1977 found that low 

moisture at 850 mb layer was highly associated with severe fires in the eastern United 

States (i.e., 93% of the all fire occurrences); and (ii) Price 2000 showed that PW at above 

300 mb and 300-500 mb layer was linked to lightning activities, which would be considered 

as one of the major source of fire ignition. In Canada alone, lightning-caused fire burned 

more than 1.6 million ha of forested land annually on an average (Stocks et al., 2003). So, 

it would be worthwhile to investigate the water vapor regimes at different boundary layers 

and their relationship with fire occurrences. In such cases, one of the viable options would 

be the use of radiosonde data (Brotak, 1977; Price, 2000). 
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CHAPTER 4 : METHODS 

 

The overall methods for forecasting the forest fire danger conditions consisted of three major 

components, such as (i) developing of the gap-filling algorithm for the input variables of FFDFS 

and its validation; (ii) calculating the fire danger conditions using TS, NMDI, and NDVI variables 

for mid-term forecasting (i.e., 8-day scale FFDFS) and its validation; and (iii) developing a daily-

scale fire danger forecasting system and evaluation of its performance. Their brief descriptions can 

be found in the following subsections. 

 

4.1 Development of a gap-filling algorithm for the input variables of FFDFS system 

4.1.1 Development of data gap-filling algorithm 

In order to quantify the amount of data gaps in TS, NMDI, and NDVI images; I calculated the total 

number of variable-specific pixels where these were not produced due to cloud effects and other 

reasons by considering: (i) QC image of the respective TS images; and (ii) QA image considering 

both of the MODLAND QA bits and band-specific quality bits of the respective surface reflectance 

images for calculating both NMDI and NDVI variables. Then, I attempted to fill such gap pixels 

by considering both of the spatial (i.e., in the range 3 × 3 to 15 × 15 window sizes) and temporal 

(i.e., considering the images from i-1 and i periods) dimensions. In the boreal landscape, the spatial 

extent might vary gradually within similar land cover types and temporal dimension might 

influence significant changes in temperature, greenness and moisture conditions within the 8-day 

time period. A schematic diagram illustrating the method employed in gap-filling is shown in 

Figure 4.1. 
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Figure 4.1: The schematic diagram of the proposed gap-filling method at 8-day scale for TS, 

NMDI, and NDVI variables. 
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The proposed gap-filling algorithm was as follows: 

X(i) = X(i − 1) + [X̅(i)m×m − X̅(i − 1)m×m ]                                                                 (4.1)  

 

where,  

X(i) and X(i ‒ 1) are the in-filled and non-contaminated values for the variables of TS, NMDI, 

and NDVI during i and i – 1 periods, respectively;  

X̅(i)m×m and X̅(i − 1)m×m are the average values of the variables (i.e., TS, NMDI, and NDVI) 

of interest within m  m window size during i and i – 1 periods, respectively; and  

m  m is the window size in the range 3  3 to 15  15. 

 

The mean values of the variables were computed based on different moving window sizes (i.e., in 

the range 3  3 to 15  15) within the selected land cover types. So thus, I obtained mean value 

images for each 8-day period according to different window sizes. The deviation of the mean 

values of the variables during i and i – 1 period for m  m window size was added with the 

instantaneous value at i – 1 period. The process would initiate with the smallest window size (i.e., 

3  3) and then check whether the filling would complete by recalculating the remaining gap pixels 

in the image. If not, the remaining gap pixels would be filled by increasing the window size to next 

level (i.e., in the range 5  5 to 15  15). Note that the increment of the window would depend on 

the status of filling condition and only be performed on the remaining gap pixels. In some 

instances, the employment of even 15  15 window size might unable to fill the gaps. Then, I 

might consider the window size equivalent to the entire study area of selected land covers. In the 

implementation of the above gap-filling algorithm, it was assumed that the probability of a 
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particular pixel having data gap within 16 days would be very rare. In such cases, filling data gap 

at i period would not be possible if gap-free pixels at i - 1 period found to be absent. 

       

4.1.2 Validation of data gap-filling method 

In reality, it would not be possible to verify the accuracy of the above described algorithm due to 

the fact that level and local occurrence of cloud formation and other causes is extremely difficult 

to measure. However, I performed a validation by synthetically treating good quality pixels as gap 

ones; and quantified statistically by determining coefficient of determination (r2) and root mean 

square error (RMSE) (see equations 4.2 and 4.3). Note that such good pixels were retrieved based 

on the following criterion: (i) for TS when the average TS errors were found to be either equal or 

less than 2 K; and (ii) for surface reflectance, I employed a set of parameters, such as MOD35 

cloud (i.e., clear), cloud shadow (i.e., no), aerosol quality (i.e., climatology and low), cirrus 

detected (i.e., none and small), internal cloud algorithm flag (i.e., no cloud), and pixel to adjacent 

to cloud (i.e., no). We only filled the gaps if the RMSE was less than: (i) 2 K for TS, which would 

be acceptable according to (Wan, 2014; Oyoshi et al., 2014); and (ii) 0.03 for both NMDI and 

NDVI, which would also be acceptable according to (Gao et al., 2003; Vermote and Kotchenova, 

2011). 

  



 

64 

2

1

2)(

1

2)(

1

)()(
2



































n

i

P
i

P
n

i

O
i

O

n

i

P
i

PO
i

O

r                      (4.2) 

 

n

n

1 i

2)
i

P
i

(O

RMSE






                                                           (4.3) 

 

where,  

n is the total number of observations; 

i
O  is the observed TS, NMDI, and NDVI values; 

O  is the average of the observed TS, NMDI, and NDVI values; 

𝑃𝑖 is the predicted TS, NMDI, and NDVI values; and  

𝑃  is the average of predicted TS, NMDI, and NDVI values.  

 

Note that I implemented the above-mentioned algorithm in order to generate in-filled 8-day 

composite of TS, NMDI, and NDVI images during 2009–2011 fire seasons. However, I did not 

attempt to fill the data gaps in daily PW image. Because these data gaps were due to the presence 

of cloud in most of the instances, which were associated with high moisture content in the 

atmosphere (Kaufman and Gao, 1992); and also high moisture would decrease the potential of fire 

occurrences (Haines, 1988). 
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4.2 Enhancement of 8-day scale FFDFS system for mid-term forecasting 

4.2.1 Calculation of individual variable-specific fire danger conditions 

We employed 8-day composite of MODIS-derived input variables of TS, NMDI, and NDVI in the 

proposed FFDFS framework (see Figure 4.2a for details). The FFDFS consisted of two steps. In 

first step, I calculated the study area-specific mean values for the input variables during the i period 

[i.e., (i),
S

T (i), NMDI
 

)i(  NDVI ]. In second step, I determined the individual input variable-

specific danger conditions (either high or low, see Figure 4.2c) during i + 1 period upon comparing 

the instantaneous values of each of the input variables at a given pixel from i period [i.e., TS(i)/ 

NMDI(i) / NDVI(i)] with their respective mean-values [i.e., (i),
S

T (i), NMDI
 

)i(  NDVI ] 

calculated in first step. 

  

4.2.2 Generation of combined fire danger maps 

We combined the individual input variable-specific fire danger conditions determined in the 

previous section into four danger categories, such as  

(i) very high: if all the three variables demonstrated that the fire danger would be high;  

(ii) high: if at least two of the three variables demonstrated that the fire danger would be high;  

(iii) moderate: if at least one of the three variables demonstrated that the fire danger would be 

high; and  

(iv) low: if all of the three variables demonstrated that the fire danger would be low. 
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Figure 4.2: The conceptual diagram of: (a) 8-day scale FFDFS using TS, NMDI, and NDVI 

variables (i.e., between DOY 89 and 265); (b) fire danger conditions of daily PW; and (c) 

the criterion of describing fire danger conditions for the input variables of  TS, NMDI, 

NDVI, and PW. 
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The integration of individual input variables (e.g., TS, NMDI, and NDVI) of different spatial 

resolution was done so that the geometric element and object structure, for example, gridded pixels 

of the datasets would match to each other. The data integration was done by resampling the TS 

images at 500 m from 1 km prior to integrate with the NMDI and NDVI variables having 500 m 

spatial resolution. It would be worthwhile to mention that fire will not occur in any danger classes 

unless there would be an ignition source. 

 

4.2.3 Validation with actual fire spots data 

4.2.3.1 Evaluation of variable-specific fire danger conditions 

In order to investigate the performance of the individual variables, ground-based fire spots data 

(i.e., Alberta ESRD) were considered as a criteria of fire danger conditions (either high or low). 

For each individual fire spot (i.e., occurrences of fire during i+1 period), I extracted the 

corresponding value of the variables of interest (i.e., TS, NMDI, and NDVI) and compared with 

the study area-specific average value during i period. As such, I determined how many cases the 

values of a particular variable of interest in comparison with the study area-specific average during 

i period would fell under high or low danger categories. Furthermore, I classified the high and low 

danger categories into six classes on the basis of study area-specific average and their standard 

deviation values within ‘average ± 3 standard deviation’ at one standard deviation of the variable 

of interest. This analysis would provide information regarding the situation of individual variables 

which would revealed to understand whether comparatively higher temperature, low live fuel 

moisture condition, and less vegetation greenness would favor occurrences of fire.  
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4.2.3.2 Evaluation of the potential of combined fire danger conditions 

Upon generating the fire danger maps (i.e., four danger categories, such as very high, high, 

moderate, and low), I compared them with the Alberta ESRD ground-based fire spots data during 

2009-2011 to evaluate the performance of the 8-day scale FFDFS. In these cases, I overlaid the 

fire spots (i.e., start of a location-specific fire) over the forecasted fire danger maps over a period 

of interest; and computed the distribution of the fire danger categories over the fire spots. Finally, 

I determined the ‘% of each danger classes’ over all of the fire spots during the entire study period.  

4.3 Development of a remote sensing-based daily-scale FFDFS system 

4.3.1 Development of a daily-scale FFDFS 

We developed a remote sensing-based FFDFS system at daily-scale using MODIS-derived 

variables (Figure 4.3). The proposed system comprised of four steps. Firstly, I assimilated all four 

input variables (i.e., TS, NMDI, NDVI, and PW) within the selected forest-dominant land cover 

types. Secondly, I computed the study area-specific average values for all input variables during 

the i period [i.e., TS(i), NMDI(i), NDVI(i)] (as mentioned in section 4.2) and j day [i.e., PW(j)]. 

Thirdly, I calculated fire danger conditions (either high or low; see Figure 4.2c) for each of the 

input variable during both i+1 period and j+1 day upon comparing the input variable-specific 

instantaneous values at a given pixel from i period and j day [i.e., TS(i), NMDI(i), NDVI(i), and 

PW(j)] with their respective average values computed in the second step. We assumed that the fire 

danger condition for the specific variable of interest would be high if following condition would 

prevail. For example, TS(i) ≥ TS(i): high temperature might favor fire; NMDI(i) ≤ NMDI(i): low 

moisture in vegetation might support fire; NDVI(i) ≤ NDVI(i): low vegetation greenness might 
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support to initiate fire as it relates with other biophysical variables; and PW(j) ≤ PW(j): low water 

vapour in the atmosphere might be associated with the flammability of both live and dead fuels. 

 

Figure 4.3: The conceptual diagram of daily-scale FFDFS using TS, NMDI, NDVI, and PW 

variables. 
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4.3.2 Generation of fire danger maps at daily-scale 

Finally, I integrated the individual input variable-specific fire danger conditions into five 

categories, such as:  

(i) extremely high: when all the four variables fell in the high danger class;  

(ii) very high: when at least three of the four variables fell in the high danger class;  

(iii) high: when at least two of the four variables fell in the high danger class;  

(iv) moderate: when at least one of the four variables fell in the high danger class; and  

(v) low: when all four variables fell in the low danger class.  

 

In integrating the individual variable-specific fire danger conditions in the framework of daily-

scale FFDFS, I assumed that the impact of 8-day composite of TS, NMDI, and NDVI variables 

would be constant over the following 8-day period. 

 

4.3.3 Validation of daily-scale FFDFS system with ground-based fire spot data 

4.3.3.1 Evaluation of daily PW-based fire danger conditions 

We incorporated the daily PW variable in the 8-day scale FFDFS framework, thus I opted to 

evaluate its individual impact on the fire danger conditions prior to integrating with other variables. 

As part of this process, the study area-specific average values of PW (PW) during j day was 

compared with the ground-based fire spot data during j+1 day. We followed the same procedure 

to evaluate the performance of PW-based fire danger condition like other variables of interest as 

illustrated in section 4.2.3.1. This analysis would provide information regarding the water vapor 

regimes in the atmosphere; and whether relatively less moisture in the atmosphere would favor 

fire occurrences.  
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4.3.3.2 Evaluation of the combined fire danger conditions 

Upon generating the combined fire danger maps at daily scale (i.e., five danger categories, such as 

extremely high, very high, high, moderate, and low), I assessed them with ground-based fire spots 

data to evaluate the enactment of the daily FFDFS system during the periods of 2009-2011. The 

fire spots data were superimposed on the forecasted fire danger conditions for a particular day; and 

captured the fire danger categories over the fire spots. Lastly, I calculated the ‘% of fire danger 

classes’ under each category over the entire study periods.   
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CHAPTER 5 : RESULTS & DISCUSSION 

 

5.1 Evaluation of gap-filling algorithm  

5.1.1 Calculation of data gaps 

We employed the MODIS quality assurance information for each variable of interest, and found 

that the data gaps in the 8-day composite of TS, NMDI, and NDVI variables were in the range 

0.52-2.82%, 0.001-0.0334%, and 0.00003-0.0034% respectively on an average during 2009-2011 

period (see Tables A2.3, A2.4, and A2.5 for details). Subsequently, Ie filled these gaps using both 

spatial (i.e., in the range 3 × 3 to 15 × 15 window sizes) and temporal (i.e., considering the images 

from i-1 and i periods) dimensions for the variable of interest. Figure 5.1 shows the data gaps in 

the TS images during the entire study period. Relatively high amount of data gaps in the TS images 

were observed due to the fact that the quality of the MODIS-based TS product would be often 

contaminated to a large scale as a matter of inherent limitation of the thermal infrared remote 

sensors (i.e., retrieved only in clear-sky conditions) (Wan, 2008). 

 

5.1.2 Evaluation of the gap-filling algorithm 

Upon implementing the proposed gap-filling algorithm, I used all the imaging periods for each of 

the TS, NMDI, and NDVI images for evaluating its performance. We observed that the gaps were 

in-filled approximately in the range: (i) 84.70–98.93% for TS images (see Table A2.6); and (ii) 

100% for NMDI and NDVI images, during 2009–2011 period. During the period of validation, 

our analyses showed strong agreements of the predicted values for the variable of interest with the 

observed data (i.e., the good quality pixels which were declared as data gaps). For example, using 

3 × 3 window size, the r2, RMSE, and slope values were on an average: (i) 0.87, 0.95 K, and 0.92; 
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(ii) 0.86, 1.10 K, and 0.91; and (iii) 0.89, 0.96 K, and 0.93; respectively, during the period 2009-

2011 for TS images (see Tables A2.7, A2.8, and A2.9 for details). Figure 5.2 shows the comparison 

between observed and predicted TS upon using 3 × 3 window size for gap-filling for five periods 

which were well distributed over the entire growing season. 

 

Figure 5.1: Percentage of gap pixels in TS images upon gap-filling using various window 

sizes during 2009–2011. 
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Figure 5.2: Comparison between observed and predicted TS upon using 3 × 3 window size 

for gap-filling: (a) 97 DOY, F = 286507, p value <0.0001 (b) 137 DOY, F = 368260, p<0.0001 

(c) 177 DOY, F = 320805, p<0.0001, (d) 217 DOY, F = 382576, p<0.0001, (e) 249 DOY, F = 

607077, p<0.0001 

In addition, I observed the r2, RMSE, and slope values (using 3 × 3 window size) were on an 

average: (i) 0.94, 0.019, and 0.97; (ii) 0.92, 0.019, and 0.96; and (iii) 0.93, 0.019, and 0.97; 

respectively, during the period 2009-2011 for NMDI images for 90% of the data points (for details 

see Table A2.10). Figure 5.3 shows the comparison between observed and predicted NMDI upon 

using 3 × 3 window size for gap-filling during which were well spread over the growing season. 

Furthermore, I found the r2, RMSE, and slope values (using 3 × 3 window size) were on an average: 

(i) 0.89, 0.021, and 0.95; (ii) 0.86, 0.023, and 0.93; and (iii) 0.87, 0.022, and 0.94; respectively, 

during the period 2009-2011 for NDVI images for 90% of the data points (see Table A2.10). Figure 

5.4 shows the comparison between observed and predicted NDVI upon using 3 × 3 window size 
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for five periods which were well distributed over the growing season. The observed RMSE values 

for both TS (i.e., 0.51–1.56 K; see Tables A2.7-A2.9) and NDVI (i.e., 0.015–0.030; see Table 

A2.10) gap-filling were similar to other study, such as 

(i) MODIS-derived TS values in comparison with ground-based such measurements over 

homogeneous rice fields and forested areas yielded a RMSE of 0.70 K (Coll et al., 

2009);  

 

Figure 5.3: Comparison of observed and predicted NMDI upon using 3 × 3 window size for 

gap-filling: (a) 113 DOY, F = 18880, p<0.0001, (b) 153 DOY, F = 241571, p<0.0001, (c) 193 

DOY, F = 263602, p<0.0001, (d) 233 DOY, F = 111437, p<0.0001, (e) 265 DOY, F = 510446, 

p<0.0001 
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(ii) MODIS-derived NDVI values over the good quality pixels were within an error bar of 

±(0.02 + 2 % NDVI) for 97.11% of the observations (Vermote and Kotchenova, 2008); 

and  

(iii) the evaluation of MODIS-derived NDVI over all of the land cover types at Jornada 

Experimental Range in New Mexico, USA in comparison with MODIS Quick Airborne 

Looks-based observations showed RMSE values less than 0.03 (Gao et al., 2003).  

 

 

Figure 5.4: Comparison of observed and predicted NDVI upon using 3 × 3 window size for 

gap-filling: (a) 105 DOY, F = 18880, p<0.0001, (b) 145 DOY, F = 241571, p<0.0001, (c) 185 

DOY, F = 263602, p<0.0001, (d) 225 DOY, F = 111437, p<0.0001, (e) 257 DOY, F = 510446, 

p<0.0001 
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So far, I did not find studies reporting accuracy information associated with NMDI retrieval or 

gap-filling. However, I might consider that the observed RMSE values for NMDI (i.e., 0.011–

0.040) would be reasonable due to their similarities with that of NDVI. It would be the case as 

both of the NMDI and NDVI were calculated as a function of surface reflectance. 

 

In the case of TS images, it was required to increase the window size (in the range from 5 × 5 to 

15 × 15; and also entire study area) in order to gap-filling the remaining data gaps (i.e., ~ 0.50, 

1.55, and 0.44%, respectively) for the period of 2009-2011. For each of the window size, I 

compared the predicted values with the observed data (i.e., the good quality pixels which were 

declared as data gaps); and calculated r2 and RMSE average values were shown in Table 5.1. It 

revealed that both of the r2 and RMSE values were deteriorating with the increment of the window 

sizes (e.g., r2  0.81 and RMSE  1.25 K for 5 × 5 window size; r2  0.68 and RMSE  1.51 K for 

15 × 15 window size; and r2  0.29 and RMSE  2.77 K for the window size equal to the study 

area). These finding would be reasonable due to the fact that the spatial integrity would start to fall 

apart with the increment of the search window (Girard and Girard, 2003; Li and Heap, 2011). 

 

Also, it would be worthwhile to note that both of the window size (i.e., 15 × 15 and the study area) 

were not able to gap-filling similar portion of the data gaps (i.e., ~ 0.154, 9.485, 0.370%; and ~ 

0.133, 3.301, 0.293%, respectively during 2009-2011). Under these circumstances, I considered 

that the choice of 15 × 15 window size would be appropriate because it produced reasonable 

agreements (i.e., r2  0.68 and RMSE  1.51 K) in comparison with that of the window size equal 

to the entire study area (i.e., r2  0.29 and RMSE  2.77 K). The rationale behind the inability to 
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gap-filling all of the data gaps would be due to the absence of gap-free pixels in both temporal and 

spatial dimensions (Kang et al., 2005). 

Table 5.1:  Average co-efficient of determination (r2) and root mean square error (RMSE) 

between observed and predicted TS variable using different window size during 2009-2011. 

Window 

size 

Year Average 

2009 2010 2011 

r2 RMSE r2 RMSE r2 RMSE r2 RMSE 

3 × 3 0.87 0.95 0.86 1.10 0.89 0.96 0.88 1.00 

5 × 5 0.81 1.18 0.78 1.38 0.83 1.19 0.81 1.25 

7 × 7 0.77 1.31 0.73 1.47 0.80 1.29 0.77 1.36 

9 × 9 0.74 1.36 0.70 1.51 0.77 1.34 0.74 1.40 

11 × 11 0.72 1.39 0.68 1.58 0.75 1.40 0.72 1.46 

13 × 13 0.71 1.43 0.66 1.61 0.74 1.44 0.70 1.49 

15 × 15 0.69 1.43 0.64 1.63 0.72 1.48 0.68 1.51 

Study area 0.31 2.55 0.22 3.15 0.35 2.62 0.29 2.77 

 

 

5.2 Temporal dynamics of the input variables of FFDFS system 

5.2.1 Study-area specific average values of 8-day composite TS, NMDI, and NDVI  

During study period, the temporal dynamics of study area-specific average values of the TS, 

NMDI, and NDVI variables showed distinct patterns (Figure 5.5), which were identical to the 

generalized ones shown in Figure 4.2a. Upon applying quadratic fits to the variable of interest as 

a function of DOY, I found strong relations having average r2 values of 0.82, 0.80, and 0.93 for 

TS, NMDI, and NDVI, respectively during 2009-2011 (see Table 5.2 for details).  
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Figure 5.5: Study-area specific average values for TS, NMDI, and NDVI variables for 2009–

2011 fire seasons (i.e., between DOY 89 and 265).  
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Table 5.2: Quadratic fits (y = ax2 + bx + c) of the variables TS, NMDI, and NDVI variables 

as a function of DOY for the fire seasons of 2009–2011 (i.e., between DOY 89 and 265). 

Year Variables a b c r2 

2009 

TS -0.001 0.555 235.93 0.87 

NMDI -2.40E-05 0.01 -0.485 0.83 

NDVI -3.50E-05 0.016 -0.948 0.97 

2010 

TS -0.002 0.631 236.29 0.77 

NMDI -1.40E-05 0.006 -0.107 0.67 

NDVI -3.60E-05 0.014 -0.691 0.86 

2011 

TS -0.002 0.688 226.83 0.82 

NMDI -2.10E-05 0.008 -0.335 0.91 

NDVI -4.50E-05 0.018 -1.136 0.97 

 

 

5.2.2 Study area-specific average values of daily PW  

As I incorporated the daily PW variable in the FFDFS framework, thus I opted to evaluate its 

individual impact on the fire danger conditions prior to integrating with other variables. As part of 

this process, I calculated the study area-specific average values of PW (PW) in order to 

comprehend its seasonal trends. Then, I performed quadratic fits for the PW as a function of 8-day 

periods (see Figure 5.6). The r2-value for these curves were in the range 0.60-0.71 during 2009-

2011 period. Note that the generic shapes of these curves were similar to those illustrated in Figure 

4.2b, which proved that our assumed pattern for the PW held quite nicely. 
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Figure 5.6: Study area-specific average values of PW (i.e., 8–day average) with DOY for the 

fire seasons of 2009–2011 (i.e., between DOY 89 and 272). 
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5.3 Evaluation of FFDFS system at mid-term forecasting 

5.3.1 Assessment of variable-specific TS, NMDI, and NDVI on fire danger conditions 

We assessed the variable-specific fire danger conditions (i.e., high or low) with the actual fire spot 

data by capturing the variable-specific values during i period and comparing with study-area 

specific average values during the same period while the fire occurred during the i+1 period. We 

observed that the input variables of the FFDFS (i.e., TS, NMDI, and NDVI) demonstrated 50.60% 

while TS(i) ≥ TS(i); 65.50% while NMDI(i) ≤ NMDI(i); and 61.95% while NDVI(i) ≤ NDVI(i) of 

the fire spots fell under ‘high danger’ category during 2009-2011 (see Table 5.3 for details). Our 

findings were similar to other studies such as 60.59, 72.41, and 54.19% of the fire fell under ‘high 

danger’ categories for TS, NMDI, and TVWI variables (Akther and Hassan, 2011a). The 

discrepancies observed approximately 49.40, 34.50, and 38.05%, respectively for the TS, NMDI, 

and NDVI which might be attributed due to other environmental factors, such as precipitation, 

wind speed, topography, fuel types, etc. (Oldford et al., 2003; Ardakani et al., 2011). 
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Table 5.3: Percentage of fire spots fell under variable-specific fire danger conditions (i.e., 

either high or low, extracted one period earlier than the fire occurrence) during the period 

of 2009-2011. 

Year 
Danger 

conditions 

Percentage of data 

2009 2010 2011 Average 

TS 
High  51.66 49.46 50.68 50.60 

Low  48.34 50.54 49.32 49.40 

NMDI 
High  56.41 69.79 70.29 65.50 

Low  43.59 30.21 29.71 34.50 

NDVI 
High  58.28 64.06 63.50 61.95 

Low  41.72 35.94 36.50 38.05 

 

Furthermore, I evaluated each fire spot data with study area average and the standard deviation 

values as shown in Figure 5.7. The figures did not showed a clear connotation of the fire spots 

with the condition of the variables of interest. However, I observed that most of the fire fell within 

‘average  1 standard deviation’ which clearly demonstrated that warmer or less vegetation 

moisture conditions would favor fires. In similar studies, it has been observed that more dryness 

didn’t favour the fire occurrences while using the surface temperature, fuel moisture, and soil 

moisture as a fire danger indicator (Akther and Hassan, 2011a; Bartsch et al., 2009). So, it could 

be suggested that individual variable might not able to capture the fire danger conditions precisely.  
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Figure 5.7: Frequency distribution of the fires with respect to TS, NMDI, and NDVI 

variables and its corresponding study area average values during the i period when actual 

fires were taken place in the following i+1 period on the basis of the ‘study area-specific 

average ± 3 standard deviation’ values and percentage of fire spots during 2009-2011. 
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5.3.2 Evaluation of combined fire danger condtions and its impacts 

 

Table 5.4 shows the outcomes of the FFDFS using the combinations of input variables (i.e., TS, 

NMDI, and NDVI) as per the criterion illustrated in Figure 4.2c. These outcomes were compared 

with the % of pixels represented by the fire spots. The combined variables revealed strong 

agreements, where 90.94% of fire fell under the categories from ‘very high’ to ‘moderate’ danger 

classes, respectively. However, the amount of disagreements (i.e., 9.06%) between the predictions 

and fire spots could be attributed by other factors, as mentioned in section 5.3.1 (Leblon et al., 

2001; Desbois and Vidal, 1996; de Angelis et al., 2012), which were beyond the scope of the study. 

It would be interesting to note that similar results were demonstrated by Akther and Hassan 

(2011a). For example, the combination of TS, NMDI, and TVWI variables revealed 91.60% of the 

fires spots fell under ‘very high’ to ‘moderate’ danger classes when compared between the fire 

danger categories and actual fire occurrences data during the period of 20062008 fire seasons.  

  



 

86 

Table 5.4: Percentage of data fell under each fire danger category using the combined 

variable of TS, NMDI, and NDVI in comparison with the fire spot. 

Year 
No of variables satisfying 

the fire danger condition 

Fire danger 

categories 
% of data 

Cumulative % 

of data 

2009 

All Very High 22.92 22.92 

At least 2 High 31.94 54.86 

At least 1 Moderate 34.03 88.89 

None Low 11.11 100.00 

2010 

All Very High 30.77 30.77 

At least 2 High 35.16 65.93 

At least 1 Moderate 24.73 90.66 

None Low 9.34 100.00 

2011 

All Very High 32.84 32.84 

At least 2 High 31.34 64.18 

At least 1 Moderate 29.10 93.28 

None Low 6.72 100.00 

Average 

(2009-2011) 

All Very High 28.84 28.84 

At least 2 High 32.81 61.66 

At least 1 Moderate 29.29 90.94 

None Low 9.06 100.00 

 

 

5.3.3 Fire danger maps for each period of interest 

We produced fire danger maps for the whole fire seasons of 2009-2011. For example, Figures 5.8-

5.10 show the forecasted fire danger maps during different periods of interest along with the fire 

spots data. They revealed that 84.7, 72.0, and 87.1% of the fire danger categories fell under ‘very 

high’ to ‘moderate’ danger classes during the three periods of interest. The fires (i.e., June 13, 

2009; June 20, 2010; and May 14, 2011) which were started within these periods and burned more 

than 36,000; 33,310; and 119,375 ha of the forested land. Furthermore, individual fire spot 

demonstrated that most of the fire fell under ‘high’ to ‘very high’ danger classes.   
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Figure 5.8: (a) Fire danger map for the period June 10-17, 2009 forecasted by combining 

the TS, NMDI, and NDVI variables exploited during the immediate preceding period i.e., 

June 2-9, 2009; and actual fire spots during the June 13, 2009 (i.e., 164 DOY); (b) fire 

danger classes with actual fire spots. 
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Figure 5.9: (a) Fire danger map for the period June 18-25, 2010 forecasted by combining 

the TS, NMDI, and NDVI variables exploited during the immediate preceding period i.e., 

June 10-17, 2010; and actual fire spots during the June 20, 2010 (i.e., 171 DOY); (b) fire 

danger classes with actual fire spots. 
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Figure 5.10: (a) Fire danger map for the period May 9-16, 2011 forecasted by combining 

the TS, NMDI, and NDVI variables exploited during the immediate preceding period i.e., 

May 1-8, 2011; and actual fire spots during the May 14, 2011 (i.e., 134 DOY); (b) fire 

danger classes with actual fire spots. 
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5.4 Evaluation of FFDFS system at daily-scale forecasting 

5.4.1 Assessment of the impact of daily PW on fire danger conditions 

Upon getting the study area-specific daily (PW) during j day; I computed the daily PW-specific 

fire danger conditions (i.e., high and low) during j+1 day, and compared them against the ground-

based fire spots. It revealed that fair amount (i.e., 53.54% on an average during 2009-2011 period; 

see Figure 5.11 for detals) of fire spots fell under high danger category [i.e., PW(j) ≤ PW(j)]. These 

findings were quite reasonable as the fire occurrences would not only depend on the PW but also 

other factors, e.g., temperature, precipitation, wind regimes, topography, fuel types, source of 

ignitions, etc. (van Wagner, 1987; Leblon et al., 2001; Lecina-Diaz et al., 2014; Adab et al., 2013; 

Ardakani et al., 2011). Furthermore, I analyzed the actual fire occurrence in the context of the 

study area-specific average and standard deviations associated with PW (see Figure 5.11); and 

observed two major issues. Firstly, I didn’t find whether relatively lower amount of PW (i.e., less 

than ‘average - 1 standard deviation’) was related to more fire occurrences. In fact, similar 

situations were also observed for the variables of TS, NMDI, and TVWI over boreal forested 

regions of Alberta in (Akther and Hassan, 2011a). Also, Bartsch et al. 2009 noticed that more 

dryness didn’t always favor the fire occurrences while investigating soil moisture anomalies as a 

fire danger indicator over Siberia. Secondly, I found that approximately 70.44% of the fires fell 

within ‘average ± 1 standard deviation’; and similar results were also reported in other studies. For 

example: (i) Clabo and Bunkers (2011) found that most of the fires occurred in South Dakota when 

the PW in 800-700 mb layer (i.e., ~1.8-2.7 km above the ground surface) was below or around the 

monthly PW-levels; (ii) Sitnov and Mokhov (2013) observed the daily PWs were highly 

anomalous (i.e., water vapor content was low compare to that of the ten years average-values) 
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during July 23 to August 18, 2010 over European Russia when more than 60% of the fires were 

taken place; and (iii) Akther and Hassan (2011a) reported that most of the fire occurrences were 

found within the ‘average ± 1 standard deviation’ for the variables of TS, NMDI, and TVWI over 

boreal forested regions of Alberta.  

 

Figure 5.11: Frequency distribution of the fires with respect to PW and its corresponding 

study area average values during the j day when actual fires were taken place in the 

following j+1 day on the basis of the ‘study area-specific average ± 3 standard deviation’ 

values and percentage of fire spots during (a) 2009, (b) 2010, (c) 2011, and (d) 2009-2011. 
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5.4.2 Evaluation of daily-scale FFDFS system 

 

Once the variable-specific (i.e., TS, NMDI, NDVI, and PW) fire danger conditions (i.e., either high 

or low) were generated, I combined all the variables of interest to forecast the fire danger 

conditions at daily-scale. The combined fire danger conditions demonstrated excellent results, i.e., 

on an average 95.51% of the fires fell under ‘extremely high’ to ‘moderate’ danger classes during 

2009-2011 period (see Table 5.5).  

 

Table 5.5: Percentage of data fell under each fire danger category using the combined 

variable of TS, NMDI, NDVI, and PW in comparison with the fire spot. 

Year 
No of variables satisfying 

the fire danger condition 

Fire danger 

categories 
% of data 

Cumulative 

% of data 

 All Extremely High 8.96 8.96 

 At least 3 Very High 28.36 37.31 

2009 At least 2 High 36.57 73.88 

 At least 1 Moderate 20.90 94.78 

 None Low 5.22 100.00 

 All Extremely High 14.88 14.88 

 At least 3 Very High 30.95 45.83 

2010 At least 2 High 30.36 76.19 

 At least 1 Moderate 19.64 95.83 

 None Low 4.17 100.00 

 All Extremely High 15.45 15.45 

 At least 3 Very High 36.59 52.03 

2011 At least 2 High 30.08 82.11 

 At least 1 Moderate 13.82 95.93 

 None Low 4.07 100.00 

Average 

(2009-2011) 

All Extremely High 13.09 13.09 

At least 3 Very High 31.97 45.06 

At least 2 High 32.34 77.39 

At least 1 Moderate 18.12 95.51 

None Low 4.49 100.00 
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In particular to 2011 fire season, several catastrophic fires (i.e., Slave Lake and Fort McMurray 

regional fires in mid-May) were observed within the study area. The Slave Lake fires were 

responsible for burning approximately 22,000 ha of forest (FTCWRC, 2012); on the other hand, 

595,000 ha of muskeg and bush was burned within Fort McMurrary region (Treenotic, 2011). 

Thus, I opted to evaluate the performance of the FFDFS during mid-May, 2011, which were 

calculated as a function of the combined input variables of TS, NMDI, NDVI, and PW acquired 

during the prior day (i.e., May 9 and 13, 2011 for PW; and May 1-8, 2011 for TS, NMDI, and 

NDVI) (see Figure 5.12 for details). The fire danger conditions were analyzed over both of Slave 

Lake and Fort McMurray regions (where the worst fires were occurred during the recent history). 

It revealed that 100 and 94% of the fire spots fell under ‘extremely high’ to ‘high’ danger classes 

for Slave Lake and Fort McMurray regions, respectively while comparing with MODIS fire spot 

data. Thus, the effectiveness of the daily-scale FFDFS in forecasting the devastating fires was also 

proved. 

5.4.3 Generation of fire danger forecasting map at daily-scale 

Upon combining the four input variables of the FFDFS, I produced fire danger map on daily basis 

to forecast the fire danger conditions into five categories. Figures 5.13-5.15 show the combined 

fire danger maps at 500 m spatial resolution for June 13, 2009; June 20, 2010; and May 14, 2011 

respectively while the input variables were acquired during the immediate preceding days for PW, 

and period (i.e., June 2-9, 2009; June 10-17, 2010; and May 1-8, 2011) for TS, NMDI, and NDVI 

images. The fire danger map shown in Figure 5.13 revealed that approximately 91.50% of the 

pixels fell in ‘extremely high’ to ‘moderate’ danger categories. In addition, I observed that the 
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actual fires that started during June 13, 2009 (i.e., 23 number of fires that burned more than 36,000 

ha); and their specific danger conditions demonstrated that 

 

Figure 5.12: Fire danger maps for mid-May, 2011 forecasted by combining the TS, NMDI, 

NDVI, and PW variables exploited during the immediate preceding day at: (a) Slave lake 

(May 13, 2011), and (b) Fort McMurray (May 9, 2011) regions. 
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95.24% of fire fell under ‘extremely high’ to ‘moderate’ danger classes (sample fire spots along 

with the danger conditions were shown in Figure 5.13b).  Similarly, I observed from Figure 5.14 

that 83.10% of the pixels fell under ‘extremely high’ to ‘moderate danger’ classes. The fire danger 

map in Figure 5.15 revealed that ~8.1, 25.7, 39.0, and 22.9% (i.e., in total 95.70%) of the pixels 

fell under danger categories of ‘extremely high’, ‘very high’, ‘high’, and ‘moderate’ for the entire 

study area.  

5.5 Enhancement of forecasting capability of daily-scale over the 8-day scale FFDFS  

We combined the variables of interest (i.e., TS, NMDI, NDVI, and PW) to forecast the fire danger 

conditions at daily-scale. The combined fire danger conditions demonstrated on an average 

95.51% of the fires fell under ‘extremely high’ to ‘moderate’ danger classes during 2009-2011 

period (Table 5.5). We also observed very good results using the combined variables of TS, NMDI, 

and NDVI at 8-day scale; while on an average 90.94% of the fires fell in ‘very high’ to ‘moderate’ 

danger classes during the same periods of interest (Table 5.4). In both cases, the fire danger 

conditions were compared with the Alberta ESRD fire spot data. So, it was clearly evident that the 

daily-scale FFDFS performed better than the 8-day scale FFDFS; i.e., improvement over 4.57% 

during the period of 2009-2011. However, the major enhancement of the new FFDFS system was 

the forecasting capability of fire danger conditions at daily-scale, which would be a pre-requisite 

in the context of operational perspective.  
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Figure 5.13: (a) Fire danger map for June 13, 2009 forecasted by combining the TS, NMDI, 

NDVI, and PW variables exploited during the immediate preceding day i.e., June 12, 2009; 

and actual fire spots during the June 13, 2009 (i.e., 164 DOY); (b) fire danger classes with 

actual fire spots. 
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Figure 5.14: (a) Fire danger map for June 20, 2010 forecasted by combining the TS, NMDI, 

NDVI, and PW variables exploited during the immediate preceding day i.e., June 19, 2010; 

and actual fire spots during the June 20, 2010 (i.e., 171 DOY); (b) fire danger classes with 

actual fire spots. 
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Figure 5.15: (a) Fire danger map for May 14, 2011 forecasted by combining the TS, NMDI, 

NDVI, and PW variables exploited during the immediate preceding day i.e., May 13, 2011; 

and actual fire spots during the May 14, 2011 (i.e., 134 DOY); (b) fire danger classes with 

actual fire spots. 
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CHAPTER 6 : CONCLUSIONS & RECOMMENDATIONS 

 

6.1 Summary  

In this thesis, I reviewed the most prominent operational fire danger rating systems and their 

limitations; and effectiveness of remote sensing-based methods for monitoring and forecasting fire 

danger conditions and their implications in operational perspective. The operational fire danger 

rating systems are mainly based on the meteorological variables and easily obtainable from 

ground-based observations. However, these systems have several weaknesses, such as (i) fire 

danger ratings are derived from sparsely located point-source meteorological data; (ii) spatial 

dynamics of the variable of interest generated by employing interpolation methods, which are 

highly dependable on density of observation network, topography, and the type of interpolation 

method used; (iii) function of dead fuel moisture only; (iv) limited number of fuel types are used, 

as determination of fuel parameters are time-consuming, cost intensive, and dynamic over different 

climatic conditions; (iv) the parameters and relationships are determined empirically using field 

and laboratory experiments; and (v) complex rules in operational perspective. So thus, it is 

essential to investigate the fire danger ratings in each ecosystem independently, as it depends on 

the interactions between biotic and abiotic components. The changing climate conditions also urge 

of revisiting the parameters of the operational systems for making them more reliable and 

acceptable. 
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The fire danger conditions are the most important part in integrated fire management due to their 

wide applicability (e.g., pre-fire forest conditions, delineating prescribe burning area, reduce 

intensive survey operations, quick detection of fire starts and deployment of firefighting units, 

etc.). Over the last several decades, the remote sensing-based methods have been investigated for 

fire danger management activities. These methods are categorized into two major groups: fire 

danger monitoring and fire danger forecasting systems. In particular for monitoring the fire danger 

conditions, several environmental variables are derived from optical, thermal, and radar images, 

and explored individually and/or in combination. As the fire danger conditions define the 

likelihood of fire occurrence, these methods are found to be unsuccessful because they attempt to 

capture danger conditions during and/or after the fire occurrence. However, for monitoring the 

forest fire related disaster, MODIS-based fire detection data are available at a daily temporal scale 

which is under full operation and used by the fire managers for fire behavior and suppression 

strategy. 

 

The use of remote sensing-based methods for forecasting fire danger conditions are found in the 

literature though limited. Most of the fire danger forecasting systems are in the moderate range 

and coarse spatial resolution. An NDVI-based operational system was proposed by Burgan et al., 

1998 to compute the fire potential maps, but it could not be considered as a fully remote sensing 

based method as it combines satellite data, meteorological observations and fuel models (detail in 

section 2.4). The methods illustrated above have the potential to functioning by incorporating some 

adjustments and improvements, such as enhancement of temporal resolution; acquisition of cloud 

free imagery by the sensors; development of enhanced gap-filling methods that would improve 
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quality of optical and thermal images; and better understanding of the vegetation characteristics 

those are closely related to fire danger conditions. It is interesting to note that, the radar data has 

the potential to capture in the microwave spectral bands that penetrates cloud, canopy and interacts 

with the tree structure, and theoretically in any weather, but has greater limitations in temporal 

scale and operates under the commercial operating mode.  

 

Due to the limitations of the meteorological-based operational systems; and remote sensing-based 

methods illustrated, I opted to develop a fully remote sensing-based fire danger forecasting 

systems which could be utilized as an operational one.  In this thesis, I proposed a simple protocol 

in order to filling the data gaps in the 8-day composite of MODIS-derived TS, NMDI, and NDVI 

on the basis of both spatial and temporal connotations. It revealed that the use of the 3  3 window 

size would infill approximately 71.52 and 100% of the data gaps for TS and both NMDI and NDVI 

images during 2009-2011, respectively. In these cases, I also observed strong agreements between 

the predicted values for the variable of interest with the observed data (i.e., the good quality pixels 

which were declared as data gaps), such as r2, and RMSE values were on an average: (i) 0.87 and 

1.003 K, respectively for TS images; (ii) 0.93 and 0.019, respectively, for NMDI images; and (iii) 

0.88 and 0.022, respectively, for NDVI images during 2009-2011. In order to filling the remaining 

data gaps (i.e., ~ 0.50, 1.55, and 0.44%, respectively) for the period of 2009-2011 for TS images, 

I increased window size (in the range from 5  5 to 15  15); and both of the r2 and RMSE values 

were still found to be in the reasonable bounds (i.e., r2  0.81 and RMSE  1.25 K for 5  5 window 

size; r2  0.68 and RMSE  1.51 K for 15  15 window size).  
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In this thesis, the earlier developed method of forest fire danger forecasting system was enhanced 

by incorporating several remote sensing-derived variables (i.e., TS, NMDI, and NDVI). We 

observed very good results using the combined variables of TS, NMDI, and NDVI at 8-day scale 

while comparing with the Alberta ESRD fire data during 2009-2011. It shows that on an average 

90.94% of the fires fell in ‘very high’ to ‘moderate’ danger classes. Furthermore, I developed a 

simple framework for forecasting forest fire danger conditions at daily-scale using only remote 

sensing-derived variables for the first time according to our best knowledge. This proposed system 

consisted of four steps: (i) calculation of input variables (i.e., TS, NMDI, NDVI, and PW) of the 

FFDFS system; (ii) computation of study-area specific average values for each variable of interest; 

(iii) determination of variable-specific fire danger conditions (either high or low); and (iv) 

integration of all the four variable-specific fire danger conditions into five fire danger categories 

(i.e., extremely high, very high, high, moderate, and low). The integrated daily-scale FFDFS 

system revealed excellent results in forecasting the forest fire danger conditions, i.e., 94.78–

95.93% of the fires fell under ‘extremely high’ to ‘moderate’ danger classes during 2009–2011 

period. Thus, the proposed daily-scale FFDFS system would be effective in the operational 

perspective. We also believe that the proposed system would be useful in supplementing the 

currently operational meteorological-based forecasting systems in particular to the remote areas of 

the landscape and in between two weather stations. In addition, the proposed system could 

potentially be adopted in other jurisdictions and/or globally; however, I strongly recommend that 

it should be thoroughly evaluated prior to its implementation.  
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6.2 Contribution to science 

The expected contributions of forest fire danger forecasting system using remote sensing 

technology can be summarized as follows: 

(i) The proposed gap filling algorithm will enhance the quality of the images (i.e., the input 

variables of FFDFS) as gaps are commonly found in optical and thermal remote sensing 

data due to the presence of cloud, aerosol, viewing geometry of the satellite platforms, etc.;  

(ii) The four variables of interest such as TS, NMDI, NDVI, and PW were used in forecasting 

the fire danger conditions for the first time according to best of my knowledge; 

(iii) The daily scale FFDFS system has greater advantage over the meteorological based 

Canadian FWI system in regards to capturing the spatial variability of the forecasted danger 

conditions. In addition, the FWI system has variable thresholds for fire danger conditions 

in different jurisdictions while the FFDFS system can be used globally depending on the 

conditions of the variables in the area of interest;  

(iv) In view of operational perspective, a simplified modelling approach is proposed by 

combining the environmental variables for fire danger forecasting at daily scale; thus such 

a system will help the fire managers for better understanding the conditions of forest areas 

those are potential to fire ignition, and therefore supports in both prescribed fire and 

wildfire; and 

(v) The FFDFS approach developed using remote sensing variables has operational value and 

can potentially be incorporated into meteorological-based fire danger forecasting systems. 
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6.3 Recommendations for future work 

Our proposed remote sensing-based daily-scale FFDFS system demonstrated its excellent abilities 

in forecasting the forest fire danger conditions. Despite the overall performance of the FFDFS, I 

observed a small percentage of the fire spots (i.e., 4.49%) fell in the low danger category, which 

could be enhanced upon considering other fire related variables. Those might include the 

incorporation of: (i) spatially dynamic but temporally static (e.g., topographic parameters such as 

slope, elevation, and aspect, proximity to road networks, and vicinity to urban areas) (Adab et al., 

2013), and spatially static but temporally dynamic (e.g., the effect of long weekends would attract 

more people for camping in forest) variables; (ii) other meteorological variables, such as incident 

solar radiation, amount and duration of precipitation, wind regimes, etc. as these factors are 

commonly used in meteorological-based operational systems (Burgan et al., 1997); (iii) lightning 

as a source of ignition; (iv) vegetation phenology  as it might play an important role in defining 

the water stress so thus fire occurrence (Bajocco et al., 2010); (v) comparison of the outcomes of 

the FFDFS system with that of Canadian FWI system; (vi) leaf area index (as it increases with the 

increase of vegetation greenness) could be used in the framework of FFDFS system; (vii) further 

exploration is needed in regards to determine inter-relationship among the variables of interest 

(i.e., TS, NMDI, NDVI, and PW); and (viii) relatively higher spatial  resolution (e.g., 250 m) for 

the input variables in delineating the landscape in more detail (Wing et al., 2014). Among these, 

wind regimes are commonly used in most of the operational systems; however, I was unable to 

incorporate such a variable in our proposed FFDFS as remote sensing-based estimates of wind 

regimes would be extremely difficult. 
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Title page of the book chapter, Clark et al. (1999), showing that content is not copyrighted and 

is in the public domain. 
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(a) Chowdhury, E.H., Hassan, Q.K., 2013. Use of remote sensing-derived variables in 
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http://www.ucalgary.ca/qhassan/files/qhassan/chowdhury_hassan_nh_13.pdf
http://www.ucalgary.ca/qhassan/files/qhassan/chowdhury_hassan_nh_13.pdf
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.011


 

134 

 

A.1.1 Certificate for published journal articles 

(a) Sandholt et al., 2002 

  

  



 

135 

 

(b) McVicar and Jupp, 1998 

 

  



 

136 

 

(c) Wang and Qu, 2007 

 

 
  



 

137 

 

A.1.2 Certificate of a book chapter 

  



 

138 

 

A.1.3 Certificate from publications 

(a) Chowdhury and Hassan, 2013 

 



 

139 

 

 



 

140 

 

(b) Chowdhury and Hassan, 2014 

 

  



 

141 

 

(c) Chowdhury and Hassan, 2015 

 



 

142 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A2: Data Tables 

 



 

144 

 

Table A2.1: Quality control (QC) SDS of MOD11A2 ver. 005 surface temperature and 

emissivity 8-day L3 Global 1 km (NASA, 2011). 

 

Bit 

No. 
Long Name 

Bit 

Combination 
Description 

0–1 
Mandatory 

QA Flags 

00 
TS produced, good quality, not necessary to examine more 

detailed QA 

01 
TS produced, other quality, recommend examination of 

more detailed QA 

10 TS not produced due to cloud effects 

11 TS not produced primarily due to reasons other than cloud 

2–3 
Data Quality 

Flag 

00 Good data quality of L1B in 7 TIR bands 

01 Other quality data 

10 TBD 

11 TBD 

4–5 
Emissivity 

Error Flag 

00 Average emissivity error <= 0.01 

01 Average emissivity error <= 0.02 

10 Average emissivity error <= 0.04 

11 Average emissivity error > 0.04 

6–7 TS Error Flag 

00 Average TS error <= 1K 

01 Average TS error <= 2K 

10 Average TS error <= 3K 

11 Average TS error > 3K 
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Table A2.2: Quality assurance SDS of MOD09A1 ver. 005 surface reflectance 8-day L3 

Global 500 m (NASA, 2011). 

Bit No. Parameter 
Bit 

Combination 
Surface reflectance state 

15 Internal snow algorithm flag 
1 yes 

0 no 

14 BRDF correction performed 
1 yes 

0 no 

13 Pixel is adjacent to cloud 
1 yes 

0 no 

12 MOD35 snow/ice flag 
1 yes 

0 no 

11 Internal fire algorithm flag 
1 fire 

0 no fire 

10 Internal cloud algorithm flag 
1 cloud 

0 no cloud 

8–9 Cirrus detected 

00 none 

01 small 

10 average 

11 high 

6–7 Aerosol quantity 

00 climatology 

01 low 

10 average 

11 high 

3–5 Land/water flag 

000 shallow ocean 

001 land 

010 ocean coastlines and lake shorelines 

011 shallow inland water 

100 ephemeral water 

101 deep inland water 

110 continental/moderate ocean 

111 deep ocean 

2 Cloud shadow 
1 yes 

0 no 

0–1 MOD35 cloud 

00 clear 

01 cloudy 

10 mixed 

11 not set, assumed clear 
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Table A2.3: Percentage of gap pixels in TS images during 2009-2011. 

DOY 

Year 

2009 2010 2011 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

89 367382 5966 1.598 373097 251 0.07 372898 450 0.12 

97 370549 2799 0.750 370501 2847 0.76 373325 23 0.01 

105 373273 75 0.020 373348  0.00 372640 708 0.19 

113 371700 1648 0.441 286304 87044 23.31 373313 35 0.01 

121 373324 24 0.006 339480 33868 9.07 373317 31 0.01 

129 367114 6234 1.670 373331 17 0.00 373348   

137 373302 46 0.012 337984 35364 9.47 373346 2  

145 371225 2123 0.569 367030 6318 1.69 373324 24 0.01 

153 367606 5742 1.538 372696 652 0.17 373331 17  

161 373343 5 0.001 373347 1 0.00 372663 685 0.18 

169 372645 703 0.188 373308 40 0.01 373176 172 0.05 

177 354696 18652 4.996 367667 5681 1.52 373270 78 0.02 

185 358236 15112 4.048 373242 106 0.03 373204 144 0.04 

193 373341 7 0.002 372932 416 0.11 372824 524 0.14 

201 373348  0.000 373333 15 0.00 373317 31 0.01 

209 372647 701 0.188 373257 91 0.02 373314 34 0.01 

217 373335 13 0.003 373072 276 0.07 373348   

225 373293 55 0.015 369885 3463 0.93 373309 39 0.01 

233 373342 6 0.002 372002 1346 0.36 373348   

241 373346 2 0.001 368583 4765 1.28 373344 4  

249 373346 2 0.001 325257 48091 12.88 373348   

257 373346 2 0.001 372391 957 0.26 373348   

265 373344 4 0.001 373298 50 0.01 373347 1  

Average  0.66   2.82   0.52 

Total  14.45   61.98   11.41 
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Table A2.4: Percentage of gap pixels in NMDI images during 2009-2011. 

DOY 

Year 

 2009  2010 2011 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

89 1493095 22 0.001 1491797 21 0.001 1491797 1844 0.123 

97 1492821 17 0.001 1492831 7 0.000 1492831 807 0.054 

105 1493095 8 0.001 1493218   1493218 422 0.028 

113 1493447 4 0.000 1493359 4 0.000 1493359 278 0.019 

121 1493484 3 0.000 1493410 4 0.000 1493410 119 0.008 

129 1493166 16 0.001 1493495 9 0.001 1493495 63 0.004 

137 1493172 6 0.000 1493258 3 0.000 1493258 139 0.009 

145 1493245 5 0.000 1493310 6 0.000 1493310 209 0.014 

153 1493368 3 0.000 1493115 8 0.001 1493115 374 0.025 

161 1493288 5 0.000 1492948 4 0.000 1492948 572 0.038 

169 1493143 11 0.001 1492769 16 0.001 1492769 793 0.053 

177 1492762 48 0.003 1493252 77 0.005 1493252 329 0.022 

185 1493160 24 0.002 1493098 15 0.001 1493098 454 0.030 

193 1493135 19 0.001 1492842 20 0.001 1492842 728 0.049 

201 1492965 19 0.001 1492674 25 0.002 1492674 931 0.062 

209 1493037 17 0.001 1492728 21 0.001 1492728 848 0.057 

217 1493221 12 0.001 1492926 16 0.001 1492926 657 0.044 

225 1493090 18 0.001 1492646 31 0.002 1492646 914 0.061 

233 1493081 20 0.001 1493163 29 0.002 1493163 414 0.028 

241 1493055 21 0.001 1492984 41 0.003 1492984 577 0.039 

249 1492998 20 0.001 1492784 33 0.002 1492784 708 0.047 

257 1493153 10 0.001 1493293 18 0.001 1493293 285 0.019 

265 1493089 21 0.001 1493148 19 0.001 1493148 346 0.023 

Average  0.001   0.0012   0.0334 

Total  0.022   0.027   0.734 
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Table A2.5: Percentage of gap pixels in NDVI images during 2009-2011. 

DOY 

Year 

 2009  2010 2011 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

89 1256678   1256678   1256678 31 0.0025 

97 1391569   1391569   1391569 45 0.0032 

105 1441329   1441329   1441329 9 0.0006 

113 1447462   1447462   1447462 2 0.0001 

121 1486808   1486808   1486808 3 0.0002 

129 1491320 1 0.0001 1491320 2 0.0001 1491320   

137 1492045   1492045   1492045 9 0.0006 

145 1491912   1491912   1491912 30 0.0020 

153 1491932   1491932 1 0.0001 1491932 279 0.0187 

161 1492517 1 0.0001 1492517   1492517 26 0.0017 

169 1492674   1492674 1 0.0001 1492674 67 0.0045 

177 1492572 3 0.0002 1492572 3 0.0002 1492572 243 0.0163 

185 1492931 3 0.0002 1492931 3 0.0002 1492931 7 0.0005 

193 1492721   1492721 4 0.0003 1492721 138 0.0092 

201 1493003 2 0.0001 1493003 2 0.0001 1493003 47 0.0031 

209 1492823   1492823 7 0.0005 1492823 79 0.0053 

217 1492878   1492878   1492878 28 0.0019 

225 1492849   1492849 8 0.0005 1492849 71 0.0048 

233 1492898   1492898 1 0.0001 1492898 7 0.0005 

241 1492556   1492556 7 0.0006 1492556 24 0.0016 

249 1492134   1492134 9 0.0006 1492134 2 0.0001 

257 1492361   1492361 4 0.0003 1492361 1 0.0001 

265 1491982   1491982 7 0.0005 1491982 17 0.0011 

Average  0.00003   0.00018   0.0034 

Total  0.00067   0.004   0.076 
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Table A2.6: Percentage of gap pixels after in-filled with m × m (in the range of 3 × 3 to 15 × 

15) window sizes in TS images during 2009-2011.  

DOY 

 

Year 

 2009  2010 2011 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

Good 

Pixel 

Cloud 

Pixel 
Percent 

89 367382 5966  373097 251  372898 450  

97 373346 82 0.022 373346 2 0.001 373344 4 0.001 

105 373348 1 0.000 373348   372794 554 0.148 

113 360181 1 0.000 360181 13167 3.527 373315 33 0.009 

121 360015   360015 13333 3.571 373348   

129 373348   373348   373348   

137 366271 9 0.002 366271 7077 1.896 373348   

145 372448 0 0.000 372448 900 0.241 373324 24 0.006 

153 373129 45 0.012 373129 219 0.059 373332 16 0.004 

161 373348 0 0.000 373348   373031 317 0.085 

169 373348 0 0.000 373348   373176 172 0.046 

177 373348 35 0.009 373348   373328 20 0.005 

185 373344 384 0.103 373344 4 0.001 373324 24 0.006 

193 373346 1 0.000 373346 2 0.001 373173 175 0.047 

201 373348   373348   373337 11 0.003 

209 373348 8 0.002 373348   373317 31 0.008 

217 373347 4 0.001 373347 1 0.000 373348   

225 373347 5 0.001 373347 1 0.000 373348   

233 373342   373342 6 0.002 373348   

241 373344   373344 4 0.001 373348   

249 372733   372733 615 0.165 373348   

257 373267 1 0.000 373267 81 0.022 373348   

265 373348   373348   373348   

Average 0.007   0.431   0.017 

Total 0.154   9.485   0.370 

Gap-filled pixels (%) 98.93   84.70   96.76 
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Table A2.7: Coefficient of determination (r2), root mean square error (RMSE), slope, and 

intercept values between observed and predicted TS using various window sizes during 2009. 

DOY Parameter 
Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

97 

r2 0.90 0.85 0.81 0.79 0.77 0.75 0.74 0.35 

RMSE 0.80 1.01 1.13 1.21 1.27 1.31 1.34 2.15 

Slope 0.94 0.90 0.88 0.87 0.86 0.85 0.84 0.50 

Intercept 17.66 26.38 32.22 36.55 39.83 42.49 44.68 138.05 

105 

r2 0.93 0.89 0.86 0.84 0.82 0.80 0.79 0.29 

RMSE 0.81 1.04 1.18 1.28 1.35 1.40 1.44 2.76 

Slope 0.95 0.93 0.91 0.89 0.88 0.87 0.87 0.44 

Intercept 12.72 20.62 25.64 29.57 32.78 35.32 37.73 155.87 

113 

r2 0.92 0.88 0.85 0.83 0.81 0.80 0.79 0.53 

RMSE 0.99 1.23 1.37 1.46 1.52 1.57 1.60 2.45 

Slope 0.93 0.90 0.88 0.87 0.86 0.85 0.84 0.65 

Intercept 19.45 27.96 33.41 36.97 39.73 41.86 43.45 98.42 

121 

r2 0.94 0.90 0.88 0.86 0.85 0.84 0.83 0.60 

RMSE 1.01 1.27 1.41 1.50 1.57 1.61 1.65 2.53 

Slope 0.97 0.95 0.93 0.92 0.91 0.91 0.90 0.69 

Intercept 9.61 15.22 19.24 22.23 24.62 26.62 28.41 90.74 

129 

r2 0.89 0.84 0.80 0.77 0.75 0.73 0.72 0.40 

RMSE 1.32 1.63 1.81 1.93 2.01 2.08 2.13 3.38 

Slope 0.89 0.85 0.82 0.80 0.78 0.77 0.76 0.61 

Intercept 30.34 43.46 51.91 57.65 61.93 65.26 68.01 111.73 

137 

r2 0.84 0.77 0.72 0.69 0.67 0.66 0.64 0.31 

RMSE 1.46 1.79 1.98 2.10 2.19 2.25 2.30 3.56 

Slope 0.93 0.90 0.88 0.87 0.86 0.86 0.85 0.63 

Intercept 19.40 28.03 33.17 36.76 39.43 41.61 43.33 107.18 

145 

r2 0.86 0.80 0.76 0.73 0.72 0.70 0.69 0.37 

RMSE 1.11 1.37 1.51 1.60 1.67 1.72 1.75 2.92 

Slope 0.94 0.92 0.90 0.89 0.89 0.88 0.88 0.74 

Intercept 17.50 24.20 28.03 30.46 32.31 33.74 34.87 75.39 

153 

r2 0.91 0.85 0.82 0.80 0.78 0.77 0.76 0.24 

RMSE 1.12 1.39 1.55 1.65 1.71 1.76 1.80 3.37 

Slope 0.92 0.89 0.86 0.85 0.84 0.83 0.82 0.39 
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DOY Parameter 
Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

Intercept 22.47 33.37 40.18 44.60 47.72 50.20 52.13 176.18 

161 

r2 0.85 0.78 0.73 0.70 0.68 0.66 0.65 0.13 

RMSE 1.09 1.36 1.51 1.61 1.68 1.73 1.77 3.66 

Slope 0.93 0.90 0.88 0.87 0.86 0.85 0.84 0.48 

Intercept 20.24 29.11 34.62 38.97 42.27 44.68 46.81 154.68 

169 

r2 0.89 0.83 0.79 0.77 0.75 0.73 0.72 0.35 

RMSE 0.95 1.18 1.31 1.40 1.46 1.51 1.54 2.53 

Slope 0.93 0.90 0.88 0.87 0.86 0.85 0.85 0.58 

Intercept 21.09 29.56 35.09 38.30 40.74 42.80 44.27 124.04 

177 

r2 0.86 0.79 0.74 0.71 0.69 0.67 0.66 0.36 

RMSE 1.20 1.50 1.67 1.78 1.85 1.91 1.95 2.74 

Slope 0.90 0.85 0.82 0.80 0.78 0.77 0.76 0.51 

Intercept 30.03 44.24 53.34 59.26 63.55 66.89 69.43 141.58 

185 

r2 0.77 0.66 0.59 0.54 0.51 0.49 0.47 0.20 

RMSE 1.23 1.55 1.73 1.85 1.94 2.00 2.04 3.10 

Slope 0.88 0.83 0.79 0.77 0.75 0.74 0.72 0.58 

Intercept 35.01 50.51 60.24 67.32 72.49 76.27 79.71 122.27 

193 

r2 0.81 0.72 0.66 0.62 0.60 0.58 0.56 0.24 

RMSE 0.98 1.23 1.38 1.47 1.53 1.57 1.60 2.37 

Slope 0.91 0.87 0.85 0.83 0.82 0.81 0.80 0.56 

Intercept 26.09 37.46 44.79 49.21 52.42 55.37 57.50 129.63 

201 

r2 0.86 0.79 0.75 0.72 0.70 0.68 0.67 0.32 

RMSE 0.76 0.94 1.05 1.12 1.16 1.20 1.22 1.94 

Slope 0.94 0.91 0.89 0.88 0.87 0.86 0.86 0.63 

Intercept 18.87 27.37 32.68 36.27 38.79 40.75 42.41 110.81 

209 

r2 0.90 0.85 0.82 0.80 0.78 0.77 0.76 0.34 

RMSE 0.82 1.00 1.11 1.17 1.22 1.25 1.28 2.16 

Slope 0.91 0.87 0.85 0.84 0.83 0.82 0.81 0.45 

Intercept 26.13 36.92 43.46 48.01 51.42 54.12 56.40 162.79 

217 

r2 0.81 0.73 0.69 0.66 0.63 0.62 0.60 0.21 

RMSE 0.85 1.04 1.14 1.20 1.25 1.29 1.31 2.40 

Slope 0.92 0.89 0.87 0.86 0.85 0.84 0.83 0.63 

Intercept 23.03 32.60 38.40 42.36 45.31 47.49 49.39 109.83 
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DOY Parameter 
Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

225 

r2 0.85 0.78 0.74 0.70 0.68 0.66 0.65 0.34 

RMSE 0.79 0.97 1.08 1.14 1.19 1.22 1.25 1.81 

Slope 0.89 0.85 0.82 0.80 0.79 0.78 0.77 0.54 

Intercept 31.71 44.21 51.68 56.93 60.75 63.74 66.26 135.02 

233 

r2 0.87 0.81 0.77 0.75 0.73 0.71 0.70 0.23 

RMSE 0.73 0.90 1.00 1.07 1.11 1.15 1.18 2.05 

Slope 0.95 0.93 0.92 0.91 0.90 0.90 0.89 0.50 

Intercept 13.49 19.35 23.19 25.87 27.94 29.47 30.71 145.93 

241 

r2 0.91 0.86 0.83 0.81 0.80 0.78 0.77 0.43 

RMSE 0.51 0.63 0.70 0.75 0.79 0.82 0.84 1.54 

Slope 0.96 0.94 0.92 0.91 0.91 0.90 0.89 0.77 

Intercept 12.39 18.30 22.22 25.37 27.98 30.10 31.96 66.51 

249 

r2 0.87 0.81 0.77 0.74 0.71 0.69 0.68 0.24 

RMSE 0.66 0.82 0.91 0.97 1.01 1.04 1.07 1.80 

Slope 0.88 0.83 0.80 0.78 0.77 0.75 0.74 0.44 

Intercept 34.95 49.22 58.13 64.13 68.72 72.23 75.20 164.37 

257 

r2 0.84 0.78 0.73 0.70 0.68 0.66 0.65 0.18 

RMSE 0.84 1.01 1.11 1.18 1.23 1.27 1.30 2.14 

Slope 0.89 0.86 0.83 0.82 0.80 0.79 0.78 0.38 

Intercept 30.72 41.60 48.40 53.45 57.35 60.52 63.18 180.24 

265 

r2 0.90 0.85 0.83 0.81 0.79 0.78 0.77 0.12 

RMSE 0.88 1.04 1.14 1.21 1.26 1.30 1.33 2.78 

Slope 0.94 0.91 0.90 0.89 0.88 0.87 0.87 0.27 

Intercept 18.40 24.95 29.19 32.34 34.68 36.59 38.23 211.57 

Average 

r2 0.87 0.81 0.77 0.74 0.72 0.71 0.69 0.31 

RMSE 0.95 1.18 1.31 1.36 1.39 1.43 1.43 2.55 

Slope 0.92 0.89 0.87 0.85 0.84 0.83 0.83 0.54 

Intercept 22.33 32.03 38.15 42.39 45.58 48.10 50.19 132.40 

Note: Gap pixels were in-filled only for the non-shaded window sizes (i.e., RMSE ≤ 2 K).  
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Table A2.8: Coefficient of determination (r2), root mean square error (RMSE), slope, and 

intercept values between observed and predicted TS using various window sizes during 2010. 

DOY Parameter 
Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

97 

r2 0.94 0.92 0.90 0.88 0.87 0.86 0.85 0.33 

RMSE 0.99 1.22 1.36 1.45 1.52 1.57 1.62 3.50 

Slope 0.95 0.92 0.91 0.90 0.89 0.88 0.87 0.40 

Intercept 14.60 21.35 25.78 29.09 31.86 34.17 36.34 166.96 

105 

r2 0.93 0.89 0.87 0.85 0.84 0.83 0.81 0.32 

RMSE 0.92 1.14 1.27 1.36 1.43 1.49 1.53 3.61 

Slope 0.98 0.97 0.96 0.95 0.94 0.93 0.93 0.70 

Intercept 5.82 9.79 12.98 15.37 17.24 18.98 20.33 87.10 

113 

r2 0.92 0.87 0.83 0.80 0.78 0.76 0.75 0.23 

RMSE 0.91 1.15 1.31 1.41 1.49 1.54 1.58 3.35 

Slope 0.92 0.88 0.86 0.84 0.83 0.81 0.80 0.52 

Intercept 21.66 33.02 40.46 45.72 49.66 52.81 55.50 136.10 

121 

r2 0.88 0.81 0.76 0.72 0.70 0.68 0.66 0.26 

RMSE 1.36 1.71 1.92 2.06 2.15 2.22 2.28 3.50 

Slope 0.90 0.85 0.81 0.79 0.77 0.76 0.75 0.40 

Intercept 27.78 42.44 52.28 59.09 64.02 67.91 70.91 168.92 

129 

r2 0.80 0.70 0.64 0.60 0.57 0.55 0.53 0.29 

RMSE 1.44 1.82 2.05 2.20 2.30 2.37 2.43 3.45 

Slope 0.90 0.86 0.83 0.81 0.80 0.79 0.78 0.66 

Intercept 27.99 40.77 48.90 54.60 58.60 61.89 64.45 97.47 

137 

r2 0.90 0.85 0.81 0.78 0.75 0.74 0.72 0.23 

RMSE 1.56 1.97 2.23 2.40 2.52 2.61 2.68 4.52 

Slope 0.92 0.88 0.84 0.82 0.81 0.79 0.78 0.31 

Intercept 23.55 36.27 45.56 51.84 56.76 60.96 64.49 200.57 

145 

r2 0.84 0.75 0.70 0.66 0.63 0.61 0.60 0.01 

RMSE 1.54 1.94 2.19 2.36 2.48 2.57 2.65 5.94 

Slope 0.94 0.91 0.90 0.88 0.87 0.87 0.86 0.11 

Intercept 17.83 25.89 30.38 33.93 36.44 38.30 39.87 259.89 

153 

r2 0.90 0.84 0.80 0.78 0.76 0.75 0.74 0.45 

RMSE 1.22 1.52 1.69 1.80 1.88 1.93 1.98 2.97 

Slope 0.93 0.90 0.88 0.86 0.86 0.85 0.84 0.65 
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DOY Parameter 
Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

Intercept 21.11 30.27 35.97 39.55 42.17 44.28 45.85 103.07 

161 

r2 0.84 0.76 0.71 0.68 0.66 0.64 0.63 0.31 

RMSE 1.17 1.45 1.61 1.71 1.78 1.82 1.86 3.25 

Slope 0.92 0.89 0.87 0.85 0.84 0.83 0.82 0.75 

Intercept 22.73 33.07 39.50 43.88 47.18 49.74 51.89 74.42 

169 

r2 0.85 0.78 0.73 0.70 0.67 0.66 0.64 0.30 

RMSE 0.96 1.18 1.31 1.40 1.46 1.50 1.54 2.54 

Slope 0.91 0.88 0.85 0.83 0.82 0.81 0.80 0.64 

Intercept 25.72 36.80 43.99 49.35 53.45 56.69 59.51 106.81 

177 

r2 0.83 0.74 0.68 0.64 0.61 0.58 0.56 0.20 

RMSE 1.20 1.49 1.67 1.78 1.86 1.92 1.97 2.86 

Slope 0.86 0.79 0.75 0.72 0.70 0.69 0.67 0.37 

Intercept 41.79 60.63 72.79 80.90 86.79 91.42 95.16 184.04 

185 

r2 0.76 0.65 0.58 0.54 0.51 0.48 0.46 0.10 

RMSE 1.25 1.56 1.75 1.86 1.94 2.01 2.06 3.14 

Slope 0.89 0.84 0.81 0.79 0.77 0.76 0.75 0.38 

Intercept 31.88 46.32 55.57 61.93 66.59 70.20 73.08 180.43 

193 

r2 0.85 0.77 0.73 0.69 0.67 0.65 0.64 0.09 

RMSE 1.05 1.31 1.46 1.55 1.61 1.66 1.70 3.04 

Slope 0.91 0.87 0.84 0.83 0.81 0.80 0.80 0.28 

Intercept 27.09 38.95 46.31 51.15 54.70 57.57 59.85 212.68 

201 

r2 0.87 0.81 0.77 0.75 0.73 0.71 0.70 0.46 

RMSE 0.94 1.16 1.28 1.36 1.42 1.46 1.50 2.11 

Slope 0.94 0.91 0.89 0.88 0.87 0.86 0.86 0.71 

Intercept 18.66 26.50 31.27 34.84 37.66 39.82 41.66 86.18 

209 

r2 0.86 0.79 0.74 0.71 0.68 0.66 0.65 0.40 

RMSE 0.90 1.11 1.23 1.31 1.36 1.41 1.44 2.13 

Slope 0.89 0.85 0.82 0.80 0.78 0.77 0.76 0.69 

Intercept 31.49 45.02 53.62 59.75 64.36 67.99 70.98 92.12 

217 

r2 0.86 0.79 0.75 0.72 0.70 0.68 0.66 0.34 

RMSE 0.93 1.14 1.26 1.34 1.40 1.45 1.48 2.17 

Slope 0.92 0.89 0.87 0.86 0.85 0.84 0.83 0.57 

Intercept 22.41 31.58 37.27 41.44 44.70 47.31 49.58 125.99 
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DOY Parameter 
Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

225 

r2 0.86 0.79 0.74 0.71 0.69 0.67 0.66 0.05 

RMSE 0.90 1.12 1.24 1.32 1.38 1.42 1.46 2.99 

Slope 0.91 0.87 0.84 0.83 0.82 0.81 0.80 0.22 

Intercept 26.90 38.28 45.17 49.73 52.93 55.42 57.50 226.55 

233 

r2 0.84 0.76 0.71 0.67 0.64 0.62 0.61 0.10 

RMSE 0.93 1.15 1.28 1.37 1.43 1.47 1.51 2.71 

Slope 0.90 0.86 0.83 0.81 0.79 0.78 0.77 0.33 

Intercept 28.48 40.93 49.37 55.28 59.81 63.53 66.34 192.99 

241 

r2 0.83 0.75 0.69 0.65 0.62 0.60 0.58 0.24 

RMSE 1.02 1.26 1.40 1.49 1.56 1.62 1.66 2.41 

Slope 0.88 0.82 0.79 0.76 0.74 0.73 0.71 0.45 

Intercept 35.32 51.34 61.33 68.67 74.36 78.90 82.63 156.54 

249 

r2 0.85 0.76 0.70 0.65 0.62 0.60 0.58 0.08 

RMSE 1.18 1.49 1.68 1.80 1.89 1.95 2.00 3.30 

Slope 0.89 0.84 0.80 0.77 0.75 0.73 0.72 0.23 

Intercept 29.92 46.53 57.87 65.69 71.38 75.84 79.52 218.33 

257 

r2 0.77 0.66 0.59 0.54 0.51 0.49 0.47 0.07 

RMSE 1.11 1.40 1.57 1.69 1.77 1.83 1.87 3.24 

Slope 0.88 0.83 0.80 0.78 0.77 0.76 0.75 0.34 

Intercept 33.17 47.24 55.05 60.70 64.89 68.20 71.03 185.98 

265 

r2 0.86 0.80 0.76 0.73 0.71 0.69 0.68 0.08 

RMSE 0.82 1.02 1.13 1.20 1.25 1.29 1.32 2.60 

Slope 0.96 0.94 0.93 0.92 0.91 0.90 0.89 0.30 

Intercept 10.78 16.38 20.91 24.03 26.48 28.56 30.19 199.04 

Average 

r2 0.86 0.78 0.73 0.70 0.68 0.66 0.64 0.22 

RMSE 1.10 1.38 1.47 1.51 1.58 1.61 1.63 3.15 

Slope 0.91 0.87 0.85 0.83 0.82 0.81 0.80 0.46 

Intercept 24.85 36.33 43.74 48.93 52.82 55.93 58.49 157.37 

Note: Gap pixels were in-filled only for the non-shaded window sizes (i.e., RMSE ≤ 2 K).  
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Table A2.9: Coefficient of determination (r2), root mean square error (RMSE), slope, and 

intercept values between observed and predicted TS using various window sizes during 2011.  

DOY Parameter 

Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

97 

r2 0.87 0.81 0.77 0.74 0.72 0.70 0.69 0.20 

RMSE 0.82 1.01 1.11 1.18 1.23 1.26 1.30 2.12 

Slope 0.89 0.86 0.83 0.81 0.80 0.79 0.78 0.31 

Intercept 28.49 39.90 46.58 51.42 55.02 57.82 60.28 190.01 

105 

r2 0.88 0.82 0.78 0.75 0.73 0.71 0.70 0.28 

RMSE 1.11 1.37 1.52 1.62 1.69 1.74 1.78 2.79 

Slope 0.90 0.86 0.83 0.81 0.79 0.78 0.77 0.38 

Intercept 26.45 38.73 46.42 52.02 56.21 59.42 62.44 170.90 

113 

r2 0.90 0.84 0.81 0.78 0.76 0.75 0.74 0.49 

RMSE 1.10 1.38 1.54 1.64 1.72 1.77 1.81 2.57 

Slope 0.95 0.93 0.91 0.89 0.88 0.88 0.87 0.66 

Intercept 13.51 20.98 26.15 29.86 32.73 35.06 36.97 96.76 

121 

r2 0.91 0.85 0.81 0.79 0.77 0.75 0.74 0.47 

RMSE 1.01 1.28 1.44 1.54 1.61 1.67 1.72 2.66 

Slope 0.93 0.89 0.87 0.85 0.84 0.83 0.82 0.70 

Intercept 19.81 30.22 37.17 42.22 46.05 49.04 51.61 84.88 

129 

r2 0.87 0.80 0.76 0.73 0.70 0.69 0.67 0.42 

RMSE 1.01 1.27 1.43 1.52 1.59 1.65 1.69 2.58 

Slope 0.93 0.89 0.87 0.86 0.84 0.84 0.83 0.76 

Intercept 21.30 31.55 38.04 42.31 45.52 47.98 49.82 71.36 

137 

r2 0.90 0.85 0.81 0.78 0.76 0.75 0.73 0.42 

RMSE 0.87 1.09 1.22 1.31 1.37 1.42 1.47 2.33 

Slope 0.94 0.92 0.90 0.89 0.88 0.87 0.86 0.66 

Intercept 16.17 23.55 28.75 32.81 36.18 39.04 41.44 98.83 

145 

r2 0.94 0.90 0.88 0.86 0.85 0.84 0.83 0.40 

RMSE 0.78 0.97 1.08 1.15 1.21 1.25 1.29 2.49 

Slope 0.96 0.94 0.93 0.92 0.91 0.91 0.90 0.56 

Intercept 10.98 16.67 20.37 23.19 25.41 27.14 28.77 127.74 

153 

r2 0.90 0.85 0.82 0.80 0.78 0.77 0.76 0.45 

RMSE 0.98 1.21 1.33 1.42 1.47 1.52 1.55 2.52 

Slope 0.91 0.87 0.85 0.84 0.82 0.81 0.81 0.65 
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DOY Parameter 

Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

Intercept 26.17 36.96 43.53 48.02 51.31 53.94 56.07 100.76 

161 

r2 0.87 0.81 0.77 0.73 0.71 0.69 0.68 0.32 

RMSE 1.45 1.78 1.98 2.10 2.20 2.26 2.32 3.46 

Slope 0.89 0.84 0.81 0.79 0.77 0.76 0.75 0.43 

Intercept 32.18 45.91 54.91 61.43 66.20 69.99 73.08 166.18 

169 

r2 0.82 0.73 0.67 0.64 0.61 0.59 0.57 0.29 

RMSE 1.50 1.89 2.12 2.27 2.37 2.44 2.50 3.64 

Slope 0.91 0.88 0.85 0.84 0.82 0.82 0.81 0.62 

Intercept 25.14 36.37 43.43 48.22 51.54 54.04 56.10 110.57 

177 

r2 0.88 0.83 0.79 0.76 0.74 0.73 0.71 0.49 

RMSE 1.12 1.41 1.58 1.69 1.77 1.82 1.87 2.63 

Slope 0.95 0.93 0.92 0.91 0.90 0.90 0.89 0.74 

Intercept 14.17 20.42 24.21 26.87 28.89 30.49 31.79 74.38 

185 

r2 0.89 0.83 0.79 0.77 0.75 0.73 0.72 0.42 

RMSE 1.00 1.24 1.38 1.47 1.53 1.58 1.62 2.64 

Slope 0.92 0.89 0.86 0.85 0.84 0.83 0.82 0.70 

Intercept 22.70 33.20 39.66 44.21 47.56 50.08 52.05 87.09 

193 

r2 0.90 0.85 0.82 0.79 0.78 0.76 0.75 0.39 

RMSE 1.07 1.33 1.49 1.59 1.66 1.72 1.76 2.80 

Slope 0.94 0.91 0.89 0.88 0.87 0.86 0.85 0.54 

Intercept 18.53 26.88 32.07 35.86 38.66 40.85 42.75 134.05 

201 

r2 0.89 0.83 0.79 0.76 0.74 0.72 0.71 0.44 

RMSE 1.04 1.30 1.46 1.56 1.63 1.68 1.72 2.68 

Slope 0.94 0.91 0.89 0.87 0.86 0.86 0.85 0.75 

Intercept 18.26 26.90 32.90 36.67 39.56 42.11 43.99 71.74 

209 

r2 0.94 0.90 0.88 0.86 0.85 0.84 0.84 0.61 

RMSE 0.58 0.72 0.80 0.86 0.90 0.93 0.95 1.90 

Slope 0.97 0.96 0.96 0.95 0.95 0.95 0.95 1.06 

Intercept 8.14 11.25 12.45 13.35 13.95 14.14 14.42 -17.90 

217 

r2 0.90 0.85 0.82 0.80 0.78 0.77 0.76 0.33 

RMSE 0.80 0.99 1.11 1.18 1.23 1.27 1.31 2.23 

Slope 0.95 0.93 0.92 0.90 0.90 0.89 0.88 0.50 

Intercept 13.88 20.26 24.70 28.07 30.72 32.88 34.72 146.37 
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DOY Parameter 

Window sizes 

3×3 5×5 7×7 9×9 11×11 13×13 15×15 
Study 

area 

225 

r2 0.87 0.81 0.77 0.74 0.71 0.70 0.68 0.06 

RMSE 0.91 1.12 1.24 1.32 1.38 1.42 1.46 3.08 

Slope 0.90 0.85 0.83 0.81 0.80 0.79 0.78 0.24 

Intercept 30.25 42.76 50.50 55.54 59.17 61.96 64.27 220.02 

233 

r2 0.84 0.77 0.72 0.69 0.66 0.65 0.63 0.20 

RMSE 0.91 1.13 1.25 1.33 1.39 1.44 1.47 2.51 

Slope 0.93 0.90 0.89 0.87 0.86 0.85 0.84 0.52 

Intercept 19.04 27.80 33.40 37.81 41.32 43.97 46.26 141.18 

241 

r2 0.89 0.84 0.81 0.78 0.76 0.75 0.74 0.46 

RMSE 0.81 0.99 1.10 1.18 1.23 1.27 1.30 1.92 

Slope 0.92 0.89 0.87 0.85 0.84 0.83 0.82 0.61 

Intercept 23.12 32.50 38.39 42.73 45.99 48.54 50.79 111.79 

249 

r2 0.94 0.91 0.89 0.87 0.86 0.85 0.85 0.37 

RMSE 0.81 0.98 1.09 1.16 1.21 1.25 1.29 2.60 

Slope 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.47 

Intercept 8.41 11.84 14.24 15.98 17.34 18.51 19.51 154.68 

257 

r2 0.83 0.75 0.70 0.66 0.64 0.61 0.59 0.10 

RMSE 0.69 0.85 0.94 1.01 1.06 1.10 1.13 3.09 

Slope 0.92 0.88 0.85 0.83 0.82 0.81 0.80 0.62 

Intercept 23.85 34.96 42.51 47.67 51.74 55.12 57.75 109.65 

265 

r2 0.94 0.91 0.88 0.87 0.85 0.84 0.84 0.17 

RMSE 0.67 0.83 0.93 0.99 1.04 1.08 1.11 2.51 

Slope 0.96 0.94 0.93 0.92 0.91 0.90 0.90 0.25 

Intercept 12.44 17.92 21.39 24.26 26.51 28.22 29.88 215.86 

Average 

r2 0.89 0.83 0.80 0.77 0.75 0.74 0.72 0.35 

RMSE 0.96 1.19 1.29 1.34 1.40 1.44 1.48 2.62 

Slope 0.93 0.90 0.88 0.87 0.86 0.85 0.84 0.58 

Intercept 19.68 28.52 34.17 38.21 41.25 43.65 45.67 121.22 

Note: Gap pixels were in-filled only for the non-shaded window sizes (i.e., RMSE ≤ 2 K).  
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Table A2.10: Coefficient of determination (r2), root mean square error (RMSE), slope, and 

intercept values between observed and predicted NMDI and NDVI using 3×3 window size.  

DOY Parameter 

Year 

2009 2010 2011 

NMDI NDVI NMDI NDVI NMDI NDVI 

97 

r2 0.855 0.819 0.960 0.839 0.674 0.697 

RMSE 0.033 0.031 0.040 0.035 0.033 0.033 

Slope 0.922 0.895 0.982 0.911 0.820 0.906 

Intercept 0.066 0.012 0.009 0.040 0.148 0.014 

105 

r2 0.953 0.929 0.747 0.916 0.858 0.923 

RMSE 0.039 0.040 0.037 0.026 0.030 0.025 

Slope 0.961 0.911 0.899 0.951 0.940 0.967 

Intercept 0.029 0.019 0.038 0.022 0.051 0.003 

113 

r2 0.973 0.971 0.781 0.934 0.966 0.972 

RMSE 0.039 0.031 0.033 0.025 0.035 0.031 

Slope 0.998 0.995 0.862 0.968 0.966 0.968 

Intercept 0.001 0.003 0.054 0.017 0.023 0.010 

121 

r2 0.845 0.929 0.728 0.920 0.894 0.939 

RMSE 0.033 0.026 0.036 0.025 0.037 0.030 

Slope 0.940 0.961 0.874 0.957 0.964 0.962 

Intercept 0.022 0.019 0.049 0.022 0.013 0.019 

129 

r2 0.807 0.925 0.741 0.920 0.718 0.904 

RMSE 0.030 0.025 0.028 0.024 0.029 0.028 

Slope 0.908 0.960 0.919 0.962 0.875 0.948 

Intercept 0.035 0.020 0.030 0.021 0.044 0.027 

137 

r2 0.798 0.934 0.833 0.907 0.807 0.910 

RMSE 0.028 0.023 0.020 0.024 0.024 0.026 

Slope 0.921 0.970 0.934 0.963 0.920 0.953 

Intercept 0.028 0.015 0.026 0.023 0.032 0.029 

145 

r2 0.821 0.928 0.853 0.937 0.858 0.938 

RMSE 0.024 0.025 0.020 0.022 0.021 0.025 

Slope 0.931 0.969 0.914 0.954 0.935 0.962 

Intercept 0.027 0.017 0.034 0.028 0.027 0.024 

153 

r2 0.839 0.917 0.891 0.936 0.972 0.985 

RMSE 0.021 0.027 0.019 0.025 0.011 0.015 

Slope 0.925 0.951 0.957 0.977 0.988 0.995 
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DOY Parameter 

Year 

2009 2010 2011 

NMDI NDVI NMDI NDVI NMDI NDVI 

Intercept 0.031 0.029 0.019 0.017 0.005 0.004 

161 

r2 0.881 0.938 0.902 0.937 0.916 0.944 

RMSE 0.020 0.026 0.017 0.025 0.017 0.026 

Slope 0.945 0.968 0.952 0.971 0.965 0.980 

Intercept 0.024 0.023 0.021 0.021 0.016 0.015 

169 

r2 0.921 0.952 0.912 0.949 0.911 0.933 

RMSE 0.017 0.023 0.016 0.022 0.016 0.026 

Slope 0.965 0.981 0.958 0.979 0.964 0.982 

Intercept 0.016 0.014 0.019 0.015 0.017 0.014 

177 

r2 0.903 0.935 0.874 0.899 0.926 0.952 

RMSE 0.017 0.025 0.019 0.028 0.016 0.022 

Slope 0.967 0.974 0.935 0.952 0.963 0.981 

Intercept 0.016 0.019 0.031 0.036 0.018 0.014 

185 

r2 0.929 0.940 0.872 0.918 0.911 0.949 

RMSE 0.016 0.025 0.018 0.027 0.015 0.020 

Slope 0.959 0.976 0.935 0.967 0.959 0.979 

Intercept 0.020 0.018 0.031 0.026 0.019 0.016 

193 

r2 0.917 0.946 0.888 0.918 0.902 0.942 

RMSE 0.015 0.020 0.015 0.021 0.015 0.021 

Slope 0.961 0.984 0.951 0.969 0.953 0.973 

Intercept 0.018 0.014 0.024 0.025 0.022 0.021 

201 

r2 0.879 0.945 0.892 0.913 0.900 0.937 

RMSE 0.017 0.018 0.015 0.020 0.015 0.021 

Slope 0.925 0.969 0.940 0.955 0.955 0.980 

Intercept 0.036 0.024 0.028 0.035 0.022 0.016 

209 

r2 0.872 0.935 0.870 0.922 0.878 0.934 

RMSE 0.016 0.017 0.015 0.018 0.014 0.020 

Slope 0.951 0.972 0.937 0.971 0.931 0.966 

Intercept 0.023 0.022 0.030 0.023 0.033 0.026 

217 

r2 0.902 0.945 0.880 0.921 0.896 0.941 

RMSE 0.014 0.016 0.016 0.020 0.014 0.018 

Slope 0.950 0.976 0.938 0.967 0.947 0.974 

Intercept 0.024 0.019 0.029 0.026 0.025 0.020 
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DOY Parameter 

Year 

2009 2010 2011 

NMDI NDVI NMDI NDVI NMDI NDVI 

225 

r2 0.900 0.940 0.905 0.943 0.862 0.912 

RMSE 0.015 0.017 0.017 0.023 0.014 0.020 

Slope 0.946 0.967 0.955 0.976 0.934 0.961 

Intercept 0.026 0.025 0.020 0.017 0.032 0.030 

233 

r2 0.902 0.946 0.895 0.943 0.871 0.903 

RMSE 0.015 0.017 0.016 0.021 0.015 0.020 

Slope 0.947 0.973 0.939 0.979 0.920 0.953 

Intercept 0.025 0.020 0.027 0.016 0.037 0.036 

241 

r2 0.910 0.950 0.876 0.930 0.894 0.945 

RMSE 0.015 0.015 0.017 0.020 0.017 0.019 

Slope 0.950 0.973 0.932 0.964 0.940 0.972 

Intercept 0.022 0.020 0.030 0.026 0.027 0.020 

249 

r2 0.903 0.954 0.876 0.909 0.878 0.952 

RMSE 0.017 0.016 0.020 0.022 0.020 0.018 

Slope 0.937 0.970 0.933 0.963 0.915 0.978 

Intercept 0.027 0.021 0.028 0.024 0.036 0.016 

257 

r2 0.899 0.949 0.851 0.947 0.857 0.960 

RMSE 0.019 0.017 0.023 0.021 0.023 0.017 

Slope 0.945 0.978 0.887 0.973 0.929 0.982 

Intercept 0.024 0.016 0.047 0.017 0.031 0.012 

265 

r2 0.949 0.902 0.930 0.839 0.848 0.921 

RMSE 0.019 0.020 0.022 0.026 0.025 0.024 

Slope 0.975 0.942 0.946 0.910 0.908 0.936 

Intercept 0.017 0.024 0.031 0.037 0.037 0.037 

Average 

r2 0.935 0.887 0.922 0.857 0.927 0.873 

RMSE 0.019 0.021 0.019 0.023 0.019 0.022 

Slope 0.966 0.945 0.963 0.929 0.966 0.936 

Intercept 0.018 0.026 0.024 0.030 0.019 0.032 

Note: Gap pixels were in-filled only for the non-shaded boxes (i.e., RMSE ≤ 0.03).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A3: Model development for the FFDFS systems 

 



 

163 

 

A3.1 Input variables of FFDFS system 
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A3.2 Computation of the indices 
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A3.3 Computation of cloud pixels 
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A3.4 Study area mean values 
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A3.5 Good quality pixels 
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A3.6 Data gap-infill 

 



 

175 

 

 
  



 

176 

 

A3.7 Validation of data gap-infill 

 



 

177 

 

 

  



 

178 

 

A3.8 Fire danger maps 
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A3.9 Combined fire danger maps 
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A3.10 Comparison of fire danger map and fire spot 
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