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Abstract 

In summary, drilling simulation, a set of physic-based models run through time or depth steps to 

mirror events in the drilling rig, is the backbone of all field testing of technologies or procedures. 

If a model has been validated using drilling simulation, the risk of wasted field trial is lowered 

significantly. This is why the formulation of models that make up drilling simulation is key and 

this is what this thesis has focused on. 

20 functions were used to simulate the processes described in this research. Finite element 

formulation of space models linked with time-based models have been developed for the 2-node 

system in X (axial loading and axial torsion), Y (transverse bending of Z), and Z (transverse 

bending of Y) directions. Laplace transform was used to solve the time based partial differential 

equation paving way for the development of velocity, acceleration, force, and torque equations. 

Drill ahead modeling using build and walk relation to resultant forces was validated. Stick slip 

mitigation using the optimized RPM objective function was used to optimize the mechanical 

efficiency of drilling. Particle swarm optimization was the process used for optimization where 

each solution is considered a particle in search of the global minimum. An expression of the 

optimized RPM was developed and simulated with field data. Confined compressive strength of 

the field data was compared with the CCS obtained from the simulation but there was no perfect 

match yet. Further runs of the simulation would show more lessons as to how to improve the 

results. 

It can be concluded that the MSE minimization process should rather be called MSE optimization 

process as the decision to raise or lower MSE should be based on the data supplied to the particle 

swarm optimizer since the objective function is built with constraints to lower drill string 

vibrations. When tested with field data, the objective function and optimizer built in this research 

was found to increase MSE but lower the downhole stick slip index by 28 percent. The downhole 

stick slip index was below 0.5.  
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Preface 

The title of this study is “Development of a Drilling Simulator to Achieve Drilling Optimization.” 

This means the principles and processes that run a drilling simulator were defined and developed 

in this thesis; the results of these processes were then subject to optimization process to obtain 

better results for a certain problem in oil and gas drilling. Physics based models were the principles 

utilized starting from the finite element governing equations being solved to get expressions for 

the elemental displacements, force, and torque and other time-based variables. Once the solutions 

were validated, it became necessary to validate the process by comparing drilling parameters from 

the models to field parameters of same scenarios and they were found to be trending accordingly. 

This confirmation gives an opportunity to use the drilling simulation principles to tackle any 

drilling problem. In this case, minimizing the mechanical specific energy, MSE, was investigated. 

It is expected that the energy to drill will be reduced if there is no energy loss to excessive vibration. 

When developing the objective function for the particle swarm optimization, penalties were given 

to increase the optimized RPM when the stick slip limits were exceeded. This process led to a 

decrease in stick slip there by actualizing the MSE needed for drilling. 
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Chapter 1 Introduction 

1.1 Introduction to Drilling  

Crude oil is made up of hydrocarbons, non-hydrocarbons, and other trace elements stored deep 

below the subsurface. The oil and gas industry is divided into 3 portions. The upstream, the 

midstream and the downstream are the 3 portions that categorize the operations in the oil and gas 

industry. Figure 1.1 below shows what each port of operations entails. 

 

Figure 1. 1 Activities in the Upstream, Midstream, and Downstream Sector of the Oil and Gas 

Industry (Eland, 2021) 

Drilling operations fall under the upstream sector. Drilling is a process whereby a hole is bored 

using a drill bit to create a well for oil and natural gas production (StudentEnergy, 2022). Figure 

1.2 shows the different stages of the drilling process. The act of exploration for oil and gas is done 

by drilling a well with drilling tools such as a drill pipe attached to a Bottom Hole Assembly 

(BHA) in addition to various survey methods – geological, magnetic, gravitational, and 

seismographic. This BHA includes some specialized drilling tools for taking measurements while 

drilling, drill bit to cut through the rock, steering control, and vibration management. The drill 

string is made to follow a trajectory called a well path which is planned to target a particular oil-
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rich zone (Okpozol, Peters, & Okologume, 2016). Drilling is the most sought and appropriate 

method to extract oil and gas from deep formations.  

 

 

Figure 1. 2 Stages of the Drilling Process (Shor, 2019) 

However, drilling is quite expensive with up to $455,000 effective day rate – the daily cost of 

drilling an oil well, which includes the cost to run the rig, employees, and supplies (Hargrave, 

2022). Specifically, the daily rate of drilling a well depends on the rig type, distance from shore, 

drilling depth, and water depth. Onshore drilling rates range from $60,000 to $310,000 per day 

while offshore drilling can cost between $600,000 to $800,000 per day (Hossain, 2015) 

1.2 Brief Introduction to Drilling Systems 

There are two categories of drilling systems: rotary methods and rotary percussive (Franca, 2011). 

This thesis focuses on the rotary method which is commonly used in the oil and gas industry. 

Rotary drilling utilizes high levels of torque supplied by a surface top drive motor to rotate a drill-

bit attached to the end of a drill pipe to bore through the rock formation. Boring of wells is 

accomplished using a variety of rig types – land and offshore. Land rigs are sub-divided into 

mobile and conventional rigs. Offshore rigs include floating rigs (semi-submersible, drill ship) and 

bottom supported rigs such as platform, barge, and jack-up (DrillingManual, 2017).  

Offshore wells are done by drilling using a drill string lowered (drill string consists of a drill-pipe, 

drill bit, and drill collar) via a conduit (riser) that extends from the drilling rig to the seafloor 
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(Sparks, 2007). Onshore drilling is similarly drilled using a drill string, but while offshore drilling 

involves extraction of oil from the seabed, onshore drilling encompasses the drilling operations 

into the Earth’s subsurface from a land-based drilling platform. Systems of a drilling rig can be 

categorized into the: power system, well monitoring system, hoisting system, circulating system, 

rotating system, well control system, and monitoring system (offshore). The power system supplies 

the power to the entire drilling rig using AC or DC generators. The hoisting system oversees 

lowering or lifting the drill pipe onto borehole using masts and draw works. The rotating system 

provides torque to the drill string from the rotary table and top drive motor. The circulating system 

includes the mud pits, reservoirs, and mud pumps that provide cooling, lubrication, and rock 

cuttings disposal from the bore hole. Lastly, the well control and monitoring systems maintain 

operational limits in drilling such as the controlled release of well fluids, bleed pressure, chokes, 

and manifolds. In general terms, offshore drilling and onshore drilling operations are almost the 

same in function, but each process is made to solve the local condition of the well. 

1.3 Problems During Drilling Processes and Operations 

The drilling process involves drilling from the surface to the target depth. When the drill string 

needs to be retrieved, a tripping out process is applied, just hoisting up the entire drill string 

components stand by stand. For the next set of drilling to occur, the drill string is lowered or tripped 

into the wellbore till the current depth of the hole. At that point, drilling occurs again which rotating 

the bits while applying weight on the bit through the formation. There are potential stuck pipe 

problems when tripping out due to the drag that will be developed when the drill string rubs the 

wall of the hole. This drag adds to the weight of the drill string making it more difficult to pull the 

drill string. During drilling, the torque necessary to turn the drill string will increase as the drill 

string comes in contact with the wall of the wellbore make it more difficult to turn the drill string. 

This could lead to a twist-off. Twist-off is a disconnection of the pipes when excessive torque 

occurs or fatigue of the pipes. 

Drilling operations lead to high costs during the development of oil and gas fields. Factors that 

lead to high costs include major disasters during the drilling operation such as a blowout – the 

uncontrolled release of oil or gas from a well. In addition to catastrophic failures, it is common to 

see drilling problems during operation – pack-offs, formation fracturing, pipe-sticking, loss of 
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circulation, hole deviation, pipe failures, borehole instability, and complications that arise from 

hole cleaning (Bradford, 2000). Most of these problems are highlighted in Figure 1.3. 

Drilling operations are also affected by various types of vibrations – axial, lateral, and torsional. 

These vibrations induce problems such as bit-bounce, whirling, and stick-slip respectively. 

Vibrational problems cause damage to the BHA, result in inaccurate downhole readings, and lead 

to sub-optimal rates of penetration. 

Difficulty in drilling operations can also be attributed to wellbore problems – borehole instability, 

formation damage, lost circulation, pipe sticking, kicks, hazardous gas, and shallow gas. Borehole 

instability occurs when an undesirable condition of an open hole interval does not maintain its 

gauge size, shape, and structural integrity. Formation damage is defined as the disruption of the 

reservoir (reduced production) triggered by wellbore fluids used during the entire drilling process. 

The permeability is reduced in the wellbore (skin) vicinity due to foreign-fluid invasion into the 

reservoir rock. 

Hole cleaning is the drilling fluid’s ability to transport and suspend drilled cuttings. Inadequate 

hole cleaning can lead to mud problems and contamination. Contamination, more commonly seen 

in water-based muds, causes a change in mud properties that lead to improper mud mixture. 

 

Figure 1. 3 Common Drilling Problems (Pegasus Vertex, 2022) 

Mud contamination can result from overtreatment of the mud system with additives or material 

entering the mud during drilling. Some of these problems arise due to the inherent complexity of 
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the environment/location of petroleum resources. They may also be a result of increased deviated 

hole drilling (eccentricity effect) and power requirements for adequate fluid circulation when 

removing drill cuttings. (Aryan, 2018) 

1.4 Why Drilling Simulators are Needed. 

Drilling simulation aids in the enhancement of drilling performance and productivity by simulating 

and predicting the problems encountered during a drilling operation effectively, which 

consequently improve personnel safety, optimum drilling performance, and productivity. Drilling 

simulation involves mimicking the behavior of drilling processes or systems. Therefore, the act of 

drilling simulation should be able to provide actionable information about drilling processes and 

systems without the physical action of sound construction (Harvey, 2018). Drilling simulations are 

effective ways to pre-emptively identify and locate potential disasters. Simulators also address the 

impacts of drilling phenomena like drill string dynamics. Simulators consider the fact that the drill 

string passes through various formations of different physical properties and is well immersed in 

the drilling fluid and remains in contact with the wellbore. 

However, while new drilling simulations are being developed with state-of-the-art simulation 

technology, better hardware and software do not guarantee the successful application of a drilling 

simulator to improve drilling performance. Only the understanding of proper drilling operations, 

formation and equipment limitations can lead to the success seen in other industries. 

1.5 Relating Drilling Simulators to Optimization 

With the associated costs detailed in the previous sections about the economic impacts and 

expenses with drilling operations, optimization has become paramount and one of the leading 

drivers towards the development of drilling simulations. Drilling optimization mainly dictate the 

identification of optimum drilling parameters, processes, or equipment to achieve low vibration 

stable drill-string operation, effective well path trajectory, optimum directional steering 

recommendations, downhole tool reliability, and many more that may reduce the effective day 

rates of operation and increase productivity. 

Drilling simulation is heavily bonded with the need to optimize drilling operations as evidenced 

by past and existing works being done today. (Herbig, et al., 2016) for instance, shows that 
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complex reaming operations can be optimized through post-well analysis using simulation and 

modeling techniques. The design of BHA reamers is optimized for lateral vibrations in (Najmi, et 

al., 2015). Optimizations have also been performed beyond the surface and down hole parameters 

to include personnel, project coordinators, operators, and analysts to assist in the set-up and 

management of a drilling project. (Hanley, Stuart, Bass, & Garcia, 2012) 

1.6 Goal of Research 

The goal of the research is the implementation of finite element method to drill string dynamics so 

that drilling operation parameters can be calculated through the finite element process. This 

process forms the basis for the development of a drilling simulator and consequently the trial of 

newer models on the simulator before field tests are done. 

1.6.1 Research Questions 

There are four questions that will be answered from this research. 

a. How to solve the governing equation of the finite element of 12 degree of freedom beam. 

b. How to relate the solved finite element model with drilling parameters to achieve both 

space and time-based simulation of drilling. 

c. How to develop a process to minimize mechanical specific energy using particle swarm 

optimization. 

d. Validate the finite element models, the drill ahead model, drilling parameter prediction and 

drilling vibration mitigation. 

1.6.2 Outcomes and Impact of the Research 

The outcomes of the research are estimation process of the outputs from the finite element method 

in a way that clearly relates to the drilling process. Here are those outputs: 

• Stiffness coefficients for each element on a local and global scale. This leads to estimation 

of the global stiffness matrix for the entire drill string at an instance in time. 

• Estimation of unrestrained stiffness matrix and the unrestrained displacements. 

• Estimation process for the fixed end moments and the global end moments of the drill 

string 
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The impact of the research is that this thesis has set up a procedure to help mitigate stick slip. The 

same procedure can be followed to mitigate whirling in isolation or coupled with stick slip. The 

challenge in this is to fully model the behavior of the BHA as whirling occurs. A start point is to 

simulate the movement of the drill string from the perspective of the sensor placed on a position 

on the BHA.  

It is a known fact that the error of the finite element model reduces as the order of the element 

increases. This thesis focused on linear nodal system, a two-node system. This means each element 

has only two nodes. This is potentially the reason why in Figure 6.8 to Figure 6.13 show the 

residuals having errors above 20 % even though the solution has less than 2 percent error. A higher 

order nodal system is needed. This thesis has laid the groundwork to build more nodes in each 

element of the drill string. 

1.6.3 Outline of Thesis 

Chapter 1 provides an overview of the thesis, introducing the background and motivation for 

studying drill string dynamics. It outlines the objectives and scope of the research, as well as the 

organization of the thesis. Chapter 2 presents a comprehensive literature review on drill string 

dynamics, covering various aspects such as drilling mechanics, wellbore stability, and vibration 

analysis. It discusses the existing theories, models, and methodologies in the field. Chapter 3 

focuses on interpolation of azimuth for accurate simulation of movement of the drill string. Chapter 

4 discusses the governing equations for the finite element modeling of a 2 node 3-dimensional 

system leading to the development of the interpolation functions for axial (loading and torsion) for 

X direction and transverse bending for Y and Z directions. Chapter 5 presents the use of the outputs 

of the finite element process to calculate normal force and friction factor. An introduction into the 

particle swarm optimization approach is done. Chapter 6 presents the computational results 

obtained from the drilling simulation. This chapter shows how the objective function for the 

optimized RPM is developed and also shows how reduction in stick slip can be incorporated into 

the objective function. Chapter 7 concludes the thesis by summarizing the key findings and 

contributions. It discusses the limitations of the research and suggests directions for future work, 

such as refining the increasing the number of nodes per element in the finite element model. 

Preliminary equations for higher order node system are shown. 
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Chapter 2 Literature Review 

This chapter focuses on the literature review, starting with a discussion of previous works and 

models used in drilling simulations. A discussion on how the models is solved and their 

applications in optimizing drilling operations is provided.  First, an overview of the existing 

drilling models in Figure 2.1. 

 

Figure 2. 1 A Summary of Models and Solutions for Drill String Dynamics (Pastusek, et al., 

2019) 

In general, each of these models have their uses and different ways the data used in them are 

sourced and sensed. Both soft string and stiff string models help in predicting the normal loads 

between the drill string and inner casing wall to help reduce wear on the casing (Samuel, Kumar, 

Gonzales, Marcou, & Rød, 2016). The source of data for those models are The BHA components 

data and the wellbore geometry data. The components data can be gotten before the drilling from 

the well plan data or in real time from surface measurement tools. The continuum from lumped 

parameter model (LPM) to distributed parameter model (DPM) is an example of a modeling 

dichotomy (see (Pastusek, et al., 2019)). Other characteristics are Linear to Non-Linear Models, 
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Static to Steady State to Transient Models; all of these models are useful in specific situations (for 

example, see (Aarsnes, Flø, Meglio, & Shor, 2018)). 

2.1 Lumped Parameter Model 

A lumped parameter model considers rigid masses separated by kinematic pairs of springs and 

dashpots. This model, which is the most commonly used in the analysis of drill string, drill pipe, 

and BHA, is a function only of time. Richardson et. al published a study on the self-excited 

torsional and axial vibrations of deep drilling systems using a discrete model and discrete state-

dependent delay governing equations (Richardson, Germay, & Detournay, 2007). In the 2-degrees-

of-freedom lumped model shown in   , the drilling system is consolidated into a series of spring 

and dashpot, allowing the drill bit to move parallel to the vertical direction and rotate around the 

axial direction.  

 

Figure 2. 2 Simplified Lumped Model of the Drilling System (Richardson, Germay, & 

Detournay, 2007) 

The cutting action of the drill bit and the friction due to the contact between the well bore and wear 

flat areas, are assumed to be the sole producers of the forces acting on the bit. The cutting forces 

are proportional to the height of the rock formation ahead of the cutter – whose rotation introduces 

a state-dependent delay in the governing equations (Depouhon & Detournay, 2015). 
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Figure 2. 3 Section of the Bottom-Hole Profile Located (Richardson, Germay, & Detournay, 

2007) 

Richardson et. al derived the following governing equations: 

𝑢̈ ∈ 𝑛𝜓 (𝑢̃ − 𝑢 − 𝛼𝑜(𝜙̃ − 𝜙) + 𝑔(𝑢̇))      Equation 2. 1  

𝜙̈ + 𝜙 ∈ 𝑛 (𝑢̃ − 𝑢 − 𝛼𝑜(𝜙̃ − 𝜙) + 𝛽𝑔(𝑢̇))      Equation 2. 2  

Where 𝑢̈ and 𝜙̈ are the axial perturbations and angular displacement of the bit 

𝑢̃  is the delayed argument (𝑢̃ = 𝑢(𝑡 − 𝑡𝑛))       Equation 2. 3 

𝑡𝑛 is the delay or the time required for the bit to rotate an angle of 2𝜋/𝑛 

𝑡𝑛0 is the steady state delay (𝑡𝑛0 = 2𝜋/𝑛𝜔0)      Equation 2. 4 

𝜔0 is the steady state rotation speed. 

𝑛  is the number of blades. 

𝛽 is the bit wear or bluntness. 

𝛼0 is the ratio between steady state axial and angular velocities.  

The delay 𝑡𝑛 is defined by, 

𝜙̃ − 𝜙 = 𝜔0(𝑡𝑛 − 𝑡𝑛0)         Equation 2. 5 
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This 2-DOF lumped parameter model of the drilling system is used to analyze vibrational 

instabilities – stick slip and bit bouncing. The model is systems of equations are solved analytically 

and are key contributors towards optimizing a stable (reduced oscillation) directional drilling. 

2.2 Soft and Stiff String Model 

The first work done on drill string dynamics, particularly torque and drag, was published by 

Johancisk et. al in 1984. This has served as the foundation for successive works and research that 

has led to the development of soft and stiff string models to formulate drill string behavior.  

The soft string model assumes that the drill string has no bending stiffness, and that it has 

continuous contact with the well bore (Menand, et al., 2006). In addition to the bending stiffness, 

this model also neglects tubulure stiffness and the effects of radial clearance.  

 

Figure 2. 4 Soft String Model Continuous Contact Phenomenon 

In contrast, the stiff string model considers that the drill string has bending stiffness and that it has 

point contact with the well bore. In sections of higher well path curvature, there is correspondingly 

more contact points between the drill pipe and the bore wall, while straighter sections reduce wall 

contact forces (Menand, et al., 2006). In some cases, stiff string model assumption is preferred 

over soft string, especially for well path trajectories that have high tortuosity and dog leg severity, 

in order to accurately provide a realistic analysis of the loads and stresses acting on the drill string. 
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Figure 2. 5 Comparing Contact Points for Soft String and Stiff String Models (Sahal & Al-

Zubaidi, 2021) 

In 2021, Ohia et. al performed a comparative study of the soft string and stiff string models in 

torque and drag analysis. The comparison was made using a torque and drag drilling simulation 

software and conventional survey data, performed in both the conventional 90 to 100 ft intervals, 

and continuous 1 to 5ft intervals. They concluded that in order to use the stiff string torque and 

drag model on a highly deviated well, a high-resolution continuous survey must be used to capture 

the effects of doglegs and tortuosity in the well path. 

The stiff string model provides not only a comprehensive analysis on drill string dynamics, but 

also a way to implement optimization in drilling. A stiff string casing and fluid displacement 

simulator was developed in 2019 to design and optimize cement jobs for various well bore 

configurations (Bogaerts, et al., 2019). Through the model and displacement simulator, they were 

able to optimize the placement of the centralizer subs and provide the best cement job design that 

forecasts possible challenges and contingencies to meet the design and well plan objectives. 

2.3 Static and Transient Model 

The static or steady state modeling of drilling systems is a model in which systems are assumed to 

be in equilibrium, and that the disturbances are not considered. This model was first introduced by 

(Gilbert, 1954) and (Mach, Proano, & Brown, 1979) who further popularized static modeling with 

the Nodal Analysis™ used in the and diagnosis of flow performance in a well bore for multi-phase 
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systems in steady-state conditions. This model combines constituents of the system to provide an 

estimation for production rates. The nature of the flow for drilling operations in practice is always 

in transient phase, therefore making the steady-state model inadequate to provide analysis on flow 

behavior that causes flow instability and mud/hole cleaning problems (Ashfahani, Sulistiyo, & 

Hapsari, 2020). 

2.4 Linear and Non-Linear Model 

A linear model is a model in which the systems of governing equations can be linearized. (Wang, 

2022) published a paper on the simulation of well bore integrity during drilling wherein a linear 

Mohr-Coulomb criterion is used to define well bore instability. The governing equations of 

equilibrium temperature and pressures are linearized as: 

𝑇𝑒 = 𝐴𝑝(𝑟, 𝑡)          Equation 2. 6 

𝑝𝑒 = 𝑇(𝑟, 𝑡)/𝐴         Equation 2. 7 

Resulting in, 

𝑝̅

𝑝𝑤
=

𝐾𝑜(𝜏2𝑟)

𝑠𝐾𝑜(𝜏2𝑎)
−

1

1−
𝑐

𝑐𝑜

𝑐′𝑇𝑤

𝑝𝑤

𝐾𝑜(𝜏1𝑎)

𝑠[𝐾𝑜(𝜏1𝑎)−
𝜆𝜏1𝐾1(𝜏1𝑎)

ℎ𝑤
]
[
𝐾𝑜(𝜏2𝑟)

𝐾𝑜(𝜏2𝑎)
−

𝐾𝑜(𝜏1𝑟)

𝐾𝑜(𝜏1𝑎)
]   Equation 2. 8 

𝑇̅

𝑇𝑤−𝑇𝑜
=

𝐾𝑜(𝜏1𝑟)

𝑠[𝐾𝑜(𝜏1𝑎)−
𝜆𝜏1𝐾1(𝜏1𝑎)

ℎ𝑤
]
        Equation 2. 9 

Where 𝑝̅ is the average equilibrium pressure. 

𝑇̅ is the average temperature. 

𝐾 is the intrinsic reaction rate constant. 

𝑎 is the volumetric thermal expansion. 

𝜆 is the thermal conductivity. 

𝐴 is the specific area available for reaction. 

𝑟 is the borehole radius. 
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The linear correlation developed by Wang in this model allows for the thermal-hydraulic equations 

to be solved analytically under the assumption that there is a constant bottom hole pressure and 

constant heat flux (Wang, 2022). The hydrate saturation effect on cohesion and well bore stability 

is shown in Figure 2.6. 

 

Figure 2. 6 Well bore stability based on hydrate saturation (Wang, 2022) 

All models that do not utilize linearized systems of equations fall under non-linear models. (Reza 

& Alcocer, 1986) published a work on a computer simulation well drilling based on a non-

dimensional non-linear mathematical model that utilizes Buckingham Pi theorem. The assumption 

made is that “the 3 sets of models depend on is the need to know how many dimensionless groups 

will constitute a complete set since dimensional analysis was in use.” The parameters include the 

ROP, rate of bit wear, WOB, RPM, fluid flow rate, bit and nozzle diameter, fluid properties, 

pressure, temperature, and heat transfer coefficient. The paper shows that the developed non-linear 

model yields realistic and accurate representation of deep well drilling processes and problems. 

The following non-linear equations were derived from (Reza & Alcocer, 1986). 

The final form of the ROP is given by, 

𝐹̇

𝑁𝑑
= 0.33 [

𝑁𝑑2

𝜈
]
0.43

[
𝑁𝑑3

𝑄
]
−0.68

[
𝐸𝑑

𝑊
]
−0.91

[
𝑝𝑑

𝑊
]
−0.15

     Equation 2. 10 

The final form of the bit dulling rate equation is given by, 

𝐷̇

𝑁𝐷
= 0.001 [

𝑄

𝑁𝐷3]
0.56

[
𝑊

𝐸𝐷2]
0.26

[
𝐷

𝑄
]
−0.03

      Equation 2. 11 
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The final form of bearing life equation is given by, 

𝐵̇

𝑁
= 0.05 [

𝑡ℎ𝑑

𝑊𝑁
]
0.51

[
𝜈

𝑁𝑑2
]
0.4

[
𝑄

𝑁𝑑3
]
−0.5

       Equation 2. 12 

Where 𝐹̇ is the rate of penetration (ft/min) 

𝐷̇ is the bit tooth dullness (fraction of original tooth) 

𝐵̇ is the bearing wear fraction of the total life. 

𝑁 is the rotary speed (RPM) 

𝑑 is the bearing diameter (in) 

𝜈 is the drilling fluid kinematic viscosity (cp) 

𝑄 is the volumetric flow rate (gal/min) 

𝑊 is the WOB (lbs) 

𝐸 is the rock hardness (psi) 

𝑝 is the differential pressure (psi) 

𝐷 is the bit diameter (in) 

The oversimplification of linearized models implies that there is a need to assume that 

displacements are small and there are small contact points between the drill string and the wellbore 

(Wilson & Heisig, 2015). The nonlinear models are more realistic about the occurrence while 

drilling even though most events are difficult to model. The nonlinear models accommodate 

excitement from mud motors, bits, and also include velocity dependent Stribeck friction relation 

sometimes (Wilson & Heisig, 2015). 

2.5 Discrete and Coupled Model 

Discrete models focus on a particular aspect or component of the drilling system. Depouhon et. al 

performed a study on the stick slip instabilities in rotary drilling systems by using a discrete model 

of a drill string (Depouhon & Detournay, 2015). The paper concludes that the steady-state response 

of the discrete model drill string is stable for rotational speed greater than a given critical speed. 
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Coupled models consist of joined models of discrete components. Daireaux et. al developed a 

testing and validation of an adaptive drilling optimization system. The system is developed using 

a simulated environment and the adaptability is achieved by combining two independent processes 

– a physical model that updates an estimate of the bit-rock interaction in response to changes in 

drilling parameters, and a cuttings transport model that maintains the effects of the drilling 

parameters with respect to their safety constraints (Daireaux, et al., 2021). The model has been 

successfully used as an optimization program that provides set-point recommendations to the 

driller and as an integrated module in an automated drilling system. 

 

Figure 2. 7 Processes involved in the adaptive drilling optimization system (Daireaux, et al., 

2021) 

 

Figure 2. 8 Advisory mode interface (Daireaux, et al., 2021) 
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The models discussed in the previous sections are solved in two ways – analytical and numerical. 

The analytical method of solving the models involves using the derived governing equations and 

substituting all known values to calculate unknown parameters. The numerical approach involves 

using computer power and numerous numerical methods to iteratively solve unknown parameters. 

Each solution can either be in the time domain, which is typically slower but with improved 

capability (derivatives, ODE, PDE), or frequency domain which is comparatively faster but with 

reduced capabilities. 

2.6 Gap in Knowledge 

Solving finite element models for different topics in engineering are common but solving them to 

fit the drilling process is vaguely available. This thesis goes from the governing equation to 

develop a space and time-based solution to calculating displacements as forces and torques are 

applied on the drill string. The research goes further to show the procedure to optimize mechanical 

specific energy using particle swarm optimization after developing an optimized RPM objective 

function for mitigating stick slip mechanism while drilling. 

 2.7 Conclusion 

The previous research on drilling simulation shows that many mathematical models have been 

developed to imitate drill-string behavior such as the DOF and the lumped-parameter model – 

which is the most used and straight forward model. Further models in literature include the 

distributed parameter model, soft and stiff string model, static/steady state model, 

transient/dynamic model, linear and non-linear model, discrete model, and coupled model. Models 

observed in literature are solved either analytically or numerically in both frequency and time 

domains. Optimization through the use of models and simulation in drilling proves to be significant 

in enhancing efficiency, safe drilling, and in arresting non-productive time (NPT) such as lost 

circulation, stuck pipe, hole cleaning, ROP, and measurement while drilling.  
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Chapter 3 Modeling Well Path Designing for Drilling Simulation 

The well path sits at the core of the drilling process. The well path is the direction along the 

formation that the well is being drilled through. In terms of drilling simulation, the numbers that 

make up the well path are very important as it inputs into several models that define the drilling 

dynamics. Figure 3.1 below shows the inputs and outputs of a well path design system. 

 

Figure 3. 1 Inputs and Outputs of a Well Path Equation 

The inclination is the angle of vertical deviation from the vertical axis of the well path. The azimuth 

is the angle of horizontal deviation from the north of the well path. MD is the measured depth 

along the well path at every instant of measurement. With these 3 parameters, it is locating a certain 

point on the 3-coordinate system of the well path. In order to plot the well path on a 3-sided 

cartesian plane, the Northing, Easting and TVD are needed instead. 

 

 

Figure 3. 2 Comparing Well Path Inputs and Outputs Schematically 

From Figure 3.2, one can notice the visible difference in the measurements of Northing and Easting 

from inclination and azimuth. Well design modeling is the process of converting the inputs 
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(inclination, azimuth, and MD) to the outputs (Northing, Easting, and TVD). There are 6 methods 

modeling the well path:  

1. Tangential method is the least accurate, it assumes a straight line well path taking into 

consideration the inclination and azimuth at upper survey station and lower station is not 

accounted. 

2. Balanced Tangential Method takes into account the upper and lower survey station and 

approximates well path by two equal straight-line segments. The upper line segment is 

defined by inclination and azimuth at upper survey station and the respective values at 

lower survey station. 

3. Average Angle Method assumes one straight line defined by averaging inclination and 

azimuth at both survey stations, intersects both upper and lower survey stations. 

4. Radius of Curvature Method assumes that well path is not a straight line but a circular 

arc tangential to inclination and azimuth at each survey station. 

5. Minimum Curvature Method is the most accurate, it further adds a Ratio Factor to 

smoothen the spherical arc formed by using radius of curvature method. This is the most 

practically used and accepted calculation method. 

6. Splines Method are calculated based on conditions such as free end, set end, free 

inclination/set azimuth, and set inclination/free azimuth. The resulting trajectories are best 

for point-the-bit and push-the-bit systems due to their smooth continuous functions (Liu, 

Shor, & Park, 2019) (Sampaio, 2007). 

 

3.1 Understanding the Minimum Curvature Method 

 

As expected, the inputs are inclination, azimuth, and measured depth. The model also inputs Ratio 

Factor (RF) which is used to smoothen the spherical arc of the well path. Beta (β) is the dogleg 

angle which is the change in angle (direction) of the wellbore in a 3-dimensional space.  
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Figure 3. 3 Schematics for Minimum Curvature Method (Amorin & Broni-Bediako, 2010) 

𝛽 = 𝐷𝐿 → 𝐷𝑜𝑔𝑙𝑒𝑔 𝐴𝑛𝑔𝑙𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒𝑠  

𝐼1 = 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑢𝑟𝑣𝑒𝑦 𝑝𝑜𝑖𝑛𝑡 1, 𝑑𝑒𝑔𝑟𝑒𝑒𝑠  

𝐼2 = 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑢𝑟𝑣𝑒𝑦 𝑝𝑜𝑖𝑛𝑡 2, 𝑑𝑒𝑔𝑟𝑒𝑒𝑠  

𝐴1 = 𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑡 𝑠𝑢𝑟𝑣𝑒𝑦 𝑝𝑜𝑖𝑛𝑡 1, 𝑑𝑒𝑔𝑟𝑒𝑒𝑠  

𝐴2 = 𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑡 𝑠𝑢𝑟𝑣𝑒𝑦 𝑝𝑜𝑖𝑛𝑡 2, 𝑑𝑒𝑔𝑟𝑒𝑒𝑠  

∆𝑉𝑒𝑟𝑡 = 𝑇𝑉𝐷 = 𝑇𝑜𝑡𝑎𝑙 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑒𝑝𝑡ℎ, 𝑓𝑡  

∆𝐸𝑎𝑠𝑡 = 𝐸𝑎𝑠𝑡𝑖𝑛𝑔, 𝑓𝑡  

 ∆𝑁𝑜𝑟𝑡ℎ = 𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔, 𝑓𝑡 

𝑀𝐷 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝑒𝑝𝑡ℎ, 𝑓𝑡   

The minimum curvature calculation is implemented usually between two survey points.  

The formulas that govern the minimum curvature method are as follows. 

∆𝑁𝑜𝑟𝑡ℎ =
𝑀𝐷

2
∗ [(𝑠𝑖𝑛 𝐼1 ∗ 𝑐𝑜𝑠 𝐴1) + (𝑠𝑖𝑛 𝐼2 ∗ 𝑐𝑜𝑠 𝐴2)] ∗ 𝑅𝐹  Equation 3. 1 

∆𝐸𝑎𝑠𝑡 =
𝑀𝐷

2
∗ [(𝑠𝑖𝑛 𝐼1 ∗ 𝑠𝑖𝑛 𝐴1) + (𝑠𝑖𝑛 𝐼2 ∗ 𝑠𝑖𝑛 𝐴2)] ∗ 𝑅𝐹   Equation 3. 2 
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𝑇𝑉𝐷 =
𝑀𝐷

2
∗ [𝑐𝑜𝑠 𝐼1 + 𝑐𝑜𝑠 𝐼2] ∗ 𝑅𝐹      Equation 3. 3  

  

𝛽 = 𝑐𝑜𝑠−1[𝑐𝑜𝑠(𝐼2 − 𝐼1) − (𝑠𝑖𝑛(𝐼1) ∗ 𝑠𝑖𝑛(𝐼2) ∗ (1 − 𝑐𝑜𝑠 (𝐴2 − 𝐴1)))] Equation 3. 4 

𝑅𝐹 =
2

𝛽
𝑡𝑎𝑛

𝛽

2
         Equation 3. 5 

The Northing and Easting calculated from this formula are the changes in North and changes in 

East to drill from survey point 1 to survey point 2. The corresponding change in vertical height, 

TVD, is also calculated. For drilling simulation purposes, this change is very important when 

simulating drill ahead of the bit. The forces that influence the direction of the drill string and the 

bit eventually reflect its impact in the change in Easting, Northing, and TVD which in a 3-D space 

could be upwards or downwards in 360 degrees direction.  

3.2 Six Directions Considered for Well Path Design in a Drilling Simulator 

For this research, 6 directions were used to determine the movement of the drill string.  Normally 

in 2D, only changes in inclination is considered. The 3 directions being considered in that case are 

build-only, drop-only and straight (no inclination change). In 2D, azimuth is always kept constant. 

This is not feasible for reflecting the impact of the forces affecting the drilling string and the bit. 

Modeling the well path in 3D, if necessary, for accurate measurement of parameter changes while 

drilling. Hence the addition of 3 other directions, build and turn, drop and turn, and straight and 

turn. The turn refers to azimuth changes as the 2D movements occur. These six directions 

accommodate all possible movements of the drill string and the bit as the drilling operations occur. 

 

Figure 3. 4 The Six Directions of 3D Space Well Path 
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3.3 Calculating Course Length as Implemented in the Drilling Simulator 

The way the course length is calculated is one of the defining factor for modeling the well path in 

the 3D space. First, a look at course length for 2D. In 2D, the course length is simply the arc length 

for build and drop and the length of the line for straight path. The formula below will always 

resolve course length calculation for 2D well path. 

𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ = 2𝜋𝑟 (
𝜃

360
)        Equation 3. 6 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 = 𝑐 = √𝑎2 + 𝑏2, 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 

Equation 3. 7 

Depending on the type of well path, a combination of these two formulae is needed to calculate 

the total course length which is the measured depth for a 2D system. Here are the 3 types of well 

path from the perspective of 2D. 

 

Figure 3. 5 Type I, II, & III Well Profiles for 2D Construction (Inglis, 2013) 

For these 2D well types, the course length would be calculated depending on what the input is. 

The table below shows those inputs.  
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Table 3. 1 Inputs Needed to Calculate 2D Well Profile Types 

 Well Profiles 

S/N Input Variables Type 

I: 

Build 

and 

Hold 

 

Type 

II: 

Build, 

Hold 

and 

Drop 

 

Type 

III: 

Deep 

Kick-

Off and 

Build 

 

1 Surface Coordinates ✔ ✔ ✔ 

2 Target Coordinates ✔ ✔ ✔ 

3 True Vertical Depth to Target ✔ ✔  

4 True Vertical Depth to Kick-Off 

Point (KOP) 

✔ ✔ ✔ 

5 True Vertical Depth to End of Drop-

Off 

 ✔  

6 Buildup Rate ✔ ✔ ✔ 

7 Drop-Off Rate  ✔  

8 Final angle of inclination through 

target 

 ✔  

9 Maximum angle of inclination   ✔ 

 

However, 3D the course length is different because the path includes changes in azimuth. The arc 

length formula will not account for the changes in length of a curve as the path is turning at the 

same time. As shown in Figure 3.6, a change in direction from point 1 to point 2 can be likened to 

a 2D well path and the length of the path is the arc length of the circular path 0-1-2. 
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Figure 3. 6 Exemplifying Key Difference Between 2D and 3D Course Length 

The path 0-1-3 is a 3D path which is like a build and a turn path. The length of an arc will not 

cover the full course length considering the turning it takes to go from point 1 to point 3. After 

much research and trials, the one angle that accounts for that course length is the dogleg angle, 

also known as beta in the minimum curvature method. To calculate the course length for those 3D 

well path curves in the drilling simulator, the formula below was used. 

𝐶𝑜𝑢𝑟𝑠𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 3𝐷 𝐶𝑢𝑟𝑣𝑒𝑠 =
𝐷𝑜𝑔𝑙𝑒𝑔 𝐴𝑛𝑔𝑙𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑜𝑔𝑙𝑒𝑔 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 °/100𝑓𝑡
   Equation 3. 8 

Dogleg severity DLS is the degree of curvature between two survey stations in the directional well 

path. A limit of maximum dogleg severity is used if based on pre-drilling planning, a desired DLS 

is required to avoid potential downhole tool damages. This already known concept of course length 

calculation is the bridge between 2D well trajectory calculations and 3D estimation. 

3.4 Interpolating a Well Path 

Usually when simulating a planned path, certain locations and their corresponding azimuth, 

inclination and measured depth are known. The key is to calculate the data in between those points 
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so they can all be inputted into the minimum curvature method. Interpolating the inclination 

between two known points is straight forward.  

If 𝐼2 > 𝐼1 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐼1 𝑎𝑛𝑑 𝐼2 𝑖𝑛 𝑥 𝑠𝑡𝑒𝑝𝑠 𝑎𝑟𝑒 
𝐼2−𝐼1

𝑥
.   

Let 𝐼𝑛𝑐𝑟 =
𝐼2−𝐼1

𝑥
 

Then increasing from 𝐼1 𝑡𝑜 𝐼2 𝑤𝑜𝑢𝑙𝑑 𝑏𝑒𝑐𝑜𝑚𝑒 𝐼1, 𝐼1 + 𝐼𝑛𝑐𝑟, 𝐼1 + 2 ∗ 𝐼𝑛𝑐𝑟, … , 𝐼1 + ((𝑥 − 1) ∗

𝐼𝑛𝑐𝑟), 𝐼2 

The same principle works for the drop from 𝐼2 𝑡𝑜 𝐼1   

This interpolation process is a little different when dealing with azimuth change. The change in 

azimuth follows certain rules as implemented in this research. 

1. Azimuth increases from 0° 𝑡𝑜 360°. 

2. The change in azimuth follows the shortest distance between the two points being 

considered. 

3. Depending on what the shortest distance is, the direction from point 1 to point 2 could be 

either incremental or decreasing even passing through 0° 𝑡𝑜 359°. 

Here is an illustration of this change diagrammatically. Going forward 

∝1  𝑖𝑠 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 1 𝑎𝑛𝑑 ∝2  𝑖𝑠 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 2 

𝛽1 𝑖𝑠 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 1 𝑎𝑛𝑑 𝛽2 𝑖𝑠 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 2 

Scenario 1: Forward Direction Moving from 𝛽1 𝑡𝑜 𝛽2: 

𝛽1 = 30° 

𝛽 = 100° 
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Figure 3. 7 Forward Direction Azimuth Scenario 

𝐷1 is the forward direction distance.                                                       

for moving from 𝛽1 𝑡𝑜 𝛽2 

𝐷2 is the backward direction distance. 

for moving from 𝛽1 𝑡𝑜 𝛽2 

𝐷1  =  (𝛽1 − 𝛽2)  =  (30° –  100 °) 

𝐷1 =  70° 

𝐷2  =  (𝛽1  −  0°)  +  (360° − 𝛽2)  =   𝛽1 − 𝛽2  +  360° 

𝐷2 =  30 –  100 +  360  

𝐷2 =  290° 

The chooses direction is always the direction with lower distance. 

In this scenario, 𝐷1 <  𝐷2 

This means moving from 𝛽1to 𝛽2will require forward direction. 
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If n is the number of steps inputted to get from 𝛽1 𝑡𝑜 𝛽2 

Also, if increment is the step size, then increasing from 𝛽1𝑡𝑜 𝛽2 would be 

𝛽1, 𝛽1  +  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝛽1  +  2 ∗  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡. . . , 𝛽1  +  (𝑛 –  1)  ∗  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝛽2 

Scenario 2: Backward direction moving from 𝛽1 𝑡𝑜 𝛽2: 

𝛽1 =  30° 

𝛽2 =  300° 

 

 

Figure 3. 8 Backward Direction Azimuth Scenario 

𝐷1 =  |𝛽1 − 𝛽2|  =  |30° –  300 °| 

𝐷1 = 270° 

𝐷2 = 𝛽1 − 𝛽2  +  360° =   30 –  300 +  360° 

𝐷2 =  90° 

Since D2 <   D1,moving direction from β1 to β2 will require backward direction 
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Let y be the number of steps inputted to get from β1 to β2 

𝐿𝑒𝑡 𝑥 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 

𝑡ℎ𝑒𝑛 𝑚𝑜𝑣𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝛽1 𝑡𝑜 𝛽2 𝑤𝑜𝑢𝑙𝑑 𝑏𝑒: 

𝛽1, 𝛽1  −  𝑥, 𝛽1  +  2𝑥, . . . , 360 −   𝑥, 360  −  2𝑥,… 360 − (𝑦 − 1)𝑥, 𝛽2 

3.5 Constructing Path for Multi-Lateral Well (MLW) 

There are two main shapes for MLW, fishbone wells and roof wells. In both cases, the laterals are 

formed due to changes in the inclination or azimuth at different lateral lengths. Consider this 

schematic of a fishbone well:  

 

Figure 3. 9 Schematic for Fishbone Multi-Lateral 

Zooming in on deviation into lateral 1 and 2 

 

Figure 3. 10 Zooming in on First Two Lateral Deviation for Fishbone 
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In this case the inclination stays constant at 90° and then begins to change in azimuth 

∆𝛽1 and ∆𝛽2 are changes in azimuth on either side of the main lateral. 

The joining process is to identify the measured depth where the deviation starts on the main lateral 

and calculate what change in azimuth is occurring. It could be a backward direction or a forward 

direction. The last data on the main lateral merges with the first data on the joining lateral. It is 

also possible that the inclination is increasing as well. 

Consider this schematic for root-shaped multi-lateral as well. 

 

Figure 3. 11 Schematics for Root Shaped Multi-Lateral Well 

The main lateral is kept at vertical 𝑜°,  the other laterals deviate from vertical as inclination 

changes. Taking a closer look at lateral 1 and 2: 

 

Figure 3. 12 Zooming in on the First Two Laterals for Root Multi-Lateral Wells 

∆∝1   𝑎𝑛𝑑 ∆∝2are the deviation from vertical for lateral 1 and 2 on either side of the vertical. 
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The changes are both builds from the main lateral. This build is not restricted to 2D, there could 

be 3D change in direction as well. 

An example will make the illustration better. Here is the generic form for a build only well. 

Table 3. 2 Generic Form for a Build Only Well 

INCLINATION AZIMUTH LENGTH DESCRIPTION 

∝1 𝛽1 0 Surface 

∝1 𝛽1 KOP Kick-off 

∝2 

(∝2 is usually 90°) 

𝛽2 unknown Intermediate closing 

point (ICP) 

∝3=∝2 𝛽3 = 𝛽2 KOP+ Length End of lateral 

 

 Consider a horizontal well which kicks off at 3000ft and builds to 90°, the lateral stretches for 

1500ft while in 60° azimuth direction. 

Let that well be the main lateral, the first deviated lateral begins 100ft into the horizontal section 

of the main lateral, and the other 3 lateral commence deviation 100ft apart targeting an addition 

30° azimuth change to the right and left of the main lateral. There is a table of the path assuming 

the length of each deviating lateral is 500 ft. 

Table 3. 3 Main Lateral Data 

INCLINATION AZIMUTH LENGTH DESCRIPTION 

0 0 0 Surface 

0 0 3000 Kick-off 

90° 60° unknown Intermediate 

closing point (ICP) 

90° 60° +1500 End of lateral 
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Table 3. 4 Lateral 1 Data 

INCLINATION AZIMUTH   LENGTH DESCRIPTI

ON 

90° 60° 0 Start 

90° 60° +1500ft End 

                                                     

Table 3. 5 Lateral 2 Data 

INCLINATION AZIMUTH LENGTH DESCRIPTI

ON 

90° 60° +100   Start 

90° 30° +500 End 

                                  

Table 3. 6 Lateral 3 Data 

INCLINATION   AZIMUTH LENGTH DESCRIPTI

ON 

90° 60° +200 Start 

90° 90° +500 End 

                                                   

Table 3. 7 Lateral 4 Data 

INCLINATION AZIMUTH LENGTH DESCRIPTI

ON 

90° 60° +300 Start 

90° 30° +500 End 

 

Since inclination remains constant in this case, joining the azimuth then becomes the main 

task: 
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Figure 3. 13 Deviation of Azimuth in Multi-Lateral Well 

Change in direction for lateral 2 and 4  

𝐷1  =  |60°  −   30°| 

𝐷1  =  30° 

𝐷2  =   30° −  60° +  360° 

      𝐷2  =  330° 

 

Figure 3. 14 Reverse Azimuth Change in Multi-Lateral Wells 

Change in direction for lateral 1 and 3. 
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𝐷1  =  |60° −   90°| 

𝐷1  =  30° 

𝐷2  =   60° −  90° +  360° 

𝐷2 =  330° 

Both changes are forward direction from the end of the main lateral to the beginning of each 

new lateral deviation from the main horizontal. The final well path for each lateral can be 

written independent of the other laterals.  there is such a table for lateral 4: 

Table 3. 8 Total Well Path for Lateral 4 

INCLINATION                            AZIMUTH                              LENGTH                             DESCRIPTION 

0° 0° 3000 Kick off 

90° 60° unknown Intermediate closing 

point (ICP) 

 

90° 60° +300 Start 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

90° 30° +500 End 

 

3.6 Practicing Well Path Design on Well 4     

This practice will touch several things. First a description of the scenario. The scenario is about a 

multilateral well that starts off as a vertical well, builds a little bit, and then splits into three laterals. 

This is about well 4 that splits into well 4A, well 4B, and well 4C. Well 4 is a multilateral well 

drilled in the Niger-Delta region of Nigeria. Below is a summary table of the data for this practice. 
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Table 3. 9 Summary of Data for Well 4 and its Laterals 

Well Name Path Parameter Start Finish 

Well 4 Measured Depth, ft 0 12290.03 

Inclination, degrees 0 60.94 

Azimuth, degrees 0 311.50 

Well 4B Measured Depth, ft 12356.86 14294.62 

Inclination, degrees 60.67 54.00 

Azimuth, degrees 316.71 313.00 

Well 4A Measured Depth, ft 11313.09 13858.27 

Inclination, degrees 60.52 60 

Azimuth, degrees 312.57 312 

Well 4C Measured Depth, ft 11356.04 14268.37 

Inclination, degrees 59.35 37.77 

Azimuth, degrees 311.88 301.62 

 

The first test is to accurately interpolate inclination and azimuth data. Consider a trail of well B 

data from its deviation point in the main lateral well 4. The goal is to calculate all the in-between 

points. 

Table 3. 10 Well 4B Data Summary Sheet 

Measured Depth Inclination Azimuth 

12356.86 60.67 316.71 

12450.46 58.23 318.54 

12602.66 58.44 319.76 

12687.66 57.91 319.28 

 

Assuming the two middle azimuths are not known then the interpolation process will be as follows 
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Table 3. 11 Unknown Azimuth in Well 4B Data 

Measured Depth Inclination Azimuth 

12356.86 60.67 316.71 

12450.46 58.23 Unknown 

12602.66 58.44 Unknown 

12687.66 57.91 319.28 

 

Between 316.71 to 319.28 is a forward direction azimuth change because 

 |316.71 − 319.28| < (316.71 − 319.28 + 360) 

There are three steps required so 𝑛 = 3 

For a planned path simulation, the drilling simulator would have divided the path into equal paths. 

The azimuth becomes 316.71, 317.5667, 318.4234, 319.2801 Comparing this to the actual 

values. The actual values come from the measurement while drilling data when the well was 

actually drilled. 

Table 3. 12 Error in Azimuth Calculation in Well 4B Data 

Actual Azimuth for Well 4B Calculated Azimuth for Well 4B 

316.71 316.71 

318.54 317.5667 Error=0.8567 absolute 

319.76 318.4234 Error=1.3366 absolute 

319.28 319.2801 

The error, this is the difference between the calculated azimuth and the actual azimuth.  

(∆𝜃 =  𝜃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  −  𝜃𝑎𝑐𝑡𝑢𝑎𝑙) 

The second test is the calculation of course length in a scenario of change in azimuth and change 

in inclination scenario.                                   
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Table 3. 13 Error in Measured Calculation in Well 4B Data 

Measured Depth, ft Inclination Azimuth DLS 

12356.86 60.67 316.71 3.61 

Unknown 1 58.23 318.54 3.05 

Unknown 2 58.44 319.76 0.69 

Unknown 3 57.91 319.28 0.77 

 

𝐷𝑜𝑔𝑙𝑒𝑔 𝐴𝑛𝑔𝑙𝑒 = 𝑐𝑜𝑠−1[𝑐𝑜𝑠(𝐼2 −𝐼1) − (𝑠𝑖𝑛(𝐼1) ∗ 𝑠𝑖𝑛(𝐼2) ∗ (1 − 𝑐𝑜𝑠 (𝐴2 − 𝐴1)))]  

           Equation 3. 9 

𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝑒𝑝𝑡ℎ =
𝐷𝑜𝑔𝑙𝑒𝑔 𝐴𝑛𝑔𝑙𝑒∗100

𝐷𝐿𝑆
   Equation 3. 10 

∆𝑀𝐷1

=
100 ∗ cos−1[cos(58.23 −60.67) − (sin(60.67) ∗ sin(58.23) ∗ (1 − cos (316.71 − 318.54)))]

3.05
 

∆𝑀𝐷1 = 96.497 𝑓𝑡 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 1 =  12356.86 + 96.497 = 12,453.357ft  

𝑈𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒, 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 2 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑.  

Table 3. 14 Error in Measured Depth Calculations for Well 4B 

Actual Measured Depth ft Calculated Measured Depth ft 

12356.86 12356.86 

12450.46 12453.357 Error=2.897 absolute 

12602.66 12606.8927 Error=4.2327 

absolute 

12687.66 12693.7436 Error=6.0836 

absolute 
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3.7 Conclusion 

This chapter has reviewed how the well path is computed in the drilling simulator. The key 

equation of note is the 4 minimum curvature formula that converts inclination, azimuth, and 

measured depth into northing, easting, and TVD. Interpolating inclination and azimuth is 

unique in procedures as azimuth could go either forward direction changes or backward direction 

changes; the choice is based on the shortest distance between the start point and the end point in 

degrees. Course length changes are dependent on dogleg angle. The formulas used in 2D 

schematics of the well path will not work in the drilling simulator because changes in azimuth are 

accounted for. Hence 3D schematics are considered which accommodates azimuth changes. Error 

in azimuth changes calculations and course length calculations are minimal but do not take the 

direction away from the expected well path. Even though the Minimum Curvature Method (MCM) 

provides a method to interpolate azimuth, the real challenge is the computational implementation 

of the minimum curvature method, which could lead to a lot of errors. This thesis has implemented 

the minimum curvature method in 3D and has produced results of the azimuth that are closely 

aligned with the azimuth changes from the measurement while drilling data of the well. The 

calculations made in this chapter show a less than 2-degree error calculated, and this 2-degree 

differential may be due to noise in the recorded data. 
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Chapter 4 Drill String Displacement Estimation Using Finite Element Method 

The goal of this chapter is to work from first principles on how to simulate the displacement 

calculations for a 3-dimensional structure, specifically the drill string. The parameter of focus is 

the displacement of the drill string during drill ahead process. The drill string is considered as a 3-

dimensional linear set of elements with 6 degrees of freedom (DOF) at each node. The 

displacement vector w consists of 4 independent processes that make up the 12 DOF per element. 

• Axial Load: This refers to the force applied directly at the axis of the element which in this 

case is the x direction. 

• Axial Torsion: This refers to the twisting of the element in the axial direction due to torque 

applied leading to angular displacement. 

• Bending in XZ plane: A load in y direction in one end will lead to rotation in the z direction 

or XZ plane. 

• Bending in the XY plane: A load in the z direction will lead to rotation in the y direction or 

XY plane. 

These 4 procedures occur simultaneously and independently leading to the 12 DOF per element. 

Here are the key assumptions for the finite element model. 

1. Shear deformation is negligible 

2. The beam is a linear element with 2 nodes 

The overall equation for an element is as follows: 

 

[𝐾𝑒][𝑈𝑒] = [𝐹𝑒] = [𝑓𝑒] + [𝑄𝑒]          (Reddy, 2005)   Equation 4. 1 

[𝐾𝑒] is Element Stiffness Matrix 

[𝑈𝑒] is Generalized Displacement Vector 

[𝐹𝑒] is Generalized Force Vector 

[𝑓𝑒] is Distributed Normal Force 

[𝑄𝑒] is Pont Forces and Moments 

The basic assumptions and limitations are: 

• Linear relationship exists between applied load and the resulting displacement of the 

structure. 

o Making the principle of superposition valid (Reddy, 2005). 
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• Material of the structure must obey Hooke’s Law. 

o Material must not be stressed beyond its elastic limit. 

• Equations of equilibrium shall be developed using the geometry of the undeflected model. 

o Change in geometry caused by imposed loads is negligible compared to the original. 

4.1 The Governing Equation and Stiffness Matrix for Bending in the XY and XZ Planes 

The focus of this section will be bending in the XZ plane, and the results will be the same for the 

XY plane just with different moments of inertia which will be indicated later in this section. Figure 

4.1 shows the schematics of how the unit load in Y direction causes rotation in the z direction. 

 

Figure 4. 1 Unit Loading in Y Direction 

The dependent variable of focus is the displacement of the drill string as the drill ahead into the 

formation occurs. The equation that encapsulates this phenomenon is the Euler-Bernoulli classical 

beam theory. Suppose there is a beam with a neutral axis and when it bends, it bends in such a way 

that the deformed beam and the deformed neutral axis remains perpendicular to the edge of the 

beam. 

 

Figure 4. 2 The Bending of a Beam 
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For the Euler theory to exist the length of the beam, L, must be far greater than the thickness, t, of 

the beam. The governing equation is as follows. 

𝑑2

𝑑𝑦2
(
𝑏𝑑2𝑤

𝑑𝑦2
) = 𝑓(𝑦)   (Reddy, 2005)      Equation 4. 2 

The is the strong form, a 4th order ordinary differential equation. Where 𝑓(𝑦) is the distributed 

load (lb/ft) on the beam element. 

𝑏 = 𝐸𝐼𝑧; 𝐸 = 𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠, 𝑝𝑠𝑖 𝑎𝑛𝑑 𝐼𝑧 = 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎, 𝑖𝑛4 

𝑤 is the deflection of the beam, it is positive if it is going up and negative when it is coming down. 

𝑦 is the variation of displacement along the length of the beam. 

Consider a small element of a beam, 

 

Figure 4. 3 Forces and Moments in a 2 Node Element 

𝑄1
𝑒 𝑎𝑛𝑑 𝑄3

𝑒  are shear forces. 

𝑄2
𝑒 𝑎𝑛𝑑 𝑄4

𝑒  are bending moments. 

The sign convention is that bending moments are positive clockwise and negative anticlockwise. 

Shear forces are positive when going up and negative when coming down.  

The weak formulation is: 

𝐸𝑟𝑟𝑜𝑟 = ∫ [
𝑑2

𝑑𝑦2
(
𝑏𝑑2𝑤

𝑑𝑦2
) − 𝑓(𝑦)] 𝑑𝑦

𝐿

0
         Equation 4. 3 

This error will be zero if the solution to the governing equation were to be exact. If it is not exact, 

then Equation 4.2 will be the approximation of the solution. The next step is to multiply by a 
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weight function, v(y) and equate to zero to achieve minimum potential energy, placing the system 

at equilibrium. 

∫ 𝑣 [
𝑑2

𝑑𝑦2
(
𝑏𝑑2𝑤

𝑑𝑦2
) − 𝑓(𝑦)] 𝑑𝑦 = 0 

𝐿

0
       Equation 4. 4 

The next step is to integrate by parts which gives the following expression. 

∫ [−
𝑑𝑣

𝑑𝑦
[
𝑏𝑑2𝑤

𝑑𝑦2
]
′

− 𝑣𝑓] 𝑑𝑦 + [𝑣
𝑑

𝑑𝑦
(
𝑏𝑑2𝑤

𝑑𝑦2
)]

0

𝐿

= 0 
𝐿

0
      Equation 4. 5 

[𝑣
𝑑

𝑑𝑦
(
𝑏𝑑2𝑤

𝑑𝑦2
)]

0

L

 represents the first boundary condition term. To further weaken the differential, 

another integration is needed which gives the following. 

∫ [
𝑑2𝑣

𝑑𝑦
[
𝑏𝑑2𝑤

𝑑𝑦
]
 

− 𝑣𝑓] 𝑑𝑦 + [𝑣
𝑑

𝑑𝑦
(
𝑏𝑑2𝑤

𝑑𝑦2
) − (

𝑑𝑣

𝑑𝑦
) (

𝑏𝑑2𝑤

𝑑𝑦2
)]

0

𝐿

= 0 
𝐿

0
   Equation 4. 6 

[− (
𝑑𝑣

𝑑𝑦
) (

𝑏𝑑2𝑤

𝑑𝑦2
)]

0

𝐿

 is another boundary condition term. Equation 4.5 is the weak form of the Euler 

Bernoulli equation which can be written as  

∫ [
𝑑2𝑣

𝑑𝑦2
[
𝑏𝑑2𝑤

𝑑𝑦2
]
 

− 𝑣𝑓] 𝑑𝑦 + [
𝑣(𝑏𝑤′′)

′
−𝑣′(𝑏𝑤′′)

1
]
0

𝐿

= 0 
𝐿

0
     Equation 4. 7 

The primary variables are obtained by replacing the weighting function with the unknown 

variables in the boundary terms. This means the primary variables are 𝑤 𝑎𝑛𝑑 −
𝑑𝑤

𝑑𝑦
  which are 

generalized displacements while the generalized forces are (𝑏w′′)′ is shear force and (𝑏w′′) is 

moment. Note that the rotation displacement 𝜃 =
𝑑𝑤

𝑑𝑦
 .   

Identifying the boundary conditions of the secondary variables:  

(𝑏𝑤′′)′|𝑥=0 = 𝑄1
𝑒           Equation 4. 8 

(𝑏𝑤′′)′|𝑥=𝐿 = 𝑄3
𝑒          Equation 4. 9 

−(𝑏𝑤′′)|𝑥=0 = 𝑄2
𝑒          Equation 4. 10 

−(𝑏𝑤′′)|𝑥=𝐿 = 𝑄4
𝑒          Equation 4. 11 
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Rewriting the weak form to get  

∫ [
𝑑2𝑣

𝑑𝑦2
[
𝑏𝑑2𝑤

𝑑𝑦2
]
 

] 𝑑𝑦 = ∫ 𝑓𝑣𝑑𝑦
𝐿

0
+ (𝑣|𝑦=0)𝑄1

𝑒 + ((−𝑣′|𝑦=0)𝑄2
𝑒) + 

𝐿

0
 (𝑣|𝑦=𝐿)𝑄3

𝑒 + ((−𝑣′|𝑦=𝐿)𝑄4
𝑒) 

 Equation 4. 12 

This can help in determining the interpolation functions per element.  

 

Figure 4. 4 The Boundaries of a Two Node Element 

𝑤𝑒|𝑦 = ∑ 𝑢𝑗
𝑒∅𝑗

𝑒4
𝑗=1 (𝑦) = 𝑢1

𝑒∅1
𝑒(𝑦) + 𝑢2

𝑒∅2
𝑒(𝑦) + 𝑢3

𝑒∅3
𝑒(𝑦) + 𝑢4

𝑒∅4
𝑒(𝑦)  Equation 4. 13 

𝑤|𝑦=0 = 𝑤1 = 𝑢1
𝑒 meaning 𝑎𝑡 𝑦 = 0, ∅1

𝑒 = 1     Equation 4. 14 

−𝑤′|𝑦=0 = 𝜃1 = 𝑢2
𝑒 meaning 𝑎𝑡 𝑦 = 0, (∅2

𝑒)′ = −1     Equation 4. 15 

𝑤|𝑦=𝐿 = 𝑤2 = 𝑢3
𝑒 meaning at 𝑦 = 𝐿, ∅3

𝑒 = 1     Equation 4. 16 

−𝑤′|𝑦=𝐿 = 𝜃2 = 𝑢4
𝑒 meaning 𝑎𝑡 𝑦 = 𝐿, (∅4

𝑒)′ = −1     Equation 4. 17 

The aim is to develop ∅1
𝑒(𝑦), ∅2

𝑒(𝑦), ∅3
𝑒(𝑦), and ∅4

𝑒(𝑦) which are the interpolation functions. Here 

are the boundary conditions. 

Table 4. 1 Boundary Conditions Table for 2 Node Element 

 ∅1
𝑒 (∅1

𝑒)′ ∅2
𝑒 (∅2

𝑒)′ ∅3
𝑒 (∅3

𝑒)′ ∅4
𝑒 (∅4

𝑒)′ 

𝑦 = 0 1 0 0 −1 0 0 0 0 

𝑦 = 𝐿 0 0 0 0 1 0 0 -1 

 

Each function will have 4 constants since there are 4 degrees of freedom. 

∅1
𝑒(𝑦) = 𝑎 + 𝑏𝑦 + 𝑐𝑦2 + 𝑑𝑦3       Equation 4. 18 
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∅2
𝑒(𝑦) = 𝑒 + 𝑓𝑦 + 𝑔𝑦2 + ℎ𝑦3       Equation 4. 19 

∅3
𝑒(𝑦) = 𝑚 + 𝑛𝑦 + 𝑝𝑦2 + 𝑞𝑦3       Equation 4. 20 

∅4
𝑒(𝑦) = 𝑟 + 𝑙𝑦 + 𝑉𝑦2 + 𝑇𝑦3        Equation 4. 21 

Based on the boundary conditions Table 4.1, here are the value of the constants. 

Table 4. 2 Expressions of Interpolation Functions for Linear 2 Node Beam 

Interpolation Function Constants Expression per Constant 

∅1
𝑒(𝑦) a 1 

b 0 

c −3

𝐿2
 

d 2

𝐿3
 

∅2
𝑒(𝑦) e 0 

f -1 

g 2

𝐿
 

h −1

𝐿2
 

∅3
𝑒(𝑦) m 0 

n 0 

p 3

𝐿2
 

q −2

𝐿3
 

∅4
𝑒(𝑦) r 0 

l 0 

V 1

𝐿
 

T −1

𝐿2
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Here are the final full expressions of the interpolation functions. 

∅1
𝑒(𝑦) = 1 −

3

𝐿2
𝑦2 +

2

𝐿3
𝑦3        Equation 4. 22 

∅2
𝑒(𝑦) = −𝑦 +

2

𝐿
𝑦2 −

𝟏

𝑳𝟐
𝑦3        Equation 4. 23  

∅3
𝑒(𝑦) =

3

𝐿2
𝑦2 −

2

𝐿3
𝑦3         Equation 4. 24 

∅4
𝑒(𝑦) =

1

𝐿
𝑦2 −

1

𝐿2
𝑦3          Equation 4. 25 

The figures below show the progression from node 1 to node 2 for each of the interpolation 

functions. 

 

Figure 4. 5 Variation of Translation Interpolation Functions for 2 Node Element 
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Figure 4. 6 Variation of Rotation Interpolation Functions for 2 Node Element 

Recall, this is a two-node element, with each side having 2 degrees of freedom. 

 

Figure 4. 7 4 DOFs in Beam Element 

This means the stiffness matrix is a 4 by 4 matrix. 

𝐾 = [4 𝑋 4]          Equation 4. 26 

Based on the left-hand side of Equation 4.12, 

𝐾𝑖𝑗
𝑒 = ∫ 𝑏 [

𝑑2∅𝑖
𝑒

𝑑𝑦2
[
𝑑2∅𝑗

𝑒

𝑑𝑦2
]
 

] 𝑑𝑦
𝐿

0
        Equation 4. 27 

K matrix is bilinear in ∅𝑖
𝑒 and ∅𝑗

𝑒 and symmetric in ∅𝑖
𝑒 and ∅𝑗

𝑒. In an overall sense in the Y axis, 

𝐾 =

[
 
 
 
𝐾11
𝑒 𝐾12

𝑒 𝐾13
𝑒 𝐾14

𝑒

𝐾21
𝑒 𝐾22

𝑒 𝐾23
𝑒 𝐾24

𝑒

𝐾31
𝑒 𝐾32

𝑒 𝐾33
𝑒 𝐾34

𝑒

𝐾41
𝑒 𝐾42

𝑒 𝐾43
𝑒 𝐾44

𝑒 ]
 
 
 

        Equation 4. 28 
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The equations for ∅𝑖
𝑒 and ∅𝑗

𝑒 are gotten from the interpolation functions in Equation 4.22 to 

Equation 4.25. For example, 𝐾34
𝑒  is calculated thus. 

𝐾34
𝑒 = ∫ 𝑏 [

𝑑2∅3
𝑒

𝑑𝑦2
[
𝑑2∅4

𝑒

𝑑𝑦2
]
 

] 𝑑𝑦
𝐿

0
        Equation 4. 29 

𝐾34
𝑒 = ∫ 𝑏 [

𝑑2(
3

𝐿2
𝑦2−

2

𝐿3
𝑦3)

𝑑𝑦2
[
𝑑2(

1

𝐿
𝑦2−

1

𝐿2
𝑦3)

𝑑𝑦2
]

 

] 𝑑𝑦
𝐿

0
      Equation 4. 30 

𝐾34
𝑒 =

6𝑏

𝐿2
=

6𝐸𝐼𝑧

𝐿2
         Equation 4. 31 

Here are the second differentials of the interpolation functions. 

𝑑2∅1
𝑒

𝑑𝑦2
=

−6

𝐿2
+

12𝑦

𝐿3
         Equation 4. 32 

𝑑2∅2
𝑒

𝑑𝑦2
=

4

𝐿
−

6𝑦

𝐿2
          Equation 4. 33 

𝑑2∅3
𝑒

𝑑𝑦2
=

6

𝐿2
−

12𝑦

𝐿3
         Equation 4. 34 

𝑑2∅4
𝑒

𝑑𝑦2
=

2

𝐿
−

6𝑦

𝐿2
          Equation 4. 35 

The full stiffness matrix for the y direction loading is. 

𝐾𝑦 =

[
 
 
 
 
 
12𝐸𝐼𝑧

𝐿3
−6𝐸𝐼𝑧

𝐿2
− 12𝐸𝐼𝑧

𝐿3
−6𝐸𝐼𝑧

𝐿2

−6𝐸𝐼𝑧

𝐿2
4𝐸𝐼𝑧

𝐿

6𝐸𝐼𝑧

𝐿2
2𝐸𝐼𝑧

𝐿
− 12𝐸𝐼𝑧

𝐿3
6𝐸𝐼𝑧

𝐿2
12𝐸𝐼𝑧

𝐿3
6𝐸𝐼𝑧

𝐿2

−6𝐸𝐼𝑧

𝐿2
2𝐸𝐼𝑧

𝐿

6𝐸𝐼𝑧

𝐿2
4𝐸𝐼𝑧

𝐿 ]
 
 
 
 
 

      Equation 4. 36 

Similarly, the Z direction stiffness matrix can be computed. 
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Figure 4. 8 Unit Loading in Z Direction 

Based on similar principles as the Y direction, the Z direction stiffness matrix is 

𝐾𝑧 =

[
 
 
 
 
 
 
12𝐸𝐼𝑦

𝐿3

−6𝐸𝐼𝑦

𝐿2

− 12𝐸𝐼𝑦

𝐿3

−6𝐸𝐼𝑦

𝐿2

−6𝐸𝐼𝑦

𝐿2

4𝐸𝐼𝑦

𝐿

6𝐸𝐼𝑦

𝐿2

2𝐸𝐼𝑦

𝐿
− 12𝐸𝐼𝑦

𝐿3

6𝐸𝐼𝑦

𝐿2

12𝐸𝐼𝑦

𝐿3

6𝐸𝐼𝑦

𝐿2

−6𝐸𝐼𝑦

𝐿2

2𝐸𝐼𝑦

𝐿

6𝐸𝐼𝑦

𝐿2

4𝐸𝐼𝑦

𝐿 ]
 
 
 
 
 
 

      Equation 4. 37 

4.2 The Governing Equation and Stiffness Matrix for Axial Loading 

Consider a beam which is axially loaded as shown in Figure 4.9 

 

Figure 4. 9 Axial Loading in x Direction 

Here is the governing equation. 

−
𝑑

𝑑𝑥
[𝐸𝐴

𝑑𝑢

𝑑𝑥
] = 𝑞(𝑥)   (Reddy, 2005)     Equation 4. 38 

Assuming constant Young’s Modulus, E. 𝑢 is the displacement in x direction. 𝑞(x) is the point 

axial load of the system. 

The weak formulation is: 
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𝐸𝑟𝑟𝑜𝑟 = ∫ [−
𝑑

𝑑𝑥
[𝐸𝐴

𝑑𝑢

𝑑𝑥
] − 𝑞(𝑥)] 𝑑𝑥

𝐿

0
         Equation 4. 39 

This error will be zero if the solution to the governing equation were to be exact. If it is not exact, 

then Equation 4.39 will be the approximation of the solution. The next step is to multiply by a 

weight function, v(x) and equate to zero to achieve minimum potential energy which places the 

system in equilibrium, 

∫ 𝑣 [−
𝑑

𝑑𝑥
[𝐸𝐴

𝑑𝑢

𝑑𝑥
] − 𝑞(𝑥)] 𝑑𝑥 = 0 

𝐿

0
       Equation 4. 40 

The next step is to integrate by parts which gives the following expression. 

∫ [
𝑑𝑣

𝑑𝑥
𝐸𝐴 [

𝑑𝑢

𝑑𝑥
] − 𝑣𝑞] 𝑑𝑥 + [𝑣𝐸𝐴 [

𝑑𝑢

𝑑𝑥
]]
0

𝐿

= 0 
𝐿

0
      Equation 4. 41 

[EA [
du

𝑑x
]]
0

𝐿

 represents the boundary condition term. The primary variable in this case is 𝑢|𝑥=0 and 

𝑢|𝑥=𝐿. Rearranging Equation 4.41 to obtain 

∫ [𝐸𝐴
𝑑𝑣

𝑑𝑥
[
𝑑𝑢

𝑑𝑥
]] 𝑑𝑥 = ∫ 𝑣𝑞

𝐿

0
− [𝑣𝐸𝐴 [

𝑑𝑢

𝑑𝑥
]]
0

𝐿
𝐿

0
      Equation 4. 42 

This can help in determining the interpolation functions per element.  

 

Figure 4. 10 Axial Boundaries of a Two Node Element 

𝑢𝑒|𝑥 = ∑ 𝑢𝑗
𝑒∅𝑗

𝑒2
𝑗=1 (𝑥) = 𝑢1

𝑒∅1
𝑒(𝑥) + 𝑢2

𝑒∅2
𝑒(𝑥)     Equation 4. 43 

𝑢|𝑥=0 = 𝑢1
𝑒 meaning 𝑎𝑡 𝑥 = 0, ∅1

𝑒 = 1      Equation 4. 44 

𝑢|𝑥=𝐿 = 𝑢2
𝑒 meaning 𝑎𝑡 𝑥 = 𝐿, ∅2

𝑒 = 1       Equation 4. 45 
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The aim is to develop ∅1
𝑒(𝑥) and ∅2

𝑒(𝑥) which are the interpolation functions. Here are the 

boundary conditions. 

Table 4. 3 Axial Loading Boundary Conditions Table for 2 Node Element 

 ∅1
𝑒 ∅2

𝑒 

𝑥 = 0 1 0 

𝑥 = 𝐿 0 1 

 

Each function will have 2 constants since there are 2 degrees of freedom. 

∅1
𝑒(𝑥) = 𝑎 + 𝑏𝑥         Equation 4. 46 

∅2
𝑒(𝑥) = 𝑐 + 𝑑𝑥         Equation 4. 47 

Based on the boundary conditions in Table 4.3, here are the value of the constants. 

Table 4. 4 Axial Loading Expressions of Interpolation Functions for Linear 2 Node Beam 

Interpolation Function Constants Expression per Constant 

∅1
𝑒(𝑥) a 1 

b −1

𝐿
 

∅2
𝑒(𝑥) c 0 

d 1

𝐿
 

 

Here are the final full expressions of the interpolation functions. 

∅1
𝑒(𝑥) = 1 −

𝑥

𝐿
          Equation 4. 48 

∅2
𝑒(𝑥) =

𝑥

𝐿
          Equation 4. 49  

Recall, this is a two-node element, with each side having 1 degree of freedom. 
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Figure 4. 11 Two DOFs in Axial Loaded Beam Element 

This means the stiffness matrix is a 2 by 2 matrix. 

𝐾 = [2 𝑋 2]          Equation 4. 50 

Based on the left-hand side of Equation 4.42 

𝐾𝑖𝑗
𝑒 = ∫ [𝐸𝐴

𝑑∅𝑖
𝑒

𝑑𝑥
[
d∅𝑗

𝑒

𝑑x
]] 𝑑𝑥

𝐿

0
        Equation 4. 51 

K matrix is bilinear in ∅𝑖
𝑒 and ∅𝑗

𝑒 and symmetric in ∅𝑖
𝑒 and ∅𝑗

𝑒. In an overall sense in the x axis, 

𝐾𝑥𝐿𝑜𝑎𝑑 = [
𝐾11
𝑒 𝐾12

𝑒

𝐾21
𝑒 𝐾22

𝑒 ]         Equation 4. 52 

The equations for ∅𝑖
𝑒 and ∅𝑗

𝑒 are gotten from the interpolation functions in Equation 4.48 and 

Equation 4.49. For example, 𝐾21
𝑒  is calculated thus. 

𝐾21
𝑒 = ∫ 𝐸𝐴 [

d∅2
𝑒

𝑑𝑥
[
d∅1

𝑒

𝑑𝑥
]
 

] 𝑑𝑥
𝐿

0
        Equation 4. 53 

𝐾21
𝑒 = ∫ 𝐸𝐴 [

d(
x

L
)

𝑑𝑥
[
d(1−

x

L
)

𝑑𝑥
]

 

] 𝑑𝑥
𝐿

0
       Equation 4. 54 

𝐾21
𝑒 =

−𝐸𝐴

𝐿
          Equation 4. 55 

The full stiffness matrix for the x direction loading is 

𝐾𝑥𝐿𝑜𝑎𝑑 = [

𝐸𝐴

𝐿

−𝐸𝐴

𝐿
−𝐸𝐴

𝐿

𝐸𝐴

𝐿

]         Equation 4. 56 

4.3 The Governing Equation and Stiffness Matrix for Axial Torsion 

Consider a homogeneous elastic beam which is axially spun due to Moment 𝑀1 as shown in Figure 

4.12. 
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Figure 4. 12 Axial Torsion Phenomenon 

Here is the governing equation. 

−
𝑑

𝑑𝑥
[𝐺𝐽

𝑑𝜃

𝑑𝑥
] = 𝑀(𝑥)   (Reddy, 2005)     Equation 4. 57 

𝐺 = 𝑆ℎ𝑒𝑎𝑟 𝑀𝑜𝑑𝑢𝑙𝑢𝑠, 𝑝𝑠𝑖 

𝐽 = 𝑃𝑜𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎, 𝑖𝑛𝑐ℎ𝑒𝑠4. 𝜃 = 𝑇𝑤𝑖𝑠𝑡 𝑎𝑛𝑔𝑙𝑒 

Assuming constant Shear Modulus, G. 𝑢 is the displacement in x direction. 𝑀(x) is the point axial 

torsion exerted on the system. 

The weak formulation is: 

𝐸𝑟𝑟𝑜𝑟 = ∫ [−
𝑑

𝑑𝑥
[𝐺𝐽

𝑑𝜃

𝑑𝑥
] − 𝑀(𝑥)] 𝑑𝑥

𝐿

0
         Equation 4. 58 

As seen in earlier sections, next step is to multiply by a weight function, v(x) and equate to zero to 

achieve minimum potential energy which places the system in equilibrium, 

∫ 𝑣 [−
𝑑

𝑑𝑥
[𝐺𝐽

𝑑𝜃

𝑑𝑥
] − 𝑀(𝑥)] 𝑑𝑥 = 0 

𝐿

0
       Equation 4. 59 

The next step is to integrate by parts which gives the following expression.  

∫ [
𝑑𝑣

𝑑𝑥
𝐺𝐽 [

𝑑𝜃

𝑑𝑥
] − 𝑣𝑀] 𝑑𝑥 + [𝑣𝐺𝐽 [

𝑑𝜃

𝑑𝑥
]]
0

𝐿

= 0 
𝐿

0
       Equation 4. 60 

[GJ [
dθ

𝑑x
]]
0

𝐿

 represents the boundary condition term. The primary variable in this case is 𝜃|𝑥=0 and 

𝜃|𝑥=𝐿. Rearranging Equation 4.60 to obtain. 

∫ [𝐺𝐽
𝑑𝑣

𝑑𝑥
[
𝑑𝜃

𝑑𝑥
]] 𝑑𝑥 = ∫ 𝑣𝑀

𝐿

0
− [𝑣𝐺𝐽 [

𝑑𝜃

𝑑𝑥
]]
0

𝐿
𝐿

0
      Equation 4. 61 

This can help in determining the interpolation functions per element referring to Figure 4.13. 
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𝜃𝑒|𝑥 = ∑ 𝜃𝑗
𝑒∅𝑗

𝑒2
𝑗=1 (𝑥𝑀) = 𝜃1

𝑒∅1
𝑒(𝑥𝑀) + 𝜃2

𝑒∅2
𝑒(𝑥𝑀)     Equation 4. 62 

𝜃|𝑥=0 = 𝜃1
𝑒 meaning 𝑎𝑡 𝑥 = 0, ∅1

𝑒 = 1      Equation 4. 63 

𝜃|𝑥=𝐿 = 𝜃2
𝑒 meaning 𝑎𝑡 𝑥 = 𝐿, ∅2

𝑒 = 1       Equation 4. 64 

Developing expressions for ∅1
𝑒(𝑥) and ∅2

𝑒(𝑥) is the goal. Here are the boundary conditions. 

Table 4. 5 Axial Torsion Boundary Conditions Table for 2 Node Element 

 ∅1
𝑒 ∅2

e 

𝑥 = 0 1 0 

𝑥 = 𝐿 0 1 

 

Just like the axial loading case, each function will have 2 constants since there are 2 degrees of 

freedom. 

∅1
𝑒(𝑥𝑀) = 𝑎 + 𝑏𝑥         Equation 4. 65 

∅2
𝑒(𝑥𝑀) = 𝑐 + 𝑑𝑥         Equation 4. 66 

Based on the boundary conditions in Table 4.5, here are the value of the constants. 

Table 4. 6 Axial Torsion Expressions of Interpolation Functions for Linear 2 Node Beam 

Interpolation Function Constants Expression per Constant 

∅1
𝑒(xM) a 1 

b −1

𝐿
 

∅2
𝑒(xM) c 0 

d 1

𝐿
 

 

Here are the final full expressions of the interpolation functions. 

∅1
𝑒(𝑥𝑀) = 1 −

𝑥

𝐿
         Equation 4. 67 
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∅2
𝑒(𝑥𝑀) =

𝑥

𝐿
          Equation 4. 68  

Recall, this is a two-node element, with each side having 1 degree of freedom. 

This means the stiffness matrix for torsion as well is a 2 by 2 matrix. 

𝐾 = [2 𝑋 2]          Equation 4. 69 

Based on the left-hand side of Equation 4.61 

𝐾𝑖𝑗
𝑒 = ∫ [GJ

𝑑∅𝑖
𝑒

𝑑x
[
d∅𝑗

𝑒

𝑑x
]] 𝑑𝑥

𝐿

0
        Equation 4. 70 

K matrix is bilinear in ∅𝑖
𝑒 and ∅𝑗

𝑒 and symmetric in ∅𝑖
𝑒 and ∅𝑗

𝑒. In an overall sense in the x axis, 

𝐾𝑥𝑀𝑜𝑚𝑒𝑛𝑡
= [

𝐾11
𝑒 𝐾12

𝑒

𝐾21
𝑒 𝐾22

𝑒 ]        Equation 4. 71 

The equations for ∅𝑖
𝑒 and ∅𝑗

𝑒 are gotten from the interpolation functions in Equation 4.67 and 

Equation 4.68. For example, 𝐾12
𝑒  is calculated thus. 

𝐾12
𝑒 = ∫ 𝐺𝐽 [

d∅1
𝑒

𝑑𝑥
[
d∅2

𝑒

𝑑𝑥
]
 

] 𝑑𝑥
𝐿

0
        Equation 4. 72 

𝐾12
𝑒 = ∫ 𝐺𝐽 [

d(1−
x

L
)

𝑑𝑥
[
d(

x

L
)

𝑑𝑥
]

 

] 𝑑𝑥
𝐿

0
       Equation 4. 73 

𝐾12
𝑒 = −

𝐺𝐽

𝐿
          Equation 4. 74 

The full stiffness matrix for the x direction loading is 

𝐾𝑥𝑇𝑜𝑟𝑠𝑖𝑜𝑛 = [

𝐺𝐽

𝐿
−

𝐺𝐽

𝐿

−
𝐺𝐽

𝐿

𝐺𝐽

𝐿

]        Equation 4. 75 

Figure 4.13 shows the variations in interpolation function. 
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Figure 4. 13 Variations in Interpolation Functions for Axial Loads and Torsion in x Direction 

4.4 Full Element Stiffness Matrix of 3D Beams 

The drill string is considered a 3-dimensional beam. Since while drilling, the drill bit changes 

direction from the original axes system, then the original reference of the drill string can be referred 

to as the global axes system, as shown in the figure below. 

 

Figure 4. 14 Global Axes System of the Drill String 

The x-axis is downwards, indicating that the member is in the x-axis direction. 

∅ 𝑎𝑛𝑑 𝜃 𝑎𝑟𝑒 inclination and azimuth, respectively. Y can be referred to as Northing, Z as Easting 

and X as TVD (total vertical depth) axis. For 3 dimensional structures, there are 12 degrees of 

freedom. This is because the 𝑗𝑡ℎ end and the 𝑘𝑡ℎ end have X, Y, and Z coordinates each. The axial 
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deformation is not ignored, so there are X, Y, and Z displacements and rotations. The labelling 

starts from 𝑗 𝑡𝑜 𝑘. 

The figure below shows the position of the displacements on one member of the drill string, 

assuming the member is placed upright in the global reference system position.  

 

Figure 4. 15 Global Reference Labelling of Drill String 

Based on the four independent occurrences, here is how they reflect on the global labelling. 

Table 4. 7 Displacement Labelling for 4 Independent Processes of 3D Beams 

Process Relevant Degree of Freedom Labels 

𝑗𝑡ℎ 𝑒𝑛𝑑 𝑘𝑡ℎ 𝑒𝑛𝑑 

Translation Rotation Translation Rotation 

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

Axial Loading 𝛿1      𝛿7      

Axial Torsion    𝜃4      𝜃10   

Bending in XZ  𝛿2    𝜃6  𝛿8     𝜃12 

Bending in XY   𝛿3  𝜃5    𝛿9  𝜃11  
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Since these processes are independent and yet simultaneous, other processes are placed as zero 

when they occur. Following the fact that there are 12 degrees of freedom, the stiffness matrix will 

be a 12 by 12 matrix with a number as shown in the table below. 

Table 4. 8 Process Per Row of 12 by 12 Stiffness Matrix for Drill String 

Process Relevant Degree of Freedom Labels 

𝑗𝑡ℎ 𝑒𝑛𝑑 𝑘𝑡ℎ 𝑒𝑛𝑑 

Translation Rotation Translation Rotation 

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

Axial Loading 𝑲𝟏𝟏 𝐾12 𝐾13 𝐾14 𝐾15 𝐾16 𝑲𝟏𝟕 𝐾18 𝐾19 𝐾1,10 𝐾1,11 𝐾1,12 

Bending in XZ 𝐾21 𝑲𝟐𝟐 𝐾23 𝐾24 𝐾25 𝑲𝟐𝟔 𝐾27 𝑲𝟐𝟖 𝐾29 𝐾2,10 𝐾2,11 𝑲𝟐,𝟏𝟐 

Bending in XY 𝐾31 𝐾32 𝑲𝟑𝟑 𝐾34 𝑲𝟑𝟓 𝐾36 𝐾37 𝐾38 𝑲𝟑𝟗 𝐾3,10 𝑲𝟑,𝟏𝟏 𝐾3,12 

Axial Torsion 𝐾41 𝐾42 𝐾43 𝑲𝟒𝟒 𝐾45 𝐾46 𝐾47 𝐾48 𝐾49 𝑲𝟒,𝟏𝟎 𝐾4,11 𝐾4,12 

Bending in XY 𝐾51 𝐾52 𝑲𝟓𝟑 𝐾54 𝑲𝟓𝟓 𝐾56 𝐾57 𝐾58 𝑲𝟓𝟗 𝐾5,10 𝑲𝟓,𝟏𝟏 𝐾5,12 

Bending in XZ 𝐾61 𝑲𝟔𝟐 𝐾63 𝐾64 𝐾65 𝑲𝟔𝟔 𝐾67 𝑲𝟔𝟖 𝐾69 𝐾6,10 𝐾6,11 𝑲𝟔,𝟏𝟐 

Axial Loading 𝑲𝟕𝟏 𝐾72 𝐾73 𝐾74 𝐾75 𝐾76 𝑲𝟕𝟕 𝐾78 𝐾79 𝐾7,10 𝐾7,11 𝐾7,12 

Bending in XZ 𝐾81 𝑲𝟖𝟐 𝐾83 𝐾84 𝐾85 𝑲𝟖𝟔 𝐾87 𝑲𝟖𝟖 𝐾89 𝐾8,10 𝐾8,11 𝑲𝟖,𝟏𝟐 

Bending in XY 𝐾91 𝐾92 𝑲𝟗𝟑 𝐾94 𝑲𝟗𝟓 𝐾96 𝐾97 𝐾98 𝑲𝟗𝟗 𝐾9,10 𝑲𝟗,𝟏𝟏 𝐾9,12 

Axial Torsion 𝐾10,1 𝐾10,2 𝐾10,3 𝑲𝟏𝟎,𝟒 𝐾10,5 𝐾10,6 𝐾10,7 𝐾10,8 𝐾10,9 𝑲𝟏𝟎,𝟏𝟎 𝐾10,11 𝐾10,12 

Bending in XY 𝐾11,1 𝐾11,2 𝑲𝟏𝟏,𝟑 𝐾11,4 𝑲𝟏𝟏,𝟓 𝐾11,6 𝐾11,7 𝐾11,8 𝑲𝟏𝟏,𝟗 𝐾11,10 𝑲𝟏𝟏,𝟏𝟏 𝐾11,12 

Bending in XZ 𝐾12,1 𝑲𝟏𝟐,𝟐 𝐾12,3 𝐾12,4 𝐾12,5 𝑲𝟏𝟐,𝟔 𝐾12,7 𝑲𝟏𝟐,𝟖 𝐾12,9 𝐾12,10 𝐾12,11 𝑲𝟏𝟐,𝟏𝟐 

 

According to equations Equation 4.36, Equation 4.37, Equation 4.52, and Equation 4.75, and their 

respective processes shown in Table 4.8, it can be inferred the following equations are true. 

𝐾𝑥𝐿𝑜𝑎𝑑
= [

𝐸𝐴

𝐿

−𝐸𝐴

𝐿
−𝐸𝐴

𝐿

𝐸𝐴

𝐿

] = [
𝐾11
𝑒 𝐾17

𝑒

𝐾71
𝑒 𝐾77

𝑒 ]       Equation 4. 76 

𝐾𝑥𝑇𝑜𝑟𝑠𝑖𝑜𝑛
= [

𝐺𝐽

𝐿
−

𝐺𝐽

𝐿

−
𝐺𝐽

𝐿

𝐺𝐽

𝐿

] = [
𝐾44
𝑒 𝐾4,10

𝑒

𝐾10,4
𝑒 𝐾10,10

𝑒 ]       Equation 4. 77 
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𝐾𝑦 =

[
 
 
 
 
 
12𝐸𝐼𝑧

𝐿3

−6𝐸𝐼𝑧

𝐿2

− 12𝐸𝐼𝑧

𝐿3

−6𝐸𝐼𝑧

𝐿2

−6𝐸𝐼𝑧

𝐿2

4𝐸𝐼𝑧

𝐿

6𝐸𝐼𝑧

𝐿2

2𝐸𝐼𝑧

𝐿
− 12𝐸𝐼𝑧

𝐿3

6𝐸𝐼𝑧

𝐿2

12𝐸𝐼𝑧

𝐿3

6𝐸𝐼𝑧

𝐿2

−6𝐸𝐼𝑧

𝐿2

2𝐸𝐼𝑧

𝐿

6𝐸𝐼𝑧

𝐿2

4𝐸𝐼𝑧

𝐿 ]
 
 
 
 
 

=

[
 
 
 
 
𝐾22
𝑒 𝐾26

𝑒 𝐾28
𝑒 𝐾2,12

𝑒

𝐾62
𝑒 𝐾66

𝑒 𝐾68
𝑒 𝐾6,12

𝑒

𝐾82
𝑒 𝐾86

𝑒 𝐾88
𝑒 𝐾8,12

𝑒

𝐾12,2
𝑒 𝐾12,6

𝑒 𝐾12,8
𝑒 𝐾12,12

𝑒 ]
 
 
 
 

                Equation 4. 78 

𝐾𝑧 =

[
 
 
 
 
 
 
12𝐸𝐼𝑦

𝐿3

−6𝐸𝐼𝑦

𝐿2

− 12𝐸𝐼𝑦

𝐿3

−6𝐸𝐼𝑦

𝐿2

−6𝐸𝐼𝑦

𝐿2

4𝐸𝐼𝑦

𝐿

6𝐸𝐼𝑦

𝐿2

2𝐸𝐼𝑦

𝐿
− 12𝐸𝐼𝑦

𝐿3

6𝐸𝐼𝑦

𝐿2

12𝐸𝐼𝑦

𝐿3

6𝐸𝐼𝑦

𝐿2

−6𝐸𝐼𝑦

𝐿2

2𝐸𝐼𝑦

𝐿

6𝐸𝐼𝑦

𝐿2

4𝐸𝐼𝑦

𝐿 ]
 
 
 
 
 
 

=

[
 
 
 
 
𝐾33
𝑒 𝐾35

𝑒 𝐾39
𝑒 𝐾3,11

𝑒

𝐾53
𝑒 𝐾55

𝑒 𝐾59
𝑒 𝐾5,11

𝑒

𝐾93
𝑒 𝐾95

𝑒 𝐾99
𝑒 𝐾9,11

𝑒

𝐾11,3
𝑒 𝐾11,5

𝑒 𝐾11,9
𝑒 𝐾11,11

𝑒 ]
 
 
 
 

   Equation 4. 79 

Therefore, the full stiffness matrix will be as stated below: 

Table 4. 9 Expressions of Stiffness in 3 D 12 by 12 Matrix 

    Process Relevant Degree of Freedom Labels 

𝑗𝑡ℎ  𝑒𝑛𝑑 𝑘𝑡ℎ 𝑒𝑛𝑑 

Translation Rotation Translation Rotation 

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

Axial Loading 𝐸𝐴

𝐿
 

0 0 0 0 0 
−
𝐸𝐴

𝐿
 

0 0 0 0 0 

Bending in XZ 0 12𝐸𝐼𝑧
𝐿3

 
0 0 0 −6𝐸𝐼𝑧

𝐿2
 

0 − 12𝐸𝐼𝑧
𝐿3

 
0 0 0 −6𝐸𝐼𝑧

𝐿2
 

Bending in XY 0 0 12𝐸𝐼𝑦

𝐿3
 

0 −6𝐸𝐼𝑦

𝐿2
 

0 0 0 − 12𝐸𝐼𝑦

𝐿3
 
0 −6𝐸𝐼𝑦

𝐿2
 

0 

Axial Torsion 0 0 0 𝐺𝐽

𝐿
 

0 0 0 0 0 
−
𝐺𝐽

𝐿
 

0 0 

Bending in XY 0 0 −6𝐸𝐼𝑦

𝐿2
 

0 4𝐸𝐼𝑦

𝐿
 

0 0 0 6𝐸𝐼𝑦

𝐿2
 

0 2𝐸𝐼𝑦

𝐿
 

0 

Bending in XZ 0 −6𝐸𝐼𝑧
𝐿2

 
0 0 0 4𝐸𝐼𝑧

𝐿
 

0 6𝐸𝐼𝑧
𝐿2

 
0 0 0 2𝐸𝐼𝑧

𝐿
 

Axial Loading 
−
𝐸𝐴

𝐿
 

0 0 0 0 0 𝐸𝐴

𝐿
 

0 0 0 0 0 

Bending in XZ 0 − 12𝐸𝐼𝑧
𝐿3

 
0 0 0 6𝐸𝐼𝑧

𝐿2
 

0 12𝐸𝐼𝑧
𝐿3

 
0 0 0 6𝐸𝐼𝑧

𝐿2
 

Bending in XY 0 0 − 12𝐸𝐼𝑦

𝐿3
 

0 6𝐸𝐼𝑦

𝐿2
 

0 0 0 12𝐸𝐼𝑦

𝐿3
 

0 6𝐸𝐼𝑦

𝐿2
 

0 

Axial Torsion 0 0 0 
−
𝐺𝐽

𝐿
 

0 0 0 0 0 𝐺𝐽

𝐿
 

0 0 

Bending in XY 0 0 −6𝐸𝐼𝑦

𝐿2
 

0 2𝐸𝐼𝑦

𝐿
 

0 0 0 6𝐸𝐼𝑦

𝐿2
 

0 4𝐸𝐼𝑦

𝐿
 

0 

Bending in XZ 0 −6𝐸𝐼𝑧
𝐿2

 
0 0 0 2𝐸𝐼𝑧

𝐿
 

0 6𝐸𝐼𝑧
𝐿2

 
0 0 0 4𝐸𝐼𝑧

𝐿
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For steel, here are the values of the constants: 

𝐸 = 𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 = 30,000 𝑝𝑠𝑖 

𝐴 = 𝐶𝑟𝑜𝑠𝑠 − 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 = 𝜋 ∗
𝑂𝐷2−𝐼𝐷2

4
, 𝑖𝑛2     Equation 4. 80 

𝐼 = 𝐶𝑟𝑜𝑠𝑠 − 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 =
𝜋(𝑂𝐷4−𝐼𝐷4)

64
, 𝑖𝑛4   Equation 4. 81 

𝐿 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐸𝑙𝑒𝑚𝑒𝑛𝑡, 𝑓𝑡 

𝐺 = 𝑆ℎ𝑒𝑎𝑟 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 = 11,501,513.4 𝑝𝑠𝑖 

𝐽 = 𝑃𝑜𝑙𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 =
𝜋(𝑂𝐷4−𝐼𝐷4)

2
, 𝑖𝑛𝑐ℎ𝑒𝑠4.     Equation 4. 82 

4.5 Global and Local Members of the Drill String 

The drill string has a non orthogonal axis system due to the fact that the when the drilling 

operations occur, the drill bit keeps changing direction therefore changing the axis of the drill 

string. The stiffness matrix of 12 by 12 matrix remains the same but it has to be transformed to the 

reference axis system. The reference axis is called “the global axis” while the current axis of the 

bit is called “the local axis.” The figure below shows the combined global and local axis in a well 

path. 

 

Figure 4. 16 Global and Local Axis System in Drill String 
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Since the local axis is different from the global axis then the stiffness matrix will be different for 

each member of the drill string. At that point, a transformation matrix will be needed to transform 

the local axis to the global axis system. This is to ensure all the members are aligned with the 

reference axis system (the global axis). Here are the steps for the labelling of the drilling string. 

4.5.1 Unrestrained and Restrained Degree of Freedom  

The first step to labelling the drill string is to divide the degree of freedom into unrestrained and 

restrained degree of freedom. The total degree of freedom is the count of all the displacements in 

the entire drill string. The displacements at fixed ends are restrained while the displacements at 

movable ends are the unrestrained degree of freedom. The fixed ends are determined based on the 

boundary conditions of the of the drill string. 

4.5.1.1 Boundary Conditions  

The fixed ends occur at the rotary table, drill bit, and the stabilizers. The conditions are stated in 

the figure below. 

 

Figure 4. 17 Boundary Conditions of the Drill String 

4.5.1.2 Connectivity Matrix 

Connectivity matrix is used to understand the geometry of the assembly of the individual elements. 

To get the whole picture, a specific condition can be chosen. Figure 4.20 is the membership 
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structure of a sample drill string. Of the 11 members, 3 of them are restrained when the condition 

is rotary drilling and sliding. The 3 restrained members are stabilizers. The displacements in the 

radial direction are placed as zero. This are the fixed ends of this drill string. Since the rotary table 

is not a member, the fixed ends at the top are not inputted.  

 

Figure 4. 18 Assigning Member Nomenclature for Vertical Well (Xiaozhen, 2013) 

To identify the number of degrees of freedom, labelling the restrained and unrestrained 

displacements is key. In this case, the drill string is in vertical position which is pretty much the 

global axis of the drill string. Subsequent examples will show when the local axis deviates from 

the global axis. The first step is to label global axis. Here are the rules: 

• Start with 𝑥𝑦𝑧 translation at 𝑗𝑡ℎ 𝑒𝑛𝑑 

• Then label 𝑥𝑦𝑧 rotation at 𝑗𝑡ℎ 𝑒𝑛𝑑 

• Next is to label 𝑥𝑦𝑧 translation at 𝑘𝑡ℎ 𝑒𝑛𝑑 

• Finally label 𝑥𝑦𝑧 rotation at 𝑘𝑡ℎ 𝑒𝑛𝑑 

It is important to note that not all the axis of a restrained joint will be unreleased. Sometimes, one 

axis might be unrestrained. In the stabilizer joints for instance, the global x-axis is unrestrained 

even though the Y and Z axis are restrained. At some other instance it could be just the rotation 
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displacement that is restrained just like in the case of “sliding, tripping in, and tripping out,” only 

the rotation on the global x-axis is restrained, the translation displacement is unrestrained. In this 

example of drill string in a vertical well, there are 54 degrees of freedom which includes 42 

unrestrained degrees of freedom and 12 restrained degrees of freedom.  

 

Figure 4. 19 Labelled Drill String with Unrestrained DOF Shown 

Here is the table of members and their respective global labels. The labels on the 𝑗𝑡ℎ end is written 

first then the labels on the 𝑘𝑡ℎ end are written. The labels are written according to the rules of 

global axis labelling. Only the global numbers are written. 

It is important to note that the labels of the 𝑘𝑡ℎ end of one member becomes the labels of the 𝑗𝑡ℎ 

end of the next member.  This makes it easier to run the computation of the labelling especially as 

the number of drilling component gets larger.  
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Table 4. 10 Connectivity Matrix for the Vertical Well Example 

Member 

Number 

Degree of Freedom Labels 

𝑗𝑡ℎ 𝑒𝑛𝑑 𝑘𝑡ℎ 𝑒𝑛𝑑 

Translation Rotation Translation Rotation 

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

1 1 43 44 2 45 46 3 4 5 6 7 8 

2 3 4 5 6 7 8 9 10 11 12 13 14 

3 9 10 11 12 13 14 15 16 17 18 19 20 

4 15 16 17 18 19 20 21 47 48 22 49 50 

5 21 47 48 22 49 50 23 24 25 26 27 28 

6 23 24 25 26 27 28 29 30 31 32 33 34 

7 29 30 31 32 33 34 35 51 52 36 53 54 

8 35 51 52 36 53 54 37 38 39 40 41 42 

 

4.5.1.1 Calculating Stiffness Matrix for Each Member of the Drill String 

The entire component of the drill string is in 3 dimensions so their individual stiffness matrix will 

be a 12 by 12 matrix made up of stiffness coefficients.  

Table 4. 11 Input for Each Member for Stiffness Matrix Calculation 

Member 

Number 

𝑳, 

𝒇𝒕 

𝑶𝑫, 

𝒊𝒏 

𝑰𝑫, 

𝒊𝒏 

1 15 8.725 3 

2 20 8.725 3 

3 30 8.725 3 

4 15 8.725 3 

5 15 8.725 3 

6 30 8.725 3 

7 15 8.725 3 

8 3 11 0.3 
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This example is for a scenario where the drill string is in same coordinates in local axis and global 

axis. Moving on in this example, the next step is to write the global stiffness matrix for the 

complete structure. The principle is to write the unrestrained degree of freedom first before writing 

the unrestrained degree of freedom in the matrix. Recall that displacements 1 to 42 are unrestrained 

while displacements 43 to 54 are restrained degree of freedom. The figure below shows exactly 

how the global stiffness matrix for this entire structure of this example is arranged. 

 

Figure 4. 20 Structural Description of Global Stiffness Matrix 

The total global stiffness matrix can be divided into 4 quadrants of a cross partition matrix as 

follows. 

1. A group of stiffness coefficients with the impact location at the unrestrained degree of 

freedom and reaction at the unrestrained degree of freedom points 𝐾𝑢𝑢 

2. A group of stiffness coefficients where the impact location is the unrestrained degree of 

freedom but the reaction occurs at the restrained degree of freedom points, 𝐾𝑢𝑟 

3. A group of stiffness coefficients having their impact location at the restrained degree of 

freedom and the reaction location at the unrestrained degree of freedom points 𝐾𝑟𝑢 

4. A group of stiffness coefficients made up of impact location at the restrained degree of 

freedom and reaction location at the restrained degree of freedom points 𝐾𝑟𝑟 

Here is the location of each of these four stiffness matrices. 
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Figure 4. 21 The Four Quadrants of the Global Stiffness Matrix for the Complete Structure 

4.5.2 Switching from Bit Axis to Global Axis Using the Transformation Matrix 

Another example will be considered with just two members in order to have enough room show 

the global stiffness matrix for the entire structure. These simple equations can tell the number of 

degree of freedom expected. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑒𝑚𝑏𝑒𝑟𝑠 + 1    Equation 4. 83 

The other addition to this new example is that the drill string is at 30° inclination and 20° azimuth. 

 

Figure 4. 22 Inclined Members of the Drill String 

Here is the connectivity matrix for this assembly of members. 
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Table 4. 12 Connectivity Matrix for the Inclined Well Example 

Member 

Number 

Global Degree of Freedom Labels 

𝑗𝑡ℎ 𝑒𝑛𝑑 𝑘𝑡ℎ 𝑒𝑛𝑑 

Translation Rotation Translation Rotation 

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

1 1 15 16 2 17 18 3 4 5 6 7 8 

2 3 4 5 6 7 8 9 10 11 12 13 14 

 

The calculation of stiffness matrix for each member is still the same as shown below. 

Table 4. 13 Generic Output for Stiffness Matrix Calculation for Each Member of the Inclined 

Well 

 

Since the two members are inclined, the stiffness matrix for each member is the local stiffness 

matrix for that member. This means, the local stiffness matrix has to be converted to the global 

stiffness matrix. The calculation of the local stiffness matrix is the same 12 by 12 matrix as before. 

The procedure is the same. 

 

 

Member 
Number 

𝐿,  
𝑓𝑡 

𝑂𝐷,  
𝑖𝑛 

𝐼𝐷,  
𝑖𝑛 

𝐴,  
𝑖𝑛2 

 

𝐼,  
𝑖𝑛4 

𝐽, 
 𝑖𝑛4 

𝐸𝐴

𝐿
, 𝑙𝑏 𝑓𝑡  

12𝐸𝐼

𝐿3
,  

𝑙𝑏 ∗ 𝑖𝑛2

𝑓𝑡3  

6𝐸𝐼

𝐿2
,  

𝑙𝑏 ∗ 𝑖𝑛2

𝑓𝑡2  

4𝐸𝐼

𝐿
,  

𝑙𝑏 ∗ 𝑖𝑛2

𝑓𝑡  

2𝐸𝐼

𝐿
,  

𝑙𝑏 ∗ 𝑖𝑛2

𝑓𝑡  

𝑮𝑱

𝐿
, 

 𝑙𝑏 ∗ 𝑖𝑛
2

𝑓𝑡  

1 15 8.725 3 52.720 280.491 8975.704  105440 29919 224393 33658920 1121964 6882278655.36 

2 20 8.725 3 52.720 280.491 8975.704 79080 12622 126221 
 

1682946 841473 5161708991.52 

𝐾1

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝑗   𝑗   𝑘   𝑘    
 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛   𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛   𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛   𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛    
1 15 16 2 17 18 3 4 5 6 7 8 ← 𝐷𝑂𝐹 
𝑥 𝒚 𝒛 𝒙 𝒚 𝒛 𝒙 𝒚 𝒛 𝒙 𝒚 𝒛   ↓

105440 0 0 0 0 0 -105440 0 0 0 0 0 𝑥 1
0 29919 0 0 0 224393 0 -29919 0 0 0 224393 𝑦 15
0 0 29919 0 -224393 0 0 0 -29919 0 -224393 0 𝑧 16
0 0 0 6882278655.36 0 0 0 0 0 -6882278655.36 0 0 𝑥 2
0 0 -224393 0 33658920 0 0 0 224393 0 1121964 0 𝑦 17
0 224393 0 0 0 33658920 0 -224393 0 0 0 1121964 𝑧 18

-105440 0 0 0 0 0 105440 0 0 0 0 0 𝑥 3
0 -29919 0 0 0 -224393 0 29919 0 0 0 -224393 𝑦 4
0 0 -29919 0 224393 0 0 0 29919 0 224393 0 𝑧 5
0 0 0 -6882278655.36 0 0 0 0 0 6882278655.36 0 0 𝑥 6
0 0 -224393 0 1121964 0 0 0 224393 0 33658920 0 𝑦 7
0 224393 0 0 0 1121964 0 -224393 0 0 0 33658920 𝑧 8 ]
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In the same manner, the stiffness matrix for the second member is calculated. 

 

Now a transformation matrix is needed to transform the local stiffness matrix to its corresponding 

global matrix using the following formula.  

[𝐾𝑖]̅̅ ̅̅ ̅ = [𝑇𝑖
𝑇][𝐾𝑖][𝑇]    (Reddy, 2005)    Equation 4. 84 

Where [𝐾𝑖]̅̅ ̅̅ ̅ = 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠 𝑀𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝐸𝑎𝑐ℎ 𝑀𝑒𝑚𝑏𝑒𝑟 

 Equation 4. 85 

The transpose of this will become, 

 Equation 4. 86 

Where ∝= 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 30° 𝑎𝑛𝑑 𝛽 = 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑖𝑠 20° 

 

𝐾2=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝑗   𝑗   𝑘   𝑘    
 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛   𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛   𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛   𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛    
3 4 5 6 7 8 9 10 11 12 13 14 ← 𝐷𝑂𝐹
𝑥 𝒚 𝒛 𝒙 𝒚 𝒛 𝒙 𝒚 𝒛 𝒙 𝒚 𝒛  ↓

79080 0 0 0 0 0 −79080 0 0 0 0 0 𝑥 3
0 12622 0 0 0 126221 0 −12622 0 0 0 126221 𝑦 4
0 0 12622 0 −𝟏𝟐𝟔𝟐𝟐𝟏 0 0 0 −12622 0 −126221 0 𝑧 5
0 0 0 5161708991.52 0 0 0 0 0 −5161708991.52 0 0 𝑥 6
0 0 −126221 0 1682946 0 0 0 126221 0 841473 0 𝑦 7
0 126221 0 0 0 1682946 0 −126221 0 0 0 841473 𝑧 8

−79080 0 0 0 0 0 79080 0 0 0 0 0 𝑥 9
0 −12622 0 0 0 −126221 0 12622 0 0 0 −126221 𝑦 10
0 0 −12622 0 126221 0 0 0 12622 0 126221 0 𝑧 11
0 0 0 −5161708991.52 0 0 0 0 0 5161708991.52 0 0 𝑥 12
0 0 −126221 0 841473 0 0 0 126221 0 1682946 0 𝑦 13
0 126221 0 0 0 841473 0 −126221 0 0 0 1682946 𝑧 14 ]
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[𝑘̅] = [𝑇𝑇
𝑖][𝑘1𝑔𝑙𝑜𝑏𝑎𝑙] [𝑇]        Equation 4. 87 

[𝑇𝑇]

=

[
 
 
 
 
 
 
 
 
 
 
 

𝑐𝑜𝑠30 −𝑠𝑖𝑛30 0
𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑐𝑜𝑠20 −𝑠𝑖𝑛20
𝑠𝑖𝑛30𝑠𝑖𝑛20 𝑐𝑜𝑠30𝑠𝑖𝑛20 𝑐𝑜𝑠20

0 0 0

0
𝑐𝑜𝑠30 −𝑠𝑖𝑛30 0

𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑐𝑜𝑠20 −𝑠𝑖𝑛20
𝑠𝑖𝑛30𝑠𝑖𝑛20 𝑐𝑜𝑠30𝑠𝑖𝑛20 𝑐𝑜𝑠20

0 0

0 0
𝑐𝑜𝑠30 −𝑠𝑖𝑛30 0

𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑐𝑜𝑠20 −𝑠𝑖𝑛20
𝑠𝑖𝑛30𝑠𝑖𝑛20 𝑐𝑜𝑠30𝑠𝑖𝑛20 𝑐𝑜𝑠20

0

0 0 0
𝑐𝑜𝑠30 −𝑠𝑖𝑛30 0

𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑐𝑜𝑠20 −𝑠𝑖𝑛20
𝑠𝑖𝑛30𝑠𝑖𝑛20 𝑐𝑜𝑠30𝑠𝑖𝑛20 𝑐𝑜𝑠20 ]

 
 
 
 
 
 
 
 
 
 
 

 

[𝑇]

=

[
 
 
 
 
 
 
 
 
 
 
 
𝑐𝑜𝑠30 𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑠𝑖𝑛30𝑐𝑜𝑠20
−𝑠𝑖𝑛30 𝑐𝑜𝑠30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑠𝑖𝑛20

0 −𝑠𝑖𝑛20 𝑐𝑜𝑠20
0 0 0

0
𝑐𝑜𝑠30 𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑠𝑖𝑛30𝑐𝑜𝑠20
−𝑠𝑖𝑛30 𝑐𝑜𝑠30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑠𝑖𝑛20

0 −𝑠𝑖𝑛20 𝑐𝑜𝑠20
0 0

0 0
𝑐𝑜𝑠30 𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑠𝑖𝑛30𝑐𝑜𝑠20
−𝑠𝑖𝑛30 𝑐𝑜𝑠30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑠𝑖𝑛20

0 −𝑠𝑖𝑛20 𝑐𝑜𝑠20
0

0 0 0
𝑐𝑜𝑠30 𝑠𝑖𝑛30𝑐𝑜𝑠20 𝑠𝑖𝑛30𝑐𝑜𝑠20
−𝑠𝑖𝑛30 𝑐𝑜𝑠30𝑐𝑜𝑠20 𝑐𝑜𝑠30𝑠𝑖𝑛20

0 −𝑠𝑖𝑛20 𝑐𝑜𝑠20 ]
 
 
 
 
 
 
 
 
 
 
 

 

[𝑇𝑇]

=

[
 
 
 
 
 
 
 
 
 
 
 
0.8660 −0.5000 0
0.4698 0.8138 0.3420
0.1710 0.2962 0.9400

0 0 0

0
0.8660 −0.5000 0
0.4698 0.8138 0.3420
0.1710 0.2962 0.9400

0 0

0 0
0.8660 −0.5000 0
0.4698 0.8138 0.3420
0.1710 0.2962 0.9400

0

0 0 0
0.8660 −0.5000 0
0.4698 0.8138 0.3420
0.1710 0.2962 0.9400]

 
 
 
 
 
 
 
 
 
 
 

 

[𝑇]

=

[
 
 
 
 
 
 
 
 
 
 
 

0.8660 0.4698 0.1710
−0.5000 0.8138 0.2692

0 0.3420 0.9400
0 0 0

0
0.8660 0.4698 0.1710
−0.5000 0.8138 0.2692

0 0.3420 0.9400
0 0

0 0
0.8660 0.4698 0.1710
−0.5000 0.8138 0.2692

0 0.3420 0.9400
0

0 0 0
0.8660 0.4698 0.1710
−0.5000 0.8138 0.2692

0 0.3420 0.9400]
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4.6 Formulas Leading to the Force and Moment Calculations 

A continuation of the previous example shows a cross partition as shown below. 

 

Figure 4. 23 Categorizing Total K into Unrestrained and Restrained DOF 

The zone of interest is the matrix where the unrestrained load impacted the unrestrained joint, 

which is 𝐾𝑢𝑢. This can lead to calculating the displacements at the unrestrained joints using 

Equation 4.88 which can be inferred from Equation 4.1. 

[𝐾𝑢𝑢][∆𝑢] = [𝐽𝐿]𝑢        Equation 4. 88 

Where [∆𝑢] is the unrestrained displacements at the unrestrained joints and [𝐽𝐿]𝑢 is the joint load 

at the unrestrained degree of freedom. 

[∆𝑢] = [𝐾𝑢𝑢
−1][𝐽𝐿]𝑢        Equation 4. 89 

All the restrained displacements are zero. Next is to calculate moments and forces of the individual 

members before merging them into one final global moments and forces. The right-hand side of 

Equation 4.1 can be interpreted to calculate the forces and moments for each member as shown in 

Equation 4.90. 

[𝑀]𝑖̅̅ ̅̅ ̅ = [𝐾𝑖̅][𝛿̅]𝑖 + [𝐹𝐸𝑀̅̅ ̅̅ ̅̅ ]𝐼        Equation 4. 90 

Where [𝑀]𝑖̅̅ ̅̅ ̅ is the global moment and forces for each member. [𝐾𝑖̅] is the global stiffness matrix 

for each member. [𝛿̅]𝑖 are the global displacements for each member which includes restrained 
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displacements (zero in value) and the unrestrained displacements, [∆𝑢]. [𝐹𝐸𝑀̅̅ ̅̅ ̅̅ ]𝐼 are the fixed end 

moments for each member, which in value are a reserve sign of the joint load, meaning   

[𝐹𝐸𝑀̅̅ ̅̅ ̅̅ ]𝐼 = −[𝐽𝐿]𝑢      (Reddy, 2005)  Equation 4. 91 

4.6.1 Fixed End Moments of the Drill String 

There are generic formulas to calculating the fixed end moments of any structure. Each member 

of the drill string will have its approximate gravity forces depending on which position it is on the 

drill string and the position of the drill string in the well plan. One important fact is that each 

member has to be first treated as a fixed end and when the forces and moments at each end is 

calculated, it can then be resolved into its 3-dimensional components. 

Going back to the inclined example, the approximate gravitational force can be assumed to be the 

forces in play. The figure below shows the process in generating the fixed end moments and the 

joint loads. 

 

Figure 4. 24 Process of Obtaining Fixed End Moments of the Drill String 
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4.6.2 Calculating Joint Load of the Drill String 

The fixed end moment calculated is based on the local axis of each member. Therefore, it has to 

be transformed to the global axis before the joint load can be calculated. The joint load is the 

reverse sign of the global fixed end moment. Based on Equation 4.87, the local fixed end moment 

can be related to the global fixed end moment. 

[𝐹𝐸𝑀̅̅ ̅̅ ̅̅ ]𝑖 = [𝑇]𝑖
𝑇[𝐹𝐸𝑀]𝑖        Equation 4. 92 

For the inclined wellbore example, the formula becomes: 

  Equation 4. 93 

  Equation 4. 94 

The joint load is then the reverse sign of the global fixed end moment. 

        Equation 4. 95 
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4.7 Conclusion 

The interpolation functions for axial loading, axial torsion, bending in XY and bending in XZ 

planes were derived and for the two-node element, their was a quadratic path for the functions for 

all bending in Y and Z while a linear path for the change in loading and torsion from node 1 to 

node 2.  Important rules to note are the following: 

• Displacements at restrained degree of freedom are zero. 

• Fixed end moments at restrained degree of freedom are zero. 

• Joint loads are same magnitude but a reverse sign when compared to global fixed end 

moments. 

In summary, it is the joint load at some degree of freedom that triggers the displacement across the 

unrestrained degrees of freedom in the entire structure. The end moments calculated based on the 

displacement are the resultant forces and moments across the entire structure due to the load 

applied.  

 

Figure 4. 25 Process for Finite Element Drill String Dynamics Process 
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Chapter 5 Optimizing the Finite Element Drilling Simulation 

The goal of the optimization is to minimize the mechanical specific energy for the drill ahead 

process. Some factors have to be established about the finite element displacement estimation in 

order to fully cover the drilling process. 

5.1 The Drilling Dynamics 

During each run of the drill string, the bit cuts the rock and moves ahead into the wellbore hole at 

certain speed and acceleration. The formation would form resistance to the flow as the drill string 

touches the wall of the wellbore. The finite element dynamics equation is as follows. 

[𝑀𝑒][𝑈̈𝑒] + [𝐶𝑒][𝑈𝑒̇ ] + [𝐾𝑒][𝑈𝑒] = [𝐹𝑒] = [𝑓𝑒] + [𝑄𝑒]    Equation 5. 1 

[𝑀𝑒] is the Mass Matrix per element. 

[𝑈̈𝑒] is the vector of accelerations. 

[𝐶𝑒] is the damping matrix per element. 

[𝑈̇] is the vector of velocities. 

[𝐾𝑒], [𝑈𝑒], [𝐹𝑒], [𝑓𝑒] 𝑎𝑛𝑑 [𝑄𝑒] have been described in Equation 4.1. 

5.1.1 Estimating the Mass Matrix and The Damping Matrix 

The mass matrix and the damping matrix will be assembled just the way the stiffness matrix was 

assembled in the previous chapter. For axial loading and axial torsion, the mass matrix is the same 

while for bending in XY and XZ plane, the mass matrix is the same. 

For axial displacements, 

𝑀𝑖𝑗
𝑒 = ∫ 𝜌𝐴∅𝑖

𝑒∅𝑗
𝑒𝑑𝑥

𝐿

0
     (Reddy, 2005)   Equation 5. 2 

∅𝑖
𝑒 𝑎𝑛𝑑 ∅𝑗

𝑒 have been derived in Equation 4.48 and Equation 4.49.  

[𝑀12
𝑒 ]𝐿𝑜𝑎𝑑 = ∫ 𝜌𝐴 (1 −

𝑥

𝐿
) (

𝑥

𝐿
) 𝑑𝑥 =

𝜌𝐴𝐿

6

𝐿

0
      Equation 5. 3 

This method is used to calculate the other expressions in the full matrix. Therefore, 
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[𝑀𝑥
𝑒]𝐿𝑜𝑎𝑑 = [

𝜌𝐴𝐿

3

𝜌𝐴𝐿

6
𝜌𝐴𝐿

6

𝜌𝐴𝐿

3

]            Equation 5. 4 

[𝑀𝑥
𝑒]𝑇𝑜𝑟𝑠𝑖𝑜𝑛 = [

𝜌𝐴𝐿

3

𝜌𝐴𝐿

6
𝜌𝐴𝐿

6

𝜌𝐴𝐿

3

]            Equation 5. 5 

For transverse displacements, 

[𝑀𝑖𝑗
𝑒 ]

𝑦
= ∫ (𝜌𝐴∅𝑖

𝑒∅𝑗
𝑒 + 𝜌𝐼𝑧

𝑑∅𝑖
𝑒

𝑑𝑦

𝑑∅𝑗
𝑒

𝑑𝑦
) 𝑑𝑦

𝐿

0
  (Reddy, 2005)         Equation 5. 6 

[𝑀𝑖𝑗
𝑒 ]

𝑧
= ∫ (𝜌𝐴∅𝑖

𝑒∅𝑗
𝑒 + 𝜌𝐼𝑦

𝑑∅𝑖
𝑒

𝑑𝑧

𝑑∅𝑗
𝑒

𝑑𝑧
) 𝑑𝑧

𝐿

0
           Equation 5. 7 

There are 4 constants which can be found in Equation 4.22 to Equation 4.25. Based on this, 

[𝑀34
𝑒 ]𝑦 = ∫ (𝜌𝐴∅3

𝑒∅4
𝑒 + 𝜌𝐼𝑧

𝑑∅3
𝑒

𝑑𝑦

𝑑∅4
𝑒

𝑑𝑦
)𝑑𝑦

𝐿

0
           Equation 5. 8 

[𝑀34
𝑒 ]𝑦 = ∫ (𝜌𝐴 (

3

𝐿2
𝑦2 −

2

𝐿3
𝑦3) (

1

𝐿
𝑦2 −

1

𝐿2
𝑦3) + 𝜌𝐼𝑧

𝑑(
3

𝐿2
𝑦2−

2

𝐿3
𝑦3)

𝑑𝑦

𝑑(
1

𝐿
𝑦2−

1

𝐿2
𝑦3)

𝑑𝑦
)𝑑𝑦

𝐿

0
  

Equation 5. 9 

[𝑀34
𝑒 ]𝑦 =

11𝜌𝐴𝐿2+21𝜌𝐼𝑧

210
        Equation 5. 10 

In the same manner, for bending in XY, 

[𝑀34
𝑒 ]𝑧 =

11𝜌𝐴𝐿2+21𝜌𝐼𝑦

210
        Equation 5. 11 

Using the same principle, the Mass Matrix for the XZ plane is 

𝑀𝑦
𝑒 =

[
 
 
 
 
 
 
13𝜌𝐴𝐿2+42𝜌𝐼𝑧

35𝐿

−11𝜌𝐴𝐿2−21𝜌𝐼𝑧

210

9𝜌𝐴𝐿2−84𝜌𝐼𝑧

70𝐿

13𝜌𝐴𝐿2−42𝜌𝐼𝑧

420

−11𝜌𝐴𝐿2−21𝜌𝐼𝑧

210

𝜌𝐴𝐿3+14𝜌𝐿𝐼𝑧

105

−13𝜌𝐴𝐿2+42𝜌𝐼𝑧

420

−3𝜌𝐴𝐿3−14𝜌𝐼𝑧

420

9𝜌𝐴𝐿2−84𝜌𝐼𝑧

70𝐿

−13𝜌𝐴𝐿2+42𝜌𝐼𝑧

420

13𝜌𝐴𝐿2+42𝜌𝐼𝑧

35𝐿

11𝜌𝐴𝐿2+21𝜌𝐼𝑧

210

13𝜌𝐴𝐿2−42𝜌𝐼𝑧

420

−3𝜌𝐴𝐿3−14𝜌𝐼𝑧

420

11𝜌𝐴𝐿2+21𝜌𝐼𝑧

210

𝜌𝐴𝐿3+14𝜌𝐿𝐼𝑦

105 ]
 
 
 
 
 
 

                        Equation 5. 12 
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Consequently, 

𝑀𝑧
𝑒 =

[
 
 
 
 
 
 
13𝜌𝐴𝐿2+42𝜌𝐼𝑦

35𝐿

−11𝜌𝐴𝐿2−21𝜌𝐼𝑦

210

9𝜌𝐴𝐿2−84𝜌𝐼𝑦

70𝐿

13𝜌𝐴𝐿2−42𝜌𝐼𝑦

420

−11𝜌𝐴𝐿2−21𝜌𝐼𝑦

210

𝜌𝐴𝐿3+14𝜌𝐿𝐼𝑦

105

−13𝜌𝐴𝐿2+42𝜌𝐼𝑦

420

−3𝜌𝐴𝐿3−14𝜌𝐼𝑦

420

9𝜌𝐴𝐿2−84𝜌𝐼𝑦

70𝐿

−13𝜌𝐴𝐿2+42𝜌𝐼𝑦

420

13𝜌𝐴𝐿2+42𝜌𝐼𝑦

35𝐿

11𝜌𝐴𝐿2+21𝜌𝐼𝑦

210

13𝜌𝐴𝐿2−42𝜌𝐼𝑦

420

−3𝜌𝐴𝐿3−14𝜌𝐼𝑦

420

11𝜌𝐴𝐿2+21𝜌𝐼𝑦

210

𝜌𝐴𝐿3+14𝜌𝐿𝐼𝑦

105 ]
 
 
 
 
 
 

     Equation 5. 13 

The complete Mass Matrix combines the axial loading, axial torsion, and all transverse Mass 

Matrices. 

     

Equation 5. 14 

This thesis aligns with Rayleigh damping assumes a linear combination of the mass matrix and the 

stiffness matrix (Reddy, 2005). [𝐶𝑒] = 𝑐1[𝑀
𝑒] + 𝑐2[𝐾

𝑒]              Equation 5. 15 

For homogeneous systems,  

𝑑𝑒𝑡([𝐾𝑒] − 𝜔2[𝑀𝑒]) = 0        (Katsikadelis, 2020)           Equation 5. 16 

𝜔 is the natural frequency of the system. Based on Rayleigh damping conditions, 

1

2
[

1

𝜔𝑛
𝜔𝑛

1

𝜔𝑛
𝜔𝑚

] [
𝑐1
𝑐2
] = [

𝜀𝑛
𝜀𝑚

]  (Katsikadelis, 2020)               Equation 5. 17  

[
𝜀𝑛
𝜀𝑚

] are the damping ratio of the system which range from 0 to 0.8 (Katsikadelis, 2020). Therefore, 
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[
𝑐1
𝑐2
] = 2 [

1

𝜔𝑛
𝜔𝑛

1

𝜔𝑛
𝜔𝑚

]

−1

[
𝜀𝑛
𝜀𝑚

]                            Equation 5. 18 

The damping ratio can also be estimated as an addition of internal damping and external damping 

if all the formation information is known. 

5.1.2 The Time Dependent Governing Solutions for Y and Z Direction 

A combination of the drilling dynamics equations and the space equations in chapter 4 give the 

time dependent governing equations. The benefit of solving the time dependent displacement is 

that it gives the ability to calculate accelerations of each direction which in the field is being 

measured by accelerometers downhole. The calculated accelerometers are closely aligned with the 

field readings, then forecasting for drilling problems downhole will be feasible.  

A combination of Equation 4.1 and Equation 5.1 for the y direction gives the following.  

[𝑀𝑒][𝑈̈𝑒] + [𝐶𝑒][𝑈𝑒̇ ] + [𝐾𝑒][𝑈𝑒] =
𝑑2

𝑑𝑦2
(
𝑏𝑑2𝑤

𝑑𝑦2
)                 Equation 5. 19 

Let [𝑀𝑒], [𝐶𝑒], and [𝐾𝑒] be constants M, C and K. Equation 5.19 can be rewritten as: 

𝑀
𝑑2𝑤

𝑑𝑡2
+ 𝐶

𝑑𝑤

𝑑𝑡
+ 𝐾𝑤 = 𝐸𝐼

𝑑4𝑤

𝑑𝑦4
                 Equation 5. 20 

Assuming no movement at initiation of the simulation, the initial value of the system would be: 

𝑤|(𝑦,0) = [
𝑑𝑤

𝑑𝑡
]
(𝑦,0)

= 0                Equation 5. 21 

Here is the general state of each element for the y direction. 
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Figure 5. 1 Forces and Moment in Y and Z Direction 

Rewriting the boundary conditions stated in Equation 4.8 to Equation 4.11, the following 

expressions are obtained. 

[
𝑑2𝑤

𝑑𝑦2
]
(0,𝑡)

=
−𝑇1

𝐸𝐼
                 Equation 5. 22 

[
𝑑2𝑤

𝑑𝑦2
]
(𝐿,𝑡)

=
−𝑇2

𝐸𝐼
                 Equation 5. 23 

[
𝑑3𝑤

𝑑𝑦3
]
(0,𝑡)

=
𝐹1

𝐸𝐼
                   Equation 5. 24 

[
𝑑3𝑤

𝑑𝑦3
]
(𝐿,𝑡)

=
𝐹2

𝐸𝐼
                   Equation 5. 25 

Applying Laplace Transform to Equation 5.20 

𝑀𝑠2𝑤̅ + 𝐶𝑠𝑤̅ + 𝐾𝑤̅ = 𝐸𝐼
𝑑4𝑤̅

𝑑𝑦4
                Equation 5. 26 

Simplifying gives 

𝑑4𝑤̅

𝑑𝑦4
− (

𝑀𝑠2+𝐶𝑠+𝐾

𝐸𝐼
) 𝑤̅ = 0                 Equation 5. 27 
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Let ℵ = √(
𝑀𝑠2+𝐶𝑠+𝐾

𝐸𝐼
)                     Equation 5. 28 

The characteristic equation of Equation 5.27 is 

𝑟4 − ℵ2 = 0                      Equation 5. 29 

Therefore, 𝑟 =
+
−
√ℵ                     Equation 5. 30 

Based on differential characteristics 

𝑤̅|(𝑦,𝑠) = 𝑐1 cosh(𝑦√ℵ) + 𝑐2 sinh(𝑦√ℵ) + 𝑐3 cos(𝑦√ℵ) + 𝑐4 sin(𝑦√ℵ)              Equation 5. 31 

Taking Laplace Transform of all boundary conditions. 

[
𝑑2𝑤̅

𝑑𝑦2
]
(0,𝑠)

=
−𝑇1

𝐸𝐼
(
1

𝑠
)                    Equation 5. 32 

[
𝑑2𝑤̅

𝑑𝑦2
]
(𝐿,𝑠)

=
−𝑇2

𝐸𝐼
(
1

𝑠
)                    Equation 5. 33 

[
𝑑3𝑤̅

𝑑𝑦3
]
(0,𝑠)

=
𝐹1

𝐸𝐼
(
1

𝑠
)                     Equation 5. 34 

[
𝑑3𝑤̅

𝑑𝑦3
]
(𝐿,𝑠)

=
𝐹2

𝐸𝐼
(
1

𝑠
)                     Equation 5. 35 

Effecting Equation 5.32 gives the following expression. 

[
𝑑2𝑤̅

𝑑𝑦2
]
(0,𝑠)

= ℵ(𝑐1 − 𝑐3 ) =
−𝑇1

𝐸𝐼
(
1

𝑠
)                   Equation 5. 36 

Effecting Equation 5.33 gives the following expression. 

[
𝑑2𝑤̅

𝑑𝑦2
]
(𝐿,𝑠)

= ℵ[𝑐1 𝑐𝑜𝑠ℎ(𝐿√ℵ) + 𝑐2 𝑠𝑖𝑛ℎ(𝐿√ℵ) − 𝑐3 𝑐𝑜𝑠(𝐿√ℵ) − 𝑐4 𝑠𝑖𝑛(𝐿√ℵ)] =
−𝑇2

𝐸𝐼
(
1

𝑠
)  

           Equation 5. 37 

Effecting Equation 5.34 gives the following expression. 

[
𝑑3𝑤̅

𝑑𝑦3
]
(0,𝑠)

= ℵ√ℵ(𝑐2 − 𝑐4) =
𝐹1

𝐸𝐼
(
1

𝑠
)                   Equation 5. 38 
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Effecting Equation 5.35 gives the following expression. 

[
𝑑3𝑤̅

𝑑𝑦3
]
(𝐿,𝑠)

= ℵ√ℵ[𝑐1 𝑠𝑖𝑛ℎ(𝐿√ℵ) + 𝑐2 𝑐𝑜𝑠ℎ(𝐿√ℵ) + 𝑐3 𝑠𝑖𝑛(𝐿√ℵ) − 𝑐4 𝑐𝑜𝑠(𝐿√ℵ)] =
𝐹2

𝐸𝐼
(
1

𝑠
)  

Equation 5. 39  

For shorter notation, let the following be set as 

ℶ = 𝐿√ℵ                       Equation 5. 40 

𝑘1 =
−𝑇1

ℵ𝐸𝐼
(
1

𝑠
)                      Equation 5. 41 

𝑘2 =
−𝑇2

ℵ𝐸𝐼
(
1

𝑠
)           Equation 5.42 

𝑘3 =
𝐹1

ℵ√ℵ𝐸𝐼
(
1

𝑠
)                      Equation 5. 42 

𝑘4 =
𝐹2

ℵ√ℵ𝐸𝐼
(
1

𝑠
)                      Equation 5. 43 

Substitute Equation 5.41 into Equation 5.36 and rearranging to get the expression below. 

𝑐3 = 𝑐1 − 𝑘1                      Equation 5. 44 

Substitute Equation 5.43 and Equation 5.38 and rearranging to get the expression below. 

𝑐4 = 𝑐2 − 𝑘3                       Equation 5. 45 

Substitute Equation 5.40, Equation 5.42, Equation 5.45, and Equation 5.46 into Equation 5.37 and 

Equation 5.38 and rearranging to get the expression below. 

[𝑐𝑜𝑠ℎ(ℶ) − 𝑐𝑜𝑠(ℶ)]𝑐1 + [𝑠𝑖𝑛ℎ(ℶ) − 𝑠𝑖𝑛(ℶ)]𝑐2 = 𝑘2 − 𝑘1𝑐𝑜𝑠(ℶ) − 𝑘3𝑠𝑖𝑛(ℶ)    

           Equation 5. 46 

Substitute Equation 5.40, Equation 5.41, Equation 5.44, and Equation 5.46 into Equation 5.39 and 

Equation 5.38 and rearranging to get the expression below. 

[𝑠𝑖𝑛ℎ(ℶ) + 𝑠𝑖𝑛(ℶ)]𝑐1 + [𝑐𝑜𝑠ℎ(ℶ) − 𝑐𝑜𝑠(ℶ)]𝑐2 = 𝑘4 + 𝑘1𝑠𝑖𝑛(ℶ) − 𝑘3𝑐𝑜𝑠(ℶ)    

           Equation 5. 47  

Let 𝑘2 − 𝑘1𝑐𝑜𝑠(ℶ) − 𝑘3𝑠𝑖𝑛(ℶ) = 𝛹                   Equation 5. 48 
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Let 𝑘4 + 𝑘1𝑠𝑖𝑛(ℶ) − 𝑘3𝑐𝑜𝑠(ℶ) = 𝜍               Equation 5. 49 

Substituting Equation 5.49 and Equation 5.50 into Equation 5.47 and Equation 5.48 to obtain: 

[𝑐𝑜𝑠ℎ(ℶ) − 𝑐𝑜𝑠(ℶ)]𝑐1 + [𝑠𝑖𝑛ℎ(ℶ) − 𝑠𝑖𝑛(ℶ)]𝑐2 = 𝛹            Equation 5. 50 

[𝑠𝑖𝑛ℎ(ℶ) + 𝑠𝑖𝑛(ℶ)]𝑐1 + [𝑐𝑜𝑠ℎ(ℶ) − 𝑐𝑜𝑠(ℶ)]𝑐2 = 𝜍              Equation 5. 51 

Solving for the two constants to obtain 

𝑐1 =
|
𝛹 𝑠𝑖𝑛ℎ(ℶ)−𝑠𝑖𝑛(ℶ)

𝜍 𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ)
|

|
𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ) 𝑠𝑖𝑛ℎ(ℶ)−𝑠𝑖𝑛(ℶ)

𝑠𝑖𝑛ℎ(ℶ)+𝑠𝑖𝑛(ℶ) 𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ)
|
=

𝛹(𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ))−𝜍(𝑠𝑖𝑛ℎ(ℶ)−𝑠𝑖𝑛(ℶ))

2(1−𝑐𝑜𝑠(ℶ)𝑐𝑜𝑠ℎ(ℶ))
           Equation 5. 52 

𝑐2 =
|
𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ) 𝛹
𝑠𝑖𝑛ℎ(ℶ)+𝑠𝑖𝑛(ℶ) 𝜍

|

|
𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ) 𝑠𝑖𝑛ℎ(ℶ)−𝑠𝑖𝑛(ℶ)

𝑠𝑖𝑛ℎ(ℶ)+𝑠𝑖𝑛(ℶ) 𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ)
|
=

𝜍(𝑐𝑜𝑠ℎ(ℶ)−𝑐𝑜𝑠(ℶ))−𝛹(𝑠𝑖𝑛ℎ(ℶ)+𝑠𝑖𝑛(ℶ))

2(1−𝑐𝑜𝑠(ℶ)𝑐𝑜𝑠ℎ(ℶ))
            Equation 5. 53  

𝑐3 and 𝑐4 can be calculated by substituting 𝑐1 and 𝑐2 in equations Equation 5.45 and Equation 5.46 

respectively. To calculate 𝑤̅|(𝑦,𝑡), it is necessary to find the inverse Laplace Transform of 𝑤̅|(𝑦,𝑠) 

in Equation 5.31  

𝑓(𝑡) =
𝑒𝑎𝑡

𝑡
[
1

2
𝐹(𝑎) + 𝑅𝑒∑ 𝐹 (𝑎 +

𝑗𝑘𝜋

𝑡
) (−1)𝑘𝑛

𝑘=1 ]  (Hassanzadeh & Pooladi-Darvish, 2007)                

Equation 5. 54 

𝑗 = √−1                 Equation 5. 55 

 𝑎𝑡 =  𝑏𝑒𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 4 𝑎𝑛𝑑 5 (Hassanzadeh & Pooladi-Darvish, 2007) 

𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑒𝑟𝑖𝑒𝑠 

𝐹 = 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝐷𝑜𝑚𝑎𝑖𝑛 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

In this case, 𝐹 = 𝑤̅|(𝑦,𝑠)                  Equation 5. 56 

Here is a test of the result and more detailed results will be shown in chapter 6. 
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Figure 5. 2 Convergence of Displacement in Y or Z Direction 

5.1.3 The Time Dependent Governing Solutions for X Direction (Axial and Torsion) 

A combination of Equation 4.38 and Equation 5.1 for the axial loading in x direction gives the 

following.  

[𝑀𝑒][𝑈̈𝑒] + [𝐶𝑒][𝑈𝑒̇ ] + [𝐾𝑒][𝑈𝑒] = −𝐸𝐴
𝑑2𝑤

𝑑𝑥2
               Equation 5. 57 

Assuming no movement at initiation of the simulation, the initial value of the system would be: 

𝑤|(𝑥,0) = [
𝑑𝑤

𝑑𝑡
]
(𝑥,0)

= 0                            Equation 5. 58 

Here is the schematic of the forces. 
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Figure 5. 3 Forces of Axial Loading in X Direction 

Based on the boundary conditions gotten from Equation 4.41 

[
𝑑𝑤

𝑑𝑥
]
(𝑥,0)

=
𝐹1

𝐸𝐴
                  Equation 5. 59 

[
𝑑𝑤

𝑑𝑥
]
(𝑥,𝐿)

=
𝐹2

𝐸𝐴
                    Equation 5. 60  

Applying Laplace Transform 

𝑀𝑠2𝑤̅ + 𝐶𝑠𝑤̅ + 𝐾𝑤̅ = −𝐸𝐴
𝑑2𝑤̅

𝑑𝑥2
                 Equation 5. 61  

𝑑2𝑤̅

𝑑𝑥2
+ (

𝑀𝑠2+𝐶𝑠+𝐾

𝐸𝐴
) 𝑤̅ = 0                Equation 5. 62 

                

Let ℵ = √(
𝑀𝑠2+𝐶𝑠+𝐾

𝐸𝐴
)                   Equation 5. 63   

Here is the characteristic equation. 

𝑟2 − ℵ2 = 0                    Equation 5. 64 

𝑟 = ±ℵ                      Equation 5. 65 
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𝑤̅(𝑥, 𝑠) = 𝑐1𝑒
ℵ𝑥 + 𝑐2𝑒

−ℵ𝑥                    Equation 5. 66 

𝑑𝑤̅

𝑑𝑥
= 𝑐1ℵ𝑒

ℵ𝑥 − 𝑐2ℵ𝑒
−ℵ𝑥                    Equation 5. 67 

Applying Laplace Transform to the Boundary Conditions 

[
𝑑𝑤̅

𝑑𝑥
]
(𝑥=𝑜)

= ℵ(𝑐1 − 𝑐2) =
𝐹1

𝐸𝐴
(
1

𝑠
)                   Equation 5. 68 

[
𝑑𝑤̅

𝑑𝑥
]
(𝑥=𝐿)

= ℵ(𝑐1𝑒
ℵ𝐿 − 𝑐2𝑒

−ℵ𝐿) =
𝐹2

𝐸𝐴
(
1

𝑠
)                   Equation 5. 69 

Let 𝑘1 =
𝐹1

𝐸𝐴ℵ
                       Equation 5. 70 

Let 𝑘2 =
𝐹2

𝐸𝐴ℵ
                      Equation 5. 71 

Substitute Equation 5.71 and Equation 5.72 in Equation 5.69 and Equation 5.70 

𝑐1 − 𝑐2 = 𝑘1                      Equation 5. 72 

𝑐1𝑒
ℵ𝐿 − 𝑐2𝑒

−ℵ𝐿 = 𝑘2                    Equation 5. 73 

Therefore 

𝑐1 =
|
𝑘1 −1

𝑘2 −𝑒−ℵ𝐿
|

|
1 −1
𝑒ℵ𝐿 −𝑒−ℵ𝐿

|
=

−𝑘1𝑒
−ℵ𝐿+𝑘2

−𝑒−ℵ𝐿+𝑒ℵ𝐿
                  Equation 5. 74 

𝑐2 =
|
1 𝑘1
𝑒ℵ𝐿 𝑘2

|

|
1 −1
𝑒ℵ𝐿 −𝑒−ℵ𝐿

|
=

𝑘2−𝑘1𝑒
ℵ𝐿

−𝑒−ℵ𝐿+𝑒ℵ𝐿
                    Equation 5. 75 

Equation 5.55 is used for inverse Laplace Transform. Here is the convergence curve for a test. 
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Figure 5. 4 Convergence of Displacement in X Direction 

The axial loading behavior is like the axial torsion behavior.  

5.1.4 Validation of the Finite Element Process 

The validation process for the finite element models is built within the global numbering. If the 

fixed ends were not placed as zero because of the restriction of displacement, the validation is done 

by the equation below. 

[𝐾𝑟𝑢] ∗ [∆𝑢] − [𝐽𝐿]𝑟 = [𝑅𝑟]                 Equation 5. 76 

𝐾𝑟𝑢is a group of stiffness coefficients having their impact location at the restrained degree of 

freedom and the reaction location at the unrestrained degree of freedom points. 

• ∆𝑢 is the unrestrained displacements. 

• −[𝐽𝐿]𝑟 are the joint loads at the restrained fixed end moments. 

• 𝑅𝑟 are the forces and moments for the restrained degrees of freedom. 

𝑅𝑟 can be extracted from the global total end forces and moments calculated. 
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5.2 Torque Calculations  

Torque and drag calculations are very critical in the planning of a well and selection of the 

bottomhole assembly. The torque calculations are necessary to avoid twist-off and other damages 

that can occur due to buckling of the parts of the drill string. The drag calculations are also 

necessary when considering fatigue of the drill string and planning to avoid stuck pipe events. This 

chapter will discuss how the drilling simulator can be designed using finite element method and 

accurately predict the friction factor while drilling. 

While transferring torque to the bit, power is lost due to friction, and this can be calculated. This 

calculation is very dependent on the geometry of the wellbore. If the power lost is too high, it can 

increase the rate of fatigue of downhole tools. Excessive torque is not the plan and there is a need 

to plan the trajectory in such a way to reduce excessive torque.  

 

Figure 5. 5 The Concept of Torque Losses Downhole (Beeh, 2017) 

From the figure above, it can be clearly seen that the revolution per minute speed (rpm) goes in 

the direction of the intended surface torque but the due to torque losses (which are the forces 

required to turn the drill string), the downhole will be different from the surface torque. The basic 

formula for torque losses is as follows. 

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝐹𝑛𝑟𝜇                  Equation 5. 77 
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When tripping, Torque is assumed zero. 

𝐹𝑛 = 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒, 𝑙𝑏 

𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑑𝑟𝑖𝑙𝑙 𝑠𝑡𝑟𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑓𝑡 

𝜇 = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 

𝐴𝑛 = 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑒𝑒𝑑, 𝑖𝑛/𝑠𝑒𝑐 

𝑉 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑆𝑝𝑒𝑒𝑑, 𝑖𝑛/𝑠𝑒𝑐 

𝑉 = √𝑇2 − 𝐴𝑛2 ,       𝑇 𝑖𝑠 𝑇𝑟𝑖𝑝 𝑆𝑝𝑒𝑒𝑑 𝑎𝑛𝑑 𝑤ℎ𝑒𝑛 𝑛𝑜 𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔 𝑜𝑐𝑐𝑢𝑟𝑠, 𝐴𝑛 = 𝑉  

When tripping, Torque is approximately 0 but if you want the exact values, then the ration of  
𝐴𝑛

𝑉
 

would be important factors. 

When rotating,  𝐴𝑛 = 𝑉  

Therefore,  

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝐹𝑛𝑟𝜇 (
𝐴𝑛

𝑉
)                       Equation 5. 78 

It is the sum of all these torque created downhole that makes up surface torque. Another way to 

explain it is when surface torque is applied in a certain direction, torque in the opposite direction 

is created in the drill string components downhole. The torque created downhole is the amount of 

resistant force needed to turn the drill string component due to the contact between the components 

and the wellbore.  

5.2 Drag Calculations  

Drag is measured in string weight and it is the gain in string weight when the drill string is being 

pulled out of the hole and the decrease in string weight when the drill string is lowered into the 

wellbore.  
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Figure 5. 6 Understanding the Concept of Drag (Beeh, 2017) 

The tripping weight is different because the drag adds to the weight of the drill string and makes 

it more difficult to pull. This is the reason why excessive unplanned drag is dangerous to the life 

span of downhole tools. Here is the general formula for calculating drag. 

𝐷𝑟𝑎𝑔 𝐹𝑜𝑟𝑐𝑒 = 𝐹𝑛𝜇
|𝑇|

|𝑉|
        Equation 5. 79 

𝐹𝑛 = 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒, 𝑙𝑏 

𝜇 = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑇 =  𝑇𝑟𝑖𝑝 𝑆𝑝𝑒𝑒𝑑,
𝑖𝑛

𝑠𝑒𝑐
        

𝑉 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑆𝑝𝑒𝑒𝑑, 𝑖𝑛/𝑠𝑒𝑐 

𝐷 = 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝑖𝑛𝑐ℎ 

𝐴𝑛 = 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑒𝑒𝑑,
𝑖𝑛

𝑠𝑒𝑐
= 𝐷 ∗ 3.14 ∗

𝑟𝑝𝑚

60
                                          Equation 5. 80 

When drilling, Drag force is approximately 0 but when the exact values are to be calculated, then 

the ration of 
|𝑇|

|𝑉|
 becomes important. However, when there is no drilling, this becomes the drag 

force. When the hook load at the surface increases beyond the anticipated string weight, it is 

certainly because of the inclusion of drag forces downhole especially during pull up. During sliding 
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mode of drilling, drag can also occur as the vertical portion of the drill string is approximately not 

rotating during sliding. The general concept is shown in the figure below. 

 

Figure 5. 7 Magnitude of Torque and Drag Based on Drilling Type 

5.3 Needed Output from Finite Element Method  

The normal force is the net force normal to the point of contact between components of the drill 

string and the borehole wall. It is dependent on the tension extensions on either side of each 

member in a drill string and the compressions between gravitational force and the wall of the hole 

as shown below. 

 

Figure 5. 8 Interactions Between Gravitational Pull and Tension Stretch in the Drill String (Liu, 

Ma, Chen, & Yang, 2018) 

In cases a, b, c, the common forces of note are the 𝑇𝑖+1 and 𝑇𝑖 which are the axial forces at either 

ends of the drill string. In case (a), a vertical wellbore, the gravitational pull acts in the same 

direction with the downward facing axial force while for case (b), the gravitation pull acts 

vertically downwards whilst the axial forces are in angles depending on the inclination and azimuth 

of the drill string. For case (c), the axial forces are horizontal while the gravitational pull are 

perpendicular to the axial forces. The azimuth changes mean the straight path on a 2D view might 
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be curved on 3D view. This is where the importance of 3D modeling of the well path comes to 

play. 

Here is the formula for the normal force. 

𝐹𝑛 = √[(𝐹𝑡∆𝛽 𝑠𝑖𝑛 ∝̅)2 + (𝐹𝑡∆∝ +𝜔 𝑠𝑖𝑛 ∝̅)2]                                       Equation 5. 81 

𝐹𝑛 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒, 𝑙𝑏 

𝐹𝑡 = 𝐴𝑥𝑖𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑛 𝑙𝑜𝑤𝑒𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑙𝑏 

∝̅= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ° 

∆∝= 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒, 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (1 deg = 0.0174 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) 

∆𝛽 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑧𝑖𝑚𝑢𝑡ℎ, 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 

𝜔 = 𝐵𝑢𝑜𝑦𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑙𝑏 

It is paramount to state that the 𝐹𝑡 is equivalent to the axial force of each member of the drill string.  

 

Figure 5. 9 Steps for Calculating Normal Force from Outputs of Finite Element Method 
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A common point being made is that it is only the global values of parameters in the finite element 

method that can be used in external equations. The reason is because each global value in the finite 

element method is a resultant of all factors affecting each member of the entire structure. 

Therefore, it is important that only global values are used to interact between members and external 

factors. This is why the transformation matrix is key to accurate computation all the time. 

5.4 Coefficient of Friction Estimation 

For motion of the drill string to occur, the surface torque applied has to overcome a force to ensure 

the drill string is set in rotation and drilling the hole. The resisting forces are caused by the contacts 

between the drill string and the wellbore walls and also the mud cakes on the wall of the borehole. 

A high friction coefficient means there will high resistance to initial motion of the drill string. The 

resistance continues even after the initial resistance to motion. The friction coefficient will depend 

on the type of drilling fluid in use and whether the hole is cased or not. Here is the formula for 

friction coefficient. 

 𝜇 =
𝐷𝑟𝑎𝑔 𝐹𝑜𝑟𝑐𝑒

𝐹𝑛
∗
|𝑉|

|𝑇|
                                                               Equation 5. 82 

The parameters are as defined previously. The friction coefficient will be lesser obviously in cased 

hole as the resistance to flow will be lower except other factors change. 

 

Figure 5. 10 Friction Coefficient Values in Cased and Open Holes (SoftDrill NL, 2023) 

An alternative calculation for friction coefficient is from torque calculations and this is the linkage 

to the finite element method. 

  𝜇 =
𝑇𝑜𝑟𝑞𝑢𝑒

𝐹𝑛𝑟
∗

𝑉

𝐴𝑛
                                                          Equation 5. 83 

While drilling, 
𝑉

𝐴𝑛
= 1 
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Therefore, 

 𝜇 =
𝑇𝑜𝑟𝑞𝑢𝑒

𝐹𝑛𝑟
                                                              Equation 5. 84 

Note that before the drilling starts, the friction coefficient is static friction and after the drilling 

commences, the friction coefficient is dynamic friction. Static friction is the representation of the 

amount of force needed to get the drill string to start rotating and moving downwards. After that 

maximum force was reached. The friction drops two dynamic friction which is the force needed 

to rotate and move the drill string down the hole. The friction is closely related to the Torque 

because Torque is the force required to turn the drill string a certain distance. 

This 𝑇𝑜𝑟𝑞𝑢𝑒 is the axial torque per member of the 3D drill string structure. 

 

Figure 5. 11 Steps for Calculating Friction Factor from Outputs of Finite Element Method 

It is better to use the torque output from the finite element to calculate the friction factor because 

the drag force formula for friction factor calculation is dependent on drag force which is calculated 

based on outputs from the finite element. The torque formula takes its inputs directly from the 

finite element outputs. 
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5.4.1 Graphical Representation of Coefficient of Friction While Drilling 

Th real importance of friction coefficient is how it helps map out risk zones based on hook load 

and torque readings at the surface. Here is an example of how the plot could look like. 

 

Figure 5. 12 Bucking and Tensile Limit Safety Windows (Brekke, 2016) 

The friction coefficients are planned to be within the safe zone. The friction is planned by using 

the bottom hole assembly and the well part to run some pre-drilling analysis to see what potential 

buckling and tensile limit could be exceeded. Each friction coefficient from 0.1 – 0.4 would be 

tested in the formulas to see if they exceed the buckling and tensile limit of the bottom hole 

assembly. Based on that, a friction factor which is safe for the drilling process based on the bottom 

hole assembly and the well part set will be chosen and assumed to be the safe zone for drilling. 

This now means that during the drilling, if the back calculated friction coefficient exceeds the 

boundary friction coefficient, then there is bound to be potential problem if the bottom hole 

pressure and well part were combined. This means the bottom hole assembly chosen will be such 

that the expected friction coefficient keeps the operations within the safe window. If the friction 

factor is altered, then there would be the risk of buckling the drill string and extending beyond the 

tensile limit of the drill string which could lead to damage of downhole tools. The plot shape is 

known because pre-drilling planning would allow the drilling team to plot or find out what friction 

factors are safe for drilling. The next question is why is the plot taking such converging shape at 

the bottom and diverging at the top? This can be answered in the table below showing an attempt 

to bring a structure into the plot. 
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Table 5. 1 Generic Output for Stiffness Matrix Calculation for Each Member of the Vertical Well 

 Axial Load of Drill String 

Slack Off Weight Static Load Pull Up Weight 

Friction 

Coefficient 

   

0.4 

  

0.3 

 

0.2 

  

0.1 

Assume no drill string 

contact with the hole  

  

0.1 

 

0.2 

  

0.3 

  

0.4 

Increment The slack off weight which 

occurs as the drilling occurs or 

the drill string being lowered 

into the hole, increases as the 

friction coefficient increases 

from 0.1 to 0.4. 

The static load is the 

buoyed weight of the 

drill string based on the 

combined components 

of the selected 

bottomhole assembly. 

The assumption is no 

movement (µ = 0). 

The pull up weight 

which occurs as the 

drill string is being 

pulled up the hole 

increases as the 

friction coefficient 

increases from 0.1 to 

0.4. 

Formula 𝑆𝑡𝑎𝑡𝑖𝑐 𝐿𝑜𝑎𝑑 − 𝐷𝑟𝑎𝑔 𝐹𝑜𝑟𝑐𝑒 
(𝐵𝐹)∑(𝑊 ∗ 𝐿)

 

 

 
𝑆𝑡𝑎𝑡𝑖𝑐 𝐿𝑜𝑎𝑑

+ 𝐷𝑟𝑎𝑔 𝐹𝑜𝑟𝑐𝑒 

 

𝐵𝐹 𝑖𝑠 𝑏𝑜𝑢𝑦𝑎𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟,𝑊𝑖𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝑓𝑜𝑜𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝐿 𝑖𝑠 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  

The figure below shows the structure of the plot showing the buckling and tensile limit. 
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Figure 5. 13 Structure of the Buckling Tensile Plot 

The neutral point occurs at the point of zero axial load which means zero x direction force. The 

figure below shows how the finite element helps identify the neutral point. 

 

Figure 5. 14 Obtaining Neutral Point from Axial Forces 

The easiest way to plot the buckling graph is to work with the unit of tension. Anytime the tension 

forces are identified in the axial direction, it will be added to the cumulative forces on the buckling 

tensile graph. If compression forces are identified, they will be subtracted from the cumulative 

forces. The point of zero forces is the neutral point. The buckling reading starts counting to the left 

of the neutral point. The tensile limit starts counting to the right of the neutral point. If more than 

one neutral point is identified at an instance, the neutral point nearer to the bit would be used as 

the point of origin for the graph. 

5.5 Drill Ahead Modeling Based on Finite Element 

This is the most exciting part of this work. Drilling ahead modeling is the crux of new technologies 

in drilling operations. An accurate drill ahead model allows the testing of new ideas and validation 



94 

 

of principles ahead of field testing. It is cheaper to make mistakes in a simulator than in real life. 

The benefits really depend on the accuracy of the model. The finite element model being discussed 

in the previous chapter makes it straightforward to compute the drill ahead model. 

5.5.1 Important Parameters for Drill Ahead Modeling 

Here are five parameters that determine how the bit and the entire drill string move. 

• The inclination at the bit 

• The three component forces at the bit 

• Measured depth at the bit. 

• Resultant side force 

• The azimuth at the bit 

From the finite element side, the figure below shows the scenario that always happens for each 

loop of simulation. 

 

Figure 5. 15 The 3 Key Steps of The Finite Element Implementation on Drill String 

In terms of drilling, the joint loads are the gravity forces, and the 3D resultant forces at the nodes 

of each member from the previous loop of simulation. The displacements are the rotations and 

translations at each unrestrained node. In other words, the joint loads prompt the displacement 

which then set the entire structure on a set of resultant forces and moments. The diagram below 

shows the forces that influence drilling ahead. 

Consider two points in the well path, point 1 and point 2. 
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Figure 5. 16 Initial Schematic of Drill Ahead Path 

If the buildup rate (BUR) and turn rate (TUR) remain the same, then, 

𝑇𝑈𝑅 =
𝛽2−𝛽1

𝐶𝐿
, 𝐶𝐿 = 𝑐𝑜𝑢𝑟𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ       Equation 5. 85 

 𝐵𝑈𝑅 =
∝2−∝1

𝐶𝐿
                        

Equation 5. 86 

𝛽2+𝑖 = 𝑇𝑈𝑅 + 𝛽2         Equation 5. 87 

∝2+𝑖= 𝐵𝑈𝑅 +∝2                    Equation 5. 88 

     

However, these rates might not be the same as the resultant forces at point 1 and point 2 might not 

lead to a corresponding equal BUR nor TUR in the next position.  
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Figure 5. 17 Schematics for Resultant Force for Drill Ahead Modelling 

If the inclination and the azimuth are the same for both resultant forces, then the buildup rate and 

the turn rate will remain constant. However, if these angles are different, the ratio will alter the 

buildup rate and turn rate in the equations below. 

First, a look at how the resultant force is calculated. 

𝐹𝑅_1 = √𝐹𝑋_1
2 + 𝐹𝑌_1

2 + 𝐹𝑍_1
2                Equation 

5. 89 

∝𝑅_1= 𝑐𝑜𝑠−1 (
𝐹𝑌_1

𝐹𝑅_1
)                    Equation 5. 90 

𝛽𝑅_1 = 𝑠𝑖𝑛−1 (
𝐹𝑋_1

𝐹𝑅_1
)                    Equation 5. 91 

Similarly, 

𝐹𝑅_2 = √𝐹𝑋_2
2 + 𝐹𝑌_2

2 + 𝐹𝑍_2
2                   

Equation 5. 92 

∝𝑅_2= 𝑐𝑜𝑠−1 (
𝐹𝑌_2

𝐹𝑅_2
)                   Equation 5. 93 
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𝛽𝑅_2 = 𝑠𝑖𝑛−1 (
𝐹𝑋_2

𝐹𝑅_2
)                   Equation 5. 94 

For the new points, there will be a desired build rate and desired turn rate which will be used to 

calculate the expected inclination and azimuth. 

𝑇𝑈𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =
𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝛽2

𝐶𝐿
                                  Equation 5. 95 

𝐵𝑈𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =
∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑−∝2

𝐶𝐿
                                    Equation 5. 96 

Since the resultant forces might not be the same, the eventual next inclination and next azimuth 

may not be the same with the desired inclination and azimuth. 

𝛽2+𝑖 = (
𝛽𝑅_2

𝛽𝑅_1
∗ 𝑇𝑈𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + 𝛽2                         Equation 5. 97 

∝2+𝑖= (
∝𝑅_2

∝𝑅_1
∗ 𝐵𝑈𝑅𝑑𝑒𝑠𝑖𝑟𝑒𝑑) +∝2                               Equation 5. 98 

This means anytime the inclination ratio or the azimuth ratio is 1, then the increase in inclination 

and azimuth will just follow the desired buildup rate and the desired turn rate respectively. 

5.5.2 Supporting Variables for the Drill Ahead Process 

The basis of the supporting variables ties back to outputs of the finite element process. The most 

important output is the displacement as time ticks. The displacement is a couple of transverse 

displacements and the axial displacements as shown in Equation 5.31 and Equation 5.67 

respectively. The parameters that matter are the rate of penetration, the weight on bit, and the side 

forces. The table below shows the formula for these variables in the assembly of elements in the 

finite element process. It is crucial to note that the displacement expression for transverse motion 

is different from that of axial motion. They coexist in the full matrix, but their formulations are 

different. Differentiation with respect to x is used as a generic term in the table. 
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Table 5. 2 Formulas for Supporting Variables to Drill Ahead Process 

Variable Name Formula Position 

Translation Displacement, ft [𝑤](𝑥,𝑡) In x, y and z directions 

Rotation Displacement, 

degrees 

𝑑𝑤

𝑑𝑥
 

In x, y and z directions 

Velocity, 
𝑓𝑡

𝑠𝑒𝑐
 𝑑𝑤

𝑑𝑡
 

In x, y and z directions 

Acceleration, 
𝑓𝑡2

𝑠𝑒𝑐
 𝑑2𝑤

𝑑𝑡2
 

In x, y and z directions 

Torque, 𝑙𝑏 𝑓𝑡 𝐸𝐼
𝑑2𝑤

𝑑𝑦2
 for y and z 

𝐺𝐽
𝑑2𝑤

𝑑𝑥2
 for x 

In x, y and z directions 

 

Force, 𝑙𝑏 𝐸𝐼
𝑑3𝑤

𝑑𝑦3
 for y and z 

𝐺𝐽
𝑑3𝑤

𝑑𝑥3
 for x 

In x, y and z directions 

 

RPM, 𝑟𝑝𝑚 
(
1

2𝜋
)
𝑑𝑤

𝑑𝑥
 

In x, y and z directions 

 

 

5.6 Validation Process for the Drilling Simulation 

The drilling simulation is a set of physics-based models that predict the parameter variation as 

drilling occurs from one point in a wellbore to the next. The input to the system will be parameters 

that can be changed by human intervention. The value to be inputted will be weight on bit (WOB), 

lb. The WOB influences the Hookload. The Hookload is measured at the surface and transmitted 

to the producer in real time. The formula for its calculation is stated below. 

[𝐻𝑜𝑜𝑘𝑙𝑜𝑎𝑑]𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = [𝑊𝑂𝐵]𝑖𝑛𝑝𝑢𝑡𝑒𝑑 + ∑𝐺𝐽
𝑑3𝑤

𝑑𝑥3
           Equation 5. 99 

It is necessary to validate the results of the drilling simulation. One credible validation process is 

to compare results with field data. The downhole data gives an accurate measurement of the 

dynamics occurring during drilling operations. Two variables of interest are the accelerations and 

the confined compressive strength (CCS) of the formation.  
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5.6.1 CCS Validation 

CCS is a property of the formation, and the actual values can be gotten from log readings. Rock 

strength is essential in the drilling process. Confined Compressive Strength (CCS) is a geo-

mechanical rock property that indicates the rock strength when confined to some medium (Fabain, 

1994). Since UCS is widely used, the classification of rock formations based on UCS is readily 

available. Moreover, the estimation of rock strength classification is based on UCS. CCS then will 

be related to UCS using the equation proposed by Caicedo et al., 2005 (Caicedo, Calhoun, & Ewy, 

2005). 

𝐶𝐶𝑆 = 𝑈𝐶𝑆 + 𝐷𝑃 + (2 ∗ 𝐷𝑃 ∗
𝑠𝑖𝑛(𝐹𝑎)

1−𝑠𝑖𝑛(𝐹𝑎)
)               Equation 5. 100 

Where 𝑈𝐶𝑆 is the rock unconfined compressive strength (psi). 𝐷𝑃 is the differential pressure or 

confining stress (psi). 𝐹𝑎 is the rock internal angle of friction (degrees). 

For the finite element process, the CCS is calculated. The formulas used to calculate the CCS have 

to be solely from the simulation for the testing process to be accurate. Here is the formula. 

𝐶𝐶𝑆 = (𝑒𝑓𝑓 ∗𝑊𝑂𝐵) [
13.33∗𝜇𝐵∗𝑁

𝐷𝐵∗𝑅𝑂𝑃
+

1

𝐴𝐵
]      (Calhoun, Caicedo, & Ewy, 2008)      Equation 5. 101 

All the input variables are gotten from downhole x direction. 

𝑅𝑂𝑃 = 𝐷𝑜𝑤𝑛ℎ𝑜𝑙𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑓𝑡

ℎ𝑟
) . 𝑇ℎ𝑖𝑠 𝑖𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒; 

𝜇𝐵 = 𝑏𝑖𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

𝐷𝐵 = 𝐵𝑖𝑡 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑖𝑛𝑐ℎ𝑒𝑠); 

𝐶𝐶𝑆 = 𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑑 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑝𝑠𝑖); 

𝑒𝑓𝑓 = 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) 

𝐴𝐵 = 𝐵𝑜𝑟𝑒ℎ𝑜𝑙𝑒 𝐴𝑟𝑒𝑎 (𝑖𝑛2) 

𝑊𝑂𝐵 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑛 𝐵𝑖𝑡 (𝑙𝑏𝑠).  

𝑁 = 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑖𝑡 (𝑟𝑝𝑚). 𝑇ℎ𝑖𝑠 𝑖𝑠 𝑅𝑃𝑀 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 

The formula for some variables is as follows: 
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𝜇𝐵 = 36 ∗
𝑇𝑂𝐵

𝐷𝐵∗𝑊𝑂𝐵
                            Equation 5. 102 

𝑇𝑂𝐵 is Torque on Bit.  

𝐴𝐵 = 𝜋 ∗
𝐷𝐵

2

4
                                        Equation 5. 103 

𝑁 =
𝜃𝑑𝑜𝑤𝑛ℎ𝑜𝑙𝑒

2∗𝜋
, 𝑤ℎ𝑒𝑟𝑒 𝜃𝑑𝑜𝑤𝑛ℎ𝑜𝑙𝑒  𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒. 

𝑒𝑓𝑓 = (1 − (
|
𝛽2+𝑖−𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑
|+|

∝2+𝑖−∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑
∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑

|

2
)) ∗ 100                         Equation 5. 104 

The above equation is derived from the error from the inclination and the azimuth. 

Azimuth Error = 
𝛽2+𝑖−𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑
                      Equation 5. 105 

Inclination Error = 
∝2+𝑖−∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑

∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑
                                Equation 5. 106 

The efficiency is gotten from the average accuracy on the inclination and on azimuth. 

Therefore, Average Error = 
|
𝛽2+𝑖−𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑
|+|

∝2+𝑖−∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑
∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑

|

2
                                   Equation 5. 107 

Accuracy = 1 − (
|
𝛽2+𝑖−𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑
|+|

∝2+𝑖−∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑
∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑

|

2
)                           Equation 5. 108 

On a Percentage =(1 − (
|
𝛽2+𝑖−𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝛽𝑑𝑒𝑠𝑖𝑟𝑒𝑑
|+|

∝2+𝑖−∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑
∝𝑑𝑒𝑠𝑖𝑟𝑒𝑑

|

2
)) ∗ 100                                Equation 5. 109 

5.6.2 Acceleration Validation 

As for the accelerations in x, y and z directions, their values are useful in informing more details 

about the kind of vibration occurring downhole. The expression for acceleration is stated in Table 

5.2. Let the accelerations measured by the measurement while drilling (MWD) tool be 𝐴𝑐𝑐𝑥, 𝐴𝑐𝑐𝑦, 

and 𝐴𝑐𝑐𝑧.  
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Pure lateral vibration is 𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = √(𝐴𝑐𝑐𝑧
2 + 𝐴𝑐𝑐𝑦

2)              Equation 5. 110 

Pure axial vibration is 𝐴𝑎𝑐𝑐𝑥 = 𝐴𝑐𝑐𝑥                 Equation 5. 111 

Plots showing comparison between accelerations gotten from the finite element process and 

accelerations from the MWD tool would boost confidence on the reliability of the drilling 

simulation results generated. 

With the value of the acceleration known, issues concerning vibration can be forecasted. The 

outputs from the finite element method can act as the measurement tool downhole and measure 

accelerations in 3 dimensions and the severity of stick slip and lateral vibrations can be known. 

Forecasting beyond the bit is possible as the drill ahead modeling takes place with calculation of 

next inclination and the next azimuth creates the pseudo well path for further drilling. If the 

formation CCS profile is already known, then the results from the simulation can be very close to 

the expected results. 

5.7 Optimization to Reduce Energy Loss 

The expectation is that the energy produced by the rotation and translational movements of the 

drill string will lead to drilling the borehole effectively thereby maximizing the energy to break 

through the confined compressive strength (CCS) of the rock. However, energy is lost due to 

frictional and excessive vibration of the drill string. This energy loss adds to the mechanical 

specific energy (MSE) needed to drill. It is therefore necessary to introduce an optimization 

process that will show optimized parameters for minimizing the MSE. 

𝑀𝑆𝐸 =
480∗𝑇𝑜𝑟𝑞𝑢𝑒∗𝑅𝑃𝑀

𝐷𝐵
2∗𝑅𝑂𝑃

+
4∗𝑊𝑂𝐵

𝜋∗𝐷𝐵
2                     Equation 5. 112 

The objective function is to minimize MSE. This would mean calculating optimum values when 

the derivative of MSE with respect to 𝑥 is equal to zero. 

𝐴𝑡 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑀𝑆𝐸,
𝑑𝑀𝑆𝐸

𝑑𝑥
= 0                 Equation 5. 113 

Modern stochastic optimization algorithm is the optimization chosen because it has high local 

optima avoidance, and gradient free mechanism. Particle swarm optimization is the type of 

stochastic algorithm to be used. Here are the algorithms. 
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𝑋𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑋𝑖

𝑡⃗⃗⃗⃗ + 𝑉𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                 Equation 5. 114 

𝑉𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑤𝑉𝑖

𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑐1𝑟1 (𝑃𝑖
𝑡⃗⃗⃗⃗ − 𝑋𝑖

𝑡⃗⃗⃗⃗ ) + 𝑐2𝑟2 (𝐺𝑖
𝑡⃗⃗⃗⃗ − 𝑋𝑖

𝑡⃗⃗⃗⃗ )            Equation 5. 115 

𝑉𝑖
𝑡 is the inertia term or velocity of the particle. 

(𝑃𝑖
𝑡⃗⃗⃗⃗ − 𝑋𝑖

𝑡⃗⃗⃗⃗ ) is the cognitive component or the personal best of the particle. 

(𝐺𝑖
𝑡⃗⃗⃗⃗ − 𝑋𝑖

𝑡⃗⃗⃗⃗ ) is the global best or social component of the particle in each run of the optimization 

program. The particle will be the 𝑀𝑆𝐸𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 calculated for each drilling simulation run. The 

results will be shown in the next chapter.  

5.8 Conclusion 

When the drill string is in contact with the wall of the wellbore, there is bound to be drag during 

pull or slacking and torque during drilling. The finite element process is able to output important 

variables like tension on each node of every element in the entire structure which leads to the 

calculation of normal force while calculation of friction coefficient depends on the global torque 

difference between nodes of each member. The buckling and tensile limit can be set in a friction 

coefficient plot. The resultant force at the bit and before the bit is key to calculating the next 

inclination and the next azimuth in the drill ahead model. Particle Swarm Optimization is used 

to minimize the MSE of each run of the drilling process. 
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Chapter 6 Computational Results of Drill String Dynamics 

The data used for this computational analysis is from a horizontal well drilled in Europe. 

 

Figure 6. 1 Diameter of BHA Used for Test Data 

The data used was for a well drilled to just over 18534.38 feet, however, the drilling data provided 

starts drilling at 6624.5 feet as shown in the bit depth graph. Figure 6.2 shows several peaks in the 

bit depth data indicative of trip in and trip out actions. Here are some key preprocessing steps. 

• Remove null values (usually -999.25). 

• To achieve drilling data only, only select data where bit depth equals measured depth which 

ignores tripping in the bit depth data as shown in Figure 6.3. 

• Create Bottom Hole Assembly, BHA, Balance Sheet which sums up all drilling runs to only 

include the parts of the BHAs used that was drilled through the formation. Figure 6.4 shows 

the height of drilling data available meaning the investigation studies data where the drilling 

in view started at about 6624.5 ft. 
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Figure 6. 2 Bit Depth vs Measured Depth of Sample Data 

The filtering to achieve drilling only data is to find data where 𝐵𝑖𝑡 𝐷𝑒𝑝𝑡ℎ ≤ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝑒𝑝𝑡ℎ. 

 

Figure 6. 3 Drilling Data for Bit Depth vs Measured Depth 
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A total of 5 validation processes and 1 test is done to validate the models and tests the benefits of 

the analyzing drilling operations in using the finite element method. 

 

Figure 6. 4 Series of Validation and Testing for the FEM Based Drilling Simulation 

6.1 Transverse Element FEM Validation 

Consider one string of heavy weight drill pipe, with 4 feet of its length in investigation having 3.25 

inches inner diameter and 5 inches outer diameter as shown in Figure 6.3. 

 

Figure 6. 5 Four Feet Beam Element 

Assuming the pipe takes the form of a cantilever beam with a uniformly distributed load. Here is 

the formula to calculate the boundary conditions. 

𝐼𝑛𝑛𝑒𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑃𝑖𝑝𝑒, 𝐼𝐷 = 3.25 𝑖𝑛𝑐ℎ𝑒𝑠 

𝑂𝑢𝑡𝑒𝑟 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑃𝑖𝑝𝑒, 𝑂𝐷 = 5 𝑖𝑛𝑐ℎ𝑒𝑠 
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Figure 6. 6 Cantilever with Uniformly Distributed Load (Budynas-Nisbett, 2011) 

From the deflection tables: 

𝛿 =
−𝑤𝑥2((6𝐿2−4𝐿𝑥+𝑥2)

24𝐸𝐼
    (Budynas-Nisbett, 2011)  Equation 6. 1 

𝜃 =
−𝑤𝑥((3𝐿2−3𝐿𝑥+𝑥2)

6𝐸𝐼
   (Budynas-Nisbett, 2011)    Equation 6. 2 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝑓𝑜𝑜𝑡 = 𝑤 = 2.66(𝑂𝐷2 − 𝐼𝐷2) = 42.56 𝑙𝑏/𝑓𝑡   Equation 6. 3 

 

Based on Equation 6.1, a𝑡 𝑦 = 0, 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛, 𝑢 = 0 𝑓𝑡 𝑎𝑛𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,
 𝑑𝑢

𝑑𝑦
= 0 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

𝐴𝑡 𝑦 = 𝐿, 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛, 𝑢 = −5.3791 𝑓𝑡 𝑎𝑛𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛,
 𝑑𝑢

𝑑𝑦
= −0.2391 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Here are other inputs into the one element beam. 

𝐸 = 𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 = 30,000 𝑝𝑠𝑖 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑃𝑖𝑝𝑒, 𝜌 =  503 
𝑙𝑏

𝑐𝑢 𝑓𝑡
 

Discretized to 100 divisions, the plots of the exact solution versus the approximation used shows 

a perfect match.  



107 

 

The initiation and termination points in  

 

Figure 6. 7 Comparing the Actual and Trial Solutions for the Transverse Displacements 

The derivative of the displacement function also tallies with the derivative of the actual solution. 

 

Figure 6. 8 Comparing the Actual and Trial Derivatives of the Transverse Displacements 
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The residual, which represents how far off from the governing differential equation is the trial 

solution, ranges between -20 ft and 60 ft. An ideal situation would be to have residuals below 1 ft 

intervals. On the other hand, the error between the trial solution and the actual solution is an 

average percentage error of 1.5048 percent. Figure 6.9 shows the overview of the error and the 

residual throughout the domain of the beam element. 

 

Figure 6. 9 Residual of the Transverse Governing Equation 

In order to reduce the residual errors, more or less divisions of the element are tried and here are 

the results. Here is the result for 500 divisions of the domain of the element. 

 

Figure 6. 10 Residuals for 500 and 50 Divisions of the 4ft Beam Domain 
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6.2 Axial Element FEM Validation 

Consider a beam fixed at one end with a tensile load, P, on the other end. Assuming constant cross 

section, and a homogeneous material with constant young’s modulus. 

 

Figure 6. 11 Axial Load on a Fixed Beam 

𝑆𝑡𝑟𝑒𝑠𝑠 =
𝑃

𝐶𝑟𝑜𝑠𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
      (Morley, 1961) Equation 6. 4 

𝑆𝑡𝑟𝑎𝑖𝑛 =
𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛,𝛿

𝐿
     (Morley, 1961)   Equation 6. 5 

According to Hooke’s Law, 𝑆𝑡𝑟𝑒𝑠𝑠 = 𝐸 ∗ 𝑆𝑡𝑟𝑎𝑖𝑛      Equation 6. 6 

This assumption leads to an expression for the deflection. 

𝛿 =
𝑃𝐿

𝐸𝐴
           Equation 6. 7 

Equation 6.7 is used to calculate the boundary conditions. Since the governing equation for the 

axial loading is a second order ODE, therefore, only two boundary conditions are needed. If 𝑃 =

10 𝑘𝑙𝑏 = 10,000 𝑙𝑏 for 𝐿 = 4 𝑓𝑡,  𝐼𝐷 = 3.25 𝑖𝑛𝑐ℎ𝑒𝑠 and  𝑂𝐷 = 5 𝑖𝑛𝑐ℎ𝑒𝑠 

a𝑡 𝑥 = 0, 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛, 𝑢 = 0 𝑓𝑡  

𝐴𝑡 𝑥 = 𝐿, 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛, 𝑢 = 0.161 𝑓𝑡  

Here are the results. 

It can be clearly seen in Figure 6.10 and Figure 6.11 that the residuals have a higher margin for 

the 50 divisions showing that the results become better as the element is broken into more 

divisions. The solutions come with an equation for each case which can then be used to calculate 

the corresponding force, moment, and other important space dependent variables throughout the 

length of the element. 
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Figure 6. 12 Displacement Graph for Axial Loading 

 

Figure 6. 13 Residual Plot for Axial Loading for 50, 100, and 500 Divisions 
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6.2 Time Based Assembly Process 

The goal of the time-based solution is to produce the displacements with variation in time. As seen 

in chapter 5, the time-based solution was derived from the inverse Laplace transformation of the 

results of the partial differential equation. Here is how the simulation loop to produce results goes. 

 

Figure 6. 14 The Drilling Simulation Process 

The assembly is key to ensuring the whole simulation is specifically for drilling simulation. The 

assembly boundary conditions make the finite element directly for drilling processes. Forces, 

moments, and displacements of the same nodes add up. Three equations govern how element by 

element outputs are combined to make the assembly of beams. 

∑ 𝐴𝑥𝑖𝑎𝑙𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
𝑛
𝑖=1 = 𝑐1𝑥𝑖

𝑐2 + 𝑐3𝑥𝑖
𝑐4 +⋯𝑐0𝑥𝑖

0       Equation 6. 8 

∑ 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑌𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
𝑛
𝑖=1 = 𝑐1𝑦𝑖

𝑐2 + 𝑐3𝑦𝑖
𝑐4 +⋯𝑐0𝑦𝑖

0      Equation 6. 9 

∑ 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑍𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
𝑛
𝑖=1 = 𝑐1𝑧𝑖

𝑐2 + 𝑐3𝑧𝑖
𝑐4 +⋯𝑐0𝑧𝑖

0          Equation 6. 10 

Equation 6.8, Equation 6.9 and Equation 6.10 are generated every loop of simulation for each 

element and added up for the assembly. The space-based simulation of the transverse and axial 
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element motion lead to the determination of the stiffness matrix, mass matrix and damping matrix 

for each element. These n-by-n constants are inputs into the time-based simulation. Here is the 

proposed calculation process. 

 

Figure 6. 15 Calculation of Rotation, Torque and Force 

To fully incorporate the displacement discrepancy into the rotation, torque and force calculations, 

a new constant has to be calculated. Here are the adjusted displacements. 

∑ 𝐴𝑥𝑖𝑎𝑙𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
𝑛
𝑖=1 = 𝑐1(𝑥𝑖 + 𝑛𝑎𝑥𝑖𝑎𝑙)

𝑐2 + 𝑐3(𝑥𝑖 + 𝑛𝑎𝑥𝑖𝑎𝑙)
𝑐4 +⋯𝑐0(𝑥𝑖 + 𝑛𝑎𝑥𝑖𝑎𝑙)

0 = 𝐷𝐷 +

𝑐1𝑥𝑖
𝑐2 + 𝑐3𝑥𝑖

𝑐4 +⋯𝑐0𝑥𝑖
0            Equation 6. 11 

∑ 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑌𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
𝑛
𝑖=1 = 𝑐1(𝑦𝑖 + 𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑌)

𝑐2 + 𝑐3(𝑦𝑖 + 𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑌)
𝑐4 +

⋯𝑐0(𝑦𝑖 + 𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑌)
0 = 𝐷𝐷 + 𝑐1𝑦𝑖

𝑐2 + 𝑐3𝑦𝑖
𝑐4 +⋯𝑐0𝑦𝑖

0   Equation 6. 12 

∑ 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑍𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
𝑛
𝑖=1 = 𝑐1(𝑧𝑖 + 𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑍)

𝑐2 + 𝑐3(𝑧𝑖 + 𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑍)
𝑐4 +

⋯𝑐0(𝑧𝑖 + 𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑍)
0 = 𝐷𝐷 + 𝑐1𝑧𝑖

𝑐2 + 𝑐3𝑧𝑖
𝑐4 +⋯𝑐0𝑧𝑖

0          Equation 6. 13 

Since the values of 𝐷𝐷, 𝑥𝑖, y𝑖 and z𝑖 are known, then the values of 𝑛𝑎𝑥𝑖𝑎𝑙,  𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑌, and 

𝑛𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝑍 can be easily calculated. The time step for each simulation is 2 seconds. This is 

because the simulation needs at least 3 rows to function excellently. 

6.2.1 Movement Away from the Reference Point 

The global system is the point of origin of the system. For movement to be appreciated, a reference 

point has to be defined before the movement starts. In the case of drill string simulation, the entire 

string does not move. This is where the boundary conditions for the assembly of the drill string 

becomes very key. Figure 6.16 shows key areas where the displacement of the drill string is zero. 

The restrictions are because of the constraints in the drill string structure. The reason for the lack 
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of movement in the Y and Z directions at the surface is the indicate the holding in place by the top 

drive. If any node touches the wall of the wellbore, it means:  

√𝑢𝑦2 + 𝑢𝑧2 = 𝐷ℎ𝑜𝑙𝑒 − 𝑂𝐷𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡        Equation 6. 14 

 

Figure 6. 16 Effect of The Assembly Boundary Conditions on Displacements 

The stabilizer extends towards the walls of the wellbore, which is within its purpose, and this is 

why displacements at stabilizers is zero for the Y and Z directions. The boundaries at the bottom 

of the bit are a convention that appreciates the impact of the strength of the rock. The digging will 

most likely only allow axial movements where the power of the drilling ensures one direction 

movements. For this thesis, the reference point is at the surface of the drilling. 

6.2.2 Pull of Interest 

The transverse displacement comes in a pair of 4 by 4 matrix which signifies the arrangement in 

Equation 4.28 while the axial displacement comes in a pair of 2 by 2 matrix per time loop 

signifying the arrangement in Equation 4.52. This leads to the labelling for the displacement 

consequently. 
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𝑢𝑦 =

[
 
 
 
𝑢11
𝑒 𝑢12

𝑒 𝑢13
𝑒 𝑢14

𝑒

𝑢21
𝑒 𝑢22

𝑒 𝑢23
𝑒 𝑢24

𝑒

𝑢31
𝑒 𝑢32

𝑒 𝑢33
𝑒 𝑢34

𝑒

𝑢41
𝑒 𝑢42

𝑒 𝑢43
𝑒 𝑢44

𝑒 ]
 
 
 

                  Equation 6. 15  

Similarly for the Z direction, 

𝑢𝑧 =

[
 
 
 
𝑢11
𝑒 𝑢12

𝑒 𝑢13
𝑒 𝑢14

𝑒

𝑢21
𝑒 𝑢22

𝑒 𝑢23
𝑒 𝑢24

𝑒

𝑢31
𝑒 𝑢32

𝑒 𝑢33
𝑒 𝑢34

𝑒

𝑢41
𝑒 𝑢42

𝑒 𝑢43
𝑒 𝑢44

𝑒 ]
 
 
 

                 Equation 6. 16 

In the same manner, the displacements for the X direction are identified. 

𝑢𝑥𝑙𝑜𝑎𝑑 = [
𝑢11
𝑒 𝑢12

𝑒

𝑢21
𝑒 𝑢22

𝑒 ]         Equation 6. 17 

However, for the transverse displacements, there are only 4 nodes meaning all displacements 

cannot be used at once. It then depends on what drilling process is taking place. There are key 

processes in drilling: 

• Drilling and Slacking (downward movement) 

• Pulling (upward movement) 

• Rotating (round movement) 

• Back reaming (round and up movement) 

Usually, the initiating force comes from its own node, referring to 𝑢11
𝑒 , 𝑢22

𝑒 , 𝑢33
𝑒 , and 𝑢44

𝑒 . Here is 

the labelling.  

𝑢𝑦 =

[
 
 
 
 
 
 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑦𝑝𝑒 𝑁𝑜𝑑𝑒 1 𝑁𝑜𝑑𝑒 1 𝑁𝑜𝑑𝑒 2 𝑁𝑜𝑑𝑒 2
 𝑦 𝑧 𝑦 𝑧

𝑃𝑢𝑙𝑙𝑖𝑛𝑔, 𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔 𝒖𝟏𝟏
𝒆 𝑢12

𝑒 𝑢13
𝑒 𝑢14

𝑒

𝐵𝑎𝑐𝑘 𝑅𝑒𝑎𝑚𝑖𝑛𝑔 𝑢21
𝑒 𝒖𝟐𝟐

𝒆 𝑢23
𝑒 𝑢24

𝑒

𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔/𝑆𝑙𝑎𝑐𝑘𝑖𝑛𝑔 𝑢31
𝑒 𝑢32

𝑒 𝒖𝟑𝟑
𝒆 𝑢34

𝑒

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑢41
𝑒 𝑢42

𝑒 𝑢43
𝑒 𝒖𝟒𝟒

𝒆 ]
 
 
 
 
 
 

             Equation 6. 18 
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𝑢𝑧 =

[
 
 
 
 
 
 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑦𝑝𝑒 𝑁𝑜𝑑𝑒 1 𝑁𝑜𝑑𝑒 1 𝑁𝑜𝑑𝑒 2 𝑁𝑜𝑑𝑒 2
 𝑧 𝑦 𝑧 𝑦

𝑃𝑢𝑙𝑙𝑖𝑛𝑔, 𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔 𝒖𝟏𝟏
𝒆 𝑢12

𝑒 𝑢13
𝑒 𝑢14

𝑒

𝐵𝑎𝑐𝑘 𝑅𝑒𝑎𝑚𝑖𝑛𝑔 𝑢21
𝑒 𝒖𝟐𝟐

𝒆 𝑢23
𝑒 𝑢24

𝑒

𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔/𝑆𝑙𝑎𝑐𝑘𝑖𝑛𝑔 𝑢31
𝑒 𝑢32

𝑒 𝒖𝟑𝟑
𝒆 𝑢34

𝑒

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑢41
𝑒 𝑢42

𝑒 𝑢43
𝑒 𝒖𝟒𝟒

𝒆 ]
 
 
 
 
 
 

             Equation 6. 19 

𝑢𝑥𝑙𝑜𝑎𝑑 = [

 𝑁𝑜𝑑𝑒 1 𝑁𝑜𝑑𝑒 2
 𝑥 𝑥

𝑃𝑢𝑙𝑙𝑖𝑛𝑔, 𝑇𝑟𝑖𝑝 𝑂𝑢𝑡 𝒖𝟏𝟏
𝒆 𝑢12

𝑒

𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔, 𝑇𝑟𝑖𝑝 𝑖𝑛 𝑢21
𝑒 𝒖𝟐𝟐

𝒆

]                           Equation 6. 20 

 

Figure 6. 17 Displacement from Reference Location 

6.2.3 The Finite Element Simulation Flow 

Figure 6.18 shows the flow of the simulation per element from break down of the drilling 

components till outputting important parameters. One element cannot lie on two drill components. 

The simulation for the transverse displacements and rotations, and the axial loading and axial 

torsions are obtained from Equation 4.2 to Equation 4.37 and Equation 4.38 to Equation 4.75. The 

three simulations can be done simultaneously. The time simulation takes the output from the finite 

element modeling and produces translation and rotation displacement with time variation. 
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Differentiating the expression once and twice in LaPlace domain will lead to results for velocity 

and acceleration. The displacements obtained from the time simulation are then used to adjust the 

displacement expressions for the transverse and axial simulations.  

 

 

Figure 6. 18 Simulation Flow Chart for XYZ Finite Element Modeling 

Now with the time simulation added to the loop, here are the adjusted displacements, torques and 

forces. 
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Figure 6. 19 Time Adjusted Displacements, Torques, and Forces 

In terms of the elemental simulation, here is how the vital results for the displacements are 

obtained. 

 

Figure 6. 20 Displacement Values for Transverse Y Direction 
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Figure 6. 21 Displacement Values for Transverse Z Direction 

 

Figure 6. 22 Displacement Values for X Direction—Loading, Torsion 

6.2.4 Important Assembly Results 

The displacements, forces, torques, velocity and acceleration for nodes with the same number are 

added. Four Processes are going on in every loop of the assembly. They are all interconnected. 
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Figure 6. 23 Global Number of the Drill string 

As shown in Figure 6.23, the four processes are cantilever uniform distributed load for both Y and 

Z directions, cantilever end moment for axial torsion and axial loading for X direction. The 

elements on top hold in place the elements below, the assumption is that the stimulus for each 

move is based on the torque on bit and the weight on bit below. In the interconnected phase, the 
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axial load 𝑃 acts downward while the torque 𝑀𝑜 causes the drill string to turn regardless of the 

resistance from the distributed weight of the drill string 𝑤. 

 6.2.5 Neutral Point of Tension/Compression and Neutral Point of Bending 

At the neutral point of tension and compression, the axial loading force goes from tension to 

compression. This is better viewed as an assembly property to locate several points along the drill 

string where the neutral point could be found. When there are 2 or more neutral points of 

compression and tension, there lies a transition zone between two neutral points. In this thesis, 

positive axial forces mean tension while negative axial forces refer to compression. 

𝐴𝑡 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, ∑
𝑑3𝑢

𝑑𝑥3
𝑛
𝑖=1 = 0                    Equation 6. 21 

Therefore, the neutral points are the values of 𝑥 the derivative expression is equated to zero. The 

neutral point of bending occurs when the torques during axial torsion are equal to zero. 

𝐴𝑡 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, ∑
𝑑2𝑢

𝑑𝑥2
𝑛
𝑖=1 = 0              Equation 6. 22  

6.3 Drilling Parameter Validation 

In order to compare drilling parameters from the simulation and the field results, a drill ahead 

action is carried out from based on the finite element modeling. The most important phenomenon 

in parameter comparison is scenario similarity. The simulated events have to mirror the reality. 

 

Figure 6. 24 Identifying Actual Drilling in Inclination Azimuth Plot 
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Figure 6. 25 Plot of Drilled Path vs Well Plan 

Initiating the simulation to match the drilling process must be done accurately. 

 

Figure 6. 26 Initial Values of the Field Data 

The parameters for comparison are Hookload, klbs, and Top Drive Torque, ft-lbs. The input data 

will be the weight on bit and the top drive RPM. Based on Figure 6.26, there is 6624.5 ft of the 

drill string already in the hole by the time the drilling begins. The initial values are: 

𝑊𝑂𝐵 = 8.953398 𝑘𝑙𝑏𝑠 𝑎𝑛𝑑  𝐻𝑜𝑜𝑘𝑙𝑜𝑎𝑑 = 176.5779 𝑘𝑙𝑏𝑠                Equation 6. 23 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑅𝑃𝑀 = 39𝑟𝑝𝑚 𝑎𝑛𝑑  𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑜𝑟𝑞𝑢𝑒 = 6740 𝑓𝑡 𝑙𝑏𝑠               Equation 6. 24 



122 

 

Here are the general results. The first and most important result is the hook load because if the 

hook load is tracking too far wrongly then the load analysis of the entire system is faulty. From 

Figure 6.28, the tracking seems reasonable with a mean percentage error of 1.5971 percent. Since 

the weight on bit is the input into the system, the calculated hookload has the same kind of response 

to pull or push as the hookload obtained from the field. 

 

Figure 6. 27 Measured Hookload vs Calculated Hookload 

From Figure 6.29, it can be seen that an increase in weight on bit led to decrease in hookload from 

both data and simulated, however, a decrease in weight on bit led to simultaneous increase in 

hookload. 
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Figure 6. 28 Impact on Weight on Bit on Hook load during Simulation 

The weight on bit and surface torque on the system were inputs into the system and torque per 

element and force per element were calculated for axial loading and here are the results. 

 

Figure 6. 29 Forces and Torques in Axial Nodes 

Another parameter worthy of note is the rate of penetration. This is the ROP for the axial direction.  
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Figure 6. 30 ROP Calculated vs ROP Data 

 

A look at the measured depth vs axial depth looks great as though the simulation was correct as 

shown in Figure 6.31.  

 

Figure 6. 31 Measured Depth from Data vs Axial Translation from Simulation 
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6.3 Downhole Measurement Validation 

Based on the finite element modeling, downhole data can be calculated. In order to test the 

downhole measurement, some changes were made to back calculate surface torque based on 

changes to RPM while keeping weight on bit constant. The principle is to calculate the downhole 

torque by subtracting the summation of torques from the field surface torque but recalculate the 

surface torque and observe for an increase in surface torque when RPM is increased and lower 

surface torque when RPM is reduced. 

 

Figure 6. 32 Effect of Rotational Speed on Surface Torque 

Based on the results, the simulation obtains surface torque equal to the torque from the field data 

when the RPM is continuously increased but at depths when the RPM is reduced drastically, the 

simulated surface torque varies from the field data significantly. One reason could be the fact that 

the surface RPM might not effectively affect all the components of the drill string as energy is lost 

along the string due to frictional loss and vibrations. 

6.3.1 CCS Measurement 

The data containing actual CCS values starts at 10,207.19 ft. Many factors affect the accuracy of 

the confined compressive strength based on findings from finite element model. The common 

thought would be an increase in rate of penetration would lead to lower CCS meaning the rock is 

easier to break into but on the contrary that fact may not be true all the time as a higher mud weight 

could also make the penetration faster if operation limits are not exceeded. Figure 6.33 shows 

regions where the CCS calculated and the CCS from the field data tally but yet again so many 

other factors can influence this result. The efficiency of the drilling and the bit coefficient of static 



126 

 

friction are other factors that can affect how the simulation CCS compares to the CCS from the 

field. Since, penetration rate plays a major part in the calculation done, therefore, massive 

variations in ROP will greatly affect the CCS values calculated hence the large variations shown 

in the plot. 

 

Figure 6. 33 Calculated CCS vs CCS from Data 

The mechanical specific energy is another parameter being monitored since it begins to inform the 

amount of energy needed for drilling and it prompts the intuition that energy has been lost across 

the drill string. As expected, MSE calculated responds similar to CCS because the MSE is part of 

the energy needed to break through the formation.  CCS of higher values will require higher MSE 

to breakthrough. It all depends on the other factors that affect the SSC estimation.                                                                                                                                                                                                                                                                                                                                   
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Figure 6. 34 MSE vs CCS vs Depth 

6.4 Drilling Forecasting Validation 

The key variables in forecasting are predicting the right inclination and azimuth. However, the 

input to Equation 5.98 and Equation 5.99 show that the resultant forces play an important role in 

calculating the next inclination and azimuth. The azimuthal changes in the original data as shown 

in Figure 6.35 are quite minimal but the inclination changes are significant. 

 

Figure 6. 35 Plot of Azimuth Differential vs Inclination Differential 
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Using the same data as was used in the CCS validation, the forces in the X, Y, and Z directions 

are investigated as shown in Figure 6.36. These forces can be better visualized when compared to 

the input weight on bit, Figure 6.37, which in this case was placed with a control system to ensure 

the CCS validation was as close as possible to the log CCS values. 

 

Figure 6. 36 Forces in X, Y, and Z Directions 
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Figure 6. 37 Comparing XYZ Forces with WOB 

 

Figure 6. 38 Comparing the Resultant Force with WOB 
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Comparing the resultant force to the weight on bit shows that an increase in resultant force leads 

to a reduction in the resultant force. The explanation for this can be seen in the torque relationships. 

 

Figure 6. 39 Torques in X, Y, and Z Directions 

In Figure 6.39, as torque is increased in the Z direction, there is a magnitude increase in torque in 

the X and Y directions. This can be appreciated when the surface torque is added into the plot. 

 

 

Figure 6. 40 Comparing XYZ Torques with Surface Torque 
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The first important point in Figure 6.40, is how surface torque is positive while the torques in the 

X and Y directions are negative. This indicates the phenomenon illustrated in Figure 5.5. String 

torques are the resistance to the applied surface torque. Since the Z direction torque tells a different 

story, it is better to visualize the comparison from the perspective of the resultant torque which is 

shown in Figure 6.41. 

 

Figure 6. 41 Comparing Resultant Torque to Surface Torque 

The decreases in surface torque are after breaking through a highly resistant rock. When the surface 

torque increases, there is a corresponding increase in the magnitude of the resultant string torque 

showing the resistance due to the formation of the intended rotation from the surface. The drill 
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ahead method will be correct if the right input is used. In this case, the prediction is 100 percent 

correct as shown in Figure 6.42 and Figure 6.43. 

 

Figure 6. 42 Perfection of Inclination Predicted Compared with Field Data 

 

Figure 6. 43 Perfection of Azimuth Predicted Compared with Field Data 

The azimuth prediction shows some minor differences but in general the prediction is correct. 
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6.5 Drilling Optimization Testing 

Minimizing the mechanical specific energy (MSE) means reducing the amount of energy loss in 

the drilling process to unwanted events. More importantly, minimizing MSE means focusing the 

drilling energy on drilling through the rock in the specific direction to hit all targets.  

Since 𝐴𝑟𝑒𝑎 =
𝜋∗𝐼𝐷2

4
                     Equation 6. 25 

The MSE formula in Equation 5.113 can be rewritten as follows. 

𝑀𝑆𝐸 =
120∗𝑇𝑜𝑟𝑞𝑢𝑒∗𝑅𝑃𝑀

Area∗𝑅𝑂𝑃
+

𝑊𝑂𝐵

𝐴𝑟𝑒𝑎
         Equation 6. 26 

It is obvious that minimizing could either mean drilling with the minimum torque required, or 

minimum RPM required or with the minimum WOB required and lastly minimizing MSE could 

mean drilling with the maximum ROP required. These theories are based on their position on the 

equation. Just like with a car, human interaction exists at steering wheel and the gas pedal, also for 

drilling, making changes to the RPM (steering) and WOB (pedal) significantly affects the course 

of the drilling operations.  

Let 
1

𝐴𝑟𝑒𝑎
= 𝐾𝑎           Equation 6. 27 

𝑀𝑆𝐸 = (
120∗𝜋∗𝑇𝑜𝑟𝑞𝑢𝑒∗𝑅𝑃𝑀

𝑅𝑂𝑃
∗ 𝐾𝑎) + (𝐾𝑎 ∗ 𝑊𝑂𝐵)      Equation 6. 28 

It is important at this point to specify the current units of the equation. 

𝑀𝑆𝐸 𝑖𝑠 𝑖𝑛 𝑝𝑠𝑖  

𝑇𝑜𝑟𝑞𝑢𝑒 𝑖𝑠 𝑖𝑛 𝑙𝑏𝑠. 𝑓𝑡  

𝑅𝑂𝑃 𝑖𝑠 𝑖𝑛
𝑓𝑡

ℎ𝑟
  

𝑊𝑂𝐵 𝑖𝑠 𝑖𝑛 𝑙𝑏𝑠  

Ka 𝑖𝑠 𝑖𝑛
1

𝑖𝑛2
  

𝑅𝑃𝑀 𝑖𝑠 𝑖𝑛 𝑟𝑝𝑚 (𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒)  

 Evaluating 
𝑅𝑃𝑀

𝑅𝑂𝑃
 alone to get 
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𝑅𝑃𝑀

𝑅𝑂𝑃
=

𝑟𝑒𝑣

𝑚𝑖𝑛
∗
ℎ𝑟

𝑓𝑡
∗
60∗𝑚𝑖𝑛

1 ℎ𝑟
∗

1 𝑓𝑡

12 𝑖𝑛𝑐ℎ𝑒𝑠
=

5 𝑟𝑒𝑣

𝑖𝑛
=

5 𝑟𝑒𝑣

𝐷𝑂𝐶
      Equation 6. 29 

Where 𝐷𝑂𝐶 = 𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝐶𝑢𝑡 𝑖𝑛 𝑖𝑛𝑐ℎ𝑒𝑠      Equation 6. 30 

Rewriting Equation 6.28 and operating on a per rev basis to obtain a new expression for MSE. 

𝑀𝑆𝐸 = ((120 ∗ 𝜋 ∗ 𝑇𝑜𝑟𝑞𝑢𝑒) ∗
1

𝐷𝑂𝐶∗(
1

5
)
∗ Ka) + (Ka ∗ 𝑊𝑂𝐵)             Equation 6. 31  

𝑀𝑆𝐸 = (
1884.9556∗𝑇𝑜𝑟𝑞𝑢𝑒

𝐷𝑂𝐶
∗ Ka) + (Ka ∗ 𝑊𝑂𝐵)      Equation 6. 32 

Substituting for the values of axial Torque and WOB as indicated in Table 5.2 

𝑀𝑆𝐸 = (
1884.9556∗Ka

𝐷𝑂𝐶
∗ 𝐺 ∗ 𝐽 ∗

𝑑2𝑤

𝑑𝑥2
) + (Ka ∗ 𝐺 ∗ 𝐽 ∗

𝑑3𝑤

𝑑𝑥3
)    Equation 6. 33  

Simplifying the equation further gives the following. 

𝑀𝑆𝐸 = Ka ∗ 𝐺 ∗ 𝐽 ∗ (((
1884.9556

𝐷𝑂𝐶
) ∗

𝑑2𝑤

𝑑𝑥2
) +

𝑑3𝑤

𝑑𝑥3
)      Equation 6. 34 

Based on the principle stated in Equation 5.114, 

𝑑𝑀𝑆𝐸

𝑑𝑥
= 𝐾𝑎 ∗ 𝐺 ∗ 𝐽 ∗

𝑑

𝑑𝑥
(((

1884.9556

𝐷𝑂𝐶
) ∗

𝑑2𝑤

𝑑𝑥2
) +

𝑑3𝑤

𝑑𝑥3
)    Equation 6. 35 

In order to minimize MSE, the differential of MSE has to be equated to zero. 

𝑑𝑀𝑆𝐸

𝑑𝑥
= 𝐾𝑎 ∗ 𝐺 ∗ 𝐽 ∗

𝑑

𝑑𝑥
(((

1884.9556

𝐷𝑂𝐶
) ∗

𝑑2𝑤

𝑑𝑥2
) +

𝑑3𝑤

𝑑𝑥3
) = 0     Equation 6. 36 

Simplifying further gives the following expression. 

𝑑

𝑑𝑥
(((

1884.9556

𝐷𝑂𝐶
) ∗

𝑑2𝑤

𝑑𝑥2
) +

𝑑3𝑤

𝑑𝑥3
) = 0        Equation 6. 37 

Consider the following boundary conditions in terms of the drilling process. 
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Figure 6. 44 Boundary Conditions Illustration for MSE Minimization 

Based on Figure 6.44, here are the boundary conditions for the business end of the MSE 

calculation. 

𝑤(0) = 𝑤1           Equation 6. 38 

𝑤(𝐿) = 𝐷𝑂𝐶           Equation 6. 39 

𝑤′(0) = 2 ∗ 𝜋 ∗ 𝑅𝑃𝑀1         Equation 6. 40 

𝑤′(𝐿) = 2 ∗ 𝜋 ∗ ∆𝑅𝑃𝑀         Equation 6. 41 

After solving the differential equations with its four boundary conditions, the displacement at 

minimum MSE is obtained as the following. 

𝑤𝑚𝑖𝑛𝑀𝑆𝐸 = (
23562𝐿𝑤1−25𝐷𝑂𝐶

2+25𝐷𝑂𝐶∗𝑤1∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝐿∗𝑤1∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
+25𝜋𝐷𝑂𝐶∗𝐿∗𝑅𝑃𝑀1

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
) +

(
2𝑥(23562𝐷𝑂𝐶−23562𝑤1−25𝜋𝐷𝑂𝐶∗𝑅𝑃𝑀1−23562𝜋𝐿∆𝑅𝑃𝑀+23562𝐿∗𝑅𝑃𝑀1𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
+25𝐷𝑂𝐶∗𝑅𝑃𝑀1𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
)

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
) − (

25𝐷𝑂𝐶𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
∗(𝑤1−𝐷𝑂𝐶+𝜋𝐿∗𝑅𝑃𝑀 1+𝜋𝐿∗∆𝑅𝑃𝑀)

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
) −

(𝐷𝑂𝐶∗𝑥2(23562𝐷𝑂𝐶−23562𝑤1−23562𝐷𝑂𝐶𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝑤1𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
−25𝜋𝐷𝑂𝐶∗𝑅𝐸𝑀1+25𝜋𝐷𝑂𝐶∗∆𝑅𝑃𝑀−47124𝜋𝐿∆𝑅𝑃𝑀+47124𝐿∗𝑅𝑃𝑀1𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
−25∗𝐷𝑂𝐶∗∆𝑅𝑃𝑀𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
+25𝐷𝑂𝐶∗𝑅𝑃𝑀1𝜋𝑒

−(
45239𝐿
25𝐷𝑂𝐶

)
))

𝐿(25𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
−25+23562𝐷𝑂𝐶∗𝐿+23562∗𝐷𝑂𝐶∗𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
)

   

                                                     

Equation 6. 42  

𝑅𝑃𝑀2 is the optimized rotary speed, 𝑅𝑃𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑. 
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The generic form of 𝑤𝑚𝑖𝑛𝑀𝑆𝐸 is the following. 

𝑤𝑚𝑖𝑛𝑀𝑆𝐸 =
𝐶1

𝐶2
+

𝐶3𝑥

𝐶2
−

𝐶4𝑒
−𝐶5𝑥

𝐶2
−

𝐶6𝑥
2

𝐶7
       Equation 6. 43 

However, the variable of interest is 𝑅𝑃𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑. Making 𝑅𝑃𝑀2 the subject of the formula in 

Equation 6.42 will help obtain an expression for 𝑅𝑃𝑀2 which is also 𝑅𝑃𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑. 

𝑅𝑃𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 will be key in resolving torsional vibration, also known as stick slip, thereby 

reducing torsional vibration energy loss. 

∆𝑅𝑃𝑀 = 𝐴𝐴
𝐵𝐵

                    Equation 6. 44 

𝐴𝐴 = 𝑤𝑚𝑖𝑛𝑀𝑆𝐸 − (
23562𝐿𝑤1−25𝐷𝑂𝐶

2+25𝐷𝑂𝐶∗𝑤1∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶)+23562𝐿∗𝑤1∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶)+25𝜋𝐷𝑂𝐶∗𝐿∗𝑅𝑃𝑀1

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶)+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶)

) −

(
2𝑥(23562𝐷𝑂𝐶−23562𝑤1−25𝜋𝐷𝑂𝐶∗𝑅𝑃𝑀1+23562𝐿∗𝑅𝑃𝑀1𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶)+25𝐷𝑂𝐶∗𝑅𝑃𝑀1𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶))

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶)+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶)

) +

(
25𝐷𝑂𝐶𝑒

−(
47124𝐿
25𝐷𝑂𝐶)∗(𝑤1−𝐷𝑂𝐶+𝜋𝐿∗𝑅𝑃𝑀 1)

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶)+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶)

) +

(𝐷𝑂𝐶∗𝑥2(23562𝐷𝑂𝐶−23562𝑤1−23562𝐷𝑂𝐶𝑒
−(

47124𝐿
25𝐷𝑂𝐶)+23562𝑤1𝑒

−(
47124𝐿
25𝐷𝑂𝐶)−25𝜋𝐷𝑂𝐶∗𝑅𝐸𝑀1+47124𝐿∗𝑅𝑃𝑀1𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶)+25𝐷𝑂𝐶∗𝑅𝑃𝑀1𝜋𝑒

−(
45239𝐿
25𝐷𝑂𝐶)))

𝐿(25𝑒
−(

47124𝐿
25𝐷𝑂𝐶)−25+23562𝐷𝑂𝐶∗𝐿+23562∗𝐷𝑂𝐶∗𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶))

  

Equation 6. 45 

 

 

 

𝐵𝐵 = [
25𝐷𝑂𝐶∗𝐿∗𝜋

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
] −

[
47124𝐿𝑥𝜋

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶∗𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
] +
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[
𝐷𝑂𝐶𝑥2(47124𝜋𝐿−25𝜋𝐷𝑂𝐶+25𝐷𝑂𝐶𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
)

𝐿(25𝐷𝑂𝐶2𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
−25𝐷𝑂𝐶2+23562𝐷𝑂𝐶∗𝐿+23562∗𝐷𝑂𝐶∗𝐿∗𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
)

] −

[
25𝐷𝑂𝐶∗𝐿𝜋𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)

23562𝐿−25𝐷𝑂𝐶+25𝐷𝑂𝐶𝑒
−(

47124𝐿
25𝐷𝑂𝐶

)
+23562𝐿𝑒

−(
47124𝐿
25𝐷𝑂𝐶

)
]   

Equation 6. 46 

𝑅𝑃𝑀𝑂𝑃𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝑅𝑃𝑀1 + ∆𝑅𝑃𝑀        Equation 6. 47 

To use the 𝑅𝑃𝑀𝑂𝑃𝑡𝑖𝑚𝑖𝑧𝑒𝑑 for the purpose of minimizing the MSE, it has to be tested to have 

minimal properties. For a 6 ft component with initial RPM of 60 rpm and 10 ft displacement from 

origin will have an optimized RPM profile as follows. 

 

 

Figure 6. 45 Optimized RPM vs Length of BHA Component 

For varying values of depth of cut, here are the corresponding optimized RPM. 
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Figure 6. 46 Depth of Cut Effect on RPM 

6.6 Identifying Minimum MSE Using Particle Swarm Optimization PSO 

Stick slip can be accounted for in the optimized RPM by giving penalties to the objective function 

results when stick slip severity if high for a particular instance. Here is the severity table. 

 

Figure 6. 47 Drilling Vibration Severity Snapshot (Dushaishi, Nygaard, Hoel, Andersen, & 

Hellvik, 2015) 

A stick slip index from 0.5 and above has potential to increase the MSE thereby reducing energy 

available for actual drilling. 

𝐷𝑜𝑤𝑛ℎ𝑜𝑙𝑒 𝑆𝑡𝑖𝑐𝑘 𝑆𝑙𝑖𝑝 𝐼𝑛𝑑𝑒𝑥, 𝐷𝑆𝑆𝐼, =
𝑚𝑎𝑥(𝑅𝑃𝑀)−𝑚𝑖𝑛(𝑅𝑃𝑀)

2∗𝑚𝑒𝑎𝑛(𝑅𝑃𝑀)
   (Etaje, 2018)               Equation 6. 48 

When DSSI>0.5, the objective function, 𝑅𝑃𝑀𝑂𝑃𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝑅𝑃𝑀𝑂𝑃𝑡𝑖𝑚𝑖𝑧𝑒𝑑 + 20; 

When DSSI>1, the objective function, 𝑅𝑃𝑀𝑂𝑃𝑡𝑖𝑚𝑖𝑧𝑒𝑑 = 𝑅𝑃𝑀𝑂𝑃𝑡𝑖𝑚𝑖𝑧𝑒𝑑 + 30. 
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The challenge is to get data points that fit the exact criteria. A further understanding of the severity 

is needed which is shown in Figure 6.48. 

 

Figure 6. 48 Formula for Mean of Datapoints Per Stick Slip Severity 

With the formula for mean RPM known, it is possible to generate the data points that reflect each 

of these regions of stick slip severity. Table 6.1 shows all the potential values of RPM combination 

for stick slip at severity level 0.5, 1.0 and 1.5. Multiplying each value by same number gives high 

RPM replica of the same scenario. 

Table 6. 1 Simulation Baseline Downhole Stick Slip Severity 

RPM for Low DSSI Level RPM for Moderate DSSI Level RPM for Severe DSSI Level 

10 10 10 

10 5 2 

10 4 1 

10 2 7 

10 9 2 

9 3 3 

10 3 1 

10 7 1 

10 1 2 

1 1 1 
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Figure 6. 49 Behavior of Stick Slip Severity at 0.5, 1.0 and 1.5 Levels 

These levels have been programmed to end at the same RPM. Plugging them all into the RPM 

objective function would give the following results. 
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Figure 6. 50 Effect of Penalties in the Objective Function on Optimized RPM 

The goal of Figure 6.50 is to show how the objective function penalizes an input group of RPM 

data corresponding to moderate or severe stick slip. That step automatically disqualifies that 

minimum from being the global minimum. Another study would be to vary the depth of cut and 

view the impact low depth of cut and high depth of cut. 
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Figure 6. 51 Surface Plot of Optimized RPM and Stick Slip Index 

The important value is to ensure that the result of the objective function does not lead to optimized 

RPM that harbors high stick slip index as shown in Figure 6.52 where uniform RPM data is 

inputted into the objective function. Even though the results show higher values as input RPM 

increases, a better interpretation would be to look at the data from previous time combined with 

the input RPM.  

 

Figure 6. 52 Increasing Optimized RPM with Increasing RPM Input 
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In Figure 6.53, there is a sharp change in color as data moves from one level of stick slip severity 

to the next signifying the effect of the penalties added. 

 

 

Figure 6. 53 Effect of Depth of Cut on DSSI 

The PSO loops through the optimized RPM objective function as shown in  

 

Figure 6. 54 Looping the PSO and the Optimized RPM Objective Function 
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The first step is to choose the number of particles, 𝑁, needed in the swarm to find the global 

minimum. Each particle represents a solution to the given problem. In this thesis, the problem is 

to mind the minimum optimized RPM for a given set of drilling data. The current velocity, 𝑉𝑖
𝑡⃗⃗⃗⃗ , of 

each particle is then multiplied by an inertia weight 𝑤⃗⃗  which is used to maintain the current 

direction. 𝑤⃗⃗  has values between 0.2 and 0.9. It is used to tune exploration and exploitation positions 

of the particle solution. The PSO algorithm in each loop updates the movement, direction, and 

speed of the current position of a particular particle using the next velocity vector 𝑉𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. The next 

velocity vector 𝑉𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ depends on the current velocity, the tendency towards the persona best for 

that particle, 𝑃𝑖
𝑡⃗⃗⃗⃗ , and the tendency towards the single global best (global minimum), 𝐺𝑖

𝑡⃗⃗⃗⃗ . There is a 

need to specify maximum velocity 𝑉𝑚𝑎𝑥 and maximum iteration 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟. Each particle will go 

through  𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 iterations.    Here is the pseudo code. 

 

Figure 6. 55 Pseudo Code for Particle Swarm Optimization 

With this process completed, the MSE optimized and minimized can be calculated. 

𝑀𝑆𝐸𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑 =
120∗𝑇𝑜𝑟𝑞𝑢𝑒∗𝑅𝑃𝑀𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑

𝐴𝑟𝑒𝑎∗𝑅𝑂𝑃
+

𝑊𝑂𝐵

𝐴𝑟𝑒𝑎
          Equation 6. 49 

This process was run on a data with MWD CCS data. It is important to have the CCS data for 

validation. The recommended RPM from the optimization process was used to recalculate MSE. 
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The results shown from Figure 6.56 to Figure 6.59 clearly indicate that the recommended RPM is 

lowered and steady which is an early sign for low stick slip index. The ROP based on the 

optimization is calculated by keeping depth of cut constant and calculating ROP from the 

recommended RPM and there are changes in ROP when compared to ROP from the data however, 

the resulting MSE is greater than MSE from the data.  

 

Figure 6. 56 Comparing RPM from Data to RPM Recommended by the Optimization Process 
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Figure 6. 57 Comparing ROP from Data to ROP from Optimization Process 

The MSE from the optimization is greater even though minimization was the goal. On a case-by-

case basis, it will be greater or lower depending on how much safe energy is used or unused. The 

MSE is not entirely based on the global minimum if that location is found to have higher stick slip 

severity. That means the lowest local minimum would be chosen by the PSO to achieve safe 

drilling.  

 

 

Figure 6. 58 Comparing MSE from Data and MSE from Optimization Process 
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The big achievement is the reduction is downhole stick slip index. There is a 28 percent reduction 

is downhole stick slip index. 

 

Figure 6. 59 Proof of Reduction in Stick Slip Vibration 

6.7 Conclusion 

It can be concluded that the MSE minimization process should rather be called MSE optimization 

process as the decision to raise or lower MSE should be based on the data supplied to the particle 

swarm optimizer since the objective function is built with constraints to lower drill string 

vibrations. When tested with field data, the objective function and optimizer built in this research 

was found to increase MSE but lower the downhole stick slip index by 28 percent. The downhole 

stick slip index was below 0.5. A total of 20 functions were created to actualize the results in this 

chapter as shown in Figure 6.60 
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Figure 6. 60 List of Functions Needed for Simulation and Testing 
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Chapter 7 Conclusion 

There is no gap in importance between drilling simulation and drilling field trials as both processes 

co-exist to ensure new technologies are tested and validated before being launched as a new 

process or best practice. Figure 7.1 shows a high level of interactions between field trials and 

drilling simulation. In summary, drilling simulation, a set of physic-based models run through time 

or depth steps to mirror events in the drilling rig, is the backbone of all field testing of technologies 

or procedures. If a model has been validated using drilling simulation, the risk of wasted field trial 

is lowered significantly. This is why the formulation of models that make up drilling simulation is 

key and this what this thesis has focused on. 

 

Figure 7. 1 Relations Between Drilling Simulation and Drilling Field Testing 

7.1 A Review of Drilling Simulation 

Based on the experience of conducting the research in this thesis, a better understanding of drilling 

simulation can be explained. The big question to answer is “why are things the way they are?” The 

only way to answer such a question is to first define the governing equations that surround the 
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scenario to be understood. When the equations are solved, the solution can then be tested to ensure 

the assumptions made were accurate and sufficient to replicate actual field scenarios.  

 

Figure 7. 2 An Overview of Drilling Simulation 

Figure 7.2 gives the overview of the drilling process and how computation and modeling play a 

part in achieving validated results. The boundaries are set based on proven beam deflection 

equations. This is important to ensure reasonable boundaries are set. The four processes in need of 

boundaries in this thesis are axial loading, axial torsion, transverse bending in the Y direction and 

transverse bending in the Z direction. 

7.2 Key Activities of the Research  

20 functions were used to simulate the processes described in this research. Finite element 

formulation of space models linked with time-based models have been developed for the 2-node 

system in X (axial loading and axial torsion), Y (transverse bending of Z), and Z (transverse 

bending of Y) directions. Laplace transform was used to solve the time based partial differential 

equation paving way for the development of velocity, acceleration, force, and torque equations. 

Drill ahead modeling using build and walk relation to resultant forces was validated. Stick slip 

mitigation using the optimized RPM objective function was used to optimize the mechanical 
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efficiency of drilling. 28 percent reduction in stick slip was achieved during the test. Several plots 

of drilling parameters were done to display results of optimization, modeling conditions, trajectory 

of the drill string, and vibration occurrence via stick slip. An expression of the optimized RPM 

was developed and simulated with field data. Confined compressive strength from the field data 

was compared with the CCS obtained from the simulation but there was no perfect match yet. 

Further runs of the simulation would show more lessons as to how to improve the results. 

7.3 Expanding the Research 

It is a known fact that the error of the finite element model reduces as the order of the element 

increases. This thesis focused on linear nodal system, a two-node system. This means each element 

has only two nodes. This is potentially the reason why Figure 6.8 to Figure 6.13 show the residuals 

having errors above 20 % even though the solution has less than 2 percent error. A higher order 

nodal system is needed. This thesis has laid the groundwork to build more nodes in each element 

of the drill string. For instance, for a 6-node system with 36 degrees of freedom, the elementary 

equation for the interpolation functions will have the following expression for the transverse Y 

direction. 

𝑤𝑒|𝑦 = ∑ 𝑢𝑗
𝑒∅𝑗

𝑒12
𝑗=1 (𝑦) = 𝑢1

𝑒∅1
𝑒(𝑦) + 𝑢2

𝑒∅2
𝑒(𝑦) + 𝑢3

𝑒∅3
𝑒(𝑦) + 𝑢4

𝑒∅4
𝑒(𝑦) + 𝑢5

𝑒∅5
𝑒(𝑦) + 𝑢6

𝑒∅6
𝑒(𝑦) +

𝑢7
𝑒∅7

𝑒(𝑦) + 𝑢8
𝑒∅8

𝑒(𝑦) + 𝑢9
𝑒∅9

𝑒(𝑦) + 𝑢10
𝑒 ∅10

𝑒 (𝑦) + 𝑢11
𝑒 ∅11

𝑒 (𝑦) + 𝑢12
𝑒 ∅12

𝑒 (𝑦)   Equation 7. 1 

Similarly, the transverse Z direction will have similar expression. 

𝑤𝑒|𝑧 = ∑ 𝑢𝑗
𝑒∅𝑗

𝑒12
𝑗=1 (𝑧) = 𝑢1

𝑒∅1
𝑒(𝑧) + 𝑢2

𝑒∅2
𝑒(𝑧) + 𝑢3

𝑒∅3
𝑒(𝑧) + 𝑢4

𝑒∅4
𝑒(𝑧) + 𝑢5

𝑒∅5
𝑒(𝑧) + 𝑢6

𝑒∅6
𝑒(𝑧) +

𝑢7
𝑒∅7

𝑒(𝑧) + 𝑢8
𝑒∅8

𝑒(𝑧) + 𝑢9
𝑒∅9

𝑒(𝑧) + 𝑢10
𝑒 ∅10

𝑒 (𝑧) + 𝑢11
𝑒 ∅11

𝑒 (𝑧) + 𝑢12
𝑒 ∅12

𝑒 (𝑧)   Equation 7. 2 

The axial loading equation and axial torsion equation are shown below respectively. 

𝑢𝑒|𝑥 = ∑ 𝑢𝑗
𝑒∅𝑗

𝑒6
𝑗=1 (𝑥) = 𝑢1

𝑒∅1
𝑒(𝑥) + 𝑢2

𝑒∅2
𝑒(𝑥) + 𝑢3

𝑒∅3
𝑒(𝑥) + 𝑢4

𝑒∅4
𝑒(𝑥) + 𝑢5

𝑒∅5
𝑒(𝑥) + 𝑢6

𝑒∅6
𝑒(𝑥)  

Equation 7. 3 

𝜃𝑒|𝑥 =∑𝜃𝑗
𝑒∅𝑗

𝑒

2

𝑗=1

(𝑥𝑀)

= 𝜃1
𝑒∅1

𝑒(𝑥𝑀) + 𝜃2
𝑒∅2

𝑒(𝑥𝑀) + 𝜃3
𝑒∅3

𝑒(𝑥𝑀) + 𝜃4
𝑒∅4

𝑒(𝑥𝑀) + 𝜃5
𝑒∅5

𝑒(𝑥𝑀) + 𝜃6
𝑒∅6

𝑒(𝑥𝑀) 

Equation 7. 4 
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Figure 7. 3 Six Node System 

The boundary conditions for the first and last node remain the same as that for a 2-node system. 

The challenge however is to find extra equations that will make it possible to calculate the extra 

constants in the equations. Since the 6-node system is a higher resolution into each element than 

the 2-node system, the expectation is that the error in the residuals for the 6-node system will 

drastically reduce compared to the 2-node system.  

Another area of improvement would be the inclusion of whirling in the objective function for the 

optimized RPM. Whirling is a type of lateral vibration occurs when the drill string rotates 

disproportionately around the center line of the wellbore hole. There would be coupling of stick 

slip (torsional vibration) and whirling. According to interviews with drilling supervisors, whirling 

occurs more than 90 percent of the time and it is the main reason for tool damage. This thesis has 

setup a procedure to help mitigate stick slip. The same procedure can be followed to mitigate 

whirling in isolation or coupled with stick slip. The challenge in this is to fully model the behavior 

of the BHA as whirling occurs. A start point is to simulate the movement of the drill string from 

the perspective of the sensor placed on a position on the BHA. 
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Appendix 

The appendix are the codes of 3 MATLAB functions used to interpolate well plan data.  

Appendix 1 How to Interpolate Measured Depth, Inclination and Azimuth 

function [I_x,A_x]=findIncAzi(MD,beti,inc,azi,Course_Factor) 
% MD is one value 1 by 1 from the measured depth data. It is not in the 
% well plan data so the corresponding inclination and azimuth values are 
% not given 
% beti, inc, and azi are the measured depth, inclination and azimuth data 
% from the well plan 
% Course_Factor is 100 for field units and 30 for SI units 
% I_x and A_x are the corresponding inlication and azimuth for depth MD 
% the simulation is used to calculate I_x and A_x for several values of MD 
% it is better to start beti,inc,azi from the surface for more accurate 
% results 
[aa,pp]=find(beti<MD); 
[aaa,ppp]=find(beti>MD); 
szAA=size(aa,1); 
szAAA=size(aaa,1); 
if szAA>0 
    MD11=beti(aa); 
    In11=inc(aa); 
    In1=In11(end,1); 
    AZ11=azi(aa); 
    AZ1=AZ11(end,1); 
else 
    MD11=0; 
    In1=0; 
    AZ1=0; 
end 
if szAAA>0 
    MD22=beti(aaa);  
    In22=inc(aaa);  
    In2=In22(1,1); 
    AZ22=azi(aaa); 
    AZ2=AZ22(1,1); 
else 
    MD22=0; 
    In2=0; 
    AZ2=0; 
end 
MD1=MD11(end,1); 
MD2=MD22(1,1); 
% Build 
Build2=(Course_Factor/(MD2-MD1))*(In2-In1); 
Turn2=findTurn(Course_Factor,AZ1,AZ2,MD2,MD1); % findTurn is a function to calculate 
Turn shown at the end of this function 
if In1==In2 && AZ1==AZ2 % No Build No Turn 
    I_x=In1; 
    A_x=AZ1;    
elseif In2>In1 && AZ1==AZ2     % Build Only  
    I_x=In1+((Build2/Course_Factor)*(MD-MD1)); 
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    A_x=AZ1; 
elseif In2==In1 && AZ1~=AZ2 % Turn Only 
    I_x=In1; 
    A_x=findAzi(Course_Factor,AZ1,AZ2,Turn2,MD,MD1); % findAzi is a function to 
calculate the next azimuth shown at the end of this function 
elseif In2<In1 && AZ1==AZ2 % Drop Only 
    I_x=In1-((Build2/Course_Factor)*(MD-MD1)); 
    A_x=AZ1; 
elseif In2>In1 && AZ1~=AZ2 % Build and Turn 
    I_x=In1+((Build2/Course_Factor)*(MD-MD1)); 
    A_x=findAzi(Course_Factor,AZ1,AZ2,Turn2,MD,MD1); 
elseif In2<In1 && AZ1~=AZ2 % Drop and Turn 
    I_x=In1-((Build2/Course_Factor)*(MD-MD1)); 
    A_x=findAzi(Course_Factor,AZ1,AZ2,Turn2,MD,MD1); 
end                 
end 
%% Turn 
function Turn_n=findTurn(Course_Factor,An_1,An_2,Mn_2,Mn_1) 
% The goal is to calculate turn between two azimuth points given their 
% corresponding measured depth 
% An_1 is azimuth of firt survey point 
% An_2 is azimuth of second survey point 
% Mn_1 is measured depth at survey point 1 
% Mn_2 is measured depth at survey point 2 
if An_2>An_1 
    y1=abs(360-An_2); 
    y2=y1+An_1; 
    y3=An_2-An_1; 
    if y2<y3 
        difT=y2;  
    elseif y2>=y3 
        difT=y3; 
    end 
elseif An_2<An_1 
    y4=abs(360-An_1); 
    y5=y4+An_2; 
    y6=An_1-An_2; 
    if y5<y6 
        difT=y5; 
    elseif y5>=y6 
        difT=y6; 
    end 
elseif An_2==An_1 
    difT=0; 
end 
Turn_n=(Course_Factor/(Mn_2-Mn_1))*(difT); 
end 
% find Azimuth 
function An_x=findAzi(Course_Factor,An_1,An_2,Turn_n,Mn_x,Mn_1) 
% The goal is to find the interpolated azimuth between two azimuth in the 
% well plan data 
% An_1 is azimuth of point 1 
% An-2 is azimuth of point 2 
% Turn_n is the turn between point 1 and point 2 
% Mn_x is the measured depth for which an azimuth is to be assigned 
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% Mn_1 is the measured depth of point 1 
% Note that this function is used in a loop to calculate An_x...there may 
% be conditions that does not need this function 
difA=(Turn_n/Course_Factor)*(Mn_x-Mn_1); 
if An_2>An_1 
    y1=abs(360-An_2); 
    y2=y1+An_1; 
    y3=An_2-An_1; 
    if y2<y3 
        if difA>An_1 
            An_x=360-(difA-An_1); 
        elseif difA<=An_1 
            An_x=An_1-difA; 
        end 
    elseif y2>=y3 
        An_x=difA+An_1; 
    end 
elseif An_2<An_1 
    y4=abs(360-An_1); 
    y5=y4+An_2; 
    y6=An_1-An_2; 
    y7=360-An_1; 
    if y5<y6 
        if difA>=y7 
            An_x=difA-y7; 
        elseif difA<y7 
            An_x=An_1+difA; 
        end 
    elseif y5>=y6 
        An_x=An_1-difA; 
    end 
elseif An_2==An_1 
    An_x=An_1; 
end 
end 
             

    elseif y5>=y6 

        An_x=An_1-difA; 

    end 

elseif An_2==An_1 

    An_x=An_1; 

end 

end 

             

 


