UNIVERSITY OF CALGARY

Phase Recovery from Holographic Interferometry Imagery

Derek D’Arcy Lichti

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF GEOMATICS ENGINEERING

CALGARY, ALBERTA

FEBRUARY, 1999

© Derek D’Arcy Lichti 1999



i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et )
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre reférence

Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-38487-X



ABSTRACT

Holographic interferometry (HI) is an extremely high-resolution optical
metrology technique frequently used for deformation measurement and vibration studies.
The physical basis of a HI system is the interference of coherent radiation. The phase
difference between two wavefronts, one modulated by a vibrating object, is captured as
an interference or fringe pattern. The displacement field is implicitly contained in the
fringe image as the phase differences. Thus, to obtain the displacement field, the phase
difference map must be recovered in some manner. Various methods for phase map
recovery have been developed. One such method involves indirect recovery from the
fringe intensity image. For the second group of methods. special geometric imaging
configurations and signal processing algorithms are exploited for direct phase map
recovery.

Existing methods for indirect phase recovery are based upon a search of the fringe
image for local intensity maxima that delineate 27t radian contour lines of the underlying
phase map. However. such algorithms do not perform well in the presence of noise and
non-linear fringe contrast variation. A new algorithm developed for this dissertation
exploits the topological relationships between the intensity image fringes and their
maxima. Specialised filtering techniques, morphological image processing and computer
vision algorithms are utilised to complete the task.

The methods of direct phase recovery, while providing greater resolution
displacement field maps, suffer from a discontinuity problem. The numerical processing

involved in the recovery has the effect of wrapping the recovered phase. That is,
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continuous phase maps are rendered discontinuous on the range [-m.nx] with 2n
discontinuities. The task of phase unwrapping is to remove these discontinuities and
thereby obtain the continuous phase map. Existing methods treat the problem of two-
dimensional unwrapping and a series of independent, one-dimensional unwrapping tasks.
A new approach presented in this dissertation utilises topological definitions of phase
maps, multi-scale edge detection and computer vision techniques to perform the
unwrapping. Also, by approaching the problem as a two-dimensional task, the final step

of the algorithm, the unwrapping, is in fact collapsed to a one-dimensional problem.
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CHAPTER 1

INTRODUCTION

1.1 Deformation Measurement of Industrial Machinery

A problem of great concern in industries such as power generation and oil and gas
transmission is that of deformations in the components of heavy rotating machinery such
as turbines and generators as well as sections of pipe. Temporally varying deformations
induce excessive vibrations in the machinery that can trigger an automatic shut-off
system. The resulting unsafe working conditions, reduced productivity and excessive
component wear during the vibration as well as lost revenue after shut off are naturally of
great concern to plant managers. An industrial rotating machine is a very complex
mechanical system, making the diagnosis of the cause of the deformations difficult. It is,
therefore, expedient to first measure the deformations with great precision. Only then
can trends be analysed and possible causes be hypothesised and solutions formulated.

The precise measurement of deformations of various rotating machinery
components necessitates highly specialised methods due to various operational
constraints. These constraints are chiefly due to environmental conditions, but are also
imposed by the nature of the deformations. First, the industrial setting in which most

rotating machinery is operated is often very hazardous and. as a result, remote, non-
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contact means of measurement must be utilised. Second, the components of interest.
such as shaft bearing housings, are generally situated in relatively inaccessible locations.
Third, the magnitude of deformation measurement sought in such diagnostic problems is
very often at the sub-millimetre or micrometre levels. Complicating matters further is the
fact that the rapidly oscillating vibration is superimposed onto the underlying
deformation. which makes rapid data acquisition critical in order to capture the desired
information. Ultimately, the temporally varying vibration displacement must be removed
from the measurements to obtain the underlying deformation. This can be done with a
precisely timed system. Thus, the requirements of the chosen method can be summarised
as:

e Non-contact.

¢ Rapid acquisition time.

e High resolution (micrometre level).

¢ Provide a dense sampling within a small volume to capture complex deformation

fields.

1.1.1 Contact Methods

Contact methods of measuring vibration-induced deformation utilise some form
of sensor to measure acceleration, velocity or displacement. Mounted directly on the
machinery, an accelerometer senses the force imparted by the motion on a piezoelectric

mass. An electric current that is proportional to the force and, hence, acceleration, is
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associated with the mass. In order to determine displacement, the acceleration signal
must be integrated twice with respect to time. Similarly. a velocity meter signal must be
integrated once to obtain a displacement.

While an accelerometer can yield high-resolution displacement measurements.
one drawback is that it only provides information at a single location, not over an entire
surface. This may necessitate the use of several time-synchronised instruments.
Notwithstanding this, accelerometers are often used in conjunction with holographic
methods to provide complimentary information for diagnosing problems with heavy

machinery.

1.1.2 Optical Methods

Optical methods for the measurement of such deformations include traditional
surveying methods as well as photogrammetric techniques. In the former. modern
electronic total station instruments are used to survey a network of targeted points affixed
to the machinery. By collecting direction. zenith-angle and distance observations, the
target positions are estimated via least-squares estimation. The positional accuracy of
this approach is on the order of a few hundredths of a millimetre. Bayly (1991) offers an
in-depth treatment of surveying methodology in machinery alignment monitoring. An
obvious drawback to this approach is the labour-intensive and time-consuming data
capture process. Thus, only long-period deformation phenomena can be captured by this

means, not higher frequency variations.
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Photogrammetric measurement can also be employed for machinery monitoring.
By acquiring several high-resolution photographic images of the machinery with a short
exposure time, three-dimensional positions of targeted points can be estimated. The
accuracy is comparable to that of the previously described surveying methods. For an
example of photogrammetric machinery measurement, see Fraser (1985). While
photogrammetric data acquisition is much more rapid, it suffers from the requirement of
at least two images acquired from different locations and orientations. Photographic
images only contain two-dimensional magnitude information since they are exposures of
incoherent radiation. Thus, for three-dimensional measurement, two or more images are

necessary.

1.1.3 Holography

Holographic interferometry (HI) is an optical method capable of fulfilling all of
the requirements listed in Section 1.1. In contrast to the surveying and photogrammetric
methods. HI is an active optical method utilising a coherent radiation source (a laser).
Furthermore, HI measurement resolution, while varying with laser wavelength. is on the
order of a few hundred nanometres, two orders of magnitude greater than the other two
methods.

HI has been successfully employed in a variety of structural and mechanical
applications. The most common application is deformation measurements (Judge er al..
1992: Pascal er al., 1996; Pouet and Krishnaswamy, 1996; and Quan ef al., 1996). Other

uses include vibration analysis (Pryputniewicz, 1989; Beeck, 1992), structural inspection



of aircraft (Schmidt and Webster, 1996) and biomedical measurement (Pryputniewicz.
1989).

The concept of holographic imaging was first published by Denis Gabor in 1948,
but was not physically realised until the invention of the laser in the 1960s. The basis of
holographic imaging is the interference of two coherent wavefronts, one of them
modulated in phase by the object being measured, such as the bearing housing of a
machine. The product of this system is a recorded fringe pattern of alternating contrast.
Areas with dark tone correspond to destructive interference between the two wave fronts.
while light tones indicate constructive interference. Contained within the fringe pattern
image is the phase modulation. or phase difference surface, as a function of two-
dimensional position. It is this phase surface, which is proportional to the third
dimension (i.e., depth) of the object, that gives holography its most unique, and powerful,
property: a two-dimensional holographic image contains three-dimensional information.
This is a stark contrast to a photographic image, which contains only two-dimensional
information. HI is a simple extension of holography in which a second exposure of the
same film is made at a later time. The resulting phase modulation characterises the
change in shape (deformation) of the object between exposures.

In order to recover the deformation information about an object. the phase
differences must be recovered from the holographic recording. This can be accomplished
through a series of image processing operations to extract the fringe maxima from the
digitised interferogram. The algorithm documented by Robinson and Reid (1993)

performs this task by searching the image for local intensity maxima. However, the



success of this technique has been limited to noise-free imagery with high contrast. A
new épproach to this problem described in this dissertation utilises several image
processing and computer vision techniques and exploits topological rules of fringe
imagery.

For the greatest resolution, the phase difference surface is extracted via a
sequence of filtering operations. However, due to the numerical nature of the recovery
process, only the principal value of the phase surface is obtained. That is, the recovered
phase difference surface is mapped from its full amplitude onto the range (-rt, ) by the
modulus operation and, as such, is discontinuous. The crux of holographic image
processing is the unwrapping of this wrapped phase surface, which amounts to removal
of the discontinuities. The solutions presented thus far, varied as they may be. all have a
common thread in that the unwrapping of a two-dimensional phase surface is treated as a
series of independent, one-dimensional unwrapping problems. A new approach to this

problem is presented in this dissertation, and is briefly outlined in the next section.

1.2 Research Objectives and Contributions

The objectives of this research effort are to develop, implement and test improved
algorithms for both intensity-based interferogram analysis and two-dimensional phase
unwrapping. The existing means of deformation extraction from fringe patterns utilises
operators for the detection of local intensity maxima (Robinson and Reid, 1993).
However. as will be shown in Chapter Six, the noise characteristics of the HI imagery

used for this research do not permit the use of this approach. The new approach



presented here first makes use of homomorphic filtering to reduce the multiplicative
speckle noise. Fringe maxima are then extracted via local thresholding. Subsequent
thinning of the maxima via morphological processing yields single pixel wide contours.
These contours are then tracked using computer vision techniques. Various algorithms
for bridging gaps in the contours complete the process.

As previously mentioned, the two-dimensional unwrapping problem has been
approached by other researchers as a sequence of independent. one-dimensional
problems. The shortcoming of this approach is that the strong correlation between
neighbouring phase map samples is not exploited. The benefit of utilising this correlation
is that spurious discontinuities as well as gaps in the true discontinuity contours can be
eliminated and bridged. respectively. Such defects arise from the various noise sources
and distortions inherent in digitised holographic imagery.

The new approach to this problem that is described herein treats the problem as a
fully two-dimensional problem. Andri er al. (1991) first tackled two-dimensional phase
unwrapping in this manner, utilising various computer vision techniques employing edge
detection and line following. The algorithm developed for this dissertation builds upon
this idea, utilising scale space concepts.

The contributions of this research to the field of holographic interferometry are
given below.

* A topological description of both fringe imagery and two-dimensional phase maps.
In order to devise the aforementioned algorithms, it was first necessary to formulate

the basic spatial relationships between the various entities, such as the fringe maxima



of an interferogram and the discontinuity contours and intermediary regions of a
phase map.

* The design, implementation and testing of an improved algorithm for Jfringe maxima
extraction. The new algorithm uses many different image-processing techniques to
overcome the difficulties posed by speckle noise and non-linear modulation depth in
fringe maxima extraction.

* The design, implementation and testing of a two-dimensional unwrapping algorithm
using computer vision techniques multiple scale filtering. Like Andri er al. (1991).
the new algorithm utilises various image segmentation techniques such as edge
detection, edge following, edge linking and region growing. However. the new
contribution is in the combination of edge detector responses from different scales
(window widths).

® An algorithm that reduces a two-dimensional unwrapping problem to a one-
dimensional unwrapping problem. It will be shown that. by adopting a two-
dimensional topological approach to phase unwrapping, the actual unwrapping is

reduced to a one-dimensional problem.

1.3 Dissertation Organisation

Chapter Two contains the fundamentals of holographic image formation. The
chapter begins with the mathematical description of electromagnetic waves with
emphasis on coherent radiation sources (lasers) and their properties. Holographic

imaging systems are then addressed, followed by the mathematical derivation of the



holographic image formation process and detailed analysis of the resulting equation.
Both on-axis and off-axis holographic images are studied. Finally. the various noise
sources, both systematic and random, which distort holographic images, are addressed.

Existing methods of phase recovery for both on-axis and off-axis holography are
described and compared in Chapter Three. Existing methods of phase unwrapping follow
this section. Finally, the derivation of deformations from the recovered phase is also
presented and a detailed error analysis is given.

In Chapter Four, the algorithm for fringe maxima extraction is presented. First,
the topology of fringe imagery is described. The filtering operations are then detailed,
followed by the thresholding algorithm. Next, morphological processing and thinning are
discussed. The chapter concludes with the discussion of the various gap-bridging
strategies.

The new two-dimensional phase unwrapping algorithm developed for this
dissertation is described in Chapter Five. First, a topological description of wrapped
phase imagery is outlined. Second the chronological steps of the algorithm are detailed.
Third. the advantages of the new algorithm over existing approaches are discussed.

Both simulated and real holographic imagery was used to test the new algorithm’s
performance. Chapter Six begins with a detailed description of the parameters of these
data sets, followed by test results and data analysis. Finally, a summary of this research,
and recommendations for future work are given in Chapter Seven.

The subject of Appendix A is two-dimensional transforms. Integral transforms,

and their discrete counterparts, play significant roles in the phase recovery and fringe



10

maxima extraction processes, and must, therefore, be includzd in this dissertation. The
two-dimensional continuous Fourier transform is first presented, along with some related
theorems that are drawn upon in this manuscript. The discrete version of this transform,
along with its fast computational algorithm, is then treated. Finally, the chapter
concludes with scale space filtering and the wavelet transform, which are utilised in the

new unwrapping algorithm.
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CHAPTER 2

HOLOGRAPHIC IMAGING

The study of holographic imaging must begin with a description of the nature and
analytical form of coherent radiation. This chapter commences with the relevant physical
background of monochromatic waves. Based upon this material, the process of
holographic image formation is then derived. Both on-axis and off-axis holography are

treated. A discussion of both systematic and random error sources logically follows.

2.1 Electromagnetic Waves

Electromagnetic (EM) radiation is a vector field quantity comprised of mutually
orthogonal electric, E, and magnetic field, B, components. Each component is
orthogonal to the direction of propagation. In this dissertation, only the electric
component is treated, as it is more significant in photographic recording. Because of the

wave nature of EM radiation, it propagates as periodic waves that are functions of time. t.
and spatial position, r. (In all subsequent discussion, adopted co-ordinate frames will be

Cartesian). Because of this periodic nature, EM radiation satisfies the wave equation:

g 2.1
VZE(LE): 1’ a_(’t_’l-)_ s
v~ ot




where v is the phase velocity of the wave.

EM radiation from most natural and artificial sources possesses a broad frequency
spectrum. That is, it consists of the superposition of waves of many different frequencies
or wavelengths. A special case is a monochromatic radiation source that consists of a
single frequency and propagates as a pure sinusoid. The frequency spectrum of such a
wave 1Is an impulse. In reality, purely monochromatic sources do not exist. Laser light,
which is highly monochromatic source with a very narrow bandwidth spectrum. is a close
approximation to an ideal source.

Monochromatic waves are characterised by a number of parameters. The
frequency can be parameterised in terms of circular frequency, , in radians per second
or by temporal frequency, f, in Hertz (cycles per second). The wavelength. . is related
to frequency by the phase velocity. Phase velocity is the velocity of light in a vacuum. c.
reduced by the index of refraction of the propagation medium. n. The relationship
between these quantities is given by

2wV

}L=—_— =

v (o4
Far @2)

The position vector, r. and propagation vector, k, define the position and direction of

propagation of an EM wave, respectively. The norm of k is given by

The normalised propagation vector is a set of direction cosines. which indicate the

direction of wave travel.
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Since EM radiation is a vector quantity, it has up to three sinusoidal components.
each with possibly different amplitude. The electric field amplitude is expressed in units
of Newtons per Coulomb or, equivalently, Volts per metre. The polarisation of a wave
indicates the directional dependence, if any, of the oscillations of the field components as
the wave travels through space. For example, the electric field of a wave linearly
polarised in the y-axis direction will only oscillate in a direction parallel to that axis. The
propagation direction and the direction of polarisation thus define the plane of vibration.
Highly monochromatic sources, such as lasers, are designed to produce highly polarised
light. while most other sources produce randomly polarised light.

The electric field equation of a monochromatic wave, linearly polarised in the y-
direction., is given by

0
E(t.r)=| E, (t)cos(ot+ker) | .
0

(2.4)

The amplitude of this wave is given by Ej.

Coherence is the fundamental property of laser radiation upon which holographic
imaging is based. Coherence is subdivided into two classes: temporal and spatial.
Temporal coherence is a measure of the monochromacity of the radiation. A purely
monochromatic source has infinitesimal bandwidth and emits infinite duration sinusoidal
waves, all of which are in phase. Real sources have finite bandwidth and emit finite
duration wave trains, which manifest themselves as truncated sinusoids. Wave trains are

actually a superposition of sinusoids of different frequencies.
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A useful temporal coherence metric is the coherence length, L., given by

v
b=Bw 2.5

Due to the inverse relationship between coherence length and bandwidth, BW (in Hertz).
sources with narrow bandwidth produce highly coherent light. The coherence length
indicates the spatial distance at which two sinusoids of a wave train will be 180° out of
phase. Stated differently, coherence length is the average wave train length. The
importance of this property will be revisited in subsequent sections dealing with
holographic image formation.

The wave in Equation 2.4 can be further identified as a plane wave since it is
comprised of planar wave fronts. A wave front is a surface defined by the locus of points
of constant phase. Spatial coherence is a measure of degree of planarity of the wave
fronts. Distortions in wave front shape are caused by phase differences between wave
trains emitted from different positions on the radiation source.

It is worth mentioning an alternative representation of a plane wave, which. in
some instances, has distinct advantages. To illustrate this formulation, the y-component

of Equation 2.4 can be rewritten as:

E, ()= Re {E, (e}
S

where

U()=E,([)e*" . Q.7



I5

Re {e} indicates the real part of a complex quantity. The advantage gained with this
notation is that the spatial and temporal components of the wave are separated.

An important derived quantity of EM radiation is irradiance, measured in Watts
per square metre. The importance of this quantity stems from the fact that photographic
film is sensitive to the average power falling on its surface, not the high frequency
variations of the waves themselves. Irradiance is the time average radiant flux (power or
energy flow rate) of the radiation per unit area falling on a body. Considering the y-axis

component of Equation 2.7, the expression for irradiance in a vacuum is given by

I= e°c<E}. (t)E; (1_‘)) i (2.8)

The g, term is the dielectric constant. or electrical permitivity. of a vacuum. The
dielectric constant is frequency dependent and varies with temperature. The angular
brackets denote the time averaging operation of the quantity therein. which will be
explicitly defined in the next section. The superscripted asterisk indicates complex

conjugation.

2.2 Holographic Imaging

The components of an off-axis holographic system, schematically illustrated in
Figure 2.1, include the coherent radiation source, the laser. various optical elements. and
the recording medium. The recording medium is typically a glass plate coated with a
photographic emulsion, although digital recording is becoming more commonplace. The

deforming object to be measured may represent a bearing housing or a section of a pipe.
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The general operation of the system will be first explained conceptually then

mathematically.

Deforming Object

-

Laser Lens Assembly

Beam Splitter

Reference Beam

Object Beam

Recording Medium

Figure 2.1. An Off-Axis Holographic Imaging System.

2.2.1 General Description of a Holographic Imaging System

The monochromatic beam (comprised of planar wave fronts) emitted from the
laser is spread out and collimated back into planar wave fronts. via a lens assembly. in
order to increase the system field of view. The beam amplitude is then divided, via the
beam splitter, into two components: the reference and object beams. Note that the beam
splitter may also be placed before the lens assembly. The reference beam propagates
directly to the recording medium, while the object beam proceeds to the object to be
measured. Upon interacting with the object surface, the object beam is diffusely reflected
and modulated in both magnitude and phase. The phase modulation represents the

difference in optical path length between the object and reference beams. Since the phase
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differences are proportional to the object surface topography, they are of most interest in
holographic imaging.

Because the two beams are coherent, they interfere when they converge upon the
recording medium. The irradiance of the interference pattern is recorded on the film.
The phase differences between the two beams are encoded within the interference pattern
as a fringe pattern of sinusoidal contrast. Dark tone fringes indicate areas where the two
beams are out of phase (destructive interference), while light tone fringes indicate where
the beams are in phase (constructive interference). The fringe image thus contains the
phase difference between the beams, and hence the topographic structure of the object, as
a function of two-dimensional position. Stated differently, three-dimensional information
about the object is captured in a two-dimensional image. Reliable extraction of this
dimensional information is the goal of holographic image processing.

The distinction between off-axis and on-axis holography is made by noting the
presence of the deflection angle, y, between the object and reference beams in the off-
axis configuration. While the object beam is nominally coincident with the image plane
surface normal, the reference beam is tilted by y. The purpose of this tilt is to facilitate
numerical recovery of the phase differences via spatial frequency domain filtering
operations. It will be shown in the next section that the deflection angle is a linear
function of position in the image plane. In on-axis or Gabor holography, the deflection

angle is zero.
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2.2.2 The Incident Radiation
Assuming that the radiation source is linearly polarised coherent light, the electric

field component of the reference beam in the plane of the recording medium is given by

E,(x,y)=r(x,y)cos(ot +6(x,y)) , (2.9)
where.
E.(x.y) is the electric field component of the reference beam in the image plane.
r(x.y) is the electric field amplitude of the reference beam in the image plane.
8(x.y) is the phase shift in the reference beam due to the deflection angle .

To derive the expression for 6(x,y), the deflection angle geometry will first be
considered in one dimension, then extended to two dimensions. Referring to Figure 2.2,
the deflection angle y introduces the geometric shift in phase, A, into the reference beam
wave front as it strikes the image plane. From the geometry of Figure 2.2.

A=xsiny . (2.10)
To obtain the phase shift in angular units (radians), Equation 2.10 is simply scaled and

subsequently simplified as

2
2n
6(x)=(~—smw)x =, X 2.11)
A

Thus, the phase shift due to the constant deflection angle v is a linear function of spatial

position in the image plane. Extending this development to two dimensions, the

expression for G(x,y) is given by



(x.y)=w,x+v,y . (2.12)
The spatial frequencies ©, and v, are called carrier frequencies and are given in radians

per linear unit, such as millimetres. Their significance in the phase recovery process will

be explored in Chapter Three.

Reference Beam / Normal to Image Plane

—— Planar Wave Front of Reference Beam

22

(y-axis points out of the page)

Figure 2.2. Reference Wave Front Phase Shift Due to Beam Deflection Angle.

The electric field component of the object beam in the plane of the recording

medium is given by

E.(x,y)=s(x,y)cos(wt + ¢(x, y)), (2.13)
where,
E.(x.y) is the electric field component of the object beam in the image plane,

s(x,y) is the electric field amplitude of the object beam in the image plane,



o(x,y) is the phase shift in the object beam, also called the phase map or phase
distribution.
Note that the reference and object beam amplitudes differ due to the modulation.

Furthermore, the phase map caused by the object surface is generally non-linear.

2.2.3 Interference Image Formation
Due 10 the coherence of the radiation, the superposition of these two beams is

simply the addition of the two electric field components
E(x,y)=E,(x,y)+E,(x,y) . (2.14)

The irradiance of the interfering waves is determined using Equation 2.8.

I(x,y)=e,c{E(x.Y)E" (x.y))
=£,¢{(E. (.y)+ E. (k. y))E, (x.¥) + E, (x.¥)) )
= soc<Er (x,y) +E.,(x.y) + ?.E,(x,y)Es(x.y)}

= e:oc{<Er (x.y) ) + <Es (x. y)2> +2(E, (x,y)E,(x,y)) } (2.15)

Note that irradiance of the superposition of two incoherent beams is calculated as
the sum of the irradiances of the individual waves. As will be shown shortly. it is the
coherence property of laser radiation that permits the existence of the third term in
Equation 2.15. Without this term, as would be the case with incoherent imaging, no

fringe pattern would be visible.
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Following the procedure of Pedrotti and Pedrotti (1993), the analytical form of the
irradiance is derived term by term. The time average operator for a sinusoidal waveform.

with period T, may be defined as

17 (2.16)
(f(t)) = T [ft)ar .
0
Using this definition and Equation 2.9, the first term of Equation 2.15 becomes
<E (x,¥) > =— Ir(x y)’ cos® (ot +6(x,y))dt .
Using the identity
, 1 1 (2.17)
cos” a=—+—cos2a
2 2
and extracting the temporally independent term from the integrands gives
<E (x.y) > r(x Y) {J'dt—!- Icos’(a)t+9(x v))dt}
Using the identity
cos(o +B) = cosacosp —sinasin (2-18)

and again extracting the temporally independent terms gives

(E (x.y) ) r(x y rlay) {Idt +c0526(x,y)]‘cos2cot dt

T
—sin26(x.y) Isin 2ot dt}
[4]

The first integral is equal to T. and the last two are zero as they are the time averages of

pure sinusoids. Thus, the final expression for the first term of Equation 2.15 is
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o

(E.(x.y)) =r(L2Y_)_ _ (2.19)

Equation 2.19 indicates that the irradiance of the reference beam is proportional to one
half of square of the electric field amplitude. Through identical development. it can be

shown that the second term of Equation 2.15 is.

~~

(Es(x,y)2> _ s_()(_?ﬁ - 2.20)

This equation represents the irradiance of the object beam.

Using Equations 2.9, 2.13 and 2.16, the third term of Equation 2.15 is

(E, (5.9 )E, (5.) = 2 [rc y5Ge. y)eos(ot 6 y)e

0

cos(ot + ¢(x. y))dt
Using Equation 2.18 and performing some algebraic manipulation, this expression

becomes
2<Er (x__ y)Es (x’ y» = z_r()ﬁi—r)M 'Y
.
{cos 8(x, y)cos¢(x, y)J‘cos2 otdt
0
T
~Cos G(X, y)sin ¢(x, y) Isin otcosmtdt .

0

T
~sin6(x,y)cosd(x.y) Isin otcosotdt
1]

T
+sin@(x, y)sin ¢(x, y).fsin2 ot dt}
0



Using the identity
sin(ct +B) = sincccosp +cosasinp

the above expression becomes
2(E. (x.y)E,(x,y)) = w .
T
{cos 8(x, y)cosd(x,y) Icosl otdt
Q

T -
—sin(0(x,y)+ ¢(x, y)) jsin otcosotdt

0

T
+sin0(x, y)sin ¢(x. y)J‘sin2 ot dt}
[V}

Since

| —

(cos2 mt) = <sin2 mt) =
and

(sinotcosot) =0 .

this equation reduces to

2(E, (x.y)E,(x.)) = r(x.y B(x.v)e

{cosb(x, y)cosd(x, y)+sin6(x, y)sin o(x.v)} |

Finally, using the following identity
cos(ct —B) = cosacosP +sinasinf ,

the third term of Equation 2.15 becomes

2(E, (x.¥)E, (x.y)) = r(x.y)s(x.y)cos(®(x,y) - ¢(x.¥)) .
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Substitution of Equations 2.19, 2.20 and 2.25 into Equation 2.15, the expression for

hologram irradiance is

e JHEY) +s(xy)
I(X, Y) - €°C{ 2 (2.26)

+r(x,y(x, y)cos(8(x, y) - (x. y))}
Equation 2.26 can also be expressed in terms of the irradiance of both the reference and

object beams as:

Ix,y)= { L(x.y)+L(xy)

2

+ Ly, y)cos(@(x.y) - o(x.v)}

(227
=Ll LBOY) g ey eos(ote.v)- o )
where
I, (x.y) is the irradiance of the reference beam in the image plane:
L(x.y)=¢ecr(xy) , (2.28)
I(x.y) is the irradiance of the object beam in the image plane:
I(x,y)=g,cs(x,y) , (2.29)
M(x, v) is the modulation depth:

2T (YL (x.y) 29

L (xy)+L(xy)

M(x,y)=



2
W

As a final step, Equation 2.12 is substituted into Equation 2.27, giving

1c.y)= HEDLEO it yheostop s vy el - sy

Analysis of Equation 2.31 reveals its structure to be a constant term plus an
amplitude-modulated sinusoidal term. In reality, the dc term, or average irradiance, is not
truly constant throughout the image plane, but is a low frequency phenomenon. The
importance of this behaviour will be demonstrated in the subsequent discussion on phase
recovery.

The cosine term contains the difference between the linear phase shifts, induced
by the off-axis geometric configuration, and the desired phase map. The maximum value
of this term is one, which occurs when its argument is zero radians. Physically, this
represents perfect phase alignment between the reference and object beams and
corresponds to constructive interference (bright fringes). When the argument is equal to
*m, radians. the cosine minimum of negative one is realised. This situation occurs when
the two beams are out of phase by one half of one cycle and produces destructive
interference (dark fringes).

Preceding the cosine term is the modulation depth, or fringe visibility (Caulfield
and Lu, 1970), which determines the degree of contrast between light and dark fringes. If
the modulation depth is allowed to approach zero, contrast is low and the holographic
image is dominated by the average irradiance. In this scenario, the phase map is difficult

-- if not impossible -- to recover. Thus, maximum fringe contrast is desirable. In general,
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the modulation depth is a non-linear function, but varies slowly throughout the image
plane.

Modulation depth is affected by the geometric configuration of the holographic
imaging system. If the difference in optical path length between the reference and object
beams is greater than the coherence length, no fringes will be visible. Thus, the path
lengths must be carefully matched. Equally as important, though, is a laser with a
sufficiently long coherence length to fulfil the measurement task. Collectively, the
product of the modulation depth and cosine terms is called the interference term. This
term disappears when the radiation source is incoherent and diminishes when the

coherence length is exceeded by the optical path length difference.

2.2.4 Interference Image Recording
As previously mentioned, the photographic film used to make holographic
recordings is sensitive to irradiance. Exposure, H, is defined as the product of irradiance
and the exposure time, At, and has units of Joules per square metre (Caulfield and Lu.
1970).
H(x,y)=1I(x,y)At (2.32)

Using this definition, the exposure of the hologram irradiance given by Equation 2.31 is

Hxy) = LA G e yeosfox v,y - sty a

(V3]
W)
~—

=H_+ {\/Ir (x,y)L(x,¥)cos(w,x + v,y — d(x, y))}At 2.



where
H, is the average exposure.

Transmittance is the ratio of transmitted flux to incident flux. If the hologram is
recorded in the linear portion of the film transfer function (H-T curve). then the resulting
transmittance is of the form

T(x,y)=A+BH(x.y), (2.34)
where A and B are constants. The form of the transmittance, or intensity. image is given

by Equation 2.35.

T(x,y)=i(x.y)=a(x.y)+b(x,y)cos(@,x + v,y — ¢(x.¥)) . (2.35)
where
i(x.y) is the recorded image intensity,
a(x. y) is the background intensity,
b(x.y) is the fringe visibility.

Note that Equation 2.35 is proportional to the irradiance (Equation 2.31). The
problem faced in holographic image processing is to extract the phase map from digital

version of Equation 2.35.

2.2.5 On-Axis Holography
As will be described in the chapter concerned with phase recovery. the off-axis
geometry (see Figure 2.2) is employed as a means to facilitate precise, and possibly

automated. phase map recovery. In on-axis holography, the deflection angle v is equal to
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zero. Later in this chapter, the difference between the two types of holographic imagery.

on-axis and off-axis, will be illustrated.

2.2.6 Holographic Interferometry

A common task of holographic imaging is the measurement of changes in object
shape (deformations) rather than its actual shape. This can be accomplished by utilising
the fact that holographic recording is a linear process (in complex amplitude) in the sense
that two images can be superimposed (Vest, 1979). That is, if a holographic image of an
object is recorded onto film at time t;, and then a second image is recorded on the same
film at time t,, the resulting fringe pattern will contain the phase map proportional to the
change in object shape. The intensity image will be of the same form as Equation 2.35.
However. the linear, spatial phase shifts are introduced between the two exposure times.
If no phase shifts are introduced. then the resulting HI image is effectively an on-axis

interferogram.

2.3 Holographic Interference Image Examples

In order to illustrate the fundamental differences between on-axis and off-axis
holography. some simulated images are presented. The first step was generation of a
two-dimensional phase map representing the phase differences induced by a fictitious
surface. The phase surface chosen was a circularly symmetric Gaussian function ranging
from zero to 12x radians. This surface could represent the first bending mode of a thin.

uniformly loaded plate clamped at each corner. Although the Gaussian function may not
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be the true analytical shape of the bending mode, it is a simple function to generate and is
thus useful for illustrative purposes. Figure 2.3 is an eight-bit quantized representation of
this phase map, in which black and white represent the minimum and maximum phase
map amplitudes, respectively. While the symmetry is evident in this image. the Gaussian

shape clearly reveals itself in the intensity cross section AA’, shown in Figure 2.4.

Figure 2.3. Quantized Gaussian Phase Map Surface.
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Figure 2.4. Cross-Section AA’of the Quantized Gaussain Phase Map Surface.
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Substituting the generated phase map into Equation 2.35, and setting the other
required parameters, holographic images were then generated. The on-axis hologram, for

which @, v, =0, is shown in Figure 2.5 and cross section AA’ is shown in Figure 2.6.

Figure 2.5. Quantized On-Axis Holographic Image.
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Figure 2.6. Cross-Section AA'of the Quantized On-Axis Hologram.



The sinusoidal intensity variation is clearly visible in both the image and cross section
figures. Note that the symmetry of the underlying phase map is preserved by the on-axis
geometry.

The off-axis holographic image resulting from the introduction of non-zero spatial
carrier frequencies is shown in quantized intensity in Figure 2.7 and in cross section in
Figure 2.8. The carrier frequencies have the effect of increasing the spatial frequency of
the fringe pattern, as can be seen in both figures. Also note that the symmetry of the

phase map is lost in the hologram image formation.
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Figure 2.7. Quantized Off-Axis Holographic Image.
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Figure 2.8. Cross-Section AA'of the Quantized Off-Axis Hologram.

2.4 Error Sources in Holographic Imaging

As with any method of metrology, there are various errors inherent in the acquired
data. These include both systematic and random errors. The distinguishing feature of
holographic imaging is that both additive and multiplicative random errors exist.
Additive errors are due to non-uniform film grain density of the photographic emulsion,
as well as electronic and quantization noises introduced by the image digitising process.
Multiplicative noise, known as speckle, arises due to the coherent radiation source as well
as the surface roughness of the object. Non-linear photographic recording is a systematic

error that is treated at the end of this section.

2.4.1 Laser Speckle
Speckle noise is a random phenomenon encountered in coherent imaging methods

such as holography and synthetic aperture radar. The cause of this effect is the highly
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coherent nature of the radiation source. Random variations in object surface topography
on the order of the laser wavelength cause random interference patterns in the recorded
holographic image. This gives the hologram a speckled appearance.

The basis of the stochastic model of speckle is the fact that, due to the diffuse
reflectance, the speckle pattern at any point in the hologram will contain contributions
from many points on the object surface. That is, in contrast to pinhole photographic
image model, there is no one-to-one correspondence between object points and image
points. Thus, the speckle interference pattern is a summation of random complex
amplitude contributions from many different points on the object surface, as shown in

Equation 2.36 (Goodman, 1974):

A(g)zg|akiej9‘,

where

A(r) is the complex amplitude due to the speckle pattern,

la| is the amplitude of random contribution k,

0, is the phase of random contribution k,

N is the number of contributions, which is assumed to be large.

The resulting model is that of a random walk in the complex plane.
Two critical assumptions about the stochastic properties of speckle are the
amplitude and phase are independent, and the phase is uniformly distributed on [-w, =]

(Goodman, 1976). Goodman (1984) proved that the amplitude is normally distributed.
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Of greatest interest, though, is the density of the speckle irradiance, p(I). which Goodman

(1984) shows to be negative exponential

-1
p(0)=—e"ufl), @37)
t
where
U, is the mean value of the irradiance,
u(l) is the unit step function.

Analysis of Equation 2.37 reveals that the speckle irradiance can not assume
negative values. Furthermore, the most probable value of speckle irradiance is zero. An
interesting property of this density is the standard deviation, oy, is equal to the mean, Ly
(Vest, 1979)

Also of interest in the stochastic description of a speckle irradiance is its spatial
correlation. The auto-correlation function gives a measure of the average width of the
speckle pattern. As shown by Vest (1979), the spatial correlation is a function of laser
frequency, object surface geometry and imaging geometry. For the case of a rectangular
surface of dimensions L x L, wavelength A, and an object-image plane separation of z.

the auto-correlation function is a raised sinc-squared function (Goodman, 1984).

2 2 ) (2.38)
R[(Ax,Ay)=p,' 1 +sinc’(L;Ax)sinc'(£) .
Az Az

where
R,(Ax.Ay) is the auto-correlation function of speckle intensity,

Ax. Ay are the spatial separations within the image plane in x and y, respectively,



and

sinmtx
X

sinc(x)=

(2.39)
The average width of the speckle pattern, 8x, is defined as the distance to the first zero
of the sinc-squared function in Equation 2.37, which is (Goodman, 1984)

Az
ox = T . (2.40)

As mentioned at the outset of this section, laser speckle is treated as a

multiplicative noise source. The model of hologram image intensity degraded by

multiplicative noise is given by (Lim and Nawab. 1981)

i'(x.y)=wix,y)i(x.y) , (2.41)
where
i(x.y) is the holographic image intensity, as given by Equation 2.35.
w(x,y) is the multiplicative speckle noise.
i'(x.v) is the degraded hologram.

2.4.2 Film Grain Noise

Film grain noise arises from non-uniform concentration or distribution of the film
grains in the photographic emulsion (Lee, 1972). This has the effect of introducing
random variation in the background intensity of an image. A common model for film
grain noise is white, Gaussian additive noise (Castleman, 1996). Addition of this effect

to Equation 2.41 yields



I'(x,y) = w(x,y)i(x,y) +n(x,y) , (2-42)
where

n(x.y) is the additive film grain noise.

2.4.3 Digitising Noise Sources

Other important noise sources in holographic imagery are due to the digitising
process. In order to obtain a numerical representation of an image, it is necessary to use a
scanning device that utilises electro-optical sensors to convert intensity into voltage and.
ultimately, digital numbers. Noise is added at several junctures in the process. The
additive noise sources in this section can be combined with film grain noise term n(x.y)
of Equation 2.41.

Electronic noise arises due to random electron motion in the digitising circuit
elements and is modelled as a zero-mean, white Gaussian process (Castleman, 1996).
Photo-electronic noise is due to random variations in the incident illumination required
for scanning and can be considered as a Gaussian process at high illumination levels
(Castleman, 1996). Once the voltage signal representation of the image is obtained from
the acquisition hardware, it is uniformly sampled and quantized into digital numbers.
Quantization is a non-linear process in which the signal amplitude is either rounded or
truncated to integer values to minimise computer storage requirements. Treated as an
additive noise source, quantization error has a uniform density (Oppenheim and Schafer,

1989).



2.4.4 Non-linear Photographic Recording

In Subsection 2.2.3, the transformation from exposure to transmittance was
presumed to take place on the linear portion of the H-T curve. In reality, the H-T transfer
function is non-linear, and exposure must be carefully regulated so that the near-linear
portion of the curve is utilised.

Caulfield and Lu (1970) investigated the effects of recording in the non-linear
portion of the H-T curve in great detail. The analysis is conducted by performing a
Taylor series expansion of transmittance, Equation 2.35, about the average exposure, H,.

as shown in Equation 2.39.

T=T,+3  (-#)+1%0  @-m,)
dHly g 2140,
(2.43)
L& m-my+
31dHY,

Caulfield and Lu (1970) showed that the second order and higher terms of the Taylor
series contribute to the background intensity of the hologram and as well as harmonic

sinusoidal terms.

2.5 Noise Reduction

As a result of the various error sources outlined in the previous section. a
holographic image is corrupted by both additive and multiplicative noise. Broadband,
additive noise can be reduced by low-pass filtering. Two of the simplest approaches for

dealing with the multiplicative noise are low-pass filtering and homomorphic filtering. In



the former approach, the speckle noise is assumed to be spatially uncorrelated and thus a
broadband phenomenon (Lim and Nawab, 1981). This assumption permits the
decomposition of both the intensity and noise terms of Equation 2.41 into their low (L)

and high (H) frequency components

i'(x,y)z (WL(X,Y)-F Wy (X,Y))'(iL(x’Y)'*‘iH (st))
=i, (x,y)w (x,y)+i (xyIw,(x,y)
+ig (Y)W, (%, y)+ig(x,y)w, (x.5)

Since most of the image content is concentrated at low frequencies, the last two terms of

(2.44)

Equation 2.44 contribute little to the degraded image intensity. By low-pass filtering the
image, the high frequency component of the noise (the second term of Equation 2.44) is
greatly attenuated. Neglecting the last two terms, the remaining filtered image is
approximately
e () =i (y)w (xey) (245)
Thus. by low-pass filtering the intensity, the signal-to-noise ration has been improved as
most of the speckle noise has been removed while most of the image content has been
retained (Lim and Nawab, 1981). Robinson and Reid (1993) also suggest this approach
to speckle noise reduction.
Alternatively, homomorphic filtering can be used in which Equation 2.41 is

transformed logarithmically, which yields two additive terms.

Infi' (x,y)} = In{w(x,y)}+ Infi(x.y)} . (2.46)
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Since most of the image content of the density (logarithm of intensity) is at low
frequencies and the logarithm of the noise is a broadband field, low-pass filtering
Equation 2.46 thus improves the signal-to-noise ratio (Lim and Nawab, 1981). The
improved intensity image is recovered by the taking exponential of the filtered density
image. This method, as well as the low-pass filtering technique. indeed reduces speckle
noise, but does so at the expense of image sharpness due to the blurring property of low-

pass filters.

2.6 Chapter Summary

The goal of this chapter was to mathematically describe the physical process of
holographic image formation. This has provided the necessary background material for
the solving the underlying problem in this thesis: the extraction of a phase distribution.
and thus a deformation field, from HI imagery. The error sources inhibiting the success

of this task have also been described in detail.
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CHAPTER 3

PHASE RECOVERY FROM HOLOGRAPHIC IMAGERY

The ultimate goal of holographic image processing is to extract dimensional
information about an object, such as deformation measurements, from the recorded
hologram. This task boils down to extraction of the phase difference map from the
imagery. Both the manner in which this is accomplished and the available resolution of
the recovered phase varies with the geometric configuration of the holographic imaging
system. Phase map and deformation recovery from on-axis holography is described first.
Following this. the phase stepping technique, which can be visualised as a hybrid of on-
axis and off-axis holography, is described. The so-called Fourier transform technique
used for phase recovery from off-axis holographic images is then detailed. The final step
of phase recovery is called phase unwrapping. Existing methods for unwrapping the

phase are reviewed in this chapter. A new, improved method is detailed in Chapter Five.

3.1 Deformation Measurements from On-Axis Holographic Imagery
Recall that in on-axis holographic imaging, the propagation vectors of the object

and reference beams are coincident, and the deflection angle, y (see Figure 2.2), is equal
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fo zero. As a result, no spatial carrier frequencies are introduced into the intensity

equation, thus reducing Equation 2.35 to

i(x,y)=a(x,y)+b(x,y)cos(- d(x.v))

=a(x, y)+b(x, y)cos(o(x.y )

The second form of Equation 3.1 results from the even symmetry of the cosine function.
The equivalence of these two forms poses a fundamental problem in the actual phase
recovery, as will be described shortly.

With reference to the on-axis holographic image and corresponding intensity
cross section (see Figures 2.5 and 2.6, respectively), each successive fringe maximum
(white fringe peak) represents a change in the phase map of 2n radians. Thus, the first
step of the phase recovery process entails delineation of the intensity maxima within the
image. The fringe maxima contours are shown in Figure 3.1. The next step is to assign a
fringe order number, N, to each region lying between the contours. This establishes the

topological relationship between each pair of adjacent regions, i.e., which region is

higher.



Figure 3.1. Fringe Maxima Contours of the On-Axis Hologram of Figure 2.5

(Contrast Reversed).

The next step is to establish the geometric relationship between the map of phase
differences and the quantities of interest, the deformations. Although full three-
dimensional information about an object, or its deformation, is contained within a
holographic interferogram, it is often only the normal or out-of-plane component that its
desired. Recovery of all three components, however, requires detailed knowledge about
the geometric position of the hologram relative to the object and the propagation vectors.
This case will not be treated here, but details can be found in Vest (1979) and
Pryputniewicz (1989).

Figure 3.2 illustrates the case of an object undergoing normal deformation where
the propagation vector of the object beam is normal to the object surface. When the

object is in its original state, the object wave front propagates along the optical path CBC.
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When the object is in its deformed state, the object wave front propagates along the path
described by CAC. The optical path length difference BAB is proportional to the phase

difference between the two beams.

L L S LS LS S Deformed State
A

AZ

‘ ? Original State
B
C

Figure 3.2. Optical Path Length Difference in On-Axis Holographic Interferometry.

Once the fringe order numbers have been assigned, they are converted to out-of-
plane deformations through the optical path length differences. The path length

difference BAB, denoted as A/, is linearly proportional to the phase difference

A
AZ(X’Y)=§;¢(XJ) . (3.2)

The phase difference, ¢, is resolved in terms of the fringe order numbers, N, which are

integer multiples of 27 radians

Al(x,y)= 2%211:N.

AN
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where N; is the order number of the i® fringe. The normal component of the object
deformation, AZ, is equal to, for the geometry of Figure 3.2, half the optical path length

difference

AZ(x,y)= —-—M(;’ y)

N (3.4)
2 13

For on-axis holographic interferometry, the out-of plane deformation at any point
in the image is simply equal to the fringe order number multiplied by one half of the laser
wavelength. Although this represents a measurement of extremely high resolution, there
are shortcomings. First, because the phase is only resolved to integer multiples of 27
radians, fractional phase differences can not be resolved, even though they are captured
in the fringe pattern. Second. the recovered phase pattern and. hence, deformation
surface, is inherently ambiguous. Due to the equivalence of the two forms of Equation
3.1. it is impossible to analytically determine if a recovered surface is concave upward or
downward without a priori knowledge of the deformation experienced by the object.
Thus, intervention is required to make this decision. Direct methods of phase recovery,
detailed next, are free of this ambiguity, but possess a different ambiguity problem.
However, if only peak deflection is required as in vibration analysis, the concavity
ambiguity problem is not an issue.

One solution for fringe maxima extraction from HI imagery, as documented by
Robinson and Reid (1993), utilises a bank of local operators for peak detection. Fringe

peaks are marked if the image gradient in two orthogonal directions meet certain criteria.



45

As pointed out by Robinson and Reid (1993), this method works well in high-contrast,
noise-free imagery. A new method that tackles the fringe maxima extraction problem in

noisy imagery with significant contrast variation is proposed in Chapter Four.

3.2 Phase Recovery by Phase Stepping

In the phase stepping method, a known phase shift is introduced into the reference
beam rather than the deflection angle, y (see Figure 2.2). Phase stepping is described by
Kujawinska (1987) for Moiré interferometry. but is equally applicable to holography.
For this method of phase recovery, a minimum of three holographic images is required.
The phase shifts are usually introduced with a mirror that can be rotated in discrete steps.
Common values for the phase shifts are -90°, 0°, 90° and 0°, 120°, 240°.

To illustrate the phase recovery process through phase stepping. assume that the
induced phase shifts are -90°, 0° and 90°. The equation corresponding to the i reference
wave front is

E.(x.v)=r(x,y)cos(ot +a,) , (3.5)
where o, =i-90° for ie {—I,O,l} . Following the same procedure detailed in Chapter
Two, the i™ intensity image is

i(x,v)=a(x.y)+ blx,y)eos(e; —(x,)) - (3-6)

Substitution of the values for «; gives the expressions for the three intensity images
i, (x,y)=a(x,y)+b(x,y)cos(—90° - ¢(x,y))

= a(x.y)- b(x. y)sin(d(x. ) (3.72)



i (%, y)=a(x,y)+ b(x,y)cos(d(x,y))
i, (x,y)=a(x,y)+ b(x.y)cos(90° - o(x,y))

=a(x.y)+b(x,y)sin(6(x, y))
The difference between Equations 3.7c and 3.7a is
i, (x,y) -1, (. y) = 2b(x, y)sin(6(x.y)) .
while the sum of Equations 3.7c and 3.7a is

i (x.y)+i(x.y)=2alx.y) .

Two times Equation 3.7b minus Equation 3.9 gives

2i, (x» Y) - (il (X, Y)'*' i, (X, Y)) = Zb(x, Y)Cos(d)(x’ Y)) .

The rational expression of Equation 3.8 over Equation 3.10 is

i (x.v)-i(x,y) _ 2b(x,y)sin(¢(x.y))

21, (x.y)= (i, (x.¥)+i.,(x.y))  2b(x.y)cos(e(x.v))

= tan(p(x.y))

Finally. the expression for the phase is

i (x,y) =i, (xy) } .

o(x,y)= arctan{Zio(x,y)_ G, (x.y)+i_,(x,v))
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(3.7b)

(3.7¢)

(3.8)

(3.10)

Equation 3.12 indicates that the phase difference at any sample location in a

holographic image can be recovered as the arctangent of the ratio of linear combinations

of intensity. Also note that the phase at any point is recovered independently of its

neighbours. The phase recovery is inaccurate when both the numerator and denominator

of Equation 3.12 are small (Judge er al.. 1992).
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The advantage of this method over the on-axis technique is direct recovery of the
phase map. However. the success of phase stepping requires that the object remains
stationary between each exposure. For monitoring industrial machinery which. in
addition to undergoing deformation, is vibrating, three static images may be difficult to

acquire.

3.3 Phase Recovery by the Fourier Transform Method

The so-called Fourier transform method is based upon a series of linear filtering
operations for which the FFT algorithm is exploited to reduce the computational burden
of the phase recovery. This method was first developed by Takeda er al. (1982) as a one-
dimensional algorithm applied to each row or column of a sampled off-axis holographic
image. Bone er al. (1986) published a fully two-dimensional application of the method.
The key to this method is the deflection angle, y (see Figure 2.2), between the reference
and object beams. By introducing the spatial carrier frequencies, ®, and v ,. some of the
spectral components of the holographic image spectrum are separated, making possible
phase recovery through linear filtering.

First, the holographic intensity image, given by Equation 2.35, is rewritten in

terms of complex exponential terms using the identity

COSG:%(eje +e-je) . (3.13)



The resulting intensity image becomes

i(x, Y) — a(x’ Y)+ b(’;’ Y) {ej(m.xwa_v—o(x.y)) + e-j(m,x«-V,_\'-o(x.y)) } )

By defining

b(xa Y)e-jﬁx._v) ,
2

P4

c(x,y)=
and

b(’;’ Y)eja(x‘y) .

c'(x.y)=

Equation 3.14 becomes

i(x,y)=alc.y)+cle.y)el =) ¢ (x,y)eoor=r)

G.

G.
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.14)

16)

17)

The Fourier transform of Equation 3.17, using the frequency-shifting theorem (Equation

A.4) and the complex conjugate function theorem (Equation A.6) is given by

(o, v)=Alo.v)+Cle-0,,v-v,)+C(o+o,v+v,) .

3.

18)

The logarithm of the magnitude spectrum of the off-axis hologram of Figure 2.7 is

given in Figure 3.3. The frequency origin is located at the centre of the image. Note that

there are three distinct lobes in the spectrum. The narrow lobe located at the origin is the

spectrum of the background intensity, A(w,v). The other two are conjugate symmetric

lobes containing the spectral content of C(w,v) and C’(w.v), respectively. These lobes

are centred at the positive and negative spatial carrier frequencies. (coo,vo) and

(-®,.~v, ), respectively.
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Figure 3.3. Log Magnitude Spectrum of the Off-Axis Hologram of Figure 2.7.

Figure 3.4 shows the log magnitude spectrum of the on-axis hologram of Figure
2.5. In contrast to the off-axis hologram spectrum, the spectrum in Figure 3.4 consists
only of a single lobe centred at the frequency origin. All of the image contents,
background intensity, fringe visibility and phase map, are contained in this single lobe.
Thus. the advantage gained by the introduction of wave front tilt in off-axis holography is
spectral separation of the background intensity -- a low-frequency phenomenon -- from

the fringe visibility and phase map.



Figure 3.4. Log Magnitude Spectrum of the On-Axis Hologram of Figure 2.5.

The recovery of the phase map from Equation 3.18 is essentially a demodulation
problem. which is well known in the field of communication engineering. First the
spectrum is band-pass filtered such that one of the two conjugate symmetric lobes are
preserved and the other two lobes discarded. If the retained lobe is in the positive-

positive frequency quadrant, and assuming ideal filtering, the resulting spectrum is

I'(o,v)=Clo-0,,v-v,) . (3.19)

The spatial domain dual of Equation 3.19, given by the inverse Fourier transform, is
o y) =l y o) 620
Next, Equation 3.19 is shifted in the frequency domain by (~w,,—v,). In general the

operation of frequency shifting is called heterodyning, while the specific case of shifting
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the spectrum to the origin is called base banding. The analytical form of the base banded

signal in the frequency domain becomes
I"(0,v)=C(o,V) . (3.21)
while in the spatial domain it is

i' ' (X, Y) = C(x, ij(m"x'%)')e-j(e’o""’o}’)
=c(x,y)

b(x’ Y)e-jﬂx.y)
2

_ blx.y)

5 {cos(¢(x,y))— jsin(¢(x,v))

. (3.22)
=Re(x,y)- jIm(x,y)

The phase map, ¢(x.y). can be recovered from the complex spatial domain image.

i"(x.y)as

(3.23)

“tnts)

- I

The principal advantage of the FFT method is only one holographic image is
required for phase recovery. However, this method is more computationally intensive
than the phase stepping method, even with the advantages of FFT spectrum computation.

Furthermore. distortions due to erroneous frequency shifts, filter bandwidth and non-ideal

filter implementation may be present in the recovered phase map.
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Erroneous frequency shifting results from inadequate knowledge of the deflection

angle, y. between the reference and object beams. The result of erroneous frequency
shifting is a residual Sf.lift, (5,8v), in the spectrum of Equation 3.21 (Bone ez al., 1986)

I'(0,v)=Cl(o —8a,v—5v) . (3.24)
Using the frequency-shifting theorem, the corresponding spatial domain signal is

il ' (x. y) = b(t’ -v)e‘j(Q(x-!" F-8ux+8vy) N (3 -25)

&

Thus. the effect of incorrect frequency shifts is systematic addition of a linear function to
the phase map. In the solution proposed by Bone et al. (1986), the induced linear trend is
estimated in an area of the phase map that is known to be flat. The resulting plane is then
subtracted from the rest of the phase map to remove the effect.

There are two possible effects of inadequate filter bandwidth determination. One
possibility is that the bandwidths are too small, in which case the pass band of the
spectrum is inappropriately truncated and/or attenuated. The result is loss of phase map
information. On the other hand. if the chosen bandwidths are too large, then spectral
content belonging to the background intensity may be passed. The result is distortion of
the phase map.

Filter selection is an equally important aspect in Fourier transform phase
recovery. Since ideal band pass filters introduce ringing into the resulting spatial domain
signal, approximations such as Gaussian and low-order Butterworth filters are often used.
However, due to the broad transition band nature of these functions, there is monotonic

attenuation of the spectral content in the intended pass band.
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To circumvent some of these potential distortions, it is advisable to introduce the
largest possible tilt (deflection angle y) between the object and reference beams. This
will maximise the spectral separation of the hologram contents. In this case, a large filter
bandwidth can be chosen such that spectral content within the pass band will be less

distorted and the content of the background intensity will not be passed.

3.4 Phase Unwrapping

The advantage of the phase stepping and the FFT methods is that the actual phase
map is recovered, rather than an inferred map from fringe maxima. The recovered map is
not only unambiguous in terms of concavity, but is of greater resolution than that of on-
axis holography as fractional phase differences are recovered. The latter point will be
demonstrated in the next section. However, these two methods suffer from a different
type of ambiguity problem, which inherently stems from the fact that fractional phase
differences are recovered.

Recovery of the phase using both the phase stepping and FFT techniques involve
the use of the arctangent function. Angles determined numerically via the arctangent can

only be determined to modulo 2n radians. Thus, a phase surface obtained using either of
these methods is mapped from its true values onto the range [— T, 'n:] radians. The

resulting wrapped phase map has discontinuities every 2x radians.
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The image in Figure 3.5 is the wrapped phase map recovered from the off-axis
hologram of Figure 2.7. The discontinuous nature of the phase map is revealed by the

abrupt tonal transitions from black to white. The cross section shown in Figure 3.6 also

reveals the discontinuities.

Phase (radians)

Position

Figure 3.6. Cross-Section AA'of the Wrapped Phase Map.
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The objective of phase unwrapping is to remove the discontinuities from the
recovered phase map in order to obtain a continuous surface. The problem is one of
finding a phase offset function that has values equal to the correct number of integer
multiples of 27 radians. The relation between the wrapped, discontinuous phase map.
¢,(x,y), the phase-offset function ¢,(x,y) and the continuous phase map ¢_(x,y) is
given by (Takeda et al., 1981).

0. (x.)=6,(x,¥)+9,(x.y). (3-26)
For the one-dimensional signal shown in Figure 3.6, the phase offset is illustrated in
Figure 3.7. Addition of this signal to the wrapped phase yields the continuous phase map
shown in Figure 3.8. Note the Gaussian shape of this graph, which resembles that of the

original phase map given in Figure 2.3.

Phase Offset (radians)

Position

Figure 3.7. One-dimensional Phase Offset Function.
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Phase (radians)
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181
201
221
241

Figure 3.8. One-dimensional Unwrapped Phase.

Automated phase unwrapping represents the crux of the phase recovery problem in

holographic interferometry. Existing approaches for the unwrapping of both one- and

two-dimensional signals are reviewed in the next two sections.

3.4.1 One-dimensional Phase Unwrapping

The process of phase unwrapping is basically that of numerical integration for
which the phase derivative is numerically estimated from the sampled signal and the
initial conditions are empirically determined. Unwrapping of a one-dimensional signal
involves a search for discontinuities (derivative estimates) greater than a specified
threshold. For a continuous phase map, the discontinuity magnitude is 27 radians, but for
a sampled signal it can be & radians at the Nyquist sampling frequency. Furthermore, if
the image is noisy, as real images are, then the discontinuities may be less than & radians.

Takeda er al. (1981) suggests a threshold of 0.9m radians. When a discontinuity
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exceeding the threshold is found, the sign of the numerical derivative in that
neighbourhood is utilised to determine if one cycle (2r radians) must be added to, or
subtracted from, the current value of the phase offset. The process is performed until all

discontinuities have been removed.

3.4.2 Two-dimensional Phase Unwrapping

The approach adopted by most researchers for unwrapping two-dimensional
signals is to simply treat the signal as a sequence of independent, one-dimensional
signals. Unwrapping is performed along each row of the sampled phase map, with one
final unwrapping along one column to remove discontinuities between the rows (Takeda
et al.. 1981). The unwrapping can also be performed along each column with the final
unwrapping along one row.

Problems with this approach arise when inconsistencies in the phase map are
encountered. Inconsistencies may take the form of extra, spurious discontinuities or the
absence of discontinuities. The sources of these defects include noise. local aliasing
(under-sampling) and discontinuities inherent in the object surface, and hence phase map.
topography. Errors due to the inconsistencies are the addition of too many or too few
cycles to the wrapped phase map. The resulting phase map possesses a streaked
appearance. Moreover, inconsistencies can lead to path-dependent unwrapping. That is,
the phase map unwrapped on a row-by-row basis will be different than that produced by

integration along a different path, column-by-column for example.
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Various attempts to remedy these algorithmic hurdles have been proposed. The
approach of Goldstein et al. (1988) was to first identify inconsistencies in the phase map
based upon residue analysis. A residue is the sum of phase map values over the closed
integration path defined by four adjacent samples, the corners of a box (Bone, 1991). If
the residue for any such path in the phase map is nonzero, an inconsistency has been
identified. One approach to prevent unwrapping errors is the insertion of branch cut lines
that an unwrapping integration path can not cross (Goldstein er a/, 1988). In a similar
approach. Bone (1991) masks inconsistent phase map samples from the unwrapping
process and resolves their phase manually. Hellwich (1998) identifies inconsistencies by
analysing the difference between the original and a smoothed version of the phase map.
In another solution cited by Bone (1991), the phase map is decomposed into smaller
regions. each of which are unwrapped. A final unwrapping step is performed to remove
the discontinuities between adjacent, unwrapped regions.

The common property of these methods. no matter how inconsistencies are dealt
with, is that the two-dimensional unwrapping process is treated as a series of
independent, one-dimensional problems. The shortcoming of such an approach is the
inability to utilise the strong correlation between neighbouring rows or columns in order
to overcome inconsistencies. It will be demonstrated in Chapter Five that gaps in the
phase map discontinuities can be bridged and spurious discontinuities eliminated with a

new, two-dimensional approach to this problem.



3.5 General Case of Holographic Deformation Measurements

Returning to the task of extracting deformation measurements from a hologram, it
will be assumed that a given phase map has been successfully unwrapped. The geometry
portrayed in Figure 3.2 is not the most general case, which is treated in this section.
Furthermore, the greater resolution resulting from phase map recovery is also treated.

The general case of optical path length difference geometry in holographic
interferometry is illustrated in Figure 3.9 (Robinson and Reid, 1993). Here. the
deformation is not necessarily in the out-of-plane direction, so angles B and B’ (before
and after deformation) are not equal. When the object is in its original state. the object
wave front propagates along the path described by ABC. The object wave front
propagates along the path DEF, though, when the object is in the deformed state. The
magnitude of deformation, Ad is given by BE, while the optical path length difference

between the two beams. A/. is described by GEH.

E
A A / L L L L Deformed State

G

Original State

D

!
'

Figure 3.9. General Case of Optical Path Length Difference

Geometry in Holographic Interferometry.
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From the geometry of Figure 3.9, the path length difference between exposures is

equal to
Af(x,y)= Ad(x,yKcosB +cosp'} . (3.27)
Substitution of Equation 3.2 into the above expression and rearranging yields the

magnitude of the deformation in terms of the phase map

__ M(xy)
Ad(x.y)= 2n{cosp +cosp'}

Using the identity

cosB+cosB’=ZCOS(B*‘ﬁ'JCOS(B-B') . (3.28)
2 2
this expression becomes
A(x,y)
Ad(x, Y) = ’ — (_‘.29)
4ncos(B§B)cos(B;BJ >

For the case of pure. out-of-plane deformation, B =p', and the deformation magnitude,
Ad=AZ

_ alx.y) (3.30)
AZ(x.y)= dmcosP

In the case of on-axis holography, the phase map consists of integer multiples of 2, and
Equation 3.30 reduces to

AN, (3.31)

AZ{xy)= 2cosp

Comparison of the above expression with Equation 3.4 indicates that the

incidence angle between the surface normal and object beam, B, reduces the resolution of
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deformation measurements by a factor of cosB. If, for example, B =30°, then the
resolution is reduced from 0.5 to approximately 0.577A, a loss of approximately fifteen
per cent. In off-axis holography, the lowest resolution of phase map recovery is m
radians, which occurs at the Nyquist frequency. This translates into a deformation
measurement resolution of 0.25). Thus, by directly recovering the phase map. not only is
the concavity ambiguity removed, but also the resolution of out-of-plane deformation

measurement is improved by a factor of two.

3.6 Chapter Summary

The purpose of this chapter was to demonstrate different methods for the
extraction of a phase map and, therefore, a deformation field, from different types of
holographic imagery. This review highlighted some of the pertinent issues with the
various phase recovery methods, such as the ambiguity and unwrapping problems. This
represents a logical basis for the development of new algorithms to solve these problems

in Chapters Four and Five.



CHAPTER 4

FRINGE MAXIMA EXTRACTION

Analysis of a HI intensity image. as opposed to the underlying phase map, is often
used for industrial inspection and vibration studies. For these applications, only the
absolute value of peak displacement and/or mode shapes is required. The task in such
analyses is to extract the peaks or ridges in sinusoidal intensity from the interferogram.
Due to speckle noise and non-linear fringe visibility variation over an image, simple local
maxima detection has proven to be insufficient (Robinson and Reid, 1993). A new
approach. which offers a significant improvement in overcoming these problems. exploits

the topology of fringe imagery and utilises various image-processing methods.

4.1 Theoretical Basis

As detailed in Chapter Three, each successive fringe maxima of a holographic
interferogram represents a change in phase of 2 radians. As expressed as contour lines,
fringe maxima must obey certain rules. First, they must be closed, simple curves that can
not cross over themselves or over other contours. An open contour line is also valid
provided that it starts and ends at the border of a finite image. Special cases of contour

lines are also valid. These include ridgelines and peaks (points). Such information may



be crucial in determining peak displacement due to vibration. A region is defined as an
area of variable intensity bounded by fringe maxima contours. Regions are not
necessarily simply connected, as they may contain holes, which are other regions.

A dual network of contour lines also exists in fringe imagery. Fringe minima
(dark fringes) contain dual information about the topography of the underlying phase
map. The fringe minima only differ by = radians (one-half cycle) from the maxima.

An important consideration in the analysis of discrete fringe imagery is the
sampling interval. The minimum interval is two samples per fringe in each dimension.
However, an oversampled image is more desirable so that the reproduced fringes are
clearly defined. High sampling rates may also be required by the fact that the spatial
frequencies of the fringes are not constant. In the following developments, it will be
presumed that the interferogram is adequately sampled.

The topological description of a discrete, interference image begins with the
definition of the interferogram, I. An interferogram is a two-dimensional, finite region
comprised of m regions, R;, i=1..m, and n maxima contours, G, j=1.n. Using set

theory, the topological rules of the inteferogram are expressed as

R,NR;=0 Vij=lmi=j, (4.1a)
C,NC;=@  Vij=l.n, (4.1b)
R,NC, =2 Vi=l.m,j=1.n, (4.1c)

(ORJU@CJ:I : (4.1d)

i=i
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Equation 4.1a states that the intersection of two regions equals the null or empty set.
That is, no two regions of the interferogram may overlap. Similarly, Equation 4.1b states
that no two contours, which are not of infinitesimal but discrete width, may cross and that
no contour can cross over itself. Equation 4.1c states that no contour can occupy any
sample of the interferogram belonging to a region, and vice-versa. Finally, Equation 4.1d
states that the interferogram, I, is comprised of the union of all contour and region
samples. Thus, gaps in the image are not permitted. As a consequence of defining these
rules, any given contour can only bound two regions (one on either side). However, a
region may be bounded by more than one contour. With the topological rules formally
defined an algorithm for contour-based fringe maxima extraction from noisy imagery can

be described.

4.2 Description of the New Method

The proposed method for fringe maxima extraction consists of several steps,
which are summarised in the following list.

1. Homomorphic filtering.

2. Thresholding.

3. Thinning.

4. Contour location and following.

5. Contour linking and spur removal.

6. Artefact identification and rectification.
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The purpose of the homomorphic ﬁliering is to reduce the multiplicative speckle noise.
By thresholding the filtered image, the areas of peak intensity (white fringe maxima) are
retained while the minima are discarded. Thinning is then performed to reduce the broad
fringe maxima to single pixel-wide contour lines. The thinned contours are then located
and tracked (followed) through the image. Using the topological rules of fringe imagery,
spurious contours are removed and gaps bridged. Finally, additional measures are
required to overcome severe distortions in the contours so that the topological rules are

satisfied. Such artefacts arise from the speckle noise and the filtering.

4.2.1 Homomorphic Filtering

The role of homomorphic filtering, as detailed in Chapter Two, is to reduce the
multiplicative speckle noise in a HI image. In tests conducted with real imagery,
homomorphic filtering was found to be superior, as determined by visual inspection, to
the simpler low-pass filtering option for speckle reduction. Since the spectral content of
on-axis holographic imagery is clustered at low spatial frequencies, Butterworth low-pass
filters were chosen for the homomorphic filtering. This choice was motivated by the
Butterworth’s low attenuation at low frequencies and narrow transition band. The
spatial-frequency domain representation of a circularly symmetric, Butterworth low pass
filter of order n is given by

H(w, v)= !

b4

o] Yol eV ] 4.2)
T

[
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where

Ic is the radial cut-off frequency.

As will be shown in Chapter Six, there is significant improvement in HI image quality as
a result of the homomorphic filtering. The reduction of speckle produces smoother
contours and fewer spurious contours in later stages of the algorithm. However, the
blurring caused by the attenuation of high frequencies creates false contours. Although
this distortion creates the need for step six of the algorithm, artefact identification and

rectification, the improvement in image quality outweighs this drawback.

4.2.2 Thresholding

In order to extract the fringe maxima from a filtered HI image, the image is
segmented via thresholding. Intensity values above the threshold, the fringe maxima, are
assigned a value of one, while those values below the threshold are assigned a value of
zero. Two practical problems complicate the use of such a simple segmentation rule.
First, the choice of the threshold for HI imagery is often not obvious. Rather than
possessing a bimodal histogram with clearly defined peaks, the imagery used in this study
had either a poorly defined second peak, or possessed only a single peak. Furthermore,
the homomorphic filtering appeared to transform the histograms into unimodal shapes.
Examples taken from real HI imagery will be presented in Chapter Six to illustrate these
problems. The solution adopted was to set the threshold at the centre of mass of the

histogram, as defined by
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Q-1
Z n-f(n)
T=g— (4.3)
dn
n=0
where
n is the intensity value,
f (n) is the frequency of occurrence of intensity value n,
Q is the number of possible intensity levels (i.e., 256).

The second difficulty that arises in thresholding HI imagery stems from non-
linear fringe visibility. As will be illustrated in Chapter Six, such variation makes the
application of a global threshold inappropriate. Instead, the imagery is decomposed into

smaller sub-images. Thresholding is then performed locally within each sub-image.

4.2.3 Thinning

Thresholding of the filtered imagery, does not, unfortunately, yield single pixel-
wide contour lines. Instead, broad fringes are the products of this process. Binary image
morphology, which is the analysis of shapes in images (Gonzalez and Woods, 1992),
provides a means of thinning these fringes through a sequence of non-linear filtering
operations.

The two basic morphologic operations are dilation and erosion. The dilation
operation causes features within an image to grow. The dilation of a feature or set, A,
with a structuring element, B, is denoted by

ADSB . 4.4
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Like in discrete convolution, the structuring element (mask) is reflected and translated
across the entire image. Unlike convolution, though, the filter response at any location is
not the weighted sum of intensity values in a neighbourhood. Instead, the response is
calculated with logical operations (Castleman, 1996). For dilation. the response is equal
to one if at least one sample of A is nonzero within the neighbourhood defined by the
structuring element. Otherwise, the response is equal to zero.

Erosion can be thought of as the dual operation to dilation (Gonzalez and Woods.
1992). Denoted by

AOB . (4.5)
the erosion operation has the effect of eroding or shrinking features in an image. The
erosion response is equal to one if all the samples of A that lie within the neighbourhood
of B are nonzero. Otherwise, the response is equal to zero.

The hit-or-miss transform (HOMT) is a non-linear combination of these basic
operations that is an integral part of the thinning operation. The HOMT is a shape
detection operation used to locate features such as corners (Haralick and Shapiro, 1992).
The HOMT of a set, A, uses a structuring element, J, and its complement, K, where

K=W-J . (4.6)
where W is the local background of the structuring element. The HOMT operation is

defined as
A®] =(aeJ)N(AeK) . (4.7)
Analysis of this equation indicates that the HOMT produces the intersection of eroded

versions of A and its complement, A°.



69

The thinning operation utilises the HOMT and is implemented as
ARJ=A-(A®)). (4.8)
Thus, the thinned version of A is simply the set A, itself. minus the output of the HOMT.
Thinning is generally implemented recursively using a set of structuring elements. That

is, the output of one thinning operation becomes the input set for the next.

4.2.4 Contour Location and Following

Once the fringe maxima have been reduced to single pixel-wide contours. they
can be extracted from the imagery. First. the image is searched for a nonzero sample.
Once one is found, its position is recorded and its neighbours are analysed. If a second
nonzero sample is found, its position is recorded and its neighbours examined. Only the
adjacent neighbours within +45° of the direction from the previous to current samples are
examined. This process is repeated until either the image border or the end of the contour
is reached. The result of this process is a chain code for each contour describing its

spatial position in the imagery.

4.2.5 Contour Linking and Spur Removal

Having obtained a spatial description of each contour in a HI image, the
topological properties of fringe imagery can be enforced in order to edit the contours.
Knowing that gaps are not permitted in contours, gaps between neighbouring contour
ends can be bridged with short line segments. The gap bridging is restricted by the

condition that the difference in azimuth between the two tangents can not exceed a pre-
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defined tolerance. This constraint ensures that two parallel contours are not erroneously
joined.

Another artefact arising from the distortions inherent in HI imagery is a spur
contour. A spur is a short contour that abuts two others at a T-intersection. An example

of a spur is the curve BD in Figure 4.1a.

A A D
>/D %
C C 3

(@) (b)

Figure 4.1. Spur and Bridge Contours.

Using contour length as the decision criterion, BD is eliminated if its length is less than
that of both of contours AB and BC. This results in a single contour. AC.

A similar artefact is a bridge contour. A bridge, as denoted by curve BE in Figure
4.1b, is basically a spur contour at both ends. If the length of BE is less than all four of
AB., BC, DE and EF, then BE is eliminated. After elimination of the bridge. only two

nominally parallel contours, AC and DF, remain.
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4.2.6 Artefact Identification and Rectification

Even after the automated gap, spur and bridge removal procedures have been
performed, some erroneous contours and gaps will exist. The number of these residual
artefacts chiefly depends upon the severity of the speckle noise and filtering distortions.

In order to rectify these problems, three semiautomatic procedures are proposed below.

4.2.6.1 Linear Contour Interpolation
The first type of artefact considered is what might be termed an X-junction of
contours. Figure 4.2a illustrates this artefact in which four contours, AE, BE. CE and

DE, converge at the central point, E.

(@) (b) ©)

Figure 4.2. X-Junction Artefact Resolution.

Upon visual inspection, such a problem appears trivial to resolve based upon the trend
exhibited by each contour line. Nevertheless, this artefact is difficult to automatically

correct. A semiautomatic solution begins with interactive identification of the artefact.
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This step, shown in Figure 4.2b, simply consists of placing a window around the
neighbourhood of the X-junction. The portion of each contour within the window is then
eliminated. The problem is then automatically resolved by using the procedure for gap
filling described in Section 4.2.4. The linearly interpolated contours are shown in F igure

42c.

4.2.6.2 Concentric Contour Generation

Another artefact that is easily resolved in semiautomatic mode is an incomplete
closed contour. Illustrated in Figure 4.3a is a complete, closed contour encircled by an
incomplete contour, AB. The goal here is to bridge the gap between A and B. which may
contain distorted contour fragments.

As with the linear interpolation procedure, the first step in concentric contour
matching is identification of the artefact (a gap. in this case) area. The constructed
window is shown in Figure 4.3b. Obviously, straight-line interpolation is inappropriate
due to the curvature of the contour. Instead, the inner closed contour is exploited. Using
points on the extracted portion of contour AB, a scale factor is estimated which maps the
closed contour onto AB. A portion of the scaled version of the closed contour, illustrated
by the dashed curve, CD, in Figure 4.3c, is then constructed within the window area.
Gaps in the scaled contour segment are filled via linear interpolation. In order to match
the endpoints C to A and D to B, a similarity transformation is performed on curve CD.

The final closed curve is shown in Figure 4.2d.
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Figure 4.3. Concentric Contour Generation Procedure.

The success of this method hinges on two factors: the smoothness (or roughness)
of the inner contour, and the contour shape consistency. Although any gap can be
bridged with this matching technique, the roughness of the inner contour may yield an
inappropriate result. Due to the scaling operation, the roughness of the closed contour is
amplified, which may cause the interpolated segment to significantly deviate from its true
position. This situation is illustrated in Figure 4.4. The rough, inner contour and
incomplete contour are shown in Figure 4.4a, while the result of the interpolation is

shown in Figure 4.4b.
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Figure 4.4. Inappropriate Contour Match.

A similar problem is contour shape inconsistency. This occurs when the shape of
the inner contour is not representative of the true shape of the incomplete contour to be
interpolated.  Judgement must therefore exercised by the user when applying this

technique.

4.2.6.3 Quadratic Contour Interpolation

The final artefact resolution procedure to be described requires slightly more
interaction. For situations in which linear interpolation and concentric contour matching
are inappropriate, the user must supply additional information. In order to bridge the gap
between A and B in Figure 4.5a, the endpoints, A and B. are first identified by the user.
The user also provides an intermediate point, C, through which the interpolating curve
will pass. These three points, shown in Figure 4.5b, uniquely define a parabolic curve

parameterised as



y=a,+a,x+a,x’ (4.92)
or

X=a,+a,y+a,y’ . (4.9b)
The choice of parameterisation is dependent upon the separation between the endpoints in

each co-ordinate direction. Having estimated its coefficients, the parabola is then used to

bridge the gap between A and B. The completed contour is shown in Figure 4.5¢c.

L

(@) (b) ()

Figure 4.5. Parabolic Contour Interpolation

In areas where contour behaviour is not adequately described by a single
parabola, two options are available. The first possibility is to employ a higher-order
method of interpolation, such as a cubic polynomial. The second possibility is to perform
piecewise interpolation with quadratic polynomials. The latter option was exercised in

this research.
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4.3 Chapter Summary

A new approach to fringe maxima contour extraction has been outlined in this
chapter. The foundation of the method is a set of topological rules governing the
relationships between various entities in a fringe image. The algorithm is comprised of a
series of image processing, computer vision and editing steps that are portrayed in the

flowchart in Figure 4.6.

{ Homomorphic Filtering }

<L

{ T.,,z.,.di..g j
[ Thinning ]

4L

[ Contour Location and Following }

4L

[ Contour Linking and Spur Removal l

.

LArtefact Identification and Rectification }

Figure 4.6. Fringe Maxima Contour Extraction Algorithm.
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CHAPTER 5

CONTOUR-BASED TWO-DIMENSIOANL PHASE UNWRAPPING

As mentioned in Chapter Three, the major drawback of current two-dimensional
phase unwrapping algorithms lies in their nature as a series of independent, one-
dimensional unwrapping problems. Because each row (or column) is unwrapped
independently of its neighbours, any spurious discontinuities or gaps in the
discontinuities will cause unwrapping errors Goldstein er al. (1988).

A phase map represents a surface that is proportional to the topography of the
measured object. Because of this property, it intuitively makes sense to treat a phase map
as a topographic surface as such rather than a collection of independent, one-dimensional
signals. A new, contour-based method that overcomes the aforementioned unwrapping
errors by utilising the information contained in adjacent rows and/or columns is presented

in this chapter.

5.1 Theoretical Basis of the Contour-Based Method
In the new two-dimensional phase unwrapping algorithm, a wrapped phase map is
defined to be a discontinuous surface comprised of contours and regions. A contour is a

simple. closed curve described by the locus of points of a 2w discontinuity. Contours are
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isolines and, therefore, must not cross over themselves or over other contours. In fact,
contours, as defined here, are nothing more than the 2n contour lines of the unwrapped
phase map. Since wrapped phase maps have finite support, not all contours will
necessarily be closed. An open contour is a curve that both starts and ends at the image
boundaries. A hanging contour, however, is a curve for which the start and/or end are
located at a position within the image interior. These curves are caused by noise and
distortions and are not valid phase-map contours.

A region is defined as an area of continuous phase bounded by contours. The
amplitude of a region is bounded on [— T, n] radians due to the wrapping. Regions may
not necessarily be simply connected, as the may contain holes (other regions). Regions

and the different types of contours are illustrated in Figure 5.1.

/ Hanging Contour
WA/
Open Contour

/

\ i Closed Contour

\/Regions

Figure 5.1. Regions and Contours Types.
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The contours and regions of the wrapped phase map in Figure 4.4 are given in Figure 5.2.
Each of the ten regions is delineated by a different shade of grey. The nine contours are

marked in white.

Figure 5.2. Regions and Contours of the Wrapped Phase Map.

In order to define the relationships between phase map entities (contours and
regions) for the purpose of unwrapping, it is first necessary to impose two conditions on
the sampled phase map. First, the wrapped phase map must satisfy the Nyquist sampling
criterion that at least two samples per region and the relative phase offset between two
adjacent regions is 2n radians. This assumption must be taken in the context of global
aliasing. In the next chapter, it will be shown through simulation that local aliasing of a
region can be overcome with this method. Second, the original. unwrapped phase must

be a continuous surface. That is, the surface can not be fractured or stepped.
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These assumptions may appear somewhat restrictive, but are in fact required for
most unwrapping algorithms, whether stated explicitly or not. There are notable
exceptions, though. Greivenkamp (1987) details a method in which derivative
constraints are used to determine the most likely number of cycles to add to aliased areas
of a phase map. However, the form of the resulting phase map is dependent upon the
placement of an initial seed location from which unwrapping commences and requires
continuity of the surface and its derivatives. This method is also one-dimensional as it is
performed on a row-wise or column-wise basis. Bone’s (1991) algorithm circumvents
the surface continuity requirement by a priori identification and masking of
discontinuities in the phase map.

The topological description of a discrete, wrapped phase map begins with the
definition of the phase map, P. A phase map is a two-dimensional, finite region
comprised of m regions, R;, i=1..m. and n contours, C;. j=1..n. Using set theory, the

topological rules of the phase map are expressed as

R,NR, =@  Vij=l.m,i=j. (4.1a)
C,NC;=@  Vij=l.n, (4.1b)
R,NC,; =0 Vi=l.m,j=1.n, (4.1c)

(QR‘)U@C"JzP ' 5-1)

Equation 4.1a states that the intersection of two regions equals the null or empty set.
That is. no two regions of the phase map may overlap. Similarly, Equation 4.1b states

that no two contours, which are not of infinitesimal but discrete width, may cross and that
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no contour can cross over itself. Equation 4.1c states that no contour can occupy any
sample of the phase map belonging to a region, and vice-versa. Finally, Equation 5.1
states that the phase map, P, is comprised of the union of all contour and region samples.
Thus. gaps in the phase map are not permitted. As a consequence of defining these rules.
any given contour can only bound two regions (one on either side). However, a region
may be bounded by more than one contour. Note the similarity between these rules and
those of fringe images presented in Section 4.1. With the topological rules formally

defined, the algorithm for contour-based phase unwrapping can be described.

5.2 Description of the Contour-Based Method

The proposed contour-based phase unwrapping algorithm consists of several steps
that are summarised in the following list.

1. Edge detection.

2. Edge location and following.

3. Edge linking.

4. Region identification.
5. Contour-wise unwrapping.
The role of edge detection is to simply locate significant discontinuities in a phase map
through convolution with a bank of suitable filters. The aim of edge location and linking
is to obtain a spatial description, in the form of a chain code, of each contour. In the edge

linking step, gaps between hanging contours and spurious., hanging contours are

eliminated. The purpose of region identification is to obtain a spatial description of each
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region. Finally, in the contour-wise unwrapping step, the relationship between regions is

established using the contour gradient information.

5.2.1 Edge Detection

An edge in a digital image is a discontinuity in intensity, which may be blurred
due to filtering operations and is invariably contaminated by noise. An edge in a
wrapped phase map also follows this definition. The task of edge detection is location of
these discontinuities.

Since discontinuities represent large intensity gradients, numerical differentiation
can be used as an edge detection tool. However, the differentiation operation enhances
high frequency noise, as evident in the linear modulation of the spectrum in Equation A.5
(Hamming, 1989). This can greatly inhibit the success of edge detection since
differentiation of a noisy signal yields an even noisier one. If, however, the high
frequency components of the image are attenuated beforehand via low pass filtering. the
noise amplification effect is greatly reduced. This benefit comes at the expense of edge
blurring. The smoothing and detection operations can be combined into one. Because
convolution with a filter and differentiation are both linear operations, their sequential
application is equivalent to convolving with the first derivative of the filter impulse
response, if it exists.

A low pass filter approximation often used for image processing is the circularly
symmetric Gaussian function. Thus, a smoothing differentiation filter is the first

derivative of the Gaussian, described in Section A.7. This filter was proposed by Canny



(1985) as a close approximation to an optimal step edge detector. However. the general
form of phase map edges is not a step, but more closely resembles a triangular or saw
tooth edge. Because of its smoothing properties, though, this filter is preferred to edge
detection kernels such as the Sobel and Prewitt masks.

As detailed in Appendix A, a multi-scale image representation can be used to
capture prominent details at different scales. That is. high frequency details can be
captured at small scales while low frequency trends reveal themselves well at large
scales. For wrapped phase map imagery, different operator widths can be used to capture
edges bounding regions of different widths. The primary advantage of this approach.
though, is the noise reduction achieved at larger filter widths. However. spatial aliasing
will result if the filter width is too great due to the contributions of neighbouring edges to
the filter response.

The first stage of edge detection for phase map unwrapping is convolution with
the kernels, given by Equations A.22 and A.23, at different scales. This yields a family

of scale-dependent images for both x- and y-gradients:

g*(x.v,0) =" (x.y,0)**p,(x,y) (5.22)
g'(x,y,0)=y*(x,y,0)*+,(x,y) , (5.2b)
where
g*(x.y,0). g*(x.y,0) are the scale-dependent gradient images in the x- and y-axis

directions, respectively,
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v (x.y.06), v (x.y,0) are the multi-scale kernels given by Equations A.22 and
A.23, respectively.

Since noise characteristics may vary, the number of different scales required for a given
phase map may also vary. The parallel structure of multi-scale image representation is
adopted here, thereby retaining the original image dimensions at each scale (Schenk.
1995).

Having calculated the responses at each scale, the next step is their fusion. The
purpose of the fusion is to combine the responses such that the edge information
contained within each is fully exploited. In the squared gradient approach (Shao and

Forstner. 1994). the sum of squares of the magnitude response at each scale is calculated

as
g(x,Y)=§,wi e ey’ sy ff (5.3)

where

S 1s the number of scales to be fused.

w, is the weight of the magnitude response at each scale,

2'=0c as defined by Equation A.21.

The key to the success of fusion lies in the relative weighting of the various responses.
Fraser and Shao (1996) derive a weight that is inversely proportional to the range of

response at each scale.
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For this application. a different scheme is required since the response components
(gradient orientation) must be preserved for the unwrapping step. The scheme employed
here is to separately add the weighted x- and y-responses from each scale:

S : (5.4a)
g (x,y)= ZW;g"(x,yl')
i=l

g*(x.y)= iwig’ (x,v.2¢). (5.4b)

Unity weighting factors were applied. From the fused responses. the edge magnitude.

g(x.v). and orientation, 8(x,y), can be calculated as (Lam, 1990)

glx.y)= Ve (x.y) +g* (x.y)’ (5.52)
9(X~Y) = arctan(%) . (5.5b)

5.2.2 Edge Location and Following

Edge following is a computer vision technique used to track edges and lines in
imagery for the purpose of segmentation into distinct regions. A precursor to this step,
edge location, entails searching the fused response image for local maximum responses.
In order to simplify the edge following, the imagery was searched in an inward spiral
pattern. The edge location process produces start points (seeds) for the edge following.

From a seed point, a search of three neighbouring samples is conducted for
candidate edge pixels or nodes. The chosen pixel is the one with the largest edge

magnitude surpassing a threshold. In addition, the orientation of the candidate pixel must
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not differ from that of the current edge pixel by +90°. This criterion ensures that edge
tracking does not cross over saddle points where phase map contours pass close by each
other. Once the next node has been selected, a search is then performed in its three
neighbouring pixels. The neighbours chosen are those within +45° of the direction from
the previous node to the current node, as shown in Figure 5.3. The edge following
process terminates when the start point is reached. an image boundary is reached. or a

suitable candidate can not be found.

4

Previous edge node Candidate nodes

A
/

Figure 5.3. Neighbourhood Search in Edge Following.

Current edge node

The position. edge magnitude and edge orientation of each node is recorded in a list
structure. The result of edge following is a set of chain codes describing the spatial
position of the phase map contours. The contours are then classified according to their

start and end points as closed, open or hanging.
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5.2.3 Edge Linking

The purpose of fusing filter responses is to bridge gaps in detected contours at
small scales with those detected at larger scales. The noise that creates gaps at low scales
is greatly reduced by the smoothing effect of broader filters. As a result, the fused edges.
although broader, are more continuous in magnitude.

However, some fused edges will fall below the edge following threshold.
resulting in contour line gaps. Edge linking is an attempt to merge hanging contours
separated by small gaps. The approach of Castleman (1996) is an outward search in the
five by five neighbourhood of an endpoint. The algorithm used here is similar. The list
of contours is searched for hanging contours. For the first such contour encountered. the
remainder of the list is traversed, again searching for hanging contours. For each one
found in the second search, the co-ordinate differences for all four end point
combinations are calculated. If one set of differences is less than a two-pixel threshold.
the two contours are merged into one. This merged contour is then classified. This
process continues until no hanging contours remain, or no further merging is possible
within the specified tolerance. Finally, any remaining hanging contours are deemed to be
spurious and are discarded. The result of this process is a set of chain codes of only

closed and open contours.

5.2.4 Region Identification
Having compiled a description of each contour of the phase map, the next step is

to obtain a description of the regions. By performing region growing outward from the
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contour nodes, the pixels in each region are assigned an identification number. This
process establishes the topology of the phase map in terms of which region lies on either
side (left or right) of each contour. However, the height topology (phase offset) of each

region is not yet established. This is done in the unwrapping step.

5.2.5 Contour-wise Unwrapping

The final step of the contour-based phase unwrapping algorithm consists of two
stages. unwrapping of the regions and unwrapping of the contours. The region
unwrapping is further broken down into relative and absolute unwrapping. The contour
unwrapping is necessary because of the discrete nature of the sampled phase map —
contours with finite width.

In relative unwrapping, the relative phase-offset is established for the pair of
regions lying on either side of each contour. The goal of this task is to ascertain which
region is higher. the left or the right. Edge direction is utilised for this purpose. As
shown in Figure 5.4, the relative topology of two regions depends upon the edge
direction, denoted by the vectors. In Figure, 5.4a, the direction of the vectors indicates
that the left region, L, is one cycle higher than the right region, R. Conversely, the vector

directions in Figure 5.4b indicate that the right region is higher than the left.
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(a) (b)

Figure 5.4. Determination of the Relative Phase Offset between Two Regions.

For each contour node, the edge direction is analysed and the decision is made as
to which region is higher. The region with the greater frequency of occurrence (number
of nodes) is denoted as the higher region. Under the condition that the phase map is
adequately sampled in a global sense (see Section 5.1), the regions on either side of a
contour can only differ by one cycle. Thus, relative unwrapping is a simple process.

In absolute unwrapping, the phase-offset relationships between all regions are
established using the previously established relative offsets. For the first contour. an
absolute phase offset is assigned to each of the left and right adjoining regions. The
lower of the two is assigned zero cycles while the higher is assigned one cycle. The
remainder of the contours is searched for matching left or right regions. If a match is
found, then the absolute phase offset is assigned. Using the known relative phase offset.
the absolute number of cycles for the other region is then assigned. Once all regions have
been accounted for, the number of cycles assigned are multiplied by 2n radians and

added to the wrapped phase map. At this point, the two-dimensional phase unwrapping is



90

essentially complete. The advantage of this algorithm is that by approaching the problem
on a contour-by-contour basis, the task of two-dimensional phase unwrapping is
collapsed into a one-dimensional problem.

The final step is unwrapping of the contours themselves. In a continuous phase
map, contours are curves of infinitesimal width. However, contours have a finite width
of one pixel in a sampled phase map. Moreover, the peak response of edge operators can
be displaced in noisy imagery (Canny, 1986). Thus, the decision as to which region the
contour node pixels should be assigned is not always clear.

The approach taken here is based upon the unwrapped phase of the regions
adjacent to the contours. To unwrap a contour-related pixel, only two candidate number
of cycles exist: the number cycles of the left and right regions. The following two

quantities are calculated for each contour node using the neighbouring region pixels

> l(6q +27N ) -0, (>-62)
S0, + 20, )~ (5:6b)
where
o4 is the wrapped (discontinuous) phase at the contour node.
N, . Ng are the candidate number of cycles for the left and right regions.
respectively.
d. is the unwrapped (continuous) phase of a neighbouring region pixel,

Z represents summation over the neighbouring region pixels.
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The candidate number of cycles for which the sum of absolute values of differences is

least is chosen.

5.3 Chapter Summary

A new algorithm for two-dimensional phase unwrapping has been proposed that
is based upon a set of topological rules governing the relationships between various
entities in a phase map. Unlike existing approaches, this method treats the unwrapping
task as a two-dimensional problem rather than a series of independent, one-dimensional

tasks. The various steps of the algorithm are depicted by the flowchart in F igure 5.5.
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Figure 5.5. Two-Dimensional Phase Unwrapping Algorithm.



CHAPTER 6

TESTING AND RESULTS

6.1 Fringe Extraction

Several real holographic interferometry images have been utilised for testing of
the fringe maxima extraction algorithm described in Chapter Four. A simulated image
has also been processed. Detailed description of the data as well as the results and

analysis of each processing step are presented in the following sub-sections.

6.1.1 Data Description

Trans-Canada Pipelines, Limited (TCPL), provided several transparency prints of
holographic interferograms acquired by Holographics, Inc. for this research. The
imagery was originally acquired as part of a preliminary study into vibration
measurement of large diameter pipes. Set in a laboratory environment, a barrel was
mechanically excited at several different frequencies to simulate a section of pipe
vibrating under various operating conditions. Three images were utilised for this
research, the first with 384-Hertz excitation, and the second at 1445 Hertz. The third
image was captured with the barrel stimulated with a mix of three different frequencies.

The laser wavelength of the interferometer was approximately 700 nanometres.



The images provided were produced with a laser printer by TCPL. Thus, they had
been previously scanned from the original holographic image prints. The significance of
the scanning and, particularly, the printing processes will be discussed shortly. The
author using a Hewlett-Packard ScanJet 6100c-flatbed scanner subsequently scanned the
prints provided. A spatial resolution of 300 dots-per-inch (dpi) in each dimension was
selected. This frequency corresponds to a sampling interval, As, of approximately 85
micrometres. This choice was motivated by two factors: storage requirements and fringe
pattern frequency. The greatest possible resolution available with the aforementioned
hardware was 600 dpi. Imagery scanned at this rate was found to be too large (in terms
of storage requirements) to be of practical use. Imagery was also acquired at lower
resolutions, but discounted due to poor image quality as it was found that fringe patterns
in areas where the displacement field gradient was relatively large were not adequately
reproduced. That is, closely spaced fringes were not as easily distinguishable at lower
resolutions as they were at 300 dpi. Thus, 300 dpi was empirically found to be the
scanning resolution for which the trade-off between storage and over-sampling was best.
As for radiometric resolution, 8-bit quantization (256 intensity values) was used.

For easier data handling during the course of the testing, smaller sub-images were
extracted from the scanned images. While the full images consisted of approximately
1000 x 3000 samples, the individual working images were 512 x 512. The four test sub-
images utilised here are shown in Figure 6.1. The image of Figure 6.1a, denoted as
image 384, was extracted from the image of the barrel when shaken at 384 Hertz.

Figures 6.1b and 6.1c, denoted as 1445 and 1445_2, respectively, were taken from
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Figure 6.1. Working Images for the Fringe Extraction Algorithm Testing.



6.1.2 Pre-filtering

Preliminary spatial and spatial-frequency domain analyses of the scanned images
revealed high frequency noise sources in both dimensions. The noise was dominant in
the vertical direction. To illustrate, Figure 6.2 is a plot of intensity values along the
middle column (number 255) of image 1445. Note the high frequency variations in

intensity superimposed on the sinusoidal pattern.

300
250
200
150
100

50 ===

Intensity

192 256 320 384 448
Row

Figure 6.2. Intensity Cross Section along Central Column of

Image 1445 Before Filtering.

This noise source is also clearly visible in the spectrum of image 1445. Figure 6.3 is the
log magnitude spectrum of image 1445, weighted with a rectangular Hanning window.
While most of the useful image content is concentrated about the frequency origin at the
image centre, the noise appears at the image extremities along the both central row and

central column.
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Figure 6.3. Log Magnitude Spectrum of Image 1445 (Figure 6.1b).

After inspection of the transparencies with a magnifying glass, it is believed that
the laser printing was the source of this noise. The four pulses containing the noise were
removed by multiplying the (non-windowed) spectrum with a pair of symmetric.

Gaussian band-stop filters. each of the form

Huv)=1-e & = J_eg® &= o ] (6.1)
where
Uy, Vv, are the central frequencies in the row and column directions, respectively,
c,.C, are the standard deviations (bandwidth estimates) in the row and column

directions, respectively.
An exemplary surface plot of Equation 6.1 is given in Figure 6.4. The central frequencies

and bandwidths were determined by inspection of the magnitude spectra. The filtering
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proved to be effective at removing the noise, as indicated by the smoother cross-section

shown in Figure 6.5.
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Figure 6.5. Intensity Cross Section along Central Column of

Image 1445 After Filtering.
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6.1.3 Homomorphic Filtering

The first step of the fringe maxima extraction algorithm described in Chapter Four
is speckle noise reduction via homomorphic filtering. The speckle is clearly visible in all
four images of Figure 6.1, but Figures 6.1c and 6.1d are particularly contaminated. Due
to the spatial correlation of speckle noise, the distortion appears to be the most severe in
areas with narrow fringe spacing. This is poses a serious problem in the task of
extracting the fringe maxima, as the speckle creates false intensity valleys and ridges.

After visual determination of appropriate bandwidths, all images were
homomorphically filtered with fourth-order Butterworth functions (see Equation 4.2).
Experiments were conducted with various filter types, including Gaussian and lower
order Butterworth functions. The fourth-order Butterworth was found to perform the best
of those tested. The images produced by this operation exhibit overall improved
appearance. as shown in Figure 6.6. in terms of reduced speckle. However. due to the
attenuation of high-frequency details, they are blurred to some degree. The resulting
distortion is most severe in the areas of narrow ﬁnge spacing. In particular, note the loss

of fringe detail in the lower right-hand corner of Figure 6.6d.
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(c) Image 1445 2

Figure 6.6. Homomorphically Filtered Working Images.

Figure 6.6a, although slightly blurred, was dramatically improved by the filtering.
Note the distortions at the edges caused by the periodic extensions of the image

contributing to the filter response. No zero padding of the imagery was performed prior
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to the 2-D FFT and subsequent filtering. The images in Figures 6.1b and 6.1c are
similarly improved, but with blurring in the areas of narrow fringe spacing. False
intensity maxima have been created in some locations with large gradients due to the

blurring. These distortions will be addressed in subsequent subsections.

6.1.4 Thresholding

The need for decomposing the homomorphically-filtered imagery into smaller
regions prior to thresholding is best understood by analysing Figure 6.4. This intensity
profile exhibits non-linear modulation depth, as indicated by the varying height of
intensity maxima. This makes global thresholding inappropriate. Square regions of 64 x
64 pixels were found to be most effective in terms of capturing less intense fringe
maxima while maintaining separation between stronger fringe maxima.

The problem of choosing an appropriate threshold can be better understood by
analysing the histograms of image 384 presented in Figure 6.6. Figure 6.7a represents
the global histogram prior to homomorphic filtering, and the post-filtering histogram is

given in Figure 6.7b. Note that both histograms possess a unimodal shape.
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Figure 6.7. Histograms of Image 384.

Figure 6.8 presents both global and local thresholding results for image 1445 2.
Areas of significance in Figure 6.8a (globally thresholded image) are the lower left
portion where adjacent fringes are joined with bridges and at the top of the image where
the fringes are broken by several gaps. In the locally thresholded image (Figure 6.8b),

the bridges between adjacent contours in the lower left do not exist. Furthermore, the
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fringes at the top of this image are also more continuous (they have fewer gaps). Note.
however, the distortion in both images where the fringe spacing is narrow. This is clearly
visible between the two elongated, closed loop fringes in the upper right quadrant of the

images.

)

Figure 6.8. Global and Local Thresholding Results (Image 1445_2).

6.1.5 Thinning

As previously mentioned the binary morphological thinning operation reduces
nonzero sets in an image to single pixel-wide entities. The thinned fringe maxima are
given in Figure 6.9. Spur, bridge and gap artefacts as well as false contours are present in
all four images. The images corresponding to 1445 and Mix in particular are highly
contaminated with artefacts. In fact, a great deal of semiautomatic editing was required

in the right-hand portion of the latter image due to the distortion. As expected, the



103

occurrence of artefacts is greater in the areas of narrow fringe spacing, where the blurring

is most severe.

(a) Image 384
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Figure 6.9. Thinned Fringe Maxima (Contrast Reversed).
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As previously mentioned, the process of homomorphic filtering contributes to the
problem of contour artefacts due to its blurring effect. However, substantial
improvement in the quality of thinned contours is realised by employing the filtering. As
an example, Figure 6.10 shows the thinned fringe maxima from image 1445 without
application of the homomorphic filtering. The presence of numerous additional spur and
bridge artefacts is quite evident when this image is compared with Figure 6.9b. Although
the true fringe maxima in the areas of narrow fringe spacing are less distorted in Figure
6.10 than in Figure 6.9b, the spurs and bridges still create the need for semiautomatic
editing. The goal of the homomorphic filtering then is to remove as much noise as
possible such that the thinned contour map is as clean as possible for the extraction and

editing stages.

Figure 6.10. Thinned Fringe Maxima of Image 1445

Without Homomorphic Filtering (Contrast Reversed).



6.1.6 Automatic and Semiautomatic Editing

Plotted in Figure 6.11 are the extracted contours from each image after automated
editing (spur, bridge and gap removal) and semiautomatic contour interpolation. The
shaded areas in these figures indicate the windows in which interpolation was performed.
As can be gathered from Figure 6.9, little editing of extracted contours was required for
images 384 and 1445_2. The homomorphic filtering of these two images was very
successful at reducing the speckle, thereby yielding cleaner contours. Nevertheless, some
of the semiautomatic procedures detailed in Chapter Four were required. For image 384
(Figure 6.11a). only a few small window areas were required for which simple linear
interpolation was sufficient. For image 1445 2 (Figure 6.11c¢), only three window areas
were necessary. one for linear interpolation (near the image centre) and two for
concentric contour matching. Note the presence of ridge contours in both images.

Images 1445 and Mix required considerably more semiautomatic editing.
Concentric contour matching was successfully applied in a few locations of image 1445
(Figure 6.11b). This was due to the smoothness of the upper left, lower left and lower
middle closed contours. However, the matching procedure could only be applied once or
twice per contour due to the amplification of noise in the inner contour. The remainder
of the windowed gaps was bridged with quadratic interpolation. Image Mix (Figure
6.11d). required considerably more semiautomatic editing. While concentric contour
matching was successfully applied in several locations, including the left and central
portions of the image, a considerable amount of quadratic interpolation was required. As

with image 1445, the contour matching was restricted to one or two applications per
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closed contour. The distorted right-hand side of image Mix is almost completely

interpolated using parabolas. This image also includes a few degenerate contours (ridges

and a peak).

|
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|1 \ . - l £k .& i‘v’ ¥, H el
(a) Image 384 mage 1445
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(c) Image 1445 2 (d) Image Mix

Figure 6.11. Edited Fringe Maxima Contours.
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6.1.7 Efficiency and Accuracy of Fringe Maxima Extraction

In order to evaluate the effectiveness of the fringe maxima extraction algorithm
described in Chapter Four, two criteria were used: efficiency and accuracy. Efficiency is
an internal quantification of the algorithm’s effectiveness and is measured by the
percentage of contour nodes extracted automatically. The evaluation of accuracy is based
upon both theoretical and empirical measures of planimetric contour positioning and
displacement estimation. Unfortunately, neither theoretical computations nor
independent measurements (i.e., from accelerometers) were available for accuracy
assessment. Thus, only the proposed algorithms and not HI itself could be assessed.

The efficiency of contour extraction for each image is summarised in Table 6.1.
The total number of contour nodes for each image is broken down into the number and
percentage extracted both automatically and using the semiautomatic methods. For
images 384 and 1445_2, the efficiency was quite high at 96.4% and 91.2%. respectively.
Images 1445 and Mix, though, had considerably poorer efficiency measures at 54.4% and
51.7%, respectively. The lower ratings are due to the severity of distortions and artefacts
in these images. However, a poor efficiency rating is deceiving since the number of
nodes extracted in semiautomatic mode is not necessarily indicative of the amount of
manual work involved. For example, linear interpolation only requires that the user
identify two points that define the window boundaries. Thus, the number of points that

the operator must delineate is considerably less than the figures indicated in the columns

of Table 6.1 that refer to semiautomatic contour node extraction.
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Number of Nodes Extracted Percent Extracted
Image Total Automatic | Semiautomatic { Automatic | Semiautomatic
384 11083 10796 287 96.4 2.6
1445 11489 6246 5243 54.4 45.6
1445 2 6699 6110 589 91.2 8.8
Mix 13168 6941 6227 52.7 46.3

Table 6.1. Fringe Maxima Extraction Efficiency.

The quantification of contour accuracy requires detailed analysis of all error

sources. If the goal of fringe maxima extraction is simply to determine peak antinode

deflection, then the absolute position of each contour is not critical. However. one should

expect that an extracted contour lie completely within its respective bright fringe. Thus.

in assessing the accuracy of antinode displacement, planimetric accuracy need not be

accounted for.

following list.

Speckle.

Film grain density.
Sampling.
Quantization.
Electronic.

Homomorphic filtering.

The noise sources affecting derived displacements are given in the
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All of these noise sources introduce distortion into the intensity image. from which the
contours and, ultimately, deformations are derived.

If the goal of the contour extraction is to estimate mode shapes and/or the exact
positions of peak antinode displacement, then planimetric contour accuracy is a
significant factor. In addition to the error sources given above. errors due to the

thresholding and morphological thinning processes must also be included.

6.1.8 Quantification of Noise Sources

Many of the error sources listed in the previous subsection are image dependent.
In order to facilitate simplified quantification, a worst-case scenario image was utilised.
The shortest spatial wavelength fringe observed in all of the four test images was 6
samples (approximately 500 um). This sinusoid is used for some of the analyses below.
Full modulation depth, constant background intensity and 8-bit quantization have been
assumed. The worst-case fringe pattern has been assumed to parallel the image Xx-axis
and is given by

i(x,y)=127.5(1+cos(f_x +8)) , (6.2)

where
fm is the worst-case spatial frequency of 0.002 um™,

0 is a (random) spatial phase shift.
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6.1.8.1 Speckle
As detailed in Subsection 2.4.1, laser speckle is a multiplicative noise source that

depends upon surface roughness. The random variation in phase, ¢, due to this roughness

and the use of coherent radiation is modelled as having a uniform density on [— n:,n].
The standard deviation of this density is ¢, +n(3)”'. Using Equations 3.2, 3.3 and 3.4.
the proportional standard deviation of the deformation due to speckle, op. is

o, =258 nm . (6.3)

This represents approximately +17% of HI resolution and clearly indicates the need for
homomorphic filtering. It should be noted that the auto-correlation function given by
Equation 2.38 is not applicable to the imagery used here due to the cylindrical surface

shape of the barrel.

6.1.8.2 Film Grain Density

The Nutting model relates grain size and number and scanning aperture size to the
optical density of a photographic emulsion (Castleman, 1996). The basis for the model is
the hypothesis that a photographic emulsion is comprised of composite layers of film
grains. each one-grain in thickness. The empirically derived model for density is given

by (Castleman, 1996)
na

where

D is the optical density,
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n is the number of grains within the scanning aperture.

a is the cross-sectional area of a grain.

A is the diameter of a circular scanning aperture.

If the grain size is much less than the aperture. then n is Poisson distributed (Castleman.
1996). Consequently, the standard deviation in optical density is a function of the
average number of grains within the aperture, since the mean and variance of the Poisson

density are equal.

A da
Cp =i0.4_7X,/E{n} (65)

Unfortunately. the pertinent details of the photographic emulsion used for the test
imagery were not made available to the author. In an attempt to realistically quantify
film grain noise, 2 mean film grain diameter of 40 um has been assumed. This
corresponds to the upper limit of grain size quoted for fine-grained emulsion holoplates
produced by the SLAVICH Company and distributed by the GEOLA Company of
Lithuania.  This information was obtained from GEOLA’s world-wide website
(www.geola.com). For the scanning aperture. the area of the 85um x 85um scanner
sampling aperture was used to calculate the diameter of a circular aperture with
equivalent area. This diameter was then reduced by a factor of 6.55 to account for the
enlargement process from 35mm film to the size of the fringe image prints. The final
diameter was 12.7um. The mean number of grains was calculated to be 280 by assuming

they form a rectangular lattice within the reduced rectangular sampling aperture. Using
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these values and Equation 6.5, the standard deviation of optical density due to film grain

noise was calculated to be £0.0060. Using the relation between density and transmittance
D=-logT , (6.6)
the standard deviation of transmittance can be estimated via variance propagation:

o =% (%) o3,

_ +In10.e "0, 6.7

From the negative exponential relationship of Equation 6.7. it can be seen that
transmittance error decreases as density increases. In order to transform numbers
calculated via Equation 6.7 into a standard error in displacement, the H-D curve for the
film along with exposure time is required. Since this information was not available. a
linear relation between transmittance and quantized intensity was assumed. The
assumption is that a transmittance of 0.1 (density of 1.0) corresponds to an intensity of
126.5 (the mean value of the assumed worst-case sinusoid). Table 6.2 is a presentation of
standard errors in displacement corresponding to different values of density. Using a
density of 0.1 for a worst case scenario, the standard deviation in displacement due to
film grain noise is

8

This represents +5.5% of the HI measurement resolution of 350nm.



D oT Oz (nm)
0.1 +0.0110 +19.2
0.5 +0.0044 +6.7
1.0 +0.0014 2.4
2.0 +0.00014 +0.24

Table 6.2. Standard Deviation in Displacement for Different Values of Density.

6.1.8.3 Sampling
The sampled version of Equation 6.2 using a finite-area aperture. as is found in

charge-coupled devices, is given by Equation 6.9 (Pratt, 1976).

-ﬁn--’_
[ fitey)xdy 6
BECIEC R
mssnss)= T a s [ [y ©
[ Jaxdy T
meS A

This equation indicates that a discrete sample of the intensity image is equal to the
average intensity over the sampling aperture normalised by the aperture area. For the
sake of simplicity, the discrete indices m and n are both set to zero. Then, after
substitution of Equation 6.2 into Equation 6.9 and performing some algebraic

manipulation, the sampled intensity of the worst-case fringe at m=n =0 is
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. 3
i.(0,0)=127.5( 1+ >cos0 | .
.(0,0) ( —cos ) (6.10)

Thus, the sampled intensity of the worst-case fringe is given as a function of its spatial
phase (position). The radiometric sampling error, e, is defined as the difference between
the incident and sampled versions of the image, as shown in Equation 6.11.
e,(m,n)=i(m,n)-i_(m,n) (6.11)
This error is caused by the difference between the actual average values of an image at a
given location and its magnitude governed by the spatial phase shift.
In order to quantify the effect of a random phase shift on the intensity and.
ultimately, displacement, knowledge of the probability density function (pdf) is required.

If 6 has a uniform density on [-m. Tt]. then all phase shifts on this interval have an equal

probability of occurrence of (2m)"'. Given the pdf of 6, f(6) and its functional

relationship with e,, g(8). the pdfofe,. f (e,). can be determined by (Papoulis. 1991)

. (6,
fle,)= ;———dg(g);) . (6.12)
™
where
o is the i" solution to e_ = g(6),
n is the total number of possible solutions to e, = g(8).

Since f(8) is only nonzero on [— T, Tc], then only two solutions to e, = g(0) exist. It can

be shown that the pdfie, is
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fle,)= ———. "
e.) s (6.13)

where

3
a=1275/1-=|.
( 71:) (6.14)

This pdf is concave-upward and symmetric about zero with a value of (an)” at the
origin. It has vertical asymptotes at *a and a standard deviation of +27%a ~ +4.06.
Using Equations 3.2, 3.3 and 3.4, the corresponding standard deviation in deformation
due to a random phase shift (due to sampling), os,, is

o, =156 nm. (6.15)

sa

This standard error represents only about +1.6% of the HI measurement resolution.

6.1.8.4 Quantization
Quantization noise due to rounding has been modelled by Oppenheim and Schafer

(1989) as additive white noise with a uniform density. This pdf has a value of one on
(=0.5.0.5) and a standard deviation of +0.289. The corresponding error in deformation
due to quantization, Gq. 1S

6, =040 nm. (6.17)
This figure represents only about £0.1% of the measurement resolution.

The combined effect of speckle, film grain, sampling and quantization noises for

the worst case situation outlined earlier in this chapter is given by
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_ 3 3 2 3 6.17)
c—t\[csp +0g, +0, +0,

=%61.4 nm
Clearly the speckle noise is dominant, as it is at least an order of magnitude greater than

the other sources except for the film grain density.

6.1.8.5 Other Noise Sources
Since the analytical form of the deformation surfaces (and their spectra) within
the test images was not known, the amount of noise added by the processes of

homomorphic filtering was not known. The level of electronic noise also was not known.

6.1.9 Accuracy Quantification

As previously mentioned, a rigorous quantification of deformation field
measurement accuracy was not possible for this study. However. an empirical study has
been conducted. The fringe maxima contours were manually delineated for images 384
and 1445_2. These particular images were selected because they required the least
amount of contour interpolation and contained the least complex fringe patterns. The
difference between the two sets of contours and their respective automatically extracted
counterparts was taken as the basis for evaluation. The manually digitised images were
used as for reference. The root mean square error (RMSE) of the co-ordinate differences
was calculated for three different areas within each image. Each area consisted of

approximately 100 x 100 samples and was randomly selected from portions of the

imagery that were not interpolated and did not contain large differences. Such
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differences manifested themselves at very broad fringes, such as near the centre of image
384, and at saddle points, as in image 1445 2. The image borders were also avoided in
order to discount biases due to edge effects. The contours used from image 384 were
fairly straight with a few minor bends. The contours of image 1445 2, however, were
much more curved and complex. The statistics are summarised in Table 6.3

Analysis of these results indicates that the positional accuracy of contour
positioning in image 384 was homogeneous throughout the image at about +1 pixel.
Large discrepancies, which occurred at broad fringes, are due to the combined effect of
the error sources previously described and personal digitizing bias. The inferior RMSE
figures and lack of homogeneity of image 1445 2 can be attributed to both the greater
complexity of its fringe patterns and the broader fringes. Although this evaluation does
not represent an absolute but only relative test of contour positional accuracy. it does
represent an interesting consistency check between the two methods. since manual
digitization is frequently used for contour extraction. Although large discrepancies were
encountered at broad fringes, the effect on mode shape is not as severe due to the shallow

gradient in such locations.
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Image 384 Image 1445 2

Number of RMSE (pixels) Number of RMSE (pixels)
Nodes Nodes
Area 1 557 +1.1 369 +3.2
Area 2 624 *1.1 404 +1.9
Area 3 680 +1.0 355 *1.6

Table 6.3. Empirical Fringe Positional Accuracy Statistics.

6.1.10 Simulated Image Contour Extraction

The simulated image of Figure 2.5 was also processed using the fringe maxima
extraction algorithm. The extracted contours overlain on the original image are shown in
Figure 6.12. Analysis of this figure and comparison with the true contour lines shown in
Figure 4.1 reveals biases at the edges. The thinning process has closed the outermost
contour that should be broken into four pieces by the image border. Since real imagery is

distorted at the borders due to filtering edge effects, this region is not of great concern.
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Figure 6.12. Contours Extracted from the Simulated Image of Figure 2.5.

6.2 Phase Unwrapping

Unfortunately. no real off-axis holographic imagery was available during the
course of this research for testing the phase unwrapping algorithm described in Chapter
Five. Instead, preliminary testing with simulated imagery has been conducted. A
detailed description of the data and how it was simulated is presented followed by the

processing steps.

6.2.1 Data Description

The simulated phase map used for testing the new two-dimensional phase
unwrapping algorithm represents a sinusoidal surface comprised of six terms of a
bivariate cosine series. This surface could represent a vibration mode of a thin plate

subjected to a periodic mechanical excitation, a situation similar to the vibrating pipe
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sections described in Section 6.1.1. The amplitude range of the unwrapped phase surface
is approximately 20.8 radians. Uniformly distributed noise (on [-0.8x, 0.8n] radians) was
added to the wrapped phase map in an attempt to simulate the effect of speckle. While
speckle is modelled as multiplicative noise in intensity, it is additive in phase.
Furthermore, although the phase distribution theoretically should be over [-r, =] radians.
the noise degradation achieved is quite appreciable. Shown in Figure 6.13a is the

simulated, wrapped phase map. The noise-corrupted version is given in Figure 6.13b.

Figure 6.13. Original and Noisy Simulated Phase Maps.

6.2.2 Data Processing

The first step of the unwrapping algorithm was discontinuity detection. In spite of
the noise corruption. the edges of Figure 6.13b are still fairly distinct. The magnitude
response images resulting from the application of Equations 5.2a and 5.2b for the first

two scales, 1 and 2, are given in Figure 6.14a and 6.14b, respectively. Both images
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exhibit strong responses at the discontinuity locations. The response at scale 1 appears
greater than that of scale 2 because of the scale dependence in the denominator of
Equations A.22 and A.23. Note also that the responses of Figure 6.14b are more spread

out due to the greater spatial extent of the scale 2 kernel.

(@ (b)

Figure 6.14. Edge Detection Magnitude Responses.

After combination of the two response images via Equation 5.4 and edge response
magnitude and direction calculation, the contour following was performed. Subsequent
region identification and unwrapping produced the continuous phase map shown in
Figure 6.15a. Note that the noise appears to be diminished due to requantization for
display purposes. The original, unwrapped phase map is given in Figure 6.15b for

comparison.



Figure 6.15. Noisy and Original Unwrapped Phase Maps.




CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary

Holographic interferometry is an invaluable technique for making high-resolution
deformation measurements in many engineering disciplines. Using coherent radiation
imaging, HI captures displacement fields as sinusoidal interference (fringe) patterns.
Although the means of extracting the information of interest varies according to the
imaging geometry, all methods share the common goal of recovering a phase map from a
fringe pattern.

For fringe-based analysis, deformations are inferred from contour lines
delineating fringe intensity maxima. Extraction techniques include manual contour
digitising. which can be extremely time consuming, and automated approaches based
upon searches for local intensity maxima. The success of the latter method has been
limited to noise-free images exhibiting high fringe contrast.

The automated approach developed in this dissertation was demonstrated to be
effective at fringe maxima extraction from real HI imagery. The basis of this method was

a topological description of interference fringe imagery outlined in Chapter Four. These
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rules provided practical constraints for the editing procedures utilised in the final stage of
processing.

The first step of the algorithm was speckle noise reduction via homomorphic
filtering. The contour extraction phase consisted of local thresholding followed by
morphological processing to thin the segmented fringe maxima. Once extracted via line
following, the contours were edited using both automatic and semiautomatic methods.
The product of the algorithm was a set of complete contour lines delineating the fringe
maxima of an interferogram.

For some applications a more detailed deformation surface is required.
necessitating the entire phase map contained within an interferogram. Recovery of this
surface entails several digital-filtering operations and, in fact, yields a discontinuous
surface. The current crux in processing such imagery is automatic removal of these
discontinuities. known as phase unwrapping. Existing techniques to accomplish this
essentially treat the phase map as a sequence of independent, one-dimensional signals,
each of which is individually unwrapped. The drawback with this approach is that
important correlation between neighbouring sample rows (or columns) is ignored during
the process of establishing the location of the discontinuities.

An improved algorithm developed in this dissertation exploits this correlation by
treating phase map unwrapping as a two-dimensional problem. Preliminary testing using
a simulated, noisy phase map proved the algorithm to be successful. Topological rules
similar to those of fringe imagery were defined for phase maps in Chapter Five. The

algorithm commenced with the detection of discontinuity contour lines using a multi-



scale bank of edge detecting filters. Fusion of the filter responses provided a means to
bridge gaps in contour lines caused by noise. After extraction of the contours via line
following, it was shown that the actual unwrapping step of the algorithm collapses to a

one-dimensional problem.

8.2 Conclusions
From the test results presented in Chapter Six, several conclusions have been
drawn concerning the developed methods and these are presented in the following list.

¢ The critical step of the new algorithm is the homomorphic filtering for speckle noise
reduction. A worst-case theoretical study of some of the error sources contributing to
the precision of inferred deformations from HI fringe imagery indicated that the
speckle was the dominant noise source (see Chapter Six). The standard error of this
source was found to be approximately seventeen percent of the measurement
resolution of one-half of the laser wavelength.

o The speckle reduction via homomorphic filtering was demonstrated to be largely
successful in terms reducing the number of contour line artefacts and, hence, the
amount of editing required. However, the overall improvement realised by the
filtering came at the expense of image blurring, which proved to be most problematic
in areas with narrow fringe spacing.

 Distortions caused by the combination of speckle and the subsequent homomorphic

filtering manifested themselves as artefacts and gaps in the contours at the end of the
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processing. This created the need for various automatic and semiautomatic editing
strategies.

The problem of non-linear modulation depth rendered inappropriate the use of global
thresholding for fringe maxima segmentation. Application of this scheme produced
residual artefacts such as erroneous bridges and gaps in the segments. Local
thresholding, using 64 by 64 pixel regions proved to be much more effective for the
segmentation in terms of reducing the number of artefacts.

An obvious choice of a threshold for the segmentation was found to be problematic
due to the intensity histogram shape of the nominally binary interference imagery. To
solve the problem, the histogram centre of mass was chosen as the thresholding
criterion.

The contour image produced by the morphological thinning step contained many
artefacts such as spur and bridge contours as well as gaps in contours. Automated
editing procedures were successfully applied to remove many of the artefacts. These
methods simply enforced the topological rules outlined in Chapter Four. For
example, spur and bridge contours were eliminated by the simple fact that contour
lines may not intersect.

Some semiautomatic editing was required to compliment the automatic artefact
removal. In general, areas with narrow fringe spacing required most of the
semiautomatic editing.

The success of the semiautomatic editing method of concentric contour generation

was dependent upon the smoothness of the innermost contour and the shape
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consistency of the concentric curves. In one image, several applications of this
method were possible, while only one application was found to be appropriate in two
other images.

For two of the images processed, the efficiency of the new fringe maxima extraction
algorithm was better than ninety per cent. Efficiency was quantified by the ratio of
automatically extracted contour nodes to the total number of nodes. For the other two
images, the efficiency metric “seemed”™ to indicate that the new method was not as
successful. In this regard, the efficiency measure was somewhat misleading, as the
number of nodes belonging to contours interpolated by semiautomatic means was not
representative of the number of points manually delineated. Since only a maximum
of three points per contour (for quadratic interpolation) were necessary, the new
method was indeed more efficient than manual digitising than the efficiency
measured suggested.

An empirical study of the planimetric accuracy of the extracted contours was also
conducted in order establish if there was consistency between manually digitised and
automatically extracted fringe maxima contours. The testing yielded RMSE accuracy
estimates ranging from 1.1 to £3.2 pixels. These figures were clearly dependent
upon the nature of the fringe patterns, as the RMSE was lower for straight, narrow
fringes and greater for curved and broad fringes.

Application of the new method to a simulated image proved to be successful.

However, there were noticeable artefacts at the borders due to the thinning. It has
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been concluded, though, that this phenomenon is of little concern given that
homomorphic filtering generally corrupts image border regions.

It was shown that the final step of the new, two-dimensional phase unwrapping
algorithm actually reduces to a one-dimensional problem. This is a direct result of
the unique approach of the algorithm, the basis of which is a topological description

of a phase map.

8.3 Recommendations for Future Development

In the author’s view, the most significant areas requiring further development are

tabulated below.

While the speckle noise reduction via homomorphic filtering was successful.
significant distortion was introduced in some locations, particularly where the fringe
spacing was relatively narrow. An adaptive filtering scheme in which the filter
properties vary according to fringe wavelength may hold promise for a priori
minimisation of such distortions

In order to minimise the amount of semiautomatic editing and, therefore. user
interaction, a means of automatically identifying contour inconsistencies is required.
A graph theoretical approach, in which topological relationships can be more
rigorously implemented and enforced, may be suitable for both the identification and
restitution of such artefacts.

There may also be merit in investigating an iterative approach to contour extraction.

At the outset of such a strategy, only the strongest, most distinct fringe maxima
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contours would be extracted. At successive iterations, these curves could be used to
assist in the extraction of weaker, less distinct fringe contours.

A minor issue is that of the distortions introduced at the border regions of the fringe
imagery by the filtering. Due to the assumed spatial periodicity of an image when
performing a 2-D FFT, frequency domain filtering permits contributions of adjacent
periods to the kernel response at the image borders. The solution to this problem may
be as simple as making the image larger than necessary and ignoring the distorted
border. |

Real off-axis holographic imagery should be acquired for testing the two-dimensional
phase unwrapping algorithm. In spite of the success realised with the noisy simulated
imagery. real data would be the ultimate test of the new algorithm. The author
suspects that some of the contour inconsistencies encountered in the fringe imagery
processing may crop up in a similar form in real phase maps. However. some of the

presented solutions to these problems may also be transferable to phase map imagery.
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APPENDIX A

RELEVANT IMAGE TRANSFORMS AND THEOREMS

Transforms are versatile tools used extensively in the broad field of image
processing to provide a different basis for analysing functions. The Fourier transform.
for example. gives an equivalent sum-of-sinusoids representation of a function. The
benefit of this representation is that significant periodic components of the function are
more feadily apparent in the frequency domain than in the spatial domain. Both the
continuous and discrete versions of the two-dimensional Fourier transform along with
some relevant theorems are presented in this appendix.

The following discussions represent a focused treatment of image transforms
relevant to this research. The process of phase recovery, which constitutes important
foundation material for this research, draws upon some of the continuous Fourier
transform theorems. In addition, practical phase recovery from digital imagery
necessitates use of the discrete Fourier transform. It will be shown that the practical
implementation of digital filters can often be performed more efficiently in the frequency
domain. This is particularly relevant since frequency domain homomorphic filtering is
an integral part of the fringe maxima extraction algorithm developed herein. References

drawn upon for this appendix include Brigham (1988), Castleman (1996), Dudgeon and
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Mersereau (1984), Gonzalez and Woods (1992), Oppenheim and Schafer (1989) and
Papoulis (1962).

An increasingly popular and versatile alternative to the Fourier transform is the
wavelet transform. The difference between the two lies in their basis functions. While
the basis functions of the Fourier transform are infinite-duration, complex sinusoids. the
wavelet transform employs short-duration oscillatory waveforms. The advantage of the
latter transform lies in the analysis and detection of transient components of a signal.
This is particularly relevant for edge detection, used here for phase recovery. Edge
detection is essentially a search for (transient) discontinuities in image intensity. The
wavelet transform and the closely related subject of multi-resolution image representation
and scale space are treated at the end of this appendix. Both these subjects are employed

in this thesis for phase map discontinuity detection and extraction.

A.1 The Two-dimensional Continuous Fourier Transform
The two-dimensional continuous Fourier transform (2-D CFT) is a linear. integral
transform that maps a function from the spatial domain onto the spatial frequency

domain. The transform is given by

Flo.v)= | [f(x,y)e ™ dxdy , (A.1)
where
f(x.y) is the spatial domain function,

F(o.v) is the spatial frequency domain function, or spectrum.
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The units of the frequency variables, ® and v, are radians per linear unit. Both the spatial
domain function and the spatial frequency domain function, if it exists, are complex-
valued in general. The inverse 2-D CFT is simply a mapping of a frequency domain

function back to the spatial domain, and is given by

®©

1 )
f(x,y): ey J' I F(co, v) efewidpdy | (A2)

- —a

Both of these integrals are exploited for phase map recovery in Chapter Four. The

relation between a function and its Fourier transform is often denoted symbolically as

f(x,y)< Flo,v) . (A.3)

A.2 Two-dimensional Continuous Fourier Transform Theorems

An important theorem in signal modulation and demodulation is the frequency-
shifting or modulation theorem that gives the transform pair for a spatial domain function
multiplied by a complex sinusoid. The result in the Fourier domain is translation of the
spectrum:

el Yf(x,y) = Flo-o,.v-v,) . (A4)

Thus, a frequercy shift causes a phase shift in the spatial domain function. The spatial-
differentiation theorem is used to evaluate the spectrum of a differentiated function:
(A.5)

(_a.jm(%)nf(x,y)o (o) (iv) Flo.v) .

ox
If a function is differentiated m times in the spatial domain with respect to x, its spectrum

is multiplied by jo raised to the power of m. If a function and its Fourier transform are
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related by Equation A.3, then the transform pair corresponding to the complex conjugate
of that function is given by

' (x,y)=>F(-0,-v). (A.6)
Chapter Four makes use of the modulation and complex conjugate theorems, while

reference to the differentiation theorem is made in Chapter Six.

A.3 The Two-dimensional Discrete-Space Fourier Transform

In order to facilitate digital manipulation, two-dimensional functions must be
discretely sampled. The most common uniform sampling geometry is a rectangular
lattice, though other patterns such as hexagonal sampling are used in some instances.
Although the two-dimensional sampling process is not detailed here, the frequency
domain representation of a discrete function is presented. For discussion on sampling,

see Dudgeon and Mersereau (1984) or Oppenheim and Schafer (1989).
A two-dimensional discrete function may be represented as f (m,n) . where m and

n are integer-valued indices. The discrete-space Fourier transform of f(m.n) is given by

= = (A.7)

F(ej“’,ej“)= Z Zf(m,n)e'“"”“*"“’ .

m=— n=
A distinction must be made between the frequency variables @ and v of this equation and
those of Equation A.1. The units of the latter are radians per linear unit, while for the
discrete-space transform, the units are radians. Moreover, the complex exponential

notation for the independent variables of Equation A.7 is used because the spectrum of a

discrete function is periodic with period 2m. It can be shown that, if f(m,n) is a discrete
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version of f(x,y), Equation A.7 is a periodic replication of the continuous spectrum

F(o,v).

A.4 The Two-dimensional Discrete Fourier Transform
In addition to a discrete version of a spatial signal, it is desirable to also have a
sampled version of the corresponding spectrum. It can be shown that such a

representation is obtained if periodicity of the discrete space function is assumed. Under

this assumption, the two-dimensional discrete Fourier transform (2-D DFT) of f (m,n) is

given by
_ M—l%l _jh(%,%)
F(u,v)— th(m,n)e . (A.8)
m=0n=0

There are two interpretations of this transform. First, it is a discretely sampled version of

the spectrum of f (m,n), given by Equation A.7. Or, it is the array of two-dimensional

discrete Fourier series coefficients for the rectangularly periodic function f(m.n), with
spatial periods M and N, of which f (m,n) constitutes one period. The relation between

these two functions is
f(m.n)= > > f(m+pM,n+qN). (A.9)

The inverse 2-D DFT is given by

] MoIN-l jz,{&“_")

f(m,n)=WZZF(u,v)e MON

u=0 v=0

(A.10)
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Because the two-dimensional Fourier kernel is separable. Equation A.8 can be

decomposed into

Mol O N —j2x2
Flu,v)=>e M Y f(m,n)e N (A.11)
m=0 n=0

Under this decomposition, each column of f(m,n) is transformed. then each row is

transformed, or vice-versa.

A.5 The Fast Fourier Transform

Equations A.8 and A.10 facilitate digital computation of the forward and inverse
Fourier transforms of a two-dimensional function. However, even if the simple
decomposition of Equation A.11 is utilised, application of these formulae entails a great
deal of numerical computation. The fast Fourier transform (FFT) is a powerful
factorisation algorithm that significantly reduces the number of computations required.
To illustrate the algorithm, which was used extensively in this research. the factorisation
will be performed on the one-dimensional DFT, and then the generalisation to the 2-D
DFT will be made.

The form of the one-dimensional DFT (1-D DFT) is essentially identical to that of

Equation A.8, just with one less dimension:

N-1 _jﬂ
F(u)=Y f(n)e "~ . (A.12)

n=0

One particular FFT algorithm, the radix-2 decimation-in-time algorithm, hinges on the

requirement that the number of samples in f(n), N, is an integer power of 2, i.e.,
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N=2%. (A.13)
Using this relation, N is set equal to 2M for the first decomposition of Equation A.12.
The first step of the decomposition is accomplished by expanding the series and then

grouping together the even and odd index terms

M-I _j2mnu
Flu)= ) f(n)e M
n=0
M-I _;3xou ;T8 M- _;2znu
=Y f(2n)e ™ 4™ Y fen—-1) ™ (A.14)
n=0 n=0

The result is two transforms, each of length M rather than one transform of length 2M.
The even terms are given by the first summation term, while the odd terms are contained

in the second term. The decomposition is then performed on each of the two series of

Equation A.14, resulting in four transforms, each of length 1\% . This process is repeated

until only % transforms of length 2 need be performed. By using this algorithm. the

number of complex computations is reduced from N* to Nlog, N, which represents
considerable savings for large signals (Gonzalez and Woods, 1993). The extension of the
FFT to two-dimensions is simply a matter of using the 1-D FFT algorithm on the

decomposed form of the 2-D DFT given by Equation A.11.

A.6 Two-dimensional Discrete Fourier Transform Theorems
The only 2-D DFT theorem exploited during the course of this research was the

convolution theorem. Simply stated, the convolution of two functions in the spatial
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domain is equivalent to their muitiplication in the frequency domain. The benefit of this
theorem is reaped when using a digital filter, h(m,n), with large support. Substantial
computational savings are realised by utilising the FFT algorithm performing the filtering
in the frequency domain. The theorem is given by

f(m,n)**h(m,n) < F(u,v)H(u,v) . (A.15)
Use is made of this theorem in conjunction with the 2-D FFT for homomorphic filtering

in Chapters Six and Seven.

A.7 Multi-resolution Representation and the Wavelet Transform

As mentioned at the outset of this appendix, the Fourier transform provides an
alternate representation of a function on the basis of complex sinusoids. The drawback of
using this transform is the basis functions are infinite in duration, and are not well suited
for analysing transient phenomena such as edges in imagery (Rioul and Vetterli. 1991;
Bruce er al., 1996). While the basis functions of the wavelet transform (WT) are also
oscillatory, they are of shorter duration. Moreover, the WT provides a representation of a
function utilising several scaled versions of the basis functions, the wavelets. The benefit
of this approach is that both long-period phenomena (global trends in an image) as well
as short-period trends (image details) are captured by the WT. This characteristic is
exploited for discontinuity detection in Chapter Six.

The idea of a multiple-scale or multiple-resolution representation of an image is
closely related to the function of the wavelet transform. A scale space representation

provides views of an image at different scales, and is formed by filtering the image with
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operators of increasing support (scale). At low scales, the image details are captured with
narrow filters, while the broad filters at larger scales contain the global trends of the
signal. While scale space theory allows for a continuous scaling parameter, it is usually
discretized into integer powers of two for image analysis. The scales of any two
successive levels of a scale space representation thus differ by a power of two. In terms
of dimensions, a multi-scale image representation can be implemented in one of two
ways: pyramidal and parallel (Schenk, 1995). In the parallel implementation, the image
dimensions at each scale are the same as those of the original image. In the pyramidal
representation, decimation is performed after the filtering, thereby reducing the
dimensions by a factor of two in each direction (x and y). A Gaussian pyramid is a multi-
resolution representation of an image comprised of low pass filtered and decimated
versions of the original image (Burt, 1984). The name stems from the use of a Gaussian
kernel as an approximation to the impulse response of an ideal low pass filter.

The two-dimensional continuous wavelet (2-D CWT) transform representation of

a function is given by the following integral (Li and Shao, 1993):

Wf(a,rx . T, )= ﬁl _{f(x,y);y'(x —at‘ , 4 _at'v }lxdy , (A.16)
where
Wf (a, T, ‘ty) is the wavelet representation of the function f(x,y),
a is the scale or dilation parameter,
T, T, are the x- and y- translation parameters, respectively,

w(x,y) is the basic wavelet, from which all wavelets are derived.
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x_rx y—‘t}'
(==

J is the wavelet, a translated and dilated version of the basic wavelet.
a a

Note that the scale and translation parameters are real-valued. Equation A.16 can be
written in short form as the convolution of the function and the basic wavelet (Li and
Shao, 1993)
Wtla, 1,1, )=flr, .7, Jerp(-t,.—1,) . (A.17)
The scale parameter is often expressed in terms of powers of two
a=2i (A.18)
where j is real.
The choice of a basis function, the basic wavelet, is very much application-
dependent. The choice is somewhat restricted, though, as a wavelet must satisfy the zero

mean condition

a @

| Juwlx.yhixdy =0 (A.19)

-

A good wavelet has a compact region of support (finite extent) in the spatial domain.
Another property of a good basic wavelet is that it is orthogonal to its translates and
dilates (translated and scaled wavelets).

The first derivative of a Gaussian function is a wavelet based upon the criteria of
Equation A.19 (Li and Shao, 1993). Although this function lacks compact support, for
practical purposes it can be considered to be of finite duration. This wavelet does not
exhibit the orthogonality property, though. Further justification for this choice of basic

wavelet, based upon its suitability for discontinuity detection, is given in Chapter Six.
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The one-dimensional version of the first derivative of a Gaussian function is given

Ifx :
\IJ(X)‘—’% ———;no_e_z(“]

2
Yx
-X —E(c)

=—7==¢ A.20
2 T 0_3 ( )
where the standard deviation, o, is treated as the scale parameter:
o=2. (A.21)

A plot of this basic wavelet and its dilates for various values of the scale parameter is
given in Figure A.1. Note that as the scale parameter, increases, the wavelet width
increases and the maximum amplitude decreases. A major benefit to using the wavelet
transform is the fact that the filter width is matched to the scale. The peaks occur at
x =+o and the only zero crossing is located at x =0. Also note that the curves exhibit

odd symmetry and asymptotically approach zero as x — 0.

0 e—scale 4

-0.30

Figure A.1. One-dimensional First Derivative of a Gaussian Wavelets.
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In two dimensions, there are two basic wavelets corresponding to the derivatives of the

circularly-symmetric Gaussian function taken with respect to the independent variables x

and y

wx(x’y)=§ 21:10—3 e{ng-}

X +¥1]
=X e{ 2 ) (A22)

and

- A5F) (A.23)

These equations represent the wavelets used for edge detection in wrapped phase maps.





