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Figure 1: The 50 input visualizations in our collection, organized into seven purposes ( ■ Individual Reflection, ■ Public
Group Reflection, ■ Public Activity Documentation, ■ Data Discussion, ■ Survey, ■ Planning, and ■ Organizing). Examples are
numbered from 1○— 50○. Browsable version: https://bit.ly/input-Vis. Supplemental material: https://osf.io/bw3gp.

ABSTRACT
We examine input visualizations, visual representations that are
designed to collect (and represent) new data rather than encode

preexisting datasets. Information visualization is commonly used

to reveal insights and stories within existing data. As a result, most

contemporary visualization approaches assume existing datasets as
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the starting point for design, through which that data is mapped to

visual encodings. Meanwhile, the implications of visualizations as

inputs and as data sources have received little attention—despite the

existence of visual and physical examples stretching back centuries.

In this paper, we present a design space of 50 input visualizations

analyzing their visual representation, data, artifact, context, and

input. Based on this, we identify input modalities, purposes of

input visualizations, and a set of design considerations. Finally, we

discuss the relationship between input visualization and traditional

visualization design and suggest opportunities for future research to

better understand these visual representations and their potential.

CCS CONCEPTS
• Human-centered computing → Information visualization.
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1 INTRODUCTION
Information visualization is typically thought of as a set of methods

and approaches for giving visual structure to existing datasets, lever-

aging visual perception to enhance the analysis and interpretation

of data [18]. In most information visualization models, pipelines,

and tools, data serves as the starting point for the design or analysis

process, after which designers, developers, and analysts select visual

mappings to make that data more legible and actionable [18, 22, 30].

Over the past 50 years, a large body of research has successfully

focused on optimizing visual mappings and interactions, creating a

diversity of different visualization genres tailored to unique data,

tasks, audiences, and contexts. Most of these approaches implic-

itly assume that 1) the data (or its characteristics) are known in

advance, 2) the principal goal of the visualization is to reveal trends

and features in the underlying data, and 3) interactions with the

visualizations (filtering, computing new values, etc.) do not alter

the original underlying data.

Yet, a variety of visualization and visualization-like approaches

exist which eschew the “data-first” orthodoxy of the academic infor-

mation visualization community and instead use visualizations as

mechanisms for data input. We define input visualizations—visual
representations that are designed to collect and/or modify new data

rather than encode pre-existing datasets. Notably, input visualiza-

tions are characterized not by their form (which includes a wide

cross-section of common visualization types) or how they are cre-

ated, but instead by their intended use. By emphasizing data input

and modification rather than traditional visualization goals like

perception, exploration, or communication, input visualizations

force a rethinking of the relationship between data and visuals. Rec-

ognizing the potential for visualizations as data inputs also reveals

unexamined use cases for visualization, suggests new interaction

techniques, and highlights opportunities for visualization tools that

support new ways of engaging with data.

Examples of input visualizations include common tools like Doo-

dle [35], which uses a preference matrix as a data input and collec-

tion mechanism, as well as to represent the collected data. Numer-

ous such examples of charts used as a data collection medium exist

in different domains, such as data journalism, civic participation,

time management, and education [35, 55, 66, 68]. In fact, almost all

early examples of external visual representation of information (in-

cluding tally marks, tables, and astronomical diagrams) are arguably

input visualizations according to our definition. Everyday tools like

physical and digital calendars also fit this definition—specifying a

data schema by encoding periods of time using daily, weekly, and

yearly grids, then allowing individuals to define new events using

that structure.

Despite this, most design guidelines in information visualization

recommend first considering the dataset, the user, and the task

and then designing the appropriate visual representations. These

guidelines do not focus on a dataset that remains to be collected

or on a dataset that is collected through a visualization. Input vi-

sualizations invert traditional data encoding and design models,

using visual structures to support the collection of data, the defini-

tion of new visual schemas, and the exploration of possible visual

mappings. As a result, these approaches pose problems for classi-

cal information visualization reference models [18, 22], interaction

taxonomies [61, 143], and design guidelines [30].

In this paper, we provide a first step toward conceptualizing and

reframing discussions on this underconsidered area in information

visualization to make it actionable for the information visualization

community. We do this by both defining the concept and investi-

gating the characteristics of existing input visualizations through a

design space analysis. First, we describe and analyze four case stud-

ies to introduce the concept of input visualizations and motivate

our broader analysis. Next, we describe 50 examples of input visu-

alizations drawn from research, journalism, art, personal projects,

and commercial products (examples are numbered from 1○— 50○).

We analyzed each example with regards to its visual representa-

tion, data, context, artifact, and input. By cross-analyzing these

dimensions we identified seven input modalities and seven input

visualization purposes. Drawing on this analysis, we present con-

siderations for design that illustrate both the potential of input

visualizations and challenges posed by them—discussing visibility

of prior input, scalability, readability, and data processing. Finally,

we highlight research opportunities and discuss the relationship

between input visualizations and traditional visualization norms,

the potential for future input visualizations as sensemaking tools,

and new design methods. We make the following contributions:

• We offer a first definition of input visualization.

• We introduce a design space of input visualizations anchored

in an analysis of 50 diverse examples.We also identify 6 input

modalities and 7 purposes for input visualizations.

• Drawing from the analysis of the design space, we extract a

set of design considerations and outline new opportunities

for research.

2 RELATEDWORK
Information visualizations created to support data input have ap-

peared in multiple domains of human-computer interaction, includ-

ing work on civic participation, community engagement, online

debate, personal reflection, planning, polling, and affinity diagram-

ming. Some examples, including tools like BitPlanner [127] and

Thudt et al.’s physical self-reflection kits [132] (as well as a wide

variety of other participatory physicalizations [37]) rely on phys-

ical construction. Meanwhile, others like Koeman et al.’s urban

voting systems [81], Kriplean et al. [84] and Valkanova et al.’s [137]

web-based polling tools, along with scheduling systems like Frama-

date [45], Doodle [35], and when2meet [140] all involve input via

on-screen visualizations.
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Information visualization research has also examined how visual

marks can serve as interactive controls for interacting with the

data thought the visualization, for editing existing data, and for

authoring new visualizations. Some examples of using visual marks

as interactive controls include approaches like DimpVis [83] and

À Table [112] in which viewers can manipulate marks to navigate

between visualization views and change timespans. “You Draw It”

visualizations in which viewers articulate predictions by drawing

on visualizations [79] have also used input as a way of drawing

attention to data values and encouraging recall.

Similarly, a variety of creative visualization design tools such

as Charticulator [115], Data Illustrator [91], Data Ink [142], and

Lyra [122] support direct graphical input as a way of designing and

placing visual marks to create new visualizations. Yet these tools

generally use input only to author graphical encodings for exist-

ing tabular data, rather than adding new data points themselves.

Approaches like scented widgets [141], meanwhile, place visualiza-

tions directly on top of interactive controls—often for visualizing

distribution of values entered. However, these visualizations have

generally been framed as a way of understanding and facilitating

input, rather than a mechanism for data collection.

Other recent work has examined how direct manipulation in-

teractions like changing or repositioning marks within a visualiza-

tion [120] might support view transitions and visualization editing.

Yet these approaches have mostly treated sketching and manipu-

lation of visual marks as ways of interacting with datasets, not as

mechanisms for data collection.

2.1 Data Input in InfoVis Reference Models
Within visualization, several alternative conceptual models have

also hinted at the potential for visualizations as input mechanisms.

Based on their examination of personal physicalization [132], Thudt

et al. discuss opportunities for visualizations as a means of input—

highlighting approaches that support qualitative data input via

sketching or manual manipulation of attributes like the position,

size, or color of visual marks. Meanwhile, Offenhuber’s charac-

terization of autographic visualization approaches [108] offers an

alternative framework for considering visual representations that

reflect environmental processes and typically lack explicit data

structures or encoding pipelines. Offenhuber contrasts autographic

approaches, which start with a phenomenon and then introduce

physical interventions to reveal visual traces of it, against more

traditional visualization pipelines, which first collect data from a

phenomenon then render that data as visualizations. Like auto-

graphic examples, input visualizations can capture and visualize

information despite the absence of explicit encodings or data struc-

tures, but are explicitly designed as interfaces, relying on human

interaction rather than environmental processes.

To our knowledge, the only information visualization model to

describe data input via visualizations is Jansen & Dragicevic’s inter-
action model for visualizations beyond the desktop [74]. Their model

differentiates concrete rendering pipelines (in which existing data is

rendered as a visual or physical output) from conceptual pipelines
(which describe data and encodings implicit in the visualization but

not implemented by a rendering process). They use this model to

describe two physical input visualizations—DailyStack [131] and

Hunger’s LEGO time trackers [101]—highlighting how interaction

with these visualizations can manifest both physical and virtual

instantiations of new data. Hunger’s process and visual mapping

are also detailed in Huron et al.’s exploration of constructive vi-
sualization [69], a paradigm in which visual representations are

constructed by assembling elements that represent data.

Most other information visualization taxonomies (including those

from Amar et al. [1], Brehmer & Munzner [15], Chi & Riedl [22],

Rubab et al. [118], and Yi et al. [143]) do not cover input at the level

of the data, or do so only tangentially. Interestingly, a few specifi-

cally mention input actions in the context of metadata—including
marking data points [143], creating, deleting, and editing notes as-

sociated with them [54], or annotating visualizations [15]. Dimara

& Perin [31] while examining interaction for data visualization,

come perhaps the closest, mentioning input data action as a way

to “operate on raw data values” including adding data points, cor-

recting data points, and adding metadata. More recently, Dimara

et al. [32] have highlighted the need for “flexible data input” in

visualization tools for decision makers to perform direct actions

on the raw data including collecting, correcting, and annotating.

Although all of these discussions indicate the potential for visualiza-

tions as input mechanisms, the implications and design possibilities

of visualizations that use them remain largely unexamined.

3 CASE STUDIES
To illustrate the potential of input visualizations, we showcase four

case studies (Figure 2) which highlight the breadth and diversity of

existing designs. We examine their common elements and introduce

the motivations and questions that guided our subsequent analyses.

3.1 The Death of a Terrorist: A Turning Point?
In 2011, after the killing of Osama Bin Laden, The New York Times
published an interactive visualization titled The Death of a Terrorist:
A Turning Point? [66]. The piece was anchored in an interactive two-
dimensional scatterplot with its y-axis ranging from significant (top)

to insignificant (bottom) and x-axis ranging from negative (left) to

positive (right). The story invited viewers to discuss the importance

of the event by clicking a point in this two-dimensional space and

then authoring a comment. Individual cells in the scatterplot were

then colored based on the number of responses. Subsequent visitors

could hover over these cells to read the comments. During its initial

run, the visualization collected 13,864 comments—all data points

that did not exist when the story launched.

3.2 Doodle
Doodle is an online scheduling tool designed for facilitating meeting

coordination. It allows multiple participants to collect and visualize

schedule availability. The organizer invites people to indicate and

visually compare preferred meeting times in a visual matrix. Each

cell represents one participant’s availability in a given time slot,

color-coded to show blocks where they are (or are not) available.

Users can examine prior respondents’ preferences while entering

their own, helping identify times that work for all attendees.
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Figure 2: The four case studies: The Death of a Terrorist: A Turning Point? by The New York Times 17○ solicited readers’ reflections
on the killing of Osama Bin Laden via interactions with a 2-dimensional scatterplot [66]. Doodle 42○ polls allow groups to
visually negotiate schedules [35]. The Cairn 20○ tabletop used composable physical tokens to collect information about projects
created in a shared makerspace [55]. Polemic Tweet 27○ centered around a stacked bar chart which visualized the labels entered
in participants’ comments [68]. CC BY figure at https://osf.io/bw3gp.

3.3 Cairn
Gourlet & Dassè’s Cairn was a tangible tabletop that enabled data

collection, visualization, and analysis of activity in a shared mak-

erspace [55]. However, in comparison to most other participatory

cases, Cairn leveraged a more complex visual encoding schema.

Using a variety of composable physical tokens and a more com-

plex layout, this physicalization allowed makers to record detailed

information about their work in the shared space—documenting

the type, duration, and form of their projects, as well as qualitative

information about the skills and techniques they learned. This more

complex encoding captured a considerable amount of information

in each visual mark, while simultaneously giving contributors op-

portunities for creative expression as they constructed small “cairns”

out of multiple tokens.

3.4 Polemic Tweet
Similarly, the visual backchannel [36] tool Polemic Tweet [68] used
visualizations to engage users in an evolving discussion around

conference presentations. The Polemic Tweet interface included a

Twitter client augmented with a vertical stacked bar chart. Confer-

ence participants were invited to tweet using a specific grammar

(“++” for agreement, “−−” for disagreement, “==” for reference,

“??” for questions). These tweets then appeared in a vertical list

below the input box and in a stacked bar chart, colored according

to the tags they included. The vertical axis of the visualization cor-

responded to a time window, and bar heights showed the number

of tweets emitted at that particular time slot. Unlike The Death of
a Terrorist, Polemic Tweet’s input mechanisms were not spatially

overlaid with the visualization. However, the two were tightly in-

tegrated and all data visualized in the Polemic Tweet interface was
generated in the same immediate context.

3.5 Case Study Analysis
These four case studies showcase a diversity of physical and virtual

input visualization approaches—including both straightforward ex-

amples and ones that challenge visualization norms. Below, we

deconstruct their common components and describe how they mo-

tivated our subsequent design space analysis. All four case studies

combine visual structures, and an assembly model (the rules

that govern the visualization’s construction) with compatible input

mechanisms in service of a set of high-level tasks.

Visual Structure as Data Schema. The visual structure of an
input visualization not only determines its appearance, but typically

also defines the kinds of data that the system can collect. In contrast

to most traditional visualizations, their data schema is often estab-

lished using visual variables like space, color, and shape (rather

than the other way around). These choices dictate the complexity

of the data that viewers can input, ranging from simple choices

in a grid (Doodle), to continuous and connected inputs (The Death
of a Terrorist), category labels (Polemic Tweet), and complex multi-

variate data (Cairn). This relationship raises a variety of questions,

including—which visual structures lend themselves well to input,

and what types of data can they support? In response, we examine

common visual idioms for input visualizations (Section 5.1) and

characterize the kinds of data (Section 5.2), artifacts (Section 5.3),

and contexts (Section 5.4) with which they align.

Input Mechanisms. Our case studies illustrate a variety of

different input approaches. These include direct manipulation [126]

interactions with on-screen visualizations (The Death of a Terrorist,
Doodle), indirect input via interface elements closely associatedwith

charts (Polemic Tweet), and physical assembly (Cairn). All these case
studies embody an assembly model—defined by Huron et al. as “the

internal model of how the constructing and deconstructing of the

visual representation is carried out.” [69]. In (Doodle), the color

of the cells is updated according to user’s input and in Cairn the

rule is to assemble tokens on a stick to create a cairn that can be

positioned on the table. For The Death of a Terrorist, the cell’s hue
changes according to the numbers of inputs and in Polemic Tweet
every tweet will generate a token that will be stacked on the other

tokens of the same time span. Given this diversity, we ask—what

other kinds of artifacts and input modalities might lend themselves

well to input visualizations? With this in mind, we characterize

properties of input (Section 5.5), identifying three low-level tasks,

and six relevant input modalities.

Why Input Visualizations? All four case studies use input

visualization approaches to solicit opinions, sentiments, and other

data from viewers. In some cases, the representation is used like a

survey tool (The Death of a Terrorist), while in others it supports

back-channel discussion (Polemic Tweet), schedule coordination
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(Doodle), or documentation of fabrication projects (Cairn). But what
other high-level tasks and social contexts typically drive people to

create input visualizations? To address this, we set out to examine

the settings and tasks that existing input visualizations support

and highlight an initial set of seven purposes for input visualiza-

tions (Section 5.6).

4 METHOD
Despite the abundant literature on designing and analyzing visu-

alizations themselves (including widely used textbooks [106]), the

visualization community has no formally accepted methodologies

for exploring and constructing design spaces [71]. Multiple defini-

tions of the concept of a design space have been provided in HCI

based on design rationales [96], constraints [14], or as a conceptual

exploration of ideas [12, 60]. Asmentioned by Beaudouin-Lafon [11]

design spaces can be descriptive, generative, and evaluative. As we
aimed to characterize an uncharted phenomenon, we focused on

the descriptive power of design spaces. Depending on the research

questions and the types of designs contained in a design space, the

dimensions of a design space can be generic and broad [6, 19], more

specific and narrow [51], or a mix of both [85, 125]. In particular, we

were interested in understanding the extent to which this phenom-

enon manifests across various visualization and data types. Thus,

we focused on common foundational dimensions for this domain,

allowing us to compare and contrast our results against existing

visualization norms and framings.

Because input visualization is a new and emerging research area

without a clear definition or distinct boundaries (but for which huge

numbers of examples exist), we focused on curating a scoped set of

examples that showcase diversity rather than providing an exhaus-

tive sample. Similar approaches have been used before in design

space analyses of narrative visualization [125], casual information

visualization [114], and anthropographics [104].

Over the course of our exploration, we collected a set of 50

examples [2, 4, 7, 13, 16, 23, 24, 27, 28, 34, 35, 40, 41, 44, 46, 47, 49, 50,

53, 55, 58, 66–68, 70, 73, 75, 80, 81, 84, 95, 103, 107, 109, 111, 119, 123,

127, 129–135, 137, 139] (Figure 1, Table 1) all of which support data

input or modification via interactions with a visual representation.

Our corpus includes both visualizations and physicalizations, and

draws from academic research, commercial products and services,

design projects, and journalism.When an academic paper presented

a collection of very similar examples [16, 132], we selected the one

example we found to be the most distinct from those already in

our corpus—and excluded the rest to avoid over-sampling from the

same source. Similarly, when faced with many functionally similar

examples (like the vast number of input-oriented spreadsheets with

visual conditional formatting) we included a single examplar with

which we were intimately familiar.

4.1 Concept and Corpus Selection
As we collected examples for our corpus, we encountered a range

of competing definitions of “input” posed by different subsets of the

visualization research community—most of which treat input as a

narrower set of operations that take place on or around visualiza-

tions of existing data. We characterize a few of these perspectives

(and offer our own) below:

Input as Annotation. Input can mean adding metadata to visual-

izations through graphical and text annotations [15, 116], marking

data items of interest [143], and adding notes [54].

Input as Data Editing. Another view on input is editing exist-

ing data points or attributes in a visualization for error correction.

Related approaches include interactive data editing via graphmanip-

ulation [9], tools for creating what-if analyses [63], and interactive

editing of node and edge attributes in node-link diagrams [43].

Input as Collecting and/or Modifying New Data. In contrast, our

focus is on the collection and modification of new data points

or dimensions via visualizations that are specifically designed to

support these input actions. We focus on active data collection that

requires deliberate input by a person (excluding examples such as

activity tracking on smartwatches) and in which the visualization

is visible to the person providing the input (excluding examples

such as customer satisfaction polling systems).

4.2 Collection and Analysis
The four authors (Nathalie, Jordan, Wesley, and Samuel) iteratively

collected, coded, discussed, and curated our corpus of examples

over a two-year period, spanning seven different analysis cycles

and a variety of tools (many of which are arguably input visualiza-

tions themselves). Inspired by Meyer & Dykes [100], we provide

a comprehensive description of our collection and analysis pro-

cess (Figure 3), with additional details and artifacts included in

supplemental material.

Cycle 1: Definition.Wesley and Samuel created a Miro mood

board [93] to identify and collect an initial set of 42 possible ex-

amples. We then narrowed this corpus to a subset of 16 unique

examples in a spreadsheet (Google Sheets) and analyzed them using

an open coding approach [87], formalizing our first set of categories

and design dimensions in an initial codebook. This cycle allowed

us to formalize a definition of input visualization and write a first

workshop paper [72].

Cycle 2: Building corpus and first coding. Jordan joined the

project and expanded the corpus, incorporating community feed-

back from our initial publication. He transferred the existing corpus

to a new Airtable database (which allowed us to embed snapshots

of each example in the table), adding new visualizations and remov-

ing redundant ones, coding based on the previous codebook, and

identifying additional design dimensions.

Cycle 3: Defining final design dimensions. Nathalie joined
the project and exported the entire collection of examples as a set of

cards which allowed us to physically sort and group them. Nathalie,

Wesley, and Samuel used versions of these cards to create affinity

diagrams [90, 94, 113], explore new clusterings, and refine this set

of examples and design space dimensions.

Cycle 4: Coding. Nathalie and Samuel used Airtable to code

the dataset together over the course of several days, iterating until

they reached consensus across all examples and dimensions.

Cycle 5: Dimensionality reduction and data export. Wesley

then extracted the data from Airtable and analyzed it using dimen-

sionality reduction and projection (in Google Colab) to identify

clusters of related examples with similar characteristics. The result-

ing series of 2D plots inspired us to search the corpus for designs
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Figure 3: Overview of our collection and analysis process, including the tools we used during each cycle. See supplemental
material for additional process documentation. CC BY figure at https://osf.io/bw3gp.

with related purposes. Wesley also transformed and pivoted the

data, creating the basis for our final design space (Table 1).

Cycle 6: Identifying purposes. Nathalie, Wesley, and Samuel

sorted and adjusted the visual encoding of the final table in a new

Google Sheet, making final updates to improve the consistency

of the design space coding. To identify purposes for each design

Samuel created a fresh set of paper cards for each project and orga-

nized them on a physical whiteboard. Using these initial clusters

as a starting point, Wesley plotted the same data digitally using

Tableau, organizing the examples according to their synchronic-

ity and number of users. Nathalie and Samuel then recreated this

schema on Miro with digital cards, which they and Wesley used to

finalize the coding of both high-level tasks and design purposes.

Cycle 7: Adding further examples.After submitting the paper

for review to IEEE VIS’23 and receiving feedback, Nathalie and

Samuel added new examples suggested by reviewers and coded an

additional set of input visualizations bringing the final corpus to

50 unique examples. This allowed us to broaden our findings and

include more diverse visualization idioms and tasks.

In summary, we constructed the design space via three main pro-

cesses: collecting, coding, and organizing. We focused on collecting
examples from a diversity of sources including personal sampling

and curation of design examples [57] (from blog posts, newspapers,

commercial products and services, social networks, and research pa-

pers), social elicitation (discussing the topic at conferences among

our peers), and reviewer suggestions. We coded and organized the

design space dimensions through an iterative process, adapting or

using new tools when we felt limited by existing ones.

Our resulting corpus represents a descriptive and cohesive over-

view of the phenomenon of input visualization, rather than a com-

prehensive one. While diverse, this final collection represents only

a fraction of the input visualizations that exist. Instead, our corpus

and design space demonstrate the existence, richness, and potential

of input visualizations across a range of domains.

5 DESIGN SPACE FINDINGS
We analyzed all 50 examples (Figure 1, Table 1) with respect to their

visual representation, data, artifact, context, and input, while also

grouping them to highlight purposes of designs that share similar

characteristics. Additional information on all examples is available

both in the supplemental material (https://osf.io/bw3gp) and on the

paper’s browsable companion website (https://bit.ly/input-Vis). All

numbered references to examples ( 1○— 50○) in the text are clickable

links to those examples’ pages on the companion site.

5.1 Visual Representation
The input visualizations in our corpus are not limited to one type

of representation and span many visualization idioms (such as bar

charts, scatter plots, and network diagrams). Multiple examples

consist of a mix of idioms, emphasizing the degree of customization

possible in the design of the input visualizations.

Our corpus includes both visualizations (23/50) and physicaliza-

tions (23/50) indicating that input visualization have been created

in both domains. Physicalizations labeled with P* involve drawing

on paper or other surfaces (including Observe, Collect, Draw! 5○,

Measuring the Universe 16○ 𝐹𝑖𝑔. 4
, and The Polish System 48○) and

thus share some characteristics of both virtual and physical exam-

ples. Daily Stack 38○ 𝐹𝑖𝑔. 4
, Bit Planner 41○, Sandscape 45○ and Affinity

Lens 49○ are hybrid systems that use both a digital and a physical

data representation.

Visualization idioms [106] describe the type of visual represen-

tation(s) used in each example. The collection contains numer-

ous examples of bar charts (21/50), matrices (11/50), and time-

lines (8/50). Other idioms included heatmaps (5/50), maps (4/50),

bubble charts (4/50), dot plots (3/50), scatter plots (3/50), network

diagrams (2/50), affinity diagrams (1/50), and parallel coordinates

plots (1/50). We also categorized several (5/50) visual represen-

tations (including Observe, Collect, Draw! 5○ and Measuring the
Universe 16○) as custom idioms when their visual mapping did not

follow existing conventions.

A number of examples incorporated combinations of multiple

idioms (16/50). For instance, Doodle 42○ 𝐹𝑖𝑔. 4
consists of a time-

line visualization in combination with a matrix. Several of these

combinations also involved nested idioms that incorporate one

        Doodle42 Stress Inventory3

Measuring the Universe16 Daily Stack38
Drawing on Paper Hybrid Physical/Virtual

Stacked Bars + MatrixTimeline + Matrix

Figure 4: Examples—visual representations and idioms.
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Table 1: Design space coding of our 50 examples organized by ■Visual Representation, ■Data, ■Artifact, ■Context, and ■ Input.
Purposes in the first column (Individual Reflection, Public Group Reflection, Public Activity Documentation, Data Discussion,
Survey, Planning, and Organizing) gather examples with similar high-level tasks, numbers of participants, synchronicity of
input, data visibility at input time, and data types. A browsable index of all examples is available at: https://bit.ly/input-Vis
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Polling Personal Tracking 13+ Dimensions

Figure 5: Examples—data semantics and dimensions.

design within another. For example, Stress Inventory 3○ 𝐹𝑖𝑔. 4
and

Cairn 20○ both use stacked bar charts embedded within a matrix.

5.2 Data
We found examples of input visualization designs that support

larger numbers of data dimensions (as many as 17) as well as large

numbers of data points (up to hundreds of thousands), with some

designs potentially supporting even more. However, most exam-

ples focused on a few dimensions and just tens or hundreds of

data points. Different data types, including ordinal, categorical,

quantitative, and text data, were all widespread. The input data

semantics—which describe the genres of data that can be input via

a visualization—were also diverse, although subjective judgments

and activity tracking were especially common.

A large number of examples allowed participants to input subjec-

tive judgements (30/50) such as opinions, preferences, and feelings.

These examples often involved polling (such as Consider.It 12○ 𝐹𝑖𝑔. 5
,

MoMA Poll 14○, and Twitter Poll 32○) or personal tracking (such as

Stress Inventory 3○, and Every Day Calendar 8○ 𝐹𝑖𝑔. 5
). Other genres

of data included time periods (13/50), which were often used in

combination with activity (11/50) for time management purposes

(as in LEGO Time Tracking 37○, Personal Apple Calendar 39○, and Bit
Planner 41○). Other categories included data about people (8/50) (like

Measuring the Universe 16○ and Data Badges 24○) which included de-

mographics or social relationships, and spatial data (6/50) whichwas

often collected on maps (like Self Reflection Physicalization 1○ and

Plant Watering Tracker 22○).

The number of data dimensions that participants could input

varied widely across our examples, with (11/50) supporting just

one dimension and others supporting as many as 17. When data

was input in sequence or in several rounds (as with Polylog 26○ or

Kahoot 35○) we counted the number of dimensions possible in a

single round. Examples marked with an asterisk—like the Auto
Mileage Spreadsheet 2○ (17*) and Cairn 20○ (13*)

𝐹𝑖𝑔. 5
— could also

be used to input even more dimensions. We observed no clear

difference in the number or type of data dimensions between the

physicalizations and visualizations.

Lastly, we examined the low level data types [106] that partici-

pants could input. The examples in our collection supported input

of ordinal (38/50), categorical (35/50), quantitative (19/50), and text

(18/50) data. While we coded the data attributes that could be input

by participants, in some examples the input data differs from the

output the system produces. For instance, timestamps are often au-

tomatically recorded and visualized but not explicitly input by the

participant (as in Tea Brewing Tracker 21○ and Bubble TV 28○). Simi-

larly, categorical and quantitative data is often aggregated before

being visualized (as in Visualizing Mill Road 31○ or Twitter Poll 32○).

        Let’s Play with Data10 Auto Mileage Spreadsheet2

Plant Watering Tracker22 MoMA Poll14
Public Device One-O� Physicalization

Generalizeable SoftwarePhysicalization Toolkit

Figure 6: Examples—artifact types and generalizability.

5.3 Artifact
The artifacts in our collection include visualizations on a variety

of display types and physicalizations made out of a diverse set

of building materials, as well as hybrid systems. While some are

highly customized artifacts intended for a single purpose, a range

of commercial products and toolkits also allow people to author

their own input visualizations and physicalizations.

The visualizations spanned a mix of desktop devices (18/50),

mobile devices (16/50), projectors (4/50), e-paper displays (2/50),

and TVs (1/50). While mobile and desktop devices typically cor-

responded with individual use, this was not always the case. For

instance, the PlantWatering Tracker 22○ 𝐹𝑖𝑔. 6
) was shown on a tablet,

but was still used as a public display. The physicalizations, mean-

while, involved many different materials including paper, wood,

plastic, gum, sand, fabric, chalk, magnets, beads, string, yarn, nails,

liquid, glass, and LEGO bricks. Our collection also contains multi-

ple instances of visualizations on paper, including examples where

participants enter data by writing or drawing with pens (5/50) or

by adding stickers (2/50).

Next, we coded whether each example allowed viewers or de-

signers to create new input visualizations. One group of examples

allowed no authoring (21/50) and were designed to be used for only

one purpose (such as theMoMA Poll 14○ 𝐹𝑖𝑔. 6
). Another group were

parametric templates (23/50), which allowed viewers to change the

labels and dimensions (as with Doodle 42○), but not the visual en-

coding or inputs. More general toolkits (6/50) provided building

blocks for creating new input visualizations with custom displays

and inputs. These included bespoke physicalization toolkits (like

Self Reflection Physicalization 1○ and Let’s Play With Data 10○ 𝐹𝑖𝑔. 6
)

as well as widely accessible commercial tools like Microsoft Ex-

cel 2○ 𝐹𝑖𝑔. 6
, where conditional formatting, scripting, and charting

tools can be readily used to visualize live data as it is being entered.

These more general tools provide opportunities for the creation of

more kinds of visualizations adapted to specific uses.

5.4 Context
Our examples support various timelines of use, ranging from min-

utes to months (or longer). They also facilitate diverse numbers

of participants, from individual users to hundreds or thousands

of people. Many come from areas that are underrepresented in
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Figure 7: Examples—contexts and time frames.

information visualization research, like personal tracking, time

management, and civic participation.

Our collection includes (self-)tracking (17/50) and time man-

agement (6/50) tools for both individuals and groups. Other ex-

amples are designed to support civic participation (5/50), delib-

eration (5/50), and politics (5/50). Further clusters address edu-

cation (8/50), art (6/50), and entertainment (5/50), as well as me-

dia (3/50), social networks (3/50), research (3/50), health (2/50), and

urban planning (1/50).

Our examples also span both individual and group use cases,

ranging from single user artifacts to visualizations intended to

support thousand of participants (or more). Those with the largest

numbers of participants included both physicalizations (likeMoMA
Poll 14○ and Measuring the Universe 16○, each with numbers in the

thousands) and visualizations (like The Death of a Terrorist 17○ with

13,864 participants or Twitter Poll 32○ which can scale to millions).

Additionally, we categorized each example’s input time frame—

the duration over which inputs can be registered. While some in-

stances handle inputs over just minutes (7/50) or hours (15/50),

many can continue to accept data over the course of days (7/50),

weeks (10/50), or months (9/50). Many of the examples with shorter

time frames (likeDot Voting 25○ and Polylog 26○ 𝐹𝑖𝑔. 7
) are intended to

be used during rapid activities or live events. Those with timeframes

in the range of weeks (like The Death of a Terrorist 17○ and Visualiz-
ing Mill Road 31○ 𝐹𝑖𝑔. 7

) or months (like the MoMA Poll 14○ and The
Happy Show 15○) were often associated with ongoing events like

exhibitions or related to ongoing news. Other examples (especially

planning and time management tools like LEGO Time Tracking 37○,

Daily Stack 38○, and Planning Fiche T 40○ 𝐹𝑖𝑔. 7
) were typically de-

signed to work indefinitely (8/50).

5.5 Input
We identified examples that supported a variety of high- and low-

level tasks, but observed a tendency towards designs that collect

data via additive interactions. Input modalities varied more widely,

although physicalizations typically relied on embodied interactions

with data elements while visualizations incorporated a wider range

of mediated and indirect input approaches.

We categorized all the examples into three non-exclusive high-

level tasks (collecting, sorting, and planning) that describe the pri-

mary goal of the visualizations. Collecting (36/50) involves input

visualizations that are designed to primarily track and collect new

data points (as in I/O Bits Streak Tracker 7○ or Feedback Frames 33○).

Planning (7/50) involves scheduling future events by inputting

data about upcoming activities (as in Personal Apple Calendar 39○ or

        Data Strings11 Bit Planner41

Sandscape45 The Happy Show15
Organizing Removing

Co-located + DistributedAsynchronous

Figure 8: Examples—input tasks and activities.

Bit Planner 41○). Organizing (8/50) involves categorizing or sort-

ing existing content instead of collecting new data (as in Sand-
scape 45○ 𝐹𝑖𝑔. 8

or Alignment Chart Maker 47○).

We also identified possible low-level input data actions [31, 74]

that can be performed with each input visualization, including

adding, modifying, and removing data records. We coded all of the

actions that are explicitly supported by each tool. However, for

many (particularly the physicalizations) additional operations may

also be possible. All but one of the examples allow adding—the

exception being Sandscape 45○, which relies on modifying and re-

configuring existing sand. A group of examples (19/50) exclusively

support adding, while most of the remainder (25/50) support a va-

riety of interactions including adding, modifying, and removing.

That said, the unique designs of individual visualizations can sub-

stantially change the character of a given interaction—as seen in

The Happy Show 15○ 𝐹𝑖𝑔. 8
where participants register new votes by

subtractively removing gumballs from pre-filled tubes.

We also analyzed the locality and synchronization of input for

visualizations that support multiple participants (but not for those

intended for a single user). Synchronous data input (21/50) (in

examples like Kahoot 35○ or Planning Fiche T 40○) allows multiple

participants to input data and see results simultaneously. This con-

trasts with asynchronous input (13/50) in which participants’ inputs

are added in larger discrete chunks (Doodle 42○) or where multiple

simultaneous inputs may not be possible (Data Strings 11○ 𝐹𝑖𝑔. 8
).

Co-located data input (26/50) occurs at a shared physical location

(as in Participatory Matrix 29○ and Edo 23○ ) whereas distributed data

input (11/50) can occur across many different locations (as in The
Death of a Terrorist 17○ or Twitter Poll 32○). Some examples, like the hy-

brid Bit Planner 41○ system
𝐹𝑖𝑔. 8

and the Polemic Tweet 27○ platform

(which supports both remote and in-person conference participants)

can be used in both co-located and distributed modes.

Finally, most of our examples (44/50) keep any existing data

visible during data input. However, a small number (6/50) of tools

(like Visualizing Mill Road 31○ and Twitter Poll 32○) do not reveal any

data until after a participant has successfully entered new data—

typically to keep that information from influencing their responses.

5.5.1 Input Modalities. We identified six high-level input modali-

ties used across the set of visualizations in our corpus. These modal-

ities correspond to different high-level modes of interaction that

lend themselves to different visual representations, types of data,
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Figure 9: The six input modalities, with input data repre-
sented in pink. Virtual and physical variants of all input
modalities are possible. CC BY figure at https://osf.io/bw3gp.

and input strategies. While the boundaries between these modali-

ties are permeable (for example, versions of all of these modalities

could be created using tokens), they highlight design opportunities

as well as areas for future research.

Manipulating Tokens (24/50). These visualizations use to-

kens [69] each of which usually corresponds 1-to-1 with a row

in the dataset (making most of them unit visualizations). Tokens

can be digital (as in Tier List Maker 46○) or physical (as in LEGO
Time Tracking 37○). Interactions with tokens are often additive (as

in most of the voting systems in our collection), but can also be

subtractive (as in examples like The Happy Show 15○ where the to-

kens are taken away by participants as a souvenir), and can rely

either on tokens created by the participants (as in Stress Inven-
tory 3○ where the token creation is part of the process) or tokens

defined by the visualization’s creators. Placing tokens provides a

mechanism for inputting data using semantically-defined layouts,

similar to token+constraint [136] systems in tangible interaction—

where physical objects that represent digital information are placed

in confining regions. Axis-based layouts involve positioning tokens

on an axis to construct visualizations like bar charts (like LEGO
Time Tracking 37○ andDaily Stack 38○) or scatter plots (likeAlignment
Chart Maker 47○). Other token-based systems include matrix-based

(like Planning Fiche T 40○ and Bit Planner 41○) or pile-based (like Dot
Voting 25○ or Polylog 26○) variants where tokens are placed into piles

that represent different categories. Stacked or linked tokens (like

those in LEGO Time Tracking 37○) are often more readily countable,

while token systems that rely on containers that are filled up or

emptied with tokens to create a visual representation (like MoMA
Poll 14○ and The Happy Show 15○) are more difficult to count.

Interacting with Controls (20/50). Another large class of in-
put visualizations in our sample support input by manipulating

interface controls—typically either physical or digital instantiations

of standard WIMP interface widgets like buttons, sliders, or menus.

These include desktop and mobile applications that support voting

and other inputs via virtual sliders (Consider.It 12○) or buttons (Bub-
ble TV 28○ and Kahoot 35○). Physical installations like Visualizing
Mill Road 31○, meanwhile, use tactile buttons and other inputs to

support input in civic spaces. One common input pattern often

used in polling and rating systems (including Polylog 26○, Visualiz-
ing Mill Road 31○, Twitter Poll 32○, and Drip By Tweet 19○) involved

selecting inputs from a set of pre-defined options displayed near

the visualization—but without touching the visual marks directly.

Authoring Words (16/50).Many of the examples we examined

allowed people to input text data, either by typing or writing. While

text input is quite expressive, we found few examples that relied

on it exclusively—probably because free-text input is less likely to

result in structured tabular data that is readily visualized. Instead,

examples in our collection typically relied on text entry for labeling

data points (as with the Tea Brewing Tracker 21○ orWedding Plan-
ner 43○) or introducing comments alongside other more structured

quantitative data inputs (as in Polemic Tweet 27○).

DrawingMarks (6/50).Another set of visualizations used draw-
ing tools to support the creation of new expressive shapes and

marks. These include visualization templates like those in Observe,
Collect, Draw! 5○ which encourage data collection via both struc-

tured and free-form paper sketching. This approach is often used

to encode expressive, uncertain, or qualitative data using artistic

media. Many of these examples use a “coloring book”metaphor com-

mon in bullet journaling [5], where viewers input data by adding

color either manually (as in Observe, Collect, Draw! 5○ and The Pol-
ish System 48○) or digitally (as in Trackly 6○) to predefined shapes.

Other examples like the Plant Watering Tracker 22○ rely on more

limited forms of drawing, allowing people to make simple marks

on different image substrates.

Forming Materials (4/50). Some examples also extend the

notion of drawing into 3D space, using physical materials like

sand (Sandscape 45○) and string (Knitting City Council 4○ and Data
Strings 11○) to support data input. In our corpus, all of the examples

of formative input are physical. However, these manipulations are

also possible in virtual spaces, where they might sit alongside ex-

isting 3D modeling approaches and input techniques for scientific

and medical visualization.

Interacting with the Body (1/50). Finally, we encountered a

single example (MyPosition 13○) which takes the body position of

viewers as input, allowing viewers to register votes by standing

in front of a part of the visualization and changing their pose.

While relatively unexamined thus far, the huge expressive range

of human poses and movement (including hand, face, and body

gestures) suggests this area is ripe for future experimentation.

5.6 Purposes of Input Visualizations
We identified seven purposes for input visualizations (Figure 10)

based on common characteristics we observed across our exam-

ples. These purposes highlight the various objectives and scenarios

that the input visualizations in our collection have been used for:

Individual Reflection, Public Group Reflection, Public Activity Doc-

umentation, Data Discussion, Survey, Planning, and Organizing.

We identified these purposes by clustering the examples based on

1) the high-level task they support, 2) the number of participants, 3)

whether theymake existing data visible during input, 4) if they oper-

ate synchronously or asynchronously, and 5) the types of data they

incorporate. (For additional details see our supplemental material.)
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Figure 10: Seven Purposes of input visualizations: ■ Individ-
ual Reflection, ■ Public Group Reflection, ■ Public Activity
Documentation, ■ Data Discussion, ■ Survey, ■ Planning,
and ■ Organizing. CC BY figure at https://osf.io/bw3gp.

Individual Reflection focuses on personal data collection by an

individual to support self-knowledge. These include tools for cap-

turing subjective judgments (Trackly 6○), activities (I/O Bits Streak
Tracker 7○), and data about people (Observe, Collect, Draw! 5○).

Public Group Reflection examples like Consider.It 12○ and The
Death of a Terrorist 17○ allow multiple people to collectively reflect

on a topic. The data collection process is asynchronous and focuses

on gathering subjective judgements like sentiments, opinions, or

shared observations.

Public Activity Documentation examples like Cairn 20○ or the

Plant Watering Tracker 22○ document ongoing group activities. The

data collection process is synchronous and focuses on accumulating

time and activity data.

Data Discussion examples such as Dot Voting 25○ and Polemic
Tweet 27○ operate synchronously and allow ongoing collective dis-

cussions mediated by the input visualization.

Survey examples including Visualizing Mill Road 31○ and Feed-
back Frames 33○ aim to collect data from a group of people. The

existing data is hidden during input and only shown afterwards,

reducing the likelihood that prior entries will influence the data

currently being collected.

Planning examples (including individual examples like LEGO
Time Tracking 37○ or Personal Apple Calendar 39○ and group tools

like Bit Planner 41○ or Doodle 42○) often bring an explicit focus on

time and logistics—helping people make sense of ongoing time use,

develop plans, and forecast future events.

Organizing examples focus on sorting and categorizing, often

allowing viewers to change data points, attributes, or even data

dimensions. For example, Tier List Maker 46○ and Alignment Chart
Maker 47○ provide frameworks for sorting and ranking arbitrary

sets of images or concepts, while You Name It 44○ focuses on iden-

tifying design patterns by sorting cards generated from the data

physicalization list [37].

While these purposes capture common themes and characteris-

tics shared by sets of examples in our corpus, they are not mutually

exclusive. In fact, individual artifacts might still share aspects of

more than one purpose or shift between purposes over time depend-

ing on how they are used. For example, the Tea Brewing Tracker 21○—

which was used both individually and by a couple—illustrates a

continuum between Individual Reflection and Public Activity Docu-

mentation. Similarly, while city councillor Sue Montgomery created

Knitting City Council 4○ as an Individual Reflection piece, it doc-

uments the collective activity of a larger group and was posted

later publicly on social media, encouraging broader discussion and

Public Group Reflection.

6 CONSIDERATIONS WHEN DESIGNING
INPUT VISUALIZATIONS

Our design space and reflections on our corpus of examples sug-

gest a variety of design considerations that creators of new input

visualizations may need to consider, and that researchers may wish

to further investigate.

6.1 How to Deal With the Dynamic Nature of
Input Visualizations?

All input visualizations are dynamic by default and need both an

assembly model [69] and an approach to deal with dynamic data.

This means that input visualizations can suffer from the same kinds

of scaling pressures faced by other visualizations of dynamic or

real-time data [26, 102]. The exact quantity, scope, and nature of the

data that will be collected with an input visualization is often un-

known at the time it is created. Both the number of participants
and the input time frame (Sec. 5.4) can influence the amount of

data that will be collected, with larger amounts of data causing

cluttering, reducing readability, or exhausting the availability of to-

kens and other input elements. A variety of strategies can be called

upon to deal with these challenges, including using dynamic visual

mappings, aggregating or binning data, limiting the amount of data

a visualization can show, or introducing explicit maintenance or

cleanup mechanisms.

Binning and aggregation approaches involve summarizing and

potentially separating the data into intervals. For example, The
Death of a Terrorist 17○ uses discrete bins in a grid to aggregate

inputs, allowing the visualization to scale to many thousands of

responses. Similarly, visualizations like Twitter Poll 32○ and Google
Star Rating 9○ can aggregate data and scale their visual marks to

accommodate practically unlimited numbers of inputs.

However, when it is important to see individual contributions,

an aggregation approach may not be suitable. This can be the case

for group Planning systems that require the visibility of individu-

als’ availabilities, as well as for Data Discussion and Public Group

Reflection tools that aim to foreground individual participants’

opinions. Some input visualizations solve this problem by using

dynamic visual mappings or adaptive scales that show a limited

amount of data to reduce clutter while preserving detail. For in-

stance, marks in the Plant Watering Tracker 22○ (Public Activity

Documentation) gradually fade and disappear, while tokens in Bub-
ble TV 28○ (Data Discussion) shrink over time using a metaphor of

visual sedimentation [71]. The subtractive approach used in The
Happy Show 15○ (Public Group Reflection) has a similar effect, with

participants removing physical tokens from the bars and reducing

visual cluttering over time.
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Scalability concerns are perhaps biggest for physicalizations
(Sec. 5.1), where common visualization approaches like increas-

ing the display size and resizing marks can be much more cum-

bersome. Physicalizations like Mindworks 18○, MoMA Poll 14○, The
Happy Show 15○, and Cairn 20○ require routine maintenance to deal

with dynamic data, including physical restocking of input materi-

als and manual removal of elements when the view becomes too

cluttered. Scaling issues can also take the reverse form when input

visualizations collect less data than expected. For example in Edo 23○,

Sauvé et al. [123] reported that because the canvas of their physi-

calization was larger than the amount of data that was ultimately

input, the resulting visuals were less striking.

Consideration: Keeping track of the data while reducing clutter
can be a challenge, particularly for Data Discussion, Public Activity

Documentation, and Public Group Reflection visualizations where

data quantities and distributions may be hard to anticipate. Design-

ers creating input visualizations with these properties need to think

critically about both the cost and usability of their designs across a

range of usage scenarios and consider strategies for dealing with

too much data. Potential strategies include dynamic visual mapping,

aggregation, binning, limiting the data shown, and incorporating ex-

plicit maintenance. Designers creating input visualizations need to

weigh factors like the anticipated amount of data (number of par-
ticipants/input time frame), the target technology/material,
visual representation, and purpose.

6.2 How do Design Choices Influence
the Data People will Input?

The experience of entering data into a visualization is heavily

shaped by initial design choices, including the supported input
modalities, whether existing data is visible during input, and
the overall visual representation.

For example, whether or not existing data is visible during
input (Sec. 5.5) can have an impact on subsequent data collection.

Survey-style designs, where prior data is only revealed after an

input is completed, reduce the possibility that existing data will

influence the new values. These approaches have the potential to

help mitigate bias, including anchoring [48] and conformity [3]

effects, in both individual and group settings. Depending on the

input time frame (Sec. 5.4) these reveals can happen immediately

after the input (Twitter Poll 32○), after a voting period (Kahoot 35○), or

after a longer data collection period—as in Visualizing Mill Road 31○,

where the results were painted onto the sidewalk the following

day. Hiding data during input may be desirable in cases where

bias due to the existing data is a source of concern, while making

it visible may benefit social or reflective applications. The mate-

rial constraints of physicalizations often make hiding data more

challenging—however approaches like Feedback Frames 33○ high-

light the potential of simple hide-and-reveal interactions.

On the other hand, Public Group Reflection designs often ex-

plicitly choose to surface prior data up front to provide context

and create a sense of social engagement or to support reasoning

based on prior responses. However, this means that each data input

reflects a different state of the visualization, and the values are not

comparable in the same way. Instead, these visualizations tend to

serve as collective social artifacts which evolve over time.

Similarly, the choice of input modality (Sec. 5.5.1) can influ-

ence the character of the data collected. Previous work on survey

design has investigated how the visual design and layout of surveys

can influence participants’ answers [128]. For example, the pres-

ence of tick marks in sliders and visual analogue scales impacts the

responses that people give [97]. Likewise, the data schema of an in-

put visualization—including data attributes, category groups, scales,

and bounds—will almost certainly prime participants, impacting

the data that is collected. Setting these can be challenging, however,

as the real distributions of values, outliers, and in some cases even

data dimensions might be unknown until after the visualization

has been deployed.

Consideration: The character of the data collected via an input

visualization will differ depending on various aspects of its design.

Identifying the purpose (Sec. 5.6) the input visualization will serve

can be helpful when making decisions about data visibility, input

modalities, and the intended character of the data to be collected.

6.3 How to Balance Readability
and Freedom of Input?

An input visualization’s choice of visual representations (Sec. 5.1)
and input modalities (Sec. 5.5) can enforce constraints and pro-

vide viewers with different degrees of freedom to change the visual

representation. Flexible approaches can allow greater expressivity—

as in our Dot Voting 25○ example (Public Group Reflection) where

participants rate sustainable development goals by positioning dots

on a matrix. Here, the open canvas allows participants to express

enthusiasm, create groupings, and even split votes across categories,

but makes extracting and comparing category counts more chal-

lenging. Other systems, such as Feedback Frames 33○ constrain the

position of the tokens, resulting in more countable and comparable

results, increasing readability of the visual representation.

We find that Organizing input visualizations tend to provide

more freedom to change the visual representation and influence

the form of the data—often by allowing viewers to not only add

new data points but also new data dimensions or attributes. For

instance, the Wedding Planner 43○ example allows participants to

not only add or remove guests, but also add new dimensions in the

dataset (for instance, by drawing new tables on the canvas or adding

social interests to the tokens representing guests). Similarly,Affinity
Lens 49○ provides a great degree of freedom when organizing and

grouping cards. Survey artifacts (like Twitter Poll 32○, Visualizing
Mill Road 31○, or Citizen Dialogue Kit 36○ ), on the other hand, tend to

be more restricted—ensuring comparable results by asking viewers

to choose from sets of pre-defined options.

While different degrees of freedom when inputting data are

possible with all input modalities (Sec. 5.5), some approaches

lend themselves more to either free or restricted input. In token-

based visualizations, designers can set constraints on the input data

by defining properties of the tokens (as in Cairn 20○) or their position

(as in Participatory Matrix 29○). Similarly, incorporating interface

controls like buttons, sliders, or menus can limit inputs to a pre-

defined set of options (as in Twitter Poll 32○) leading to more uniform

datasets. On the other hand, authoring words, drawing marks, and

forming materials can facilitate more freeform and expressive input

(as in Observe, Collect, Draw! 5○). Combinations of input modalities
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can also be used to leverage the strengths of multiple input types.

For instance, the Tea Brewing Tracker 21○ combines interacting with

controls to input time stamps for a timeline and authoring words

to describe each of the events. Similarly, token-based systems that

allow participants to draw on their tokens can systematize some

input attributes while leaving participants free to define others.

Consideration: Constraining input mechanisms and visual en-

codings can improve the readability of the visual representation and

the consistency of the data, but also limits participants’ freedom

to input more complex and expressive values. While having more

freedom might increase the degree of expression at the data level,

it also leaves space for interpretation or uncertainty.

6.4 How to Support Multiple Inputs?
When examining visualizations that allow individuals to input mul-

tiple data values, we observed two main strategies. Systems like

Polylog 26○ and Kahoot 35○ collect responses sequentially by incor-

porating a sequence of questions or prompts that can be answered

one-by-one to input data. Meanwhile, examples like Cairn 20○ or

Alignment Chart Maker 47○ take a spatial approach, assigning each

response to a new token or spatial position, making it possible for

people to input multiple data values that are distributed across a

space. While sequential approaches are typically realized through

interacting with controls, spatial approaches more often utilize

tokens as an input modality (Sec. 5.5.1). Interestingly, some phys-

ical examples (like Data Strings 11○) also combine these patterns by

leveraging material properties like string tension to create spatial

layouts that need to be completed in a particular sequence.

Consideration: Spatial strategies can create opportunities for

more complex representational systems and input mechanisms

that let participants integrate multiple observations (for example,

creating a cairn by assembling multiple tokens or weaving a string

in a parallel coordinates plot). Meanwhile, sequential approaches

can reduce cognitive load and provide a more directed experience.

6.5 How Hard is it to Get the Data?
Depending on an input visualization’s design, acquiring a tabular or

structured record of the data from an visualization can sometimes

entail considerable additional effort—particularly for physicaliza-
tions (Sec. 5.1). Most physical examples we considered still required

manual measurement or data transcription, and we counted only

three hybrid systems (Daily Stack 38○, Bit Planner 41○, and Affinity
Lens 49○) capable of closing this loop in an automated way. When

designing an input visualization, a designer needs to consider if

having a structured record of the data is important. In some cases,

especially for Public Group Reflection or Data Discussion, the goal

of the input visualization might be primarily to initiate discussion

rather than to obtain a data record or to enable further data pro-

cessing. An example like MoMA Poll 14○, for instance, relies on the

visual impact of filling up a space with tokens, but counting the

exact number of inputs is less important.

Consideration: Exporting data from input visualizations for

processing, storage, or visualization in other tools is still typically

easier for digital visualizations and can entail considerable effort for

physicalizations or any design with particularly free-form input.

7 DISCUSSION
Input visualization is not a new phenomenon but a recognition of

a set of existing patterns both within and adjacent to what we typi-

cally think of as data visualization. Yet considering these examples

as visualizations raises deeper questions about the nature of data

and the ways in which our community has traditionally delineated

its boundaries, while suggesting opportunities for research and new

kinds of data-driven thinking tools. With this in mind, we reflect

on the nature and value of these representation and propose a set

of future research opportunities (RO1-RO8) that highlight ways the

visualization research community might embrace and expand upon

the potential of input visualization.

7.1 Considering the Relationship between
Visualization and Input Visualization

We found it interesting that almost all of the examples of contem-

porary input visualizations we identified come from outside of the

information visualization community. This likely helps explain why

little research has investigated the approach. However, the practical

utility of input visualizations for a wide range of polling, planning,

and thinking tasks suggests that they merit further study by vi-

sualization researchers. Alternatively, one could argue that while

many of our examples may look like visualizations, they are not.

After all, most of these input visualizations do not align neatly with

garden-variety descriptions of visualization, which usually explain

visualization approaches as “visually encoding data to make them

easier to understand”.

Some of the visualization research community’s most beloved

definitions of information visualization incorporate enough gener-

ality to include input visualization approaches, but others leave less

room for them. For example, Card et al.’s definition of visualization

as “the use of interactive visual representations of data to amplify

cognition.” [18], says nothing about where the data comes from and

places the most weight on the more abstract goal of amplifying cog-

nition. On the other hand, Keim et al.’s description of information

visualization as “the communication of abstract data relevant in

terms of action through the use of interactive visual interfaces” [78]

places an emphasis on communication that seems to exclude most

input visualizations. Data collection also does not fit neatly into any

of the three major goals of visualization (presentation, confirmatory

analysis, and exploratory analysis) that Keim et al. identify.

One might also take the position that many of these examples are
visualizations, but that they are trivial ones—and that considering

spreadsheets, calendars, or token voting systems as visualization

tools is reductionist or simply not useful. Yet such an assertion runs

counter to a variety of recent work highlighting the relevance of

spreadsheets [8], bullet journals [5], and other representations as
visualization tools. Moreover, doing so runs the risk of drawing

a boundary around visualization that excludes most of the pre-

industrial history of visualization, as well as a considerable slice of

contemporary work on physicalization [38], infographics [17], and

other visualization-adjacent topics.

Similarly, what constitutes an input visualization is largely a mat-

ter of perspective and context. For example, simple visualizations

like a scented slider widget [141] with bars encoding the values



CHI ’24, May 11–16, 2024, Honolulu, Hawai’i Bressa, et al.

Figure 11: A scented slider showing values entered by prior
users. (Reproduced fromWillett et al. [141])

selected by prior users (Figure 11) could function as an input vi-

sualization if used as a collective voting or preference elicitation

tool. However, when used as a passive indication of past activity

in the context of a larger task, an input visualization framing may

be less relevant. As a result, it is challenging to delineate the set

of input visualizations and non-input visualizations based purely

on their appearance or interactivity, as these distinctions depend

primarily on the visualizations’ context of use. However, the deci-

sion to use a visualization for data input brings a variety of unique

design considerations—including questions about the influence of

design choices on the input data, repeated inputs, and data access

(as detailed in Sec. 6)—that have thus far been largely unconsidered

in the visualization literature.

Part of the challenge of characterizing input visualizations arises

from their position at the intersection of different research domains.

On the one hand, input devices have classically been studied in

HCI [10, 20], while visual structures and visual mapping that repre-

sent data are more an information visualization topic [56, 106, 138]

while physicalization bridges these domains as well as others, like

design and tangible interaction [6, 42, 64]. This intersection sug-

gests a rich set of opportunities for further research including:

RO1 - Understanding how the knowledge produced by the
information visualization community to represent existing
data is applicable to input visualization.
RO2 - Expanding our knowledge of the interactions between
new and existing visualization types, input interactions, and
the complexity of the collected data.
RO3 - Building a more cohesive and cross-disciplinary un-
derstanding of different facets of input visualization including
input modalities, interactions, visual and physical mappings,
and data representations.

7.2 Input Visualizations and the
Meaning(s) of Data

When do we consider data to be data? Does it need be recorded

and encoded in a digital file or tabulated in a structured format?

While some examples of input visualizations do indeed produce

structured and easily-interpretable data, many others—including

systems that rely on unstructured input, physical materials, or

ambiguous encodings—may not. As Jansen and Dragicevic note,

the lack of any underlying data structure can mean that the data

are manifest only in the visual artifact [74], which may or may not

be easily measurable or reproducible. A lack of formalized data

schemas or visual encodings can also mean that critical aspects of

the data may exist only in the relationships between visual marks

or in other intangible aspects of the visual representation and thus

resist precise quantification.

For example, the two axes used in the case study The Death of a
Terrorist 17○ (negative↔positive and not-significant↔significant)

lack absolute values or landmarks, and the significance of individual

points is largely implied by their relationship to those around them.

Physical installations like Let’s Play With Data 10○ or Cairn 20○ in-

troduce further ambiguity. For example, how should we interpret

a mark that intersects both “yes” and “no”? What information, if

any, does an elaborate and intentional token stack (as in Figure 2)

communicate if ordering is not formalized in the instructions? Con-

verting this kind of ambiguous and contextual data into a structured

or tabular format may be challenging or even impossible without

information loss. For example, Thudt et al. reported (when reflect-

ing upon Self Reflection Physicalization 1○) that “[transforming] an

experience directly into a visual and physical manifestation makes

it more difficult to create alternate representations later on” [132].

Input visualizations, as mechanisms for collecting and display-

ing new information, also collide with deeper epistemological dis-

cussions about the nature of “data” itself. Already, humanities re-

searchers such as Latour [86] and Drucker [39] have criticized the

implications of the term data, whose very etymology—from the

Latin datum “(thing) given”—implies that information is somehow

objective in nature, and obscures the myriad biases, errors, and

sources of uncertainty intrinsic to any attempt to observe or record

external phenomena. Drucker advocates instead for the notion that

all data is in fact “capta”, which is actively “taken” from the world

and reflects the unique tools, approaches, and biases implicit in each

mode of knowledge production or inquiry. The notion of capta and

considerations of the constructivist nature of data collection and

visualization production are already important veins of discussion

within the visualization community. However, they become even

more salient in the context of input visualizations, which more

explicitly surface the mechanisms of data collection.

Venturing even further down the epistemological rabbit hole,

some pre-digital definitions of data, including from the Diderot and

d’Alembert’s 18th-century Encyclopedia [29], further differentiate
data which are given (data) from “those which are unknown, and

which one seeks” (quæsita). Given this perspective, one could argue

that the information captured in an input visualization are only data

(or capta) after they have been input. Up until that point, including

during the design of the visual representation, these future pieces of

information remain quæsita—sought but not yet obtained. In Sec. 6.2,
we discussed how the visibility of previous data can lead to well-

known social or cognitive biases, such as conformity, polarization,

and anchoring, all of which can directly influence the collected data.

However, visibility is just one facet of how the design of the input

mechanism and process may affect the properties and qualities of

the data. In reality, several aspects of input visualization design

can influence group dynamics and the data collected. This suggests

several research opportunities:

RO4 - Developing new approaches for reducing information
loss and supporting data retrieval from a variety of input
visualizations, including physicalizations.
RO5 - Understanding and formalizing the different qualities
of data collection processes and characterizing the relation-
ships between different input visualization designs and the
qualities of the data they produce.
RO6 - Developing new input mechanisms to mitigate social
and cognitive biases during public data collection.
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7.3 New Application Areas: Input Visualizations
as Sensemaking Tools

Moving forward, thinking of visualizations as input spaces opens

up possibilities not only for data collection, but also for cleaning,

synthesis, and other sensemaking tasks. After all, data wrangling—

which constitutes a huge part of the analysis process—almost al-
ways involves changing data [76], and visual feedback in data en-

try interfaces has long been viewed as an important mechanism

for improving input data quality [62]. Modern data cleaning and

wrangling tools like Wrangler [77] and Tableau Prep [121], already

incorporate visualizations alongside tabular representations of data

to support data cleaning and transformation. Similarly, visualiza-

tion approaches like conditional formatting and sparklines can be

invaluable tools for identifying issues when inputting and updating

data in spreadsheets [8] In fact, despite receiving little attention in

visualization research, visually-augmented spreadsheets are very

likely the most ubiquitous input visualizations in use today and

represent a promising area for future research in their own right.

Thinking of visualizations as input spaces creates opportuni-

ties for bringing subjective observations, context, and expectations

into the analysis process in more formal and operationalizable

ways—building on recent concepts like implicit error [99] or data

hunches [89]. This suggests untapped opportunities for treating

input visualizations as a core component of data analysis and sense-

making cycles, particularly for tasks like thematic analysis or strate-

gic planning where observations and decisions often depend on

qualitative judgments. Consider our workflow for this paper, which

contained many iterative rounds of data collection, coding, cluster-

ing, modeling, and refinement spread across a variety of virtual and

physical platforms (and incorporating multiple encodings of the

same data in both tablular and associative formats). Sensemaking

workflows like these are suffused with subjective and collective

decision-making tasks, which call for the ability to adjust, group,

split, and modify data, as well as create new representations. There

is also potential for input visualization in deliberation and civic

participation contexts which involve decision-making processes

between groups of people, as highlighted by Dimara et al. [32].

Yet current tools make it challenging to connect data entry

(which typically takes place in structured spreadsheets or databases)

and analysis (in output-only visualization tools) with more subjec-

tive exploratory approaches like virtual or physical card-sorting.

New input visualization systems for externalized sensemaking

could close this gap by supportingmore fluid transitions between in-

teractive input visualizations and structured tabular data—permitting

people to interactively modify data and schemas throughout their

analytic workflows by interacting with visualizations:

RO7 - Developing new tools that integrate input visualiza-
tions into analytic workflows to support richer data-informed
sensemaking, decision-making, and thinking.

7.4 Design Methods for Input Visualization
Numerous design approaches exist in information visualization

research, including design studies [124], the nested model [105],

data-first approaches [110], action design research [98], design by

immersion [59], and user-centered strategies [52, 82, 92]. These

approaches primarily assume that the data is known in advance.

However, when designing an input visualization, the data, visual

representation, and input mechanisms are interdependent and thus

must be defined simultaneously. This implies that when creating

an input visualization, designers may confront multiple challenges

including 1) defining the data abstraction, 2) devising the input

mechanism, and 3) creating a visual representation that supports

both analytical purposes and data inputs. These challenges under-

score the limitations of applying current design approaches to input

visualization.

Further research can investigate design methods tailored to the

distinct challenges presented by input visualizations. The design

processes for examples in our corpus (where documentation exists)

encompass a range of methods, such as autobiographical design and

co-design (PlantWatering, TeaBrewing [16], and SelfReflection [132]),
user-centered design (LetsPlaywithData [40]), and author-centered

design (DataStrings [27]). Other fields, such as personal informatics

and self-tracking [65, 88, 117] for personal data collection, decision

support systems [21], and crowdsourcing for collectively structured

data collection [25, 33], offer insights into data collection methods

that can complement existing methods and inform the design of

input visualizations. This highlights an additional opportunity:

RO8 - Developing design methods for input visualization
that take into account the unique challenges they pose.

8 CONCLUSION
For now, input visualizations remain a niche and underconsidered

corner of the visualization universe, but one that we suspect is full

of untapped potential. Our work represents just a first step towards

mapping the broader design space of input visualizations by in-

vestigating their visual representations, data, artifacts, contexts,

input techniques, and purposes. Based on our initial investigation,

we introduce a set of design considerations and highlight new re-

search opportunities for examining the relationship between input

visualization and visualization, exploring the use of input visualiza-

tions as sensemaking tools, and developing new design methods

for input visualization. With this in mind, we encourage the visu-

alization community to further examine this space—building an

understanding of the potential of this approach, one input at a time.
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