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Abstract

This thesis is concerned with the generalized theories of thermoelasticity. Histor-
ical developments of the various theories of thermoelasticity are given in the intro-
duction. Part 1 covers the basic laws and the generalized theories of thermoelasticity
with one relaxation time as well as with two relaxation times. Part 2 of this thesis
gives the theories of thermoelasticity derived recently be Green and Naghdi. In Part
3, we have formulated a one dimensional problem and then obtained a solution for the
thermal shock problem for the stress-free as well as the fixed boundary. Numerical

results are given in the form of tables and displayed graphically.
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Introduction

Thermoelasticity describes the behavior of elastic bodies under the influence of
nonuniform temperature fields. It represents, therefore, a generalization of the theory
of elasticity.

Heat phenomena in elasticity were first discussed by Duhamel [1] in 1837. In 1885,
Neumann [2] rederived the equations obtained by Duhamel earlier for the classical
theory of thermoelasticity. In this theory, the equations of motion or equilibrium
contain the temperature term, but the equation of heat conduction is independent
of the strain field, which contradicts the physical experiments.

Further development came in 1956, when Biot [3] introduced the coupled theory
of thermoelasticity. This theory consists of two coupled partial differential equations
in the displacement vector and temperature field one of which is hyperbolic, and the
other is parabolic. Due to the nature of the parabolic-type equation, this theory
predicts an infinite speed for heat propagation, that is, if a material conducting
heat is subjected to a thermal disturbance, the effects of the disturbance will be
felt instantaneously at distdances infinitely far from its source. This prediction is
unrealistic from a physical point of view, particularly in problems like those concerned
with sudden heat inputs.

During the last three decades, a great deal of attention has been given to the
generalized theories which are free from this drawback. These theories make use of
modified versions of the classical Fourier’s law of heat conduction and consequently
involve hyperbolic-type heat transport equation admitting finite speed for heat prop-

agation. According to these theories, heat propagation is to be viewed as a wave



phenomenon rather than a diffusion phenomenon. A wave-like thermal disturbance
is referred to as second sound—the first sound being the usual sound (wave)—and
generalized theories predicting the occurrence of such disturbances are known as
theories with finite wave speed or theories with second sound. These theories are
motivated by experiments exhibiting the actual occurrence of second sound at low
temperatures and for small interval of time.

One theory of the generalized thermoelasticity was introduced by Lord and Shul-
man [4] in 1967 for the isotropic case and extended by Dhaliwal and Sherief [5] in
1980 to the anisotropic case. By incorporating a heat flux-rate into the Fourier’s
law, this theory involves a hyperbolic-type heat transport equation admitting finite
speed for heat propagation. Sherief and Dhaliwal [6] and Dhaliwal and Sherief [5]
have established the uniqueness of solutions in the isotropic as well as anisotropic
case for prescribed temperature on the entire boundary. Dhaliwal and Sherief [7]
have employed a reciprocity theorem to derive an integral representation of solutions
for the case of vibrations varying harmonically in time. Chester [8] has explained a
clear physical meaning for the relaxation time and estimated the value. Ignaczak [9]
has established the uniqueness of the solution for the heat-flux formulation of the
theory in the isotropic case. A generalized one-dimensional thermal shock problem
named Danilovskaya problem has been considered by many authors, e.g., Popov [10],
Norwood and Warren [11], Kotenko and Lenyuk [12] , Rama Murthy [13], Sherief and
Dhaliwal [14]. These authors have obtained different expressions by employing differ-
ent notation. Other than this, some other one-dimensional half space problems have
been studied by several authors under various other boundary conditions. Lord and

Shulman [4], Achenbach [15]', Norwood and Wazrren [11], Lord and Lopez [16], Mengi
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and Turhan [17] and Rama Murthy [13] Have investigated the cases of unit step func-
tion type sudden stress/strain or temperature input on the boundary. Rama Murthy
([13], [18]) has considered the unit step function type sudden velocity or temperature
change, and constant velocity impact on the boundary. Chandrasekharaiah [19] has
studies the case of thermal impulse on the strain free boundary. And Gawinecki [20]
has studied the existence and uniqueness of solutions of thermoelastic equations in
generalized as well as classical cases.

Another theory of the generalized thermoelasticity was developed by Green and
Lindsay [21] in 1972. By including the temperature-rate among the constitutive
variables, this theory also gives a hyperbolic-type heat transport equation admitting
finite speed for heat propagation. A remarkable feature of this theory is that it
does not violate the classical Fourier’s law, if the material has a center of symmetry
at each point. Moreover, even in the general anisotropic case, the heat conduction
equation of this theory does not include the heat flux-rate term. This theory is based
on an entropy production inequality proposed by Green and Laws [22]. Suhubi [23]
has formulated this theory independently. Chandrasekharaiah ([19], [24]), Chan-
drasekharajah and Srikantiah [25], Dhaliwal and Rokne [26] have considered the
half-space problem in the cases of thermal impulse, unit step function type sudden
changes in strain, displacement, or heat flux on the boundary. And Sherief [27] has
solved a thermo-mechanical shock problem for thermoelasticity with two relaxation
times. Wang and Dhaliwal [28] have found the fundamental solutions of the gener-
alized thermoelastic equations of this theory. The detailed references regarding the
developments in the generalized theory of thermoelasticity can be found in a review

paper by Chandrasekharaiah [29].



In recent years, Green and Naghdi ([30], [31], [32]) put forth a new theory of
thermoelasticity, which provides sufficient basic modifications in the constitutive
equations to permit treatment of a much wider class of heat flow problems. The
characterization of material response for the thermal phenomena in [30] and [31]
is based on three types of constitutive response functions . The nature of these
three types of constitutive equations is such that when the respective theories are
linearized, type I is the same as the classical heat conduction theory (based on
Fourier’s law), type II predicts a finite speed and involves no energy dissipation, and
type III permits the propagation of thermal signals at both infinite and finite speeds.

Some work concerning this theory has been done recently by Dhaliwal, Majumdar
and Wang [33], in which they have considered the problem of thermoelastic waves in
an infinite solid caused by a line heat source.

This thesis contains three parts.

Part 1: Thermoelasticity with second sound (or the generalized theories of ther-
momechanics). Detailed formulation of Kinematic Relations, Law of Motion, Law of
Conservation of Mass, Law of Conservation of Energy and Second Law of Thermody-
namics is given in Chapter 1. The generalized thermoelasticity with one relaxation
time in both isotropic and anisotropic cases is discussed in Chapter 2. And as a
special case, the constitutive equations and governing equations are obtained for
one-dimensional problem for the isotropic case. In Chapter 3, the governing equa-
tions for the thermoelasticity with two relaxation times are obtained. And as a
special case, the governing equatioﬁs for the isotropic case are derived.

Part 2: Re-examination of the basic postulates of Thermomechanics. The new

theory is outlined in Chapter 4, which contains a useful analogy between the concepts



and equations of the purely thermal and the purely mechanical theories and three
types of constitutive equations and their linear forms.

Part 3: One-dimensional thermal shock problems. To analyze the new theory,
we have formulated a one-dimensional problem in Chapter 5. We have solved two
one-dimensional thermal shock problems, one with stress-free boundary in Chapter
6, and another with fixed boundary in Chapter 7. Numerical results are given in the

form of tables and displayed graphically.
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Thermoelasticity
With

Second Sound



Chapter 1
Basic Laws

Like other branches of thermomechanics of deformable bodies, the thermoelas-

ticity theory is based on the following fundamental equations ([34]):

1.1 Kinematic Relations

Let the position of a general point P of an elastic body in its initial state at time
t = 0 be given by coordinates z1, 22, 23 in a rectangular Cartesian coordinate system
fixed in space. Let &), &, €3 be the corresponding system of base vector (Figure 1.1).

We then have
di = é1dxy + éxdzs + €3dxrs = €;dx;, (11)

for the line element in the undeformed body.
After the body has been deformed, the position vector of the point P will have

changed from its initial value 7 to
R=7+1, (1.2)

where @ = un€p, represents the displacement vector. Analogous to equation (1.1),

we write
dR = gidz;, (1.3)

for the element in the deformed body.
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Base vector g; (Figure 1.2), forms a nonorthogonal triad varying from point to
point. This triad represents the deformed, originally orthogonal, triad of the base
vectors €;.

We consider all quantities (displacements and temperature) associated with the
point as functions of these coordinates and of time ¢.

Differentiating equation (1.2) with respect to z;, we obtain
g} =¢&; + ’ﬁ:i = €; + um,,-é'm, (1.4)

where u; represents the partial derivative of u with respect to ;.
Using equations (1.1), (1.3) and (1.4), we find the expressions for the squared
line elements (dr)? and (dR)? in the undeformed and deformed states of the body,

respectively, as
(d’l‘)2 = (5,'jd.’L‘,'d£L‘j, (dR)2 = g,-jda:,-d:vj, (1.5)

where

1, fori=y,

0, for:#j,
9ij = Gi - §j = 05 + 2ey5, (1.6)
2ei; = Ui j + uj; + Um,iUm,j- (17)

The nine quantities e;; = e;; represent the components of the Green’s strain
tensor defined as half the difference between the two metric tensors g;; and §;; in the
deformed and undeformed states of the elastic body, respectively.

The equations (1.7) are called strain-displacement relations, or kinematic rela-

tions.
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1.2 Law of Motion

Consider a surface element dA whose normal was initially in the direction of
&1 (Figure 1.2). The stress vector & acting on this element is then defined as the
corresponding force divided by the initial area dA = dzedz3. Resolving §; into three

components in the directions of the three base vectors g1, §», g3, one has
§1=s1161 + s12 G + 513 J3-
In general, on a surface with normal initially in the direction of &;, we have
8 = 545G;. (1.8)

The nine quantities s;; constitute the (second) Piola-Kirchhoff stress tensor.

It is now a simple matter to formulate the equations of motion for an element of
the body with initial volume dV = dzidzodzs and mass dm = pdV = padV;, where
p and pg are the mass density, and V' and V; are the volume occupied by the body
in its reference configuration in the undeformed and deformed states, respectively.
Taking components in the z;-direction of all force vectors s;; & dzadzs, ect., acting
on the element (see Figure 1.2), multiplying with unit vector &, and remembering
that the stress vector —s;;g; 01'1 the left-hand surface of the element changes to the
8450; + (845§;),1dx1 + + - - on the right- hand surface, with similar relations for the

other surfaces, one finds from Cauchy’s law that

[(51595),1 + (52495) 2 + (53;5) 3] - €1 + pFy = piiy,

where Fj is the component in the z;-direction of the external force vector F' per

unit mass and dot over the quantity represents the partial derivative with respect
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to time t. Two analogous relations are obtained for the z5- and z3-directions. From

equation (1.4), one has
Gj+ €k = € + € + Um,j€m * Ek = Okj + Up ;. (1.9)
Hence, the three equations of motion read as
[543 (ks + ung)li + pFr = pii. (1.10)

By taking moments of the force couples sy2 §o dzadzs and soy g1 dzidzs, acting

on the element of Figure 1.2, one obtains

812 ﬁg dzodxg X g’ldxl 4 So1 §1 dzridzg X gzdxz

= (812 — 521)f2 X g1 dxidzadzs.
And hence for a body in equilibrium, one must have
S12 = 821,
which can be generalized to
8ij = 8jiy 4,7 =1,2,8. (1.11)

We assume that this symmetry of the stress tensor holds also for a body in motion.
The equations (1.10) are called the equations of motion.
1.3 Law of Conservation of Mass

The Law of Conversation of Mass expresses the fact that the total mass of the

body remains constant, that is,

/V padVa = /V odV, (1.12)
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where p and p,; are respectively, the mass density in the undeformed and deformed
states of the elastic body. Due to deformation, the volume of the element changes

from its initial value dV = dzidzadzs to
dVa = g1 - (G2 X dFs)dz1dzodzs = (/gdV, (1.13)
where
g=det| g | = dettl&j + 2e;]-

From equations (1.12) and (1.13), one finds that

=P
v (1.14)

Equation (1.14) is called the law of conservation of mass.

1.4 Law of Conservation of Energy

The law of conservation of energy or the first law of thermodynamics is given by

% /m %amidm+% /m Udm

- /m Fiiydm + ?i fridA + /m Rdm — }{1 QinidA, (1.15)

where m is the mass occupied by the body, A is the closed surface of m, U denotes
internal energy per unit mass, F; is the body force vector per unit mass, f; is the
applied surface stress, R is the heat produced per unit time and unit mass by heat
sources distributed within the body and Q; is the heat-flux through the surface of
the body taken positive outwards. Both f; and Q; are referred to the unit area of

the surface of the deformed body.
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The first and second terms on the left-hand side of equation (1.15) represent the
rate of change of kinetic energy and internal energy, respectively. They are equal to
the rate of work done by all external forces, and to the amount of heat produced per
unit time within the body plus the heat transported into the body from the outside.

Equation (1.15) may be transformed into a more convenient form with the aid of
the principle of rate of work. This principle states that the rate of change of kinetic
energy equals the rate of work of all forces, external and internal. Per unit of initial
volume, the latter equals —3; - i or, using @ = 8, and equations (1.8), (1.9) and
(1.7), one obtains

pury

=8+ U = =83l - G = —Sijti(Ohs + Ung) = —8i5¢i5.
The principle of rate of work thus reads
il-/ L iadm = [ Favim+ § fnda— [ syeyav,
dtm2zz '—mzz Azz de]z] d:
Combining the above result with equation (1.15), gives
/ (U —R)dm =/ S,'jé,'jd‘/:l -—f Q,-n,-dA.
m Va A
Putting dm = pdV and applying Gauss’ theorem (& being an arbitrary vector)
. 1
inidA = / —=(ai+/9)dVy,
é a;n " ﬁ(a V9)dVa
with dVyq = ,/gdV to the surface integral, one obtains, finally
p(U — R) = sijéij — g5, (1.16)

where ¢; = Q;,/g represents the heat-flux vector, referred to the unit area of the
undeformed body.

Equation (1.16) is called the law of conservation of energy.
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1.5 Second Law of Thermodynamics

The second law of Thermodynamics demanding positive production of entropy,

in the form of the Clausius-Duhem inequality, states that
d R Qin;
dt/m Sdm [n Tdm f; T 4 20, (1 17)

where T is absolute temperature and S is entropy per unit mass. Using Gauss’

theorem, we are led to

p(TS—R)> — g+ %T,i (1.18)

and upon elimination of R between equations (1.16) and (1.18), we obtain

Lip., (1.19)

p(U = T8) < Syésj — =T,

We now introduce the so-called Helmholtz’s free energy function F', defined by
F=U-TS. (1.20)
Let us assume that
F = F(eij’Ts’I:i)a
S = .S'(e,-j,T, T,i),
¢ = ¢le;T,Ty),
sij = sij(e,T,T;),

then

.. 9F, OF. OF,.
F = g,‘jeij + -6—1_;T+ 6—,1_:17”,
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Substituting this into equation (1.16) and inequality (1.19), we find that

OF . OF : oF | . :
(P-é'e-;j — 8ij)€ij + p(c‘?—T +8)T + P(ﬁ’i)zi +p(T'S— R) + ¢;; =0,
oF . oF . 9F . g
— ;)6 9 OF i Gim
(Peg — Sia)éi+ plgg + )T+ p(Gr )T+ 7T <0

‘Since €ij, T and T,,- are arbitrary, and ¢; and the expressions within the paren-

theses in the inequality do not depend on these quantities, we conclude that

Sij = p%, (1.21)
S = —%F, (1.22)
% = 0, (1.23)
Qi = P(R—Ts), (1.24)
¢l; < 0. (1.25)

The above five equations describe the constitution of the thermoelastic material.
BEquation (1.21) represents the stress-strain law, while equation (1.22) defines en-
tropy. Substitution of equation (1.22) into equation (1.24), together with equation

(1.23), leads to the equation of heat conduction

o’F O?F .
meij + WT) + pR. (126)

¢i; = pT(

We note that the temperature T and strain components e;; are coupled in the
above heat conduction equation.

The sixteen scalar relations of equations (1.7), (1.10), (1.21) and (1.26) form

the basic equations of themoelasticity. They contain u;, e;;, s;; and T as sixteen

unknown functions of space z; and time ¢. They form the governing equations of the

conventional coupled nonlinear theory of thermoelasticity.
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1.6 Linear Approximation

In the linear approximation of the theory, we suppose that the field variables are
small enough such that the second and higher degree terms in these variables may
be neglected in the governing equations.

Then s;; and e;; reduce, respectively, to Cauchy’s stress and strain tensors o;;

and ¢;;. Equations (1.7), (1.10) and (1.24), with p; = p, T = 6, reduce to

1
€ = §(ui,j+uj,i), (1.27)
0iji + pF; = pi, (1.28)
@i = p(R—S6). (1.29)

Here 6y is the initial uniform temperature (assumed to be positive).

Let us assume that
¢ = ki — ki T; + kijieq,

where the coeflicients k;, k;; and k;;; are functions of z; and T.

Due to the inequality (1.25), we find that
—q; = ki + kijT; + kijiezn.
By combining the above two equations, one gets
¢ = —kiT;. (1.30)

For V = pF, its linear expansion (retaining only up to quadratic terms) gives the

following

1
V = pF =V, + cijeij + 5 Cumeijen — Bjeit + dg?, (1.31)
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where Vj is the energy at rest in the natural state, § = T — 6, and the coefficients
¢ij, Cijnl, Bij, and d are, generally, functions of z; and T'. And Vj = 0, if we assume
that V =0, when 6 = 0 and ¢;; = 0.

Substituting from equation (1.31) into equation (1.21), we obtain

(Cijrr + Criij) €rty (1.32)

NV

O'ij =

since ¢;; = 0, if we assume that o;; = 0, when § = 0 and ¢; = 0.
The coefficients Cj;i; are the elastic moduli.

Considering the symmetry of the stress and strain tensors, from equations (1.32)

and (1.31), we find that
Ciirt = Cjirt = Cijik, Bi; = Bji- (1.33)

We notice from equation (1.21), that

9sij _ Osu
aekz - 36,-]',
and hence, we find that
Cijir = Chaij- | (1.34)
Let
.o
= o

then using equation (1.20), we find that

OF oS
¢ = ot ar
2

or — T~ oT?
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O’F 2d
Towm =57
~ —"2_d'00’
P
or
.
d= 50,

Linear expansion (1.31) becomes

1 1, pc
PF = S Cijncijen — Bijei6 — 5(@;)92-

From equations (1.21), (1.22), (1.23) together with equation (1.30), the following

linear constitutive equations are obtained

o;; = Ciynen — Bib, (1.35)

pS = %9 + Bij€is, (1.36)
o

G = —ki0;. | (1.37)

With the aid of equation (1.30), inequality (1.25) yields
k,-jﬂ,,-a,j > 0.

Thus the conductivity tensor is positive-definite.

For a homogeneous bod};, Cijri, Bi; and k;; are constants.

Elimination S and ¢; from equations (1.29), (1.36) and (1.37), o;; from equations
(1.28) and (1.35) and using equations (1.27), (1.33) and (1.34), we obtain

kijfi; + pR = pcd + 0o B;j; 5, (1.38)

Cijrl urg; — B350 5 + pF; = pil;. (1.39)
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Evidently, equation (1.38) is the heat transport equation and equation (1.39) is
the (vector) equation of motion. These equations, which are coupled together, form a
complete system of fields equations in the context of the linear conventional coupled

thermoelasticity theory for homogeneous anisotropic solids.

1.7 Isotropic Case

For the isotropic case, we have
Cijrt = M6i0m + (0irj1 + 6udjr) 1,
kij = kéi,
Bii = P,

and the constitutive equations (1.35)-(1.37) reduce to the following equations

o = Abijen + 2pei; — B0, (1.40)

pS = §9+ﬂekk, (1.41)
0

G = —ki; (1.42)

where A and yu are the isothermal Lamé constants, § = (3\ + 2u)a and « is the
coeflicient of linear thermal expansion of the material. The field equations (1.38)

and (1.39) now take the form

kV20 + pR = pc + 0By, (1.43)
pV?u; + (A + p)urg — B6,; + pF; = pii;. (1.44)

* We see that the equation (1.43) is of parabolic-type, and the equation (1.44) is of

hyperbolic-type. Hence we say that the classical thermoelasticity predicts an infinite
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speed for heat propagation, that is, if an isotropic homogenous elastic continuum is
subjected to a mechanical or thermal disturbance, the effect of the disturbance will
be felt instantaneously at a distance infinitely far from its source. Moreover, this
effect will be felt in both temperature and displacement fields, since the governing
equations are coupled.

This theory is called the theory of coupled thermoelasticity.



Chapter 2

(Generalized Theory of Thermoelasticity

with One Relaxation Time

'As mentioned before, the coupled theory of thermoelasticity predicts an infi-
nite speed for heat propagation, which contradicts the physical experiments. This
shortcoming of the theory comes from the fact that the equation governing the tem-
perature distribution (heat transport equation), on which the theory is based, is a
parabolic-type partial differential equation, which arises from the classical law of
heat conduction.

In the derivation of the coupled theory of thermoelasticity, the heat conduction

law is taken to be linear, having the general form
q; =0T ; + B;;T;. (2.1)
For an isotropic elastic solid, this reduces to the well known Fourier’s law
¢ =—kT; (2.2)

For the generalized thermoelasticity in this chapter, equation (2.1) is replaced by

a more general equation of the form:
g +agi + Ay;g; = bT; + BTy, (2.3)

where a, A;;, b, B;; are material properties of the medium.

21
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2.1 Isotropic Case

For an isotropic elastic solid, equation (2.3) reduces to

¢+ 7¢:; = —kT}, (2.4)

where 7, the relaxation time, represents the time-lag needed to establish steady-state

heat conduction in an element of volume, when a temperature gradient is suddenly
imposed on that element.

We introduce the Helmoholtz’s free energy function in the form

F(e,-j,T) = U(eij,T) —_ T.S’(e,-j,T),

(2.5)
and the first law of thermodynamics
sij¢i5 + pT'S = pU, (2.6)
where
pS = —q;; + pR. (2.7)
It follows from equations (2.5) and (2.6) and the relation
F= (%)éﬁ + (?WF)T,
that s;; and S can be expressed in terms of F' as
5 = g (238)
s = _%F. (2.9)

Substituting from equation (2.9) into equation (2.7), we find that

O*F . O*F
Qi =p T+ éii) + pR. 2.10
(3T2 ae,-jaT '7) ( )
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Combining equations (2.4) and (2.10), the energy equation in terms of F is ob-

tained in the following form:

O°F . . 8*F . N
kT = —PT[W(T +71T) + m(%’ + &)
.. O’F O*F O%F OF
— 2 am———
p’r[T (6T2 +T6T3)+8”T(a UaT“*"ZTa UaT?)
1212 R+ 1R). (2.11)
de? 3T “

The middle bracketed set of terms on the right-hand side can be neglected within
the framework of the usual assumptions of the linear theory, and thus the energy
equation becomes

o’F

KT = — pT[ P ) + e
)

éij + éij)] — p(R + TR) (2.12)

Now as usual in the isotropic case, the scalar function F' can be expanded in the
power series of the three strain invariants I, I, IIl, and the temperature difference

6 =T — 0y, that is

F(eijaT) = F(Ie,ﬂmme)a))

where
1
L = ey = i,
€11 €12 €22 €23 €11 €13 gy
He = -+ -+ =§6,meilejm, (213)
€21 €22 €32 €33 €31 €33 ’
€11 €12 €13
1 ik
I, = |exn exn exs|= g@fnneuejm@kn,
€31 €32 €33
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and
+1, when ¢, j are the same integer,
8 = '
0, otherwise,
+1(—1), when I, m are distinct integers from 1 to 3 and
& = i, j are an even(odd) permutation of I, m,

0, otherwise,

i, §, I, m=1, 2, 3,
with a similar definition for 657~

From equations (2.13), it is clear that

oI,

6e,~j - 61'7,

oIl

38,']' = éijIe — €4, (2.14)
661‘_7' €;j€jk — e,'jIe + 6,~j1Ie.

We take F' in the following form:

F(I,I,,I,,6) = p(ag+al, + aoll, + azlll, + asf + asI? + agll>

+a7 02 + agh? + aghl, + a1o6I, + - - -), (2.15)

where ag, ai, - -+ are constants. To linearize this theory, we keep terms of second
order or less only in equation (2.15). From equations (2.15), (2.14) and (2.8), we

arrive at
sij = a16i5 + (a2 + 2a5)d;5em — azes; + aghdyj, (2.16)

where a; = 0, since we assume that s;; = 0 when e;; =0, § = 0.
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Taking

ay = =24,
1
as = § (A + 2/"’) ’

ag = —(3)‘ + 2/.1,)04,
in equation (2.16), we get the familiar linear thermoelastic stress-strain relations
Sij = 2/,46,']' + )\ekké}j — (3)\ -+ 2#)0555_7'9, (2.17)

where \, u are Lamé’s constants and o is the coefficient of the linear thermal ex-
pansion of the material.

Defining the specific heat at constant deformation by

c= —T%, (2.18)
assuming ¢ to be a constant and noticing that
_OF _O00F 10s; _ (324 2u)a<5,-j, (2.19)
Oe;0T 0T Oe;; p OT p
the linearized energy equation (2.12) may be written as
kT = pe(T + 7T) 4 (83X + 2u)aby (é55 + &55) — p(R + 7R), (2.20)

where T has been replaced by 8y by assuming 6 to be small.
This generalized heat conduction equation (2.20), together with the equation of

motion (1.44) given by

pit; = (A + Wi + puig; — A+ 2u)aTy; + pF, (2.21)
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form the governing equations of the generalized theory as thermoelasticity with one

relaxation time.

It is easy to see that equations (2.20) and (2.21) are the counterparts of equations
(1.43) and (1.44) in classical thermoelasticity.

Due to the hyperbolicity of the governing equations, this theory predicts a finite
speed for heat propagation. And when 7 = 0, equation (2.20) reduces to equation

(1.43), that is, this generalized theory reduces to the coupled theory of thermoelas-
ticity.

2.2 One-dimensional Problem

For one-dimensional problem

stress o = o(z,t),
displacement u = u(z,),
temperature ' 6 = 6(z,1),

with F; =0, R =0, equations (2.21), (2.20) and (1.44) reduce to

0%u 8%u 96
%6 06 06 0%u O3u
kw = pc(a + Tgt-) + (3A + 2u)a90(3$8t + Taxatz)’ (2.23)
o o= (A4 2“)3—2 — (38X +2u)ad. (2.24)

Using the following nondimensional variables

, A+ 24,1
= (T,
P k
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v A+2u pc
/ 0
6 = %
' o
o = TN AN
(3)\ + 2/1)0500
' A+2u.3 1 pc
v o= I p )? (BA+2u)aby k Ju,
v A+2p pc
T = ( p ) k T,

and dropping primes for convenience, we obtain the following

Py 06 8%

Equation of motion W 5 = e (2.25)
. 0% d.,,00 %
Energy equation %2 = 1+ 7'52)(% + eaxat)’ (2.26)
Constitutive equation o = g% -0, (2.27)
where
_ (8X+2p)%a,
(A +2u)pc

Here, € is the well known thermoelastic coupling constant, 7 is the dimensionless

relaxation time.

2.3 Anisotropic Case

In the most general homogeneous anisotropic medium, the second law of thermo-

dynamics has the form of
sijéij — @i = p(U — R), (2.28)

where

pTS = —q;; + pR. (2.29)
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Eliminating ¢;; in the above equations, leads us to

pS = 'fz—_,'U —_ -T—s,-je,-,j. (230)
Noticing that
-~ oU,. 0U,
U= aTT -+ gz‘j@ij,
we can write equation (2.30) as
. _poU_. 1 0U
pS = T 3TT+ T(pae,, 5i5)€ij- (2.31)

The second law of thermoelasticity requires that $ be an exact differential in T

and e;;, therefore

95 _ pU
Poar = Tor
oS 1, oU

pc’?ei,- - T(p 63,1 Sis).

Using these relations and the identities

s S
8T36,-j - c’)eijc’)‘T’
02U o%U

8T5‘e,'j - ae,-jaT’
together with equation (1.35), we get

1, oU "
Pij = T(Pgﬁ — 5ij). (2.32)

Substituting from equation (2.32) into equation (2.31), we get

. pdU.
pS = 5, =T + Bt (2.33)
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Let

C=

SIS

be the specific heat per unit mass in the absence of deformation (assumed indepen-
dent of T in the neighborhood of the equilibrium state T' = 6).

Substituting ¢ into equation (2.33) and integrating it with respect to ¢, we obtain
pS = pclogT + Bije;; + constant. (2.34)

If in equation (2.34), we choose the constant in such a way that S = 0, when T = §,

and e;; = 0, then equation (2.34), with this choice, takes the form
pS = pclog (1 + 9%) + Bijeis- (2.35)
Approximating log (1 + 0/6) by /8y, it further reduces to
pboS = pch + 0o f;jei;. (2.36)
The linearized form of equation (2.29) is
;i = —pBoS + pR. (2.37)
By using equation (2.36), equation (2.37) reduces to
;g = —pc — BofBijéi; + pR. (2.38)
We assume a generalized heat conduction equation of the form
¢+ 7¢; = —ki;0 ;. (2.39)

Now, taking divergence of both sides of equation (2.39) and using equation (2.38)

and its time derivative, we arrive at

L . . . o
pc(0 + 7'0) + 00@-,-(6,-]- + 'reij) - p(R + TR) = %(kijo,j). (240)
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To get an equation satisfied by the displacements u;, we substitute from equation

(1.35) into equation (1.28), using the linearized strain-displacement relations

eij = 5 (Ui +uzi),

and the symmetry condition
Cijit = Chiij = Cjirt = Cijie,  Bij = Biis
we find
"g“(ci kIURT) — i(,31“49) + pF = pil;. (2.41)
8xj 7 ! 3:12]' 7
It is worth noting that for the case of isotropic case

Cijt = Moy + (8651 + 01 1,
ki = ki,

Bi; = Bdsj,

and equations (2.40) and (2.41) reduce to

kT = pe(T +7T) + Bo(és; + &) — p(R+ TR), (2.42)
pii; = (A4 gz + puij; — BT + pF, (2.43)
where
B = (3A+2u)a.

It is clear that equations (2.42) and (2.43) are the same as equations (2.20) and

(2.21) derived earlier for the isotropic case.



Chapter 3

Generalized Theory of Thermoelasticity

with Two Relaxation Times

In the previous chapter, we considered the thermoelasticity theory with thermal
relaxation formulated on the basis of the modification of the classical Fourier’s law.
And we observe that this theory admits second sound only because of the presence
of the flux-rate term in the heat conduction equation.

In the present chapter, we consider a thermoelasticity theory with second sound
which is not based on any predetermined form of the heat conduction law. This

theory was developed by Green and Lindsay [21] in 1972.

3.1 Governing Equations

Like other thermodynamical theories of continua, the generalized theory of ther-
moelasticity with two relaxation times is also formulated on the basis of equations
(1.7), (1.10), (1.14) and (1.16). But the entropy production inequality (1.18) for the

homogeneous materials is now replaced by the following more general inequality:

p(T*S = R) + g;; — ;_IQ;T > 0. (3.1)

Here T™ is a constitutive function postulated to be positive.

It may readily be seen that inequality (1.18), on which the classical thermoelas-

ticity is based, is a special case of inequality (3.1), for which T* = T'. The functions
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T* and its reciprocal (T*)~! are known as thermodynamic temperature and coldness
functions, respectively.
In order to obtain the constitutive equations, we introduce an energy function

F* through the equation
F*=U-T*S, (3.2)
and in general

F* = FX(T,T,T;,e;),

= T*(T,T,T,,-,eij).

Note that unlike in the classical thermoelasticity, T° is now included among the
constitutive variables. If we set 7™ = T, then F™* reduces to the Helmholtz’s free
energy F defined by equation (1.20).

Noticing that

L OF* . OQF*. OQF*. QF*,
F - aTT+ aTT+ afz-,’zfp,z_l- aeijeij’

or* . oT*. oT*. oT*
T i 237
oT + 6TT+0T,,'T’ +365je‘1

U = P +TS4T8

T*

and substituting these results into equation (1.16) and inequality (1.19), one finds

OF™ oT* OF* oT* OF* or*, .
P(ﬁ-FSaT)T-i-p(aT +SaT)T+p(3T SaT )T ;

oF* _oT* )
+{p( le}e1y+p(T S — R)+q“ =0,

+S—
€ij Oei; Beg) ~

oF* oI oF* oI oF* _oT
Ao +55m)T + ol g + S )T + ol + S o7

VT,
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oF* oT*

Helg - % +S5o— der =) — Sij}éi
o™ or* 6T* . 6T* )
+T*(8T,-T:z+ aT 7171—'— aT {Z-:z’*'aTklekl,i) SO.

The above inequality should be valid for all temperature and displacement fields,
and for all reference bodies, it being assumed that the energy and momentum equa-
tions balance by suitable choice of specific heat supply @ and externally applied
body force F;. Hence, we conclude ([35]) that

p(gz;k + Sg—i}) — si5 =0,

p(%?* aT*)T+p(aF* Sgg: )T +p(T*S R)+q,; =0,

ey =0

T, =0

G B o

which lead us to

sij = pgf:, (3.3)
or I, o
(% + S%:; )T + gﬁ; T+ ST* + ;(Iz,z = R, (3:6)
(% + S%Z;)T' + pgi* %T,i < o0 (3.7)
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It is seen that
T* = T*(T, T).

The above expression and equations (3.3)-(3.5) are the constitutive equations for
8:5, S and ¢;, respectively, and equation (3.6) is the energy equation. These equations
along with the fundamental equations (1.7), (1.10), (1.14), (1.16) and inequality (3.7)
constitute the governing equations of nonlinear thermoelasticity with two relaxation
times.

If we drop T' from the list of constitutive variables, equations (3.3)-(3.6) and
inequality (3.7) reduce to the corresponding equations (1.21)-(1.24) and inequality
(1.25) of classical thermoelasticity.

If 8T* /8T # 0 and F* depends on T, equation (3.5) gives

9¢ _ 94
oT; 9T,

When g; is a linear function of T);, this relation gives
kij = kjs,

which means that the conductivity tensor k;; is symmetric.

3.2 Linear Approximation

Here we consider the usual kind of linear theory in which the changes of tem-
perature, displacement components, and their space and time derivatives are small.
Then s;; and e;; reduce to Cauchy’s stress and strain tensors o;; and €;;, respectively.

And we assume that

T*(T,0) =T =Ty + 0.
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In the general anisotropic case, for small strain and small temperature increment

theory, we assume the following expansions (with zero initial stress and zero initial

heat flux):

V* = pF*

c ; .

+a0—'09,i + aijk€ii0 1 — Bin€ind + bin€ird
1 k. 1

+2Ol 0 se,re,k + 'écikrseikers,

™ = T0+0+00+a9+,699+%792.

Vo —af — bf — -;-d(;? — ef — % 76% + ;60

All the coeflicients in the above expressions are constants for a homogeneous

body.

Substituting the above expressions into equations (3.3)-(3.5) and inequality (3.7),

with T™ = 6y, we obtain

ik = Cikrs€rs — Bitd + birb + airs0,
¢ = —0—°(ai9 F O + Qroiers a]” 26,),
6o b

1 b by, a
S = a{b + (6 - ) ( o )0 - 9 cid; bzkezk},

(g — a)e' + { (e — Qé) d}66 + a;0 6 — éai%,i

) arsz b A
iy~ Dyegh — e+ {2 (7 L) - }?
k:~-

—220g, — Zig.9. <0
5,00 — 320,05 <0

(3.8)

(3.9)

(3.10)

(3.11)

The above inequality then yields the following restriction on the coefficients

b = aa,
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doe = e——=-e—af,
a; = 0,
sz = —aﬂija

aizr = 0,

90(da - h)92 -+ 2050.9’,' + k,-je,,-(),j >0,

where
ha=f-2.
o
Let
LO2F*
c=-T 572
then with T* = 6 and from the expansion for V*, we find that
ar*  db,
c= N —,
P P
or
£
d=~ 5
Let us define ay by
o= 0
0= Pry

Now, we can reduce equations (3.8)-(3.10) and inequality (3.11) to the following

oi; = Cijrien — Bij (9 + aé), (3.12)
a = —(cb+kiby), (3.13)
pS = EE(& -+ aoé) — &9, + ,Bijeij7 (314)
6o 0o
pc(a - a0)92 + ZCiéH’i + k,-,-ﬁ,,-e,,- >0, (3.15)
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where b = 0, since we assume that pS =0, when § = = 0;=e;=0.
For a homogeneous body, we obtain the governing equations
kija’,'j + pR = pc(é + aoé) - 20{9.,,' + 00ﬁij’l'l,i’j, (316)
C,-jkzuk,lj - ,3,']'(0 + aé),j + F; = pi;. (3.17)

It may be seen that equations (3.16) and (3.17) are the counterparts of equations
(2.40) and (2.41) of the previous chapter.

For inequality (3.15) to hold for all arbitrary 6 and 8;, it is necessary that
a2 o,
and
2¢:00; + k30,40 ; > 0.

If a body has a center of symmetry at each point, then since the sign of

2c,-é0¢ can be changed, this implies that
¢ =0,
and hence
kijb:6; 2 0,

which means that the conductivity tensor k;; is positive-definite.

For this case (c; = 0), equations (3.12)-(3.14) and inequality (3.15) reduce to

O'ij = Cijkzekl —_ ,Bij(g + aé), (318)

¢ = —ky0;, ' (3.19)
pe ;

pS = %(9 + aof) + Bijeis, (3-20)

pc(a — ao)é2 + k¢j00,,~9,j Z 0. (321)
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3.3 Isotropic Case

For an isotropic medium, we have

Cijt = Abij6u + (851 + 0ubjr) 1,
kij = kéy,

Bii = B6.

The fundamental equations (3.18)-(3.20) in this case take the form

i = 2pei + Aijer — B6:(6 + of), (3.22)

¢ = —kb (3.23)
pc ;

pS = %(9 + b)) + Berr. (3.24)

And the governing equations (3.16) and (3.17), with ¢; = 0, become

k0 ;i + pR = pc(é + aoé) + 6oPerr, (3.25)

pit; = (X + pw)u;i; + pui; — fO; + pFi. (3.26)

It may be seen that in equation (3.23), Fourier’s law of heat conduction is not
violated, but equation (3.25) is still of hyperbolic type, with ag > 0.
It may be seen that equations (3.25) and (3.26) are the counterparts of equations

(2.20) and (2.21) of the previous chapter.



Part 11

Re-examination of the Basic

Postulates of Thermomechanics
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Chapter 4

" Re-examination of the Basic Postulates of

Thermomechanics

As mentioned earlier, Green and Naghdi ([30], [31]) re-examined the basic pos-
tulates of thermomechanics. Their analysis contains a useful analogy between the
concepts and equations of the purely thermal and purely mechanical theories and
three types of constitutive equations, labeled as type I, IT and III.

Consider a finite elastic body B with material points X and identify the material
point (particle) X with its position X in a fixed reference configuration k,. In the
present configuration k at time ¢, the body occupies a region of space R bounded
by a closed surface OR. Similarly, in the present configuration, an arbitrary material
volume of B occupies a part of the region of space, which we denote by P(CR),
bounded by a closed surface 0P. The place occupied by the material point X in the
current configuration k is x.

For purely mechanical theories, we use the following notation:

(a) displacement: x = x(X,t), x a sufficiently smooth vector function
(b) particle velocity v at x: v =x

(¢) deformation gradient tensor: F=8yx/6X

(d) velocity gradient tensor: L=08v/dx

(e) externally applied body forces per unit mass: b=b(x, )

(f) external rate of work per unit mass: bv

40
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" (g) internal surface force per unit area over dP: t
(h) rate of internal surface work per unit area: tv
(¢) internal body force: f

For purely thermal theory, we need the following notation:
(a1) thermal displacement: a = a(X, 1)
(b1) empirical temperature: T = &
(¢1) temperature: 6 which depends on T' and the properties of the material
such that

o9

0>0, Tﬁ>0

(d1) thermal displacement gradient: 8 = da/0X

(e;) temperature gradient: v = §7'/8X which relates to 8 by 8 = FTvy

(f1) external rate of supply of entropy per unit mass: s

(¢1) external rate of supply of heat per unit mass: r = fs

(hy) internal rate of production of entropy per unit mass: ¢

(¢1) internal rate of production of heat per unit mass: 6¢

(71) entropy density per unit mass: 7

(k1) heat density per unit mass: 89

(1) internal flux of entropy per unit mass: —k

(mq) internal flux of heat per unit mass: —h = —0k

where a superposed dot denotes material time derivative, keeping X fixed.
In Table 4.1, we give the correspondence between the mechanical and thermal

variables.
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Table 4.1: Correspondence between mechanical and thermal variables

mechanical variable thermal variables
X «@
A T
F p
L Y
b s
b-v r=40s
t k
t-v h =060k
f :
v n

The local field equatiog for the balance of entropy is
pn = p(s +§) — div p, (4.1)
where
k=p-n, q =0p

and p is the entropy flux vector and q is the heat flux vector. We also record here

the reduced energy equation
T-L—p-g—p(y+nb) — pd¢ =0, (4.2)

which has been obtained from the local field equation for the energy balance after
elimination of the external body force and the external supply of entropy. In equation

(4.2), 9 is the specific Helmholtz’s free energy and g is the temperature gradient
defined by

g = grad 4,

where the grad operator stands for §( )/dx.
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4.1 Classical Thermoelasticity (Type I)

For the theory of thermoelasticity of type I, we require the constitutive equations

for
T, p, %m0, ¢ (4.3)
and assume that these are functions of the variables:
(T,~,F; X). | (4.4)

However, for simplicity, in what follows we suppress explicit dependence on X and
regard the material to be homogeneous. Introduction of constitutive assumptions of

the forms
¥ =P(T,~,F), 6 =6(T,~,F), T =T(T,,F), etc. (4.5)

into the reduced energy equation (4.2), after some rearrangements of terms, yields

. o0 . A o
p: 3—T’7+P95+P(3T +775T‘)T+P(5‘"+773—) Y
. ) :
_ Ty-1 4
HEBE) R
o6 .. oy 08 oF _
(% ®p)- ox + (3F ®p)- ax 0 (4.6)

where the symbol ® denotes tensor product and for clarity, we have temporarily used
the symbols such as § and 7 in order to distinguish between the response functions
and their values.

Equation (4.6) has the form (A.1) of Appendix A with N = 5, namely

a+ a1y + agys + azys + asys + asys =0



with
, 00 a2
a = p-a—T-7+p0€,
op .88
o = Plgrtlg7 )
a — 6_1’&_*_".8_9_\.
2 - p 37 7787 ’
N o) 06
— Ty—1 oy v
ay = L %®A+A -aé
4 - 2 6’7 p 8’7 1
8 .
as = '8_F®p 3
and
Oy OF

y1=T> Yo =1, y3=Fa y4=a_xa y5=—6;’
and hence equation (4.6) holds only if
a=a,=ay=a3=a4 = ag = 0.

From equations (4.7) and (4.8), using a4 = a5 = ap = 0, we obtain

0 _, 9 0,@:
oy

.6—"/ ,a—F'= 0

From equations (4.5) and (4.9), we conclude that
0=06(T), v =o%(T,F).

With the choice of

a0

T=0+86, (00>0), -é-j:;=

1
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(4.9)

(4.10)
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and without loss of generality, we may replace T" by 6 in all constitutive developments
of this section. We may use the same symbols for a function and its value. From

equations (4.7)-(4.10), we obtain

4

_ oY
77——80,

FT, p- v+ pb¢ =0, (4.11)

with p = p(4,F, g).

In the rest of this section, we consider the linear theory of thermoelasticity type I
and linearize the foregoing constitutive results. Thus we assume that the temperature
0 represents departure from an equilibrium temperature 8y and u = x — X is the
displacement vector from an equilibrium state with zero stress such that both 6 and
u are small of 0(g) and further we restrict our attention to an isotropic material. For
such a linearized theory, it will suffice to assume that the specific Helmholtz’s free

energy is a quadratic function of infinitesimal temperature and infinitesimal strain
E = %[Grad u + (Grad u)?], (4.12)
so that the reduced energy equation becomes
pot = %A(trE)Z + ptrE2 — = —— — —VOtrE, (4.13)

where 3* is the coefficient of volume expansion.
After simple substitution and rearrangement, we obtain the following coupled

system of partial differential equations:

B

3(1—2v)

Eﬂ*eo . . 2
—d = .
301 =27 iva=pr+kV-0, (4.15)

(A + p)grad div u + pV?u — grad 8 + pb = pii, (4.14)

cé+
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where the notation "grad” and ”div” stand respectively for the gradient operator

and divergence operator with respect to X.

The system of equations (4.14) and (4.15) predicts propagation of waves with

damping, which is due to the thermal part of the equations.

4.2 Thermoelasticity (Type II)
Using the similar assumptions as in section 4.1, we regard
T, B, F (4.16)

as the independent variables.

Introduction of constitutive assumptions of the forms
¥ =%(T,B,F), 0 =4(T,8,F), T ="T(T,8,F) (4.17)

and similar assumptions for p, 7, and £ into the reduced energy equation (4.2),

after some rearrangement, results in
b 00 A - Bl
p9£+p(6T 8T)T+[ (6ﬁ 8ﬂ) RRAR S 3T]
. 0y T o0 .\ o8 (06 .\ OF
+[-T+p (3F+naF>F] L+<aﬁ®p> ax+(8F®p> 7 =0 (4.18)
Equation (4.18) has the form (A.1) of Appendix A with N = 5, but now with

An

a = pbg,

%
P(ﬁ'*‘ﬂaT)

B i) , 00
Ay = F(aﬂ IB)-I-p-éT,

ai
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@ = [_T+ (g;.«b‘J’"aF)FT]’

a4y = o9 ®
4 — aﬂ p7
_ a6 o
a5 - aF p
and with variables 1, ¥, ..., y5 taken to be
. 0 OF
B=T, =7 y3=L, yu= aﬂ, Ys = ax
And hence we find that equation (4.18) holds only if
a=a1'=a2=a3=a4=a5=0. (4.19)
Now a4 = a5 = 0 leads us to
98 06
— =0, — = 0. 4.2
In view of the above results, we find
=0(T), v =¥(T,B,F), (4.21)

where without ambiguity in equation (4.21), we have used the same symbols for the

functions 0, ¥ and their values. With the choice of

T =60~6 (T >—b), %: 1 (4.22)

and without loss of generality, we may replace T by 6 in all constitutive developments
of this section.

From equations (4.18)-(4.22), we obtain

__9% o _ 3¢ ’
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It is important to note that in this development there is an absence of internal
rate of production of entropy ¢ so that there is no dissipation of energy.

In the rest of this section, we consider the linearized version of the foregoing
constitutive developments and then discuss the complete linear theory of thermoe-
lasticity of type II. As in Section 4.1, again we assume that the temperature 6, the
thermal displacement « and the relative displacement u = )x — X which respectively
represent departures from an equilibrium temperature 6, an equilibrium mean ther-
mal displacement ¢y and an equilibrium position of the state of the body with zero
stress—are all small of 0(¢) and we restrict our attention to an isotropic material. In
the development of such a linearized theory, it will suffice to assume that the specific
Helmholtz’s free energy is a quadratic function of the infinitesimal temperature, the
infinitesimal thermal displacement gradient 8 = Grad « and the infinitesimal strain

E defined in equation (4.12), so that

¢=l A(tr E)% + trE2——€-2-—ﬂL9trE+—ﬁ B (4.24)
¥ =3 # %  3(1— 2v) ’ '

where k* is a constant.

After some simple substitution and rearrangement, the following coupled system

of partial differential equations are obtained

(A + p)grad div u + pV3u— é—(%—)grad 8 + pob = pii, (4.25)
b+ %dw i = por + k* V2. (4.26)

The system of equations (4.25) and (4.26) permits propagation of harmonic waves

without damping.
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4.3 Thermoelasticity (Type III)

For the theory of thermoelasticity of type III, we require constitutive equations
for

T’ p’ ¢’ 77, 0, f

and we assume these are functions of the independent variables

T, v, B, F;X. (4'27)

However, for simplicity, in what follows we suppress explicit dependence on X and

regard the material to be homogeneous. Introduction of constitutive assumptions of

the forms

% =9%(T,v,B8,F), 0 =6(T,~,B8,F), T="T(T,v,B,F), ect, (4.28)

into the reduced energy equation (4.2), after some rearrangements of terms, yields
L 2
Doy + 008
o : P : o T
+p (5‘T+ 6‘T)T+p<8 +17a ) “Y+p (6ﬁ+n8ﬁ cFly
. By, ) .
+[—T-L+ (3F+n3F> F]

0 .\ &y (o _.\ 9B .\ OF
+(a,7®p> +(aﬂ®p> o +<3F®p) 5 =0. (4.29)
Equation (4.29) has the form (A.1) of Appendix A with N = 6, namely

a+ a1y1 + agys + azys + asys + asys + agys = 0, (4.30)

with

) a¢ T\ 08



a — a_’l)b_i_“gié_
oy b
ay = P(%*"?a‘),
NS o 80
- T\—1 oy | .oV
— :_l. i@".}."@.@.’i
o6 .
as = 6_F®p’
6 .
ag = %@’P
and
Oy OF 9B

u=T,1=" p=F u=
The equation (4.29) will hold only if
a=a1 =0y =a3 = a4 = a5 = ag = 0.
Now a4 = a5 = as = ag = 0 leads us to
00 o6 oy b

=0 =0,_5,§=

-a—; ,'a—F"Z'O,% 0

‘From equation (4.33), we conclude that

0 =0(T), ¥ =%(T,F,B),

5;{‘, y5=§, Ys = I
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(4.31)

(4.32)

(4.33)

(4.34)

where without ambiguity in equation (4.34), we have used the same symbols for the

functions 6, 1 and their values. Hence with the choice

06

T=0+90 (90>O),3—T=

1

(4.35)
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and without loss in generality, we may replace T by 6 in the constitutive developments
of this section.

From equations (4.31)-(4.35), we obtain

oY 0y

_ _ o
=% T=’GF

F7, p-’y+p%~FT'y+p0§=0. (4.36)

In the rest of this section, we consider the linear theory of thermoelasticity of
type III and linearize the foregoing constitutive results. Thus we assume that the
temperature § represents departure from an equilibrium temperature 6y and u =
x — X is the displacement vector from a state with zero stress such that both 6 and
u are small of 0(g). We also assume that both time and space derivatives of § and
u are of small of 0(¢). For such a linearized theory, it will suffice to assume that the
specific Helmholtz’s free energy is a quadratic function of infinitesimal temperature,
infinitesimal strain E and 8. In the context of the linearized theory and for an

isotropic material, the specific Helmholtz’s free energy is

potp = 2/\(tr E)* + ptr E 2, 30 _2y)6tr E + 50,

B-B. (4.37)

Substitution yields the following coupled system of partial differential equations:

E

E
1 2 — O t————
(A + p)grad div u + uV*u 30— 22)

E(*6,
3(1 —2v)

grad 6 + pob = poi, (4.38)

poc + dvi @ = por + kV26 + k*V24. (4.39)



Part III

One-dimensional
Thermal Shock

Problems
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Chapter 5

One-dimensional Problem

In this part, we will use the theory developed in Section 4.3 to solve some one-
dimensional problems. The one-dimensional problem due to its relative simplicity,
has had a broad treatment in the literature. The particular problenis to be treated
here are that of an isotropic homogeneous thermoelastic half-space, and the boundary
conditions considered are the same as those considered by Boley and Tolin [36] to
solve the corresponding coupled thermoelasticity problems.

For a homogeneous, isotropic elastic body, the basic equations for the linear

generalized theory of thermoelasticity of type III developed in [32] are

(A + w5 + pus jj — 6 + pfi = piis, (5.1)
pcé + ")/eoﬁi’i = pQ -+ ké,ii + k*e,,-i, (52)
03 = M0 + p(usg + ujs) — 76, (5.3)

where

[
vy o= gE,B /(1 —2v),
k* = a constant,

B* = coefficient of volume expassion,

a comma followed by a suffix denotes material derivative and a superposed dot

denotes the derivative with respect to time.
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To transform the above equations to nondimensional form, we define the following

nondimensional variables

z; = /!,
t = tagfl,
0 = 6/6,,
u: = wufl,
Uéj = Uz':://v‘,
= p/po,
Q = Qla,
fi = fi/d,

where

! = astandard length,
ap = a standard speed,

po = a standard mass density.

The basic equations (5.1)-(5.3), dropping primes for convenience, reduce to the

following
paatl; = Qg + U5 — asl; + pay f;, (5.4)
8 + bz + pasQ = paeh + arily;, (5.5)
O = %ui,i&j + (uij + uj;) — asb, (5.6)
where

Q= p()ag//'l‘7
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a = (A+up)/p
a3 = 76o/u,

as = kap/k*l,
as = poag/(k*6o),
ag = pocag/k”,

ar = vyai/k*.

For a one-dimensional problem, all quantities depend only on one space coordi-

nate x and time t, such that:

stress o =o(z,t),
displacement u = u(z,t),
temperature 0 = 6(z,1).

For this case, equations (5.4)-(5.6), with @ = 0, f; = 0, reduce to

payii = (ag+1)u" — asf, (5.7)
0"+l = pagd + arii (5.8)
o = (ap+1)u — s, (5.9)

where prime and dot denote derivatives with respect to x and ¢, respectively, and ¢
denotes the normal stress.

Introducing the thermoelastic potential function ¢ defined by

9¢

U= 5 (5.10)
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equations (5.7)-(5.9) reduce to

paup = (a2+1)¢ —asb, (5.11)
0" + 48" = paghd+ong”, (5.12)
o = (ep+1)¢ —asf =pud. (5.13)

Applying the Laplace transform defined by

9(z,p) = /0 9(z,t)exp (—pt)dt, Re(p) >0, (5.14)
to equations (5.10)-(5.13), we arrive at
_ d _
7= e+ 1)L — s (5.16)
o3 dz? ’
o 4% _ d2 -
P 5P = {(1+ 0417)@ — pogp}0, (5.17)
7 = paup’p, (5.18)
where we have used the following initial conditions
u(z,t) = u(z,t) = 0(z,t) = f(z,t) =0, at t=0. (5.19)

Now eliminating & between equations (5.16) and (5.17), we obtain the following

differential equation for @:

(14 040) - — (a4 Py + b} =, (5:20)
where
by = P10y
(aa +1)’
by = pog-+ (P0(¢; ;F_:Yi;h)
by = L%

(a2+1)'
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Using the regularity condition
@ — 0, as T — 00, (5.21)
the solution of equation (5.20) for @ is given by
@ = A exp (—A1z) + Az exp (—Aa2), (5.22)

where A;, As are functions of p, and A; and Ag are the positive roots of the equation

(1 4+ aup) Xt — (byp + bo)p?A2 + bgp* = 0, (5.23)
given by
N = (blp + b2) + (—1)i+1 \/(blp + b2)2 - 4b3(1 -+ a4p) z
i = P 2(1 + a4p) »
i=1,2. (5.24)

By simple substitution from equation (5.22) into equations (5.15), (5.16) and

(5.18), we arrive at the following expressions for @, § and :

4 = —AAiexp (—)\1.'17) — A As exp (—)\QIL‘), (525)
0 = BjAjexp(—A\iz) + BaAsexp (—lox), (5.26)
& = pap® {Aexp(—Aiz) + Azexp (—A22)}, (5.27)

in terms of the two unknown functions A4; and As, which are to be determined by

the associated boundary conditions at £ = 0 and

B = Ci\®— Cop?,

Bg = 01A22—02p2. (5.28)
01 _ a2+1
a3

Cy = p2, (5.29)



Chapter 6

One-dimensional Thermal Shock Problem

—Stress-free Boundary

We consider now a thermal shock problem for a homogeneous isotropic elastic
half-space x > 0 with stress-free boundary z = 0. At time ¢ = 0, the stress-free
boundary is suddenly heated to a uniform temperature and left in that state. The
problem is to determine the distribution of stress and temperature for £ > 0 and
t>0.

The problem is usually named after the Russian lady scientist V. I. Danilovskaya,
who had first studied it in the context of classical thermoela;sticity by neglecting the
coupling term in the heat transport equation.

The data of the problem suggests that this is a one-dimensional problem, all the
field variables depend on z and ¢ only. Under the assumptions made, the initial and

boundary conditions are given by

u(z,0) = u(z,0) = §(z,0) = (z,0) = 0, (6.1)

o(0,t) =0, 6(0,t) = ToH(t) 7 (6.2)
and the regularity conditions are
(o(z,t), 0(z,t)) — 0, as £ —> 00, t>0, (6.3)

where Tp # 0 is the uniform temperature input applied to the boundary and H(¢) is

the Heaviside unit step function, i.e.,

58
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0, fort<0,

H@:{

1, fort>0%.

Taking the Laplace transform of the boundary and regularity conditions, we find

that
g(z,t) = 0, at z=0,
_ Ty
O(z,t) = 3 at z=0 (6.4)
and
{6(z,1),0(z,t)} — 0, as z—r oo, t>0. (6.5)

The expressions for § and & given by equations (5.26) and (5.27) satisfy the

regularity conditions (6.5), and the boundary conditions (6.4) will also be satisfied,

if
To
A o= —0
' p(B1 — Bs)
Tp.
Ay = el
? p(B1— B)
Substituting the above expressions for A; and A, in equations (5.25)-(5.27), we
find that
T = ——L{A exp (— A1) — Ao exp (—Aez)} (6.6)
2(B1— By) 1 1 2 €Xp 2%) 5 .
_ To
0 = ————={Biexp(—A1z) — Baexp (—A22)}, 6.7
p(Bl—Bg){l P (—M1z) — Baexp (—Aez)} (6.7)
a1 p1
A M{exp (—A1z) — exp (—Aa22) }. (6.8)
By — B,

Theoretically, we can take the inverse Laplace transform of equations (6.6)-(6.8),

and find the expressions for the quantities concerned, but it is difficult to find the
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inverse transforms of these equations in the present form. We shall try to find the
inverse transforms for small values of time (large values of p) by expanding the above

expressions in the inverse powers of p to a few terms.

6.1 General Case

To find the small time approximate solution, we let z = 1/p in equation (5.24)

and obtain
A 1 (bl + bgz) + (-"l)i+1\/(b1 + bgz)2 _ 4b3(z2 + a4z) }1_
L = = s
= o yltd
1 : byby — 4bscy 1.1 1
= —{(b1 +b2z) + (=1)™* b1 (1 + *‘L‘%—z—ﬂz)i}f(l + 2%,
20} 2 b? o

Expanding the following expressions in powers of z and retaining only necessary

terms, we find

(l + 2b1b2 —_ 4b3a4 z)% ~ 14 blbg - 2b30&4
b} ~ b} ’
1+ ~ 1-2,

(87} (6 7}

Using a similar method of expansion, we obtain

1 2b1by — 2b30x z
Al ® —{(2b1 + '—1—"2"1)—&2)(1 — =)}
203 2 1 Q4
~ n 11— (b% + b1b2a4 - bgaz — b%z)_%_
bia}z Q4
— blii (1 + b1b2a4 —_ b;;aﬁ - b% )%
alz aaby
~ b%_ 1 b1b2a4 - bgaﬁ - b%



= (b_l)%l + _;_blb2a4 — b3a§_2 — b%3
a4 z (a4b1) 2
1 231
)\2 ~ T {21)30!42(1 b -—-)}2
203 2 ¥4
1
= T (2b3a4z)%
V2aiz
= bgiz_%.
Now we may write
AR bip 401, Mg bagp?,

where

b1o

bag

bi1

Now from equation (5.28),

B,—B, =

from which, we obtain

= (Z—i)% = bs(ag + 1)7,
= 4,
1 (b1bcrs — bgal — b2)
2 (byow)?
we find that

C1(A3 = A3)

C1[b30p® + (2b10b11 — b3y)p + by

2b1ob1y — b3y _; + b3 )
’

Gy b%op2 ( 1+ ) D 3
blO b10

1 1 2b10b]_]_ - b%o -1 b%l -9 2bl()b]_1 b20
Bi-B © Gl - P n? T
1 _
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(6.9)

)’r7
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2b19b11 — b3y
b3
— 4by1ob11b50 — 33102, — bl
Dy = = .
‘ 10

Dy

)

Using the same method of the expansion, we find that

A
p(By — Bo)

Q

A2
p(B1 — By)

Q

Q

By
p(B1 — By)

Q

Q

__ B
p(By — By)

Q

InA
~

1 _ _
01 e ——=5—5(1 — D1p™" — Dop™?)(brop + b11)

e b2 [b10p™2 + (b1 — D1b1o)p™ + (—=Dabig — D1b1)p~,
1010

1
2

1 . _
1—Dip~ Y — Dop=2)b
C'1bmp ( 1P 2D ) 200

1
T, ——=(bagp™% — Dybogp™% — Dabagp™3),

1

C, b20p3 ——=5—(1 — D1p™! — Dyp™?)[(C1b2, — Ca)p® + 2C1b1obyip + C1b2]
¢

ap‘{(clb%o — Co)p~t + [2C1b1gb1y — Dy (C1b2, — Co)]p~2
10

[Clb%l — 201D1b10b11 - Dg(clb%o - Cz)]p_3},

1 = =
Clb 2 ——5—(1 = D1p™' — Dap™?)(C1b34p — Cop?)

2 =5 [—Cap™ + (C1bby + CaD1)p~> + (C2Da — C1D1b30)p ™.

Using the above expansions in equations (6.6)-(6.8), we get

Q

U

Ql
Q

T -
it ——5{(Bw ™% + Eop~® + E3p™) exp (—bigpz — by12)
—(Eap~ 4+ E’sp_% + Esp_g) exp ("-bzopéx)}, (6.10)
T = — = _
FISQ;{FW L4 Fop™2 + Fyp3) exp (—biopz — biz)
1

— (Fypt + Fsp~2 + F6P~3) exp (—b2oP%$)}» (6.11)
paiTy
C1b%,

{exp (—biopz — by1z) — exp (~bap?z)}, (6.12)

(élp_l -+ C—¥2p"2 + é3p—3)



where

—bwo

Dibyp — by,

b11D; + Dabyo,

—bao,

D1 by,

Dabao,

Clbfo ~ Ca,

2C1b1oby; — Dy (C’lbfo — (),
C1b}) — 2C1 D1biobys — Da(Crby
—Cs,

C1b3y + CaDy,

CaDy — C1D1b3,

1,

—Dy,

—Ds.
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- 02),

Now, to obtain the inverse Laplace transforms of equations (6.10)-(6.12), we will

need the following results ([37], p.494)

t‘l)

L™ = oy

L7 exp (~ap)] = b(t—a),

L p~ %" exp (—ap~iz)] = (4t) Ti"er fof

v>—1,’

a>0,

2_«/5)’
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n=0,1,2,...,

where L[ ] denotes the inverse Laplace transform, §( ) is the Dirac delta function,

and er f() is the usual error function, and also we have the following notation

erfe(z) = 1—erf(x),

ierfe(z) = ilerfe(x) = / ” erfe(e)de,

irerfo(z) = /w i Ler fe(¢)de,
n=234...

We note that
exp (—A\iz) = exp(—biopz) - exp (—by12),
exp (—Xpz) = exp (—bypiz).

Using the above results and the following convolution theorem
L7o() - 020 = [ fult = 2)fo(2)dz

where

L ai(p)] = f1(®), L7'ga(p)] = fo(®)

in equations (6.10)-(6.12), we obtain

T 3
u(z,t) =~ C’1b2 ——5{exp (—bnz) Z / — by — 2 dz

bgo.’l?

2/

t
0($,t) ~ C b2 {exp blliL') Z F / bma: — Z) %dz

i=1

)I“(j+1)




- Z Fy (48420 gy fc(bf*”“’)}
\/_
palTO t z(j'—'l)
1) =~ G; O(t — bz — 2)——d
o(z,t) i, Z {exp ( bna:)/o ( 10% — Z) X0 2
boox
48)0-D26-D gp (22081
—(4) fe( \/-)}
which may be further simplified to:
To 3. (t— Xio)!
u(z,t) =~ it {exp (— Xll)H(t—Xlo)gEjW——
— E 4t (.7'——) (2.7 5)e7~ C
g ;41 reCB,
(t — X10)0=1
6(z,t) = C’b2 {exp (— X11)H(t—X10)ZF——1'92———
j=1 J:
_ZF 4t (.7 4) 2(.7 4)e7~fc(X\/0_)}
j=4
3 (t — X10)U~D
o(z,t) = Cb {exp( X11)H(t — Xq0) Z —-————jlli)—

g (42) G-1),2G- 1)67.fc( \/_)}

where

X1 =bur Xyo=bor Xoo = bopz.
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(6.13)

(6.14)

(6.15)

Due to the presence of the error function in equations (6.13)-(6.15), we conclude

that this theory predicts an infinite speed for heat propagation. To analyze the

results given above, we use the following values of the parameters involved in those

equations:

by = 2.8, by = 5.2, bs = 3.35, by = 2.25,

Q) = 1.25, Qo = 025, Qg = 025, Qg = 3.1, pPo = 1.0.

(6.16)
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The numerical values of temperature and stress distribution for ¢ = 0.02, 0.04, 0.06
are given in Tables 6.1-6.3. And these values are displayed in Figures 6.1-6.6.

The graph of o/Tj in Figures 6.2 and 6.4 has a sharp corner at z = 0.05, since
the value of o¢/T, decreases from & = 0 to z = 0.05 and it starts increasing for
z > 0.05 and the graph is a straight line from z = 0 to z = 0.05. This sharp turn of
the graph at # = 0.05 may be avoided by obtaining values of o/Tj at large number
of points in the interval [0,0.1] (e.g. = =0.0, 0.01, 0.02, 0.03, ..., 0.09, 0.1). A similar
explanation applies for the graph of ¢/T} in Figure 6.6 for 0 < z < 0.2.

It is due to the loss of accuracy in the approximation that these graphs show that

o /T is not equal to zero at z = 0, although it is prescribed to be zero at z = 0.



.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
4000
4500
.5000
5500
.6000
.6500
.7000
.7500
.8000
.8500
.9000
.9500

Table 6.1: Numerical values of temperature and stress for ¢ = 0.02
0/,

.9983
7181
.3993
.1882
0745
0245
0067
.0015
.0003
.0000
.0000
.0000
.0000
.0000
.0000
.0000
0000
.0000
.0000
.0000
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O'/T()

.0099
-.1882
-.1033
-.0482
-.0190
-.0062
-.0017
-.0004
-.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000



.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
4000
4500

. .5000

5500
.6000
.6500
.7000
.7500
-.8000
.8500
.9000
.9500

Table 6.2: Numerical values of temperature and stress for ¢ = 0.04
0/T,

.9966
.8303
5752
.3684
2171
1173
.0579
0261
0107
.0040
.0013
.0004
.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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O'/To

.0203
-.2303
-.1561
-.0983
-.0572
-.0306
-.0150
-.0067
-.0027
-.0010
-.0003
-.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000



.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
.4000
4500
.5000
.5500
.6000
.6500
.7000
.7500
.8000
.8500
.9000
.9500

Table 6.3: Numerical values of temperature and stress for ¢ = 0.06
6/Ty

.9947
757
.6655
4764
3232
2073
1254
0715
.0384
.0193
.0091
0041
0017
.0007
.0002
.0001
.0000
.0000
.0000
.0000
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O'/To

0311
.0216
-.1902
-.1331
-.0886
-.0560
-.0335
-.0189
-.0101
-.0050
-.0024
-.0010
-.0004
-.0002
-.0001
.0000
.0000
.0000
.0000
.0000
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6.2 A Special Case

Because the constitutive equations (5.4)-(5.6) include a diffusion type equation
for heat conduction, generally, this theory predicts an infinite speed for the heat
propagation. But for a special case, when k* > k, that is, oy = 0, b = 0,
equation (5.24) becomes

i = cip, i=1,2, (6.17)

where

by + (—1)it14/b3 — 4b
=\J (~1)e B — dby

2
Now from equations (5.27), (5.28) and (6.17), we have

1 1
Bi—By,  Ci(AM—-)23)
1 N
= =, 6.18
Ci(cd —)p*  p? (618)
where
1
N = —" .
Cicf — Ci3’
Substituting from equations (6.17) and (6.18) in equations (6.6)-(6.8), we obtain
ToN
T = —;—2{01 exp (—Alm) — cpexp (—haz)}, (6.19)
f = @{Nl exp (—A\1z) — Ny exp (—hqez)}, (6.20)
g = parTolV {exp (—Mz) — exp (—A22)}, (6.21)

where
Nl = Clc%—CQ,

Ny = Cic—Cs.
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Taking the inverse Laplace transforms of equations (6.19)-(6.21), we obtain

u(z,t) = —@{qf[(t —az)(t — ) — H(t — coz)(t — cz)}, (6.22)
9(37, t) = T()N{Nl.H(t - 6137) - NzH(t - 02.’17)}, (623)
o(z,t) = parToN{H(t — c1z) — H(t — coz)}. (6.24)

. For obtaining the numerical values of § and o, we have used the same numerical
values of the parameters as given in equations (6.16). The numerical values of the
temperature and stress for ¢ = 0.15, 0.25, 0.50 for various of z are given in Tables

6.4-6.6. The jumps in temperature and stress fields occur at z = z1, 7o as given

below:

t 015 0.25 0.50
z; 0711 .1186 .2371
zg .1728 .2882 .5760

The numerical values of temperature and stress are displayed in Figure 6.7-6.12.



Table 6.4: Numerical values of temperature and stress for ¢ = 0.15

0/Ty

1.0000 .

1.0000
.0668
.0668
.0668
.0000
.0000
.0000

Table 6.5: Numerical values of temperature and stress for ¢ = 0.25

8/T,

1.0000
1.0000
1.0000
0668
.0668
.0668
.0000
.0000
.0000

2

O'/To

.0000
.0000
-.0677
-.0677
-.0677
.0000
.0000
.0000

O'/T()

.0000
.0000
.0000
-.0677
-.0677
-.0677
.0000
.0000
.0000



Table 6.6: Numerical values of temperature and stress t = 0.5
6/To

1.0000
1.0000
1.0000
1.0000
.0668
.0668
.0668
.0668
.0668
.0000
.0000
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O'/Tg

.0000
.0000
.0000
.0000
-.0677
-.0677
-.0677
-.0677
-.0677
.0000
.0000



Fig.6.1 Numerical values of temperature 6/T, against z
for a free boundary problem at ¢ = 0.02

0.10

0

-0.10 |- ~1

-0.20 |- -

-0.30 [ .

0.00 -

-0.40

Fig.6.2 Numerical values of stress o /T, against z
for a free boundary problem at £ = 0.02

.0
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Fig.6.3 Numerical values of temperature 8 /T, against
for a free boundary problem at ¢ = 0.04

-0.10

-0.20

-0.30 - -1

-0.40

Fig.6.4 Numerical values of stress o /T against =
for a free boundary problem at ¢t = 0.04
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Fig.6.5 Numerical values of temperature 8/T; against
for a free boundary problem at ¢ = 0.06

-0.10

~-0.20 |- -

-0.80 |- -1

~-0.40

Fig.6.6 Numerical values of stress o/Tp against =
for a free boundary problem at ¢ = 0.06
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Fig.6.7 Numerical values of temperature 6/T; against z
for a free boundary problem (a special case) at t = 0.15

0.00

0

-0.02 - -1

-0.04 -1

-0.06 |- -

-0.08

Fig.6.8 Numerical values of stress o/Tj against
for a free boundary problem (a special case) at ¢t = 0.15

.0

7



1.0

0

¢ J—

0.8 |- -

0.6 - -

Fig.6.9 Numerical values of temperature 0/Tj against z
for a free boundary problem (a special case) at ¢ = 0.25

0.00

0

-0.02 - -

-0.04 |- -

-0.06 |- -

-0.08

Fig.6.10 Numerical values of stress o /T against z
for a free boundary problem (a special case) at ¢ = 0.25
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1.0

Fig.6.11 Numerical values of temperature §/T; against =
for a free boundary problem (a special case) at t = 0.5

Q.00

0

-0.02 |- ’ -

-0.04 |- .

-0.06 |- -

-0.08

Fig.6.12 Numerical values of stress o /T against
for a free boundary problem (a special case) at t = 0.5
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Chapter 7

One-dimensional Thermal Shock Problem

~Fixed Boundary

Now, we consider the problem of an elastic half-space > 0 which is kept at
a uniform reference temperature, with its plane boundary held rigidly fixed and
subjected to sudden heating such that the initial and boundary conditions are
u(z,0) = a(z,0) = 6(z,0) = 4(z,0) = 0,

u(0,8) =0, 6(0,t) =ToH(t),
and the regularity conditions are
(u(z,t), 6(z,t)) — 0, as z— 00, t>0, (7.1)

where T # 0 is the uniform temperature applied to the boundary and H(¢) is the

Heaviside unit step function.

The boundary and regularity conditions may be transformed to

a(z,p) =0, at z=0, (7.2)
0(z,p) = -1—;9, at =0, (7.3)
{a(x,p),é(x,p)} — 0, as T — 0. (7.4)

The expressions for @ and @ given by equations (5.25) and (5.26) satisfy the
regularity conditions (7.4), and the boundary conditions (7.2) and (7.3), will be

80
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satisfied, if

' P Bida — BoAy’
T
Ay = 0 A1

" p Bida— B2\
Substituting for A; and A, into equations (5.25)-(5.27), we find that

T())\l)\g

e exp (—A17) — exp (—A23)}, 7.5
P(Brva — Bay) P (FAaz) —exp (=hov)} (7.5)

- _ TO

b = (B — B2)\1){B1)\2exp( A1) — By exp (—Agz)}, (7.6)

= papTy

’ BlAz—ng\l{/\zeXp( Mz) = Arexp (—A22)}- (7.7)

Here, we use the small time approximation discussed in Chapter 6, to find the

approximate results for this problem.

7.1 General Case
Substituting for B; and Bs from equation (5.28), we find that
Bidg — Bohi = (C1A] — Cop®) Az — (C1A3 — Cop®) s

Now expanding the above expression in powers of 1/p, using equation (6.9) for

values of A; and Ag, we obtain

Bida— By =~ (Cyb3, - C'z)l')zopg + 2C1byobi1bagp? + C'1b%11720p% + Caobyop®

—(C1b3gb10 — Caby1)p® — Cibib2yp

C b2 - C )b20 1 Clb2 b]_() i C2b11
Cob 3 1 ( 1¥10 2 -5 _ 20 -1

Q



and hence
1 v L (Gl =Cohm . Cibhibio=Cabu
BiAs — BaAs p3Cabyo Cabio Cabio
+ (Clb%% ;bgz)%%o )
~ P3;2b10 (1= D% = Dp™),
where

(C1b%y — Ca)bao

Cab1o
by Ci, o bxp® Ci?, 5
=2 —hop” — = — ——=b10 2D,
bio | Cy 20 " b2 Cy2 07

Using the same method of expansion, we find that

A1

P(B1Ag — Ba)y)

Bi )

Q

2°Cobrs (1 = Dyp™% — Dyp™) (brobaop? + b11baop?)

1
A (blobzop_% — D1b1gbagp™ — (Dabigbag — bnbzo)P_%),

p(BiAe — Ba)y)

By

Q

1
—Dyp~% — Dyp1) -
p402b10(1 Dlp z 2P )

[(C1b%) — Ca)bagp? + 2C1b1gby1bagp? + C1b3,bagp?]
1
Cabio
+(2C1b1obi1 — (C1b2y — Ca) Da)bagp™3),

(bao(C1b%, — 02)10_% + (Cy — C1b24) D1bogp™2

(1—Dyp~% — Dyp™Y) -

BiXe — Bo)y

Q

1
p*Cabig
[—Cab10p® + (C1b3b1o — Cabia)p® + Cib11b2,p)]

1

—=—[~Cabiop™ “+ D1 Cabyop™*
Cobi 2010P 1C2010p
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A2p

+(b10C2D2 + Cibiob3y — Cabi1)p™?,

1
~ (1- D1P_% - sz_l)bmp%

BiXg — BaoAg Pp?Cabigo

Ap

1
Cabig

Q

(bzop_% — Dybaygp™2 — Dzbzop_%),

1

BiXg — BaAg p?Cabip
(b1op™* — biDip~% + (=b1oDg + b11)p~32).

Q

(1~ Dyp% — Dop™1)(b1op + b11)

1
Cabig

o~y
~o

Substituting the results in equations (7.5)-(7.7), we find that

where

]

Qi

Q

X

Q

To 5 7
Eip~% + Byp® + By
Cobro ( 1P % + Hap 7 + L3P )
{?XP (—biopr — by1x) — exp (—bzopéx)} ;
T
e g {(Fip™ + Fop™ + Fyp~%) exp (~biope — b11)
2b10
— (Fap™' + Fyp~% + Fep~2) exp (—bogp?z)},
[ T 5
% 2 0 {(Glp_% + Gop™2 4 Ga3p™ %) exp (—biopz — b112)
2b10

—(Gep™ '+ Gsp™? + Gep™2) exp (—bzop%w)},

Ey = —biobao,

Ey = bibaDs,

E3 = Dabiobao — b11bao,
Fi = by(Cidd, — Ca),

F, = (Cy— C1b%)D1byy,

83

(7.8)

(7.9)

(7.10).
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F3 = (2C1bigoby; — (C1b%y — C2)Ds)bag,
Fy = —Cabyy,
Fs = D1Cabyy,

Fs = byoCaDy + Cibighly — Cabys,

G1 = by,

Go = —byoDh,

Gs = —byDs,

Gy = b,

Gs = —bioDs,

Gs = —bioD2+ by.

Taking the inverse Laplace transform of equations (7.8)-(7.10), we obtain

t S+ L)
u(z,t) =~ C’zb EE{exp( bllx)/o 6(t—-bloa:——z) NG 1)
_ () 1+ gy fc(%%%)}, (7.11)
To 3 t Z%
0(z,t) =~ —b E; | 6(t — bz — —d
(%) Czblo{exp( 1156)2 ]/ ( 10% z)P(1+%) i
3 By (1) B0 Ve o205, (7.12)
j=4 \/_
3 ; i
o(z,t) = C,2b10 {exp b11$)jZGj/ 5(t—bloaz——z)mdz

s

Evaluation of the integrals in equations (7.11)-(7.13) leads us to

(t— Xlo)(1+§)
E;{exp (—X11)H(t — X10) .
az—:l I'2+%)

(7.13)

u(z,t) =

Czb
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i) (24 X
— (4r)d+ge+ )erfc(2\/(%)}, (7.14)
3 (= Xy
0(z,8) ~ 07;‘)’ {exp (—X11)H(t—X10)Z:1Fj-—(i_‘ (1)_(;3))
—-ZF (42) T 0 Der fo( =2 \/_)} (7.15)
o(e,t) = pCa;)To{eXP( X11)H(t—X10);Gj%
_iGj(th) i-er fo(22)}, (7.16)

=4 2vt

where
X11 = buz Xy = brox X0 = bao.

For obtaining the numerical values of 8 and o, we have used the same numerical
values of the parameters as given in equations (6.16).

The numerical values of the temperature and stress for ¢ = 0.02, 0.04, 0.06 are
given in Tables 7.1-7.3. And these values are displayed in Figures 7.1-7.6.

The explanation for sharp corners in the graph of /T in Figures 7.2, 7.4 and

7.6 is the same as given on page 66.



.0000
.0500
.1000
1500
.2000
.2500
.3000
.3500
.4000
4500
.5000
.5500
.6000
.6500
.7000
.7500
.8000
.8500
.9000
.9500

Table 7.1: Numerical values of temperature and stress for ¢ = 0.02
6/Ty

.9988
6633
3675
1728
.0682
0224
.0061
.0014
.0003
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

86

O'/T()

-.1755
-.1734
-.0949
-.0442
-.0174
-.0057
-.0015
-.0003
-.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000



.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
4000
4500
.5000
.5500
.6000
.6500
.7000
7500
.8000
.8500
.9000
.9500

Table 7.2: Numerical values of temperature and stress for ¢ = 0.04
0/T,

9971
7743
5345
.3412
.2006
1081
0533
.0240
.0098
.0036
.0012
.0004
.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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O'/To

-.1388
-.2130
-.1442
-.0907
-.0527
-.0282
-.0138
-.0062
-.0025
-.0009
-.0003
-.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000



.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
.4000
4500
.5000
5500
.6000
.6500
.7000
7500
.8000
.8500
.9000
9500

Table 7.3: Numerical values of temperature and stress for ¢ = 0.06
/Ty

9952
.8052
6225 .
4443
.3006
1923
1161
.0661
.0353
0178
.0084
0037
.0015
.0006
.0002
.0001
.0000
.0000
.0000
.0000
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O'/To

-.1070
-.1765
-.1756
-.1229
-.0818
-.0517
-.0309
-.0174
-.0093
-.0046
-.0022
-.0009
-.0004
-.0001
-.0001

.0000

.0000

.0000

.0000

.0000



7.2 A Special Case
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Because the constitutive equations (5.4)-(5.6) include a diffusion type of equation

for heat conductivity, generally, this theory predicts a infinite speed for the heat

propagation. But for a special case, when k* > k, that is, a4y ~ 0,

expression (5.22) becomes

)\i=cz'p) 1=1,2,

where

by + (—1)i+1 /b2 — 4b
=J (15— b

2

Now from equations (6.28) and (7.17), we have

1 1
Bidg—Behi  (CoAf— Cap?)de — (C1N] — CopP)
1
" (Cic}ep — Caco — Cre163 + Cocy)p3’
_ M
= >
where
M = 1

C]_C%Cz — 0262 — C’lclc§ + 0201 )

b]_NO,

(7.17)

(7.18)

Substituting from equations (7.17) and (7.18) in equations (7.5)-(7.7), we obtain

_ T()Mcl Co

u = -p—z{exp (")\137) — €Xp (‘—>\2£L')}, ]
_ ToM

g = ——Oz-)—{Ml exp (—A\1z) — My exp (—A22)},
F = M{CI exp (—Alx) — Cg €Xp (_>\2x)})

(7.19)
(7.20)

(7.21)
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where

M]_ = (Clc%—CQ)Cz,

Mg = (0103—02)01.

Taking the inverse Laplace transforms of equations (7.19)-(7.21), we find

v = —T-“flé‘:’%]‘l{ﬂ(t @)t —az) — Ht — o)t — o)}, (7.22)
6 = T()M{M;[H(t - clx) - MzH(t - 02112)}, (723)
o = payToM{ciH(t —c1z) — coH(t — caz)}. | (7.24)

For obtaining the numerical values of § and o, we have used the same numerical
values of the parameters as given in equations (6.16). The numerical values of the
temperature and stress for ¢ = 0.15, 0.25, 0.50 for various of z are given in Tables
7.4-7.6. The jumps in temperature and stress fields occur at z = z1, x5 as given

below:

t 015 025 0.50
z; 0711 1186 .2371
zg .1728 .2882 .5760

The numerical values of temperature and stress are displayed in Figures 7.7-7.12.



Table 7.4: Numerical values of temperature and stress for ¢t = 0.15
u/ To

1.0000
1.0000
.1481
1481
1481
.0000
.0000
.0000
.0000
.0000
.0000
.0000

Table 7.5: Numerical values of temperature and stress for ¢ = 0.25

’LL/T()

1.0000
1.0000
1.0000
1481
1481
1481
.0000
.0000
.0000
.0000
.0000
.0000
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O'/To

-.0883
-.0883
-.1501
-.1501
-.1501
.0000
.0000
.0000
.0000
.0000
.0000
.0000

O'/T()

-.0883
-.0883
-.0883
-.1501
-.1501
-.1501
.0000
.0000
.0000
.0000
.0000
.0000



Table 7.6: Numerical values of temperature and stress for ¢ = 0.5
U / T()

1.0000
1.0000
1.0000
1.0000
1481
1481
1481
1481
1481
.0000
.0000
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O'/T()

-.0883
- .0883
- .0883
-.0883
-.1501
-.1501
-.1501
-.1501
-.1501

.0000

.0000



Fig.7.1 Numerical values of temperature /T, against z
for a fixed boundary problem at ¢ = 0.02

0.00

-0.10

-0.20 - -

-0.30 | -

~-0.40

Fig.7.2 Numerical values of stress o /T against z
for a fixed boundary problem at ¢ = 0.02
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Fig.7.3 Numerical values of temperature /T, against z
for a fixed boundary problem at ¢ = 0.04

~-0.20

-0.30 |- —

Fig.7.4 Numerical values of stress o /T} against
for a fixed boundary problem at ¢ = 0.04
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Fig.7.5 Numerical values of temperature 6/T; against z
for a fixed boundary problem at ¢ = 0.06

0.00

o

-0.10 |- -

~-0.20 -

-0.30 (|- -

-0.40

Fig.7.6 Numerical values of stress o /T against z
for a fixed boundary problem at ¢ = 0.06
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Fig.7.7 Numerical values of temperature 6 /T, against z
for a fixed boundary problem (a special case) at t = 0.15

0.00

0

-0.05 |- . -

-0.10 | . .

" -0.15 - -

Fig.7.8 Numerical values of stress o/Tj against =
for a fixed boundary problem (a special case) at t = 0.15
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1.0

L2
To

0.8 |- -

0.6 - -

Fig.7.9 Numerical values of temperature /T against =
for a fixed boundary problem (a special case) at ¢ = 0.25

-0.10 |- -

-0.15 |- -

-0.20

Fig.7.10 Numerical values of stress o /T against
for a fixed boundary problem (a special case) at t = 0.25
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0.6 |- -

Fig.7.11 Numerical values of temperature 6/T; against z
for a fixed boundary problem (a special case) at t = 0.5

0.00

0

-0.05 - -1

-0.10 [ -

-0.15 |- -

Fig.7.12 Numerical values of stress o /T against z
for a fixed boundary problem (a special case) at t = 0.5
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Appendix A

The purpose of this appendix is to obtain the conditions which are both n ecessary
and sufficient for the requirement that an equation of the form (4.6) be satisfied
identically being independen t of these rate quantities. For this purpose, we first
observe that an equation of the type (4.6) can be recast in the form

N
> Y +a=0. (A.1)
n=i

Suppose that (A.1) holds as an identity for all arbitrary values of Yn in some
range of values which includes the values y, = 0, where the coefficients a, ..., a, are
functions of other variables independent of all y,. Then, (A.1) is a linear identity in

yn and it follows that necessary and sufficient conditions for (A.1) to hold are
a=0, a,=0(n=12,..N). (A.2)

The variables in (A.1) may represent scalars, or a,, ¥, may be vectors with a,y,

as scalar product of the vectors.
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