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Abstract 

This thesis is concerned with the generalized theories of thermoelasticity. Histor-

ical developments of the various theories of thermoelasticity are given in the intro-

duction. Part 1 covers the basic laws and the generalized theories of thermoelasticity 

with one relaxation time as well as with two relaxation times. Part 2 of this thesis 

gives the theories of thermoelasticity derived recently be Green and Naghdi. In Part 

3, we have formulated a one dimensional problem and then obtained a solution for the 

thermal shock problem for the stress-free as well as the fixed boundary. Numerical 

results are given in the form of tables and displayed graphically. 
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Introduction 

Thermoelasticity describes the behavior of elastic bodies under the influence of 

nonuniform temperature fields. It represents, therefore, a generalization of the theory 

of elasticity. 

Heat phenomena in elasticity were first discussed by Duhamel [1] in 1837. In 1885, 

Neumann [2] rederived the equations obtained by Duhamel earlier for the classical 

theory of thermoelasticity. In this theory, the equations of motion or equilibrium 

contain the temperature term, but the equation of heat conduction is independent 

of the strain field, which contradicts the physical experiments. 

Further development came in 1956, when Biot [3] introduced the coupled theory 

of thermoelasticity. This theory consists of two coupled partial differential equations 

in the displacement vector and temperature field one of which is hyperbolic, and tae 

other is parabolic. Due to the nature of the parabolic-type equation, this theory 

predicts an infinite speed for heat propagation, that is, if a material conducting 

heat is subjected to a thermal disturbance, the effects of the disturbance will be 

felt instantaneously at distances infinitely far from its source. This prediction is 

unrealistic from a physical point of view, particularly in problems like those concerned 

with sudden heat inputs. 

During the last three decades, a great deal of attention has been given to the 

generalized theories which are free from this drawback. These theories make use of 

modified versions of the classical Fourier's law of heat conduction and consequently 

involve hyperbolic-type heat transport equation admitting finite speed for heat prop-

agation. According to these theories, heat propagation is to be viewed as a wave 
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phenomenon rather than a diffusion phenomenon. A wave-like thermal disturbance 

is referred to as second sound—the first sound being the usual sound (wave)—and 

generalized theories predicting the occurrence of such disturbances are known as 

theories with finite wave speed or theories with second sound. These theories are 

motivated by experiments exhibiting the actual occurrence of second sound at low 

temperatures and for small interval of time. 

One theory of the generalized thermoelasticity was introduced by Lord and Shul-

man [4] in 1967 for the isotropic case and extended by Dhaliwal and Sherief [5] in 

1980 to the anisotropic case. By incorporating a heat flux-rate into the Fourier's 

law, this theory involves a hyperbolic-type heat transport equation admitting finite 

speed for heat propagation. Sherief and Dhaliwal [6] and Dhaliwal and Sherief [5] 

have established the uniqueness of solutions in the isotropic as well as anisotropic 

case for prescribed temperature on the entire boundary. Dhaliwal and Sherief [7] 

have employed a reciprocity theorem to derive an integral representation of solutions 

for the case of vibrations varying harmonically in time. Chester [8] has explained a 

clear physical meaning for the relaxation time and estimated the value. Ignaczak [9] 

has established the uniqueness of the solution for the heat-flux formulation of the 

theory in the isotropic case. A generalized one-dimensional thermal shock problem 

named Danilovskaya problem has been considered by many authors, e.g., Popov [10], 

Norwood and Warren [11], Kotenko and Lenyuk [12] , Rama Murthy [13], Sherief and 

Dhaliwal [14]. These authors have obtained different expiessions by employing differ-

ent notation. Other than this, some other one-dimensional half space problems have 

been studied by several authors under various other boundary conditions. Lord and 

Shulman [4], Achenbach [15] , Norwood and Warren [11], Lord and Lopez [16], Mengi 
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and Turhan [17] and Rama Murthy [13] have investigated the cases of unit step func-

tion type sudden stress/strain or temperature input on the boundary. Rama Murthy 

([13], [18]) has considered the unit step function type sudden velocity or temperature 

change, and constant velocity impact on the boundary. Chandrasekharaiah [19] has 

studies the case of thermal impulse on the strain free boundary. And Gawinecki [20] 

has studied the existence and uniqueness of solutions of thermoelastic equations in 

generalized as well as classical cases. 

Another theory of the generalized thermoelasticity was developed by Green and 

Lindsay [21] in 1972. By including the temperature-rate among the constitutive 

variables, this theory also gives a hyperbolic-type heat transport equation admitting 

finite speed for heat propagation. A remarkable feature of this theory is that it 

does not violate the classical Fourier's law, if the material has a center of symmetry 

at each point. Moreover, even in the general anisotropic case, the heat conduction 

equation of this theory does not include the heat flux-rate term. This theory is based 

on an entropy production inequality proposed by Green and Laws [22]. Suhubi [23] 

has formulated this theory independently. Chandrasekharaiah ([19], [24]), Chan-

drasekharaiah and Srikantiah [25], Dhaliwal and Rokne [26] have considered the 

half-space problem in the cases of thermal impulse, unit step function type sudden 

changes in strain, displacement, or heat flux on the boundary. And Sherief [27] has 

solved a thermo-mechanical shock problem for thermoelasticity with two relaxation 

times. Wang and Dhaliwal [28] have found the fundamental solutions of the gener-

alized thermoelastic equations of this theory. The detailed references regarding the 

developments in the generalized theory of thermoelasticity can be found in a review 

paper by Chandrasekharaiah [29]. 
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In recent years, Green and Naghdi ([30], [31], [32]) put forth a new theory of 

thermoelasticity, which provides sufficient basic modifications in the constitutive 

equations to permit treatment of a much wider class of heat flow problems. The 

characterization of material response for the thermal phenomena in [30] and [31] 

is based on three types of constitutive response functions . The nature of these 

three types of constitutive equations is such that when the respective theories are 

linearized, type I is the same as the classical heat conduction theory (based on 

Fourier's law), type II predicts a finite speed and involves no energy dissipation, and 

type III permits the propagation of thermal signals at both infinite and finite speeds. 

Some work concerning this theory has been done recently by Dhaliwal, Majumdar 

and Wang [33], in which they have considered the problem of thermoelastic waves in 

an infinite solid caused by a line heat source. 

This thesis contains three parts. 

Part 1: Thermo elasticity with second sound (or the generalized theories of ther-

momechanics). Detailed formulation of Kinematic Relations, Law of Motion, Law of 

Conservation of Mass, Law of Conservation of Energy and Second Law of Thermody-

namics is given in Chapter 1. The generalized thermoelasticity with one relaxation 

time in both isotropic and anisotropic cases is discussed in Chapter 2. And as a 

special case, the constitutive equations and governing equations are obtained for 

one-dimensional problem for the isotropic case. In Chapter 3, the governing equa-

tions for the thermoelasticity with two relaxation times are obtained. And as a 

special case, the governing equations for the isotropic case are derived. 

Part 2: Re-examination of the basic postulates of Thermomechanics. The new 

theory is outlined in Chapter 4, which contains a useful analogy between the concepts 
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and equations of the purely thermal and the purely mechanical theories and three 

types of constitutive equations and their linear forms. 

Part 3: One-dimensional thermal shock problems. To analyze the new theory, 

we have formulated a one-dimensional problem in Chapter 5. We have solved two 

one-dimensional thermal shock problems, one with stress-free boundary in Chapter 

6, and another with fixed boundary in Chapter 7. Numerical results are given in the 

form of tables and displayed graphically. 



Part I 

Thermoelast icity 

With 

Second Sound 
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Chapter 1 

Basic Laws 

Like other branches of thermomechanics of deformable bodies, the thermoelas-

ticity theory is based on the following fundamental equations ([34]): 

1.1 Kinematic Relations 

Let the position of a general point P of an elastic body in its initial state at time 

t = 0 be given by coordinates x1, x2, x3 in a rectangular Cartesian coordinate system 

fixed in space. Let ê1, ê2, e3 be the corresponding system of base vector (Figure 1.1). 

We then have 

di= dx1 + dx2 + êdx3 

for the line element in the undeformed body. 

After the body has been deformed, the position vector of the point P will have 

changed from its initial value i? to 

(1.2) 

where iZ = Umm represents the displacement vector. Analogous to equation (1.1), 

we write 

dJ=dx, (1.3) 

for the element in the deformed body. 

7 
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X2 

dx2 

e2 

Fig.1.1 

dx1 

bz 

I 

e1 

Fig.1.2 

X1 
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Base vector . (Figure 1.2), forms a nonorthogonal triad varying from point to 

point. This triad represents the deformed, originally orthogonal, triad of the base 

vectors ë. 

We consider all quantities (displacements and temperature) associated with the 

point as functions of these coordinates and of time t. 

Differentiating equation (1.2) with respect to x, we obtain 

flu = ei + u,u = eu + 'um,iem, (1.4) 

where u,j represents the partial derivative of u with respect to x. 

Using equations (1.1), (1.3) and (1.4), we find the expressions for the squared 

line elements (dr)2 and (dR)2 in the undeformed and deformed states of the body, 

respectively, as 

(dr)2 = 55dxdx5, (dR)2 = gjjdxudxj, (1.5) 

where 

e.e i 11, for i=j, 

o, for i 54 j, 

9i 9j (1.6) 

2ejj = U1,5 + U5,1 + Um,iUm,j. (1.7) 

The nine quantities e15 = eji represent the components of the Green's strain 

tensor defined as half the difference between the two metric tensors g15 and Sjj in the 

deformed and undeformed states of the elastic body, respectively. 

The equations (1.7) are called strain-displacement relations, or kinematic rela-

tions. 
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1.2 Law of Motion 

Consider a surface element dA whose normal was initially in the direction of 

ê1 (Figure 1.2). The stress vector acting on this element is then defined as the 

corresponding force divided by the initial area dA = dx2dx3. Resolving into three 

components in the directions of the three base vectors , , , one has 

= S1191 + SJ.2 g2 + S13 93-

In general, on a surface with normal initially in the direction of ë'j, we have 

Si = sjJ3.  

The nine quantities sjj constitute the (second) Piola-Kirchhoff stress tensor. 

It is now a simple matter to formulate the equations of motion for an element of 

the body with initial volume dV = dx1dx2dx3 and mass din = pdV = pddVd, where 

p and Pd are the mass density, and V and Vd are the volume occupied by the body 

in its reference configuration in the undeformed and deformed states, respectively. 

Taking components in the x1-direction of all force vectors s11 91 dx2dx3, ect., acting 

on the element (see Figure 1.2), multiplying with unit vector êj, and remembering 

that the stress vector —sijj on the left-hand surface of the element changes to the 

sij. j + (s j),idxi +. on the right- hand surface, with similar relations for the 

other surfaces, one finds from Cauchy's law that 

[(sijj),i + (s2j),2 + (saj.j),a] . ëi + pF1 = pu1, 

where F1 is the component in the x1-direction of the external force vector F per 

unit mass and dot over the quantity represents the partial derivative with respect 
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to time t. Two analogous relations are obtained for the x2- and x3-directions. From 

equation (1.4), one has 

jk =êj 4+Um,jmêk = 5kj +Uk,j. 

Hence, the three equations of motion read as 

[5ij(ökj + + pFk = PUk. 

(1.9) 

(1.10) 

By taking moments of the force couples 812 dx2dx3 and 821 th dx1dx3, acting 

on the element of Figure 1.2, one obtains 

12 02 dx2dx3 x II&I + s21 I  dx1dx3 x 2dx2 

= (s12 - s2i)2 x gfi dx1dx2dx3. 

And hence for a body in equilibrium, one must have 

which can be generalized to 

S12 = S2] 

sij  i,j=1,2,3. (1.11) 

We assume that this symmetry of the stress tensor holds also for a body in motion. 

The equations (1.10) are called the equations of motion. 

1.3 Law of Conservation of Mass 

The Law of Conversation of Mass expresses the fact that the total mass of the 

body remains constant, that is, 

fV'I pddVd = fV pdV, (1.12) 
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where p and Pd are respectively, the mass density in the undeformed and deformed 

states of the elastic body. Due to deformation, the volume of the element changes 

from its initial value dV = dx1dx2dx3 to 

dVd i ( x dg3)dxidx2dx3 = (1.13) 

where 

g = det I gij I = det I '5 + 2e12 I. 

From equations (1.12) and (1.13), one finds that 

Pd P /• 

Equation (1.14) is called the law of conservation of mass. 

1.4 Law of Conservation of Energy 

(1.14) 

The law of conservation of energy or the first law of thermodynamics is given by 

d 1. . dm + d Udm -f u u — -f dtm2 dtm 

= fm iA Fiidm +fiidA + fm i A Rdm -  Q1ndA, (1.15) 

where m is the mass occupied by the body, A is the closed surface of m, U denotes 

internal energy per unit mass, F is the body force vector per unit mass, fi is the 

applied surface stress, R is the heat produced per unit time and unit mass by heat 

sources distributed within the body and Qj is the heat-flux through the surface of 

the body taken positive outwards. Both fi and Qj are referred to the unit area of 

the surface of the deformed body. 
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The first and second terms on the left-hand side of equation (1.15) represent the 

rate of change of kinetic energy and internal energy, respectively. They are equal to 

the rate of work done by all external forces, and to the amount of heat produced per 

unit time within the body plus the heat transported into the body from the outside. 

Equation (1.15) may be transformed into a more convenient form with the aid of 

the principle of rate of work. This principle states that the rate of change of kinetic 

energy equals the rate of work of all forces, external and internal. Per unit of initial 

volume, the latter equals -. itj or, using iZ = ii4 and equations (1.8), (1.9) and 

(1.7), one obtains 

Si _. Ui  = C/c = —suk,(ök + Uk,j) = —sé. 

The principle of rate of work thus reads 

ifm ititdm = JM. Fttdm + fitdA - JVd séIdVd. 

Combining the above result with equation (1.15), gives 

Im (U - R)dm = I sèIJdVd - QndA. 

Putting dm = pdV and applying Gauss' theorem ( being an arbitrary vector) 

iA 
andA= f (a\/)dVd, 

with dVd = to the surface integral, one obtains, finally 

p(U - R) = sèj - qj,j, (1.16) 

where qj = represents the heat-flux vector, referred to the unit area of the 

undeformed body. 

Equation (1.16) is called the law of conservation of energy. 
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1.5 Second Law of Thermodynamics 

The second law of Thermodynamics demanding positive production of entropy, 

in the form of the Clausius-Duhem inequality, states that 

-J 5dm—f dm+f QflzdA≥o 
dtm mT AT 

(1.17) 

where T is absolute temperature and S is entropy per unit mass. Using Gauss' 

theorem, we are led to 

p(T - R) ≥ - qj,j + 

and upon elimination of R between equations (1.16) and (1.18), we obtain 

p(U - TB) ≤ s2-7 e - 

(1.18) 

(1.19) 

We now introduce the so-called Helmholtz's free energy function F, defined by 

Let us assume that 

then 

F=U — TS. (1.20) 

F = F(ejj,T;T), 

S = S(e,T,T), 

qj = 

sij = 

OF. OF. OF. 
F = + T +-T,j. 
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Substituting this into equation (1.16) and inequality (1.19), we find that 

OF OF 
(ph— - s)é1 + + S)t + OF . + - R) + qj,j = 0, 

OF OF OF. qi (ph— - + + S)i' + + ≤ 0. 

Since éjj, j' and T, j are arbitrary, and qj and the expressions within the paren-

theses in the inequality do not depend on these quantities, we conclude that 

Sij= p O_F (1.21) 
(1 623 

OF 
S = -, 1.22 

OF 
OT - 0, 

qj,j = p(R—T,), (1.24) 

≤ 0. (1.25) 

The above five equations describe the constitution of the thermoelastic material. 

Equation (1.21) represents the stress-strain law, while equation (1.22) defines en-

tropy. Substitution of equation (1.22) into equation (1.24), together with equation 

(1.23), leads to the equation' of heat conduction 

02F 02F. 
qj,j = PT( OeijaT  6 ij + T) + pR. (1.26) 

We note that the temperature T and strain components eij are coupled in the 

above heat conduction equation. 

The sixteen scalar relations of equations (1.7), (1.10), (1.21) and (1.26) form 

the basic equations of themoelasticity. They contain u, eij, sij and T as sixteen 

unknown functions of space xi and time t. They form the governing equations of the 

conventional coupled nonlinear theory of thermoelasticity. 
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1.6 Linear Approximation 

In the linear approximation of the theory, we suppose that the field variables are 

small enough such that the second and higher degree terms in these variables may 

be neglected in the governing equations. 

Then sj and ej3 reduce, respectively, to Cauchy's stress and strain tensors oij 

and €,. Equations (1. 7), (1.10) and (1.24), with Pd p, T 00, reduce to 

1 
= + (1.27) 

= püj, (1.28) 

qj,j = p(R - 0o). (1.29) 

Here oo is the initial uniform temperature (assumed to be positive). 

Let us assume that 

qj = ki - k1T1 + k5jE11, 

where the coefficients k, kij and lcz are functions of xi and T. 

Due to the inequality (1.25), we find that 

—qj = k + kT,5 + kiei. 

By combining the above two equations, one gets 

qi = (1.30) 

For V pF, its linear expansion (retaining only up to quadratic terms) gives the 

following 

V pF = Vo + cjjEjj + I Cijkl6iiCki - 1ij€jO + d0, (1.31) 
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where V0 is the energy at rest in the natural state, 0 = T - 00 and the coefficients 

c, Ckl, 13jj, and d are, generally, functions of xi and T. And Vo 0, if we assume 

that V=0, when 0=0 and €=0. 

Substituting from equation (1.31) into equation (1.21), we obtain 

oij = (Cik1 + Ckllj)€kl, (1.32) 

since c 0, if we assume that crjj = 0, when 0 = 0 and €jj = 0. 

The coefficients Ck1 are the elastic moduli. 

Considering the symmetry of the stress and strain tensors, from equations (1.32) 

and (1.31), we find that 

Ckl = CjikI = Clk, l3ij = fiji. 

We notice from equation (1.21), that 

88ij 041 
 = 

c9ekl aeii 

and hence, we find that 

Ck1 = C/di. 

Let 

t9U 

OT 

then using equation (1.20), we find that 

OF OS 

OT aT 

- OS_ 02F 
- TOT_ —T a2 

(1.33) 

(1.34) 
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TaF 2d  
a02 p 

M OO, 
P 

or 

d --Pc ---
20 

Linear expansion (1.31) becomes 

pF = 1 CijkIEijCkI - - (PC) 02. 
2 O 

From equations (1.21), (1.22), (1.23) together with equation (1.30), the following 

linear constitutive equations are obtained 

O•ij =CijklCkl - 

PC 
PS = •-0 + 

00 

qi = 

With the aid of equation (1.30), inequality (1.25) yields 

≥ 0. 

Thus the conductivity tensor is positive-definite. 

For a homogeneous body, Ck1, /3jj and kij are constants. 

Elimination S and qi from equations (1.29), (1.36) and (1.37), crjj from equations 

(1.28) and (1.35) and using equations (1.27), (1.33) and (1.34), we obtain 

+ pR = pcÔ + (1.38) 

Ck1 Uk,lj - l3ij0 ,j + pF = püj. (1.39) 
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Evidently, equation (1.38) is the heat transport equation and equation (1.39) is 

the (vector) equation of motion. These equations, which are coupled together, form a 

complete system of fields equations in the context of the linear conventional coupled 

thermoelasticity theory for homogeneous anisotropic solids. 

1.7 Isotropic Case 

For the isotropic case, we have 

Ck1 = )t5ökl + (öiköjl + '5il5jk)/2, 

kij = 

Aj = 

and the constitutive equations (1.35)-(1.37) reduce to the following equations 

= AöiEkk + 2/lCjj - /36ij9, 

PC 
PS = 

00 

qj = —kO,, 

where A and p are the isothermal Lame' constants, /3 = (3A + 2p)c and a is the 

coefficient of linear thermal expansion of the material. The field equations (1.38) 

and (1.39) now take the form 

kV2O + pR = pcÔ + Oo/3k,k, (1.43) 

/LV2U + (A + p)uk,k - ,30,j + pF = pu 2. (1.44) 

We see that the equation (1.43) is of parabolic-type, and the equation (1.44) is of 

hyperbolic-type. Hence we say that the classical thermoelasticity predicts an infinite 
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speed for heat propagation, that is, if an isotropic homogenous elastic continuum is 

subjected to a mechanical or thermal disturbance, the effect of the disturbance will 

be felt instantaneously at a distance infinitely far from its source. Moreover, this 

effect will be felt in both temperature and displacement fields, since the governing 

equations are coupled. 

This theory is called the theory of coupled thermoelasticity. 



Chapter 2 

Generalized Theory of Thermoelasticity 

with One Relaxation Time 

As mentioned before, the coupled theory of thermoelasticity predicts an infi-

nite speed for heat propagation, which contradicts the physical experiments. This 

shortcoming of the theory comes from the fact that the equation governing the tem-

perature distribution (heat transport equation), on which the theory is based, is a 

parabolic-type partial differential equation, which arises from the classical law of 

heat conduction. 

In the derivation of the coupled theory of thermoelasticity, the heat conduction 

law is taken to be linear, having the general form 

qi (2.1) 

For an isotropic elastic solid, this reduces to the well known Fourier's law 

qj = —k7. (2.2) 

For the generalized thermoelasticity in this chapter, equation (2.1) is replaced by 

a more general equation of the form: 

qi + aj + Aij4j = bT, + BijTj, (2.3) 

where a, Aij, b, Bij are material properties of the medium. 

21 
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2.1 Isotropic Case 

For an isotropic elastic solid, equation (2.3) reduces to 

qi + ráj = (2.4) 

where i-, the relaxation time, represents the time-lag needed to establish steady-state 

heat conduction in an element of volume, when a temperature gradient is suddenly 

imposed on that element. 

We introduce the Helmoholtz's free energy function in the form 

F(e 3,T) = U(e,T) —TS(e,T), 

and the first law of thermodynamics 

sjéj + pTS = pU, 

where 

(2.5) 

(2.6) 

pS = —qj,j + pR. (2.7) 

It follows from equations (2.5) and (2.6) and the relation 

OF. OFOeij OT  

that sij and S can be expressed in terms of F as 

OF 
sij = 

OF 

0T 

Substituting from equation (2.9) into equation (2.7), we find that 

02F. 02F  
qj,j = p(--T + Oeij OT  + pR. 

(2.8) 

(2.9) 

(2.10) 
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Combining equations (2.4) and (2.10), the energy equation in terms of F is ob-

tained in the following form: 

kTij D2F. •. a2 F 
= —pT[(T + rT) + ae..o(6uj + eii)} 

_pr[t2(ôl' +T a3 F )  + a2 F + 2T 3 F 
5 5 ,2) 

a3 F 
+eijTa2oTl p(R+rR).  

The middle bracketed set of terms on the right-hand side can be neglected within 

the framework of the usual assumptions of the linear theory, and thus the energy 

equation becomes 

02 F  
kT = _pT[g( + r) + oT(èij + ëjj)} - p(R + rl). (2.12) 

Now as usual in the isotropic case, the scalar function F can be expanded in the 

power series of the three strain invariants 4 '1e 'TTe and the temperature difference 

O=T-00, that is 

where 

F(e,T) = F(Ie,He,IT[e,O), 

le 1 = eij= 

e11 612 e22 623 e11 e13 
li + 

e21 622 e32 e33 

6 11 612 613 

e21 e22 823 

e31 e32 633 

+ 
631 e33 

1 ijk 
= Tô1mn8u18jm6 , 

1 j¼ . = n 6 ii6im (2.13) 
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and 

oji 
- J +1, when i, j are the same integer, 

1. 0, otherwise, 

0, 

when 1, m are distinct integers from 1 to 3 and 

i, j are an even(odd) permutation of 1, m, 

otherwise, 

i, j, 1, m = 1, 2, 3, 

with a similar definition for 

From equations (2.13), it is clear that 

0111e 

Oeij 

= 849 

= 5ij'e - e1, 

= eo,,ek - e3I + ö2jH. 

We take F in the following form: 

F(Ie, lie, lIfe, 0) = p(ao + alle + a2li+ a3fffe + a40 + a5I ± a6II 

+a7111e2 + a802 + a901e + a10011e + •), 

(2.14) 

(2.15) 

where a0, a1, • are constants. To linearize this theory, we keep terms of second 

order or less only in equation (2.15). From equations (2.15), (2.14) and (2.8), we 

arrive at 

sij = a15 + (a2 + 2a5)öekk - a2e + a908, 

where a1 = 0, since we assume that sij = 0 when eij = 0, 0 = 0. 

(2.16) 
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Taking 

a2 = —2k, 

a5 = 1 

a9 = —(3A+2t)a, 

in equation (2.16), we get the familiar linear thermoelastic stress-strain relations 

sij = 2te + Aekkö - (3\ + 2t)aöO, (2.17) 

where A, p are Lamé's constants and a is the coefficient of the linear thermal ex-

pansion of the material. 

Defining the specific heat at constant deformation by 

c=—T, 

assuming c to be a constant and noticing that 

a2 F - 8 ÔF - 1 9sjj - (3A + 2/L)a8 1  

Oe 5DT - 8T8e - p 82' - p 

the linearized energy equation (2.12) may be written as 

(2.18) 

(2.19) 

ICT,jj = pc(t + r) + (3A + 2)aOo(è + ëjj) - p(R + r1), (2.20) 

where T has been replaced by Oo by assuming 0 to be small. 

This generalized heat conduction equation (2.20), together with the equation of 

motion (1.44) given by 

püj = (A + + jiuj,jj - (3A + 2)a2 + pF, (2.21) 
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form the governing equations of the generalized theory as thermoelasticity with one 

relaxation time. 

It is easy to see that equations (2.20) and (2.21) are the counterparts of equations 

(1.43) and (1.44) in classical thermoelasticity. 

Due to the hyperbolicity of the governing equations, this theory predicts a finite 

speed for heat propagation. And when r = 0, equation (2.20) reduces to equation 

(1.43), that is, this generalized theory reduces to the coupled theory of thermoelas-

ticity. 

2.2 One-dimensional Problem 

For one-dimensional problem 

stress a = 

displacement u = u(x, t), 

temperature 0 = O(X)t), 

with F1 = 0, R = 0, equations (2.21), (2.20) and (1.44) reduce to 

192U 02U 190 

= (A + 21L)-j - (ax + 2ji)a, (2.22) 

020 00 00 02u 03u  
= pc( + r) + (X + 2/1)aOo( 0 + T ao2) , (2.23) 

OX 2 at atcr = (A+ 2p) - (3A + 2,u)a0. (2.24) 
ax 

Using the following nondimensional variables 
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t, 

9, 

- A+2t Pc 
- p 

9 

do 
or 

= 
(3A + 2it)a90' 

0' 

A+2p i  1  pc 
U = [p( ) 2 (3X + 2j)a90 T lul 

A+2p Pc 
r = ( )--'r, 

and dropping primes for convenience, we obtain the following 

Equation of motion 02'u (99 02u- - - = - (2.25) 
Ox2 o at2' 

(929 009' 02u 
Energy equation - = (1 + + 650 , (2.26) 

9x2 

Constitutive equation or = au - - 0, (2.27) 
Ox 

where 

E - (X + 2[L)2cE290  
- (A+2/L)pc 

Here, e is the well known thermoela.stic coupling constant, r is the dimensionless 

relaxation time. 

2.3 Anisotropic Case 

In the most general homogeneous anisotropic medium, the second law of thermo-

dynamics has the form of 

where 

sè - qj,j = p((J - R), (2.28) 

pTS = —qj,j + pR. (2.29) 
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Eliminating qj,j in the above equations, leads us to 

(2.30) 

Noticing that 

• au. ou. 
U = + W ij — eij, 

we can write equation (2.30) as 

• pt9U. 1 9U 
pS = T+ - s1)e. (2.31) 

The second law of thermoelasticity requires that S be an exact differential in T 

and ejj, therefore 

9S = pôCT 

OS 1 OU 
P = (p--sij). 

Using these relations and the identities 

02S a2S 

OT8e 5 = 5eOT' 

82u 
8TOe 1 = Oe 5OT' 

together with equation (1.35), we get 

liii = ; I ;(p.- OU --- - s5). 
.L 

Substituting from equatibn (2.32) into equation (2.31), we get 

• pOLlT OT  pS= 

(2.32) 

(2.33) 
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Let 

be the specific heat per unit mass in the absence of deformation (assumed indepen-

dent of T in the neighborhood of the equilibrium state T = 0). 

Substituting c into equation (2.33) and integrating it with respect to t, we obtain 

pS = pclogT + f3e1 + constant. (2.34) 

If in equation (2.34), we choose the constant in such a way that S = 0, when T = Oo 

and eij = 0, then equation (2.34), with this choice, takes the form 

PS = pclog (1 + -) + /3e15. (2.35) 
00 

Approximating log (1 + 0/0) by 0/oo, it further reduces to 

p0oS = pc0 + 0o/31e. (2.36) 

The linearized form of equation (2.29) is 

qj,j = —pOoS + pR. (2.37) 

By using equation (2.36), equation (2.37) reduces to 

qj,j = —pcO — 0o/3ê + pR. (2.38) 

We assume a generalized heat conduction equation of the form 

qi + T'j = (2.39) 

Now, taking divergence of both sides of equation (2.39) and using equation (2.38) 

and its time derivative, we arrive at 

pc(Ô + rä) + 00i3(e + re) — p(R+ r1) = ---(kijj 0,). (2.40) 
oxi 
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To get an equation satisfied by the displacements u, we substitute from equation 

(1.35) into equation (1.28), using the linearized strain-displacement relations 

eij = 1 + 

and the symmetry condition 

= Cklij = Cjikl = CJlk, /3ij 

we find 

-(C1jk1uk,1) - + pP = Üj. 

It is worth noting that for the case of isotropic case 

CJk1 = AS 1Akl + (SSi + 5iiSj,,)p, 

I8 ij = Oki 

and equations (2.40) and (2.41) reduce to 

where 

(2.41) 

kTii = pc(i' + r) + i3Go(e + ëjj) - p(R + r1), (2.42) 

pili = (A + + yujjj - /3T, + pF, (2.43) 

/3= (3A+2)a. 

It is clear that equations (2.42) and (2.43) are the same as equations (2.20) and 

(2.21) derived earlier for the isotropic case. 



Chapter 3 

Generalized Theory of Thermoelasticity 

with Two Relaxation Times 

In the previous chapter, we considered the thermoelasticity theory with thermal 

relaxation formulated on the basis of the modification of the classical Fourier's law. 

And we observe that this theory admits second sound only because of the presence 

of the flux-rate term in the heat conduction equation. 

In the present chapter, we consider a thermoelasticity theory with second sound 

which is not based on any predetermined form of the heat conduction law. This 

theory was developed by Green and Lindsay [21] in 1972. 

3.1 Governing Equations 

Like other thermodynamical theories of continua, the generalized theory of ther-

moelasticity with two relaxation times is also formulated on the basis of equations 

(1.7), (1.10), (1.14) and (1.16). But the entropy production inequality (1.18) for the 

homogeneous materials is now replaced by the following more general inequality: 

- R) + qj,j - ≥ 0. (3.1) 

Here T* is a constitutive function postulated to be positive. 

It may readily be seen that inequality (1.18), on which the classical thermoelas-

ticity is based, is a special case of inequality (3.1), for which T* = T. The functions 

31 
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T* and its reciprocal (T*)_l are known as thermodynamic temperature and coldness 

functions, respectively. 

In order to obtain the constitutive equations, we introduce an energy function 

F* through the equation 

and in general 

= U_T*S, 

= F*(T)T,Tj,ejj), 

T* = T*(T,T,1 j,ejj). 

(3.2) 

Note that unlike in the classical thermoelasticity, t is now included among the 

constitutive variables. If we set T* = T, then F* reduces to the Helmholtz's free 

energy F defined by equation (1.20). 

Noticing that 

fr* 19p* . 9F*.. ap*. c9F* . 
= 

DT*, T + OT*.. + + 8T*. 5T* . 
= --  

U = F*+T*S+T*S 

and substituting these results into equation (1.16) and inequality (1.19), one finds 

OF* OT* • OF* 
p(-; DT at - +S --)T + 

OF* S.--:)_ 

OF* ar. 

+S )t  + p( , + S•T)Ti 

at +qj,j = 0, 

OF* +S  OT* -)T . + p( 5F* + S- OT* •. -)T + p( + 
OF* 8T* 

aTj -  aT OT at 
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+{p( 0E----eij + S OT* 806ij 
Oeij ieij 

—) - 

+ T3i + --T,, + ≤ 0. 
OekI tj 

The above inequality should be valid for all temperature and displacement fields, 

and for all reference bodies, it being assumed that the energy and momentum equa-

tions balance by suitable choice of specific heat supply Q and externally applied 

body force F. Hence, we conclude ([35]) that 

0F' OT* 

OT ail 

OF* 

OT 

which lead us to 

OF* 0 

OF* OT* 
P( S—) -. Sij = 0, 

vej3 Oejj 

tj+p(T*,_R)+qj,j = 0, 

9p* OT* 
+S 7) 

P(- S-
OF* 021* 

;- + aT -)T + 

Sjj 

OF* OT* 

aT OT 
qj OT* OF* 
pT*5t+01 j 

OF* OT* OF*. ST* + qj,j 

OF* OT* qj  
' 

8F* 

=0, 

=0, 

<0. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 



34 

It is seen that 

T* = T*(T,T) . 

The above expression and equations (3.3)-(3.5) are the constitutive equations for 

S and qj, respectively, and equation (3.6) is the energy equation. These equations 

along with the fundamental equations (1.7), (1.10), (1.14), (1.16) and inequality (3.7) 

constitute the governing equations of nonlinear thermoelasticity with two relaxation 

times. 

If we drop t from the list of constitutive variables, equations (3.3)-(3.6) and 

inequality (3.7) reduce to the corresponding equations (1.21)-(1.24) and inequality 

(1.25) of classical thermo elasticity. 

If DT/OT 52 0 and F* depends on Ti, equation (3.5) gives 

5q - Oq 

öT 

When qj is a linear function of Ti, this relation gives 

kij = 

which means that the conductivity tensor kij is symmetric. 

3.2 Linear Approximation 

Here we consider the usual kind of linear theory in which the changes of tem-

perature, displacement components, and their space and time derivatives are small. 

Then sij and ejj reduce to Cauchy's stress and strain tensors oj and €jj, respectively. 

And we assume that 

T*(T,0) =T=T0+O. 
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In the general anisotropic case, for small strain and small temperature increment 

theory, we assume the following expansions (with zero initial stress and zero initial 

heat flux): 

V' pF* = Vo — a0 — bO — d92 —e0—   + a00, 

ci. 
+a-00, + a1kcO,k — 13ik€ikO + bk€kO 

00 

1 krs 1 
+O,rO,k + Cikrs€ik€rs2 00 , 

= To+0±0o+a0+0O+O2. 

All the coefficients in the above expressions are constants for a homogeneous 

body. 

Substituting the above expressions into equations (3.3)-(3.5) and inequality (3.7), 

with T* Oc, we obtain 

0 ik = Ciicrs rs - I3ikO + bkO + aikrO,r, 

qj = --.(a0 + a1O + a868 + 
a 00 00 

p8={b+(e_1)0+(f_)O a a a a - - bkEk}, 00 

(.- — a)Ô + {--(e - ) — d}OÔ + a6,O — 

+(_,@ij — — Er80,i + {2(f — 2) — e}O2 

— ≤ 0. 
00 00 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

The above inequality then yields the following restriction on the coefficients 

b = aa, 
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da = e— bp — a =e—a,8, 

a2 = 0, 

bij = —a/3jj, 

ak = 0, 

00(da - h)O2 + 2cÔ0, + kijO,iO,j ≥ 0, 

where 

ha=f_L. 

Let 

then with T* 00 and from the expansion for V*, we find that 

dT* dO0 

P p 

or 

PC 

00 

Let us define a0 by 

hO0 
a0 = -. 

PC 

Now, we can reduce equations (3.8)-(3.10) and inequality (3.11) to the following 

0jj = Ck1Ekl — /31(O+aO), (3.12) 

qj = —(cè+k0,), (3.13) 

pS = (0 + ao ) - + /3€, (3.14) 
00 00 

pC(a - ao)O2 + 2cO0, + ≥ 0, (3.15) 
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where b = 0, since we assume that pS = 0, when 9 = 0 = O,j = eij = 0. 

For a homogeneous body, we obtain the governing equations 

+ pR = pc(b + ao) - 2c0, + 0of3 3ñ,, (3.16) 

Ck1uk,zJ - i3(O + a0), + F = pu2. (3.17) 

It may be seen that equations (3.16) and (3.17) are the counterparts of equations 

(2.40) and (2.41) of the previous chapter. 

For inequality (3.15) to hold for all arbitrary 0 and 0,, it is necessary that 

a ≥ a0, 

and 

2c100, + k10,0,5 ≥ 0. 

If a body has a center of symmetry at each point, then since the sign of 

2c60, can be changed, this implies that 

C1 = 0, 

and hence 

k10,10,3 ≥ 0, 

which means that the conductivity tensor kij is positive-definite. 

For this case (c1 = 0), equations (3.12)-(3.14) and inequality (3.15) reduce to 

aij = 

qj = 

pS= 

pc(a - ao)O2 + 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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3.3 Isotropic Case 

For an isotropic medium, we have 

CJk( = Aö JSkx + (55 + öjlöjk),U, 

kij = 

13ij = /35i5. 

The fundamental equations (3.18)-(3.20) in this case take the form 

= 2i€i + )t6ekk - 6(O + aO), (3.22) 

qj = —k9,1, (3.23) 

pS = + ao) + /3 kk• (3.24) 
00 

And the governing equations (3.16) and (3.17), with ci = 0, become 

+ pR = pc(Ô + aoO) + OO/3 Ckk, (3.25) 

Üj = (A + + puij - /39, + pF. (3.26) 

It may be seen that in equation (3.23), Fourier's law of heat conduction is not 

violated, but equation (3.25) is still of hyperbolic type, with a0 > 0. 

It may be seen that equations (3.25) and (3.26) are the counterparts of equations 

(2.20) and (2.21) of the previous chapter. 



Part II 

Re-examination of the Basic 

Postulates of Thermomechanics 
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Chapter 4 

Re-examination of the Basic Postulates of 

Thermomechanics 

As mentioned earlier, Green and Naghdi ([30], [31]) re-examined the basic pos-

tulates of thermomechanics. Their analysis contains a useful analogy between the 

concepts and equations of the purely thermal and purely mechanical theories and 

three types of constitutive equations, labeled as type I, II and III. 

Consider a finite elastic body B with material points X and identify the material 

point (particle) X with its position X in a fixed reference configuration k0. In the 

present configuration k at time t, the body occupies a region of space R bounded 

by a closed surface OR. Similarly, in the present configuration, an arbitrary material 

volume of B occupies a part of the region of space, which we denote by P(cR), 

bounded by a closed surface OP. The place occupied by the material point X in the 

current configuration k is x. 

For purely mechanical theories, we use the following notation: 

(a) displacement: x = (X, t), x a sufficiently smooth vector function 

(b) particle velocity vat x: v = * 

(c) deformation gradient tensor: F=OX/OX 

(d) velocity gradient tensor: L=Ov/ôx 

(e) externally applied body forces per unit mass: b=b(x,t) 

(f) external rate of work per unit mass: by 

40 
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(g) internal surface force per unit area over OP: t 

(h) rate of internal surface work per unit area: tv 

(i) internal body force: f 

For purely thermal theory, we need the following notation: 

(ai) thermal displacement: a = a(X, t) 

(b1) empirical temperature: T = a 

(c1) temperature: 0 which depends on T and the properties of the material 

such that 

0>0, 00 
IT 

(di) thermal displacement gradient: /3 = Oa/OX 

(el) temperature gradient: -y = OT/OX which relates to /3 by / = FTy 

(fl) external rate of supply of entropy per unit mass: s 

(gi) external rate of supply of heat per unit mass: r = Os 

(h1) internal rate of production of entropy per unit mass: 

(i1) internal rate of production of heat per unit mass: 06 

(jr) entropy density per unit mass: i 

(k1) heat density per unit mass: 077 

(li) internal flux of entropy per unit mass: 

(mi) internal flux of heat per unit mass: = —Ok 

where a superposed dot denotes material time derivative, keeping X fixed. 

In Table 4.1, we give the correspondence between the mechanical and thermal 

variables. 



42 

Table 4.1: Correspondence between mechanical and thermal variables 

mechanical variable thermal variables 
x a 
V T 
F 41 
L 7 
b 

b•v 
t 

t•v 

f 
V 

The local field equation for the balance of entropy is 

where 

S 

r = Os 
k 

h = Ok 

Ti 

pii=p(s+e) — divp, (4.1) 

k=p.n, q=Op 

and p is the entropy flux vector and q is the heat flux vector. We also record here 

the reduced energy equation 

T.L—p.g—p(+zO)—pO=O, (4.2) 

which has been obtained from the local field equation for the energy balance after 

elimination of the external body force and the external supply of entropy. In equation 

(4.2), & is the specific Helmholtz's free energy and g is the temperature gradient 

defined by 

g = grad 0, 

where the grad operator stands for O( )/ax. 
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4.1 Classical Thermo elasticity (Type I) 

For the theory of thermoelasticity of type I, we require the constitutive equations 

for 

T, p, 0, i, 9, 6 (4.3) 

and assume that these are functions of the variables: 

(T,y,F;X). (4.4) 

However, for simplicity, in what follows we suppress explicit dependence on X and 

regard the material to be homogeneous. Introduction of constitutive assumptions of 

the forms 

= T,'y,F), 0 = O(T,-y,F), T = i'(T,-y,F), etc. (4.5) 

into the reduced energy equation (4.2), after some rearrangements of terms, yields 

00 A o oO. P( 1111 oö p y+poe+ p(—+)T+p(--+?7---).7 

O? 
+ p( + I O )IOF OF . F 

00 &y 00 OF 
+(— QP)• — +(®) —=o, 

O'y Ox -OF ax 
(4.6) 

where the symbol ® denotes tensor product and for clarity, we have temporarily used 

the symbols such as 0 and If in order to distinguish between the response functions 

and their values. 

Equation (4.6) has the form (A.1) of Appendix A with N = 5, namely 

a + a1y1 + a2y2 + a3y3 + a4y4 + a5y5 = 0 
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with 

and 

a= 

a1 = 

a2 = 

a3 = 

a4 = 

a5 = 

00 

(& ôö\ 
—':i'(FT)-' + OF + 

1 (aO 

fO 

OF 

07 OF 
yi=T, Y2=7, y3= F, ax,y5=, 

and hence equation (4.6) holds only if 

a—a1 —a2—a3—a4—a5—O. 

From equations (4.7) and (4.8), using a4 = a5 = a2 = 0, we obtain 

Oo_ o aô_0 $_ 
07 'OF '07 

From equations (4.5) and (4.9), we conclude that 

With the choice of 

0 = 0(T), b = b(T, F). 

T=0+00(00>O), 00 
OT 

(4.7) 

(4.8) 

(4.9) 

(4.10) 



45 

and without loss of generality, we may replace T by 9 in all constitutive developments 

of this section. We may use the same symbols for a function and its value. From 

equations (4.7)-(4.1O), we obtain 

?J=—, T=  80 pFT, py+p0=O, (4.11) 

with p = p(0,F,g). 

In the rest of this section, we consider the linear theory of thermoelasticity type I 

and linearize the foregoing constitutive results. Thus we assume that the temperature 

0 represents departure from an equilibrium temperature 00 and u = x - X is the 

displacement vector from an equilibrium state with zero stress such that both 0 and 

u are small of 0(e) and further we restrict our attention to an isotropic material. For 

such a linearized theory, it will suffice to assume that the specific Helmholtz's free 

energy is a quadratic function of infinitesimal temperature and infinitesimal strain 

E = [Grad u + (Grad u)T], 

so that the reduced energy equation becomes 

POO = .)trE)2 + ytrE2 1 c02  0trE, 
2 00 3(1-2v) 

(4.12) 

(4.13) 

where ,8* is the coefficient of volume expansion. 

After simple substitution and rearrangement, we obtain the following coupled 

system of partial differential equations: 

(A + )grad div u + E/3* V2u  grad 9+ pb = pu, 
3(1-2zi) 
E/3*90 

cO+ divu=pr+kV20, 
3(1 - 2ii) 

(4.14) 

(4.15) 
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where the notation "grad" and "div" stand respectively for the gradient operator 

and divergence operator with respect to X. 

The system of equations (4.14) and (4.15) predicts propagation of waves with 

damping, which is due to the thermal part of the equations. 

4.2 Thermoelasticity (Type II) 

Using the similar assumptions as in section 4.1, we regard 

T, 3, F (4.16) 

as the independent variables. 

Introduction of constitutive assumptions of the forms 

= (T, ,8, F), 0 = O(T, /3, F), T = t(T, /3, F) (4.17) 

and similar assimptions for p, 77, and into the reduced energy equation (4.2), 

after some rearrangement, results in 

I Ma 9ö\ 9Ô1 
P9e+P( TT 'OT +)T+ L') FTy+.y] 

"oÔ '\ 0/3 (OF ô OF 
+[—'i' + (  +4) F"] . L + ® P . +® \ OX =0. (4.18) 

Equation (4.18) has the form (A.1) of Appendix A with N = 5, but now with 

a= 

a1 = 

a2 = 

poe, 
(O? OO\ 
P+77OT OT  

(0? +) oo\ +p... oO 
pF ) 
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(OF 
&i; \Fnl 

a3 = + p + )], 
a4 = 

a5 = 

and with variables Yl, y2, ..., y5 taken to be 

yi=T 'Y , y2 = 7) y3=L, y4= 0/3 y5= OF ax, . 

And hence we find that equation (4.18) holds only if 

a—al—a2—aa—a4—as-0. 

Now a4 = a5 = 0 leads us to 

ad DO 
80 =o, TF =o. 

In view of the above results, we find 

(4.19) 

(4.20) 

0=0(T), ?/=?/(T,/3,F), (4.21) 

where without ambiguity in equation (4.21), we have used the same symbols for the 

functions 0, 1' and their values. With the choice of 

T-0-00 (T>-00), 00 =1 (4.2) 
OT 

and without loss of generality, we may replace T by 0 in all constitutive developments 

of this section. 

From equations (4.18)-(4.22), we obtain 

Iq = -.01, -, T = pFT, p = —pF, e = 0. (4.23) 
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It is important to note that in this development there is an absence of internal 

rate of production of entropy so that there is no dissipation of energy. 

In the rest of this section, we consider the linearized version of the foregoing 

constitutive developments and then discuss the complete linear theory of thermoe-

lasticity of type II. As in Section 4.1, againwe assume that the temperature 9, the 

thermal displacement c and the relative displacement u = x - X which respectively 

represent departures from an equilibrium temperature 9, an equilibrium mean ther-

mal displacement c0 and an equilibrium position of the state of the body with zero 

stress—are all small of O(') and we restrict our attention to an isotropic material. In 

the development of such a linearized theory, it will suffice to assume that the specific 

Helmholtz's free energy is a quadratic function of the infinitesimal temperature, the 

infinitesimal thermal displacement gradient /3 = Grad ce and the infinitesimal strain 

E defined in equation (4.12), so that 

Po = A(tr E)2 + trE2 - - 3(12) OtrE +•00 . /3, (4.24) 
2 20o 

where k* is a constant. 

After some simple substitution and rearrangement, the following coupled system 

of partial differential equations are obtained 

(A + )grad div u + V2u  grad 0+ p0b = pu, (4.25) 
3(1-2v) 
E/3*00 

c9+ div ü=por +k*V29 3(1-2zi) . (4.26) 

The system of equations (4.25) and (4.26) permits propagation of harmonic waves 

without damping. 
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4.3 Thermo elasticity (Type III) 

For the theory of thermoelasticity of type Ill, we require constitutive equations 

for 

T, p, ', ii, 9, e 
and we assume these are functions of the independent variables 

T, y, /3, F; X. (4.27) 

However, for simplicity, in what follows we suppress explicit dependence on X and 

regard the material to be homogeneous. Introduction of constitutive assumptions of 

the forms 

(T, F), O=Ô(T,y,/3,F), T='i'(T,y,p,F), ect., (4.28) 

into the reduced energy equation (4.2), after some rearrangements of terms, yields 

00 
y+pO 

OT 

1$ +P (TT 'OT )  T-Y —5-Y 

L (a• 19• ) 

oô\ 
FTy 

(O( \ O-y (ÔÔ \ 0/3 (OO \ OF 
+®P) — +®P) --+®P) —O. 

Equation (4.29) has the form (A.1) of Appendix A with N = 6, namely 

with 

(4.29) 

a + a1y1 + a2y2 + a3y3 + a4y4 + a5y5 + a6y6 = 0, (4.30) 

P. oö (5 0O) 
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and 

a2 

(0? oöaT 8T  
= 

= 

(3 
a3 = —'i'(FT)—' + p ?); +O9\  

1a 9Ô\ 

a4 = 

a6 = 

fry OF 0/3 
Y, =ill Y27, W=P, ax, Tx ,Y6=• 

The equation (4.29) will hold only if 

a—a1—a2--a3—a4—a5—a6--0. 

Now a4 = a5 = a2 = a6 = 0 leads us to 

ad 00 —o 
fry OF 

0, 097P 
' 

(4.31) 

(4.32) 

(4.33) 

From equation (4.33), we conclude that 

0=0(T), 0 =(T,F,/3), (4.34) 

where without ambiguity in equation (4.34), we have used the same symbols for the 

functions 9, i/' and their values. Hence with the choice 

T0+00 (Oo>0), 00 -1 (4.35) 
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and without loss in generality, we may replace T by 0 in the constitutive developments 

of this section. 

From equations (4.31)-(4.35), we obtain 

'97P ft 77 = - TO , T = pFT, p. y + FT.y + p0 = 0. (4.36) 

In the rest of this section, we consider the linear theory of thermoelasticity of 

type III and linearize the foregoing constitutive results. Thus we assume that the 

temperature 0 represents departure from an equilibrium temperature Oo and u = 

X - X is the displacement vector from a state with zero stress such that both 0 and 

u are small of 0(E). We also assume that both time and space derivatives of 0 and 

u are of small of 0(E). For such a linearized theory, it will suffice to assume that the 

specific Helmholtz's free energy is a quadratic function of infinitesimal temperature, 

infinitesimal strain E and j3. In the context of the linearized theory and for an 

isotropic material, the specific Helmholtz's free energy is 

CO2  E/3* k* 
POO = A(tr E)2 + tr E2 - - 3(1 - 2v) Otr E+ -16 - 16.  (437) 

2 20o 

Substitution yields the following coupled system of partial differential equations: 

(A + /)grad div u + jV2u  grad 0+ pob = p0ü, (4.38) 
3(1-2z) 

E/3*00 
p0c0 + 3(1 - 2) dVi ü = P0? + kV2O + k* V20. (4.39) 
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Chapter 5 

One-dimensional Problem 

In this part, we will use the theory developed in Section 4.3 to solve some one-

dimensional problems. The one-dimensional problem due to its relative simplicity, 

has had a broad treatment in the literature. The particular problems to be treated 

here are that of an isotropic homogeneous thermoelastic half-space, and the boundary 

conditions considered are the same as those considered by Boley and Tolin [36] to 

solve the corresponding coupled thermoelasticity problems. 

For a homogeneous, isotropic elastic body, the basic equations for the linear 

generalized theory of thermoelasticity of type III developed in [32] are 

(A + )u1,1 + UjJj -79,i + pf = piij, (5.1) 

pCO + 700Uj,j = + kO,jj + k*O.. ,2Z , (5.2) 

ojj = Au,5j5 + (u,5 + - -YO, (5.3) 

where 

= 'E/3*/(1 - 2v), 

= a constant, 

= coefficient of volume expassion, 

a comma followed by a suffix denotes material derivative and a superposed dot 

denotes the derivative with respect to time. 

53 
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To transform the above equations to nondimensional form, we define the following 

nondimensional variables 

P' = PIPO, 

Q' = Qi/ag, 

= fl/a, 

where 

i = a standard length, 

a0 = a standard speed, 

P0 = a standard mass density. 

The basic equations (5.1)-(5.3), dropping primes for convenience, reduce to the 

following 

where 

pa1ui = a2u,j + uj,j - a39, + pa1f, 

0 ,ii + a4O, + Pa5Q = pa69 + 

o•ij = + + - a30, 

a1 = poaO 

(5.4) 

(5.5) 

(5.6) 
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a2 - 

a3 = 

a4 = 

a5 = 

a6 = 

a7 = 

kao/k*l, 

poa /(k*9o), 

poca /k*, 

7a /k*. 

For a one-dimensional problem, all quantities depend only on one space coordi-

nate x and time t, such that: 

stress a = a(x,t), 

displacement u = u(x, t), 

temperature 0 = O(x,t). 

For this case, equations (5.4)-(5.6), with Q = 0, fi = 0, reduce to 

0 it 

pa1ü = (a2+1)uI, —a30', (5.7) 

+ a40 = pa69 + a7'ü', (5.8) 

a = (a2 + 1)u' - a39, (5.9) 

where prime and dot denote derivatives with respect to x and t, respectively, and a 

denotes the normal stress. 

Introducing the thermoelastic potential function defined by 

(5.10) 
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equations (5.7)-(5.9) reduce to 

pab = (a2+1)"—a38, (5.11) 

8 + a48 = pa60 + a7ç0, (5.12) 

= (a2 + 1) V" - a38 = pa1ç. (5.13) 

Applying the Laplace transform defined by 

00 
g(x,p) = JO g(x,t)exp (—pt)dt, Re(p) >0, (5.14) 

to equations (5.10)-(5.13), we arrive at 

d 
ii = (5.15) 

dx 

9 = {(a2+1) d2 —_paip2}, (5.16) 
a3 

2 d2 d2 
a7p—c = {(1+a4p)-j—pa6p2}O, (5.17) 

= pa1pço, (5.18) 

where we have used the following initial conditions 

n(x,t) = ii(x,t) = 8(x, t) = Ô(x,t) = 0, at t = 0. (5.19) 

Now eliminating U between equations (5.16) and (5.17), we obtain the following 

differential equation for : 

where 

d4 2 & 
{(1 + a4p)— - (b1p + b2)pX T x2 + b3p4} = 0, 

pal a4 

(a2+1)' 

= pa6+ (pal + cE3a7)  
(a2+1) 

b3 = 
(a2+ 1) 

p2a1a6 

(5.20) 
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Using the regularity condition 

0, as x —*oo, (5.21) 

the solution of equation (5.20) for p is given by 

= A1 exp (—Aix) + A2 exp (—A2x), (5.22) 

where A1, A2 are functions of p, and A1 and A2 are the positive roots of the equation 

(1 + a4p)A4 - (b1p + b2)p2A2 + b3p4 = 0, (5.23) 

given by 
  I 

Ai 
- {(biP+b2) + (_1)l \/(blP +b2)2_4bs(1+ o4P)} 2 

- 2(1+a4p) 

i=1,2. (5.24) 

By simple substitution from equation (5.22) into equations (5.15), (5.16) and 

(5.18), we arrive at the following expressions for iZ, 0 and Th 

= —A1A1 exp (—Aix) - A2A2 exp (—A2x), (5.25) 

exp (—Aix) + B2A2 exp (—A2x), (5.26) 

= pcE1p2 {Ai exp (—Aix) + A2 exp (—A2x)}, (5.27) 

in terms of the two unknown functions A1 and A2, which are to be determined by 

the associated boundary conditions at x = 0 and 

B1 = 

B2 = C1A22—C2p2. 

c1 --

C2 - 

a2+1  

a3 
a1 
p— a3. 

(5.28) 

(5.29) 



Chapter 6 

One-dimensional Thermal Shock Problem 

—Stress-free Boundary 

We consider now a thermal shock problem for a homogeneous isotropic elastic 

half-space x ≥ 0 with stress-free boundary x = 0. At time t = 0, the stress-free 

boundary is suddenly heated to a uniform temperature and left in that state. The 

problem is to determine the distribution of stress and temperature for x > 0 and 

t>0. 

The problem is usually named after the Russian lady scientist V. I. Danilovskaya, 

who had first studied it in the context of classical thermoelasticity by neglecting the 

coupling term in the heat transport equation. 

The data of the problem suggests that this is a one-dimensional problem, all the 

field variables depend on x and t only. Under the assumptions made, the initial and 

boundary conditions are given by 

u(x,O) = IL(x,O) = O(x,O) = (x, O) = 0, (6.1) 

u(0,t) = 0, O(0,t) = T0H(t) (6.2) 

and the regularity conditions are 

(cr(x,t), O(x,t)) - 0, as x -+ oo, t>0, (6.3) 

where To 54 0 is the uniform temperature input applied to the boundary and H(t) is 

the Heaviside unit step function, i.e., 
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(0, for t≤0, 
H(t)=. 

11, for t≥0. 

Taking the Laplace transform of the boundary and regularity conditions, we find 

that 

ã(x,t) = 0, at x=O, 

- TO 
9(x,t) - at x=0 

and 

(6.4) 

{a(x,t),(x,t)}-4O, as x —+oo, t>0. (6.5) 

The expressions for j and a given by equations (5.26) and (5.27) satisfy the 

regularity conditions (6.5), and the boundary conditions (6.4) will also be satisfied, 

if 

TO  
Al = p(B1—B2)' 

A2 —  T0. 
- p(Bi—B2) 

Substituting the above expressions for A1 and A2 in equations (5.25)-(5.27), we 

find that 

TO  
= p(B1 - B2) {A1 exp (—Aix) - A2 exp (—A2x)}, (6.6) 

- TO  
0 = p(Bi - B2) {Bi exp (—Aix) - J2 exp (—A2x)}, (6.7) 

pa1pTo lexp 
= B1 - (—Aix) - exp (—A2x)}. (6.8) 

Theoretically, we can take the inverse Laplace transform of equations (6.6)-(6.8), 

and find the expressions for the quantities concerned, but it is difficult to find the 
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inverse transforms of these equations in the present form. We shall try to find the 

inverse transforms for small values of time (large values of p) by expanding the above 

expressions in the inverse powers of p to a few terms. 

6.1 General Case 

To find the small time approximate solution, we let z = i/p in equation (5.24) 

and obtain 

1 (b1 + b2z) + (—i)+'J(b1 + b2z)2 - 4b3 (Z2 + a4z) 
= 2(z+a4) }2 

1 {(b, + b2z) + (-1)'b1(1 + 2b1b2 - 4b3a4 1 z z)}2(1+ 
\' a4 

Expanding the following expressions in powers of z and retaining only necessary 

terms, we find 

(1 + 2b1b2 - 4b3a4 1 b1b2 - 2b3a4 
1+  

(1 + z )-

1 z 
- 

a4 a4 

Using a similar method of expansion, we obtain 

1  {(2b1 + 2b1b2 - 2b3a4 )(1 - Z -)} 
a4 

1 (b + b1b2a4 - b3a -  Z) 2 
ba42 z a4 

= b2 + b1b2a4 - b3a - bi  
z)2 

a4b  

1 
b2 
-4--- (i + -b1b2o4 - b3a -  b  
az 2 a4b 

Z) 
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. 1 1 b1b2a4 - b3c - bl 
= (_)2_I 

3 , 
a4 z ' 2 (a4bi) 

1  
A2  {2b3a4z(1 - 

1 
 (2b3a4z) fr 

1 1 

= b3 2z 2. 

Now we may write 

where 

a4 

Al biop + b11, A2 b2op, 

L 1. 
b10 = (_ a4 )2 =b5(a2+1)2, 

= 

1 (b1b2a4 -  b3c -  b)  
b11 = 3 

2 (b1a4)z 

Now from equation (5.28), we find that 

B1—B2 = C1(AA) 

= Ci[b 0p2 + (2b10b11 - b0)p + b1] 

2 2b10b11 - b0 -1 b 
= Cib 0p(1 + '2 P + 1 -2 --P ), 

010 b10 

from which, we obtain' 

1 1 
B1 - B2 ' C1 2 2111 - 2b10b11 - b0 _1 - b1 -2 2b10b11 - i:-P +( '2 b10p b0 010 

- Cibop2(1 - D1p' - 

(6.9) 
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where 

D1 = 

D2 = 

2b10b11 - b0 
1,2 
'1O 

,u. i. i2 oz2z2 iA 
±u1Ou11u2o - OU11V1O - U2O 

1,4 
U10 

Using the same method of the expansion, we find that 

A1  

p(Bi - B2) 

A2 

p(Bi - B2) 

B1 

p(Bi - B2) 

B2 

p(Bi - B2) 

1 (1 - - 2p 2)(biop + b11) 
C1b0p3 
1 
2 [b 2 10p + (b11 - .b1b10) 3 p + (—b2b10 - 1 11 

Iblo 

C1 b0p3 

 (b 4 p - .b1b2op - .b2b2op), 
10 

C1b0p3 
(1 - - D2p 2)[(Cib0 - C2)p2 + 2C1biob1ip + 

1 {(C1b0 - C2)p' + [2C1b1ob11 - - C2)]p 2 
i' 
lb lo 

[C1b1 - 2C1.b1b10b11 - D2(C1b0 - C2)]p 3}, 

(1 - - D2p 2) (Cl b0p - C2p2) 
C1b0p3 

,- i z2 
L'lUll 

1 C2p' + (C1b0 + C2b1)p 2 + (C22 - C1ib0)p 3]. 
C i-.2 
'-'11O 

Using the above expansions in equations (6.6)-(6.8), we get 

U 

9 

U 

TO 2 £(E1p 2 + E2p 3 + E3p) exp (—b10px - biix) 
C1b0 - 

—(E4p + E5p2 + E 6p2) exp (—b2opx)}, 

T0 - 1 
{F1p + F2p 2 + Fp 3) exp (—biopx - biix) 10 

- (p' + F5p 2 + F6p 3) exp (—b2opx)}, 

pa1To + G2p 2 + 03P -3) 
C1 b?0 

{exp (—biopx - biix) - exp (—b2opx)}, 

(6.10) 

(6.11) 

(6.12) 
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where 

El = —b10 

E2 = .b1b10 - 

E3 = b11.b1 + b2b10, 

24 = —b20, 

E5 = .b1b20, 

E6 = .b2b20, 

F1 

F2 

F3 

- L'1U10 - '-'2, 

= 2C1b10b11 - D1(C1b0 - C2), 

= C1b1 - 2C1D1b10b11 - .b2(C1b0 - C2), 

F4 = —C2, 

P,5 = C1b0+C2.b1, 

= C2.b2—C1.b1b0, 

02 = —D1, 

03 = —f)2-

Now, to obtain the inverse Laplace transforms of equations (6.1O)-(6.12), we will 

need the following results ([37], p.494) 

= 

L'[exp(—ap)] = 5(t—a), a>O, 

tv 

v> — 

1  ax 
L [73 2 ex -2+.  = (4t)ierfc(), 
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n=O,1,2,... 

where L'[] denotes the inverse Laplace transform, ö( ) is the Dirac delta function, 
and erf() is the usual error function, and also we have the following notation 

erfc(x) = 1 - erf(x), 

ierfc(x) = i'erfc(x) = j 00 erfc()de, 
i'erfc(x) = f i"'erfc()d, 

n = 2,3,4... 

We note that 

exp (—,\1x) = exp (—biopx) exp (—b11x), 

exp(- 1\2X) = exp(—b2opx). 

Using the above results and the following convolution theorem 

L'[gi(p) g(p)] = JO t fi(t - z)f2(z)dz, 

where 

L'[g1(p)] = f1(t), L'[g2(p)] = 12(t) 

in equations (6.1O)-(6.12), we obtain 

TO 3 t Z3 

{exp (—biix) E E 10  5(t - b10x - z) r(j+ 1) dz 
10 j=1 

6 b20x 
- E E(4t)(i4)i(2i5) erfc(—)}, 

j=4  

TO   
c0 {exp (—biix) fi - b10x - z) 

j=1 JO F(j) 
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6 b20x 
- E 

j=4 

paiTo - t 
{exp (—biix) I ö(t - b10x - z)  r(j)  dz 

C1b0  

- (4t) (3 ')i2(5 ')erfc( b20x-)}, 

which may be further simplified to: 

TO (t —X10)2 
10 u(x, t) {exp (—X11)H(t - X10) 

(j+1)! 

where 

6 x20 
- .5(4t)(i_)i(2i_5) erfc() 

j=4 t 

}, 

Ciblo (—XI - X10) (t - 
5=1 j! 

6 x20 
5=4 

pa1To 
C1b {exp (—X11)H(t - X10) > (t -  

3 x20 
5=1 

= b11x X10 = bjox X20 = b20x. 

(6.13) 

(6.14) 

(6.15) 

Due to the presence of the error function in equations (6.13)-(6.15), we conclude 

that this theory predicts an infinite speed for heat propagation. To analyze the 

results given above, we use the following values of the parameters involved in those 

equations: 

b1 = 2.8, b2 = 5.2, b3 = 3.35, b4 = 2.25, 

a1 = 1.25, a2 = 0.25, a3 = 0.25, a4 = 3.1, Po = 1.0. (6.16) 
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The numerical values of temperature and stress distribution fort = 0.02, 0.04, 0.06 

are given in Tables 6.1-6.3. And these values are displayed in Figures 6.1-6.6. 

The graph of o'/To in Figures 6.2 and 6.4 has a sharp corner at x = 0.05, since 

the value of o/To decreases from x = 0 to x = 0.05 and it starts increasing for 

x > 0.05 and the graph is a straight line from x = 0 to x = 0.05. This sharp turn of 

the graph at x = 0.05 may be avoided by obtaining' values of a/To at large number 

of points in the interval [0,0.1] (e.g. x =0.0, 0.01, 0.02, 0.03'..., 0.09, 0.1). A similar 

explanation applies for the graph of a/To in Figure 6.6 for 0 ≤ x < 0.2. 

It is due to the loss of accuracy in the approximation that these graphs show that 

a/To is not equal to zero at x = 0, although it is prescribed to be zero at x = 0. 
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Table 6.1: Numerical values of temperature and stress for t = 0.02 

x 0/To o/To 

.0000 .9983 .0099 

.0500 .7181 -.1882 

.1000 .3993 -.1033 

.1500 .1882 -.0482 

.2000 .0745 -.0190 

.2500 .0245 -.0062 

.3000 .0067 -.0017 

.3500 .0015 -.0004 

.4000 .0003 -.0001 

.4500 .0000 .0000 

.5000 .0000 .0000 

.5500 .0000 .0000 

.6000 .0000 .0000 

.6500 .0000 .0000 

.7000 .0000 .0000 

.7500 .0000 .0000 

.8000 .0000 .0000 

.8500 .0000 .0000 

.9000 .0000 .0000 

.9500 .0000 .0000 
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Table 6.2: Numerical values of temperature and stress for t = 0.04 

x O/T0 uITO 

.0000 .9966 .0203 

.0500 .8303 -.2303 

.1000 .5752 -.1561 

.1500 .3684 -.0983 

.2000 .2171 -.0572 

.2500 .1173 -.0306 

.3000 .0579 -.0150 

.3500 .0261 -.0067 

.4000 .0107 -.0027 

.4500 .0040 -.0010 

.5000 .0013 -.0003 

.5500 .0004 -.0001 

.6000 .0001 .0000 

.6500 .0000 .0000 

.7000 .0000 .0000 

.7500 .0000 .0000 

.8000 .0000 .0000 

.8500 .0000 .0000 

.9000 .0000 .0000 

.9500 .0000 .0000 
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Table 6.3: Numerical values of temperature and stress for t = 0.06 

x 0/To uITO 

.0000 .9947 .0311 

.0500 .7757 .0216 

.1000 .6655 -.1902 

.1500 .4764 -.1331 

.2000 .3232 -.0886 

.2500 .2073 -.0560 

.3000 .1254 -.0335 

.3500 .0715 -.0189 

.4000 .0384 -.0101 

.4500 .0193 -.0050 

.5000 .0091 -.0024 

.5500 .0041 -.0010 

.6000 .0017 -.0004 

.6500 .0007 -.0002 

.7000 .0002 -.0001 

.7500 .0001 .0000 

.8000 .0000 .0000 

.8500 .0000 .0000 

.9000 .0000 .0000 

.9500 .0000 .0000 
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6.2 A Special Case 

Because the constitutive equations (5.4)-(5.6) include a diffusion type equation 

for heat conduction, generally, this theory predicts an infinite speed for the heat 

propagation. But for a special case, when k* >> k, that is, a4 PZZI 0, b1 0, 

equation (5.24) becomes 

where 

Ai = Cj, i = 1,2, 

b2 + (-1)i+'t/b - 4b3 
'I   
N 2 

Now from equations (5.27), (5.28) and (6.17), we have 

where 

1 1 

B1—B2 = C1 —A) 
1 N 

= (C21  

N = C1c—Cic 

Substituting from equations (6.17) and (6.18) in equations (6.6)-(6.8), we obtain 

= _I  {C1 exp (—Aix) - c2 exp (—A2x)}, (6.19) 

1 

(6.17) 

(6.18) 

where 

To  
{Ni exp (—Aix) - N2 exp (—A2x)}, 

pa1ToN 
{exp (—Aix) - exp (—A2x)}, 

N1 = C, C2 - C2, 

N2 = C1c—C2. 

(6.20) 

(6.21) 
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Taking the inverse Laplace transforms of equations (6.19)-(6.21), we obtain 

u(x,t) = ToN  - cix)(t - cix) - c2H(t - c2x)(t - c2x)}, (6.22) 

O(x,t) = T0N{N1H(t - cix) - N2H(t - c2x)}, (6.23) 

0(x,t) = paiToN{H(t - cix) - H(t - c2x)}. (6.24) 

For obtaining the numerical values of 0 and c, we have used the same numerical 

values of the parameters as given in equations (6.16). The numerical values of the 

temperature and stress for t = 0.15, 0.25, 0.50 for various of x are given in Tables 

6.4-6.6. The jumps in temperature and stress fields occur at x = x1, X2 as given 

below: 

t 0.15 0.25 0.50 

x1 .0711 .1186 .2371 

X2 .1728 .2882 .5760 

The numerical values of temperature and stress are displayed in Figure 6.7-6.12. 
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Table 6.4: Numerical values of temperature and stress for t = 0.15 

x 0/T0 u/To 

.0000 1.0000 .0000 
x1_ 1.0000 .0000 

.0668 -.0677 
.1000 .0668 -.0677 

.0668 -.0677 
X2+ .0000 .0000 

.2000 .0000 .0000 

.3000 .0000 .0000 

Table 6.5: Numerical values of temperature and stress for t = 0.25 

x 0/To cr/To 

.0000 1.0000 .0000 

.1000 1.0000 .0000 
xi 1.0000 .0000 
xi .0668 -.0677 

.2000 .0668 -.0677 
.0668 -.0677 
.0000 .0000 

.3000 .0000 .0000 

.4000 .0000 .0000 
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Table 6.6: Numerical values of temperature and stress t = 0.5 

x 0/To uITO 

.0000 1.0000 .0000 

.1000 1.0000 .0000 

.2000 1.0000 .0000 
1.0000 .0000 

xi .0668 -.0677 
.3000 .0668 -.0677 
.4000 .0668 -.0677 
.5000 .0668 -.0677 

.0668 -.0677 

.0000 .0000 
.6000 .0000 .0000 
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Chapter 7 

One-dimensional Thermal Shock Problem 

—Fixed Boundary 

Now, we consider the problem of an elastic half-space x ≥ 0 which is kept at 

a uniform reference temperature, with its plane boundary held rigidly fixed and 

subjected to sudden heating such that the initial and boundary conditions are 

'u(x,O) = ü(x,O) = O(x,O) = (x, O) = 0, 

u(0,t) = 0, 9(0,t) = T0H(t), 

and the regularity conditions are 

(u(x,t), O(x,t)) as x -* oo, t>0, (7.1) 

where To 54 0 is the uniform temperature applied to the boundary and H(t) is the 

Heaviside unit step function. 

The boundary and regularity conditions may be transformed to 

u(x,p) = 0, at x = 0, (7.2) 

TO (x,p) = , at x = 0, (7.3) 

{'z(x,p),(x,p)}—.o, as x —+oo. (7.4) 

The expressions for ii and O given by equations (5.25) and (5.26) satisfy the 

regularity conditions (7.4), and the boundary conditions (7.2) and (7.3), will be 

80 
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satisfied, if 

A2 = 

TO  A2  
p B1A2—B2A1' 

To  Al  
P B1A2—B2A1 

Substituting for A1 and A2 into equations (5.25)-(5.27), we find that 

T0A1A2  
p(B1A2 - B2A1) {exp (—Ajx) - exp (—A2x)}, (7.5) 

TO  IBI 1\2 exp (—Aix) - B2A1 exp (—A2x)}, (7.6) 
= p(B1A2—B2A 

pa1pT0  
= B1A - B2A1 {A2 exp( Aix) - A1 exp(—A2x)}. (7.7) 

Here, we use the small time approximation discussed in Chapter 6, to find the 

approximate results for this problem. 

7.1 General Case 

Substituting for B1 and B2 from equation (5.28), we find that 

B11\2 - B2A1 = (C1A - C2p2)A2 - (C1A - C2p2)Xi. 

Now expanding the above expression in powers of l/p, using equation (6.9) for 

values of A1 and A2, we obtain 

B1A2 - B2A1 (C1 b0 - C2)b2op + 2Cibiobiib2op + Cib1b2op + C2biop3 

—(C1b0b10 - C2bii)p2 - Cibi1b0p 

C2b1op3(1 + -  C2)b20 C1b0b10 -  

C2b10 C2b10 
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and hence 

1 1  (1 (C1b0 -  C2)b20 .... C1b0b10 -  C2b11  
2 B1A2 - B21\1p + 1 p3C2bio C2b10 C2b10 p 

2 2 
- c2)2 b20 -1 

C272 2010 

p3C2bio (1 - Dip -2-  D2p'), 

where 

- (C1b0 -  C2)b20  

- C2b10 

bfl Cl 2 b202 c ,2 2 2 
D2 = —+--b2o '-'2 - - -b10 b20 

blo 

Using the same method of expansion, we find that 

A1A2 1  
(1 - D1p - D2p_1)(biob2op + b11b2op) 

p(B1A2 - B21\1)p4C2b10 

c210 (b10b20p 126 4 - Dib1ob2op 3 - (D2b1ob20 - b11b20)p4), 

B, 1\2 1  
p(B1A2 - B2A1) p4C2b10 (1 Dip - D2p'). 

[(C1b0 - C2)b2op + 2Cibiobiib2op + C1b1b2op} 

1 
C2b10 (b2o(C1b0 - C2)p + (C2 - Cib0)Dib2op 2 

+(2C1b1ob11 - (C1b0 - C2)D2)b2op), 

B2A1  

B1A2 - B2.\1 

1  
p4C2b (1 - D1p - D2p 10 '). 

[—C2biop3 + (C1b0b10 - C2bi1)p2 + Cibi1b0p] 

1  
C2b10 C2b1op' -1- D1C2b1op 
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+(b1oC2D2 + C1b10b0 - C2b11)p 2], 

1  
B1A2 - B2A1 p2C2b10 (1 - D2p')b2op 

1 3 

C2b10 (b2opi - - D2b2op4), 

Alp 1  
B1A2 - B2A2 p2C2b10 (1 - D2p')(b10p + b11) 

 (biop - b1oD1p + (—bioD2 + bii)p 2). 

Substituting the results in equations (7.5)-(7.7), we find that 

U 

where 

T0 
C2b10 (Eip + E2p 3 + E3p) 

{exp (—b10px - biix) - exp (_b2opx)}, (7.8) 

c° {(Fip + F2p 2 2b10 + F3p) exp (—biopx - biix) (7.9) 

- (F4p' + F5p4 + F6p 2) exp (—b2opx)}, 

Pa1To{(GlP_ + G2p a 2 C2b10 + G3p) exp (—b10px - biix) (7.10). 

- (G4p' + G5p + G6p 2) exp (—b2opx)}, 

El - —b10b20) 

= b10b20D1, 

= D2b10b20 - b11b20, 

F1 - i f,-iz.2 \ 
- U2OL'1U10 - i-f 

F2 = (C2 - C1b0)D1b2o, 
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F3 = (2C1b10b11 - (C1b0 - 

F4 = —C2b10, 

F5 = D1C2b10, 

F6 = b10C2D2 + C1b10b0 - C2b11, 

= b20, 

= —b20D1, 

= 

G5 = —b10D1, 

G6 = —b10D2+b11. 

Taking the inverse Laplace transform of equations (7.8)-(7.1O), we obtain 

T0 t 

u(x, t) E E{exp (—bus) I ö(t - b10x - z) (2 + dz 
Jo rz 

- (4t)(')i(25)erfc( 2fl11' 

T0 3 t 

O(x, t) {exp (—b11x) E F j=1  dz f 5(t - b10x - z) F(1 + ) 

0 b20x 
- 

j=4 

pa1To 
{exp ( 

C2b10 

6 

—G(4t) 
j=4 

2\/ 

3 t £ 

b'1x)GjJ (t—biox—z)  Z2 
j=1 r(l+ dz 2) 

erfc( b20x _p.) }. 

Evaluation of the integrals in equations (7.11)-(7.13) leads us to 

E{exp (—Xij)H(t - X10) (t -  u(x,t) T 
0 

C2b10 F(2 + ) 

(7.11) 

(7.12) 

(7.13) 
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where 

'Sd 

x2O 
- (4t)(1 )i(2+1)erfc( 7Ft )j, 

T0 3 (t—X1o) 22. 
C2b10 {exp (—X11)H(t - X10) F 

r(1 + ) 
6 x20 =. 

- F'j(4t) j24 z(4)erfc(.—p)}, 
j=4 

paiTo (t -  X10)  
0'(X, t) {exp (—X11)H(t - X10) 

2kW F(1 + ) 
6 x20 

- G(4t) 

= b11x X10 = b10 cc X20 = b20x. 

(7.14) 

(7.15) 

(7.16) 

For obtaining the numerical values of 0 and cr, we have used the same numerical 

values of the parameters as given in equations (6.16). 

The numerical values of the temperature and stress for t = 0.02, 0.04, 0.06 are 

given in Tables 7.1-7.3. And these values are displayed in Figures 7.1-7.6. 

The explanation for sharp corners in the graph of cr/To in Figures 7.2, 7.4 and 

7.6 is the same as given on page 66. 
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Table 7.1: Numerical values of temperature and stress for t = 0.02 

x 9/T0 u/To 

.0000 .9988 -.1755 

.0500 .6633 -.1734 

.1000 .3675 -.0949 

.1500 .1728 -.0442 

.2000 .0682 -.0174 

.2500 .0224 -.0057 

.3000 .0061 -.0015 

.3500 .0014 -.0003 

.4000 .0003 -.0001 

.4500 .0000 .0000 

.5000 .0000 .0000 

.5500 .0000 .0000 

.6000 .0000 .0000 

.6500 .0000 .0000 

.7000 .0000 .0000 

.7500 .0000 .0000 

.8000 .0000 .0000 

.8500 .0000 .0000 

.9000 .0000 .0000 

.9500 .0000 .0000 
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Table 7.2: Numerical values of temperature and stress for t = 0.04 

x 0/To 

.0000 .9971 -.1388 

.0500 .7743 -.2130 

.1000 .5345 -.1442 

.1500 .3412 -.0907 

.2000 .2006 -.0527 

.2500 .1081 -.0282 

.3000 .0533 -.0138 

.3500 .0240 -.0062 

.4000 .0098 -.0025 

.4500 .0036 -.0009 

.5000 .0012 -.0003 

.5500 .0004 -.0001 

.6000 .0001 .0000 

.6500 .0000 .0000 

.7000 .0000 .0000 

.7500 .0000 .0000 

.8000 .0000 .0000 

.8500 .0000 .0000 

.9000 .0000 .0000 

.9500 .0000 .0000 
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Table 7.3: Numerical values of temperature and stress for t = 0.06 

x 0/To cr/To 

.0000 .9952 -.1070 

.0500 .8052 -.1765 

.1000 .6225 -.1756 

.1500 .4443 -.1229 

.2000 .3006 -.0818 

.2500 .1923 -.0517 

.3000 .1161 -.0309 

.3500 .0661 -.0174 

.4000 .0353 -.0093 

.4500 .0178 -.0046 

.5000 .0084 -.0022 

.5500 .0037 -.0009 

.6000 .0015 -.0004 

.6500 .0006 -.0001 

.7000 .0002 -.0001 

.7500 .0001 .0000 

.8000 .0000 .0000 

.8500 .0000 .0000 

.9000 .0000 .0000 

.9500 .0000 .0000 
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7.2 A Special Case 

Because the constitutive equations (5.4)-(5.6) include a diffusion type of equation 

for heat conductivity, generally, this theory predicts a infinite speed for the heat 

propagation. But for a special case, when k* >> k, that is, a4 0, b1 0, 

expression (5.22) becomes 

A=Cp, i=1,2, (7.17) 

where 

ci = 
b2 + (_l)i+1Jb 2 

- 03 

2 

Now from equations (6.28) and (7.17), we have 

where 

1 1 

- B2A1 = (C2A - C2p2)A2 - (C1) - C2p2)A1 
1  

= (Cicc2 - C2c2 - C1c1c + C2ci)p3' 
M 

M 
1 

C1cc2 C2c2 - C1c1c + C2c1 

(7.18) 

Substituting from equations (7.17) and (7.18) in equations (7.5)-(7.7), we obtain 

T0Mc1c2  
{exp—Aix)— exp (—A2x)}, (7.19) 

p2 

= TOM {Ml exp (—Aix) - M2 exp (—A2x)}, (7.20) 
P 

Pa1ToM{C1 exp (—Aix) - c2 exp (—A2x)}, (7.21) '7= 

P 
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where 

fyi1 = (C, C2 
- 

M2 = (Cic—C2)c1. 

Taking the inverse Laplace transforms of equations (7.19)-(7.21), we find 

T0c1c2M 
U = - 2 {H(t - cix)(t - cix) - H(t - c2x)(t - c2x)}, (7.22) 

9 = T0M{M1H(t - c1x) - M2H(t - c2x)}, (7.23) 

ci = paiToM{ciH(t - cix) - c2H(t - c2x)}. (7.24) 

For obtaining the numerical values of 9 and ci, we have used the same numerical 

values of the parameters as given in equations (6.16). The numerical values of the 

temperature and stress for t = 0.15, 0.25, 0.50 for various of x are given in Tables 

7.4-7.6. The jumps in temperature and stress fields occur at x = x1, x2 as given 

below: 

t 0.15 0.25 0.50 

x1 .0711 .1186 .2371 

X2 .1728 .2882 .5760 

The numerical values of temperature and stress are displayed in Figures 7.7-7.12. 
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Table 7.4: Numerical values of temperature and stress for t = 0.15 

x u/To u/To 

.0000 1.0000 -.0883 
xi 1.0000 -.0883 
xi .1481 -.1501 

.1000 .1481 -.1501 
.1481 -.1501 

X2+ .0000 .0000 
.2000 .0000 .0000 
.3000 .0000 .0000 
.4000 .0000 .0000 
.5000 .0000 .0000 
.6000 .0000 .0000 
.7000 .0000 .0000 

Table 7.5: Numerical values of temperature and stress for t = 0.25 

x u/To UITO 

.0000 1.0000 -.0883 

.1000 1.0000 -.0883 
xi 1.0000 -.0883 
xi .1481 -.1501 

.2000 .1481 -.1501 

.1481 -.1501 

.0000 .0000 
.3000 .0000 .0000 
.4000 .0000 .0000 
.5000 .0000 .0000 
.6000 .0000 .0000 
.7000 .0000 .0000 
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Table 7.6: Numerical values of temperature and stress for t = 0.5 

x u/To cT/To 

.0000 1.0000 -.0883 

.1000 1.0000 - .0883 

.2000 1.0000 - .0883 
xi 1.0000 -.0883 
xt. 1481 -.1501 
.3000 .1481 -.1501 
.4000 .1481 -.1501 
.5000 .1481 -.1501 

.1481 -.1501 
4 .0000 .0000 

.6000 .0000 .0000 
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Fig.7.5 Numerical values of temperature 8/T0 against x 
for a fixed boundary problem at t = 0.06 
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Appendix A 

The purpose of this appendix is to obtain the conditions which are both n ecessary 

and sufficient for the requirement that an equation of the form (4.6) be satisfied 

identically being independen t of these rate quantities. For this purpose, we first 

observe that an equation of the type (4.6) can be recast in the form 

N 

+ a - 0. 
n=i 

(A.1) 

Suppose that (A.1) holds as an identity for all arbitrary values of yn in some 

range of values which includes the values y, = 0, where the coefficients a1, ..., a, are 

functions of other variables independent of all y. Then, (A.1) is a linear identity in 

yn and it follows that necessary and sufficient conditions for (A.1) to hold are 

a=0, a=0(n=1,2, ... N). (A.2) 

The variables in (A.1) may represent scalars, or a, Yn may be vectors with ay 

as scalar product of the vectors. 
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