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Abstract 

Polynomials play a significant role in many fields of mathematics from Algebraic Number 

Theory and Algebraic Geometry to Applied Analysis, Fourier Analysis, Convex Geometry 

and Computer Science. In many problems related to different areas of mathematics one 

often uses the, so-called, polynomial inequalities. Recently there has been considerable 

interest on extending the classical (Bernstein/Markov) polynomial inequalities to higher 

dimensional cases. Originally, such inequalities have appeared in Approximation Theory 

and for a long time have been considered as technical tools for proofs of Bernstein type 

direct and inverse theorems. At the present time polynomial inequalities have found a 

lot of important applications in areas which are well apart from Approximation Theory. 

In the present work, we will survey different types of polynomial inequalities, both 

univariate and multivariate cases. Some proofs of the basic theorems will be presented, 

and all results are presentations of published results. Also, we present applications of 

the polynomial inequalities to some Whitney type problems on characterization of trace 

spaces for certain classes of differentiable functions. 
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Chapter 1 

INTRODUCTION 

Polynomials play a significant role in many fields of mathematics from Algebraic Number 

Theory and Algebraic Geometry to Applied Analysis, Fourier Analysis, Convex Geometry 

and Computer Science. The Fundamental Theorem of Algebra and finding solutions of 

polynomial equations are basic examples of theorems and problems arising from the study 

of polynomials. It is worth noting that in many problems related to different areas of 

Analysis one often uses the so-called polynomial inequalities. Roughly speaking such in-

equalities estimate the growth of a polynomial in R. For instance, in the one-dimensional 

case the natural question we may ask, is how large can JIPII(_1,1] := maxxEl_1,11 Ip(x)I be 

if p is a real polynomial on R of degree n and 

I {x E [-1,1]: Ip(x)I ≤ 1} I ≥ 2 - s?  

Here JUI denotes the Lebesgue measure of U C R, and s ≥ 0 is a real number. 

The classical Remez inequality [1] proved in 1936 gives an answer to this question. 

This result is formulated in the next section. 

In general, an extension of a one-dimensional polynomial inequality to the multi-

dimensional case or to a more sophisticated class of functions is highly non-trivial and 

requires some additional analytic and geometric arguments. Such extensions play a 

central role in the proof of other important inequalities, such as Bernstein, Markov, 

Nikolskii, and Schur type inequalities. 

In this work we will present the highlights of the theory of Remez type inequalities. 

1.1 History 

One of the first polynomial inequalities was proved by Chebychev at the end of 19th 

century. It states that for every real polynomial p on R of degree n and a pair of 

intervals [c, d] C [a, b] the inequality 
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2+A (sup  \ jp(x)j ≤ Ti,,   sup Ip(x)I 
XE[a,b] A j xE[c,dj 

holds with A:= and T(x) := cos(n arccos x), the Chebychev polynomial of degree n. 

Bernstein, A. Markov, Remez who came after Chebychev, each proved a different 

type of polynomial inequality. For instance, the classical Bernstein inequality concerns 

polynomials of a complex variable z E C of degree n. It states that for such a polynomial 

p and every R> 1 

sup Ip(z)I ≤ R' sup Ip(z)I.  
IzIR IzI≤1 

Let us note that inequalities (1.1.1) and (1.1.2) are sharp. 

In turn, the classical A. Markov inequality compares the supremum norm of a real 

polynomial of degree n on an interval [a, b] with the supremum norm of its derivative 

there: 

( 2n2 - 

sup WWI b a) sup p(x)l. 
XE[a,b]  XE[a,b] 

(1.1.3) 

This inequality was proved by A. Markov as an answer to a question raised by the 

Russian chemist D. Mendeleev who applied its particular case (for polynomials of degree 

two) to investigate the perfect percentage of alcohol content for vodka. He discovered that 

it is 38%. However, since spirits in his time were taxed on their strength, the percentage 

was rounded up to 40 to simplify the tax computation. 

In the 1920s-1930s Polya and Remez initiated the study of polynomial inequalities 

on measureable subsets in R. As a result, Remez, in his 1936 paper, generalized the 

Chebychev inequality by replacing the subinterval [c, d] by an arbitrary measurable subset 

Ec[a,b]. 

Theorem 1. (Remez) For a measurable set E c [a, b], JEJ > 0, and a real polynomial p 
of degree n, 

sup IPW I ≤ Tn (2(b -  a) 1 sup Ip(x)l. 
x€[a,b] I XEE (1.1.4) 
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Equality in (1.1.4) holds if and only if E = [a, a + 8] and p(x) = AT( 27 ) 1) or 

E= [b—o,b] andp(x) =AT( 2  1), where AER and  <8< b — a. 

A multivariate generalization of the Remez inequality was proved by Yu. Brudnyi 

and Ganzburg [2] in the 1970s. 

Theorem 2. (Brudnyi-Ganzburg) Let V C W be a convex body and w C V be a mea-

surable subset of Lebesgue measure 1coi > 0. Then for a real polynomial p on R' of degree 

supipi ≤Tn l ,/lA V  ) Sup IPI (1.1.5) 

where A 

This inequality coincides with the classical Remez inequality if d = 1 and is sharp in 

any dimension. 

The further development of the theory of Remez type inequalities is due to Yu. Brud-

nyi [3, 4, 5], Ganzburg [8], Erdelyi and Borwein [56], A. Brudnyi [5, 6, 7, 20, 21, 27, 28], 

C. Fefferman and Narasimhan [17], [18], Roytwarf and Yomdin [9] and many other math-

ematicians. 

1,2 Application 

Polynomial inequalities work as a main tool in different areas of mathematics. Originally, 

univariate Bernstein and Markov type inequalities for polynomials have appeared in 

Approximation Theory and for a long time have been considered as technical tools for 

proofs of Bernsteins type direct and inverse theorems. At the present time polynomial 

inequalities have found a lot of important applications in areas which are well apart from 

Approximation Theory. We will only briefly mention several of these areas. 

The papers of V. Milman, Gromov [10], Bourgain [11], Kannan, Lovász, and Si-

monovits [12] apply polynomial inequalities with different integral norms to study some 

problems of Convex Geometry (in particular, the famous Slice Problem). 

In the papers of Yu. Brudnyi, Pawlucki, Pleniak [13, 14] and the books of DeVore 

and Sharpley [15] and Jonsson and Wallin [16] Chebychev-Bernstein and related Markov 
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type inequalities are used to explore a wide range of properties of the classical spaces 

of smooth functions including Sobolev type embeddings and trace theorems, extensions 

and differentiablility. 

The papers of C. Fefferman and Narasimhan [17, 18] on Bernstein's type inequalities 

for traces of polynomials to algebraic varieties were inspired by and would have important 

applications to some basic problems of the theory of subelliptic differential equations. 

The paper of Bos, Levenberg, P. Milman, and Taylor [19] discovers a profound re-

lation between the exponents in the tangential Markov inequalities for restrictions of 

polynomials to a smooth manifold M C 1R' and the property of M to be an algebraic 

manifold. 

Applications of polynomial inequalities to Cartwright type theorems for entire func-

tions are presented in the papers of A. Brudnyi [20, 21], B. Levin [22], Logvinenko [23] 

and Katznel'son [24]. 

In the papers of Nazarov, Sodin and Volberg [25, 26] these inequalities are used to 

estimate the distribution of zeros of certain families of random analytic functions. 

An application of polynomial inequalities to the second part of Hubert's sixteenth 

problem concerning the number of limit cycles of planar polynomial vector fields was 

obtained by A. Brudnyi [27, 28]. 

Finally, in the papers of I. Vinogradov [29] a specific case of the upper estimates of 

trigonometric integrals based on Polya-type polynomial inequalities is obtained. Such es-

timates play an important role in some areas of Number Theory, Analysis (some problems 

of uniqueness and convergence of trigonmetric series, theory of orthogonal polynomials, 

differential properties of functions), Probability, and Mathematical Statistics. 

1.3 Overview 

In the present work, we will survey different types of polynomial inequalities, both uni-

variate and multivariate cases. Some proofs of the basic theorems will be presented. 

Also, we will describe polynomial type inequalities for holomorphic functions. Finally we 

present applications of the polynomial inequalities to some problems of characterization 



5 

of trace spaces for certain classes of differentiable functions. 



Chapter 2 

REMEZTYPE INEQUALITIES 

2.1 Univariate Remez's Inequality 

First, consider the Chebychev polynomials T(x) which are defined as follows: 

T(x) 

T(x) 

cos(narccos(x)), x E [-1,1], or, equivalently, 

I ( (X + \IX 2 — )n + (X — V X 2 — )n)  
XEC. 

(2.1.1) 

The Chebychev polynomials were introduced by the famous Russian mathematician 

Pafnutii L'vovich Chebychev (1821 - 1894). 

It has been shown already by Chebychev that T(x) is the fastest growing polynomial 

outside [-1, 1]. In other words, 

p E P., IIPII ≤ 1  = T(e), V el ≥ 1, ER 

where P is the set of all polynomials of degree n. 
Let s be an arbitrary fixed positive number. For every p E P define the set 

(2.1.2) 

M(p) := {x E [-1, 1 + s] : 1p(x)l ≤ 1}. (2.1.3) 

Clearly M(p) consists of mutually disjoint closed subintervals of [-1, 1+ s] (some of these 

subintervals can be single points). Let IM(p)l be the measure of M(p). Next we consider 

Pa(s) :={pEP: IM(p) I ≥2}. 

In 1936, Remez [1] established the following 

sup llII = llTll. 
PEP(s) 

6 

(2.1.4) 

(2.1.5) 
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where is the supremum norm over [—.1, 1 + .s], and, by the definition of Chebychev 

polynomials, IITII = T(1 + s). 

This result implies the inequality of Theorem 1 of section 1. Indeed, let p be a 

polynomial of degree n on [a, b] C R and E c [a, b] be a mesurable subset. We set 

2(b—a) 2 

El 

and consider a polynomial P on [-1,1 + s] defined by the formula 

p(x)  (2(x — a) 

SUPtEE 1p(t)l := El 1), 
X  [a, b]. 

Then M() contains the set E := {x E [-1, 1 + s] : x = 2(t;a) 1, t e E} of measure 

2. Thus (2.1.5) implies in this case 

sup 1p(x)l 
E[a,b] (sup l(x)l) (sup lr(x)l) 

VE[1,1+8] sEE 

T(1 + s) := T (2(b -  a)  
El sup 1P(X) )XEE 

as is required. 

So let us prove now (2.1.5). 

Proof. We follow the proof given in [30]. Note that for any fixed x E [-1, 1 + .s] the 

quantity 

(x) := sup {Ip(x)j P E P(s)} (2.1.6) 

is attained for some polynomial from Pa(s). We shall show first that p(x) ≤ p(1 + s) 

for each x E [-1, 1 + s]. Indeed, let x be an interior point of [-1, 1 + s] and let p be 

the extremal polynomial for this point, i.e., p E Pa(s) and Jp(x) = (x). Introduce the 

polynomials 

p1(x) := p(o(x)), p2(x) := p(/3(x)), (2.1.7) 
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where a [-1,1+ s] - [-1,x] and [-1,1+ sj — f [x, 1+ s] are the linear transforma-

tions. Let M1 and 1k!2 be the parts of M(p) situated in I := [-1, x] and 12 := [x, 1 + s], 

respectively. Assuming that IMI < Allil for i = 1,2 and A = 2/(2 + s), we would get 

Ml = Mi + M21 < Au1 + 121 = A(2 + s) = 2, a contradiction. Therefore IMl/lII ≥ A 
at least for one i, say for i = 1. Then M(pi)J ≥ 2 and hence Pi E Pa(s). This yields 

(x) = 1p(x)l = pi(l + )l ≤ i(1 + s). (2.1.8) 

Therefore the Remez inequality will be proved if we show that 

l(l + )I ≤ T(1 + s) VP E Pa(s). (2.1.9) 

In order to show this, denote by —1 =qo <ii < ... = 1 the extremal points of 

T. We have 

Tfl (77k)=(-1) k=0,...,m. (2.1.10) 

Let x0 <x1 < ... <x,, be the points of M(p) which coincide with ij, ---, ,qn after we 

press M(p) to the left, i.e., to the interval [-1, M(p) - 1]. By the Lagrange interpolation 

formula 

1p(l+s)l < E fl 11+s—x4  
k=O i—O,ik Xj 

since p(x)l ≤ 1. Now taking into account the obvious inequalities 1+s—x4 ≤ 11+s-1l, 

lxk - x4 ≥ I7k - 7Ji and (2.1.10), we get 

p(l+s) I ≤ [J  =T(1+s). (2.1.12) 
k=O i=O,ik  

U 
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2.2 Multivariate Remez's Inequality 

To prove the Brudnyi-Ganzburg inequality [2] (i.e., a multivariate version of the Remez 

inequality) formulated in Theorem 2 we will use the following geometric fact. 

Fix an inner point x0 of the body V C R' and let 0 < A ≤ 1. Let 1 stand for a ray 

emanating from x0. By mcs1 we denote the linear Lebesgue measure on 1. Consider the 

extreme problem 

yd(A) = sup essinf mesi(V fl 1)  
i mesi(w fl 1) 

where the sup is taken over all measurable w C V satisfying 

Lemma 1. The following identity holds: 

Yd(A) = ____ 

1 - '1 - - A 

1 

(2.2.1) 

(2.2.2) 

Proof Let us introduce in Rd a spherical system of coordinates with center x0: (r, 0) = 

(r, . . , q5 ). Let r = H(0) = H(cb1,... , h-1) be the equation of the surface of the 

boundary ÔV of V. Let us examine the set which in the coordinates (r, 0) is defined 

by 

/3d(A)H(0) ≤ r ≤ H(cb), /3d(A) 1 - /1 - A. (2.2.3) 

It is easy to calculate that JFJJ = A and, for almost every ray 1 emanating from x0, 

mesi(V n 1) - 1 

mesi(&fll) l— I3d(A) 
(2.2.4) 

Therefore it remains to show that there is no set w C V with jwj ≥ A satisfying the 

inequality 

essinf mes1 (V n 1)  
1 mesi(wnl) > 1/3d(A) 

(2.2.5) 
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Suppose (2.2.5) holds for some w, IwI ≥ A. Comparing (2.2.4) with (2.2.5) we obtain 

that for almost every 1 

mes1(15L fl 1) = mesi(w fl 1) + (l) (2.2.6) 

where E(1) > 0. Using w, we construct a "symmetrized" set w): On each such ray 1 we 

put on one side a segment of length mesi(w fl 1) in such a way that it lies in the set V 

and one of its ends coincides with the point of intersection of 1 with the boundary of V. 

By virtue of (2.2.6) the set lies strictly inside , and therefore iw()I < J = A. On 

the other hand, by the monotonicity of rd_i 

rdr < 1", rd_idr (2.2.7) 
ni 

and, integrating both sides with respect to 0, we conclude that IwI ≤ lw'I. Thus IwI <A, 
which contradicts our assumption. Therefore the lemma is proved. 0 

Let us prove now Theorem 2. 

Proof. Let w C V, ≥ A and p E Pn,d belong to the set of real polynomials on 1R' of 

IVI degree n. Assume that iiPiiC(v) := supv 1PI = 1p(xo)i, x0 E V. Consider the restriction of 

p to a ray 1 emanating from x0. Applying to the restriction Theorem 1, we have 

iiPilc(v) = ip(xo)I ≤ T (2mesi(V fl 1)  ) I iPi iC(wfll). (2.2.8) 
\ mesi(wfll)  

Taking ess inf with respect to 1 on the right-hand side of the above inequality, and then 

sup over all measurable w C V, ≥ A, we obtain (using monotonicity of T(x) for 

IVI lxi ≥ 1) the inequality 

IiPiiC(V) ≤ T (2'Yd(A) 1) iiPiiC(w), or equivalently, 

iiPiiC(V) ≤ T (2 ( 1  ) 1)_T (I+ Pd(A)'\ 
1 d(A) - - 

This completes the proof of Theorem 2. 
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D 

Let us show that the inequality of Theorem 2 is sharp on the class of compact convex 

bodies. To this end, we define V to be a circular cone of height one, say 

d 

V := E Rd : x I— 
j=2 

Fix A E (0, 1) and let Vh be a subcone of V of height h where h E (0, 1) is determined by 

the condition IV \ VhI = AIVI; then h = i1 - A. Set now S:= V \ Vh and let 
(2x1 - 1 - h 

p(x):=T  1—h 

be the Chebychev polynomial associated to interval [h, 1]. Then 151 = AIVI and 

, 

(1+h\ 
maxlpi =T - h) =T    max  

that is, the inequality of Theorem 2 becomes equality. 

Corollary 1. Under the assumption of Theorem 2, 

1 (4d\ ' 
max IPI≤T) maxlpl. 

Proof. The function A 1 - '/1 - - A is convex on (0, 1] and therefore 

1+l/1_A<2d 1 
1-1—AA 

This, the definition of T and its monotonicity on [1, oo) imply the result. 

D 

2.3 Remez type inequality for integral norms 

The inequality of Theorem 2 may be generalized to integral norms as follows. 

Corollary 2. Let 0 < r ≤ q ≤ oo and let S be a subset of a convex body V C R' of 

relative measure A := (0, 1]. Then for every polynomial p of degree n the inequality IVI 

fV p dX} ≤ (rn + 1)'y(n, d)Ak f p dx} 
holds with 'y(n, d) := (4d). 

(2.3.1) 
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Proof. It suffices to consider the case q = 00. Due to the homogeneity of (2.3.1) we may 

assume that 

maxlpl= 1. 

Further, for t E (0, 1], define the level set for p by 

:= {x E V : Ip(x)l <t}. 

Applying to this subset inequality of Corollary 1 we get 

1=max IPI≤Y(nd)(i1).t 

and then derive from here the inequality 

ILtI ≤ VI(y(n,d)t). (2.3.2) 

To proceed we need the notion of rearrangement, see, e.g., [54], section 1.8. 

Let (E, ) be a measure space and f : E —* JR. be a /.z-measurable function. A 

nonincreasing function m(f) : (0, oo) — JR U {oo} is then given by 

m(f;t) := {o € E : If(o)I > t}, 

while the rearrangement f*: (0, (E)] — R. U {oo} is defined by 

inf{t : m(f; t) ≤ s}. 

Functions f and f* are equimeasucrable; therefore, for 0 <r <00, 

fo 
/h(E) 

(f*())r ds = If ir d. 

Using these definitions we relate I Lt I to the rearrangement of the restriction p I v• Actually, 

ILtI = Vi —m(p v;t) 

and therefore the inverse to the function t i—  ILtI is equal to t '—* (plv)*(IVI - t). This 

inverse is estimated by (2.3.2) to give 

(pIv)*(IVI_t)>  1 ( t ) n . 

- y(n,d) 
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It remains to note that for S C V and 0 ≤ t ≤ 181, 

(pls)*(t) ≥ (plv)*(t) 

and therefore 

lsi [ 1  / t  Isio L' d) wj)] dt≤ f,s, [(PIs)*(ISI - t)]r dt = L [(Pls)*(tWdt = IPIr dx. 
y(n 

Integrating and raising to the power 1 we get the inequality 

1  1   n 
(IVISfl)\< i P (rn+ 1) (n,d)  - FSJ Is IPIr dx) 

which is equivalent to (2.3.1) with q = co. 0 

Remark 1. Let S = V; then (2.3. 1) yields the inverse Holder inequality for polynomials. 

The constant obtained is, up to a numerical factor, optimal for r ≤ 1 and q = co, but 

may be essentially improved for other values of r and q, see the paper [55] by Carberry 

and J. Wright, and references therein. 



Chapter 3 

REMEZ TYPE INEQUALITIES FOR HOLOMORPHIC 

FUNCTIONS 

The purpose of this chapter is to describe Remez type inequalities for holomorphic func-

tions. We define the local degree of a holomorphic function which expresses its geometric 

properties and generalizes the degree of a polynomial. This notion is central in our con-

sideration. It allows us to obtain better constants in Remez type inequalities even in the 

standard polynomial case. 

We proceed with the formulation of the main results of this chapter. 

3.1 A generalized Remez inequality 

Let B(O, 1) C B(O, r) c C be a pair of open complex Euclidean balls of radii 1 and 
r respectively centered at 0. Denote by 0, the set of holomorphic functions defined 

on B(O,r). Let l, C C(= R2') be a real straight line passing through x E B(0, 1). 

Further, let I C l fl B(0, 1) be an interval and w C I be a measurable subset. 

Theorem 3. For any f E Or there is a constant d = d(f, r) > 0 such that for any 

wCIClflB(0,l) 
Y sup If  ≤ (4,1, J )supf.&J 

Example I. As an application of the above theorem we obtain local inequalities for 

quasipolynomials. 

Definition 1. Let ft,. . . , fk E (Cn)* be complex linear f'unctionals. A quasipolynomial 

with spectrum fl, ... , fk is a finite sum 

(3.1.2) 

where  E C[zi,... ,z]. The expression > 1(l+deg(p)) is said to be the degree off. 

14 
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Proposition 1. Let f be a quasipolynomial of degree m and l be a real straight line 

passing through x E B(O, 1). Then there is an absolute constant c > 0 such that the 

inequality 

sup fl (41II)e(v'M+7n) (3.1.3) 

TWI 
holds for any interval I C ix fl B(0, 1) and any measurable subset w C I. Here M := 

maxi f IIfiIIL2(Cn) I - 

Definition 2. The best constant d in inequality (3.1.1) will be called the Chebyshev degree 

of the function f E Or in B(0, 1) and will be denoted by df(r). 

All constants in the inequalities formulated below depend upon the possibility to 

obtain an effective bound of the Chebyshev degree in (3.1.1). The following result gives 

such a bound in terms of the local geometry of f. 

We say that a univariate holomorphic function f defined in a disk is p - valent if 

it assumes no value more than p-times there. We also say that f is 0-valent if it is a 

constant. For any t E [1, r) let Lt denote the set of one-dimensional complex affine spaces 

I CC such that lflB(0,t) 54 O. 

Definition 3. Let f E Or. The number 

v1 (t) := sup {valency of fl1nB(o,t)} (3.1.4) 
1ELt 

is said to be the valency off in B(0, t). 

Proposition 2. For any f E O and any t, 1 ≤ t <r, the valency Vf(t) is finite. There 

is a constant c = c(r) > 0 such that df(r) ≤ cvf (1) . 

Remark 2. For any holomorphic polynomial p E C[zi,. . . , z] of degree at most k the 

classical Remez inequality implies d(r) k while in many cases Proposition 2 yields a 

sharper estimate. 

From Theorem 2, one can obtain the following inequality 

(4nJVI\ ' 
splpj ) sup !pl. (3.1.5) 
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In this section we formulate a generalization of inequality (3.1.5). Let B(O, 1) C 

B(O, 1) be the real Euclidean unit ball. 

Theorem 4. For any convex body V C B(O, 1), any measurable subset w C V, IWI > 0, 

and any f E Or the inequality 

4nIVI df(r) 

sup If ≤ ( wi ) sup if (3.1.6) 

holds. 

The following corollary is a version of the log-BMO-property for analytic functions 

[6, 57] 

Corollary 3. Under the hypothesis of Theorem 4 the inequality 

In fl 
if liv 

dx ≤ Cd1(r) In(n) (3.1.7) 

holds with an absolute constant C, where Ilf IIv := SUPV if 1 

Our next application of inequality (3.1.1) is a generalization of Bourgain's polynomial 

inequality [11]. 

Theorem 5. Let V C B(0, 1) be a convex body and dj(r) be the smallest integer ≥ d1 (r). 

There are positive absolute constants c1, c2 such that the following inequality 

xEv:if(x)i> jjfif(x)Idx} f  

holds for any f E Or. In particular, 

IIfIIL (v, ) ≤ (Cl + 1) iifllL'(v,) 

≤ c1 (3.1.8) 

(3.1.9) 

where L< refers to the Orlicz space with the Orlicz function (t) = exp(tc2/f(r)) - 1. 

Let us recall that an Orlicz space is a type of a function space which generalizes L 

spaces. The spaces are named for W. Orlicz who discovered them in 1931. Here is the 

definition of them. 
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Suppose that j is a o--finite measure on a set X, and I: [0, oo) -* [0, oo) is a convex 

function such that 
(x) 

L 0, as x0+. 

—oo, as x —*oo, 

Let L be the space of measurable functions f : X - f R such that the integral 

fX (If I)d/t < 00, 

where as usual functions which agree almost everywhere are identified. 

This may not be a vector space (it may fail to be closed under scalar multiplication). 

The vector space of functions spanned by L is the Orlicz space, denoted L. To define 

a norm on L, let 1' be the Young complement of ; that is, 

IP (x) = fo (-,D')-'(t)dt. 

The norm is then given by 

IIfIl  =sup {IIf9IIL1 : JX 9f o IgIdM < I} 

Furthermore, the space L" is precisely the space of measurable functions for which this 

norm is finite. 

An equivalent norm is defined on L by 

IIfII := inf{k E (0,00): Ix III(If1/ ≤ 

Orlicz spaces generalize II spaces in the sense that if (t) = t, then Ju = IIuIILP, 

so L(X) = P'(X). 

Remark 3. The original Bo'urgain's inequality for polynomials contains the degree of the 

polynomial instead of d1(r). 

As a corollary of inequality (3.1.1) we also obtain the reverse Holder inequality with 

constant which does not depend on the dimension (this result does not follow from 

Theorem 4). 
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Corollary 4. 

(f1 1/8 1 
If(x)Idx) <c(df(r)s)flf(x)Idx (f E 0 r)S EZ+) 

The following example shows that in the polynomial case our inequalities might be 

sharper than those of [2, 11]. 

Example 2. Let f E O. be such that SUPBc(O,r) If I < 1. Let 0 be a holomorphic non-

polynomial function univalent in an open neighbourhood U of ltD = {z E C: IzI ≤ 1}. 

Then using Proposition 2 and Proposition 3 below yields d150f (r) ≤ c(r)v (). Consider 
a polynomial approximation hk of q such that deg hk = k and hk is also univalent on 

D. Assume now that f E Or is a polynomial. Then deg(h o f) = k deg f. Further, 

apply Brudnyi- Ganzburg and Bourgain's polynomial inequalities to the polynomial hk ° f. 

Then the exponents in these inequalities will be equivalent to k - deg f and 1/(k. deg f), 

respectively. However, in our generalizations of the above inequalities these exponents 

contain numbers dhkOf(r) and 1/dhkOf (r) with dhkof(r) ≤ c(r)deg f and this is essentially 
better for all sufficiently large k. 

3.2 Proofs of Theorem 4 and Proposition 2 

We begin with some auxiliary results used in the proof. 

3.2.1 Parametrization of straight lines in the ball 

(3.1.10) 

Let B(0, s), 1 < s < r, be an open complex Euclidean ball. For any x E B(0, s) 

consider the complex straight line lx,, = { + vz\/52 - 1x12; (x, v) 0, M = 1, z E C} 

passing through x. Here denotes the Euclidean norm and (,.) the inner product on 

C. In this way we parametrize the set L3 of all complex straight lines passing through 

points of B,(0, s). Let f be a holomorphic function from Or. Consider the function 

F(z, x, v, s) = f(x + vz\/82 - IxI2) (z E D). (3.2.1) 

Then F(., x, v, s) is the restriction of f to 1, fl B(0, s). Note also that for any t < s 
the inequality 
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s2_Ixl2 > (8)2t2- 1x1 2 t (3.2.2) 

holds. This implies that the set {x + vz./s2 - x2; (x, v) = 0, IVI 1, z E D} contains 

disk ix,, fl B. t). Set 

M(x, v, s, t) = sup in IF(., x, v, s)I. (3.2.3) 
tD 

Definition 4. The number 

bf(s, t, r) sup {M(x, v, s, t) - M(x, v, s, 1)} (3.2.4) 
x,v 

is said to be the Bernstein index of f E Or' 

3.2.2 Bernstein index and Remez inequality 

Assume that F(., x, v, s)(= f lnB(o,)) has valency m on 1D. Assume also that 1 <t < 

s. By Theorem (2.1.3) and Corollary (2.3.1) of [9] (see also [6] Lemma (3.1)), there is a 

constant A = A(t) > 0 such that 

M(x, V) S, 1+2 t M(x, v) 8, 1) ≤ Am. (3.2.5) 

Then we apply the main inequality of Theorem (1.1) of [6] to the function IFI obtaining 

that there is a constant c = c(t, A) > 0 such that the inequality 

supF < (41P, j 
I  CM sup IF1 
' - w'j) w' 

(3.2.6) 

is valid for any interval I' C [-1/s, 1/s] and any measurable set w' C I'. 

Since l fl B(0, 1) C { + vzs2 - IxI2; (x, v) = 0, lvi = 1, z E D}, (3.2.6) implies 

inequality (3.1.1) with exponent cm for f restricted to the real straight line Ix c l. 

3.2.3 Proofs of Theorem 4 and Proposition 2 

Proof. Let 1 <t <r and f E Or. First we prove inequality Vf(t) <co. 
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Fix a number s satisfying t < s < r. For any x E B(0, .$) consider the complex 

straight line i, = {X + vz\/s2 - Ixi2; (x, v) = 0, lvi = 1, z E c} passing through x. Let 
K {(x, v) E B(0, s) x S2''; (x, v) = 0}. Further, for f E Or consider the function F 

defined by Definition 4. Then F is ananlytic on D x K and F(., x, v, s) is holomorphic 

on ID for any (x, v) E K. Let K1 C K be a compact subset that consists of points with 

the first coordinate from B,(0, t). In particular, the set of lines Ix,, with x E B(0, t) 

coincides with L (defined just before Definition 3). Assume without loss of generality 

that SUPB(O,S) If I = 1 and consider the analytic function F(z, x, v) s, w) = F(z, x, v, s) —w 

defined on D x K  2D. Set 

fj(x,v)r,w) = sup lnIF(z,x,v,s,w)l (3.2.7) 
zEll 

f2(x,v,r,w) = sup lnIF(z,x,v,s,w)I. 
zE1D 

Fix (x, v, w) E K1 x i. If F(., x, v, s, w) is not a constant then the number of its zeros 

in 15 is estimated by the Jensen inequality 

fZ € : (z,x,v,s,w) = o} c'(fi(x,v,r,w) - f2(x,v,r,w)) (3.2.8) 

with c' = c'(s, t) > 0. Note also that by (3.2.2), the above number of zeros gives an 

upper bound for the number of points y € lx,, fl B(0, t) such that f(y) = w. Since 

K1 x U is compact, the Bernstein theorem of C. Fefferman and R. Narasimhan [58] and 

the Hadamard three-circle theorem imply that there is a constant C = C(, K1 x i) > 0 

such that 

fi(x,v,r,w) - f2(x,v,r,w) ≤ C (3.2.9) 

for any (x, v, w) E K1 x 15. This inequality yields vf(t) ≤ c'C (see Definition 3). 

It remains to prove the inequality df(r) ≤ c(r)vf (1). We will do it in a parallel 

way with the proof of Theorem 4. 
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Let x E B(0, 1) and Ix C Ctm be a real straight line passing through x. Let I C 

Ix fl B(0, 1) be an interval and w C I be a measurable subset. Set s = t = 

and denote by 11 {y+vz\/82 - y12;(y,v) = 0, v = 1,z E c} the complex straight 
line containing l, where y E 1x is such that di.st(0, l) = lyl. By definition function 

F(., y, v, s) = fl1nB(o,$) determined by (3.2.1) has valency ≤ vs(s) on Therefore 

Bernstein index bf(s) 1, r) ≤ Avf(s) for A = A(r) > 0. Finally, inequality (3.2.6) 

and arguments of section (3.2.2) show that the inequality of Theorem 4 is valid with 

d ≤ cvf(s), c = c(r) > 0. This implies that 

df(r)<cvf(  2 ) 

Remark 4. In order to estimate the Chebyshev degree we can also use instead of v1(2) 

an appropiri ate Bernstein index b1 (r) = b1(s(r), t(r), r). Then df(r) ≤ b1 (r) ≤ cvf() 

with some a= (r) > 0. 

3.3 Properties of Chebyshev Degree 

We formulate further inequalities between the Chebyshev degree and valency. In the 

following proposition the constant c = c(r) is the same as in Proposition 2. 

Proposition 3. .1. Let f E Or and f(B(0,r)) c D C C. Let 0 be a holomorphic 

function defined in an open neighbourhood U D U. Assume the 0 has valency k in 

U. Then 

2. Let h:= E Or. Then 

d01 (r) ≤ ckv1 (1+ r) . 

d111 (r) ≤ CVIi ( 2 ) 
S. There is a constant c1 = ci(r) > 0 such that 

7 \ 
d19 (r) ≤ C1 V  71 2 -i-r ) +Vg (I +  2 )) 

for any f,g E Or. 

(3.3.1) 

(3.3.2) 

(3.3.3) 
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Consider the differential operator (a, D) =ajDj, where a = (ai,. . . , a,) E C, 

D := -, i I,— , n and z1,... ,z, are coordinates on C'. Set fm,a (a, D)-(f) 

Proposition 4 (The Rolle Theorem). Let f e (Or. Assume that for any a E Cn the 

valency of fm,a satisfies Vfm,a (ã) ≤ M. Then there is a constant c2 = c2(r) > 0 such 
that 

df(r) <c2 (m + M). (3.3.4) 

Proof of Proposition 3. 1. According to the definition of the valency we have 

V0f (2 2) kv (), where k is valency of q5. Then d0f (r) ≤ ckv (-) by 
Proposition 2. 

2. The statement follows from Proposition 2 and the identity vi/h () 
for h = 

Vh() 

3. According to the results of Section 3.2.1 it suffices to prove the statement for 

univariate holomorphic functions F(., x, v, s) = fli and G(., x, v, s) = g We 

consider a more general situation. 

Assume that Dr1 C Dr2 C C, r1 < r2, are disks centered at 0 of radii r1, r2, respec-

tively. Further, assume that f, g are holomorphic in Dr2 of valency a and b, respectively. 

We prove that there is a constant c = c(ri, r2) > 0 such that Chebyshev degree dfg (r1) of 

fg in TLDri ≤ c(a+b). Let K= {z E C: ≤ z ≤ r1-3r2} be an annulus in Dr2 and 

lnIgI — suping 

g - SUP11 ln l - SUPD in g[ 

Repeating word-for-word the arguments of Lemma 2.3 of [6] 

C = C(ri, r2) > 0 and a circle S C K centered at 0 such that 

infg'> —C. 

Going back to II we obtain 

infg ≥ sup II supDri  
Dr, (SUPD 2 IgI) 

(3.3.5) 

we can find a number 

(3.3.6) 

(3.3.7) 
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This implies 

sup Ifl SUPnr fl SUPII r II 'UPDr2 If I (SUPD12 91'\ 3 3 8 

SUPS lfI - sups fl infs I - sups If I SUPDr Il) 
Finally, according to Section 3.2.2, there is a constant B = B(ri, r2) > 0 such that 

Thus we get 

sup r If I <  5UPD fl  <B and 
SUPS If I - supn j If I - 

sup2 lfl 5UPJfl lfgl  
supD + lfl - SUPS lfl 

2 

SUPD12 Il <Bb. 
supi9j - 

(3.3.9) 

(3.3.10) 

with B = .(r1, r2, B) > 0. Then inequality (3.2.6) applied to Ifl implies the inequality 
of Theorem 3 with exponent c(a + b), c = c(ri, r2, B) > 0. Therefore d19 (r1) ≤ c(a + b). 

In the multivariate case the above arguments estimate an appropriate Bernstein index 

of fg by sum of Bernstein indeces of f and g. These indeces can be estimated by 

civ1() and civg() with some ci = ci(r) > 0. Thus according to Remark 4, d19 (r) ≤ 

c'(r)(v1(1) + vg(2f)). This completes the proof of (3). 

Proposition 3 is proved. 0 

Proof of Proposition 4. First, we recall the relation between Bernstein index and Bern-

stein classes. 

Definition 5. Let f(z) az be holomorphic in the disk DR, R> 1. We say that 

f belongs to the Bernstein class B,R,C, if for any j > N, 

IajIRj < c max laIR. (3.3.11) 
- O<i<N 

According to Corollary 2.3.1 of [9], if the m 1 derivative f(m) of f is M-valent then 
f(m+l) E B_l,i±CM with c := c(R) > 0. Moreover, from Definition 5 it follows that 

f E B +M i± CM. Then Theorem 2.1.3 of [9] based on the last implication yields 
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sup ≤ sup If I (3.3.12) 
DjtR ll1 

for some constant a = a(R) > 1. 

We proceed with the proof of the proposition. As in the proof of Proposition 3 it 

suffices to prove the result for restriction F1 of f to a complex line 1 passing through a 

point of B(O, 1). Then the condition of the proposition implies that derivative (m) 

of F has valency at most M in the larger disk 1 fl B(O, _R). Therefore the required 

result follows immediately from inequality (3.3.12) (an estimate for Bernstein index) and 

arguments of section 3.2.2. 

The proof of the proposition is complete. LI 

3.4 Proofs 

Proof of Proposition 1. Let 1c {y+vzv'4— IyI2;(y,v) = O,IvI = 1,z € c} be acom-
plex straight line passing through a point y E B(O, 1). Consider the restriction F of the 

quasipolynomial f(z) = E" pj(z)efi(z) to l. Then F is a univariate quasipolynomial of 

the form 

F(z) = qj(z)cfj(u1)e,/121i(1)) (cji E C[zj) (3.4.1) 

of degree ≤ m. We estimate valency of F in disk D2 := 2D (i.e. we estimate the number 

of zeros of F + c for any c E C). Note that F + c is also a quasipolynomial of degree 

≤ m + 1. Further, by definition maxi {If(v)I} ≤ M implying /4 - IyI2f(v) E ]D 2M for 
any i. Then by Theorem 2 in [59] the number of zeros of F + c in D2 less than or equal 

to m + (/k + 1 + 1) . 16M < 32(\/k + 1M + m). This and Proposition 2 yields 

df(2) ≤ CVf(3/2) ≤ c'(/k + 1M + m) (3.4.2) 

with an absolute constant c' > 0. The required inequality follows from the definition of 

Chebyshev degree. 11 
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Proof of Theorem 4. Let V C B(O, 1) be a convex body, A C V be a measurable subset 

and f E °r Take a point x E V such that 

If MI = sup Ifl. 
V 

(3.4.3) 

(Without loss of generality we may assume that x is an interior point of V; for otherwise, 

apply the arguments below to an interior point x6 E V, e > 0, such that Jf(x€)I > 

Supv If I - e and then take the limit when € —+ 0). According to Lemma 3 of [2] there is 

a ray 1 with origin at x such that 

mesi(l fl V) < njVj 

mesz(lflA) — Al 
(3.4.4) 

Let 1' be the real straight line containing 1. Applying inequality (3.1.1) to fit' with 

I := 1 fl V and w := 1 fl A and then inequality (3.4.4) lead to the required result, 0 

Remark 5. Assume that w C V is a pair of Euclidean balls of radii R1 and R2, respec-

tively. Then the ray 1 in (3.4.4) can be chosen such that the constant in the inequality of 

Theorem 4 will be ( 4R• ) d1 
Proof of Corollary 8. Before we begin the proof, we will define rearrangements of func-

tions. We consider k-measurable functions f defined on the set ci C R', equipped with 

the k-dimensional measure I Elk, 1 < k ≤ n, for E C ci. For instance, k = n—i if ci = Sn 

and k = n if ci = RTh or ci is the bounded domain in R. 

Definition 6. For each f on the bounded set ci C Rn we define its increasing rear-

rangement f* := [0, lcilk] —* [0, oo] by f*(t) := f*(t, ci) := sup {r ≥ 0: E ≤ t}, where 

I {x E ci: lf(x)I ≤ T} . Similarly, for each f on ci C Rn we define its decreasing 

rearrangement f by f(t) := inf{r ≥ 0 : I.,- ≤ t}, where I.,- i{x E ci: lf(x)l > T}. 

Let V C B(0, 1) be a convex body and f E Or. For the distribution function D1 (t) := 

mes {x E V: lf(x)l ≤ t} the inequality of Theorem 4 acquires the form 

Df(t) <4nlVl ( t ) ' (3.4.5) 
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The required result follows from the above inequality and the identity 

fV In  If I  
If IIv 

v' 
dx =  In  f  

IIfII 
dx. (3.4.6) 

where f = inf {s : Df(.$) ≥ t}. 0 

Proof of Theorem 5. Let V C B(0, 1) be a convex body. For a real straight line 1, 

1 fl V 0, and an interval I C I fl V inequality (3.1.1) implies 

Mes f t E I: If(t)I ≥ 10 If ii} > I" (3.4.7) 

holds for any f E O. with If 11, = sup1 If I. Applying the same arguments as in the origi-

nal proof of Bourgain's inequality for polynomials [11] but based on the above inequality 

instead of Lemma 3.1 of [I I] one obtains the required result. The second part of Theorem 

5 follows from the distributional inequality of the theorem and the definition 

If IIL(v,) := inf {A ≥ 0: fV (iii) dx ≤ i}. (3.4.8) 

Proof of Corollary 4. The reverse Holder inequality (3.1.10) follows straightforwardly 

from the distributional inequality of Theorem 5. 0 

3.5 Concluding Remark 

If fi,... , fk are functions from °r and p is a holomorphic polynomial of degree d then 

for h = p(f1,... , f) its degree dh(r) is bounded by a constant depending on d, r and 

fi,. . . , fk. This follows from results of [58] and arguments used in the proof of Proposition 

2. However, it is difficult to obtain an explicit estimate for dh(r) even in the case of 

naturally defined functions f (e.g., taken as solutions of some systems of ODEs). Assume, 

e.g., that fi = z1,. . . , f = z,, are coordinate functions on C and k ≥ n. Then the 

inequality dh(r) ≤ cd holds for any polynomial p of degree d with c which does not 

depend on d if and only if .. , fk are algebraic functions [6, 60]. 



Chapter 4 

REMEZ TYPE INEQUALITIES ON AHLFORS REGULAR 

SETS 

4.1 Hausdorif measure and Hausdorif dimension 

To formulate and prove the results of this chapter we require the definitions of the 

Hausdorif measure and of the Hausdorif dimension. Hausdorff dimension (also known as 

the Hausdorff-Besicovitch dimension) is an extended non-negative real number associated 

to any metric space. It was introduced in 1918 by the mathematician Felix Hausdorif. 

Many of the technical developments used to compute the Hausdorif dimension for highly 

irregular sets were obtained by Abram Samoilovitch Besicovitch. Less frequently it is also 

called the capacity dimension or fractal dimension (the latter is somewhat misleading as 

there are many other choices of definition). 

Intuitively, the dimension of a set (for example, a subset of Euclidean space) is the 

number of independent parameters needed to describe a point in the set. One mathe-

matical concept which closely models this naive idea is that of topological dimension of 

a set. For example a point in the plane is described by two independent parameters (the 

Cartesian coordinates of the point), so in this sense, the plane is two-dimensional. As 

one would expect, topological dimension is always a natural number. 

However, topological dimension behaves in quite unexpected ways on certain highly 

irregular sets such as fractals. For example, the Cantor set has topological dimension 

zero, but in some sense it behaves as a higher dimensional space. Hausdorif dimension 

gives another way to define dimension, which takes the metric into account. 

To define the Hausdorif dimension for X as a non-negative real number, we first 

consider the number N(r) of balls of radius at most r required to cover X completely. 

Clearly, as r gets smaller N(r) gets larger. Very roughly, if N(r) grows in the same way 

as 1/rd as r is squeezed down towards zero, then we say X has dimension d. In fact the 

27 
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rigorous definition of Hausdorff dimension is somewhat roundabout, since it first defines 

an entire family of covering measures for X. It turns out that Hausdorff dimension refines 

the concept of topological dimension and also relates it to other properties of the space 

such as area or volume. 

The Hausdorff dimension is one measure of the dimension of an arbitrary metric space; 

this includes complicated spaces such as fractals. 

Suppose (X, d) is a metric space with metric d. As mentioned above, we are interested 

in counting the number of balls of some radius necessary to cover a given set. It is possible 

to try to do this directly for many sets (leading to so-called box counting dimension), but 

Hausdorif's insight was to approach the problem indirectly using the theory of measure 

developed earlier in the century by Henri Lebesgue and Constantin Carathéodory. In 

order to deal with the technical details of this approach, Hausdorff defined an entire 

family of measures on subsets of X, one for each possible dimension s € [0, co). 

Let C be the class of all subsets of X; for each positive real number s, let p be the 

function A -* diam(A)l on C. The Hausdorff outer measure of dimension s, denoted h8, 

is the outer measure corresponding to the function p on C. 

Thus, for any subset E of X 

00 
:= inf{diam(Ai)8} 

i=1 

where the infimum is taken over sequences {A} which cover E by sets each with diameter 

≤ J. This quantity is non-decreasing as S - f 0. The s-dimensional Hausdorff outer 

measure is defined as 

HS := lim sup 7C85. 

We can succinctly (though not in a very useful way) describe the value 'H3(E) as the 

infimum of all h> 0 such that for all 5> 0, E can be covered by countably many closed 

sets of diameter ≤ 5; and the sum of the s-th powers of these diameters is less than or 

equal to h. 

The function s - 'H3(E) is non-increasing. In fact, it turns out that for all values of 

s, except possibly one, R3(E) is either 0 or oo. We say E has positive finite Hausdorff 
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dimension if, and only if, there is a real number 0 < d < oo such that if s < d then 

7-(3(E) = oo and if s > d, then 7-13(E) = 0. If 7-(3(E) = 0 for all positive s, then E has 

Hausdorff dimension 0. Finally, if '1-(9(E) = oo for all positive s, then E has Hausdorff 

dimension oo. In other words, 

dimH (E) := inf{s : Hs (E) = 0} = sup{s : 7-13(E) = oo}. 

The Hausdorff outer measure 7-Ia is defined for all subsets of X. However, we can in 

general assert additivity properties, that is 

'H, (A U B) = 7-1(A) + 7-18(B). 

for disjoint A, B only when A and B satisfy some additional condition, such as both 

being Borel sets (or more generally, that they are both measurable sets). From the 

perspective of assigning measure and dimension to sets with unusual metric properties 

such as fractals, however, this is not a restriction. 

One can prove that H, is a metric outer measure. Thus all Borel subsets of X are 

measurable and fl8 is a countably additive measure on the o-algebra of Borel sets. 

Clearly, if (X, d) and (Y, e) are isomorphic metric spaces, then the corresponding 

Hausdorff measure spaces are also isomorphic. It is more useful to note however that 

Hausdorff measure even behaves well under certain bounded modifications of the under-

lying metric. Hausdorff measure is a Lipschitz invariant in the following sense: If d and 

d1 are metrics on X such that for some 0 < C < 00 and all x,y in X, 

C'di(x,y) ≤ d(x,y) ≤ Cdi(x,y) 

then the corresponding Hausdorff measures 7-(, N13 satisfy 

C 8-H13 (E) ≤ 7-13(E) ≤ C8'J-113 (E). 

for any Borel set E. 

Note that if m is a positive integer, the m dimensional Hausdorff measure of W is a 

rescaling of the usual rn-dimensional Lebesgue measure £m which is normalized so that 
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the Lebesgue measure of the rn-dimensional unit cube [0, 1] is 1. In fact, for any Borel 

set E, 
.rn/2 

£m(E) = 2 r(m/2 + 

4.2 Remez type inequalities on fractal sets 

In an actively developing field of modern mathematics, analysis on fractal sets, see, e.g., 

[31] and references therein, one requires a generalization of the Remez inequality for 

fractal sets. In such a generalization w is a subset of Lebesgue measure 0 in a Euclidean 

ball B C R. Since zero sets of real polynomials on R have Hausdorif dimension 

n—i, to obtain a finite bound for supB II/ sup, II one assumes also that the Hausdorif 
dimension of w is more than n - 1. Further, it is natural to estimate the above ratio by 

a function depending on the 1-lausdorif measures of B and w. Specifically, let 7-& denote 

the s-Hausdorff measure on R', 0 < s ≤ n; in particular, Hn coincides with the Lebesgue 

measure Cn on Rn up to a factor depending only on ri. In this chapter we study Remez 

type inequalities of the following form 

sup I ≤ q5(A) sup IpI, 
B w 

(4.2.1) 

where p is a real polynomial on Rn or a holomorphic polynomial on C, B is a Euclidean 

ball in Rn or C's, respectively, and w C B is a subset of finite Hausdorif s-measure with 

n - 1 <s ≤ n in the real case and 2n - 2 < S ≤ 2n in the complex one. Also, 

A {fl3(w)}m/8 

7im (B) 

where rn = n in the real case and m = 2n in the complex case. 

For many applications (related, e.g., to reverse Holder inequalities or BMO-properties 

of functions) it is crucial that q in (4.2.1) is a power function in A. Inequalities of the 

form (4.2.1) with such a function will be referred to as strong Remez type inequalities. 

However, in applications related to trace and extension theorems for classical spaces of 

differentiable functions, see, in particular, [32], [33], [34], it suffices to use inequalities of 

the form (4.2.1) with a function 0 whose dependence of A is not specified. In this case 
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the only required information is the monotonicity of 0 in A. Such inequalities will be 

referred to as weak Remez type inequalities. 

The existence of inequalities (4.2.1) for n = 1 was first demonstrated in [7] where 

strong Remez type inequalities were proved for (Ahifors) s-regular sets w in R or C with 

0 < s ≤ 1 for real p and with 0 < s ≤ 2 for holomorphic ones. Moreover, it was proved 

in [7] Proposition 3 that s-regularity is necessary for the validity of such an inequality. 

Let us recall the definition of Ahifors regular sets. 

For a subset K C RTh and a point x E K by Br(x; K) we denote the intersection with 

K of an open Euclidean ball in RI centered at x of radius r. 

Definition 7. A subset K C RI is said to be (Ahlfors) s-regular if there is a positive 

number a such that for every x E K and 0 <r ≤ diam(K) 

fls(Br(x;K)) <ar8. (4.2.2) 

The class of these sets will be denoted by A(s, a). 

DefinitiQn 8. A subset K C A(s, a) is said to be an s-set if there is a positive number 

b such that for every x E K and 0 <r ≤ diam(K) 

br3 <fls (Br (x;K)). (4.2.3) 

We denote this class by A(s, a, b). 

The class of s-sets, in particular, contains compact Lipschitz s-manifolds (with integer 

s), Cantor type sets and self-similar sets (with arbitrary s), see, e.g., [16], page 29 and 

[35], Section 4.13. 

In this chapter we establish inequalities of form (4.2. 1) for s-regular sets c.' E A,, (s, a) 

with 0 depending also on s, n, k := degp and a. We prove strong Remez type inequalities 

for holomorphic polynomials using a technique of Algebraic Geometry. For the real case, 

strong Remez type inequalities are true for dimensions n = 1, 2 but the problem is open 

for n > 2. On the other hand, weak Remez type inequalities are valid in this case, see 

[5]. 

We start with strong Remez type inequalities for holomorphic polynomials on C. 
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Let X C C' belong to A2 (s, a), s = 2n - 2 + a, a > 0. Let p be a holomorphic 

polynomial on Ctm of degree k. 

Theorem 6. For any Euclidean ball B C C' and an 7-18-measurable subset wC X fl B 

one has 
(  ci7-12,(B) \c2k jpj 

sup II <— {fls(w)}2n/s) s1p 
B 

where c1 depends on a, n, k, a and c2 > 0 depends on a. 

Corollary 5. Let X E A2 (s, a, b). Let B = Br(x; X), x E X, r > 0, and w C .B be 

7-18-measurable. Then for a holomorphic polynomial p of degree k the following is true: 

(cil-13(B)'\ c2k 
sup II ≤ ) sup jpj 
B \fls (W)J w 

where c1 depends on a, b, n, k, a and c2 depends on a. 

Corollary 6. Let X C Ctm be an s-set with s as above. Then for any holomorphic 

polynomial p the function in II E BMO(X, 7-13). In other words, 

sup 1  1 f,3,(x;x) 
xEX,r>O I.. H., (Br  X)) 

inipi 1  I lnlpld7-13 
718(Br(x; X)) Br(x;X) 

Another corollary is the following reverse Holder inequality. 

Corollary 7. Under assumptions of Theorem 6 for 1 ≤ 1 ≤ oo one has 

dfla}<oo 

<c  1  fr(x;X) dfl8) ('H,'(Brx; X)) fBr(x;X)11 dfl3) - ('H,,(Br(; X)) 

where C depends on k, n, a, a and b. 

Let us present now a general form of weak Remez type inequalities for real polynomials 

on R. 

Theorem 7. Assume that U C 1R" is a bounded open set and w C U belongs to A,, (s, a) 

with n - 1 <s ≤ n. Assume also that 

A - {7-13(w)}/  
7-1 (U) >0. 
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Then there exists a constant C > 1 such that for every polynomial p E J1[xi,... ,x,] of 

degree k 

/ 1 t 1/r <c (  1  I p 1/q d ) . (4.2.4) Hn (U) fu IPIr dNa) - R3(w)  

Here 0 < q, r < oo and C depends on U, n, q, r, s, k, a and A and is increasing in 

1/A. In particular, for q = r = oo we obtain the weak Remez type inequality of the form 

(4.2.1). 

4.3 Complex Algebraic Varieties and s-sets 

In this section we use some standard facts of Complex Algebraic Geometry. For the 

background and the proofs see, e.g., books [36] and [37]. 

By Cpn we denote the n-dimensional complex projective space with homogeneous 

coordinates (z0 : : zn). The complex vector space C is a dense open subset of C1P' 

defined by z0 54 0. The hyperplane at 00, H := {(z0 : : z) E C1P" : zo = 0}, can be 

naturally identified with CF' and Cpn = Cn U H. 

A closed subset X C Cn defined as the set of zeros of a family of holomorphic poly-

nomials on Cn is called an affine algebraic variety. By dimcX we denote the (complex) 

dimension of X, i.e., the maximum of complex dimensions of complex tangent spaces at 

smooth points of X. 

Assume that an affine algebraic variety X C Cn has pure dimension k ≥ 1, i.e., 

dimensions of complex tangent spaces at smooth points of X are the same. Then its 

closure X in CPn is a projective variety of pure dimension k, and dimc(H fl ) = k - 1. 

Any linear subspace of dimension n - k in C1P'meets X , but there is a linear subspace 

L C H of dimension n - k - 1 such that L fl 7 = 0. Moreover, for a generic (n - k)-

dimensional subspace of C]P its intersection with X consists of a finite number of points. 

The number of these points is called the degree of X and is denoted deg. For instance, 

if X as above is defined as the set of zeros of holomorphic polynomials Pi, . . , pi on 

(Cn of degrees d1,... , respectively, then by the famous Bezout theorem deg X ≤ 

dl••d_k. 
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Let Li C H be a linear subspace of dimension n - k - 1 which does not intersect X. 

This subspace defines a projection OL : CIP C]P k as follows. 

Fix a linear subspace of dimension k in CFZ disjoint from L. We will simply call 

it C]P'. If W E Cr \ Li, then w and L span an (n - k)-dimensional linear subspace 

which meets Cpk in a unique point cbL(w). The map qL sends w to q5L(w). Further, 

Cn C Cr \ Li, and, with a suitable choice of linear coordinates, q5j Icn : C' is the 

standard projection: (z1,... , i—* (zi,. . . , zk). 

The map OLIX : X - Ck is a surjection and is a branched covering over C k whose 

order p, i.e., the number of points '(y) fl X for a generic y E is deg 7. Then X 

is a complex subvariety of a pure k-dimensional algebraic variety X defined as the set of 

zeros of holomorphic polynomials pi, 1 < i ≤ m - k, of the form 

(4.3.1) 

where b1 is a holomorphic polynomial of degree ≤ 1 on Ck. Moreover, let S c Ck be 

the branch locus of qLIx. If W E Ck \ 8, then bj(w) is the l-th elementary symmet-

ric function in zk+(w(')),. . . , zk(W" ), where '(w) fl X = (w('),. . . , w(')). (Recall 

that the elementary symmetric functions si in j,. . . , are defined from the identity 

fI1≤1≤(t - = t.tL + s1t'' + + s, of polynomials in variable t.) Since dimcX 

dimçX = k, X is the union of some irreducible components of X. 

Next, the Fubini-Studi metric on CP is a Riemannian metric defined by the associ-

ated (1, 1)-formw := &ln(lzoI2+. .. z), (z0 : : z) E C]P". For a k-dimensional 
projective variety X as above the (k, k)-form A k w determines a Borel measure Wy on X, 

U) := JU Akw 
where U C X is a Borel subset. Moreover, 

(4.3.2) 

[L'(X) = deg, (4.3.3) 

see, e.g., [37], Chapter 1.5. 

Let We := 1≤i≤n dzi A d1 be the Euclidean Kähler form determining the Eu-

clidean metric on C. Then w and w are equivalent on every compact subset K C C' 
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where the constants of equivalence depend on K and n only. In particular, the Fubini-

Studi and the Euclidean metrics, and the (k, k)-forms Aw and A k w are equivalent on 

every such K. Let p,,x be a Borel measure on a pure k-dimensional affine algebraic 

variety X defined by the formula 

:= fu A k W, (4.3.4) 

where U C X is a Borel subset. Then for every compact subset K C C the measures 

IL'IKnx and /e,XlKnx are equivalent with the constants of equivalence depending on K, 

k and n only. 

Let us establish a relation between complex algebraic varieties and s-sets. 

Theorem 8. Let X C Cz be an affine algebraic variety of pure dimension k ≥ 1 such 

that deg  ≤ ji. Then X  A2 (2k,a,b) where a and b depend on k, ji and n only. 

Proof. We will prove that 

br21 ≤ jie,x (Br(x;X)) ≤ ar2k (4.3.5) 

with a and b depending on k, i and n only, where X satisfies the assumptions of the 

theorem, x E X and is the measure on X determined in (4.3.4). From here applying 

[16], Section 11.1.2, Theorem 1, we get the desired statement. 

Since deg X = deg  + X and ji,(U) = /ie,+(X + U) for all x E Ctm and all Borel 

subsets U C X, without loss of generality we may assume that 0 E X and prove (4.3.5) 

for B, (0; X) only. Since jie,U) = )2k/_t(U) and deg AX = deg  for A > 0, x E Ctm, 

and Borel subsets U C C, it suffices to prove that 

b ≤ i-i,x(Bi(0;X)) ≤ a (4.3.6) 

where a and b depend on k, ji and n only. 

First we will prove the left-side inequality in (4.3.6). Let {X1}IEN be a sequence of 

affine algebraic varieties containing 0 and satisfying the hypotheses of the theorem such 

that 
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infp,x(Bi(O;X)) = urn /e,xj(Bi(0;Xi)). 
l—*oo 

(4.3.7) 

Here the infimum is taken over all X containing 0 and satisfying the conditions of the 

theorem. Consider the sequence {Xj}IEN of pure k-dimensional projective subvarieties 

of CIP. Since Cpn is a compact manifold, one can choose a subsequence of {X1}zE 

converging in the Hausdorff metric defined on compact subsets of CP1 to a compact set, 

say, Y. Without loss of generality we may assume that {Xt}IEN itself converges to Y. 

Lemma 2. There are a linear subspace L C Cpn of dimension n - k - 1 and a number 

N E N such that L fl ({1}l>N U Y) = 0. 

Proof. We prove the result by induction on n - k, the codimension of X1 in CF. 

For n - k = 1 every X1 being a projective hypersurface of degree ≤ A is defined as 

the set of zeros of a holomorphic homogeneous polynomial pi of degree ≤ : 

Xi:={(zo: ... :z)ECIP' : 

Without loss of generality we may assume that 12-norms of vectors of coefficients of all pj 

are 1. Then we can choose a subsequence {pi8 }8EN that converges uniformly on compact 

subsets of C' to a nontrivial (holomorphic) homogeneous polynomial p of deg p ≤ . 

Next, if y € Y, then by the definition of the Hausdorif convergence there is a sequence 

of points {Xl}IEN, x1 E X1, such that lim1..,0 cc1 = y. In particular, if y = (Yo : : y) 

and Xj = (x01 : : x) with maxo<< IY4 ≤ 1, maxo:a5n I xii I ≤ 1, 1 E N, then 

p(yo). .. ,y) = lirn Pi" (X01 . . . ,xj3) = 0. 
8-400 

Since p 0 0, the latter implies that Y belongs to a projective hypersurface in C1P. In 

particular, Y is nowhere dense in CF. Thus there is z E C1P \ Y. And so there is 
a neighbourhood U of Y in Cpn which does not contain z. By the definition of the 

Hausdorif convergence this implies that there is a number N E N such that {1}1>N C U 

completing the proof of the lemma for n - k = 1. 

Suppose now that the result is proved for n - k> 1 and prove it for n - k + 1. 
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Since every X1 is contained in a projective hypersurface in CP of degree ≤ ji, by 

the induction hypothesis there are a number N' E N and a point y E CIPTh such that 

Y 0 {1}1≥N' U Y. The point y determines a projection q : CF \ {y} - as 

described above (with £ := {y}). Set X( = cb(Xi), 1 ≥ N', and Y' = cb(Y). By the 

proper map theorem (see, e.g., [37], Chapter 0.2) and the Chow theorem (see, e.g., [37], 

Chapter 1.3) X[ are projective subvarieties of ClF'. Also, by the above construction, 

dimcX( = dimcXi and deg X' ≤ for all 1 ≥ N'. Moreover, {X(}j>N' converges in the 

Hausdorff metric defined on compact subsets of CP'' to Y', because çb is continuous 

in a neighbourhood of {z}t>N' U Y. Since the codimension of X1' in C1P"' is n - k, 

by the induction hypothesis there are an integer number N ≥ N' and a linear subspace 

L' C ClP' of dimension n, - k - 1 which does not intersect {X} >jy U Y'. Then 

£ = (1/) U {y} is a linear subspace of CPI of dimension n - k which does not intersect 

{Z}1≥N U Y. 

This completes the proof of the lemma. 0 

Further, since 0 € {XZ}IEN U Y, there is a closed Euclidean ball ro(0) C Ctm centered 

at 0 of radius 0 <To ≤ 1 which does not intersect the L of the above lemma. Clearly, 

p,x1 (BI (0;Xi)) ≥ p,x(B0(0;Xi)), 1 E N. 

(As before, Bro (0; X1) := B,,,(0) fl X1.) Therefore to prove the left-side inequality in 

(4.3.6) it suffices to check that 

liminfue,xi(Bro (0;Xi)) >0. 
l-+oo 

(4.3.8) 

Recall that the Fubini-Studi metric is equivalent to the Euclidean metric on every com-

pact subset K C Ctm with the constants of equivalence depending on K and n only. 

Therefore there is a closed ball B in the Fubini-Studi metric centered at 0 and of radius 

SO > 0 depending on r0 and n only such that B C B',# ). Since /1e,X1 is equivalent to 

011 (0; X1) with the constants of equivalence depending on r0, k and n only (see 

the above discussion) inequality (4.3.8) follows from the inequality 

lim inf p 1 (B fl X1) > 0. (4.3.9) 
l-oo 
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Let us check the last inequality. Diminishing, if necessary, r0 we can find a hyperplane 

L' C C1P which contains L from Lemma 2 and does not intersect ro(0). Let T: C' 

C' be a unitary transformation which induces an isometry : CTP' — * C1P' sending 11 

to the hyperplane at 00, H. Then (B) is a closed ball (in the Fubini-Studi metric) in 

C]PTh \ H. By the definition of T, degT( j) = deg j and '1(U) = 

for a Borel subset U E Xj. These facts and the above equivalence of j,x1 and jtxy, on 

compact subsets of Ctm show that in the proof of (4.3.9) without loss of generality we may 

assume that 17 = H. 

Now, consider the projection 1 L C' —+ C' determined as above. Choosing suit-

able coordinates on C11 we may and will assume that 7L coincides with the projection 

(z1,... , z,) i—* (z1,. . . , z). Then X1 : = \ H are algebraic subvarieties of algebraic 
varieties X1 defined as sets of zeros of families of polynomials p, 1 ≤ i ≤ n — k, 1 ≥ N, 

of the form (4.3.1). Moreover, since £ fl ({}I>N U Y) = 0, the definition of pjj, see the 

above discussion, shows that for every i polynomials p, 1 ≥ N, are uniformly bounded 

on compact subsets of C. Since degpj ≤ 4u, we can find a subsequence {is}SEN C N such 

that {pj 8 }eEN converge uniformly on compact subsets of Cn to polynomials pi, degp ≤ A, 

of the form (4.3.1), 1 ≤ i ≤ n — k, and 

lim (B fl X13) = lim inf u1 (B fl Xe). 
$—*oo $ 

This implies easily that Y fl Ctm with Y from Lemma 2 is contained in the pure k-

dimensional algebraic variety Y defined as the set of zeros of polynomials pi, 1 ≤ i ≤ n— k. 

In what follows by A' := {(z1,... , zj) E C1 : max1<1<j IzI <r} we denote the open 
polydisk in C1 centered at 0 of radius r. 

Since, by the definition, Y is a finite branched covering over C' and 0 E Y, there is a 

polydisk / x Ak such that An fl Y C B fl Y and L : An fl Y -p is a finite 

branched covering over Ak (for similar arguments see, e.g., the proof of the preparatory 

Weierstrass theorem in [37], Chapter 0.1). From here using the fact that {pjis} converges 

uniformly on compact subsets of Cn to p for all i and diminishing, if necessary, 6 we 

obtain analogously that there is a number No E N such that An fl X13 C B fl X15 and 

A n n X18 — are finite branched coverings over Ak for all s ≥ N0. But L fl X13 
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is a (closed) complex subvariety of A n fl X 13, and IL(/ fl X1) is an open subset of 

A7' (because 0 E X13 and L : X 18 Ck is a finite branched covering). Thus by 

the proper map theorem, L(/ fl X18)= L. (Here we used the fact that the map 

fl X - i is proper, because L: An fl X 13 -* i is proper and X19 fl L i a 

complex subvariety of Jf-1,, fl t.) 

Let £2k be the Lebesgue measure on C'. Then by the definition of there is a 

constant c> 0 depending on /L, k and n only such that 

1ux1(BnXz8) ≥ Cr2k(L(BnXl8)). 

But for s ≥ No we have 

£2k(L(B fl x 3)) ≥ £2k() = 7r kE2k > 0. 

The combination of the last two inequalities completes the proof of (4.3.9) and thus the 

proof of the left-side inequality in (4.3.6). 

The right-side inequality in (4.3.6) is obtained as follows, see (4.3.3), 

iie,x(Bi(0; X)) ≤ c(n, k)(B1(0; X)) ≤ c(n, k)j(X) = c(n, k)deg ≤ c(n, k). 

The proof of Theorem 8 is complete. El 

4.4 Covering lemmas 

The proof of the Strong Remez type inequality for holomorphic polynomials presented 

in [5] is based on a deep generalization of the classical Cartan Lemma [38] discovered by 

Gorin [39]. Let us present a more general version of this result. 

Let X be a pseudometric space with pseudometric d. By .F := {r(X) C X 

d(x, y) ≤ r, x, y E X, r ≥ 0} we denote the set of closed balls in X. Let :F -* R be 

a function satisfying the following two properties: 

1. 

(B,, (x)) ≤ ((x)) for all x E X, r' ≤ r". 
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2. There is a numerical constant A such that for any collection of mutually disjoint 

balls {B} C .T, 

i>i 

Consider a continuous strictly increasing nonnegative function q on [0, oo), q(0) = 0, 

limt_ q(t) > A which will be called a majorant. 

For each point x E X we set T(x) = sup{t : (x)) ≥ q(t)}. It is easy to see that 

= (T(x)) and sup -r(x) <'(A) <00. 

A point x E X is said to be regular (with respect to and 0) if r(x) = 0, i.e., 

< q(t) for all t > 0. The next result shows that the set of regular points is 

sufficiently large for an arbitrary majorant q. 

Lemma 3. Fix 'y E (0, 1/2). There is a sequence of balls Bk = Btk(xk), k = 1,2,..., 

which collectively cover all irregular points such that Ek>1 q('ytk) < A (i.e., tk -+ 0). 

The proof of this lemma for being a finite Borel measure on a metric space X is 

given by Gorin [39]. His argument works also in the general case. 

Proof. Let 0 < ce < 1, 3> 2 be such that y < a//3. We set B0 = 0 and assume that 

the balls Bo,... , Bk-1 have been constructed. If Tk = sup{-r(x) : x 0 B0 U ... U Bk-11, 

then there exists a point xk 0 B0 Li . . . Bk-1 such that Y(xk) ≥ om. We set tk = I3Tk 

and Bk = 13tk (xk). Clearly, the sequence rk (and thus also tk) does not increase. The 

balls Lk(xk) are pairwise disjoint. Indeed, if 1 > k then Xj 0 Bk, i.e., the pseudodistance 

between x1 and xk is greater than /3'rk > 2m ≥ m + i. Thus BTk (Xk) fl T,, (xi) = 0 by 

the triangle inequality for d. Now, 

>c('Ytk) < 

k≥i k≥i 

q(ark) ≤ 
k>1 

q5('r(xk)) = > Grk(xk)) <A; 
k>i 

consequently, Tk - 0, i.e., for each point x, not belonging to the union of the balls Bk, 

T(x) = 0, i.e., x is a regular point. In addition, tk = 13Th -* 0. Iii 

Remark 6. (1) According to the Caratheodory construction, see, e.g., [40], Chapter 

2.10, there is a finite Borel measure on X whose restriction to J is . 
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(2) Assume that is the restriction to 1 of a Borel measure y on X with support 

{x1,. . . , x}. Then, as it follows from the proof, the number of the balls Bk in this case 

is ≤ n and the balls Brk (xk), k ≥ 1, cover the support of . For otherwise, there is 

BTk(xk) which does not meet {x1,... , x}. Then BT(xk)(xk) does not meet {x1,.. . , 

as well. Consequently, p(l-(Xk) (xk)) = 0, a contradiction with the choice of Xk. 

Let X be a pseudometric space with pseudometric d. For every x E X we set S := 

{y E X : d(x, y) = 0}. Let p be a Borel measure on X with (X) = k < oo such that 

JX lnd(x,)d()<oo forall xEX, 

where ln+t := max(0,lnt). Then we define 

I if 

U( ) 

—oo) if (S) > 0. 

By definition, every Lebesgue integral f, in d(x, ) dp) exists but may be equal to —oo. 
In this case we define u(x) = —oo. 

Corollary 8. Fix 'y E (0, 1/2). Given H> 0, s> 0 there is a family of closed balls B 

with radii r satisfying 

such that 

u(x)≥k1n() foraii XEX\U Bj. 

Proof. Let q(t) = (pt) be a majorant with We cover all irregular points 

of X by closed balls according to Lemma 3 (with = ) and prove that the required 
inequality is valid for any regular point x. This will complete the proof. First, observe 

that u(x) is finite for every regular point x by the definition of the Lebesgue integral 

and the regularity condition for the q. Let n(t; x) = (t(X)) for such x. Then, for any 

N ≥ max(1, H) we have by integration by parts 

u(x) ≥ fRN(X) in d(x, ) di() = in tdn(t;x) n(t;x) in t - fo n(t, x)dt. 
fo  
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Since n(t; x) < (pt)8, we obtain iimt o+ n(t;x)lnt = 0 and therefore 

u(x) ≥ n(N; x) in N - f IV n(t; x) dt. 

In addition, n(t; x) < n(N; x) for t ≤ N. Therefore, 

u(x) ≥ n(N;x)lnN_f  dt— IH n(N; x) dt = 

8  n(N; x) in N - (pHs n(N; x) in N + n(N; x) in H = —k + n(N; x) in H. 

Letting here N - oo and taking into account that limN.., n(N; x) = k we obtain the 

required result. E 

In the proof of the strong Remez inequality we use also the following result proved in 

[41]. 

Corollary 9. Let f be a holornorphic function in the disk IzI ≤ 2eR (R > 0) in C, 

f(0) = 1 and 77 is an arbitrary positive number ≤ e. Then inside the disk Izi ≤ R but 
outside a family of closed disks D (z) centered at zi of radii ri such that E ri ≤ 4c,R, 

where 

and 

inlf(z)I ≥ —H(i)1nM(2eR) 

H() = 2+ in (277) 
M(2eR) := sup If I. 

Izl≤2eR 

Remark 7. The proof is based on a particular case of Corollary 8 for p being a sum of 

delta-measures, and the Harnack inequality for positive harmonic functions. According to 

Remark 6 (2), from the proof presented in [41] it follows that the number of disks b (z) 

does not exceed the number of zeros of f in the disk IzI < 2R (which, by the Jensen 
inequality, is bounded from above by [in Mf (2eR)]) and, moreover, the disks r/2 (z) 

cover the set of these zeros. 



43 

4.5 Strong Remez type inequalities 

In this part we present the proof of Theorem 6 using the arguments from [5]. 

Proof. Let X C C be a closed subset of the class A2 (s, a) where s = 2n —2 + a, a> 0. 

Let p be a holomorphic polynomial on Ctm of degree k. Let B C Ctm be a closed Euclidean 

ball and w C X fl B be an 7-13-measurable subset. We must prove the inequality 

(  ci'h(B) \c2k 
5 P II ≤ {Rs(w)}2n/s) SUP II 

where c1 depends on a, n, k, a and c2 > 0 depends on a. 

Since the ratio on the right-hand side of (4.5.1) is invariant with respect to dilations 

and translations of C and the class A2 (s, a) is also invariant with respect to these 

transformations, without loss of generality we may assume that B is the closed unit ball 

centered at 0 E C. Then we must prove that 

SUP 1PI '6 1 ≤ ck () SiPi (4.5.2) 

(4.5.1) 

where ) := 7-(3(w), depends on a, n, k, a and c2 > 0 depends on a. 

By Z, C C' we denote the set of zeros of p. According to Theorem 8 we have 

Z € A(2n —2, a, b) for some a and b depending on n and k only. By 712m2, , we denote 

the Hausdorif (2n - 2)-measure supported on Z. Let B1 C B2 be closed Euclidean balls 

centered at 0 Ctm of radii 2 and 10, respectively. Set 

[1 := fl2n-2,pIB2. 

Since Z, E A2 (2n - 2, a, b), we have 

pBr(x)) ≥ br for all x E B1, 0 ≤ r ≤ 5. (4.5.3) 

Let H> 0. Consider q(t) := L as the majorant in Lemma 3. Then a point x E C' 

is regular with respect to 0 and if (Br(X)) < %' for all r> 0. (Here we consider Ctm 

with the Euclidean norm I I) 
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Lemma 4. There is a sequence of open Euclidean balls Brk(Xk), k = 1,2,..., which 

collectively cover all the irregular points such that 

<3H(B). 
k>1 

Moreover, the distance d(x) from a regular point x to the compact set K := B1 fl Z is 

≥ min{5, (bH)1/a} 

Proof. The first statement follows directly from Lemma 3. Let y E K be such that 

Ix - yj = d(x). Observe that condition (4.5.3) implies that x 0 K. For otherwise, we 

must have 

br22 < for all 0 <r < 5 

which is impossible. Thus d(x) > 0. Next, the ball centered at x of radius 2d(x) contains 

the ball centered at y of radius d(x). Now from the regularity condition for x by (4.5.3) 

we get 

bmin{5, d(x) 12n-2 ≤ (B2d()(x)) < {2d(x)}22  
H 

This implies that 

(bH) llad(x) ≥ mm {5  f. 
0 

Continuing the proof of the theorem observe that by the definition of X, 

A := 7-t3(w) <a2s (4.5.4) 

(because if w c X n B 54 0, then w is contained in a closed Euclidean ball of radius 2 

centered at a point of X). Without loss of generality we may assume that A > 0. 

Lemma 5. The set w cannot be covered by a family {B}of open Euclidean balls whose 

radii rj satisfy 
A 
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Proof. Assume to the contrary that there is a family of balls B := Brj (xi), j = 1, 2,. 
whose radii satisfy the inequality of the lemma which covers W. Without loss of generality 

we may assume that each B meets w. Then for every xj choose yj E w so that I xi — 1/il ≤ 

r. Clearly, the family of balls {B2rj (yj)} also covers w. From here, since w C X E 

A2(s,a), we obtain 

7-13(X n B2rj (yj)) <28a 

a contradiction. U 

Further, note that i(B2) in Lemma 4 is bounded from above by a constant c depending 

on n and k only (because Z. E A2 (2n —2, a, b) with a, b depending on n, k only). Thus 

choosing in this lemma H we obtain from Lemma 5 for some constant depending 

on n, k: 

Corollary 10. There is a point x E w such that 

dist(x,Z) ≥ min {1,(A)h/a} . 

Proof. From the above lemmas it follows that there is x E w such that 

dist(x, Z fl B1) ≥ min {5, (A)u/a}. 

Moreover, x E B and so dist(x, Z \ B1) ≥ 1; this implies the required. 

Let z E B be a point such that 

M := maxipi = Ip(z)I. 

U 

Let 1 be the complex line passing through z and the point x from Corollary 10. Without 

loss of generality we may identify 1 with C so that z coincides with 0 E C. Then, in this 

identification, the point x belongs to 2(0), the closed disk of radius 2 centered at 0. 

Observe also that (under the identification) the set B1 fl 1 contains b(0). Thus, by the 

classical Bernstein inequality for holomorphic polynomials 

max 1221 < (4e)' max IpI <(4e)' max IpI ≤ (8e)' max p := (8e-)'M. 
zl≤4e zl<1 B1 B 
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Set f = p/M and apply Corollary 9 with R = 2. According to this corollary for every 
≤ 3e/2 there is a family of closed disks A(z) such that E ri ≤ 8 and in If(z)i > 

—H()k ln(8e) for any izi ≤ 2 outside the above disks where H() = 2 + ln(3e/2j). 
Recall also that the number of these disks is < the number of zeros of f in izi ≤ 4 and 

the disks rj12(Zj) cover the set of zeros of f there. In particular, if a point z E DIM 

satisfies dist(z, Zf) ≥ 1477 where Zf is the set of zeros of f in C, then it cannot belong 
to the union of disks D j (z), and therefore If (z) I satisfies the above inequality. Choose 
:= min(1, (.A)'/)/14. Then by Corollary 10, dist(x, Z1) ≥ 14. Thus we have 

sup inf I lnf(x) ≥ —H(ij)kln(8e). 
CO 

We will consider two cases: 

(1) 

(A)h/a ≥ I. 

Then i = and 14 

sup 1nf 1 (3+1n21)kln(8c) > —20d. 

This and (4.5.4) imply that 

/ e20 k 722Tha2f/8e20' k 

sup ri ≤ e20k sup In = ( A2fl,s 2f/8 sup ni ≤  2n/s ) sup PI. 
B w 1w 

Thus, inequality (4.5.2) is proved in this case. 

(2) 

(A)l/a < 1. 

Then 

sup inifi ≥ —(c'-1nA11 )k1n(8e) 

where c' depends on n and k only. This yields 

- c2k 

sup In ≤ sup IPI 

where > 0 depends on k, n and a and c2 > 0 depends on a only. 

The proof of Theorem 6 is complete. 0 
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Now, proof of Corollary 5 follows directly from the estimates obtained in cases (1) 

and (2) above and from the fact that X E A2 (s, a, b). Also, proofs of Corollaries 6 and 

7 repeat word-for-word proofs of similar statements of Theorems 1 and 3 of [7] and are 

based on the inequality of Corollary 5, see this paper for details. 

4.6 Weak Remez type inequalities 

In this section we present the proof of Theorem 7. 

Proof. We set for brevity 

( 1/q and 1  I lPldfls) 
ip;w llq = \713(W)  

1/r 

/ fu ) lip; Ulir = (HIM 1   iPirdfl 

Since the above functions are invariant with respect to dilations of R, without loss 

of generality we may and will assume that 7-1(U) = 1. 

Let (a, A), a, A> 0, be the class of subsets w E .A(s, a) of U satisfying 

{7ts(w)}f/8 ≥ A. (4.6.1) 

We must show that there is a positive constant C = C(U, ri, q, r, s, k, a,,\) such that for 

every real polynomial p of degree k on 1R 

lip; U1 1, ≤ Cilp;wjjq. (4.6.2) 

Remark 8. Let CO be the optimal constant in (4.6.2). Since the class (a, A) increases 

as A decreases, Co increases in 1/A, as is required in the theorem. 

If, on the contrary, the constant in (4.6.2) does not exist, one can find sequences of 

real polynomials {p} of degrees k and sets {w} C IJ(a, A) so that 

forall jEN, 

lim I Ipj;j!jq = 0. 
j—+oo 

(4.6.3) 

(4.6.4) 
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Since all (quasi-) norms on the space of real polynomials of degree k on RI are equivalent, 

(4.6.3) implies the existence of a subsequence of {p} that converges uniformly on U to 

a polynomial p E IR{xi,... , x,} with deg  ≤ k. Assume without loss of generality that 

'{p} itself converges uniformly to p. Then (4.6.3), (4.6.4) imply for this p that 

lip; Ulir = 1, (4.6.5) 

lim 1p;wj11q = 0. (4.6.6) 
3-*OO 

From this we derive the next result. 

Lemma 6. There is a sequence of closed subsets {u} C 71 such that for every j larger 

than a fixed jo the following is true 

Moreover, 

{718(cr)}' 2/ 

max IpI-0 as j —+oo. 
o1 

Proof. Let first q < co. By the (probabilistic) Chebyshev inequality 

€ : 1p(x)I ≤ t}) ≥ fl3(w1) - fl3(w1) q lip;wlI. 

(4.6.7) 

(4.6.8) 

Pick here t = tj := llp;wjilV2. Then by (4.6.6) the left-hand side is at least 7-18(w), for 

j sufficiently large. Denoting the closure of the set in the braces by o.j we also have 

max 1pi=tj-40 as j — oo. 

If q = oo, simply set o := wj to produce (4.6.7) and (4.6.8). 0 

Apply now the Hausdorif compactness theorem to find a subsequence of {cr} con-

verging to a closed subset a C 71 in the Hausdorif metric. We assume without loss of 

generality that {aj} - a. By (4.6.8) this limit set is a subset of the zero set of p. Since 

p is nontrivial by (4.6.5), the dimension of its zero set is at most n - 1; hence '/- (a) = 0 

because .s > n - 1. Then for every e > 0 one can find a finite open cover of a by open 

Euclidean balls Bi of radii ri at most r(e) so that 

<6. (4.6.9) 
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Let cr6 be a 8-neighbourhood of a such that 

U C U B and 8 <r(E). 

Pick j so large that cr C cr6. For every Bi intersecting crj choose a point xi E Bi fl aj. 

Consider an open Euclidean ball .5i centered at xi of radius twice that of B. Then 

Bi C bi and {B} is an open cover of a. Hence 

h3(a fl .) ≤ a2 

because w E A,, (s, a). Together with (4.6.7) and (4.6.9) this implies that 

s/n R3(a) ≤ a2 r < 28a€. 

Letting e —+ oo one gets a contradiction. 0 

Remark 9. Strong Remez type inequalities for real polynomials from R[x] and Ahifors 

regular subsets of R are proved in [7]. Inequalities of the form described in Theorem 6 

are also valid for real polynomials on R2. The method of the proof of such inequalities 

is very similar to that of Theorem 6 and is based on the fact that an analytic compact 

connected curve in R1 is a 1-set. However, it is still an open question whether similar 

strong Remez type inequalities are valid for real polynomials on Rn for n> 2. 



Chapter 5 

REMEZ TYPE INEQUALITIES IN EXTENSION AND 

TRACE PROBLEMS 

5.1 Whitney problems 

This chapter deals with the basic problems of modern analysis, restrictions (i.e., so-called 

traces) and extensions of functions with a prescribed structure. For example, suppose that 

a certain meteorological phenomenom depended jointly on air pressure and temperature. 

Then fixing the temperature at say 25C, and studying how the phenomenom depends only 

on pressure, for that fixed temperature, is the simplest example of a restriction. More 

generally, one might restrict to the case when temperature plus pressure is a constant, 

and even when more complicated relationships hold. Extensions are the reverse process: 

given a functional relationship under some restricted conditions, what are the possible 

relationships when these restrictions are removed? 

The general, abstract forms of such problems are central in the purely mathematical 

fields of General and Algebraic Topology (continuous extensions), in Geometric Analysis 

(extension of Lipschitz functions), in Multivariate Differential Analysis and Harmonic 

Analysis (functions and maps of prescribed smoothness). We will present an approach 

to extension and trace problems for certain classes of smooth functions from the classical 

function spaces of modern analysis. Our approach is based on local polynomial approx-

imation theory whose methods allow us to reduce the initial analytic problems to more 

simple problems. The methods and results of the area of extension and trace problems 

are the outcome of intensive work of many outstanding mathematicians of the twentieth 

century including Lebesgue, Brouwer, Whitney, Hestens, Calderon, to name but a few. 

Among recent striking applications of the subject considered we would like to mention 

those of Numerical Harmonic Analysis related to the reconstruction of signals and images 

given incomplete data. 

50 
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Unlike extension problems of the nineteenth century dealing with uniquely determined 

solutions (Weierstrass' theory of analytic functions, Lagrange and Hermite interpolation, 

Dirichlet problem for Laplace equation etc.) the modern theory is working with incom-

plete data and infinitely many possible extensions. This makes the problem much more 

complicated; on the other hand, extension algorithms of modern theory dealing with in-

complete data for recovering functions of prescribed inner structure have a much greater 

possibility for applications. The results and algorithms are of value in such diverse fields 

such as linear and nonlinear Partial Differential Equations (the equations that describe 

almost all physical phenomema in Science and Engineering), Numerical Analysis, Ap-

proximation Theory, Signal and Image Processing, and Computer Tomography. 

We will present an application of Remez type inequalities to extension and trace 

problems for classes of differentiable functions following the paper of A. Brudnyi and Yu. 

Brudnyi [5]. 

For differentiable functions on RI such problems were originally posed and studied 

by Whitney [42] in 1934. His methods have been then used in a variety of problems of 

Analysis. To discuss several results in this field we recall that C1 (RI) and C1 (RI) are the 

spaces of k-times continuously differentiable functions on R whose higher derivatives are, 

respectively, bounded or uniformly continuous. We also introduce the space C'"' (Rn) C 

Clc(Rn) defined by the seminorm 

Ifck,w := max sup Df(x) - Df(y)I  
IoI=kx,yERn w(lx -  YD 

Here w : - R+ is nondecreasing, equal to 0 at 0 and concave; we will write C''(R) 

for w(t):=t,0<s≤ 1. 

Finally, A"(R) stands for the Zygmund space defined by the seminorm 

If (x) - 2f() + f()l  
I := SUP 

XOY w(Ix - I) 
(5.1.2) 

here w : 1i - IR+ is as in (5.1.1), but we assume now that w(i./) is concave. 

Let now S C Rn be an arbitrary closed subset and X be one of the above introduced 

function spaces. Then XIS denotes the linear space of traces of functions from X to S 
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endowed with the seminorm 

Ifl:=inf{gIx gls=f}. (5.1.3) 

The (Whitney) linear extension problem can be formulated as follows. 

Does there exist a linear continuous extension operator from XIs into X? 

One can also consider the restricted linear extension problem with S belonging to a fixed 

class of closed (metric) subspaces of R'. 

Whitney's paper [43] is devoted to a criterion for a function f E C(S) with S C ]R 

to belong to the trace space C(R) Is and gives, in fact, a positive solution to the linear 
extension problem for C(R). It was noted in [44] that Whitney's method gives the same 

result for the spaces C" (R) and CIl  

The situation for the multidimensional case is much more complicated. The restricted 

problem, for the class of compact subsets of RTh was solved positively by G. Glaeser [45] 

for the space C(R') using a special construction of the geometry of subsets in R'. 

However, for the space C(R), n ≥ 2, the linear extension problem fails to be true, 

se [44], Theorem 2.5. In [44] the linear extension problem was solved positively for the 

spaces C"(R) and A''(R). A recent breakthrough due to Oh. Fefferman [46] in the 

problem of a constructive characterization of the trace space C",' (11i') Is, allowed him to 

solve the linear extension problem for the space C (Wi), see [47], [48] and [49]. 

We will present a solution of the Whitney extension and trace problems for a specific 

class of differentiable functions on Rn and their restrictions to Ahlfors regular subsets. 

5.2 Morrey-Campanato spaces on Ahifors regular sets 

Let X C Rn be a measurable set of positive Hausdorif s-measure. By ICX we denote the 

family of closed cubes in Rn with centers at X and "radii" 

lengthside) at most 4diam X. We write Q,() for the cube of radius r and center 

x and denote by Xr(x) the set Q,() fl x for x E X. 

In order to introduce the basic concept, Morrey-Campanato space on X, we denote 

by Lq(X), 1 ≤ q ≤ oo, the linear space of 7-18-measurable functions on X equipped with 
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norm 

IlfII := (f IfIdR3) 
and use the following 

1/q 

0≤q≤oo, (5.2.1) 

Definition 9. The local best approximation of order k E Z is a function Sk Lq(X) X 

R given for Q = Q(x) by 

-. 1/q 

Q) := inf 1 R8(Xr()) f If -  pIq  dN3 
p Xr(X) J 

where p runs over the space Pk_1 C: R[xi,. . . , x] of polynomials of degree k - 1. 

(5.2.2) 

For k = 0 we let Pk..1 := {0}; hence o(f; Q) is the normalized Lqnorm of f on 
Xr(x). 

Let now w : - p R+ be a monotone function on R+ := (0, oo) (it may be a constant). 

Definition 10. The (generalized) Morrey-Campanato space àw(X) is defined by semi-

norm 
r 

IfIow(x):= SUP t ek(f;Q)  w(rQ) : 

where 'rQ denotes the radius of Q. 

For X being a domain in Rn and s = n this space coincides with the Morrey space 

[50] (for k = 0, w(t) = tX, —n < A < 0), the BMO-space [51] (for k = 1, w(t) = const) 

and the Campanato space [32] (for k ≥ 1, w(t) = t', A > 0). These spaces play an 

important role in Harmonic Analysis and in the theory of PDEs. 

To formulate the main result we also need 

Definition 11. Let w : -4 ]R+ be nondecreasing such that 

w(+0) = 0 and t tk w(t) be nonincreasing. 

This w is said to be a quasipower k-majorant if 

C:= Sup  Q t) 
fo 

tw(u) 

t>o   u 
du}<oo. 



54 

The Lipschitz space Aw(JRn) of order k ≥ 1 consists of locally bounded functions 

f : Rn -* R such that the seminorm 

if iAkw(Rn) := sup { zf(x)i  xhEJ1r} 
w(Ihi) 

is finite. 

Here I hi is the Euclidean norm of h and 

jO 

(_)k (k) f(x + jh). 

Choosing in this definition w(t) := t', 0 < A ≤ k, we obtain the (homogeneous) Besov 

space B(]R') (a type of abstract space which occurs in spline and rational function 

approximations). It coincides with the Sobolev space 9/ 0(R) for A = k, the Holder 

space Q1'°(R) for A = 1 + a, 1 is an integer and 0 < a < 1, and with the Marchaud-

Zygmund space for A integer and 0 <A < k. In the last case, the corresponding seminorm 

is 

Ii/(Df)iIcRn)  
IfIB(Rn):= I max lsuP hi 

Recall that a Sobolev space is a vector space of functions equipped with a norm that 

is a combination of .& norms of the function itself as well as its derivatives up to a 

given order. The derivatives are understood in a suitable weak sense to make the space 

complete, thus a Banach space. Intuitively, a Sobolev space is a Banach space or Hubert 

space of functions with sufficiently many derivatives for some application domain, such 

as partial differential equations, and equipped with a norm that measures both the size 

and smoothness of a function. 

Our main result is the following theorem which gives a solution of the corresponding 

Whitney extension problem. 

Theorem 9. Let X C 1I be an s-set with n - 1 < s ≤ n and w be a quasipower k-

majorant. Then there is a linear continuous extension operatorTk : Cu)(X) - 

In particular, C"'(X) is isomorphic to the trace space 
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5.3 Proof of Theorem 9 

Proof. It is well known, see, e.g., [16], Proposition VIII.1, that the closure X of an s-set 

X is also an s-set and R S( \ X) = 0. Moreover, the spaces ã'() and are 

isometric. Thus without loss of generality we may and will assume in the proof that X 

is closed. 

Given f E d"'(X) we should find a function f: X --+ R which equals f modulo zero 

R8-measure and admits an extension to a function from A'  (R). 

We begin with 

Lemma 7. Let w : - JR+ be a quasipower k-majorant, see Definition .11. Let tj := 2, 

j E Z. Then for every pair of integers —oo <i <' <oo we have 

it 

w(t) ≤ c(k,w)w(ti). (5.3.1) 
j=i 

Proof. By the monotonicity of w 

1 'J+1 w(u) 
—du 

Tn-2 ft J, U 

and therefore the sum in (5.3.1) is at most 

1 tj1',+' w(u)  
du ≤ 1 - Cw(t'+1) <&2kw (t,) 

1n2 u 1n2 1n2 

for some constant Ca, depending only on W. El 

Our next result reformulates Theorem 3.5 of the paper [44] concerning the trace of 

the space A'' (R') to an arbitrary closed subset X C RTh, to adopt it to our situation. 

The trace space denoted by A'"(R)lx consists of locally bounded functions f X * R 

and is equipped with seminorm 

If IAk,w(Rn)Ix := inf{IgIAk,W(fl) 

To formulate the result we need 

f=glx}. (5.3.2) 
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Definition 12. Let X C Rn and w : -+ R be as above, and T := {tj}jE7z+ be the 

sequence of Lemma 7. 

A family H:= {PQ}QEx of polynomials of degree k—i is said to be a (k,w,X)-chain 

if for every pair of cubes Q C Q' from lCx which satisfy for some i E Z the condition 

the inequality 

ti ≤ rQ <TQ' ≤ ti+2 (5.3.3) 

max I PQ (x) - PQ, (x) ≤ Cw(rcy) (5.3.4) 
xEQ 

holds with a constant C independent of Q, Q' and i. 

The linear space of such chains is denoted by Ch(k, w, X). It is equipped with semi-

norm 

I11ICh :=infC 

where the infimum is taken over all constants C in (5.3.4). 

Recall that 7Cx is the family of closed cubes centered at X and of radii at most 

4diam X. In the sequel cQ and TQ stand for the center and the radius of the cube Q. 

Using the concept introduced and the related notations we now formulate the desired 

result. 

Proposition 5. (a) A locally bounded function f : X -+ R belongs to Ak(RTh) Ix 

only if there is a (k, w, X)-chain II := {PQ},c, such that for every Q E lCx 

f(cQ) = PQ(cQ). 

Moreover, the following two-sided inequality 

I11ICh if IAk,.(Rn)lx 

if and 

(5.3.5) 

holds with constants independent of f. 

(b) If, in addition, this chain depends on f linearly, then there is a linear extension 

operator Tk : A'''(R)Ix Akw(]m) such that 

iiTkil ≤ O(i)Illjch. 
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Hereafter 0(1) denotes a constant depending only on inessential parameters. It may 

change from line to line and even in a single line. 

Proof. In the above cited paper this result is proved under the assumption that inequality 

(5.3.4) holds for any pair of cubes Q C Q' centered at X. The restrictions (5.3.3) and 

rQ, TQ ≤ 4diam X may be not satisfied for this pair. In the forthcoming derivation we 

explain how these restrictions can be disregarded to apply the aforementioned Theorem 

3.5 of [44] and in this way to complete the proof of the proposition. 

Consider first the case of an unbounded X. Hence, the only restriction is now inequal-

ity (5.3.3) and we should show that if a (k, w, X)-chain satisfies condition (5.3.4) under 

restriction (5.3.3), then (5.3.4) holds for any pair Q C Q' from Kx. Note that the ne-

cessity of conditions (5.3.4) and (5.3.5) trivially follows from that in the aforementioned 

Theorem 3.5 from [44]. So we should only prove their sufficiency. 

Assume that f E l(X) (the function space of locally bounded functions on X) and 00 

conditions (5.3.3)-(5.3.5) hold. Let Q C Q' be a pair of cubes from ICX of radii r and r', 

respectively. Then for some indices i ≤ i' 

ti <r ≤ t 1 and ti ≤ r' ≤ t' 1. 

If i = i', then by (5.3.4) 

max IPQ - Q'I <2llllchw(tj+1) ≤ 2 ( ti+1 ) I 

k 

-i-- w(r )IflIch = 2''w(r')IllIch 
ti 

as is required. 

Let now i <i' and Tj with i ≤ j ≤ i' + 1 are given by 

ri := r, r+i = 2r' and r := tj for i <j < 1 + 1. 

Let Qj be the cubes centered at CQ of radii r, i ≤ j < it + 1, and Q'+, be the cube 

centered at CQF of radius r/ 1. (In particular, {Q }zz'. C JC,y is an increasing sequence 

of cubes with Q := Q.) Then 

it 

maxPQ — PQ/I ≤I max lPQ.—PQ+1I. 
Q i=i +i 

(5.3.6) 
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It is easily seen that (5.3.3) holds for every pair Qj C Q+,, i ≤ j ≤ i'. Applying (5.3.4) 

to each of these pairs and then (5.3.1) and the definition of w we estimate the right-hand 

side of (5.3.6) by 

:1 

2111 10h w(r +i) O(l)llljchw(tj'+2) ≤ O(l)IllIchw(r'). 
j=i 

Thus we conclude that inequality (5.3.4) holds for every pair Q C Q' of cubes centered 

at X. 

Let now diam X <oo. The previous argument proves the required inequality 

max I PQ - I ≤ Cw(rcy) (5.3.7) 

for every pair Q C Q' from Ix under the restriction rQ, ≤ 2diamX. Fix a cube Q E lCx 

with = 2diamX and introduce a new family of polynomials {}, where Q runs over 
the set of all cubes centered at X, by setting 

if rQ <diamX 

(5.3.8) 

- PQ-(cQ) + f(cQ), if rQ > diamX. 

We will prove that the new family satisfies the hypotheses of Theorem 3.5 from [44]. This 

will complete the proof of the proposition in this case. 

Clearly, {c} satisfies condition (5.3.5), and if the chain II depends linearly on 

then fTQIQ depends linearly on f, as well. So we must check only that (5.3.4) holds for 
{PQ} for every pair Q C Q' of cubes centered at X. According to (5.3.7) and (5.3.8) 

inequality (5.3.4) holds for this family for every pair of cubes Q C Q' with rQ, ≤ diamX. 

Assume now that rQ ≥ rQ > diamX. Then by (5.3.8) we have 

max I PQ 
- ≤ I P(cQ) - f(cQ)j + I PC? (cQ') - f(cQ')I ≤ 

max JP - Q1I +maxIP - PQ2I ≤ 2Cw(r) <O(1)Cw(rQF). 
Q2 

Here Q and Q2 are some cubes from lCx centered at CQ and cQt, respectively, and 

contained in Q. The last two inequalities follow from (5.3.7) and the definition of w. 
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Finally, if rQ ≤ diam X < r, then Q C Q and so we have by (5.3.7) and by the 

definition of w 

max 115Q -- 7 'I ≤ mxIPQ - + IP(cq) - f(cQ')I <2Gw(r) ≤ O(1)Cw(rQ ) 

as is required. 

Hence, in both of these cases the assumptions of Theorem 3.5 from [44] hold. This 

completes the proof of the proposition. 0 

Now we outline the proof of Theorem 9. Given f E Cw(X) where X C RI is a 
ql 

closed s-set, n - 1 <a ≤ n, we will define a new function f: X - R such that 

f(x) = f(x) 7- - almost everywhere on X. (5.3.9) 

We then apply Proposition 5 to this function to show that f E A'' (RTh) Ix to construct 
a linear extension operator from ó' (X) to (Rn). To this end we will find for the f— 

a (k, w, X)-chain linearly depending on f. In the definition of the desired chain we will 

use the following construction. Let Q := Qr(x) E JCx. By the Kadets-Snobar theorem 

[52] there is a linear projection 7re from the space Li(Xr(x); 7 8) onto the subspace of 

polynomials of degree k-  1 restricted to X, (x) := Q (x) fl X whose norm I Ir Iii ≤ \,/dk, 

where dk.,n is the dimension of the space of polynomials of degree k - 1 on R'. Set 

PQ(f) := 7rQ (f). (5.3.10) 

Using the definitions of f and {PQ(f)}Q€X we will show that the following is true. 

Claim 1. There exists a (k,w,X)-chain 11(f) := {PQ(f)1Q linearly depending on f 

and such that 

Il(f)Ich ≤ O(1)IfIakw(Rfl)I. 

Claim 2. For every Q E /Cx 

(5.3.11) 

J(cQ) = .Q(f)(cQ). (5.3.12) 

Since the operator f '-* P(f) is linear, these allow us to apply Proposition 5 and to 
f A conclude that E ,w (Rn) Ix, and there is a linear extension operator Tk : Cq ' (X) 
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(RTh) satisfying 

IITkII ≤ 0(1) 

completing the first part of the proof of Theorem 9. The fact that the restriction to X of 

every f E A'"(R) belongs to 6k,,,, (X) follows easily from Proposition 5 and Definition 

10. This proves also the second assertion of the theorem and completes its proof. 

To realize this program we need several auxiliary results. The main tool in their 

proofs is the weak Remez type inequality for s-sets, see Theorem 7 and (4.2.4). 

Lemma 8. For every Q = Qr(x) E K;x 

1  

•'H,(X,W) fx,.(X) dl-13 If - 7rQ(f)  ≤ 0(1)'k(f; Q). 
I 

Proof. Here and below for Q = Q(x) E lCx by PQ we denote a polynomial of degree 
k - 1 satisfying 

1  fX" (x) If _P 1/q (X(x)) QIdfl$} = ek(f;Q) . 

Then 

(5.3.13) 

(5.3.14) 

f-1rQ(f)=(f— PQ) +7rQ(f—PQ), 

and applying the triangle inequality we estimate the left-hand side in (5.3.13) as is re-

quired but with the factor (1 + I rc II q) instead of 0(1). So it remains to show that 

ftlrQllq ≤ 0(1). However, for q = 1 this norm is bounded by by the definition. On 

the other hand, the weak Remez type inequality, see (4.2.4), and the fact that X is an 

s-set, imply that 

IQ(9)I11 IIrQ(g)IIq 

with the constants of equivalence independent of g and Q. Thus by the Holder inequality 
we have 

I1rQ(g)Iq ≤ O(1)7rQ(g) 1 ≤ ≤ 0(1)IIgIjq. 

D 
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Lemma 9. Let Q = Q,() E lCx. Then there exists the limit 

f(x) := urn PQ (X) 
Q--+x 

and, moreover, 

If - PQ(x)J <O(1)w(r)lfl&kw(X). 

Proof. Let i be defined by 

ti <r ≤ t 1 

and for j ≤ i 

(5.3.15) 

(5.3.16) 

(5.3.17) 

:= Q(x), Pj := Pc. 

Recall that {tj} is the sequence of Lemma 7. We also set Q+i := Q and P 1 := PQ. 

Since X is an s-set, the weak Remez type inequality (4.2.4) implies that 

- .Pj(x)l ≤ O(1)IlI.F +1 - Rj;XlII 

where for simplicity we set 

IIIg;XIII fXj IgId7s} 
1/q 

and X:=QflX. 

Adding and subtracting f and remembering the definition of Pj, see (5.3.14), we estimate 

the right-hand side of the last inequality by 

O(1){Sk(f;Q) + Ilif - .Ei+i;XjIII}. 

By definition, the first term is bounded by w (ti) If 16,k,. (x) while the second one is at most 

('H., (X+1 1/q (at1 1/q 

8(x) Sk(f;Q+l) bt ) w(tj+1)IfIok.(x), 
see the definition of s-sets in Capter 4. 

Since, in turn, t+1 /t ≤ 2, using the definition of w we finally get 

IFj+i(x) - Pj(x)I ≤ O(1)w(tj)IfIakw(x). 
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This, Lemma 7 and the choice of i, see (5.3.17), yield 

lj+i(x) - .Fj(x)I ≤ O(l)IfIdw(x) 
j≤i j≤i 

w(t) ≤ O(1)IfIOkw(X)w(tj) ≤ 

O(1)w(r) If Ia:w(x). 
This implies easily that the limit 

7(x) urn PQ (X) = P i (x) + 

exists and, moreover, 

- Fj+i (x)) 
ji 

7(x) - PQ(x)I ≤ O(1)w(r)IfIdkw(X). 

0 

Lemma 10. The assertions of the previous lemma hold with the same 7(x) for PQ (f) 

substituted for PQ. 

Proof. By (5.3.10) 

PQ—PQ(f)=?rQ(PQ —f) 

and then Lemma 8 and inequality (4.2.4) yield 

IPQ(x) - PQ(f)(x)I <0(1) max IPQ - PQ(f)I :5 O()lIIPQ - PQ(f); Q n Xffl :5- QflX 

0(1){Ek(f;Q) + 111f - PQ; QflXhhj} ≤ 0(1)(fQ) ≤ 0 (1)w(r)lfIÔkw(X). 
This immediately implies that 

lim PQ(f)(x) = urn PQ (x) = 7(x) 
Q--+x 

and gives the required estimate of If(x) — PQ(f)(x)I by the right-hand side of (5.3.16). 0 

Hereafter we assume for simplicity that 

In particular, in this case 

IfIa:w(x) = I. 

k(f; Q) ≤ w(rQ), Q E 1C. 
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Lemma 11. Let Q C K be cubes from /Cx of radii r and R, respectively, r < R ≤ 

2diamX. Let K be the cube centered at cK of radius 2R. Then it is true that 

(  i(f;Q) ≤ p2R O(1)r/ w(t)_-_dt+HIf;QflkIII}. 
lJr t 2 R 

Proof. Choose J E N from the condition 

R≤2r<2R 

(5.3.20) 

and let Qj be the cubes centered at cQ and of radii r := 2r, j = 0, 1,. . . J - 1, and 

Qj := K, rj := 2R. Then {Q}o<<j c /(x is an increasing sequence of cubes. We also 

set P := PQ, , 0 ≤ j ≤ J, see (5.3.14) for the definition of PQ E Pk_l. Under these 

notations we get 

Si(f; Q) ≤ {e1(f -  p; Q) + - ; Q) + Ei(P; Q)}. (5.3.21) 

The first summand clearly equals 

2R 

ek(f;Q) ≤w(r) ≤ O(1)r  

as is required. 

To estimate the remaining terms we use two inequalities whose proofs are postponed 

to the end, 

(A) Let p be a polynomial of degree k - 1 and Q E 1Cx be a cube of radius r. Then 

E1(p;Q) ≤ O(1)rmaxlllDap;QnXllI. 
IcI=1 

(B) Let, in addition, E /Cx be a cube of radius F containing Q. Then 

max lllDap;QflXIlI ≤ O(1)fflp: nxIIl. 
IaI=1 r 

Using these inequalities to estimate the j-th term in (5.3.21) we get 

- Pj;Q) ≤ O(1)1llI+i - Pj;Qj n xffl. 
rJ 

(5.3.22) 

(5.3.23) 
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By the definitions of s-sets, w and (5.3.19), the norm on the right-hand side is at most 

O(l) (ef;+ 8(Q1flX)\h/ fl3(QnX)) ek(f;Qi+i)) <Q(1)w(ri) 
ri ( - 

Moreover, by the definition of Tj we get 

w(r) prj•1 w(t) 
- Jr --dt, O≤jJ'ri -1. 

Summing the finally obtained estimates over j we then have 

J-1 

3=0 

w Ei(1j+i-1j;Q)≤ 2R (t) O(1)r ---dt. 
I 

Using now (5.3.22) and (5.3.23) we bound the last summand in (5.3.21) by 

O(l)rh1<h1 < 0(1)r 2111f;knxill  
R R 

as is required. 

To complete the proof of the lemma it remains to prove (5.3.22) and (5.3.23). By the 

hypothesis of (A) we get 

Si(p;Q) ≤ infIlp — pI c(Q) ≤ O(1)r max IIDpllc(Q) 
j5 jaj=1 

where jY runs over the space of polynomials of degree 0. The second of these inequalities 

is proved as follows. Using a homothety of R71 we replace Q by the unit cube Qo := 

[0, 1]'. The functions in p of the both parts of this inequality are norms on the finite-

dimensional factor-space Pk-1/Po and therefore they are equivalent. This implies the 

desired inequality. 

Continuing the derivation we now use the weak Remez type inequality, see (4.2.4), 

and the fact that X is an s-set to have 

IDapJI c(Q) O(1)jllDap;QnxIIJ 

and this completes the proof of (5.3.22). 

Inequality (5.3.23) is proved in a similar way by means of the Markov inequality. 0 
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Lemma 12. f = f modulo 7-(5-measure zero. 

Proof. Let L(f) be the Lebesgue set of f, i.e., the set of points x E X such that 

f(x) = urn  1 
rO H .,(Xr()) fx,(X) f dfl8. 

Since X is an s-set, the family of "balls" {Xr() : x E X, 0 <r ≤ 1} satisfies axioms 

(i), (ii) in [53] page 8. Therefore the Corollary of Section 1.3 from this book can be 

applied to our case with the measure := flslx. By this Corollary 

7-18(X\L(f)) = 0. 

It remains to show that 

f(x)=f(x) for xEL(f). 

To this end choose a cube Q = E Xx, 0 <r < 1, and set 

f,() :=  1  
fls(Xr(x)) fX"(x) fdl-18. 

By the triangle inequality, the weak Rernez type inequality for fr(x) - PQ, see (4.2.4), 

and the fact that X is an s-set we obtain 

Ifr(X) —PQ(X)I ≤ O(1){IIffr(x);QnXIII+ek(f,Q)}. (5.3.24) 

But f '- fr is a projection from Li(Xr (x)) onto the space Po of polynomials of degree 0 

whose norm is 1. Applying an argument similar to that of Lemma 8 with this projection 

substituted for 7rQ we obtain that 

I If - fr(x);QflXIH 

and therefore by Lemma 11 and (5.3.19) for a sufficiently small r the right-hand side of 

(5.3.24) is bounded by 

' / 2w(t) 
<0(1) r (1 _-dt+lIlf;KnXIM) +c(r) 

t I I \Jr  
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for some fixed cube K of radius 1 containing Q. We conclude from here that for every 
0<6<2 

urn If(x) - PQ(x)I ≤ 
r-*O 

1 
O(1)lirnsup (w(r)+r Y 6 CO )dt+ 2w(t) dt+IJIf;KflXIII)) = 

r-O  t2 t2 

0(1) lim sup ( / r I dt) ≤ 0(1)w(€). 
r--+O \ Jr t 

Letting 6 — p 0 and noting that limro f,() = f(x) for the Lebesgue point x and 

lirnQ.x PQ(x) = f(x) we complete the proof of the lemma. 

Now we finalize the proof of Theorem 9. For Q E ICX and the polynomial PQ (f) of 

degree k - 1 defined in (5.3.10) we set 

:= PQ (f) - PQ(f)(cQ) + J(cQ). 

Then PQ(f)(cQ) = f(CQ) and Claim 2, see (5.3.12), is true for the family 11(f) := 

{Q}QEx Show that Claim 1 is also true for fl(f). 

Let Q C Q' be cubes from lCx of radii r <r' satisfying for some i the condition 

t ≤ ?' < r' ≤ 

By the weak Remez type inequality, see (4.2.4), and Lemma 8 we have 

max IQ(f) - PQF(f)J ≤ 0(1) max IPQ(f) - PQF(f)j ≤ 
C? XnQ 

\ 
0(1)IIIPQ(f) - PQF(f);X fl Qill ≤ O(1){ek(f; Q) + 73(QmnX) h/  Ek(f; 

(-H,(QnX) )  

Both of the best approximations are bounded by w(r') If Ia.w (x) while, since X is an s-set, 
the ratio of R3-measures is at most 

a (r') 8}h1 <Q() ) s/q 
<0(1). 

- t 
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Hence, in this situation, see (5.3.18), 

max IPQ(f) - PQ, (f ≤ O(1)w(r'). 

Moreover, by Lemma 10, see(5.3.16), 

If(cQ) - PQ(f)(cQ)I <O(1)w(r). 

Taking into account the definition of PQ (f) we then obtain the inequality 

max 1pQ(f) —PQ, (f)I <O(l)w(r') 

as is required in the definition of a (k, w, X)-chain. 

This completes the proof of Claim 1 and therefore of Theorem 9. 0 
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