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Abstract

Polynomials play a significant role in many fields of mathematics from Algebraic Number
Theory and Algebraic Geometry to Applied Analysis, Fourier Analysis, Convex Geometry
and Computer Science. In many problems related to different areas of mathematics one
often uses the, so-called, polynomial inequalities. Recently there has been considerable
interest on extending the classical (Bernstein/ Markov) polynomial inequalities to higher
dimensional cases. Originally, such inequalities have appeared in Approximation Theory
and for a long time have been considered as technical tools for proofs of Bernstein type
direct and inverse theorems. At the present time polynomial inequalities have found a
lot of important applications in areas which are well apart from Approximation Theory.

In the present work, we will survey different types of polynomial inequalities, both
univariate and multivariate cases. Some proofs of the basic theorems will be presented,
and all results are presentations of published results. Also, we present applications of
the polynomial inequalities to some Whitney type problems on characterization of trace

spaces for certain classes of differentiable functions.
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Chapter 1

INTRODUCTION

Polynomials play a significant role in many fields of mathematics from Algebraic Number
Theory and Algebraic Geometry to Applied Analysis, Fourier Analysis, Convex Geometry
and Computer Science. The Fundamental Theorem of Algebra and finding solutions of
polynomial equations are basic examples of theorems and problems arising from the study
of polynomials. It is worth noting that in many problems related to different areas of
Analysis one often uses the so-called polynomial inequalities. Roughly speaking such in-
equalities estimate the growth of a polynomial in R®. For instance, in the one-dimensiona)
case the natural question we may ask, is how large can “P”[_1,1] = MaXgzej-17 |p(z)| be

if p is a real polynomial on R of degree n and
[{z € [-1,1]: |p(z)] < 1}| > 2~ s? (1.0.1)

Here |U| denotes the Lebesgue measure of U C R, and s > 0 is a real number.

The classical Remez inequality [1] proved in 1936 gives an answer to this question.
This result is formulated in the next section.

In general, an extension of a one-dimensional polynomial inequality to the multi-
dimensional case or to a more sophisticated class of functions is highly non-trivial and
requires some additional analytic and geometric arguments. Such extensions play a
central role in the proof of other important inequalities, such as Bernstein, Markov,
Nikolskii, and Schur type inequalities.

In this work we will present the highlights of the theory of Remez type inequalities.

1.1 History

One of the first polynomial inequalities was proved by Chebychev at the end of 19th
century. It states that for every real polynomial p on R of degree n and a pair of

intervals [c,d] C [a, ] the inequality
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sup |p(z)] sTn< 5 ) sup |p(z)| (1.1.1)
z€[a,b] z€[e,d]

holds with A := &< and T,,(z) := cos(n arccos z), the Chebychev polynomial of degree n.

Bernstein, A. Markov, Remez who came after Chebychev, each proved a different
type of polynomial inequality. For instance, the classical Bernstein inequality concerns
polynomials of a complex variable z € C of degree n. It states that for such a polynomial

p and every R > 1

sup [p(z)] < R” sup [p(2)]. (1.1.2)

|zI<R |z|<1
Let us note that inequalities (1.1.1) and (1.1.2) are sharp.
In turn, the classical A. Markov inequality compares the supremum norm of s, real

polynomial of degree n on an interval [a,b] with the supremum norm of its derivative

there:

sup 9/6)] < (22 ) sup [p(o)} (119

w€(a,b] — Q) zclab)

This inequality was proved by A. Markov as an answer to a question raised by the
Russian chemist D. Mendeleev who applied its particular case (for polynomials of degree
two) to investigate the perfect percentage of alcohol content for vodka. He discovered that
it is 38%. However, since spirits in his time were taxed on their strength, the percentage
was rounded up to 40 to simplify the tax computation.

In the 1920s-1930s Polya and Remez initiated the study of polynomial inequalities
on measureable subsets in R. As a result, Remez, in his 1936 paper, generalized the
Chebychev inequality by replacing the subinterval [c, d] by an arbitrary measurable subset
E C [a,].

Theorem 1. (Remez) For a measurable set E C [a,b], |E| > 0, and a real polynomial p
of degree n,

sup |p(z)| < Tn
z€fa,b]

2(b—a)
(W — 1) ilelg lp(z)]. (1.1.4)



Equality in (1.1.4) holds if and only if E = [a,a + 6] and p(z) = ATn(z(””—a—“2 — 1) or
E=[b—-6,b] and p(z) = AT,(2&2 1), where A€ R and 0 < 8 < b—a.
A multivariate generalization of the Remez inequality was proved by Yu. Brudnyi

and Ganzburg [2] in the 1970s.

Theorem 2. (Brudnyi-Ganzburg) Let V C R® be a conver body and w C V be a mea-

surable subset of Lebesgue measure |w| > 0. Then for a real polynomial p on R? of degree

n,
1+ /1 —A)
<T, (—2—L 1.15
sup [p| < n<1_m sup |p| (1.1.5)
where \ == L.

\7
This inequality coincides with the classical Remez inequality if d = 1 and is sharp in
any dimension.
The further development of the theory of Remez type inequalities is due to Yu. Brud-
nyi [3, 4, 5], Ganzburg [8], Erdelyi and Borwein [56], A. Brudnyi 5, 6, 7, 20, 21, 27, 28],
C. Fefferman and Narasimhan [17], 18], Roytwarf and Yomdin [9] and many other math-

ematicians.

1.2 Application

Polynomial inequalities work as a main tool in different areas of mathematics. Originally,
univariate Bernstein and Markov type inequalities for polynomials have appeared in
Approximation Theory and for a long time have been considered as technical tools for
proofs of Bernsteins type direct and inverse theorems. At the present time polynomial
inequalities have found a lot of important applications in areas which are well apart from
Approximation Theory. We will only briefly mention several of these areas.

The papers of V. Milman, Gromov [10], Bourgain [11], Kannan, Lovasz, and Si-
monovits [12] apply polynomial inequalities with different integral norms to study some
problems of Convex Geometry (in particular, the famous Slice Problem).

In the papers of Yu. Brudnyi, Pawlucki, Plesniak [13, 14] and the books of DeVore
and Sharpley [15] and Jonsson and Wallin [16] Chebychev-Bernstein and related Markov



4

type inequalities are used to explore a wide range of properties of the classical spaces
of smooth functions including Sobolev type embeddings and trace theorems, extensions
and differentiablility.

The papers of C. Fefferman and Narasimhan [17, 18] on Bernstein’s type inequalities
for traces of polynomials to algebraic varieties were inspired by and would have important
applications to some basic problems of the theory of subelliptic differential equations.

The paper of Bos, Levenberg, P. Milman, and Taylor [19] discovers a profound re-
lation between the exponents in the tangential Markov inequalities for restrictions of
polynomials to a smooth manifold M C R¢ and the property of M to be an algebraic
manifold.

Applications of polynomial inequalities to Cartwright type theorems for entire func-
tions are presented in the papers of A. Brudnyi [20, 21], B. Levin [22], Logvinenko [23]
and Katznel’son [24].

In the papers of Nazarov, Sodin and Volberg [25, 26] these inequalities are used to
estimate the distribution of zeros of certain families of random analytic functions.

An application of polynomial inequalities to the second part of Hilbert’s sixteenth
problem concerning the number of limit cycles of planar polynomial vector fields was
obtained by A. Brudnyi [27, 28].

Finally, in the papers of I. Vinogradov [29] a specific case of the upper estimates of
trigonometric integrals based on Polya-type polynomial inequalities is obtained. Such es-
timates play an important role in some areas of Number Theory, Analysis (some problems
of uniqueness and convergence of trigonmetric series, theory of orthogonal polynomials,

differential properties of functions), Probability, and Mathematical Statistics.

1.3  Overview

In the present work, we will survey different types of polynomial inequalities, both uni-
variate and multivariate cases. Some proofs of the basic theorems will be presented.
Also, we will describe polynomial type inequalities for holomorphic functions. Finally we

present applications of the polynomial inequalities to some problems of characterization



of trace spaces for certain classes of differentiable functions.



Chapter 2

REMEZ-TYPE INEQUALITIES

2.1 Univariate Remez’s Inequality

First, consider the Chebychev polynomials T;,(z) which are defined as follows:

Tw(z) = cos(narccos(z)), =€ [-1,1], or, equivalently, (2.1.1)
To(z) = % ((a:-i- Va2 — 1)n+ (a: — Va2 — 1)n) , z€C.

The Chebychev polynomials were introduced by the famous Russian mathematician
Pafnutii I'vovich Chebychev (1821 - 1894).
It has been shown already by Chebychev that Tp,(z) is the fastest growing polynomial

outside [—1,1]. In other words,

mox{[p(E) : p€ oy Iplloay 1} =T(®), VIEI21, €eR  (212)

where P, is the set of all polynomials of degree n.

Let s be an arbitrary fixed positive number. For every p € P, define the set

M@p):={ze[-1,1+s]:|p(z) <1}. (2.1.3)

Clearly M(p) consists of mutually disjoint closed subintervals of [1, 1+ s] (some of these

subintervals can be single points). Let |M(p)| be the measure of M(p). Next we consider

Fo(s):={pe P, :|M(p)| > 2}. (2.1.4)
In 1936, Remez [1] established the following
sup |lpll = | Ta] - (2.1.5)
PEP,(3)

6
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where |- is the supremum norm over [~1,1 + s, and, by the definition of Chebychev
polynomials, ||T,|| = T,(1 + s).

This result implies the inequality of Theorem 1 of section 1. Indeed, let p be a
polynomial of degree n on [a,5] C R and E C [a, b] be a mesurable subset. We set

2(b—a)

~2
||

S =

and consider a polynomial § on [—1,1 + s] defined by the formula

P s (2(37 —a)

— ——=—-1), z€lq,b].
—- e E ) @,

Then M(f) contains the set & := {z € [-1,1+3] : z = %IEE_TGZ — 1, t € E} of measure

2. Thus (2.1.5) implies in this case

sup [p(a)] := ( sup lzs(x)l) (ggg |p<w>|) <

z€la,b] w€[1,1+3]

To(l+s) =T, (2(_‘;];1_0) - 1) sup p(z)]

as is required.

So let us prove now (2.1.5).

Proof. We follow the proof given in [30]. Note that for any fixed z € [-1,1 + s] the
quantity

p(z) = sup {|p(z)| : p € B.(s)} (2.1.6)

is attained for some polynomial from Ppn(s). We shall show first that u(z) < (1 + s)
for each z € [-1,1 + 5]. Indeed, let = be an interior point of [-1,1 + s] and let p be
the extremal polynomial for this point, i.e., p € Ppn(s) and [p(z)] = p(z). Introduce the

polynomials

pi(z) =pla(z)), pa(z) == p(B(z)), (2.1.7)



where o : [-1,1+s] — [-1,z] and B: [~1,1+ 5] — [z,1 + s] are the linear transforma-
tions. Let My and M, be the parts of M(p) situated in I; := [—1,z] and I := [z, 1+ 8],
respectively. Assuming that |M;| < A|L| for i = 1,2 and A = 2/(2 + s), we would get
|M| = |My + My| < AL + L] = A(2 + 5) = 2, a contradiction. Therefore |MG1 /L) = A
at least for one 4, say for s = 1. Then |M(p;)| > 2 and hence p; € P,.(s). This yields

w@) = |p(@)] = po(1+ )| < pu(L + ). (2.1.8)

Therefore the Remez inequality will be proved if we show that

Ip(L+ )| STu(l+s) Vpe Pus). (2.1.9)

In order to show this, denote by —1 =1y < < ... <7, = 1 the extremal points of
1. We have

Tulne) = (=)™ % Ek=0,..,n. (2.1.10)

Let zp < 21 < ... < z, be the points of M (p) which coincide with g, ..., 7, after we

press M (p) to the left, i.e., to the interval [—1, M(p) — 1]. By the Lagrange interpolation

formula

1+s|<Z H L4s—a (2.1.11)

k=0 i=0,i#k ka - le
since |p(;)| < 1. Now taking into account the obvious inequalities 45—z < |[14+s—mn),

|zx — ;| > | — 73] and (2.1.10), we get

1+s|<Z H L+s—m —T(1+s) (2.1.12)

k=0 i=0,istk IT”-/ - Thl



2.2 Multivariate Remez’s Inequality

To prove the Brudnyi-Ganzburg inequality [2] (i.e., a multivariate version of the Remez
inequality) formulated in Theorem 2 we will use the following geometric fact.

Fix an inner point 2o of the body V € R? and let 0 < A < 1. Let I stand for a ray
emanating from zy. By mes; we denote the linear Lebesgue measure on I. Consider the

extreme problem

mes1(V N 1)

A) = inf 2.2.1
a(M) lilllzl),\ s mes;(wN 1) (223)
where the sup is taken over all measurable w C V satisfying
el
= = A
V]
Lemma 1. The following identity holds:
1
Ya(A) = (2.2.2)

1—91—X

Proof. Let us introduce in R? a spherical system of coordinates with center zq: (r,¢) =
(ryd1,...,¢a-1). Let r = H(¢) = H(¢y,... ,$a—1) be the equation of the surface of the
boundary 0V of V. Let us examine the set & which in the coordinates (r,$) is defined

by

Ba(NH(¢) <7 < H(p), Ba(N):=1—1T—= (2.2.3)
It is easy to calculate that |&] = X and, for almost every ray | emanating from =,
mes1(V N 1) 1

mes;(@N1) 1= BN
Therefore it remains to show that there is no set w C V with lw| > \ satisfying the

(2.2.4)

inequality

essinf mesy(V 0 1) > !
I mesi(wni) = 1—pBy(N)

(2.2.5)
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Suppose (2.2.5) holds for some w, |w| > X. Comparing (2.2.4) with (2.2.5) we obtain

that for almost every [

mesy (@ N 1) = mes; (wN 1)+ €(l) (2.2.6)

where ¢(I) > 0. Using w, we construct a ”symmetrized” set w(®): On each such ray | we
put on one side a segment of length mes;(w N 1) in such a way that it lies in the set V'
and one of its ends coincides with the point of intersection of [ with the boundary of V.
By virtue of (2.2.6) the set w(®) lies strictly inside &, and therefore |w(®)| < |&| = A. On

the other hand, by the monotonicity of r¢-1

/ 'rd"ldrg/ r&1ldr (2.2.7)
wnl wnl

and, integrating both sides with respect to ¢, we conclude that [w| < |w®)|. Thus |w| < A,

which contradicts our assumption. Therefore the lemma, is proved. O

Let us prove now Theorem 2.

|l

Proof. Let w C V, v = A and p € P, 4 belong to the set of real polynomials on R¢ of
degree n. Assume that ||plloqyy := supy |p| = [p(«0)], 7o € V. Consider the restriction of

p to a ray [ emanating from 2. Applying to the restriction Theorem 1, we have

2mesy(V N 1)

= < —_— . 2.2.
Il = ool < T (2L 1) oy (2:28)

Taking essinf with respect to I on the right-hand side of the above inequality, and then
sup over all measurable w C V, IJ—“‘,’% 2 A, we obtain (using monotonicity of T,(z) for

|z| > 1) the inequality

lIpllcvy < Tn (27a(A) — 1) |Ipllow), or equivalently,

lellogy < T (2 (%) - 1) ~7, (%} .

This completes the proof of Theorem 2.
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O

Let us show that the inequality of Theorem 2 is sharp on the class of compact convex

bodies. To this end, we define V' to be a circular cone of height one, say

d
V:={m€Rd : w%ﬁzxz?, 03%131}'

=2
Fix A € (0,1) and let V; be a subcone of V of height h where h € (0,1) is determined by
the condition [V\ Vil = A|V]; then h = /T — X. Set now S := V' \ V, and let

o 2371 —-1-n
pla) =T, (W)

be the Chebychev polynomial associated to interval [k, 1]. Then |S| = A|V| and

max |p| =T 1+h =T 1+V1l-2 VI-X max |p|
Vp—nl-—h_nl—dr_l—)\ SP,

that is, the inequality of Theorem 2 becomes equality.

Corollary 1. Under the assumption of Theorem 2,

1 /4d\"*
max Ip| < 5 <—)\‘) max |p|.

Proof. The function A — 1 — /1 — X is convex on (0, 1] and therefore

1+<‘/1—>\<2_d_1
1—J1T=X" A ’

This, the definition of T}, and its monotonicity on [1,c0) imply the result.

2.3 Remez type inequality for integral norms

The inequality of Theorem 2 may be generalized to integral norms as follows.

Corollary 2. Let 0 < r < ¢ < o0 and let S be a subset of a convez body V C R4 of

relative measure )\ := f% € (0,1]. Then for every polynomial p of degree n the inequality

1 1
1 / . }a L N { 1 / . }? |
— dz » < (rn+ 17 y(n,d)\ —_ dz 2.3.1
{77 [ 1ot} < oms vsto =+ {1 [ (231
holds with ~y(n, d) := 3(4d)™.
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Proof. 1t suffices to consider the case ¢ = co. Due to the homogeneity of (2.3.1) we may

assume that

max |p| = 1.
Further, for ¢ € (0,1], define the level set for p by
Ly={z eV : |p(x)| <t}

Applying to this subset inequality of Corollary 1 we get

1= mpel <o) (1)

and then derive from here the inequality
L] < V1o, d)t)=. (23.2)

To proceed we need the notion of rearrangement, see, e.g., [54], section 1.8.
Let (%,1) be a measure space and f : © — R be a y-measurable function. A

nonincreasing function m(f) : (0,00) — R4 U {co} is then given by
m(fit) = p{o €T : |f(o)| > t},

while the rearrangement f* : (0, 4(Z)] — Ry U {oco} is defined by

ffi=inf{t : m(f;t) < s}
Functions f and f* are equimeasurable; therefore, for 0 < r < oo,

m=) i
| erds= [ iras

0 )

Using these definitions we relate | L;| to the rearrangement of the restriction ply. Actually,
\Le| = [V] = m(plv; )

and therefore the inverse to the function  — |L| is equal to t — (p|y)*([V]| — ). This

inverse is estimated by (2.3.2) to give

Wi—s 2 (1)
O V1= > = ()
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It remains to note that for S C V and 0 <t < |9,

(2ls)*(8) = (plv)* ()

and therefore

s )]

Integrating and raising to the power % we get the inequality

et e () (i o)’

which is equivalent to (2.3.1) with ¢ = oo. O

[S1 [S]
gt < / [(pls)* (18] - B di = / [(pls)*(B)]"dt = /S 1ol da.

Remark 1. Let S = V; then (2.3.1) yields the inverse Holder inequality for polynomials.
The constant obtained is, up to a numerical factor, optimal for r < 1 and g = 00, but
may be essentially improved for other values of r and g, see the paper [55] by Carberry

and J. Wright, and references therein.



Chapter 3

REMEZ TYPE INEQUALITIES FOR HOLOMORPHIC
FUNCTIONS

The purpose of this chapter is to describe Remez type inequalities for holomorphic func-
tions. We define the local degree of a holomorphic function which expresses its geometric
properties and generalizes the degree of a polynomial. This notion is central in our con-
sideration. It allows ﬁs to obtain better constants in Remez type inequalities even in the
standard polynomial case.

We proceed with the formulation of the main results of this chapter.

3.1 A generalized Remez inequality |

Let Bc(0,1) C B(0,r) C C" be a pair of open complex Euclidean balls of radii 1 and
r respectively centered at 0. Denote by O, the set of holomorphic functions defined
on Be(0,7). Let I, C C"(= R®") be a real straight line passing through z € B.(0,1).
Further, let T C I, N B,(0,1) be an interval and w C I be a measurable subset.

Theorem 3. For any f € O,, there is a constant d = d(f,r) > 0 such that for any
w C I Cly,NB0,1)

41\ *
supfl < (1) sup 51 (31.1)
I 'wl w
Example 1. As an application of the above theorem we obtain local inequalities for
quasipolynomials.
Definition 1. Let fi,..., fr € (C*)* be complex linear functionals. A quasipolynomial
with spectrum fi,..., fi is a finite sum
k
F(2) = pilz)ef® (3.1.2)
i=1

where p; € Clz, ..., 2. The ezpression 3¢ (1+ deg(p;)) is said to be the degree of f.

14
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Proposition 1. Let f be a quasipolynomial of degree m and l, be a real straight line
passing through x € B,(0,1). Then there is an absolute constant ¢ > 0 such that the

wmequality

Iz '> (3.1.3)

< (41
I

||
holds for any interval I C I, N B,(0,1) and any measurable subset w C I. Here M :=

ma; { | fll s

Definition 2. The best constant d in inequality (3.1.1) will be called the Chebysheuv degree
of the function f € O, in B,(0,1) and will be denoted by dg(r).

All constants in the inequalities formulated below depend upon the possibility to
obtain an effective bound of the Chebyshev degree in (8.1.1). The following result gives
such a bound in terms of the local géometry of f.

We say that a univariate holomorphic function f defined in a disk is p - valent if
it assumes no value more than p-times there. We also say that f is O-valent if it is a
constant. For any ¢ € [1,7) let L; denote the set of one-dimensional complex affine spaces

I C C™ such that I N B,(0,%) # 0.
Definition 3. Let f € O,. The number

vg(t) i= lsgg: {valency of flinb.oz} (3.1.4)
is said to be the valency of f in B.(0,t).

Proposition 2. For any f € O, and any t, 1 <t <r, the valency vs(t) is finite. There

is a constant ¢ = c¢(r) > 0 such that ds(r) < cvy (7).

Remark 2. For any holomorphic polynomial p € Cle1, ..., 20 of degree at most k the
classical Remez inequality implies dy(r) < k while in many cases Proposition 2 yields a

sharper estimate.

From Theorem 2, one can obtain the following inequality

4n|V|

k
suplpl < (ﬁ) sup ol (3.1.5)
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In this section we formulate a generalization of inequality (3.1.5). Let B(0,1) C
B,(0,1) be the real Euclidean unit ball.

Theorem 4. For any conwez body V C B(0,1), any measurable subset w C V, lw| >0,
and any f € O, the inequality

dn|V\ )
sup |7 < (L) sup £ (3.16)
\ 4 le w
holds.

The following corollary is a version of the log-BMO-property for analytic functions
[6, 57]

Corollary 3. Under the hypothesis of Theorem J the mequality

ﬁ/v |71

In ——
holds with an absolute constant C, where || f||,, := supy |£|.

17l dz < Cds(r) In(n) (3.1.7)

Our next application of inequality (3.1.1) is a generalization of Bourgain’s polynomial

inequality [11].

Theorem 5. Let V C B(0,1) be a convez body and ds(r) be the smallest integer > dg(r).

There are positive absolute constants c1,cy such that the following mequality

{:1: eV:|f(x)] > ﬁ/ If(:z:)]dx} <e¢ e.'z:p(—)\”/‘};("))[VI (3.1.8)
v
holds for any f € O,. In particular,
”f”yb(v,m) <(a-+1) "f”Ll(V,dm) (3.1.9)

where L refers to the Orlicz space with the Orlicz function ®(t) = exp(t=/& M) — 1.

Let us recall that an Orlicz space is a type of a function space which generalizes L?
spaces. The spaces are named for W. Orlicz who discovered them in 1931. Here is the

definition of them.
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Suppose that u is a o-finite measure on a set X, and @ : [0,00) — [0, 00) is a convex

function such that

o(z)
—x—-—>oo, as T — 00,
@HO, as z—0+.

Let L2 be the space of measurable functions f : X — R such that the integral

/X &(f)du < oo,

where as usual functions which agree almost everywhere are identified.
"This may not be a vector space (it may fail to be closed under scalar multiplication).
The vector space of functions spanned by L2 is the Orlicz space, denoted L®. To define

anorm on L?, let ¥ be the Young complement of ®; that is,

U(z) = /0 “(@) 1)t

The norm is then given by

HfII<1>=sup{|IngL1 : /X \IIOIgldu§1}.

Furthermore, the space L? is precisely the space of measurable functions for which this

norm is finite.

An equivalent norm is defined on L% by

Il = int { e 0.00) [ o1},

Orlicz spaces generalize L? spaces in the sense that if ®(t) = 7, then ||ul|s = [|u]|z»,

so L2(X) = LP(X).

Remark 3. The original Bourgain’s inequality for polynomials contains the degree of the

polynomial instead of cfl}('r)

As a corollary of inequality (3.1.1) we also obtain the reverse Hoélder inequality with
constant which does not depend on the dimension (this result does not follow from

Theorem 4).
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Corollary 4.

1 L\~ 1
(m [ ) dm) < @) o)y [ f@ls (Fe0nsez)  (3110)

The following example shows that in the polynomial case our inequalities might be

sharper than those of [2, 11].

Example 2. Let f € O, be such that supp o |f| < 1. Let ¢ be a holomorphic non-
polynomial function univalent in an open neighbourhood U of D = {z € C: |z| < 1}.
Then using Proposition 2 and Proposition 3 below yields dgof(r) < c(r)vy (H2). Consider
a polynomial approzimation hy of ¢ such that deg hy, = k and hy is also univalent on
D. Assume now that f € O, is a polynomial. Then deg(hy o f) = k - deg f. Further,
apply Brudnyi-Ganzburg and Bourgain’s polynomial inequalities to the polynomial hyo f.
Then the exponents in these inequalities will be equivalent to k- deg f and 1/(k-deg f),
respectively. However, in our generalizations of the above inequalities these exponents
contain numbers dy,o¢(r) and 1/ ghko 7(r) with dp,o¢(r) < c(r)deg f and this is essentially
better for all sufficiently large k.

3.2 Proofs of Theorem 4 and Proposition 2

We begin with some auxiliary results used in the proof.

3.2.1 Parametrization of straight lines in the ball

Let Bc(0,s), 1 < s < r, be an open complex Euclidean ball. For any & € B(0,s)
consider the complex straight line I, = {w +vz4/s2 = |22 (z,0) = 0,]v] =1,z € (C}
passing through z. Here |- | denotes the Euclidean norm and (-,-) the inner product on
C". In this way we parametrize the set L, of all complex straight lines passing through

points of B,(0, s). Let f be a holomorphic function from @,. Consider the function

F(z,2,v,8) = f(z +vz/s* — |z]2) (2 €D). (3.2.1)
Then F(-,z,v, s) is the restriction of f to I, N B,(0, s). Note also that for any ¢ < s
the inequality
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§2 — |a;l2 S (f>2 (3.22)

2 —|z]2 — \¢

holds. This implies that the set {ZB +vzq/s? = |zl (z,v) =0,]v] = 1,2 € -ts-]D)} contains
disk Ly, N Be(0, ). Set

M(z,v,s,t) =supln|F(-,z,v,s)|. (3.2.3)
ip
Definition 4. The number

bg(s,t, 1) == sup {M(z,v,s,t) — M(z,v,s,1)} (3.2.4)

x,v

is said to be the Bernstein index of f € O,.

3.2.2 Bernstein index and Remez inequality

Assume that F(-,z,v,s)(= f |tz nBe(0,5)) has valency m on ID. Assume also that 1 <t <
s. By Theorem (2.1.3) and Corollary (2.3.1) of [9] (see also [6] Lemma. (3.1)), there is a
constant A = A(t) > 0 such that

M(z,v,s, %) - M(z,v,s,1) < Am. (3.2.5)

Then we apply the main inequality of Theorem (1.1) of [6] to the function |F| obtaining
that there is a constant ¢ = ¢(t, A) > 0 such that the inequality
41r'|

sup |F| < | —+ ] sup|F 3.2.6
wiF| < (F51) sl (3:26)

is valid for any interval I’ C [~1/s,1/s] and any measurable set ' C I'.
Since Iz, N B,(0,1) C {a: +vz4/82 = |2]? (z,v) =0, ]v| = 1,2 € %]D)}, (3.2.6) implies
inequality (3.1.1) with exponent cm for f restricted to the real straight line I, C l,,.

3.2.3 Proofs of Theorem 4 and Proposition 2

Proof. Let 1 <t <r and f € O,. First we prove inequality vf(t) < 0.
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Fix a number s satisfying ¢ < s < r. For any z € B,(0,s) consider the complex
straight line l,, = {a: +vz4/s2 — |22 (z,v) = 0,]v| = 1,z € C} passing through z. Let
K = {(z,v) € B:(0,s) x §2*~L; (,v) = 0}. Further, for f € O, consider the function F
defined by Definition 4. Then F is ananlytic on D x K and F(-,z,v,s) is holomorphic
on D for any (x,v) € K. Let K1 C K be a compact subset that consists of points with
the first coordinate from B,(0,t). In particular, the set of lines lyp with z € B,(0,t)
coincides with L (defined just before Definition 3). Assume without loss of generality
that supp () |f| = 1 and consider the analytic function f(z, z,v,s,w) = F(z,2,v,8)—w

defined on I x K x 2D. Set

filz,v,7,w) = sup 1n|ﬁ(z,m,v,s,w)| ) (3.2.7)
zeFED

fo(z,v,r,w) = sup ln|ﬁ(z,w,v,s,w)|.
z€iD

Fix (z,v,w) € Ky xD. If F(-,z,v,s,w) is not a constant then the number of its zeros

in D is estimated by the Jensen inequality

# {z € éﬁ : ﬁ(z,m,v,s,w) = 0} < d(filz,v,r,w) — folz,v,7,w)) (3.2.8)

with ¢ = d(s,t) > 0. Note also that by (3.2.2), the above number of zeros gives an
upper bound for the number of points y € I, N B(0,¢) such that f(y) = w. Since
Ky x D is compact, the Bernstein theorem of C. Fefferman and R. Narasimhan [58] and
the Hadamard three-circle theorem imply that there is a constant C = C (f, K;xD)>0
such that

flz,v,rw) — folz,v,r,w) < C (3.2.9)

for any (z,v,w) € Ky x D. This inequality yields v(t) < ¢/C (see Definition 3).
It remains to prove the inequality d(r) < c(r)vs (HZ). We will do it in a parallel
way with the proof of Theorem 4.
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Let z € B.(0,1) and l; C C™ be a real straight line passing through z. Let I C
lz N Be(0,1) be an interval and w C I be a measurable subset. Set s = 1%, t = %
and denote by I¢ = {y +v24/8% — [yI%; (y,v) =0, [v| =1,z € (C} the complex straight
line containing I, where y € I, is such that dist(0,l,) = |y|. By definition function
F(9,v,8) = flignpe(0,s) determined by (3.2.1) has valency < vg(s) on tD. Therefore
Bernstein index by(s, #%,r) < Avg(s) for A = A(r) > 0. Finally, inequality (3.2.6)
and arguments of section (3.2.2) show that the inequality of Theorem 4 is valid with

d < cvg(s), ¢ = ¢(r) > 0. This implies that

ds(r) < cv; (1 ;””) . (3.2.10)

0
7)
-7,

2

Remark 4. In order to estimate the Chebyshev degree we can also use instead of vp(HL
an appropiriate Bernstein indez bp(r) = bs(s(r),t(r),r). Then ds(r) < bs(r) < cvp(XEr)

with some ¢ =¢(r) > 0.

3.3 Properties of Chebyshev Degree

We formulate further inequalities between the Chebyshev degree and valency. In the

following proposition the constant ¢ = ¢(r) is the same as in Proposition 2.

Proposition 3. 1. Let f € O, and f(B:(0,7)) C D C C. Let ¢ be a holomorphic
function defined in an open neighbourhood U D D. Assume the ¢ has valency k in

U. Then

dgof(r) < chu; (1"2”> . (3.3.1)

2. Let h:=¢e% € O,. Then

dun(r) < cu (1 ;“ T) . (3.3.2)

8. There is a constant ¢c; = ¢i(r) > 0 such that

dsolr) < 1 <vf <1‘2”> +, (1;”)) (3.3.3)

for any f,g € O,.
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Consider the differential operator (a, D) = 3 7 ; a;D;, where a = (ay,...,a,) € C*,

D; = —d‘f—i, ¢=1,...,nand 2,...,2, are coordinates on C". Set f, . := (a, D)™(f)

Proposition 4 (The Rolle Theorem). Let f € O,. Assume that for any a € C* the
valency of fim,a satisfies vy, , (52) < M. Then there is a constant ¢, = cy(r) > 0 such
that

di(ry < ca(m+ M). (3.3.4)

Proof of Proposition 8. 1. According to the definition of the valency we have
Vgos (M) < vy (47), where k is valency of ¢. Then dgos(r) < ckus (1) by

Proposition 2.

2. The statement follows from Proposition 2 and the identity v; Jh (ﬁ) = U (m)

2 2
for h = e9.

3. According to the results of Section 3.2.1 it suffices to prove the statement for
univariate holomorphic functions F'(-,z,v,s) = f lio,, 20d G(-, 2,0, ) = gli,,. We
consider a more general situation.

Assume that D, C D,, C C, r; < 79, are disks centered at 0 of radii 71, 3, respec-
tively. Further, assume that f, g are holomorphic in D,, of valency a and b, respectively.
We prove that there is a constant ¢ = ¢(ry,72) > 0 such that Chebyshev degree dy4(r1) of
fgin Dy, <cla+b). Let K ={z¢eC: 2™ < |z| < 1t323 be an annulus in D,, and

, _ In|g| —supp, In|g|
supp,, In|g| — supp, In|g|’

Repeating word-for-word the arguments of Lemma 2.3 of [6] we can find a number

(3.3.5)

C = C(ry,m2) > 0 and a circle S C K centered at 0 such that

iréf g >-C. (3.3.6)

Going back to |g| we obtain

supp, |91\
—“”—1> . (3.3.7)

inf |g| > sup|g|
S D’I‘z Sup]D),«z |gl
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This implies

(o)
supp,, |fg] _ supp,, |flsupp,, lg _ supp,, | (p I9I> (338)

supg |fgl = supg|flinfslgl T supg|f| \supp, |l
Finally, according to Section 3.2.2, there is a constant B = B(ry,7,) > 0 such that

Supp,, | f] Supp,. | f] ° Supp,. lg] b
< 2 <B —2— < B (3.3.9)
supg |f| ~ supp, .. |f] SUDp,, ||
Thus we get
supp,, |f9] _ supp, |fgl < Botd (3.3.10)

supp, .., [fgl = sups|fgl ~

with B = E(rl, T2, B) > 0. Then inequality (3.2.6) applied to |fg| implies the inequality
of ‘Theorem 3 with exponent c¢(a + b), ¢ = ¢(r1,72, B) > 0. Therefore df,(r1) < c(a + b).

In the multivariate case the above arguments estimate an appropriate Bernstein index
of fg by sum of Bernstein indeces of f and g. These indeces can be estimated by
c1v7(147) and c1v,(47) with some ¢; = c1(r) > 0. Thus according to Remark 4, dy,(r) <
¢ (r)(vp(42) 4+ vg(1ET)). This completes the proof of (3).

Proposition 3 is proved. O

Proof of Proposition 4. First, we recall the relation between Bernstein index and Bern-

stein classes.

Definition 5. Let f(z) = 32, a;#* be holomorphic in the disk Dg, R > 1. We say that
[ belongs to the Bernstein class By g ., if for any j > N,

la;| 7 < coréliialcvmi]Ri. (3.3.11)

According to Corollary 2.3.1 of [9], if the m** derivative ™ of fis M-valent then
fm) g Bi{_l, tsn gy With ¢ = c(R) > 0. Moreover, from Definition 5 it follows that

fenB? a3z e Lhen Theorem 2.1.3 of [9] based on the last implication yields
3 4 Y
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sup < a™ M gsup |f| (3.3.12)
Diin Dy ‘
for some constant ¢ = a(R) > 1.

We proceed with the proof of the proposition. As in the proof of Proposition 3 it
suffices to prove the result for restriction F; of f to a complex line ! passing through a.
point of B.(0,1). Then the condition of the proposition implies that mt* derivative Fl(m)
of Fj has valency at most M in the larger disk [ N B.(0, %’-{—). Therefore the required
result follows immediately from inequality (3.3.12) (an estimate for Bernstein index) and

arguments of section 3.2.2.

The proof of the proposition is complete. O

3.4 Proofs

Proof of Proposition 1. Let If = {y + vz /4 — |yl]?; (y,v) =0,]v| =1,z € (C} be a com-
plex straight line passing through a point y € B,(0,1). Consider the restriction F of the
quasipolynomial f(z) = Zf=1 pi(2)efi® to l;. Then F is a univariate quasipolynomial of

the form

F(2) = g(2)e eV WEEO) (g € Cl2)) (3.4.1)

of degree < m. We estimate valency of F' in disk Dy := 2D (i.e. we estimate the number
of zeros of F' 4 ¢ for any ¢ € C). Note that F + c is also a quasipolynomial of degree
< m+ 1. Further, by definition max; {|f;(v)|} < M implying 1/4 — [y[2fi(v) € Day for
any 4. Then by Theorem 2 in [59] the number of zeros of F' + ¢ in D, less than or equal
tom + 2(vEk+1+1)-16M < 32(vk + LM +m). This and Proposition 2 yields

de(2) < cvf(3/2) < (Vk + 1M +m) (3.4.2)

with an absolute constant ¢’ > 0. The required inequality follows from the definition of

Chebyshev degree. O
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Proof of Theorem 4. Let V' C B(0,1) be a convex body, A C V be a measurable subset
and f € O,. Take a point € V such that

|f(z)| = sup|f]. (3.4.3)
\4

(Without loss of generality we may assume that z is an interior point of V; for otherwise,
apply the arguments below to an interior point z. € V, € > 0, such that |f(z.)| >

supy | f| — € and then take the limit when ¢ — 0). According to Lemma 3 of [2] there is

a ray [ with origin at z such that

mes(INV) < n|V|
mesi(INA) = |\~
Let I’ be the real straight line containing [. Applying inequality (3.1.1) to f|y with

(3.4.4)

I':'=1NV and w:=1N A and then inequality (3.4.4) lead to the required result. o

Remark 5. Assume that w CV is a pair of Euclidean balls of radii Ry and Ry, respec-
tively. Then the ray | in (3.4.4) can be chosen such that the constant in the inequality of

d
Theorem 4 will be (42)".

Proof of Corollary 3. Before we begin the proof, we will define rearrangements of func-
tions. We consider k-measurable functions f defined on the set 2 C R”, equipped with
the k-dimensional measure |E|;, 1 < k < n, for E C Q. For instance, k =n—1if Q = S»
and k =n if Q =R or Q is the bounded domain in R”.

Definition 6. For each f on the bounded set Q& C R™ we define its increasing rear-
rangement f* := [0,|Q[x] — [0,00] by f*(t) = f*(t,Q) = sup{r > 0: B, < t}, where
E.:=|{zx € Q:|f(z)| < 7}|. Similarly, for each f on Q C R™ we define its decreasing
rearrangement f, by fi(t) :=inf {7 > 0: I, < t}, where I, := [{z € Q: | f(z)]| > T}].

Let V C B(0,1) be a convex body and f € O,. For the distribution function Df(t) :=
mes{z € V :|f(z)| < t} the inequality of Theorem 4 acquires the form

o)
t ) ! (3.4.5)
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The required result follows from the above inequality and the identity
|f] f

V|
dr = A
/V T / TP

where f, = inf {s: Ds(s) > t}. O

In In

dz. (3.4.6)

Proof of Theorem 5. Let V' C B(0,1) be a convex body. For a real straight line ,
INV # 0, and an interval I C [NV inequality (3.1.1) implies

(]
2
holds for any f € O, with || f||; = sup; | f|. Applying the same arguments as in the origi-

mes {t e I:|f(t)] 2 1075 | £l } > (3.4.7)

nal proof of Bourgain’s inequality for polynomials [11] but based on the above inequality
instead of Lemma, 3.1 of [11] one obtains the required result. The second part of Theorem

5 follows from the distributional inequality of the theorem and the definition

11l 2 v,y = inf {A >0: /V<I> (ITJ;—l) do < 1}. (3.4.8)
O

Proof of Corollary 4. The reverse Holder inequality (3.1.10) follows straightforwardly
from the distributional inequality of Theorem 5. O

3.5 Concluding Remark

If fi,..., fr are functions from O, and p is a holomorphic polynomial of degree d then
for h = p(f1,..., fr) its degree dy(r) is bounded by a constant depending on d,r and
f1,-++, fr. This follows from results of [58] and arguments used in the proof of Proposition
2. However, it is difficult to obtain an explicit estimate for di(r) even in the case of
naturally defined functions f; (e.g., taken as solutions of some systems of ODEs). Assume,
e.g., that fi = 2,..., fn = 2, are coordinate functions on C* and & > n. Then the
inequality dp(r) < ed holds for any polynomial p of degree d with ¢ which does not

depend on d if and only if fu1a,..., fi are algebraic functions [6, 60).



Chapter 4

REMEZ TYPE INEQUALITIES ON AHLFORS REGULAR
SETS

4.1 Hausdorff measure and Hausdorff dimension

To formulate and prove the results of this chapter we require the definitions of the
Hausdorff measure and of the Hausdorff dimension. Hausdorff dimension (also known as
the Hausdorff-Besicovitch dimension) is an extended non-negative real number associated
to any metric space. It was introduced in 1918 by the mathematician Felix Hausdorff.
Many of the technical developments used to compute the Hausdorff dimension for highly
irregular sets were obtained by Abram Samoilovitch Besicovitch. Less frequently it is also
called the capacity dimension or fractal dimension (the latter is somewhat misleading as
there are many other choices of definition).

Intuitively, the dimension of a set (for example, a subset of Euclidean space) is the
number of independent parameters needed to describe a point in the set. One mathe-
matical concept which closely models this naive idea is that of topological dimension of
a set. For example a point in the plane is described by two independent parameters (the
Cartesian coordinates of the point), so in this sense, the plane is two-dimensional. As
one would expect, topological dimension is always a natural number.

However, topological dimension behaves in quite unexpected ways on certain highly
irregular sets such as fractals. For example, the Cantor set has topological dimension
zero, but in some sense it behaves as a higher dimensional space. Hausdorff dimension
gives another way to define dimension, which takes the metric into account.

To define the Hausdorff dimension for X as a non-negative real number, we first
consider the number N(r) of balls of radius at most r required to cover X completely.
Clearly, as r gets smaller N(r) gets larger. Very roughly, if N (r) grows in the same way

as 1/r? as r is squeezed down towards zero, then we say X has dimension d. In fact the

27
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rigorous definition of Hausdorff dimension is somewhat roundabout, since it first defines
an entire family of covering measures for X. It turns out that Hausdorff dimension refines
the concept of topological dimension and also relates it to other properties of the space
such as area or volume.

‘The Hausdorff dimension is one measure of the dimension of an arbitrary metric space;
this includes complicated spaces such as fractals.

Suppose (X, d) is a metric space with metric d. As mentioned above, we are interested
in counting the number of balls of some radius necessary to cover a given set. It is possible
to try to do this directly for many sets (leading to so-called box counting dimension), but
Hausdorfl’s insight was to approach the problem indirectly using the theory of measure
developed earlier in the century by Henri Lebesgue and Constantin Carathéodory. In
order to deal with the technical details of this approach, Hausdorff defined an entire
family of measures on subsets of X, one for each possible dimension s € [0, co).

Let C be the class of all subsets of X; for each positive real number s, let p,; be the
function A — diam(A)® on C. The Hausdorff outer measure of dimension s, denoted H,,
is the outer measure corresponding to the function p, on C.

Thus, for any subset F of X

Hes := inf {i diam(Ai)s}

=1
where the infimum is taken over sequences {A4;}; which cover E by sets each with diameter
< 4. This quantity is non-decreasing as § — 0. The s-dimensional Hausdorff outer
measure is defined as

Hs 1= lim sup Hs.
§—0

We can succinctly (though not in a very useful way) describe the value H,(E) as the
infimum of all A > 0 such that for all § > 0, E can be covered by countably many closed
sets of diameter < §; and the sum of the s-th powers of these diameters is less than or
equal to h.

The function s — H,(E) is non-increasing. In fact, it turns out that for all values of

s, except possibly one, H;(E) is either 0 or co. We say E has positive finite Hausdorff
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dimension if, and only if, there is a real number 0 < d < oco such that if s < d then
Hs(E) = oo and if s > d, then H,(E) = 0. If H,(E) = 0 for all positive s, then E has
Hausdorff dimension 0. Finally, if H,(E) = oo for all positive s, then E has Hausdorff

dimension co. In other words,
dimpg (E) :=inf{s : Hs(E) =0} =sup{s : H,(E) = oo}

The Hausdorff outer measure H, is defined for all subsets of X. However, we can in

general assert additivity properties, that is
Hs(AU B) = H,s(A) + Hs(B).

for disjoint A, B only when A and B satisfy some additional condition, such as both
being Borel sets (or more generally, that they are both measurable sets). From the
perspective of assigning measure and dimension to sets with unusual metric properties
such as frgctals, however, this is not a restriction.

One can prove that H, is a metric outer measure. Thus all Borel subsets of X are
measurable and H; is a countably additive measure on the o-algebra of Borel sets.

Clearly, if (X,d) and (Y,e) are isomorphic metric spaces, then the corresponding
Hausdorff measure spaces are also isomorphic. It is more useful to note however that
Hausdorff measure even behaves well under certain bounded modifications of the under-
lying metric. Hausdorff measure is a Lipschitz invariant in the following sense: If d and

dy are metrics on X such that for some 0 < C' < oo and all z,y in X,
C7ldy(m,y) < d(z,y) < Cdy(z,y)

then the corresponding Hausdorff measures H,, H;, satisfy
C™*H15(E) < Ho(E) < C*Hy4(E).

for any Borel set E.
Note that if m is a positive integer, the m dimensional Hausdorff measure of R” is a

rescaling of the usual m-dimensional Lebesgue measure £,, which is normalized so that
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the Lebesgue measure of the m-dimensional unit cube [0, 1]™ is 1. In fact, for any Borel

set F,

4.2 Remesz type inequalities on fractal sets

In an actively developing field of modern mathematics, analysis on fractal sets, see, e.g.,
[31] and references therein, one requires a generalization of the Remez inequality for
fractal sets. In such a generalization w is a subset of Lebesgue measure 0 in a Euclidean
ball B C R™ Since zero sets of real polynomials on R™ have Hausdorff dimension
< n~1, to obtain a finite bound for supg |p|/ sup,, |p| one assumes also that the HausdorfF
dimension of w is more than n — 1. Further, it is natural to estimate the above ratio by
a function depending on the Hausdorff measures of B and w. Specifically, let H, denote
the s-Hausdorff measure on R”, 0 < s < n; in particular, H, coincides with the Lebesgue
measure L, on R™ up to a factor depending only on n. In this chapter we study Remez

type inequalities of the following form

sup pl < §(\)sup o, (4.2.1)

where p is a real polynomial on R™ or a holomorphic polynomial on C*, B is a Euclidean
ball in R™ or C", respectively, and w C B is a subset of finite Hausdorff s-measure with
n—1 < s < nin the real case and 2n — 2 < s < 2n in the complex one. Also,
\ .o (Hslw)}™

Hm(B) '
where m = n in the real case and m = 2n in the complex case.

For many applications (related, e.g., to reverse Holder inequalities or BMO-properties
of functions) it is crucial that ¢ in (4.2.1) is a power function in \. Inequalities of the
form (4.2.1) with such a function will be referred to as strong Remez type inequalities.
However, in applications related to trace and extension theorems for classical spaces of
differentiable functions, see, in particular, [32], [33], [34], it suffices to use inequalities of

the form (4.2.1) with a function ¢ whose dependence of ) is not specified. In this case
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the only required information is the monotonicity of ¢ in A. Such inequalities will be
referred to as weak Remez type inequalities.

The existence of inequalities (4.2.1) for n = 1 was first demonstrated in [7] where
strong Remez type inequalities were proved for (Ahlfors) s-regular sets w in R or C with
0 < s <1 for real p and with 0 < s < 2 for holomorphic ones. Moreover, it was proved
in [7] Proposition 3 that s-regularity is necessary for the validity of such an inequality.

Let us recall the definition of Ahlfors regular sets.

For a subset K C R” and a point z € K by B,(z; K) we denote the intersection with

K of an open Euclidean ball in R™ centered at z of radius 7.

Definition 7. A subset K C R™ is said to be (Ahlfors) s-regular if there is a positive
number a such that for every x € K and 0 < r < diam(K)

H(Br(z; K)) < ar’. (4.2.2)
The class of these sets will be denoted by A, (s, a).

Definition 8. A subset K C A,(s,a) is said to be an s-set if there is a positive number

b such that for every x € K and 0 < r < diam(K)
br® < Ho(Br(z; K)). (4.2.3)

We denote this class by Ax(s,a,b).

The class of s-sets, in particular, contains compact Lipschitz s-manifolds (with integer
s), Cantor type sets and self-similar sets (with arbitrary s), see, e.g., [16], page 29 and
[35], Section 4.13.

In this chapter we establish inequalities of form (4.2.1) for s-regular sets w € A, (s, a)
with ¢ depending also on s, n, k := degp and a. We prove strong Remez type inequalities
for holomorphic polynomials using a technique of Algebraic Geometry. For the real case,
strong Remez type inequalities are true for dimensions n = 1,2 but the problem is open
for n > 2. On the other hand, weak Remez type inequalities are valid in this case, see
[5].

We start with strong Remez type inequalities for holomorphic polynomials on C™.



32

Let X C C" belong to Asn(s,a), s =2n— 2+ a, a > 0. Let p be a holomorphic

polynomial on C" of degree k.

Theorem 6. For any Fuclidean ball B C C* and an Hg-measurable subset w.C X N B

one has

Cngn(B) cak
< [ ==/
sup p| < < {Hs(w)}%/s) sup ||

where ¢, depends on a, n, k, a and co > 0 depends on a.

Corollary 5. Let X € Ay(s,a,b). Let B=B.(2;X),z€ X, r >0, and w C B be

Hs-measurable. Then for a holomorphic polynomial p of degree k the following is true:

c1Ho(B)\ 2
<
sup Ip| < ( Ha(w) sup |p)]

where ¢y depends on a, b, n, k, a and ¢y depends on c.

Corollary 6. Let X C C™ be an s-set with s as above. Then for any holomorphic
polynomial p the function In|p| € BMO(X,Hs). In other words,

sup { L / 1 / In |p| dH
sexr>0 | Hs(Br(z; X)) Br(@:X) Hs(Br(z; X)) Br(z;X) °

Another corollary is the following reverse Holder inequality.

In [p| —

st} < 00

Corollary 7. Under assumptions of Theorem 6 for 1 <1 < oo one has

G o ) <0 (e | )
—_—— p|" dH, <C| oo p| dH,
<H3(Br(x;x>> - HalBo @ X)) Sy

where C' depends on k, n, o, a and b.

Let us present now a general form of weak Remez type inequalities for real polynomials

on R”.

Theorem 7. Assume that U C R" is a bounded open set and w C U belongs to Ay(s,a)

withn —1 < s < n. Assume also that

_ {Hs(w)}e
A= W > 0.
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Then there exists a constant C > 1 such that for every polynomial p € R[zy,...,z,) of

(7 L o et "o (20 e " (624)

Here 0 < ¢q,7 < oo and C depends on U, n, q, v, s, k, a and )\ and is increasing in

degree k

1/A. In particular, for ¢ =1 = oo we obtain the weak Remez type inequality of the form

(4.2.1).

4.3 Complex Algebraic Varieties and s-sets

In this section we use some standard facts of Complex Algebraic Geometry. For the
background and the proofs see, e.g., books [36] and [37].

By CP"™ we denote the n-dimensional complex projective space with homogeneous
coordinates (2o : --- : z,). The complex vector space C™ is a dense open subset of CP"
defined by 29 # 0. The hyperplane at co, H := {(zp: :+-: z,) € CP™ : 25 = 0}, can be
naturally identified with CP*! and CP* =C" U H.

A closed subset X C C” defined as the set of zeros of a family of holomorphic poly-
nomials on C” is called an affine algebraic variety. By dimcX we denote the (complex)
dimension of X, i.e., the maximum of complex dimensions of complex tangent spaces at
smooth points of X.

Assume that an affine algebraic variety X C C” has pure dimension k£ > 1, ie,
dimensions of complex tangent spaces at smooth points of X are the same. Then its
closure X in CP" is a projective variety of pure dimension k, and dime(HNX) =k — 1.

Any linear subspace of dimension n—k in CIP" meets X, but there is a linear subspace
L C H of dimension n — k — 1 such that LN X = (. Moreover, for a generic (n — k)-
dimensional subspace of CP" its intersection with X consists of a finite number of points.
The number of these points is called the degree of X and is denoted degX. For instance,
if X as above is defined as the set of zeros of holomorphic polynomials p, ..., Pn_t on
C™ of degrees dy,...,dn—, respectively, then by the famous Bezout theorem deg X <
dy - dpp
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Let L C H be a linear subspace of dimension n — k — 1 which does not intersect X.
This subspace defines a projection ¢y, : CP* — CP* as follows.

Fix a linear subspace of dimension k in CP" disjoint from L. We will simply call
it CP*. If w € CP"\ L, then w and L span an (n — k)-dimensional linear subspace
which meets CP* in a unique point ¢r(w). The map ¢, sends w to ¢(w). Further,
C* c CP™\ L, and, with a suitable choice of linear coordinates, ¢z|cr : C* — CF is the
standard projection: (21,...,2,) — (21,...,2k).

The map ¢r|x : X — C* is a surjection and is a branched covering over C* whose
order f, i.e., the number of points ¢7 (y) N X for a generic y € C*, is deg X. Then X
is a complex subvariety of a pure k-dimensional algebraic variety X defined as the set of
zeros of holomorphic polynomials p;, 1 <4 < n —k, of the form |

pilz, ... 2) = 2, + Z bi(z1, - - . ,zk)zfc‘;f (4.3.1)

1<isp

where b; is a holomorphic polynomial of degree < I on C*¥. Moreover, let S C CF be
the branch locus of ¢r|x. If w € CF\ S, then by(w) is the I-th elementary symmet-
ric function in 24 (w®),. .., zp4s(w®™), where ¢7H(w) N X = (w®,...,w™). (Recall
that the elementary symmetric functions s; in &,...,£, are defined from the identity
[licic,(t — &) = t* + 518" + -+ 4 s, of polynomials in variable ¢.) Since dimcX =
dimeX =k, X is the union of some irreducible components of X.

Next, the Fubini-Studi metric on CP" is a Riemannian metric defined by the associ-
ated (1, 1)-form w := ¥=289In(|2|>++ - - |2a|2), (20 : - - - : z) € CP". For a k-dimensional

projective variety X as above the (k, k)-form A*w determines a Borel measure pyx on X,
px(U) = /U A (43.2)
where U C X is a Borel subset. Moreover,
pz(X) = deg X, (4.3.3)

see, e.g., [37], Chapter 1.5.
Let w, := @ ZlSiSn dz; A\ dz; be the Euclidean Kéhler form determining the Eu-

clidean metric on C". Then w and w, are equivalent on every compact subset X C C®
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where the constants of equivalence depend on K and n only. In particular, the Fubini-
Studi and the Euclidean metrics, and the (k, k)-forms Afw, and A*w are equivalent on

every such K. Let u.x be a Borel measure on a pure k-dimensional affine algebraic

variety X defined by the formula

pe,x(U) :=/U/\kwe (4.3.4)

where U C X is a Borel subset. Then for every compact subset X C C™ the measures

txlenx and pe x|knx are equivalent with the constants of equivalence depending on K,

k and n only.

Let us establish a relation between complex algebraic varieties and s-sets.

Theorem 8. Let X C C™ be an affine algebraic variety of pure dimension k > 1 such
that deg X < pi. Then X € Agn(2k,a,b) where a and b depend on k, u and n only.

Proof. We will prove that
or?* < e x(Br(z; X)) < ar® (4.3.5)

with @ and b depending on k&, 1 and n only, where X satisfies the assumptions of the
theorem, z € X and p, x is the measure on X determined in (4.3.4). From here applying
[16], Section I1.1.2, Theorem 1, we get the desired statement.

Since deg X = degz + X and pe x(U) = fogux(z + U) for all z € C* and all Borel
subsets U C X, without loss of generality we may assume that 0 € X and prove (4.3.5)
for B,(0; X) only. Since e x(AU) = A2 u, x(U) and deg X = degX for A > 0, z € C*,
and Borel subsets U C C", it suffices to prove that

b < phe,x(Bi(0; X)) < a (4.3.6)

where a and b depend on k, 1 and n only.
First we will prove the left-side inequality in (4.3.6). Let {X;}ien be a sequence of

affine algebraic varieties containing 0 and satisfying the hypotheses of the theorem such

that
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inf e (B (03 X)) = Jim o, (B 05 X). (437

Here the infimum is taken over all X containing 0 and satisfying the conditions of the
theorem. Consider the sequence {X;}ien of pure k-dimensional projective subvarieties
of CP*. Since CP" is a compact manifold, one can choose a subsequence of {yl}leN
converging in the Hausdorff metric defined on compact subsets of CP™ to a compact set,

say, Y. Without loss of generality we may assume that {X;}en itself converges to Y.

Lemma 2. There are a linear subspace L C CP" of dimension n — k — 1 and o number

N €N such that LN ({X >y UY) = 0.

Proof. We prove the result by induction on n — k, the codimension of X in CP".
For n — k = 1 every X, being a projective hypersurface of degree <  is defined as

the set of zeros of a holomorphic homogeneous polynomial p; of degree < u:

Xi:={(z0::2,) €CP" : py(20,...,2,) =0}
Without loss of generality we may assume that l;-norms of vectors of coefficients of all p;
are 1. Then we can choose a subsequence {p;, }sen that converges uniformly on compact
subsets of C**! to a nontrivial (holomorphic) homogeneous polynomial p of degp < p.
Next, if y € V', then by the definition of the Hausdorff convergence there is a sequence
of points {2:}ien, 21 € Xi, such that limy_,o, z; = y. In particular, if y = (yo : *+* : Yn)

and 2 = (To; : «** : Tpy) With maxo<i<n [Ys] < 1, maxo<icn |7a| < 1,1 € N, then

p(y()? b >yn) = sl_i_’rg)pls(xozs’ A )wnls) = O

Since p # 0, the latter implies that ¥ belongs to a projective hypersurface in CP*. In
particular, Y is nowhere dense in CP*. Thus there is z € CP*\ Y. And so there is
a neighbourhood U of Y in CPP" which does not contain z. By the definition of the
Hausdorff convergence this implies that there is a number N € N such that {X;}>y C U
completing the proof of the lemma for n — k = 1.

Suppose now that the result is proved for n — k > 1 and prove it for n — k + 1.
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Since every X; is contained in a projective hypersurface in CP™ of degree < u, by
the induction hypothesis there are a number N’ € N and a point y € CP" 'such that
y & {X1}>n UY. The point y determines a projection ¢y : CP*\ {y} — CP"! as
described above (with L := {y}). Set X] = ¢,(X;), I > N’, and Y’ = ¢(Y). By the
proper map theorem (see, e.g., [37], Chapter 0.2) and the Chow theorem (see, e.g., [37],
Chapter 1.3) X] are projective subvarieties of CP*™*. Also, by the above construction,
dimeX] = dimeX; and deg X] < p for all [ > N'. Moreover, {X[}i>n converges in the
Hausdorff metric defined on compact subsets of CP*! to Y”, because ¢, is continuous
in a neighbourhood of {X;};>n UY. Since the codimension of X in CP™! is n — k,
by the induction hypothesis there are an integer number N > N’ and a linear subspace
L' C CP** of dimension n — k — 1 which does not intersect {X]};>x U Y’. Then
L = ¢71(L")U{y} is a linear subspace of CP™ of dimension n — k which does not intersect
{X}isnUY.

This completes the proof of the lemma. O

Further, since 0 € {X;}1enUY’, there is a closed Euclidean ball B,,(0) C C* centered

at 0 of radius 0 < ro < 1 which does not intersect the L of the above lemma. Clearly,

#e,xi(B1(0; X1)) 2 pe.x,(Bro(0; X)), 1€N.

(As before, B,,(0;X;) := B,,(0) N X;.) Therefore to prove the left-side inequality in
(4.3.6) it suffices to check that

lilrn inf pe x,(Br, (0; X1)) > 0. (4.3.8)

Recall that the Fubini-Studi metric is equivalent to the Euclidean metric on every com-
pact subset K C C™ with the constants of equivalence depending on K and n only.
Therefore there is a closed ball B in the Fubini-Studi metric centered at 0 and of radius
50 > 0 depending on 79 and n only such that B C B,,(0). Since Ke,x, is equivalent to
px, on B,,(0; X;) with the constants of equivalence depending on 7, k and n only (see

the above discussion) inequality (4.3.8) follows from the inequality

lilm inf u%, (BN X;) > 0. (4.3.9)
—00
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Let us check the last inequality. Diminishing, if necessary, 7o we can find a. hyperplane
L’ C CP™ which contains L from Lemma, 2 and does not intersect B,,(0). Let T : C+l
C™* be a unitary transformation which induces an isometry T : CP* — CP» sending L/
to the hyperplane at co, H. Then T(B) is a closed ball (in the Fubini-Studi metric) in
C* =CP"\ H. By the definition of T', deg T(X)) = deg X, and px,(U) = pray(TU))
for a Borel subset U € X,;. These facts and the above equivalence of y, x, and px, on
compact subsets of C" show that in the proof of (4.3.9) without loss of generality we may
assume that I/ = H.

Now, consider the projection ®; : C* — C* determined as above. Ciaoosing suit-
able coordinates on C" we may and will assume that ®;, coincides with the projection
(21,--+,2n) = (21,...,2). Then X; := X;\ H are algebraic subvarieties of algebraic
varieties X’l defined as sets of zeros of families of polynomials p;, 1 <i < n — kE, 1> N,
of the form (4.3.1). Moreover, since L N ({X1}isw UY) =0, the definition of Pi, See the
above discussion, shows that for every 4 polynomials py, | > N , are uniformly bounded
on compact subsets of C". Since degpy < i1, we can find a subsequence {ls}seny C N such
that {pa, }sen converge uniformly on compact subsets of C* to polynomials Di, degp; < b,
of the form (4.3.1), 1 <4 <n—k, and

lim M, (BN Xi,) = lilminfuyl(B N X;).
8 00

800
This implies easily that ¥ N C* with Y from Lemma 2 is contained in the pure k-
dimensional algebraic variety Y defined as the set of zeros of polynomials p;, 1 < i < n—k.

In what follows by AL := {(z,...,2) € C' : maxi<;i|2| < r} we denote the open
polydisk in C' centered at 0 of radius r.

Since, by the definition, Y is a finite branched covering over C* and 0 IN/, there is a
polydisk A} = A?=" x A¥ such that APNY ¢ BNY and &, : ANV — Ak is a finite
branched covering over A¥ (for similar arguments see, e.g., the proof of the preparatory
Weierstrass theorem in [37], Chapter 0.1). From here using the fact that {p;, } converges
uniformly on compact subsets of C* to p; for all i and diminishing, if necessary, ¢ we
obtain analogously that there is a number Ny € N such that AN )Z'ls C BN )Afls and
Bp: APN X, — A¥ are finite branched coverings over A for all s > Ny. But A" N X,
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is a (closed) complex subvariety of A" N X, and ® (A" N X;,) is an open subset of
A¥F (because 0 € X, and ®; : X;, — C* is a finite branched covering). Thus by
the proper map theorem, ®;(A? N X)) = AF. (Here we used the fact that the map
@ : A? N X;, — AP is proper, because &1, : A? N Xls — AF is proper and X;, N A? i5 a
complex subvariety of X;, N A™.)

Let Lo, be the Lebesgue measure on C*. Then by the definition of rx,, there is a

constant ¢ > 0 depending on u, k& and 7 only such that
px, (BN Xy,) > cLow(@r(B N Xy,)).
But for s > Ny we have
Lop(®r(BNX},)) > Lon(AF) = nhe?* > 0.

The combination of the last two inequalities completes the proof of (4.3.9) and thus the
proof of the left-side inequality in (4.3.6).
The right-side inequality in (4.3.6) is obtained as follows, see (4.3.3),

pe.x (B1(0; X)) < c(n, k)ux(B1(0; X)) < en, k)ux(X) = c(n, k)deg X < c(n, k)p.

The proof of Theorem 8 is complete. O

4.4 Covering lemmas

The proof of the Strong Remez type inequality for holomorphic polynomials presented
in [5] is based on a deep generalization of the classical Cartan Lemma, [38] discovered by
Gorin [39]. Let us present a more general version of this result.

Let X be a pseudometric space with pseudometric d. By F := {B,(z) C X
d(z,y) <1, z,y € X,r > 0} we denote the set of closed balls in X. Let ¢ : F — Ry be

a function satisfying the following two properties:

1.
£(By(z)) < &€(Bm(x)) forall zeX, v <o
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2. There is a numerical constant A such that for any collection of mutually disjoint
balls {B;} C F,

D EB)<A

i1
Consider a continuous strictly increasing nonnegative function ¢ on [0, 00), ¢(0) = 0,
limg—,o0 ¢(t) > A which will be called a majorant.

For each point © € X we set 7(z) =sup{t : £(Bi(z)) > ¢(t)}. It is easy to see that
§(Br)(2)) = $(r(s)) and sup, 7(z) < §7(4) < co.

A point z € X is said to be regular (with respect to ¢ and ¢) if 7(z) = 0, i.e.,
£(By(z)) ‘< ¢(t) for all ¢ > 0. The next result shows that the set of regular points is

sufficiently large for an arbitrary majorant ¢.

Lemma 3. Fiz vy € (0,1/2). There is a sequence of balls By, = By, (wx), k= 1,2,...,
which collectively cover all irregular points such that 3 ., ¢(vix) < A (i.e., t, — 0).

The proof of this lemma for £ being a finite Borel measure on a metric space X is

given by Gorin [39]. His argument works also in the general case.

Proof. Let 0 < o < 1, B > 2 be such that v < a/B. We set By = 0 and assume that
the balls By, ..., Bx_1 have been constructed. If 7, = sup{7(z) : 2 & BoU---U By_1},
then there exists a point z; & By U ... By such that 7(z) > an. We set &, = 73
and By, = By, (zx). Clearly, the sequence 73, (and thus also #;) does not increase. The
balls B, (z1) are pairwise disjoint. Indeed, if | > & then z; & By, i.e., the pseudodistance
between z; and zy, is greater than f7, > 27, > 7 + 7. Thus B, (zx) N By, (z;) = 0 by
the triangle inequality for d. Now,

Do dlrte) <D dlam) <D d(r(m)) = €(Bn(zr) < 4
k>1 E>1 E>1 k>1

consequently, 7, — 0, i.e., for each point z, not belonging to the union of the balls B,

7(z) =0, i.e., z is a regular point. In addition, # = B, — 0. O

Remark 6. (1) According to the Caratheodory construction, see, e.g., [40], Chapter

2.10, there is a finite Borel measure on X whose restriction to F is £.



41

(2) Assume that ¢ is the restriction to F of a Borel measure y on X with support
{®1,...,2n}. Then, as it follows from the proof, the number of the balls B, in this case
is < n and the balls B, (zx), k¥ > 1, cover the support of u. For otherwise, there is
B,, (zx) which does not meet {z,...,z,}. Then B (z) (k) does not meet {z1,...,z,},

as well. Consequently, u(FT(xk)(mk)) = 0, a contradiction with the choice of zj.

Let X be a pseudometric space with pseudometric d. For every z € X we set S, :=

{y€ X : d(z,y) = 0}. Let 4 be a Borel measure on X with u(X) = k < oo such that
/ Intd(z,&)du(é) <oo forall zeX,
b

where In* ¢ := max(0,Int). Then we define

[ @ &)du(e), it p(si) =0
u(z) =
—00, it u(S;) > 0.
By definition, every Lebesgue integral [, Ind(z, £) du(€) exists but may be equal to —co.

In this case we define u(z) = —co.

Corollary 8. Fiz v € (0,1/2). Given H >0, s > 0 there is a family of closed balls B;
with radii r; satisfying
Sors <0
Tj

such that

H
> —_— i
u(m)_kln(e> for all :ceX\LjJBJ

Proof. Let ¢(t) = (pt)® be a majorant with p = U“—sHLh We cover all irregular points
of X by closed balls according to Lemma 3 (with £ = u) and prove that the required
inequality is valid for any regular point z. This will complete the proof. First, observe
that u(z) is finite for every regular point = by the definition of the Lebesgue integral
and the regularity condition for the ¢. Let n(t;z) = u(B;(z)) for such z. Then, for any
N > max(1, H) we have by integration by parts

u(z) > /E RECOLIGE /0 Intdn(t;z) = n(t; z) It} — / n(t;z)

dt.
0 t
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Since n(t; z) < (pt)°, we obtain limy_4 n(t;2) Int = 0 and therefore
u(z) > n(N;z)InN — /()N’n(%vzdt.
In addition, n(t; x) < n(N;z) for t < N. Therefore,

u(x)2n<N;m)1nN_/OH<L?idt_/HN“(_Nt;“’_>dt=

n(N;z)InN — @ —n(N;z)In N+ n(N;z)InH = -k +n{N;z)In H.

Letting here N — oo and taking into account that limy._.., n(N;z) = k we obtain the

required result. (]

In the proof of the strong Remez inequality we use also the following result proved in
[41].

Corollary 9. Let f be a holomorphic function in the disk |z| < 2eR (R > 0) in C,
f(0) =1 and 7 is an arbitrary positive number < 3e. Then inside the disk |2| < R but
outside a family of closed disks D.,(z) centered at z of radii r; such that 3\ r; < 4nR,

In|f(z)| = —H(n)In M(2eR)

where
3e

H(r) = 2-+1n (52)

and

M(2eR) := sup |f].

|2]<2¢R
Remark 7. The proof is based on a particular case of Corollary 8 for i being a sum of
delta-measures, and the Harnack inequality for positive harmonic functions. According to
Remark 6 (2), from the proof presented in [41] it follows that the number of disks D,,(z)
does not exceed the number of zeros of f in the disk |2| < 2R (which, by the Jensen
inequality, is bounded from above by [In M¢(2eR)]) and, moreover, the disks Dy, /2(2)

cover the set of these zeros.
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4.5 Strong Remez type inequalities

In this part we present the proof of Theorem 6 using the arguments from [5].

Proof. Let X C C" be a closed subset of the class Ay, (s,a) where s = 2n— 2+, o > 0.
Let p be a holomorphic polynomial on C” of degree k. Let B C C" be a closed Euclidean
ball and w C X N B be an H,-measurable subset. We must prove the inequality

c1Hon(B) ek
< | ————— 0.
sup | < ( {Hs(w)}2"/s> sup || (4.5.1)

where c¢; depends on a, n, k, & and ¢; > 0 depends on «.

Since the ratio on the right-hand side of (4.5.1) is invariant with respect to dilations
and translations of C™ and the class Ay, (s,a) is also invariant with respect to these
transformations, without loss of generality we may assume that B is the closed unit ball

centered at 0 € C". Then we must prove that

— eok
C1
sup | < (—/\Zn /s> sup || (4.5.2)

where A := Hy(w), ¢; depends on a, n, k, & and ¢, > 0 depends on a.

By Z, C C" we denote the set of zeros of p. According to Theorem 8 we have
Zp € Agn(2n—2,a,b) for some a and b depending on n and k only. By Hay—, , we denote
the Hausdorff (2n — 2)-measure supported on Z,. Let By C B, be closed Euclidean balls
centered at 0 € C™ of radii 2 and 10, respectively. Set

H = 7-[2n-—2,p|B2-
Since Z, € Az, (2n — 2,a,b), we have
p(Bp(z)) > br*2 forall z€B;, 0<r<5. (4.5.3)

Let H > 0. Consider ¢(t) := % as the majorant in Lemma 3. Then a point z € C®
is regular with respect to ¢ and p if (B, (z)) < % for all r > 0. (Here we consider C*

with the Euclidean norm | - |.)
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Lemma 4. There is a sequence of open Fuclidean balls B, (zx), k = 1,2,..., which
collectively cover all the irreqular points such that

Z'r,sc < 3Hu(Bs).

E>1
Moreover, the distance d(z) from a regular point © to the compact set K := By N Z,, is
> min {5, (1’2—13)1/&}.
Proof. The first statement follows directly from Lemma 3. Let y € K be such that
|z — y| = d(z). Observe that condition (4.5.3) implies that z ¢ K. For otherwise, we
must have

S
bron=? < % forall 0<r<5

which is impossible. Thus d(z) > 0. Next, the ball centered at z of radius 2d(z) contains
the ball centered at y of radius d(z). Now from the regularity condition for z by (4.5.3)
we get

bmin{5, d(«)}*"~* < u(Baa)(2)) < w'

d(z) 2 min {5, <b2—13> l/a} .

Continuing the proof of the theorem observe that by the definition of X,

This implies that

A= Hy(w) < a2° (4.5.4)
(because if w C X N B 5 0, then w is contained in a closed Euclidean ball of radius 2
centered at a point of X). Without loss of generality we may assume that X\ > 0.

Lemma 5. The set w cannot be covered by a family {B;}of open Euclidean balls whose

radii r; satisfy

A
Zr;i < TR



45

Proof. Assume to the contrary that there is a family of balls B; := B, (z;),7=1,2,...,
whose radii satisfy the inequality of the lemma which covers w. Without loss of generality
we may assume that each B; meets w. Then for every z; choose y; € w so that |z;—y;] <
rj. Clearly, the family of balls {Ba,(y;)} also covers w. From here, since w C X €

Aan(s, a), we obtain
A i=Ho(@) Y Ho(X N Bory(y)) S 2% Y 18 <),
a contradiction. O

Further, note that 1(B,) in Lemma 4 is bounded from above by a constant ¢ depending
on n and & only (because Z, € .Azn(2n —2,a,b) with a, b depending on n, k only). Thus
choosing in this lemma H := 355 23 we obtain from Lemma, 5 for some constant ¢ depending

onn, k:
Corollary 10. There is a point © € w such that
dist(z, Zp) > min {1, (E)\)l/"‘} .
Proof. From the above lemmas it follows that there is z € w such that
dist(z, Z, N B;) > min {5, (G\)/*} .
Moreover, z € B and so dist(z, Z, \ B1) > 1; this implies the required. |
Let 2 € B be a point such that
M = mgx|p| = p(2)}.

Let I be the complex line passing through z and the point z from Corollary 10. Without
loss of generality we may identify ! with C so that z coincides with 0 € C. Then, in this
identification, the point z belongs to Dy(0), the closed disk of radius 2 centered at 0.
Observe also that (under the identification) the set B; N[ contains D;(0). Thus, by the
classical Bernstein inequality for holomorphic polynomials

mex [p| < (4e)* max p| < (4e)* max |p| < (8¢)" max |p| = (8¢)*M.
2 e
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Set f = p/M and apply Corollary 9 with R = 2. According to this corollary for every
n < 3e/2 there is a family of closed disks D,,(2;) such that 3 r; < 8y and In|f(2)] >

—H(n)kIn(8e) for any |z| < 2 outside the above disks where H(n) = 2 + In(3¢/2n).
Recall also that the number of these disks is < the number of zeros of f in |2| < 4 and
the disks D,,/2(2;) cover the set of zeros of f there. In particular, if a point z € D;(0)
satisfies dist(z, Z;) > 14n where Z; is the set of zeros of f in C, then it cannot belong
to the union of disks D,,(2;), and therefore | f(z)| satisfies the above inequality. Choose

7 := min(1, (2\)/¢)/14. Then by Corollary 10, dist(z, Z ¢) > 14n. Thus we have
supln [f] > In|f(z)| > —H(n)kIn(8e).

We will consider two cases:
(1)
@Yo > 1.

Then 7 = & and
supln |f] > —(3 +In21)kIn(8e) > —20d.
w

This and (4.5.4) imply that

- e® k 92n,2n/s,20\ F
suplpl < e suplpl = (557 ) suplpl < () supll.
B w w w

Thus, inequality (4.5.2) is proved in this case.
(2)
@)Y < 1.

Then
supln |f| > —(c’ — In \Y¥)k In(8e)

where ¢ depends on n and k only. This yields
El cok
sup [p| < (—/\—Zn—/s) sup |p|

where ¢; > 0 depends on k, n and « and ¢; > 0 depends on « only.

The proof of Theorem 6 is complete. O
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Now, proof of Corollary 5 follows directly from the estimates obtained in cases (1)
and (2) above and from the fact that X € Ay,(s,a,b). Also, proofs of Corollaries 6 and
7 repeat word-for-word proofs of similar statements of Theorems 1 and 3 of [7] and are

based on the inequality of Corollary 5, see this paper for details.

4.6 Weak Remez type inequalities

In this section we present the proof of Theorem 7.

Proof. We set for brevity

1 1/q
M = —_— q
”p’w”q (HS(CU) /w lpl st) and

1 1/7"
Ul = —/ ’”dHn> .
i1l = (575 /. o

Since the above functions are invariant with respect to dilations of R”, without loss
of generality we may and will assume that ,(U) = 1.

Let ¥(a, A), a,A > 0, be the class of subsets w € A,(s,a) of U satisfying
{Ho(w)¥™* >\ (4.6.1)

We must show that there is a positive constant C' = C(U,n, q,r, s, k,a, \) such that for

every real polynomial p of degree k£ on R
|lp; Ullr < Clip; wllg- (4.6.2)

Remark 8. Let Gy be the optimal constant in (4.6.2). Since the class ©(a, \) increases

as A decreases, Cy increases in 1/), as is required in the theorem.

If, on the contrary, the constant in (4.6.2) does not exist, one can find sequences of

real polynomials {p;} of degrees k and sets {w;} C Z(a,\) so that
llpj; Ullr =1 forall jeN, (4.6.3)

Jim [lpg;wjlly = 0. (4.6.4)
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Since all (quasi-) norms on the space of real polynomials of degree k on R” are equivalent,
(4.6.3) implies the existence of a subsequence of {p;} that converges uniformly on U to
a polynomial p € Rlzy,...,z,] with degp < k. Assume without loss of generality that
+{p;} itself converges uniformly to p. Then (4.6.3), (4.6.4) imply for this p that

lp; Ullr =1, (4.6.5)
Jim [|p; willg = 0. (4.6.6)
From this we derive the next result.

Lemma 6. There is a sequence of closed subsets {a;} C U such that for every j larger

than a fized jo the following is true

n/s )\
{Hs(o)}"* 2 5. (4.6.7)
Moreover,

max|p| =0 as j — oo. (4.6.8)
oj

Proof. Let first ¢ < co. By the (probabilistic) Chebyshev inequality

Moo € wr + Ipla@)] <) > Halwy) — 228y,

Pick here ¢t =t; := ||p; wj||$/ ?. Then by (4.6.6) the left-hand side is at least $H(w;), for
J sufficiently large. Denoting the closure of the set in the braces by o; we also have
max|p| =t —0 as j— oo.
aj

If ¢ = oo, simply set ¢ := w; to produce (4.6.7) and (4.6.8). O

Apply now the Hausdorff compactness theorem to find a subsequence of {¢;} con-
verging to a closed subset ¢ C U in the Hausdorff metric. We assume without loss of
generality that {o;} — o. By (4.6.8) this limit set is a subset of the zero set of p. Since
p is nontrivial by (4.6.5), the dimension of its zero set is at most n — 1; hence H (o) = 0

because s > n — 1. Then for every ¢ > 0 one can find a finite open cover of o by open

Euclidean balls B; of radii ; at most r(¢) so that

> ori<e (4.6.9)



49
Let o5 be a d-neighbourhood of ¢ such that
o5 C UBi and ¢ <r(e).
i

Pick j so large that o; C 05. For every B; intersecting o; choose a point z; € B; N ;.
Consider an open Euclidean ball Ez centered at z; of radius twice that of B;. Then

B; C B; and {Ei} is an open cover of ;. Hence
Hs(oj) < Z'HS(UJ- N B;) < a2° er
B i
because w; € Ay (s,a). Together with (4.6.7) and (4.6.9) this implies that
%/\"/n < Hs(oj) < a2? er < ésae.
i
Letting € — oo one gets a contradiction. (]

Remark 9. Strong Remez type inequalities for real polynomials from R[z] and Ahlfors
regular subsets of R are proved in [7]. Inequalities of the form described in Theorem 6
are also valid for real polynomials on R2. The method of the proof of such inequalities
is very similar to that of Theorem 6 and is based on the fact that an analytic compact
connected curve in R” is a 1-set. However, it is still an open question whether similar

strong Remez type inequalities are valid for real polynomials on R” for n > 2.



Chapter 5

REMEZ TYPE INEQUALITIES IN EXTENSION AND
TRACE PROBLEMS

5.1 Whitney problems

"This chapter deals with the basic problems of modern analysis, restrictions (i-e., so-called
traces) and extensions of functions with a prescribed structure. For example, suppose that
a certain meteorological phenomenom depended jointly on air pressure and temperature.
Then fixing the temperature at say 25C, and studying how the phenomenom depends only
on pressure, for that fixed temperature, is the simplest example of a restriction. More
generally, one might restrict to the case when temperature plus pressure is a constant,
and even when more complicated relationships hold. Extensions are the reverse process:
given a functional relationship under some restricted conditions, what are the possible
relationships when these restrictions are removed?

The general, abstract forms of such problems are central in the purely mathematical
fields of General and Algebraic Topology (continuous extensions), in Geometric Analysis
(extension of Lipschitz functions), in Multivariate Differential Analysis and Harmonic
Analysis (functions and maps of prescribed smoothness). We will present an approach
to extension and trace problems for certain classes of smooth functions from the classical
function spaces of modern analysis. Our approach is based on local polynomial approx-
imation theory whose methods allow us to reduce the initial analytic problems to more
simple problems. The methods and results of the area of extension and trace problems
are the outcome of intensive work of many outstanding mathematicians of the twentieth
century including Lebesgue, Brouwer, Whitney, Hestens, Calderon, to name but a few.
Among recent striking applications of the subject considered we would like to mention
those of Numerical Harmonic Analysis related to the reconstruction of signals and images

given incomplete data.

50
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Unlike extension prqblems of the nineteenth century dealing with uniquely determined
solutions (Weierstrass’ theory of analytic functions, Lagrange and Hermite interpolation,
Dirichlet problem for Laplace equation etc.) the modern theory is working with incom-
plete data and infinitely many possible extensions. This makes the problem much more
complicated; on the other hand, extension algorithms of modern theory dealing with in-
complete data for recovering functions of prescribed inner structure have a much greater
possibility for applications. The results and algorithms are of value in such diverse fields
such as linear and nonlinear Partial Differential Equations (the equations that describe
almost all physical phenomema in Science and Engineering), Numerical Analysis, Ap-
proximation Theory, Signal and Image Processing, and Computer Tomography.

We will present an application of Remez type inequalities to extension and trace
problems for classes of differentiable functions following the paper of A. Brudnyi and Yu.
Brudnyi [5].

For differentiable functions on R™ such problems were originally posed and studied
by Whitney [42] in 1934. His methods have been then used in a variety of problems of
Analysis. To discuss several results in this field we recall that CF(R™) and C¥(R") are the
spaces of k-times continuously differentiable functions on R” whose higher derivatives are,

respectively, bounded or uniformly continuous. We also introduce the space C**(R"™) C

C*(R™) defined by the seminorm

_ |D*f(z) — D*f(y)
Flowe = max sep — o=

(5.1.1)

Here w : Ry — R, is nondecreasing, equal to 0 at 0 and concave; we will write C*(R")
for w(t) :=t*,0<s< 1.

Finally, A“(R™) stands for the Zygmund space defined by the seminorm

|f (=) — 2/ (*3%) + F(y)l. (5.1.2)

| flaw := sup
Ty w(lz —yl)

here w : Ry — Ry is as in (5.1.1), but we assume now that w(+/%) is concave.
Let now S C R™ be an arbitrary closed subset and X be one of the above introduced

function spaces. Then X|g denotes the linear space of traces of functions from X to S
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endowed with the seminorm

% =inf{lglx : gls = f}. (5.1.3)

The (Whitney) linear extension problem can be formulated as follows.

Does there exist a linear continuous extension operator from X|g into X ¢
One can also consider the restricted linear extension problem with S belonging to a fixed
class of closed (metric) subspaces of R™.

Whitney’s paper [43] is devoted to a criterion for a function f € C(S) with S C R
to belong to the trace space CF(R)|s and gives, in fact, a positive solution to the linear
extension problem for Cf(R). It was noted in [44] that Whitney’s method gives the same
result for the spaces C**(R) and CE(R).

The situation for the multidimensional case is much more complicated. The restricted
problem, for the class of compact subsets of R™ was solved positively by G. Glaeser [45]
for the space C}(R™) using a special construction of the geometry of subsets in R™.
However, for the space CL(R"), n > 2, the linear extension problem fails to be true,
see [44], Theorem 2.5. In [44] the linear extension problem was solved positively for the
spaces C1*(R") and A“(R"™). A recent breakthrough due to Ch. Fefferman [46] in the
problem of a constructive characterization of the trace space C* (R™)|s, allowed him to
solve the linear extension problem for the space C*(R™), see [47], [48] and [49].

We will present a solution of the Whitney extension and trace problems for a specific

class of differentiable functions on R™ and their restrictions to Ahlfors regular subsets.

9.2  Morrey-Campanato spaces on Ahlfors regular sets

Let X C R" be a measurable set of positive Hausdorff s-measure. By x we denote the
family of closed cubes in R"®™ with centers at X and ‘“radii®
(:= 3 lengthside) at most 4diam X. We write Q,(z) for the cube of radius r and center
z and denote by X,(z) the set Q,(z) N X for z € X. ,

In order to introduce the basic concept, Morrey-Campanato space on X , we denote

by Lg(X), 1 < ¢ < 00, the linear space of H,-measurable functions on X equipped with
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norm 1/
q
1]l o= (/X lfl"d’Hs>  0<g<oo (5:2.1)

and use the following

Definition 9. The local best approzimation of order k € Zy is a function &, : Ly(X) x
Kx — Ry given for Q = Qu(z) by

8<~@>-—'f{——1 [ 15 -plran v (5.2.2)
W59 =R X @) Jxe P } >

where p runs over the space Py—1 C R[z1,...,2,] of polynomials of degree k — 1.

For k = 0 we let Py_1 := {0}; hence &(f;Q) is the normalized L,-norm of f on
X (z).

Let now w : Ry — R, be a monotone function on R.. := (0, 00) (it may be a constant).

Definition 10. The (generalized) Morrey-Campanato space C"é“""(X ) is defined by semi-

norm

g .
| Fleto ) = sup{iw((J:Q—c)Q) Qe ICX}

where rq denotes the radius of Q.

For X being a domain in R™ and s = n this space coincides with the Morrey space M;‘
[50] (for k& = 0, w(t) = t*, —n < X < 0), the BMO-space [51] (for k = 1, w(t) = const)
and the Campanato space [32] (for & > 1, w(t) = t*, A > 0). These spaces play an
important role in Harmonic Analysis and in the theory of PDEs.

To formulate the main result we also need

Definition 11. Let w: Ry — R, be nondecreasing such that

t
w(+0)=0 and t— % be nonincreasing.

This w is said to be a quasipower k-magjorant if

— 1 [fw(u)
C,:= stl>1£) {5(5/0 Tdu} < 00.
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The Lipschitz space A’“‘*’(R") of order k > 1 consists of locally bounded functions

f:R™ —= R such that the seminorm

|ALf ()] }
Flikwgny == su {——— : z,heR"?
| lAk (Rn) p w(lhl)

is finite.

Here |h| is the Euclidean norm of h and

. k
AbF(@) = S (=) (’;)f(a: +h).

§=0

Choosing in this definition w(t) := ¢}, 0 < A < k, we obtain the (homogeneous) Besov
space B (R™) (a type of abstract space which occurs in spline and rational function
approximations). It coincides with the Sobolev space Wk (R") for A = k, the Hélder
space CH*(R™) for A = | + o, [ is an integer and 0 < & < 1, and with the Marchaud-
Zygmund space for X integer and 0 < A < k. In the last case, the corresponding seminorm

is

— 1ARD*)llown)
F Loy = | o sup ===y -

Recall that a Sobolev space is a vector space of functions equipped with a norm that
is a combination of L, norms of the function itself as well as its derivatives up to a
given order. The derivatives are understood in a suitable weak sense to make the space
complete, thus a Banach space. Intuitively, a Sobolev space is a Banach space or Hilbert
space of functions with sufficiently many derivatives for some application domain, such
as partial differential equations, and equipped with a norm that measures both the size
and smoothness of a function.

Our main result is the following theorem which gives a solution of the corresponding

Whitney extension problem.

Theorem 9. Let X C R™ be an s-set withn —1 < s < n and w be a quasipower k-
magjorant. Then there is a linear continuous extension operator Ty, : C'é“""(X ) — ARO(R™),

In particular, C’g""(X ) is isomorphic to the trace space A’“""(Rn)| X-
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5.3 Proof of Theorem 9

Proof. It is well known, see, e.g., [16], Proposition VIILI, that the closure X of an s-set
X is also an s-set and Hy(X \ X) = 0. Moreover, the spaces C¥+(X) and C**(X) are
isometric. Thus without loss of generality we may and will assume in the proof that X
is closed.

Given f € C'(’j"" (X) we should find a function f : X — R which equals f modulo zero
Hs-measure and admits an extension to a function from AR (R™).

We begin with

Lemma 7. Letw : Ry — R, be a quasipower k-magorant, see Definition 11. Lett; := 27,

Jj € Z. Then for every pair of integers —oo < 1 < 7' < 0o we have

>_wlty) < el w) w(t). (5.3.1)

Proof. By the monotonicity of w

1 [t w(w)
N < A
w(t;) < 1n2/ du

t; U
and therefore the sum in (5.3.1) is at most

1 [+ wlu) 1

C
— —du < — tug1) < =220 (ty
ln2/ti U u_1n20ww(1+1)_1n2 w(tv)
for some constant C,, depending only on w. O

Our next result reformulates Theorem 3.5 of the paper [44] concerning the trace of
the space Ab® (R™) to an arbitrary closed subset X C R, to adopt it to our situation.
The trace space denoted by A%®“(R™)|x consists of locally bounded functions f : X — R

and is equipped with seminorm

| flakw@ey), = E{|gljromny * f=glx} (5.3.2)

To formulate the result we need
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Definition 12. Let X C R™ and w : Ry — Ry be as above, and T, := {t;}icz, be the

sequence of Lemma 7.
A family 11 := {Pg}qeky of polynomials of degree k—1 is said to be a (k,w, X)-chain
if for every pair of cubes @ C Q' from Kx which satisfy for some i € Z the condition

ti Srg <rg L tige (5.3.3)
the inequality
meacgc |PQ(IB) - PQ/((E)I S Ow(’I‘Q/) (534)
€T
holds with a constant C independent of Q, Q' and i.

"The linear space of such chains is denoted by Ch(k,w, X). It is equipped with semi-

norm

|H|Ch =inf C

where the infimum is taken over all constants C in (5.3.4).
Recall that Kx is the family of closed cubes centered at X and of radii at most
4diam X. In the sequel ¢ and rg stand for the center and the radius of the cube Q.
Using the concept introduced and the related notations we now formulate the desired

result.

Proposition 5. (a) A locally bounded function f: X — R belongs to A¥*(R™)|x if and
only if there is a (k,w, X)-chain I := {Pp}gexy such that for every Q € Kx

f(cq) = Folcq)- (5.3.5)
Moreover, the following two-sided inequality

Tlcn 2 | f] ooy

holds with constants independent of f.

(b) If, in addition, this chain depends on f linearly, then there is a linear extension

operator Ty, : AB#(R™)|x — A (R™) such that

IT:ll < O)[Mcn.
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Hereafter O(1) denotes a constant depending only on inessential parameters. It may

change from line to line and even in a single line.

Proof. In the above cited paper this result is proved under the assumption that inequality
(5.3.4) holds for any pair of cubes Q C Q' centered at X. The restrictions (5.3.3) and
TQ, T < 4diam X may be not satisfied for this pair. In the forthcoming derivation we
explain how these restrictions can be disregarded to apply the aforementioned Theorem
3.5 of [44] and in this way to complete the proof of the proposition.

Consider first the case of an unbounded X. Hence, the only restriction is now inequal-
ity (5.3.3) and we should show that if a (k,w, X)-chain satisfies condition (5.3.4) under
restriction (5.3.3), then (5.3.4) holds for any pair @ C @' from Kx. Note that the ne-
cessity of conditions (5.3.4) and (5.3.5) trivially follows from that in the aforementioned
Theorem 3.5 from [44]. So we should only prove their sufficiency.

Assume that f € 1%2°(X) (the function space of locally bounded functions on X) and
conditions (5.3.3)-(5.3.5) hold. Let @ C Q' be a pair of cubes from Kx of radii r and 77,

respectively. Then for some indices 7 < ¢’
t <7 <tiya and ty <7 <tpga.

If i = 4, then by (5.3.4)

k
t;
max |Po — Por| < 2|0|opw(tivr) < 2 <_1t+1) w()|en = 28 w(r)|T| e
7
as is required.

Let now ¢ < ¢’ and r; with ¢ < j <4’ 41 are given by
ri=7r, rpp=2r and 1=t for i<j<i+1.

Let @; be the cubes centered at cg of radii 7;, ¢ < j < #' + 1, and Q41 be the cube
J Q J

centered at cgr of radius ry41. (In particular, {Q;}i<j<it1 C Kx is an increasing sequence
of cubes with Q; := @.) Then

i/

FPo— Pyl < Po. — Po,..| 5.3.6
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It is easily seen that (5.3.3) holds for every pair Q; C Qjt1, ¢ < j < i'. Applying (5.3.4)
to each of these pairs and then (5.3.1) and the definition of w we estimate the right-hand
side of (5.3.6) by

i'

2|H|ohzw(rj+1) < O()|Iorw(tirrz) < O(L)|I|cpw(r).

J=
Thus we conclude that inequality (5.3.4) holds for every pair Q C @’ of cubes centered
at X.

Let now diam X < co. The previous argument proves the required inequality
mgx |PQ - PQ'l S CCU(’I'QI) (537)

for every pair @ C Q' from Kx under the restriction 7o/ < 2diam X. Fix a cube @ € Kx
with r5 = 2diam X and introduce a new family of polynomials {Pg}, where @ runs over

the set of all cubes centered at X, by setting

Py, if rg <diamX
Pg:= (5.3.8)
Py — Pglcg) + f(cq), if rq > diamX.
We will prove that the new family satisfies the hypotheses of Theorem 3.5 from [44]. This
will complete the proof of the proposition in this case.

Clearly, {Pq} satisfies condition (5.3.5), and if the chain II depends linearly on f,
then {Pq}q depends linearly on f, as well. So we must check only that (5.3.4) holds for
{Pgq} for every pair @ C @' of cubes centered at X. According to (5.3.7) and (5.3.8)
inequality (5.3.4) holds for this family for every pair of cubes @ C Q' with ror < diam X.
Assume now that ror > rg > diam X. Then by (5.3.8) we have

mex |Pq — Pyl < |Ps(cq) — Flcq)l + [P5(cqr) — fleg)l <

max |P5 — Pou| + rrbaz,x|P§ — Fg,| £2Cw(rg) < O(1)Cuw(rg).

Here @)1 and Q)2 are some cubes from Kx centered at cg and cg, respectively, and

contained in Q. The last two inequalities follow from (5.3.7) and the definition of w.
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Finally, if rq < diam X < r¢g/, then Q@ C Q and so we have by (5.3.7) and by the

definition of w
max |Pq — Pyl < mgX|PQ — Pg| + |Pz(cqr) — fleg)| £ 2Cw(rz) < O(1)Cuw(rgr)

as is required.
Hence, in both of these cases the assumptions of Theorem 3.5 from [44] hold. This
completes the proof of the proposition. O

Now we outline the proof of Theorem 9. Given f € C"é“""(X ) where X C R" is a

closed s-set, n — 1 < s < n, we will define a new function ]7: X — R such that
F(@) = f(z) Hs— almost everywhere on X. (5.3.9)

We then apply Proposition 5 to this function to show that f € Ak (R™)|x to construct
a linear extension operator from C®(X) to A®¢(R™). To this end we will find for the f
a (k,w, X)-chain linearly depending on f. In the definition of the desired chain we will
use the following construction. Let @ := Q,.(z) € Kx. By the Kadets-Snobar theorem
[52] there is a linear projection mg from the space L;(X,(z); H,) onto the subspace of
polynomials of degree k — 1 restricted to X, (x) := Q,(x)NX whose norm ||mg]|1 < 1/dkx

where dy, is the dimension of the space of polynomials of degree k — 1 on R™. Set

Po(f) = mq(f). (5.3.10)

Using the definitions of f and {Pa(f)}oex « we will show that the following is true.

Claim 1. There eists a (k,w, X)-chain TI(f) := {Po( N}oexx linearly depending on f
and such that
TH()lon < O] Flepo gy (5.3.11)
Claim 2. For every @ € Kx
Fleq) = Pa(f)(ca)- (5.3.12)

Since the operator f +— ﬁQ( f) is linear, these allow us to apply Proposition 5 and to

conclude that f € Ab*(R™)|x, and there is a linear extension operator T, : Che(X) —
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AR (R™) satisfying
IT:(| < O(1)

completing the first part of the proof of Theorem 9. The fact that the restriction to X of
every f € AP (R™) belongs to C’é“"“(X ) follows easily from Proposition 5 and Definition
10. This proves also ’ghe second assertion of the theorem and completes its proof.

To realize this program we need several auxiliary results. The main tool in their

proofs is the weak Remez type inequality for s-sets, see Theorem 7 and (4.2.4).

Lemma 8. For every Q = Q,(z) € Kx

1 ¢ g 1/q < O+ 1
{HS(X,,(x)) /Xr(a:) |f = mo(f)l Hs} < O(D)&(f; Q)- (5.3.13)

Proof. Here and below for Q = Q,(z) € Kx by Py we denote a polynomial of degree
k — 1 satisfying

1 . 1/q _ '
{HS(XT(.’I?)) /Xr(w)”_PQI dHS} = &(f; @)- (5.3.14)

Then
f—mq(f) = (f — Fo) + ma(f — Fo),
and applying the triangle inequality we estimate the left-hand side in (5.3.13) as is re-
quired but with the factor (1 + ||mg]|s) instead of O(1). So it remains to show-that
|lmqlly < O(1). However, for g = 1 this norm is bounded by +/dy,, by the definition. On
the other hand, the weak Remez type inequality, see (4.2.4), and the fact that X is an
s-set, imply that
w9l ~ llmq(g)llq

with the constants of equivalence independent of g and Q. Thus by the Hélder inequality

we have

lIma(g)lls < OMlIme(9)ll < O)limellallgl < O(1)l|glle.
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Lemma 9. Let Q = Q,(z) € Kx. Then there exists the limit

Flz) = lim Po(z) (5.3.15)
and, moreover,
F(@) = Po(@)] < OWW(r)|lege ey (5.3.16)
Proof. Let i be defined by
ti<r< tiv1 (5317)

and for j <14
QJ’ = Qtj(x)’ PJ = PQj'

Recall that {t;} is the sequence of Lemma 7. We also set Q;y1 := @ and Py = Py.
Since X is an s-set, the weak Remez type inequality (4.2.4) implies that

|Pj1a(2) — Pi(@)| < O Prer — Pr; Xl
where for simplicity we set

1/q
1
s X51|| = / TdH, and X;:=@;NX.
|H9 .7[” {'HS(XJ') legl } 7] g

Adding and subtracting f and remembering the definition of P;, see (5.3.14), we estimate

the right-hand side of the last inequality by

OU{E(S3 @5) +IIIf — Py X513

By definition, the first term is bounded by w(¢;)| f |c'.éc,w (x) While the second one is at most

Ho(Xj41) ) at, )
N Jr7 . . < . s hew
( Hs(X]) gk(f) Q.7+1) — bt; w(t3+1)|f|01’;’ (X))

see the definition of s-sets in Capter 4.

Since, in turn, t;41/¢; < 2, using the definition of w we finally get

|[Pis1(2) = Pi(@)] < O(M)w(t))| £l epw xy-
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This, Lemma, 7 and the choice of i, see (5.3.17), yield

Z |PJ+1(CU) - Pj(w)l < 0(1)|f|0[;:w(x) Zw(tj) < 0(1)|flc"‘l;,w(x)w(ti) <

J<i j<i

O(l)w(r)|f|0§,w(x).
This implies easily that the limit

flo) = Am Po(z) = Piy(z) + > _(Pi(@) = Pya(@))

J<i

exists and, moreover,
|F(@) = Pa(@)] < OW)w(r)|fl gy
O

Lemma 10. The assertions of the previous lemma hold with the same f(z) for Po(f)
substituted for Py.

Proof. By (5.3.10)
Fo — Fo(f) = me(Pg - f)

and then Lemma 8 and inequality (4.2.4) yield

|1Pa(z) = Fo(f)(2)] < O(1) max|Fo — Fo(f)l < O()II|Pg - Po(f); @ N X]|| <

OW{ES;Q) +1IIf ~ P; @ XIlI} < OM)E(F; Q) < 01| Flegmry-
This immediately implies that

Jim Po(f)(e) = fim Pola) = F(o)
and gives the required estimate of | f() — Po(f)(z)| by the right-hand side of (6.3.16). O
Hereafter we assume for simplicity that

| Flgsepn = 1. (5.3.18)

In particular, in this case

&(f;Q) Swlrg), @Q€Kx. (5.3.19)



63

Lemma 11. Let Q C K be cubes from Kx of radii r and R, respectively, r < R <
odiam X. Let K be the cube centered at cx of radius 2R. Then it is true that

2R u(t) T =
e <on{r[ “Rargisenti}. s
Proof. Choose J € N from the condition
R<2/r <2R

and let Q; be the cubes centered at cg and of radii r; := 2/r, § = 0,1,...J — 1, and
Qs = K , 77 = 2R. Then {Q;}o<j<s C Kx is an increasing sequence of cubes. We also
set P; = Py, 0 < j < J, see (5.3.14) for the definition of Py € Pr_;. Under these

notations we get

J-1
&(f;Q) < {sl(f —P; Q)+ Y &1(Pr1 — P Q) + E1(Pg; Q)} : (5.3.21)
=0
The first summand clearly equals
2R
£:(f;Q) < w(r) < O(1) 'r‘/ %dt

as is required.
To estimate the remaining terms we use two inequalities whose proofs are postponed

to the end.
(A) Let p be a polynomial of degree k — 1 and @ € Kx be a cube of radius 7. Then
&1(p; Q) < O()rmax || D°p; @ N X (5.3.22)
(B) Let, in addition, Q € Kx be a cube of radius 7 containing @. Then
max 10°%; @ N X1l < 0w)zllo: G XL (5.3.29)

Using these inequalities to estimate the j-th term in (5.3.21) we get

- 1
r & (P — P Q) < O() 1Py = Py @5 0 X1
J
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By the definitions of s-sets, w and (5.3.19), the norm on the right-hand side is at most

) 1/q wlr
oWy <ek<f;cz,-> o (et i) Ve Qj+1)> <o,

Moreover, by the definition of r; we get

. 741
wlry) <o [ a, o<j<i-1
T‘j 7 t

Summing the finally obtained estimates over j we then have
J—1 2R
w(t
> &P - Pi@) <owr [ Aat
=0 r

Using now (5.3.22) and (5.3.23) we bound the last summand in (5.3.21) by

O(l)rlllPR;I;ﬂ Xl O(1)r

2[I155 & n il
R

as is required.
To complete the proof of the lemma it remains to prove (5.3.22) and (5.3.23). By the
hypothesis of (A) we get

&E(p; Q) < i%f |lp = Plle@) < O(1)r max 1D%plleq)

where P runs over the space of polynomials of degree 0. The second of these inequalities
is proved as follows. Using a homothety of R™ we replace @ by the unit cube Qg :=
[0,1]*. The functions in p of the both parts of this inequality are norms on the finite-
dimensional factor-space Py_1/P, and therefore they are equivalent. This implies the
desired inequality.

Continuing the derivation we now use the weak Remez type inequality, see (4.2.4),

and the fact that X is an s-set to have
1D*Pllc@) < OW)|||D%p; @ N X]||

and this completes the proof of (5.3.22).
Inequality (5.3.23) is proved in a similar way by means of the Markov inequality. [J
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Lemma 12. f = fmodulo Hs-measure zero.

Proof. Let L(f) be the Lebesgue set of f, i.e., the set of points z € X such that

. 1
T =B ST T

Since X is an s-set, the family of “balls“ {X,(z) : z € X, 0 < r < 1} satisfies axioms
(i), (i) in [53] page 8. Therefore the Corollary of Section 1.3 from this book can be

applied to our case with the measure y := H,|x. By this Corollary
Ho(X\ L(f)) = 0.

It remains to show that

~

f(z) = f(z) for =z e L(f).
To this end choose a cube @ = Q.(z) € Kx, 0 <7 < 1, and set

1
) = T o

By the triangle inequality, the weak Remez type inequality for f.(z) — Py, see (4.2.4),

and the fact that X is an s-set we obtain

|fr(z) — Po(z)] < OIS — fr(=); @ N X|I[ + Ex(f, @)} (5.3.24)

But f — f. is a projection from L (X, (z)) onto the space Py of polynomials of degree 0
whose norm is 1. Applying an argument similar to that of Lemma 8 with this projection

substituted for mg we obtain that

Ilf = fr(2); @ N X||| < O(DE(f; Q)
and therefore by Lemma 11 and (5.3.19) for a sufficiently small r the right-hand side of
(5.3.24) is bounded by

omesia)+ri @} <o {r ([ Lave s zenxil) 4ot}
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for some fixed cube K of radius 1 containing Q. We conclude from here that for every

O<e<x?2

lim | £:(2) — Po(a)| <

r—0

O(1) limsup (w(r)+r (Ae%%@dt-{—/ez%gt—)dtﬂnf;KmX[”)) _

O(1) limsup (r / fwlt) dt) < O(1)w(e).

7—0 t2

Letting ¢ — 0 and noting that lim,_ o f-(z) = f(z) for the Lebesgue point z and
limg_, Po(z) = F(z) we complete the proof of the lemma. 0O

Now we finalize the proof of Theorem 9. For @ € Kx and the polynomial Po(f) of
degree k — 1 defined in (5.3.10) we set

Po(f) = Po(f) = Pa(f)(cq) + Flcq)-

Then Po(f)(cg) = flcg) and Claim 2, see (5.3.12), is true for the family II(f) :=
{By}oeky- Show that Claim 1 is also true for I(f).

Let @ C Q' be cubes from Kx of radii r < ' satisfying for some i the condition
L <r< r’ < tiqa-
By the weak Remez type inequality, see (4.2.4), and Lemma 8 we have
max |Fo(f) — Por(f)] < O(1) max|Fo(f) — Por(f)] <
He(Q N X)\ ,
P, — Por(f); < : —_ L ; .
OWIIIFe(f) - Po(i X N QI < o<1>{ek(f, Q)+ (o) Mas)

Both of the best approximations are bounded by w(r’)|f IC,I;,W (x) While, since X is an s-set,

the ratio of H,-measures is at most

(12" o0 (5)" ze0
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Hence, in this situation, see (5.3.18),
max |Po(f) — For(f)] < O()w(r).

Moreover, by Lemma 10, see(5.3.16),

~

|F(c@) — Pa(f)(cq)l < O)w(r).
Taking into account the definition of ﬁQ( f) we then obtain the inequality
max |Pa(f) = Por(£)] < OW)w(r')

as is required in the definition of a (k,w, X)-chain.

This completes the proof of Claim 1 and therefore of Theorem 9. O
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