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Abstract 

This thesis is concerned with the development of efficient parallel algorithms and the 

study of their speed-up and efficiency performance for the fast simulation of thermo-

hydraulic network dynamics on multi-microprocessor systems. These networks are 

employed in nuclear power plants for the transmission of water and steam under high tem-

perature and pressure. Simulation of the transient behaviour of these networks involves 

numerical integration of a large number of non-linear, coupled, time-varying, and "stiff' 

first-order ordinary differential equations. Since these equations are "stiff', Porsching's 

numerical integration algorithm which is based on Euler's backward difference formula has 

been chosen for parallelization. In this thesis analytical expressions for the resulting 

speed-ups and efficiencies of the parallelized Porsching's algorithm have been derived and 

it has been shown that good speed-ups and efficiencies can be achieved by using quasi-

MIMD (Multiple-Instruction Stream Multiple-Data Stream) mode of operation employing 

a) master/slave configuration of processors, b) message-passing rather than shared memory 

for data communication, c) global synchronization Of processors before data communica-

tion d) a simple time-shared bus with broadcast facility as the interconnection network, 

and e) distributed communication memories for data communication. 

Applications of this research include development of operator training simulators, 

interactive computer-aided design, and computer-aided emergency response and accident 

investigation. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

Large-scale technological systems, such as nuclear power plants, are so expensive 

that numerical simulation of their behaviour is not only an economical method of 

experimentation, but it is sometimes the only way to study their performance. This is 

specially true in those cases where experiments are difficult or impossible to perform due 

to safety-related reasons. The study reported in this thesis is concerned with the 

development of efficient parallel algorithms for the "fast" transient simulation of thermo-

hydraulic network dynamics of nuclear power plants on MIMD (Multiple-Instruction 

Stream Multiple-Data Stream) computers. These networks are employed for the 

transmission of water and steam under high temperature and pressure 

The study of the transient behaviour of these networks through simulations is 

important in a number of applications. Some of these applications are: 

1. Development of training simulators for training plant operators. 

This training requires operators to understand plant processes thoroughly. A major 

criterion is that simulations be performed in real-time so that the operators are well-

trained to handle plant malfunctions in the shortest possible time. If the operators are 

well-trained, then these abnormal conditions are unlikely to turn into costly accidents. 

As an example of a costly accident, GPU and Metropolitan Edison paid 24 million 

dollars to buy replacement electricity from other producers for 20 months [1]. 

1 
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Therefore, it is not difficult to cost-justify a high performance simulator if it prevents 

another acideñt. 

2. Computer-aided emergency response to an ongoing accident. 

This capability does not yet exist in present-day simulators but it may be quite useful 

in handling slowly varying abnormal plant conditions such as Small-Break Loss-of-

Coolant (SBLOCA) accident where the operator has time to take suitable corrective 

action based on simulation results obtained by carrying out simulations of the plant 

response to a number of possible corrective actions. Obviously, this application 

requires faster than real-time simulation or "super simulation!' capability. 

3. Investigation of a recent accident. 

When there is uncertainty concerning the cause of the accident, the simulator can be 

used to investigate the likely cause of the accident in order to find the one that 

produces a match to the real plant behaviour. This information may be useful in 

defining any future recovery procedures, reporting to the regulatory authority, and 

providing information to the public [2]. 

4. Start-up and commissioning of new plants. 

The simulator can reduce plant start-up time by verifying the final procedures and 

developing procedural improvements. 

5. Hydraulic network design and optimization. 

6. Assessment of plant safety. 
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Results from safety-related laboratory-scale experiments can be extended to full-scale 

systems by the tse of a simulator. 

The computing requirements for some of the above applications are very stringent. 

For example, computations for training simulators for training plant operators have to be 

performed in real-time. For other applications, although real-time performance is not a 

definite requirement, it is still highly desirable from the point-of-view of user convenience 

that these simulations be performed in a fast, interactive manner. Unfortunately, these 

simulations require numerical integration of a large number of differential equations of the 

form j = f(y,t) and, therefore, run too slowly on conventional serial computers due to their 

sequential mode of operation. The computing speeds necessary for achieving real-time 

computations are two orders of magnitude faster than those currently available on the 

fastest sequential computers. 

In the past, the following techniques have been employed in order to achieve fast 

simulations: 

1. Use of analog computers. 

In this implementation, the dynamics simulation problems were solved using analog 

computing elements such as integrators, summers, non-linear function generators, etc.. 

However, these analog computers suffered from the usual drawbacks of analog 

circuits such as low computing accuracy, non-flexibility, and the need for frequent 

re-calibrations/re-adjustments. The problem had to be posed in such a way that an 

answer could be computed with the machinery available. In other words, the answer 

was as much a function of computer as it was of the question [3]. The only 

advantage of analog computation was its high computing speed resulting from the use 
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of fast parallel mode of operation although analog in form. 

2. Storing ofpre.computed solutions in the form of look-up tables and the use of 

interpolation. 

Early power plant simulators made extensive use of table look-up techniques or 

generation of pre-computed solutions rather than obtaining solutions from the first-

principles [4]. However, results obtained by these techniques may sometimes be in 

serious error particularly if the assumptions made in the pre-computed solutions are 

not valid in a particular simulation such as simulation of a highly abnormal plant 

operating conditions. 

3. Use of coarser engineering models. 

Since the computing time depends heavily on the level of detail employed in the 

modelling, early simulators employed coarse models of physical processes. For 

example, modelling of hydaulic networks was done with as few nodes and links as 

possible. Obviously, this affected the accuracy of the solution obtained. 

4. Use of faster fixed-point integer arithmetic instead of slower floating-point arithmetic. 

Some special-purpose computers such as Applied Dynamics AD-10 employ fixed-

point arithmetic for the numerical integration of differential equations [5]. However, 

the problem with fixed-point arithmetic is its limited dynamic range which requires 

scaling of all variables in the problem solution such that they do not exceed the 

dynamic range of the computer. This may prove to be very tedious and time-

consuming for large-scale problems. 
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5. Development of more efficient numerical integration algorithms. 

Sometimes the use of an efficient algorithm may drastically reduce the total 

computation time. For example, the implicit numerical integration method developed 

by Porsehing et al. [6] for integrating "stiff' differential equations describing the 

dynamic behaviour of hydraulic networks runs much faster than the explicit 

integration methods. However, it may still run slower than the computational 

requirements of a particular large-size problem such as real-time requirements for 

training simulators. Also, it may not always be possible to develop faster and faster 

algorithms for a particular problem. 

6. Use of computers employing faster hardware. 

In the past, almost seven orders of improvement in the computing speed of serial 

computers has come largely from advances in electronic technology from relays to 

vacuum tubes to discrete solid state circuits to integrated microelectronics. Much of 

this speed improvement has been achieved due to the fact that the electrons have to 

travel smaller distances with the reduction in the feature size of the devices. 

Unfortunately, this trend in the improvement of computer speed by the use of smaller 

and smaller devices is beginning to level off. It is becoming increasing difficult and 

less cost-effective to achieve faster speeds by way of miniaturization of computing 

devices. Present-day state-of-the-art commercial VLSI chips employ 1.25 micron 

feature size. Chips employing 0.8 micron feature size are just emerging from research 

laboratories [7]. The problem of further scaling down these MOS VLSI devices has 

been studied by researchers and it has been observed that scaling down the devices 

by a factor cot results in the following difficulties [8]: 
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(i) Communication delays within the chip do not scale. As a result, the total 

computing time begins to be dominated by the delay in communicating the 

information rather than by the processing of the information by the devices. 

Logic levels within the chip are scaled-down by a factor a due to the need to 

scale-down voltages by a factor a. Consequently, the noise margin is 

considerably reduced. 

(iii) Current density in the wires is increased by a thus affecting the reliability of the 

devices. 

(iv) Transistor off-resistance becomes very low which results in unnecessary drainage 

of power under off conditions. 

Some of the above scaling difficulties are serious and fundamental in nature 

rather than temporary technology related problems. 

One of the other approaches to achieving faster computers is the use of faster 

materials for fabricating devices such as GaAs (Gallium Arsenide) instead of the 

slower silicon. At the gate level, GaAs is about 7 to 8 times faster than silicon 

due to the higher mobility of electrons in GaAs [9]. However, this speed 

advantage is lost to some extent when one considers complete systems due to the 

relatively higher off-chip communication costs. In fact, it has been reported by 

one company [10] which was involved in the design of 32-bit microprocessors 

for GaAs technology that the improvement in speed in the GaAs-based design 

was only by a factor of 3. The situation was found to be even worse in the area 

of coprocessor design where a speedup by a factor of only 2 was reported. Also, 
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GaAs substrates are two orders of magnitude more expensive than silicon 

substrates. The other disadvantages of GaAs-based design are low yield, and 

difficulties in achieving VLSI levels of integration [10]. 

7. Development of optical digital computers. 

Another approach which is being pursued by a number of research laboratories 

around the world is the development of optical digital computers. However, this 

research is still at a very early stage of development [ 11]. An efficient implementation 

of even an optical on-off switch analogous to the bistable transistor in microelectronic 

technology does not yet exist. 

It is, therefore, clear from the above discussion that the only hope of handling such 

problems in the near future seems to be the introduction of parallelism to the sequential 

von Neumann machine where a number of processors cooperate and coordinate among 

themselves to solve a single problem in the shortest possible time. Here, two main 

approaches are possible: one of them referred to as SIMD (Single-Instruction Stream 

Multiple-Data Stream) mode of operation employs data level parallelism [ 12] where the 

same instruction is executed on different processors but with different data elements. Two 

examples of. computers employing this mode of operation are the Connection Machine [ 12] 

and ILLIAC IV [13]. This mode of computation is suitable for problems involving highly 

structured computations on a very large number of data values such as image processing. 

It is not suitable for problems having irregular computational structure such as the 

hydraulic network problem studied in this thesis. 

Another mode of parallel operation which is also usually classified as SIMD mode is 

the pipelined vector computing carried out on vector computers such as Cray, CDC 
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Cyber-205 etc. The problem with this mode of parallel computation is that good 

performance is heavily dependent on how much of the total computation can be vectorized. 

For example, a one-pipe Cyber-205 vector computer has 100 MFLOPS (Millions of 

Floating-Point Operations per Second) as the peak vector speed, 3.3 MFLOPS as the scalar 

speed [ 14] and if a problem with even 75 percent fully vectorized computations is run on 

this computer, then it is easy to show (Chapter 4) that the effective speed delivered by the 

machine for this problem is 12 MFLOPS which is only 12 percent of the peak rated speed. 

This degradation in performance is mainly due to the wide gap between the scalar and 

vector speeds of such vector computers. Furthermore, the computations that have been 

vectorized may not have long enough vector lengths to be comparable with the half-

performance vector length ni,6 ( 100 for CDC Cyber 205) of the computer [15]. This 

further reduces the effective speed of vector computers. 

In the recent past, the solution of such sparse network problems has been tried on 

vector computers (for example, RELAP5 program on Fujitsu FACOM VP-100) but the 

implementations have tended to be inefficient [ 16]. Problems analogous to hydraulic 

network dynamics simulations such as electrical network dynamics simulation have also 

been tried on vector computers (for example SPICE program on Cray- 1) and hardware 

utilization of 12 to 15 percent has been reported [ 17]. 

The other parallel processing approach, and one which has been employed in this 

thesis, involves partitioning the total computations into a number of almost independent 

tasks to be run on separate processors. This mode of operation is termed as MIMI) 

(Multiple-Instruction Stream Multiple-Data Stream) mode of operation and it does not 

require vectorization of computations to achieve good performance. This mode of operation 
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has become all the more attractive and economically viable with the introduction of very 

powerful 32-bit- microprocessors. Some of these newer 32-bit microprocessors such as 

Fairchild's "Clipper" architecture and Inmos's "Transputer" model T800 [18] even have 

on-chip floating-point operations capability in hardware. Once the initial design costs are 

recovered by their manufacturers, prices of these 32-bit processors are likely to fall 

substantially as has happened in the past. Thus, this mode of computation would be even 

more economically viable in the future. 

1.2. Problem Statement 

The study reported in this thesis is concerned with the development of efficient 

parallel algorithms suitable for running on MIMD computers for the "fast" transient 

simulation of thermo-hydraulic network dynamics which involves numerical integration of 

a large set of nonlinear, time-varying, "stiff', first-order ordinary differential equations of 

the form ' = f(y,t). This problem belongs to a class of problems referred to as "initial 

value problems", i.e., given the initial condition of the network at time t = 0, determine the 

temporal behaviour on an time interval [O,t] of the network flowrates, masses, pressures, 

and energies satisfying conservation equations of momentum balance, mass balance, and 

energy balance. A system of equations is termed as " stiff' if it has widely separated time 

constants (or eigenvalues) embedded in it. This is further discussed in Chapter 2. 

1.3. Approach 

1.3.1. Choice of the algorithm 

There are two broad classes of numerical integration algorithms for integrating 

systems of differential equations of the form j = f(y,t) [19]. One class of algorithms 



10 

referred to as explicit integration algorithms belong to conditionally stable algorithms. 

They are called -explicit algorithms because the values of the variables to be computed at 

the next time step is explicitly given in terms of the information available at the previous 

time steps. These algorithms are stable only if the integration time-step size is chosen 

sufficiently small in order to satisfy stability criterion. For stiff problems, this choice of 

step size based on stability criterion may be much smaller than required to satisfy accuracy 

requirements. Therefore, the explicit integration algorithms are not computationally 

efficientfor solving stiff problems. 

The other class of integration algorithms referred to as implicit integration algorithms 

have better stability characteristics as compared to explicit algorithms. For example, 

Euler's backward difference formula which is an implicit integration algorithm is 

unconditionally stable for stable linear system of equations for any integration step size. 

However, the use of the implicit integration methods invariably requires the solution of a 

system of linear algebraic equations at each time-step. Porsching et al. [6] have developed 

an integration scheme based on Euler's backward difference formula for integrating 

thermo-hydraulic network differential equations with considerably reduced size of the 

system of linear algebraic equations to be solved at each time-step. They report a speed 

improvement by a factor of 22 for an 8-node and 8-link network example. For this reason, 

this serial, algorithm was chosen for parallelization in this thesis. 

1.3.2. Choice of parallel model of computation 

MIMD mode of parallel computation employing a master/slave configuration of 

processors, a simple time-shared bus with broadcast facility as the inter-connection network 

among the processors, and distributed communication memories for data communication 
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among the processors has been employed in the development of parallel algorithms. In 

other words, a message-passing approach rather than a shared memory approach for data 

communication has been employed. 

In true MIMD mode of operation, processes synchronize locally among themselves 

without any global synchronization at a synchronization point. Data communication among 

them is also asynchronous and non-deterministic as far as the use of communication 

resources such as the bus is concerned. This can give rise to contentions and even 

deadlocks for the use of common resources. Moreover, true MIMD programs are more 

difficult to write and debug quickly due to the asynchronous nature of computations [20]. 

Intermediate break-points are difficult to use during the debugging process because the 

intermediate results are different each time the same program is run. Therefore, a modified 

form of the true MIMD operation, termed as quasi-MIMD mode of operation by Hoshino 

[20], was used in developing the algorithms. This mode of parallel computation was first 

described by Kober et al. [21] and Wallach [22] and has also been suggested by Tuazon et 

al. on the Hypercube multi-computer system [23]. 

There are three distinct phases of computation in the quasi-MIMD mode of operation 

[21] 

(i) Autonomous or computation phase where all processors are busy performing 

computations asynchronously using their own programs and data stored in their 

local memories. For some problems, all the processors may be running the same 

program but with different data which may be termed as quasi-SPMD (Single 

Program-Multiple Data stream) mode of operation. 
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Control or synchronization phase. where all processors wait for the slowest 

processor to finish. This is achieved by "anding" the synchronization signals 

from each slave processor to the master processor. Synchronization is very fast 

as it is done by hardware rather than by software. 

(iii) Communication phase where the master processor reads shared data from 

communication memories of slave processors and redistributes it to the 

processors as per the algorithm requirements. Here, slave processors do not send 

any data explicitly to any other processor. 

The above quasi-MIMI) mode of computation has the following advantages: 

1. Since the communication is stream-lined, contentions and deadlocks for resources 

such as the bus cannot occur. Therefore, no time-consuming arbitration scheme is 

necessary. 

2. Programs are easier to write and debug due to the deterministic nature of 

computations. Break-points can be used at the various intermediate global 

synchronization points to debug the programs. 

3. Since the global synchronization is performed by the hardware by "anding" of slave 

processor synchronization signals, faster synchronization is achieved as compared to 

synchronization using software techniques such as the use of semaphores, etc. For 

example, in "FAX" model 64-J parallel processor system which employs quasi-

MIMI) mode of operation, global synchronization is achieved in 18.2 micro-seconds 

[20]. 

4. An added advantage is that analytical complexity results for the developed parallel 

algorithms similar to the complexity results for serial computers can be derived. 
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Thus, the performance of the parallel algorithms can be studied analytically as a 

function of the problem input data size without the need to carry out costly 

simulations. 

The only requirement for good performance is that the computation time for all the 

processors should be about the same so that the processors do not sit idle for too long for 

the slowest processor to finish processing. However, data-dependencies in the Porsching's 

integration algorithm are such that all the processors have to wait for each other for data 

communication at most of the intermediate stages of the algorithm before they can proceed 

further with the computations. Therefore, very little extra performance can be achieved by 

employing true MIMI) mode of computation. 

The main disadvantage of this mode of computation using a simple time-shared bus 

as the inter-connection network is that the data communication steps in the algorithm are 

serialized. However, for this problem, the effect of serialization of data communication on 

the performance of the developed parallel algorithms is not very serious as can be seen 

from the speed-up and efficiency plots given in Chapter 5. This is mainly due to the 

following reasons: 

1. The computations in the algorithms have been partitioned among the processors in 

such a way that a significant fraction of total data is local to the processors thus 

minimizing data to be communicated among the processors. 

2. The granularity of computations of the parallel algorithms is coarse enough to ensure 

that the overhead of data communication and synchronization does not dominate the 

total processing time. In some of the algorithms for solving a matrix equation, this 

granularity of computation does become quite low. In such cases, two-dimensional 
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mesh-connected processors are used as a peripheral device connected to the bus in 

order to minimize data communication traffic on the bus. 

3. The distance between any two processors connected by a bus is always the same and 

equal to unity. Hence, the data communication time for communicating a variable 

between any two processors is the same (equal to unity) as compared to variable 

communication time in other static networks such as near-neighbourhood mesh, 

hyper-cube etc. and log2 N communication time for dynamic multi-stage 

interconnection networks such as Omega network where N is the number of 

processors. 

4. On a time-shared bus, it takes the same unit amount of time whether we send data to 

a single processor, more than one processor, or all the processors (data broadcast). 

On the other hand, in the case of other static networks such as two-dimensional 

mesh, hyper-cube, omega network etc., it takes more than unity time to send the 

same data to more than one processor. The algorithms discussed in this thesis 

employ extensive partial and full data broadcast. 

5. In the case of the bus, it is possible to use 32-bit wide data paths whereas 1-bit, 4-bit, 

or 8-bit wide data paths are generally employed for concurrent networks in order to 

keep the wiring to a manageable level. For example, hypercube Mark I multi-

computer- system developed at Caltech and Intel Inc. uses bit serial communication 

lines [24]. 

Apart from the above performance considerations, a simple bus is much cheaper to 

build than concurrent networks such as Omega network, specially for connecting a 

relatively large number of processors [25]. 
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Of course, concurrent networks are the only choice when thousands of processors are 

to be inter-connected for problems requiring no or little data broadcast in their solution 

algorithm as their concurrent communication capability more than compensates for their 

drawbacks when the number of processors is large. In the algorithms reported in this 

thesis, the number of processors directly connected to the bus does not exceed 150 or so. 

The above ideas are discussed further in Chapter 4. 

1.4. Overview 

The material in this thesis is organized as follows: 

Chapter 2 gives the formulation of differential equations which govern the 

dynamics of thermo-hydraulic networks and describes some of the 

numerical integration methods for integrating these differential equations. 

Porsching's numerical integration scheme is then described in detail. 

Chapter 3 discusses the performance of the Porsching's algorithm on conventional 

serial computers. It is shown that a major computational effort in this 

algorithm is the solution of the matrix equation A AW = z for 

computing network flow rate increments AW. 

Chapter 4 gives a critical review of some of the parallel architectures and inter-

connection networks and describes a simple parallel architecture and its 

mode of operation for developing parallel algorithms described in 

Chapters 5 and 6. 

Chapter 5 the parallelization of Porsching's algorithm is studied. Two direct 

parallel methods for solving the matrix equation A AW = z are 
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described. The speed-ups and efficiencies of parallel processing as a 

- function of hydraulic network size, data communication time, and 

processor synchronization time are studied. 

Chapter 6 gives a parallel iterative method for solving the matrix equation 

A iW = z which is preferable to direct methods for simulating large-

size networks. 

Finally, conclusions and recommendations for further work in this area are given in 

Chapter 7. 



CHAPTER 2 

NUMERICAL INTEGRATION OF NETWORK DIFFERENTIAL EQUATIONS 

2.1. Introduction 

In this chapter, the differential equations governing the dynamic behaviour of 

thermo-hydraulic networks are described. Algorithms available for the numerical integra-

tion of these equations and their stability properties and local truncation errors are dis-

cussed briefly. An efficient integration algorithm developed by Porsching et al. which is 

based on Euler'sbackward difference formula is described. 

2.2. Terminology and Definitions 

2.2.1. Hydraulic network 

A hydraulic network consists of a finite number of nodes interconnected by links for 

the transportation of fluid mass and heat energy from one part of the network to the other 

part. Physically, it is an interconnection of pressurized fluid vessels and pipes. 

Figure 2.1 shows a typical hydraulic network. Squares in the network represent 

nodes and the directed arcs represent links with the assumed flow in the direction of the 

arrows. Each node I has associated with it a fluid mass M, fluid internal energy Uj and 

pressure P1. Similarly, each link k has associated with it a fluid mass flow rate Wk. This 

is shown in Fig. 2.2. 

17 
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Figure 2.1 A typical hydraulic network with 11 nodes and 16 links [6]. 
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Figure 2.2 Quantities associated with a node and a link. 
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2.2.2. Initial and terminal nodes 

A node is termed as the initial node for a link if the link initiates from that node. In 

Fig. 2.2, node i is the initial node for the link k. 

A node is termed as the terminal node for a link if the link terminates at that node. 

In Fig. 2.2, node j is the terminal node for the link k. 

2.2.3. Initiating and terminating links 

A set of links Ii is termed as the initiating links if they initiate from node i. 

A set of links Tj is termed as the terminating links if they terminate at node i. 

In other words, node i has associated with it two index sets, 1i and T. The set 1j is 

the set of links for which i is the initial node and T is the set of links for which i is the 

terminal node. For example, in Fig. 2.2, 

Tj = {1, 2, 3} 

1i ={45,k} 

2.2.4. Noncritical and critical links 

There are two kinds of flow paths in a hydraulic circuit. A link is termed as a non-

critical or normal link if it has an initial and a terminal node. The flow in this case is 
1. 

governed by the one-dimensional momentum balance equation of the form: 

Wk = fk (t, Pi, Pi, Wk) 

where: 

Wk = 

Pi 'Pi = 

the mass flow rate in the link 

Pressures at the initial and terminal nodes i 
and j respectively of link k 
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fk= a general nonlinear function 

A noncritical link k having nodes i and j as initial and terminal nodes respectively is 

notationally represented as k - (i 'f). 

Critical links are geometrically similar to noncritical links except that they do not 

have terminal nodes. Therefore, the flow in the critical link depends only on the pressure 

of the initial node and can be determined by an algebraic equation of the form: 

where: 

Pi= 

gk = 

Wk = g (Ps) 

the initial node pressure 

an algebraic function 

Critical links are used to simulate a choked flow condition or flow originating external to 

the network. 

In Fig. 2.1, links 15 and 16 are critical links as they do not have a terminal node. 

The remaining links are noncritical links. 

2.2.5. Chains 

A subnetwork connecting nodes i and j, i j, is defined to be a chain of length p 

if it contains exactly p + 1 nodes (including nodes i and j) and if, for any nqde I * i, j, 

the sum of index sets T1 and I is exactly equal to two. 

The network shown in Fig. 2.1, contains a chain of length 4 joining nodes 1 and 5 

and one of length 5 joining nodes 6 and 11. Physically, a chain may represent a single 

vessel which is conceptually divided into a number of sections, each represented by a node 
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where the whole mass of the section is assumed to be concentrated. Two adjacent ima-

ginary sections of the vessel are assumed to be connected by a link of length equal to the 

distance between the centres of these sections and cross sectional area equal to the area of 

the vessel at these two sections. 

2.3. Network Conservation Equations to be Integrated 

The dynamic behaviour of a thermo-hydraulic network is governed by a system of 

nonlinear, time-varying, coupled, first-order ordinary differential equations which account 

for the conservation of momentum, mass and energy of the fluid in the network. 

Symbols used in the network conservation equations are first defined as. follows: 

I,] - node indices 

k, V - link indices 

- noncritical links in the network 

K+1,K+2,...,K* - critical links in the network 

- nodes in the network 

summation over links which 
VE7 

terminate in node i 

- summation over links which 
veI' 

initiate from node i 

M- Mass of node i 

U1 - total internal energy of node i 

P1 - Pressure of node i 
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Wk - Mass flow rate in link  

H - Specific enthalpy of the fluid in link v 
entering node i 

- Specific enthalpy of the fluid in link v 
leaving node I 

Pk mass density of fluid in link k 

Lk - .length of link k 

Ak - flow area of link k 

Dk - hydraulic diameter of link k 

A Zk - elevation change of link k 

(Jr )k - friction factor for the link k 

g - acceleration due to gravity 

Q - external heat input rate into node I 

The basic network equations are [6]: 

Conservation of momentum equation for the mass flow in the normal or noncritical 

link k -> (i,j): 

Wk = fk(t ,Pj,PJWk),k — 1, 2,...,K (2.1) 

For a single phase flow, function fk is given by 

fk= A—  -- A,, Lk Wk IWk I 1')— (fr)k  
Lk Dk 2pkA sAZkPk] - (2.2) 

This equation is derived from the Newton's second law of dynamics which states 

that the rate of change of momentum is equal to the externally applied force to the 

body. 
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(ii) The flow in a critical link is a function of the initial node pressure only and is given 

by an algebraic relationship: 

W=g (P1), k = K + 1, K + 2, ..., K* (2.3) 

where gj is a general nonlinear function. 

(iii) energy balance at each node i: 

VF-Ti vd1 
(2.4) 

i.e. the rate of change of internal energy at a node is equal to energy entering the 

node per unit time minus the energy leaving the node per unit time. 

(iv) Mass balance at each node: 

M1= 7, W— I W, i=1,2,...,N 
veT1 

(2.5) 

i.e. rate of change of mass at a node is equal to mass entering the node per unit 

time minus mass leaving the node per unit time. 

(v) Equation of State: 

Pi = H1 (U1, M1), i = 1, 2, ..., N (2.6) 

where r1i is a nonlinear function of U1 and M1. 

• This equation represents the fact that the pressure at a node is not a separate variable 

to be integrated but is a function of internal energy and mass (more precisely specific inter-

nal energy and mass density) of the node. Function 11• in (2.6) is generally given in the 

form of steam tables. If the index set Ii for a node i contains critical links, then (2.3) and 

(2.6) create further couplings between (2.4) and (2.5), since the corresponding flow rates 
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Wk in the critical links are functions of U1 and M1. Thus the system of differential equa-

tions in (2.1), (2:4) and (2.5) are highly coupled to each other. 

If we let, 

y = column FYi, y2, ..., YK+2NI 

= column W1, ..., W, U1 ..., UN, MI, ..., M] 

and f= column If 11 f2, ...' f-+], 

where the components fi are the right-hand sides of eqns. (2.1), (2.4) and (2.5), then the 

conservation equations may be written in vector form as 

= f(y,t) (2.7) 

In writing (2.7), it is assumed that (2.3) and (2.6) have been used to replace the flow 

rates in critical links by equivalent expressions in terms of masses and energies of the 

link's initial nodes and P1,)'1 in (2.1) are taken as functions of U1,M1 and U1,M respec-

tively. By doing this, the right hand sides of (2.1), (2.4) and (2.5) become functions of W, 

U, and M only. The system of differential equations in (2.7) are: 

(1) nonlinear and coupled (due to the presence of nonlinear and coupling terms) 

(2) have time-varying coefficients (such as the presence of Hv in (2.4)) 

(3) stiff (due to the presence of widely separated time-constants) 

The problem to be considered here is the following. Given an initial condition of the 

network at t = 0, determine the transient behaviour on an time interval [o - tf] of the net-

work flow rates Wk, masses M1 and energies U1 satisfying (2.1) to (2.6). This is the well-

known initial-value problem in the area of numerical integration of differential equations 

{19]. 
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2.4. Numerical Integration Algorithms 

There is a large body of knowledge concerning the numerical integration of systems 

of differential equations of the form j = f(y,t). Broadly speaking, they can be classified 

into two main categories: one-step methods and multi-step methods. One-step methods 

are based on the Taylor series expansion of the function y around the point (y ,t,) to com-

pute the value at time-step (n + 1). They are called one-step methods because they 

make use of the value of the variable y and its derivatives only at the last time-step t. 

On the other hand, multi-step methods make use of the value of the variable y and its first 

derivative at a number of time-steps. If the first derivatives used are at the time-step t or 

earlier, the methods are called explicit multi-step methods. On the other hand, if the 

derivative at the time-step (which is not yet available but can be computed using 

Newton-Raphson or any .other iterative method) is used in computing Yn+i , the method is 

called implicit multi-step method. Although implicit methods involve more computational 

effort at each time-step as compared to explicit methods of the same order, they are more 

stable than the explicit methods and therefore allow a much larger time-step size h to be 

chosen without making the integration method unstable. In certain problems, called " stiff', 

the increase in step size is truly dramatic, i.e., of the order of 1000 times or even more 

[33], depending upon the ratio of the largest time constant to the smallest time constant in 

the problem. 

Examples of one-step integration methods are Euler's forward difference method and 

explicit Runge-Kutta methods. All one-step methods belong to the category of explicit 

integration methods. Examples of explicit multi-step methods are the family of Adams-

Bashforth methods and examples of implicit multi-step methods are Euler's backward 
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difference method, the trapezoidal method, etc. 

The above classification of integration methods is summarized in Fig. 2.3. A brief 

description of some of these numerical integration methods and their accuracy and stability 

properties is discussed below. Although, the methods are described for the scalar case 

= f (y ,t), they apply equally well to a system of differential equations = f(y,t). 

2.4.1. One-step methods 

These methods are based on the Taylor series expansion of a function y about the 

point (y ,t,,) to obtain the value of y at t = t.1, i.e. Yn+i' The ptl order Taylor algorithm 

contains (p + 1) terms of Taylor series expansion and is given by 

Yn+1 y, + f(y,2,t) + .4- (y,,t,1) + + .L. (2.8) 

Here, h is the time-step size, the subscript n on y and t denotes their values at time 

step n, the superscript on h denotes the power of h and the superscript within the small 

brackets on f denotes the order of the total derivative of f with respect to time t, i.e., 

(1) (y,t) is given by 

J _rn,tn 
df ,t)= If(y,t) af(,)  

Jy dt at dt Jat 
S =1,, 

= Iaf,t) f,t) + af(y,t) ]at ay  
t=1,, 

As can be seen from the above equation, computation of Yn+i makes use of information at 

time step tn only, hence, the name one-step method. 

It can be shown [26] that the local truncation error e,, at time-step t of the pth order 

Taylor's algorithm is of the order of h+1, i.e. 



NUMERICAL INTEGRATION ALGORITHMS FOR y = £ (y, t) 
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(a) First-Order Taylor Algorithm 
(forward Euler Algorithm) 

(b) Higher-Order Taylor Algorithms 
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MULTI-STEP ALGORITHMS 
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ADAMS-BASHFORTH ALGORITHMS ADAMS-MOULTON ALGORITHMS 

(a) First-Order ( Forward 
Euler Algorithm) 

(b) Higher-Order 

Figure 2.3 Classification of numerical methods for integrating j = f(y,t) 

(a) First-Order 

(Backward Euler Algorithm) 

(1D) Second-Order 
(Trapezoidal Rule) 

(c) Higher-Order 
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= 0(h') 

Also, since the local truncation error decreases as the (p +1)th power of step-size h, the 

algorithm is called p th algorithm. Moreover, all the one-step methods given by the 

Taylor algorithm for different values of p are consistent since the local truncation error 

tends to zero as h tends to zero. 

When p=l, we get the first-order Taylor algorithm given by 

Yn+1 = Y. +h f (y,t, t,) (2.9) 

This corresponds to the first two terms of a Taylor series expansion. Equation (2.9) is also 

called the forward Euler algorithm. The local truncation error of this integration algorithm 

is proportional to h2, i.e. E = 0(h). 

An analysis of stability properties of the forward Euler algorithm is now given. 

Although the algorithms discussed here are intended for obtaining numerical solutions of a 

system of nonlinear differential equations of the form ' = f(y,t), it is standard practice to 

apply each algorithm to the " test equation" 

f(y)=—Ay (2.10) 

associated with a first-order linear system with time constant ... The exact analytical solu-

tion to (2.10) is given by 

Y (t) = y0 , t >0 (2.11) 

where y0 = y (0) is the initial condition. The reason for choosing (2.10) as the test equa-

tion is not only because it has an exact analytical solution to which other numerical solu-

tions can be compared, but also because, incrementally speaking, most solutions to a 
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differential equation can be approximated by a portion of an exponential. Therefore, if an 

algorithm fails to solve (2.10), it is very likely that it will also fail when applied to other 

differential equations. 

Now applying forward Euler's method given by (2.9) to test equation (2.10), 

yn+iyn + h(—A.y,) 

or 

Yn+1 = (1 - h?..) y 

substituting n = n - 1 in (2.12), we have 

yn = (1 - hA.) Yn—i 

substituting the above value of y in (2.12) 

Yn-I 

Repeating the above sequences, we have 

y. +1 = (1 - hA.)'t y0 

for the solution to decay with time, 

or 

(2.12) 

11—hA.I <1 (2.13) 

0 < h A. < 2 , for real X. 

Therefore, the algorithm to be stable, time-step size h should be less f, i.e. less than 

twice the time constant. If the value of the time constant is very small, time-step size 

required to maintain stability will be also very small. Therefore, for small time constant 
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problems, the choice of step size is governed by stability considerations rather than accu-

racy considerations. For complex values of ?, (2.13) represents a circle of unity radius and 

centre ( 1, 0) in h% plane. The same results can also be obtained by using the z-transform 

technique by substituting the solution y, = cz' in the difference equation (2.12) giving 

zn-Fl = (1 - hA.) z" 

or 

z = (1 -. hA.) (2.14) 

For this algorithm to be absolutely stable, the set of values a = h A. should be such 

that the roots of z in (2.14) lie within or on the unit circle I z I = 1 in the z-plane so that 

the solution Y,, = cz't does not grow with time. The set of values for which the integration 

method is absolutely stable is called the region of absolute stability. This mapping for h A. 

for the forward Euler Algorithm is obtained by substituting z = e' 0 in (2.14) and solving 

for a = h X. This gives a = h A. = 1 - e 0 which is the interior area bounded by the circle 

of radius unity centred at ( 1, 0) in the a = h  plane and is shown in Fig. 2.4. 

Application of forward Euler algorithm to the hydraulic network differential equations 

gives the following set of integration formulas. For the sake of notational convenience for 

dealing with the system of differential equations, subscript n, (n+1) etc. have been moved 

to superscript positions, i.e. yZ instead of y, represents the value of y at time step n. 

+h fk (t'2,pr,pj, We), k = 1,2,..., K (2.15) Wr'•=W  

Up+1=Ur+hI H W - H W i = 1,2,...,N 
vd 

1. (2.16) 
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Figure 2.4 Region of absolute stability for forward Euler Method. 
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M' = M + h E - I  W  
- - VETS v1i 

(2.17) 

fi. (Uf', Mf') , i = 1, 2, ..., N (2.18) 

From the point of view of concurrent processing, the set of equations (2.15), (2.16) 

and (2.17) are decoupled from each other and therefore, can be computed in parallel. After 

these computations, computations in (2.18) can also be performed concurrently. 

If we include more terms from (2.8), we get higher-order Taylor algorithms with 

accompanying smaller local truncation errors. However, this will also require computation 

of higher-order derivatives of f (y ,t) which may be very time-consuming for complicated 

functions. Moreover, it is extremely error-prone, especially if f (y ,t) is not available in 

explicit analytic form. For this reason, higher order Taylor algorithms are generally not 

used. Instead, a modification of Taylor algorithm called Runge-Kutta algorithm, which 

avoids computation of higher-order derivatives off (y ,t) but still retains the same order of 

accuracy is commonly used. The basic idea [26] consists of replacing the second and 

higher terms in (2.8) by another function JZK (Y, t, h) requiring no partial derivatives of 

f(y,t) such that 

(Y. , t. )  ,t) + + - f ,t) - hK ,, ,t ,h) I ≤ R h 

where R is some constant independent of h. In view of the above, the modified algorithm 

Yn+i = y, + h K(y,t,h) (2.19) 

has precisely the same order of magnitude of truncation error as the corresponding Taylor's 

algorithm. Therefore, (2.19) is called the p :h -order Runge-Kutta algorithm. For example, 

for p = 4, we get the fourth-order Runge-Kutta algorithm given by 
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where 

y+i=y +h K4(y,t,h) 

K4(y,t,h)=! [kl+21c2+2k3+k4] 

k1=fy,t) 

k2=fy + 4 k1,t +4 ) 

k3 fy +4 k2,t,2 +4 ) 

(2.20) 

(2.21) 

k4=f(y +h k3,t +h) 

The local truncation error of the algorithm is 0(h5) but requires the evaluation of 

function f (y ,t) four times per time-step which is undesirable particularly for complicated 

functions. 

In order to determine the region of absolute stability in the h).-plane of the fourth-

order Runge-Kutta method consider the test equation ) = f (y) = /z X. After computing 

the values of k1, k2, k3, and k4 from (2.21) and substituting in (2.20), we have 

323 h4?4 1 
Yn+l =1 + h% + h2 + h 6 + 24 Yn 

substituting y, = czZ as the solution to the above difference equation, we have 

[1 + h h222 h3?3 h4?4 2 1 = + + 6 + 24 j 

substituting h X = a in the above equation; we have 
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26 24j 

for the solution to be absolutely stable, 

a2 q3 a 1 
Therefore, I ,+0+  -- + +2 6 24  - I ≤ 1. This region of absolute stability in the. 

a = h 2 plane is shown in Fig. 2.5 [19]. As can be seen, it is only slightly larger as com-

pared to the stability region of the forward Euler algorithm. 

2.4.2. Multi-step methods 

In multi-step numerical integration methods, unlike Taylor's algorithm, past informa-

tion from previous time-steps is also utilized to compute The general form of the 

multi-step algorithms is given by the following equation. 

Yn+i = açy + a1y_1+ ... + ay_ + /zfb 1 f(y +l ,t +I) 

+ b0 f (y ,t) + . + b, f (y_ ,t_)] 

P p 
=Y, a1 Yn-i + h E b1 f (y.j ,t,) 

(2.22) 

1=0 1=-i 

These algorithms are also called polynomial approximation algorithms since they are capa-

ble of calculaduig the exact value y (+) of y at t = t,, +1 for any initial value problem hav-

ing an exact solution in the form of a k'1 degree polynomial in t. If the integration for-

mula gives an exact solution for a polynomial of order less than or equal to k in t, it is 

called a numerical-integration formula of order k. The local truncation error c of the 

0 -order multi-step method is of the order of h" 1, i.e. F, = O(hlc+t) [26]. Since e,, - 4  0 
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Figure 2.5 Region of absolute stability for the fourth-order Runge-Kutta Method. 
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as h —* 0, all multi-step methods are consistent. 

When b...1= 0, the integration method is called an explicit or open method and (2.22) 

gives explicity in terms of previously determined values. When b_1 # 0, the method 

is called an implicit or closed method since y, occurs on both sides of (2.22) and is 

determined only in an implicit manner such as the use of functional iteration. 

An important class of multi-step explicit algorithms is called the Adams-Bashforth 

algorithm. The k" order Adams-B ashforth algorithm is obtained by setting - 

pk—1,a 1=a2=.-.=a_1=O,b_i o 

in (2.22), i.e. 

= a0 y, + h[b0 f(y,,t,) + b1 f(y_i,t_) + 

+ bk_i f (Yn_k+i,tn_k+i)] 

k—i 

= a0 y. + h Z bi f (y_ ,t_) 
iO 

(2.23) 

The k+1 coefficients a0, b0, b1, ..., bk_i are determined so that (2.23) is exact for all 

polynominal solutions of degree less than or equal to k. The coefficient a0 is always unity 

for all values of k in order to satisfy this condition. 

When k=1 it can be shown that b0 = 1 to satisfy the above constraint and (2.23) 

degenerates into one-step integration formula called the forward Euler formula described in 

section 2.41, i.e. 

Yn+l = Yn + h f(y,1,t,1) 

and therefore has the same local truncation error and the same region of absolute stability 

as the forward Euler formula and is shown in Fig. 2.6(a). 
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Higher order Adams-Bashforth algorithms are obtained by using higher values of k in 

(2.23) and then finding the a• and b1 coefficients by the method of undetermined 

coefficients such that (2.23) gives the exact solution for polynomial of degree less than or 

equal to k. For example, the second-order Adams-B ashforth formula is given by 

Yn+1Yn [_21 (2.24) 

Its region of absolute stability for the test equation can be determined by substituting the 

two values of f from (2.10) and substituting Y = c Zn as the solution of the difference 

equation (2.24). After these substitutions in (2.24), we have 

—2z (z - 1) 
(3z - 1) 

The root-locus of h in the h,%-plane corresponding to the unit circle I z I = 1 in the 

z-plane can be obtained by substituting z = e° in (2.25). Therefore, 

h?. = cy(0) = —2e 0 (e° - 1)  
(3e'° - 1) 

(2.25) 

(2.26) 

This is plotted in Fig. 2.6(b). 

As can be seen from this figure, the region of absolute stability for the second-order 

Adams-B ashforth formula is small compared to the corresponding region for the first-order 

formula. These stability regions for the higher-order Adams-Bashforth algorithms can also 

be similarly obtained from (2.23) after substituting the values of f from (2.10), then sub-

stituting the solution Y = c zZ, and finally solving the resulting equation for hA.. After 

this, we have 

(a0 - 

h), = cy(e) -   
(1 ei_1° + b1 e 2° + + bk_2 e(' + bk_i) 

(2.27) 
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These stability regions shrink monotonically as the order k of the algorithm is increased. 

Therefore, as the order of the Adams-Bashforth algorithms increases, its region of absolute 

stability decreases even though its local truncation error also decreases as O(h" 1). As a 

result, for an initial-value problem having very small time constants, the step size in the 

Adams-B ashforth integration algorithm is determined by stability considerations rather than 

accuracy considerations. This is a serious limitation of all explicit integration algorithms. 

This difficulty can be overcome by using implicit multi-step integration formulas 

obtained from (2.22) when the coefficient b_1 is non-zero. An important class of implicit 

multi-step integration algorithms, called Adams-Moulton algorithms, is obtained by setting 

p = k-2 , a1=a2= = ak_2=O 

in (2.22). Therefore, 

= a0 Yn + h [b-1 f+i,t+i) + b0 + b1 f-i-i) 

(2.28) 

+ + b f n_k+2tn_k+2)] 

The local truncation error of Adams-Moulton algorithm of order k is 0(h /c+ '). As an 

example, when k = 1, a, = 1, b1 = 1 with rest of the coefficients equal to zero, we get the 

first-order Adams-Moulton algorithm also commonly known as the backward Euler algo-

rithm or Euler's backward difference formula, 

Yn+1 =y + h f(y +1 ,t 1) (2.29) 

Since (2.29) cannot be solved explicity for y,, it is an implicit algorithm. It is usually 

solved by applying one iteration of the Newton-Raphson algorithm for finding the zero of a 

non-linear algebraic equation [19]. This gives rise to a system of linear equations, of the 
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form Ax = b in the multi-variable case which are to be solved at each time step. This is 

further discussed in section 2.52 of this chapter. The region of absolute stability of (2.29) 

is given by 

O≤9≤2ic 

which is the entire h A. plane minus the area enclosed by a unit circle centred at (- 1, 0) as 

shown in Fig. 2.7(a). 

When k = 2, a0 = 1, b_1 = b0 = 4-, we get the second-order Adams-Moulton for-

mula better known as the Trapezoidal Rule and is given by 

Yn+i = Yn 

The boundary of the region of absolute stability for Trapezoidal rule is given by 

hA.=a(e)= 2(1—eJ0) , o≤e≤2 
(1+ e 0) 

(2,30) 

which encloses the complete right-half of h), plane as shown in Fig. 2.7(b). 

A comparison with Figs. 2.5 and 2.6 shows that the stability regions for the Adams-

Moulton algorithms are much larger than for explicit algorithms. In fact, for any given 

A.> 0 the implicit first-order backward Euler Formula and the second-order Trapezoidal 

rule will be stable for any step size. Hence, the choice of step size h for the backward 

Euler and Trapezoidal algorithms is restricted only by accuracy, i.e. the maximum allow-

able local truncation error and not by stability considerations. In view of the above obser-

vation, the Euler's backward difference formula and the Trapezoidal rule are generally con-

sidered some of the best algorithms for solving the initial value problem j' = f(y,t) particu-

larly when the problem contains a mixture of very small and very large time-constants. 
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Figure 2.6 Regions of absolute stability (shaded regions) for the first and second-
order Adams-Bashforth explicit integration algorithms. 
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Figure 2.7 Regions of absolute stability (shaded regions) for the first- and second-
order Adams-Moulton implicit integration algorithms. 
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2.4.3. Stiff differential equations 

A system of.dffferential equations whose solution contains both "very fast" and "very 

slow" components is said to be stiff. 

As an example, consider the numerical integration of the following system of uncou-

pled linear equations 

= —A.1 y 

(2.31) 

Y2X2Y2 

with X = 104 and X2 = 1 so that the time constants T1 = = 1O sec and 

T2 = --- = 1 sec. The exact solution is given by 

Yi = c1 e 

If we integrate (2.31) by the forward Euler method, then to ensure numerical stability we 

must restrict the step-size to /i <-- = 2 X 1O' seconds for Yi and h = 2 seconds 

for Y2 as given by (2.13). For this uncoupled system, we could have solved it as two 

separate problems, using two separate step-sizes. However, in geneial, the variables are 

coupled to one another, and instead of (2.31), we have 
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where 

1_au _a121 
L J 

= —a11y1 - a12y2 

Y2 = —a21y1 - 

or 

=Ay 

A=i 
—a21 —a22 

(2.32) 

Assume that the matrix A is such that its eigenvalues are —7 = —iO4 and —2 = —1 as 

before. It is well known [27] that equation of the form (2.32) can be transformed into the 

canonical or decoupled form = Ax by the similarity transformation y = Px, where 

A—P 1A P 

—2 1 0 

i.e. the eigenvalues of the system of differential equations of the form (2.32) remain 

invarient under the similarly transformation y = P x. 

P is called the permutation matrix whose columns are the eigenvectors p correspond-

ing to the eigenvalues X. Now the transformed system of equations i = A x is of the 

decoupled form of (2.31). Integrating the transformed system by the forward Euler algo-

rithm will therefore lead to the same step size restrictions as before. However, since the 

complete solution y1 and Y2 are linear sums of the solution of the transformed variables x1 

and x2, i.e. y = P x, a common step size must be chosen to be the smaller of the two, i.e. 

h ≤ 2 x 1O in order to maintain stability throughout the problem •solution time. This is 
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necessary even when the faster solution component y  has decayed to insignificant values 

which is after about five time constants, i.e. 5 x i0 seconds in the present example. 

Therefore, the best choice to solve such problems is the implicit numerical integration 

methods such as backward Euler algorithm or the Trapezoidal rule which are stable for any 

value of A. in the positive half-plane. 

In the case of nuclear power plant hydraulic networks, time constants as small as 

1O seconds occur when the high velocity pressure waves travel through short length net-

work links [6]. Therefore, the system of differential equations describing the network 

dynamics are stiff. An efficient implicit algorithm based on the Euler's backward 

difference formula has been developed by Porsching et al. [6] and is described in the next 

section. 

2.5. Porsching's Algorithm 

2.5.1. Introduction 

Porsching's algorithm is based on the Euler's backward difference formula. Since it 

is an implicit algorithth, it permits a larger step size to be chosen for the numerical integra-

tion of equations, but involves the solution of a system of linear algebraic equations of the 

form A x = 'b at each time-step. However, in the Porsching algorithm, the variables A U1 

and Mvf1 are first eliminated algebraically from the linear equations before proceeding with 

the solution of these system of equations. This reduces the dimension of the systems of 

equations from (K + 2 N) to K. For example, for a 150-node and 200-link network prob-

lem, the size of the matrix equation to be solved at each time-step is 200 x 200 instead of 

500 x 500. This results in a considerable reduction in the computational effort at each 
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time-step. 

Moreover, if the links in the chains of the network are numbered first and in a mono-

tonically increasing order and the remaining links, termed as random links, are then num-

bered higher than the chained links, then the matrix A in the solution of system of linear 

equations A x = b, assumes a bordered block-diagonal form. The block structure of the 

matrix A can be exploited in the Gaussian elimination process resulting in further reduction 

in the computations involved at each time-step. 

The above features of the Porsching' s algorithm make it very attractive for the 

numerical integration of large network problems and a number of practical computer codes 

[28-31] based on this technique have been developed and used in nuclear power plant 

safety analysis. This technique has been extended in [32] to take into account the nonho-

mogeneous flow conditions accurately (improved slip model) in the network but still 

involves the solution of the matrix equation of the form A x = b at each time-step which is 

the dominatant computation for large networks as will be shown in Chapter 3. 

2.5.2. Development of the algorithm 

In this section, the derivation of Porsching's algorithm for integrating the systems of 

differential equations (2.1) through (2.6), which are of the form j' = f(y,t), is given. Since 

y is now a vector, the value of the vector y at time nh is represented by the symbol yR 

instead of Yn in order to avoid confusion with the individual elements y1, Y2: of the 

vector y. y', y , etc. now represent the values of individual elements of y at time 

nh. In other words, the subscript n in section 2.4 is now the superscript n. 

The system of equations to be integrated is of the form j = f(y,t), where 
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y= 

Yi 

Y2 

YK 

YK+1 

YK+2 

YK+N 

YK+N+1 

YK+N+2 

YKi-2N 

W i 

W 2 

WK 

U1 

U2 

UN 

M 1 

M 2 

MN 

(2.33) 
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or 

K+N 

K+N+1 

K+N+2 

K+2N - 

f1(t,P,P,W1) 

f 2( ,Pi ,Pj ,W2) 

fK(t,Pi,Pj,Wk) 

HW+Q 1 
VET1 VEJ1 

HW+Q 2 
VET2 VEt2 

(2.34) 

H,W.,,— I HWV+QN 
VETN VEIN 

WV— Z W., 
VET1 yE!2 

•: w- ; w, 
veT2 vet2 

z w 
VETN VEIN 

Euler's backward difference formula is given by 

y fl+l = yE + hf(y', r' 1) 

(yll+l - yfl) - h f(yfl+l , t 1) = 0 (2.35) 

yfl+l cannot be explicity solved from the above equation. One solution to the problem is to 

perform a functional iteration of the form 
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( 1M+1 J _yfl] —h f[tfl+1 , ly IM 0 

[ 1]m = [yn+l)m+l } 
where (y1)m+1 denotes the value of y+1 at iteration (m + 1), till the maximum difference 

between any two corresponding elements in (y1)m+1 and (y+1)m is less than a predeter-

mined value . However, this may require a very small value of step size h in order to 

ensure convergence [33] and hence, the advantage of the Euler's implicit method is lost. 

A different approach is to employ only one iteration of Newton-Ralphson method for 

finding the zero of the nonlinear function, i.e. the value of y 1 in (2.35). 

The Newton-Ralphson iteration for computing the value of variable x satisfying 

S(x) = 0 is given by 

xn+1 = xn - I  dS(x)  
dx S(x)I..n 

In our case, the function whose zero is to be estimated is given by the left hand side of 

(2.35) and the variable in the equation is y 1. Therefore, 

= (y fl+I - yr') - h f(yh1+1,t1l) 

Using Newton-Ralphson iteration, 

or 

where 

y1 = Y  - h df 
(y,t) 

dy 

].4 1(y n _ Y n) — h f(yn,tn)] 

y"1 = y' + h [I - h Jf1 f (y",t'2) (2.36) 
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1= 

Jn = 
identity matrix of size (K + 2N) X (K + 2N) 

df (y" n df. 
- , t) (yfl , t) 
dy =[dyj 

and is called the Jacobian matrix for f(y,t). Equation (2.36) could also have been obtained 

by first linearizing (2.7) and then applying the Euler's backward difference formula to this 

linearized equation. It can be shown [ 19] that the numerical integration formula given by 

(2.36) is consistent and stable, therefore, convergent. 

Since computing the inverse of a matrix involves more floating point operations than 

the solution of a system of linear equations of the same order, (2.36) is not evaluated in 

the present form but is rearranged as the solution of a system of equations. 

Rewriting (2.36) as 

(y fl+l - 3") = h  - h J"] 1 f(y,t") 

and premulitplying both sides by (I - h J") and replacing (y'' - y") by the incremental 

vector L!t y we have 

(I - h Jfl) yfl+l = h f(y",t") . (2.37) 

The determination of y' then amounts to the determination of the increment Ay', the 

solution of the linear system (2.37). 

Because of the simple nature of (2.4) and (2.5), the quantities A Uf' and A M' 

can be eliminated from (2.37). The resulting system of equations contains the variables 

A W' only and is of order K as opposed to (K + 2N), the order of (2.37). This results 

in considerable saving in computation time for large size networks. 
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Elimination of A Uj' and A M' from (2.37) is done by first solving (K + i)th and 

(K + N + i)th equations in (2.37) for A Uj'1 and A Mf 1 and then substituting these 

values into the first K equations of (2.37) 

.After the above elimination procedure [6]; the variables iX Uf 41 and A Mj 41 are 

given by 

A U' = h + Z (a1 + 1H) A W' 
VET1 

(2.38) 

- (a1, + f11H) A W 1 
v ≤ K 

A M' = h [Y2i + I (ccv + P2j H) A W' 
(2.39) 

- E (a21 + 132i H;) A W' 
w11 , y ≤ K 

and (2.37) is reduced to the matrix equation 

A A W 1 = z 

where 

a11 = 
D1 DMi 

-h DHG 

(2.40) 

(2.41) 

(2.42) 

711 = Ai fK+1 + a1fK+N+1) (2.43) 
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1+h aHG  Dui 

a2,  Di 

—h DG 
132i =  -j5;- -5; 

?21 = [a21 fK+N+1 + 12i fK+i] 

aHG - ap1 

a - aM1 
HV 

vEJ,v>K or1 

aHG - ap1 agv 
E H 

i'jvEJ, V >K aPi 

DG ai'1 ag 

= -i;- vd , v > K ap1 

- 

alli ai' 

aHG .. c—)_h2aHG DG 
D1 = (1 + h au ) +h aiw a 1 

Dui 

and the elements of vector z and matrix A are given by 

1-5,f—Uki 
Zk = h fk(y',t') + h2 ?i afk + j ?ii + afk  ami 

+ afk] k 
aM1 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 
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If akk  h2 [L?_ afk = 1 - h 
+ H) + aivi (( 1 + I2j 11k) aWk LUJ 

(2.53) 

af/, * afk 
((Lli + c3li H v)__ (cf i+132iH ;)I,k= 1,2, ...,K 

Dui 

The values of aJ(j elements for k * V are given by (2.54) which is shown in Fig. 2.8. The 

seven possible expressions for Gkv values correspond to seven possible positions of link v 

with respect to link k as shown in Fig. 2.8. 

Therefore, the element akV of matrix A, which has the row index k and column index 

v, will be nonzero only if links k and v share a common node. Otherwise, its value will 

be equal to zero. 

Most of the nodes in a typical network are connected to normal or non-critical link. 

Therefore, for a normal link whose initial and terminal nodes have no critical links, 

aHG HG 
= 0; = 0, from (2.47) and (2.48) 

DG JG 
= 0  0, from (2.49) and (2.50) 

= 0; Pli = 1, from (2.41) and (2.42) 

71i = fK+ (y'1 ,t'1), from (2.43) 

a2i = 1 , = 0, from (2.44) and (2.45) 

?21 = fK+N+ (y',t'2), from (2.46) 

Di = 1 from (2.51). 

After substituting the above values in (2.38),(2.39),(2.52), (2.53) and (2.54), we have 
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akV = 

V7 

2Ifk fk 
-h + 13 11H) + ami -—(ci + 32H) if vc Ti, v4/3, 

fk * 

h2 -—(c1 +13 H) if ve Ii, v4;Tj, 

-h 2 + ,1H) + fk (a2 + 21H) 

2 1 fk fk 
h + 1H) + DAI  + f3H) 

2 1 fk fk 
/z + 31H) + + PH) 

ami 

if vcT,v*I1, 

if v EIj, v 4; 

a! k ___ 

----(i+11H) — afl' (a2i+f32iH)j ifveI1,veTi, 
auj ami 

—h2 Ifk  [.(cii + f3 11H) + afk + 32H) 

afk afk 
--((L i + 1H) - + 2H;) if v a I, v a T, 

0, otherwise. 

I 
V4 _ V7 

--b-- 

I' I . 
/ 

- \ / , 
S. -. 

V3 

Figure 2.8 Values of akV elements of matrix A for v # k. 

(2.54) 
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Ur+1=hI HW' - 11 W 1 +Q] I = 1,2,...,N 
vd 

Mj'=h1 W'_ZW'l,i=1,2,...,N 
[veT1 VEIL j 

Iaf 
Zk = h fk (y'2,t') + h2 k fK+1 (y'2,t'1) + afk --- fzc++j (y',t'2) 

+ * fK+N+ (y,t) + afk  f++ (y,t) , k = 1, 2, ...,K 

Ifk h2 IIfk fk afk * 

a= i_haw  LJ"aMJ auj -- Hk 

a! 

a, for V # k is given by one of the expressions shown on the next page. 

(2.55) 

(2.56) 

(2.57) 

(2,58) 
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_h2I 

h2 [ H + if , , 

aM1 I', afk 

h2[ H afk 1 
- 

Iafk afk 1 
akV =  h2 + j]ifvE1i ,VeT, rafk 

h2 H a!k a!k * afk 
V + H - a1 I , if v 1 , vcT1, 

—h2 cl  H a! k DA * afk 1 L-; V+aMa(JHVaJVI]ZfVCISVCTJ 

0 ,otherwise k=1,2,...,K 

(2.59) 

Th is completes the derivation of Porsching's algorithm. The computational aspects of 

the algorithm on a serial computer are given in Chapter 3. The parallelization of the algo-

rithm and its performance analysis on mulitple computers is given in Chapters 5 and 6. 



CHAPTER 3 

ALGORITHM PERFORMANCE ON A SINGLE PROCESSOR 

3.1.. Introduction 

Porshcing's algorithm for the numerical integration of hydraulic network differential 

equations was describedin the previous chapter. In this chapter, the computational com-

plexity of the algorithm on a single processor is discussed. 

The flow chart of the computations involved in the Porsching's algorithm is shown in 

Fig. 3.1 As will be shown in section 3.2, the major computational effort at each time-step 

in the Porsching's algorithm is expended in the solution of A W'' from the matrix equa-

tion A A W' = Z. It is therefore important that this matrix equation be solved efficiently 

at each time-step. This is achieved by making the sparse matrix A assume a desirable 

structure as discussed in the next section. 

3.2. Computational Complexity of Porsching's Algorithm 

3.2.1. Computation of flow rate increments from the matrix equation (2.40) 

3.2.1.1. Structure of matrix A 

An element akV of matrix A is non-zero whenever its row number k and column 

number v are adjacent links. Since large hydraulic networks encountered in nuclear plants 

have very sparse structure because of low degree of the network nodes (degree of a node is 

defined as the sum of the initiating and terminating links to the node), the matrix A is very 

sparse for large networks, i.e. it has a few non-zero elements (less than, say, 10 per row). 
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INITIALIZE 56 

Compute elements of matrix A from Eqs. (2.53)/(2.58) and (2.54)1(2.59) 

Compute elements of vector z from Eqs. (2.52)/(2.57) 

I 

Compute vector AW'' from A AW' = Z, (Eq. (2.40) 

Compute up' and M1', j = 1, 2, , N 

from Eqs. (2.38)/(2.55) and (2.39)/(2.56) 

Compute W' = W + AWk 

Uin+1 = U + 

Mp-'-1 = Mn + 

k=,1,2, •, K 

i=1,2, 

i=1,2, ", N 

Compute P 1, i. 1, 2, , N from Eq. (2.6) 

Compute Wr1 for the critical links from Eq. (2.3) 

NO 

= tz + h 

STOP 

Figure 3.1 Basic flow chart of Porsching's algorithm for the numerical integration 
of hydraulic network differential equations. 
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If the network links are numbered at random, the position of non-zero elements akV in the 

matrix will also- be at random. When the matrix solution is being obtained by the sparse 

Gaussian elimination method, many of the zero elements in the matrix will become non-

zero in the elimination process and the sparse matrix becomes almost full after a few elimi-

nation steps. This phenomena is called "fill-in" [34] and may result in large computation 

time even for a sparse matrix. 

However, if the links of a given chain are consecutively numbered, then the principal 

submatrix of A corresponding to that chain will be tridiagonal. Moreover, submatrices 

corresponding to disjointed chains are themselves disjointed. The random links in the net-

work (such as interconnecting links, by-pass links etc.) are then numbered higher than the 

chained links. This procedure reduces the amount of "fill-in" in the elimination process. It 

also decouples the principal submatrices corresponding to disjointed chains among them-

selves which is an essential requirement for concurrent processing on a multiple processor 

system. Also tn-diagonal blocks of equations are easiest to solve by Gaussian elimination 

since they take time proportional to size of the problem as compared to full matrices which 

take time proportional to cube of the problem size. 

Figure 3.2 illustrates the structure of matrix A for the network of Fig 2.1. It has two 

tn-diagonal blocks corresponding to two disjointed chains in the network, one of length 4 

and one of length 5. Also, only the rightmost column block and bottom row block have 

submatrices with non-zero elements. This matrix structure is called the bordered block-

diagonal form [34] of the matrix and is a desirable structure for sparse matrices. It is also 

desirable to have as small a width of the borders as possible for an efficient solution of the 

matrix equation. 
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lx x x I 
I X X X 
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X 

X IX XX 

I XxX.x 
X X X X 

xIx.x x x 
lxxx x 

Figure 3.2 Structure of matrix A for the network of Fig. 2.1. It has two tridiagonal 
blocks corresponding to two disjointed chains in the network. 
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As a second example, consider the network of Fig 3.3(a). It has two neighbouring 

chains (links 1 to 7)and (links 13 to 18) sharing the two end nodes and a disjointed chain 

(links 8 to 12). The corresponding structure of matrix A is shown in Fig. 3.3(b). It has 

two disjointed tn-diagonal blocks and the width of the border is 9 elements wide. How-

ever, if the two end links of the neighbouring chains are considered as random links and 

not as a part of the chains, then the neighbouring chains can be converted to disjointed 

chains. This improved numbering of links for the network of Fig. 3.3(a) is shown in Fig. 

3.4(a) and the corresponding structure of matrix A is shown in Fig 3.4(b). As can be seen 

from Fig. 3.4(b), we now have three disjointed tn-diagonal blocks corresponding to the 

three chains in the network. This increases the amount of parallelism in the problem as all 

the tn-diagonal blocks can be computed in parallel. Also the width of the border is now 7 

elements as compared to 9 in the previous link numbering. The same numbering scheme 

can also be used if the two chains share only one end node instead of both the end nodes. 

In general, suppose the network contains s disjointed chains of length P1, P2 

and let q be the number of random links in the network, then 

S 

q=K--p1 
1=1 

(3.1) 

If the links in the chains are consecutively numbered as described before, then, the matrix 

equation A Ei W = z can be made to assume the form, 



1 21 12 60 

Figure 3.3(a) A non-optimal link numbering for a network have two neighbouring 
chains and one disjointed chain. 
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Column border 
  width = 9 
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Figure 3.3(b) Structure of matrix A corresponding to network of Fig. 3.3(a). The 

number of tridiagonal blocks is two. 



Figure 3.4(a) 

15 21 10 

8 

0 

7 
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Improved link numbering for a network having two neighbouring chains 
and one disjointed chain. 
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X '-

Column border 
width = 7 

'C 

A 

X1_  —  

-.4 

Row border 
width = 7 

Figure 3.4(b) Structure of matrix A corresponding to network labeling of Fig. 3.4(a). - 

The number of tridiagonal blocks is now three. 
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D1 R1 

R2 

D, R1 

D, R., 

B1 B2 B1 B3 V 

Ao 1 

A(02 

A( 1 (3.2) 

as shown for the example networks. Various submatrices of matrix A and subvectors of 

vectors A W and z have the following features: 

(i) Di is a pi >< pi tn-diagonal matrix corresponding to chain i. 

(ii) R, is a pi x q submatrix corresponding to chain i and has possible non-zero 

elements in the first and last row only. These non-zero elements correspond to 

the random links sharing the two end nodes of the chain i. 

(iii) B1 is a q x pi submatrix corresponding to chain i and has possible non-zero ele-

ments in the first and last columns only. These non-zero elements correspond to 

the random links sharing the two end nodes of the chain i. Matrix B1 is the 

transpose of matrix of R1 with respect to its element locations but not their 

values. 

(iv) V is 'a q x q sparse random matrix with non-zero diagonal elements correspond-

ing to the random links. The matrix is symmetric with respect to its element 

locations but not with respect to their values. 

(v) A 1 and C are pi xl full vectors for i = 1, 2, ...,s. Ao +1 and  are full 

vectors of length q each. 
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3.2.1.2. Estimation of computation time for solving the matrix equation 

In this section, the sequential complexity of computing A W' from A iW' = z on 

a single processor is derived. Only floating-point add, multiply and divide operations are 

counted in obtaining the complexity results. Time spent in conditionals such as " if" state-

ments is neglected. Also, in order to get simpler expressions for computational complex-

ity, all the floating-point operations are assumed to take an equal amount of time t1. In 

practice, floating point add and multiply take more or less equal time in present-day com-

puters but divide takes almost twice as long as an add or a multiply operation. However, 

the number of divide operations in typical computations is much less than the number of 

additions and multiplications. Therefore, the error caused by this assumption is not very 

serious. Moreover, this thesis is more concerned with the ratios of computation times 

(such as speed-ups obtained by running algorithms on multiple processors as compared to a 

single processor) rather than absolute values of computation times. This further reduces 

the error caused by the above Iwo assumptions. 

Two methods for solving A A W" = z are given below and their computation times 

on a single processor are estimated. Since, matrices B1 and R1 are sparse, they are 

assumed to be sparse-stored and operated upon. This is done by storing the values of the 

non-zero matrix, elements only along with their position in the matrix by the use of index 

vectors. The td-diagonal portion is stored as three one dimensional full vectors one for the 

main leading diagonal and the other two for the sub- and super-diagonal. Matrix V is 

assumed to be stored as full because of the large "fill-in" of V to almost a full matrix dur-

ing the elimination process. 
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3.2.1.2.1. Direct method I 

In this method, matrix A is a triangularized into an upper triangular form by sparse 

forward elimination step of the Gaussian elimination method. At each step of the forward 

elimination procedure, the diagonal element akjC of A is taken as the pivot element and any 

non-zero element ak present below it is eliminated. Any other non-zero elements a1 

present in row i are modified as 

dij  aik [ akk ] - akf (3.3) 

After all the sub-matrices B1 have been eliminated in this fashion, matrix equation (3.2) 

assumes the form 

152 

0 LiO)s+i 

ti 

Cl 
(3.4) 

where 15i are now bi-diagonal submatrices having one leading diagonal and one leading 

super-diagonal. Each sub-matrix Pi has full columns of non-zero elements where ever a 

non-zero element existed in the first row of the original sub-matrix R,. Submatrix 'ci is 

now an almost full matrix. 

Matrix equation (3.4) can be broken down into the following set of matrix equations: 
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Ibi Awi+jA(0+i=j ,i = 1,2,..., s 

or 

A CD1 = (Di)-' [ - Al A co + }, i = 1, 2, ..., s (3.5) 

IV A = (3.6) 

Vector A o+ is first computed from (3.6) by Gaussian elimination after which vectors 

A o, i = 1, 2, ..., s can be computed from (3.5). In (3.5), (J)_1 is not computed expli-

citly due to reasons of computational efficiency. Rather the following matrix equation is 

solved by performing the back substitution since b is upper triangular (bi-diagonal) in 

form. 

151 A (Oi = - A, A I = 1, 2, ..., s (3.7) 

All elements of A W 1 have now been computed and we can proceed with the 

remaining computations for the time step t'. 

An estimation of computation time for solving A A W' = z on a single processor is 

nOw obtained as follows: 

Let 

tf= 

av = 

time for one floating-point operation 
(i.e. add, subtract, multiply or divide) 

- average number of non-zero elements in a non-zero row of 
Ri or non-zero column of B, i = 1, 2, ..., s (This is also 
equal to the average degree of an end node of a chain minus one) 

(i) Forward elimination of Bi and lower diagonal of D1, i = 1, 2, ..., s. 

In the forward elimination process, new non-zero elements are created in the rows 
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below the first non-zero row of R1 and in the same column positions.' Similarly new 

non-zero lemènts are created in the adjacent columns to the first column of B1 and 

in the same row positions. In other words, the first row of R1 and the first column 

of B1 duplicate themselves in their non-zero element positions although with different 

values of the non-zero elements. New non-zero elements are also created in matrix 

V due to the presence of non-zero elements in rows of R1. Elements of A below the 

• pivot row are modified according to (3.3). Similarly, elements of z below the pivot 

row are modified according to (3.3). In fact, the Gaussian elimination is carried out 

on the augmented matrix [A I z] of dimensions k x (k + 1) rather than matrix A. 

Elimination of first column of D1 (which has only one non-zero element just below 

the pivot element) involves one division, ( av + 2) multiplications and (nay +2) sub-

tractions. Therefore, computation time to eliminate first column of D1 is 

[l+(flav +2)+(flav +2)]tf =(2flav +5)t1. 

Elimination , of a non-zero element in the first column of B1 involves one division, 

('av + 2) multiplications and (av + 2) subtractions. There are a total of av non'-

zero elements in the first column of B1. Therefore computation time to eliminate the 

first column of Bi is 

n,,, [I + (n0 + 2) + (n + 2)] t1 

vav)'f 

There are a total of pi columns in Bi or D1 where pi is the length of the chain i. 

Therefore, the computation time to eliminate the first (pi - 1) columns of D1 and B1 

below the pivots is 
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(pi l)(2flav+5+2flf.+5flay)ti 

=(pi — 1)(2nav +7nay +5)t1 

When the last diagonal element of D1 is the pivot, there is no element below it in Di and 

there are 2 na, non-zero elements in the last column of Bi due to the creation of na, new 

non-zero elements in the last column of B1 in the previous elimination step. There were 

already na, non-zero elements in the last column of B1 in the original matrix B,. Similarly 

there are 2 na, non-zero elements in the last row of R1 as compared to n0 in the previous 

elimination steps. Therefore, computation time to eliminate the last column of B, is 

2flay [1+(2flay + 1)+(2 nay + 1)]t1 

(8fly+6nav )ti 

Hence, the total time required for the forward elimination of Bi and lower diagonal of D 

is 

(p - 1)(2n +5)t1 +(8 na? +6 nay) t1 

= p1 (2 fl + 7 n,, + 5) tf + (6 ?2a2, - av 5) tf 

The above estimation of computation time 'has not taken into account the overhead due to 

manipulation of pointers or indices for the generation of addresses for fetching the sparsely 

stored elementsof matrices B, and R. In typical sparse codes, the value of this overhead 

has been found to be substantial and is of the order of 100% of the actual floating-point 

operation count. 

Therefore, taking the overhead of pointer manipulation as 100% of floating-point 

arithmetic operation count, we have total computation time for forward elimination of B 
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and lower diagonal of Di equal to 

2pj(2 a + 7 fl, y + 5) t1 + 2(6 fly - av - 5) tf 

The total number of such eliminations is s for each B1, D1, i = 1, 2, ..., s, where s is the 

number of chains in the network. Therefore, total computation time for forward elimina-

tion of all B1 and lower diagonal of D• is 

S S 

1=1 1=1 

or, after substituting pi = (K - q) from (3.1), 

TI, = [(4 fl y + 14 nv + 10) (K - q) + (12 n,2, 2 av - lo)s] tf (3.8) 

(ii) Solution of A cb from cT A = This matrix equation is solved by full 

Gaussian elimination as the q x q matrix V is almost full. The pseudo code of the 

algorithm for the general matrix equation C x = b of order q is given in Fig. 3.5. In 

our case, C = V, x = A w+1 and b = L1. 

An estimate of computation time for Gaussian elimination is obtained as follows 

(refer to Fig. 35) 
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Forward Elimination Phase 

fork = lto(q-1)do 

for i = (k + 1) to q do 

c(i,k)  
temp— - c(k,k) 

b (i) = b (i) - temp x b (k) 

for  =(k + 1) to  do 

c(i j) = c(i, j) - temp x (c (k, j) 

end do {loop j} 

end do {loop i } 

end do [loop k} 

Back-Substitution Phase 

• (Now the matrix equation is of the form U x = g where matrix U is upper triangular in 

form) 

- gq 
Xq 

uqq 

for i = (q - 1) to 1 do 

for j = (i,•+ 1) to q do 

g(i)=g(i)—u(i,j)xx(j) 

end do {loop j } 

• X(i) = g (i)  
U (i, i) 

end do {loop i} 

Figure 3.5 Pseudo-code for the Gaussian elimination of C x = b. 
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(q-1) 
forward elimination time = E (q - k) {2(q - k) + 3}t1 

k=1 

I (q-1) (q-1) 
(q— k)2+3 Z (q_k)]t 

k=1 k=1 

= [2 {12 + 22+ + (q - 1)2} 

+31+2+ +(q_1)}]tf 

[  
6 2 j tf 

Since 12 + 22 + + n2=  n(n + 1) (2n + 1)  
6 

andl+2+ +n= n(n + 1) 2 

Therefore, 

forward elimination time = [2 3 q2 q + 2 - -7  j tf 

back—substitution time = 1 + {2(q - i) + 1} t1 

= [1+2{1+2+ +(q_1)}+(q_1)]tf 

- [q+2 (q— 2 1)qI 
- tf 

=q2 If 

Therefore, total time for Gaussian elimination is 
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[q3+j_q + q21 If 

or 

T1b= [ q3+} q2_iq] If 

(iii) Solution of vectors A Co1, i = 1, 2, ..., s from back-subtraction in (3.7). 

(3.9) 

Evaluation of x = ( - R A o)+,) involves ay multiplications and av subtrac-

tions per row for the first (p1 - 1) rows and 2 ay multiplications and 2 av subtrac-. 

tions for the last row. Assuming 100% overhead of sparse pointer manipulation, 

Computation time for evaluating - ki  A 

2[2nav (Pi - 1)+4nav] tf 

= [4 flavPi+ 4 flav]tf 

Matrices Ibi are upper triangular with one leading main diagonal and one super-

diagonal above the main diagonal. Evaluation of A 0')i from 1), A Co1 = x is done by 

back-substitution and involves only one division for the last element of A Co1 and one 

multiplication, one "subtraction, and division for the remaining (p - 1) elements. 

Therefore, time to compute A o from 15i A mi = x is 

[1+3 (pi — 1)]t 

=(3p- 2)t1 . 

Hence, total time for evaluating one A w1 is 
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[4 na, Pi + 4 na, + 3 p - 2  If 

= [(4 av + 3)p + (4 na, - 2)] 
If 

A total of s such evaluations are to be done for each i = 1, 2, ..., s. Therefore, total 

time to evaluate all A w, i = 1, 2, ..., s is 

± [(4 PRay + 3)p + (4 av - 2)] 
i=1  If 

or 

T1 = [(4 av + 3) (K - q) + (4 av - 2)s] If (3.10) 

Now the total time T1(matrix) to compute A Wh1+l from A A W'' = z on a single 

processor is the sum total of times TI, T1b and Ti0 given by (3.8), (3.9) and (3.10) 

respectively or 

T1(matrix) = Tia + T1b + T10 

= [(4 na2, + 14 na, + 10) (K — q) + (12 na2, — 2 na, — 10)s 

or 

+ - q3+j q2_. q +(4n0 + 3)(K — q)+(4n — 2)s 

TI(matrix) = [ q3+f q2 +(4n y + 18 na, + I3)(K—q) 

+(l2n+2nav _12)s_]rf 

(3.11) 

The break-down of total matrix solution time T1(matrix) for a number of network 
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examples given in Table 3.1 is plotted in Fig. 3.6 as a percentage of total matrix 

solution tihie !',(matrix). As can be seen from this plot, the total computation time 

is dominated by the time T1b. 

3.2.1.2.2. Direct method If (Block Gaussian elimination method) 

In this method, various submatrices of matrix A are treated as block sub-matrices 

throughout the solution process. The computational procedure is as follows [6]. 

Matrix (2.49) can be written in an equivalent form as a collection of (s + 1) lower-

order matrix equations involving block submatrices D1, B1, R1 and V, i.e., 

D, Aa + R1Ao 1=,i =1,2,...,s (3.12) 

$ 

B1Ao1+VAo +1 =•1 
1=1 

Equation (3.12) can be solved for vector A mi as 

or 

where 

A o = DI' - DI' R1 A coi i = 1,2, ..., 

Ate1=c1—EAte3+1, 1=1,2,..., s 

cj=DI'Cj,i=1,2...,s 

D1  R1, 1= 1, 2, ..., s 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Here C1 are (p1 x 1) vectors and E1 are (pi x q) matrices. After substituting A ci from 

(3.14) into (3.13), we have 
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Table 3.1 

Six network examples used in this thesis for studying the 
performance of algorithms. 

Network 
example 

Number of 
total links K 

Number of 
random links q 

Number of 
chains s 

Number of 
nodes N 

#1 50 15 3 45 

#2 100 30 5 90 

#3 200 60 10 180 

#4 300 90 15 270 

#5 400 120 20 360 

#6 500 150 25 450 

Average number of non-zero elements in a row of BL = av 2.0. 

Maximum number of non-sero elements in any row of B1 = nmX = 6. 

Average degree of a node connected to a random link = day = 3.0. 

Maximum degree of any node connected to a random link = dmax = 7. 

Maximum length of a chain in the network = pn = 20. 
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Figure 3.6 Computation times in the three stages of matrix equation solution by 
direct method I. 
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S 

B(c1—E1Aci 1)+VA 
i' 

or 

S S 

(V— BjEj) A (,),+I = •.,+j — Bi c 
i=1 i=1 

or 

where 

S S 

(V - G1) A (1)5j = (C5+1 - Z h1) 
i1 jrl 

(3.17) 

GB1E1,i=1,2,..., 8 (3.18) 

h, = B• c1, i.= 1,2,..., s (3.19) 

Here, Gi are (q x q) matrices and h1 are (q >< 1) vectors. Equation (3.17) can now be 

written as 

where 

Y A O+i = x (3.20) 

Y=V_ ;1 G1 

x= 5+11 h1 

(3.21) 

(3.22) 

The flowchart of computational sequence is given in Fig. 3.7. 

An estimation of computational time for solving A A o = z by block Gaussian elimi-

nation method can be obtained as follows. 
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START 

1 

Compute ci from (3.15), i.e., D1 ci = , i = 1, 2, , s 

Compute E1 from (3.16), i.e., Di E1 = R1 , i = 1, 2, ..., s 

Compute hi from (3.19), i.e., hi = B. c , i = 1, 2,  

Compute G1 from (3.18), i.e., Gi = B1 E1 , i = 1, 2, ..., s 

Compute x from (3.22), i.e., x = - hi 

Compute Y from (3.21), i.e., Y = V - Gi 

Compute Ao +1 from (3.20), i.e., Y x 

Compute Ao from (3.14), i.e., Acoi = C1 -  Ej  A o.41 , i = 1, 2, ..., s 

4. 
STOP 

Figure 3.7 Flow chart for computing A W'' from A A W'+1 = z by direct method 
H (block Gaussian elimination method) 
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(i) Computation of vectors c, from c, = DI' , i = 1, 2, ..., s 

In this computation, the inverse of Di is not computed explicitly. Rather, a system 

of equations D1, c, = j is solved for ci by Gaussian elimination which is more 

efficient than computing the inverse of D.. 

Let us now consider the solution of a general system of tridiagonal equations. 

T x = b of order n by L U factorization. In this method, matrix T is written as a product 

of two matrices L and U where L is lower-triangular and U is upper-triangular in structure. 

Hence, 

LUx=b 

L g=b 

and 

(3.23) 

Ux=g • (3.24) 

Therefore, if the L and U factors of T are known, vector x can be obtained by first 

computing intermediate vector g from (3.23) by forward substitution and then computing x 

from (3.24) by back substitution. One form of L U factors also known as "Crout reduc-

tion" [35] is given by 

tll t12 

t21 t22 t23 

t32 t33 t34 

ni ,n-2 ni,ni n 1,n 

tn,n_i tn,n 
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ill 

121 '22 

1n,n-1 1n,,z 

1 U12 

1 U23 

By equating the corresponding elements on both sides of the above matrix equation, we 

have the following recursions: 

11 = tll , U12 t12/1 11 

li,i-1 = t1 ,1_i , i = 2, 3, ..., 

Iij = tjj - 1ii-1 , , i =,2) 3, ... 

= tll11 , i = 2, 3)  ..., ii - 1 

(3.25) 

Therefore, operation count for obtaining L U factors is 

1 + 2(n - 1) + (n - 2) 

—(3n-3) 

The intermediate solution vector g is obtained from (3.23) by the following equations 

obtained by forward substitution. 

b1 

- (b1 - 1i,i-1 g_1)  
g1 — 

Operation count for obtaining g is 

(3.26) 
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l±3(n — 1) 

=(3n-2) 

The final solution x is recovered from (3.24) as 

x=g 

Xi = gj - u, +i xi+i i=n_1,n_2 .... 1} 
(3.27) 

Operation count for backward substitution to obtain vector x is 

=2(n— l) 

Therefore, total operation count to solve T x = b for vector x is 

(3n —3)+(3n —2)+2(n — 1) 

= (8n - 7)' 

If t1 is the time for one floating-point operation, then total computation time is 

(8n - 7) t1. In our case, n = pi and therefore, time to compute all ci vectors is 

3 

(8p1-7)t 
1=1 

or 

Tia = [8(K — q)-7s] tf (3.28) 

(ii) Computation of matrices Ej from Ej = DT' R1 , i = 1, 2, .., s 

As was done in computing c, Ej are computed by solving the matrix equation 

DE1=R 

However, the L and U factors of DL have already been computed while computing 

Ci in part (i) and need not be computed again. Therefore, only forward and 
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backward substitutions as given by (3.23) and (3.24) are to be performed for each 

right hand- side column of R. Only the first and last rows of R1 have non-zero ele-

ments in them. Assuming the average of ay non-zero elements in the first row and 

the same number in the last row of R1, at most 2 aV number of columns of Ri will 

have a non-zero element in them. Rest of the (q — 2 av) columns of R, are null-

vectors, i.e. have only zero elements in them. Therefore, the matrix equation is to be 

solved only for those columns of Ri which have a non-zero element in them. The 

matrix solution is a null-vector for those columns of Ri which contain all zeros since 

they give rise to a homogeneous system of equations which have a null-vector as a 

solution vector [36]. As an example, consider 

X 00 X  0 

000000 

R=o 6 0 0 0 0 

000000 

0 0 0 0 0 x 

where " x " denotes a non-zero element. 

The matrix equation DE1 R1 has to be solved only for the first, fourth and last 

column of R•. The solution will be a null-vector for the remaining three columns of R. 

For those columns of R1 which have a non-zero element in the first row position and 

remaining zeroes (such as column one or four in the above example), (3.26) for forward 

substitution are modified as 
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b1 
91 4 

ii 

81 = - 
11,11 

lii 
g1i , 

Therefore, computation time for one forward substitution is [1 + 2 (n - 1)] t1 

=(2n- 1)t 

Equations (3.27) for backward substitution do not change in this case. Time for 

backward substitution is 2(n - 1) t1. Therefore, total solution time is 

(2n - 1 + 2n - 2) tj 

=(4n- 3)t1 

In our case n = pi and n0 such equations are to be solved. Therefore, the total computa-

tion time for n such vectors of R1 is 

flav(4 P1 3)tf 

For those columns of R1 which contain a non-zero element in their last row, (3.26) and 

(3.27) are modified a. 

g1=O , i1,2,...n-1 

xn = gn 

xi = —u, +i xi+i , i = n - 1, ..., 1 

Total computation time for n0, such vectors of R1 is 
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1'Zav pi If 

Therefore, total time to compute Ej is n., (5 p - 3) t1. Hence, total time to compute all 

S 

E, j = 1,2,..., s is n,, (5p 3) tf 
i=1 

or Tj=[5ny(Kq)_3nys]tf (3.29) 

Matrix E1 for the example matrix R• discussed previously, will have the following 

form 

(iii) Computation of hi from hi = B; , i = 1, 2, ..., 

There are av non-zero elements in the first column of Bi and the same number of 

non-zero elements in the last column of B•. The rest of the columns of BI are all zero. 

Taking 100% over-head for sparse operations, 

the total computation time for computing all h1 is 

± 2(flav +nav )tj 

or 

i=1 

T1c4flavStf 

There will be 2 ay non-zero elements in the vector h•. 

(3.30) 
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(iv) Computation of Gi=B1 E , i = 1,2,..., s: 

A total of 2 nov columns of each Ej are full vectors. The rest of the columns are 

null-vectors. Therefore, matrix Gi will have 2 n non-zero columns with 2 n0 non-zero 

elements per column. The rest of the columns of G• will be null-vectors. Moreover, G, 

will be symmetric with respect to the position of non-zero elements. For the example 

matrix Ri of section (ii), since the structure of Bi is the transpose of that of R1, we have, 

Gi = BE 

x 0 0 0 0 

00000 

00000 

x 0 0 0 0 

00000 

0 0 0 0 x 

xoo x  x 

000000 

000000 

xooxox 

000000 

xooxox 

Taking 100% overhead for sparse operations, total time to compute all Gi matrices is 

or 

S 

2 [(2 n0 ) n0 + (2 nov) n0 ] t1 
i=1 

Tld=8nfsIf (3.31) 
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(v) Computation of vector x = - h• 

2 nov elments of h1 are non-zero. Taking 100% overhead due to sparse computa-

tions, time to compute all h• is 2(2 n) tf 

or Tie =4n0v 5t1 

(vi) Computation of Y from Y = V - G 

(3.32) 

Matrix G1 has 2 n non-zero columns with 2 nov non-zero elements per column. 

Therefore, total time to compute Y is Y, 2(2 n) (2 n) t1 

or T1f=8nstf (3.33) 

(vii) Computation of vector A from Y A cO = x 

This is done by normal Gaussian elimination as described in section 3.2.2.1. The 

computation time is given by (3.9). Therefore, time to compute A co + s 

[ q3+q2_ q]tf 

33 or Ti&= [-31  + q2_q]tf (3.34) 

(viii) Computation of  coi from A wi = c -  Ej  A co, i = 1, 2, ..., s 

Matrix Ej has 2 n number of full column vectors and the remaining (q - 2 n0 ) 

columns are null vectors. Therefore, computation of one element of A (Oi requires 2 n0, 

multiplications and 2 n0 subtractions. Taking 100% overhead for sparse index 
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manipulations, 

total time to compute all A Co1 is 2(2 ay + 2 n) pi tf 

or T1 =8n(K—q)tf (3.35) 

• Now the total time to solve the matrix equation A AW' = z for A W'' will be the sum 

of all the above computation times, i.e. 

or 

or 

T1(matrix) = Ti,, + Tib + T1 + Tld + Tie + T11 + Tig + Tlh 

T1(matrix) = [8(K - q) - 7s + 5 nV (K - q) - 3 1Z y S + 4 fl, s 

+8flS+4flav S+8flS 

+q3+ f q2_ q 

+ 8 nv (K - q)} t1 

2 3 3 2 T1(matrix)=[--q + j.+(13nav +8)(K— q) 

(3.36) 

+(l6na2y+5nav _7)s _i q]t1 . 

A comparison of these two methods with respect to the processing times for solving 

A AW = z, i.e. eqns. (3.11) and (3.36) for a number of network examples is shown in Fig. 

3.8. The number of random links in the network has been taken to be 30% of the total 

links in the network which is typical of nuclear plant hydraulic networks [37]. As can be 

seen from Fig. 3.8, both methods take about the same time for large networks. 
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3.2.2. Estimation of processing time for the remaining computations 

In this section, an estimate of processing time for the remaining computations (after 

getting A W' from (2.40)) is obtained. Since the number of critical links in a network is 

usually very small as compared to non-critical or normal links, computation time required 

to obtain flow rates in the critical links has been neglected. The flow chart for these com-

putations (after computing AWt+l) is given in Fig. 39 

Let 

day = 

N0 = 

average degree of a non-chained node in the network 

Total number of nodes of degree 2 (i.e. chained 
nodes) in the network 

N,. = Total number of non-chained nodes in the network 

Now the total number of chained links in the network = (K - q). Therefore, 

and 

or 

N0 =(K — q —s) 

N.  N— N0 

N=(N—K+q+s) 

(3.37) 

(3.38) 

An estimate of computation time for the computations given in flow chart of Fig. 3.9 

can now be obtained as follows: 

1. Computation of A Uf' , i = 1, 2, ..., N from (2.55): 

Computation of A U1 1 for a node of degree 2, i.e. chained node, requires three mul-

tiplications and two additions. Therefore, computation time for computing A U' 
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Compute the following at time step t72 : 

i = 1, 2, ..., N {from (2.55) and (2.56)} 

Wkn  

,N 

Mr'= Min +AMr',i= 1,2, , N 

ur' = n+l , i = 1, 2, , N f ui is the specific internal energy of node i } 

Vi  
1 1 j = 1, 2, , N {vj is the specific volume 'and Vi is the volume of node iMr  

fl+l {from (2.6)} 

H?+l = ur' + Pp+' =1,2, 

i = 1, 2, ,N {from steam tables} 

k = 1, 2, , K {from right—hand side of (2,2)} 

fK+i , i = 1, 2, ', N {from right—hand side of (2.4)} 

fK+N+ , i = 1, 2, , N {from right—hand side of (2.5)} 

afk aft afk afk 
aM ' amj  , k = 1, 2, , K {by differentiating right—hand side of (2.2)} 

zk , k = 1, 2, ..., K {from (2.57)} 

k = 1, 2, , K {from (2.58)} 

akV , k = 1, 2, , K {from (2.59)} 

Figure 3.9 Flow chart for the remaining computations in the Porsching's Algorithm. 
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for all the chained nodes is 

5Nt1 

=5(K—q—s)tf 

Computation of A Ur4 for a non-chained node requires (day + 1) multiplications and 

day additions/subtractions. Therefore, computation time for computing A Ur' for all 

the non-chained nodes is 

(2dav +1) Nn, tf 

(2dav +1)(NK+q+s)t1 

Hence, total computation time for all A U1' is 

[5K— q S)+(2dav + l)(N—K+q +s)]t1 

2. Computation of A Mf',i = 1, 2, ..., N from (2.56): 

Computation time for all AM'' is 

[3(K—q—s+(d+1)(N—K+q+s)Jt1 

3. Computation of W 1 = W + A wr', k = 1, 2, ..., K: 

computation time is K tf. 

4. Computation of UJ''= U/ + A jr', i = 1, 2, ..., N: 

computation time is N tj. 

5. Computation of M'= M + A Mn', i = 1, 2, ..., N: 

computation time is N tj. 
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6. Compuation of u1 = --  1, 2, ..., N: 

computation time is N t1. 

7. Computation of v' from v 1 Mp•' i = 1, 2, ..., N: 

computation time is N tf. 

8. Computation of Pi from (2.6): 

computation time is N T t1. 

where 7.', .tf = average computation time to compute pressure at a node from steam 

tables. 

9. Computation of Hr' = uP+l + p12+1 v', z — - 1, 

computation time is 2 N tf. 

api 10. Computation of ap Dui—, -- , i = 1,2,..., N: 

computation time is N (Tdp + Tdpm) tf. 

where, Td t1 = time to compute one 
DUj 

Pi 
Td tf = time to compute one 
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11. Computation of fk, k = 1, 2, ..., K from right-hand side of (2.2): 

IAk I(fr)k Lk  - 
The constants - I I I, and (g Zk) are computed only ohce in the 

LLkJ L2 Dk 2 Ak J 

initialization step and not at every time-step. Therefore, these operations will not be 

counted. 

computation time is 8 K t1. 

12. Computation of fK+j , i = 1, 2, ..., N from the right-hand side of (2.4): 

computation time for the chained nodes is 4 N tf = 4(K - q - s) tf. 

computation time for the non-chained nodes is 2 d N,, tf 

2dav (N — K +q +s)tf. 

Total computation time for allfK+l is [4(K — q S)+2dav (N — K +q ±s1 tf. 

13. Computation of fK.+1 , I = 1, 2, ..., N from the right-hand side of (2.5): from 

(2.5), 

total computation time for all fK+ is [(K - q - s) + 

(day - 1)(N — K +q +s)] tf. 

a!k afk 
14. Computation of .- , .- , k = 1, 2, ..., K: from right-hand side of (2.2), 
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fk - k ]  Pi 

- [Lk aU 

afk - Ak ] DPJ 

•Uj -  Lk DUj 

api ap. 
The derivatives -- , -- have already been computed in step 10. 

(JLIj (.F(Jj 

Therefore, computation time is 2 K tf. 

afk afk 
15. Computation of -ç- --- , k = 1, 2, ... K: 

From the right-hand side of (2.2), 

for a positive flow in the link k, 

fk 

ami 
IAk I r r )k Lk vi Wk g A Zk  
L i L + 2 Dk A2 ] M 2 [ 1] 

fk - Ak ] IPI 

ami -  Lk ami 

for the negative flow in the link k, 

a! 
aM 
I At 1 ap 
LLk j aM 

a!k VAk dl' v1 Wk Wk A Zkami ] I + [ (fr)k Lk 2DkA ]  M12 [g v 
In either case, computation of each --- , -i--- pair requires six multiplications and two 

WVIj 
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additions/subtractions. Constant terms within the small brackets are computed only once in 

the initialization phase and not at every time-step. 

Therefore, total time is 8 K tf 

16. 

Computation of zk , k = 1, 2, ..., K from (2.57): 

All the functions and derivatives in (2.57) have been computed in the previous steps. 

h2 is computed in the initialization step. 

computation time to compute all zk is 9 K tf 

17. Computation of a , k = 1, 2, ..., K from (2.58): 

Except for DWk •Lk all the other derivatives have already been computed in the previ-

ous steps. Now from the right-hand side of (2.2), 

a!k I A (fr)k Lk Wk 

5w;- - [-7; Dk Aj J Pk 
The term within the brackets is constant and is computed only once at the time of ini-

tialization. 

computation time to compute all akk is 11 K tf 

18. Computation of akV , k = 1, 2, ..., K from (2.59): 

Number of chained links connected to nodes of degree two is equal to (K - q - 2s). 

Each such link gives rise to two akV elements of matrix A, i.e. a_1 , 
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corresponding to two neighbouring links (k - 1) and (k + 1) of link k. Therefore, 

total number of akV elements due to these links = 2(K - q - 2s). Each end link of a 

chain gives rise to day number of akV elements and there are 2s such links. There-

fore, total number of akV elements due to end links of chains is 2 day s. Finally, 

there are q number of random links in the network. On an average, each end of a 

random link is connected to a node of degree d,. 

Therefore, number of links which share the two end nodes of a random link is 

(day - 1) +  

=(2d-2) 

Therefore, the number of akv elements due to all the random links in the network is 

(2 day - 2)q. 

Hence, the total number of akv elements in matrix A is 

2(K— q 25)+2dav S +(2 day 2)q 

2K+(2d v 4)(q+s) 

Now from (2.59), computation of each akv requires 3 floating-point operations assuming 

link v is not a parallel or bypass link to link k. 

Therefore, total computation time to compute all akv is 

3 [2K +(2d,, — 4)(q + s)Jtf 

6[K + (day - 2) (q + s)] tf 

Now the total time to perform all the above computations is the sum, total of computation 

times in steps 1 through 18. 
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Figure 3.10(a) Computation times on a serial computer versus network size (number of 
links). 
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Hence, total computation time other than the matrix solution time 

T1(rest) = [(57 - 6 day)K + (6 day + TP + TdP, + Td pm + 

+(12dav24)(q+s)]tf 

Taking Tdpu = Tdpm = T = 25, 

T1(rest) = [(57 - 6 dav )K + (6 day + 82)N 

+ (12 day - 24) (q + s)] If 

(3.39) 

(3.40) 

The total computation time per time-step will be the sum of time T1(matrix) to solve the 

matrix equation as given by (3.11) or (3.36) and the time T1(rest) as given by (3.40) to 

perform the rest of the computations. 

Therefore, T1(total) = T1(matrix) + T1(rest). 

The total computation time T1(total), matrix solution time T1(matrix), and the compu-

tation time T1(rest) for performing the rest of the computations are plotted in Figs. 3.10(a) 

and 3.10(b) as a function of the size of the problem. As can be seen from Fig. 3.10, the 

total computation time is dominated by the matrix solution time for large size problems. 

Therefore, it is important to compute the solution of the matrix equation 

A W1+l = z efficiently on a single processor system as well as by parallel processing on 

a multiple processor system. The performance of the algorithms on multiple processors is 

discussed in Chapters 5 and 6. 



CHAPTER 4 

SELECTION OF A SUITABLE ARCHITECTURE FOR PARALLEL COMPUTATIONS 

4.1. Introduction 

In order to determine the complexity of a sequential algorithm for implementation on 

a serial computer, it is only necessary to count the number of floating-point operations 

involved in the algorithm and therefore a knowledge about the architectural aspects of the 

computer on which the algorithm will run is not required. However, this is not so for 

determining the complexity of a parallel algorithm. Here, total computation time is deter-

mined not only by the way the problem is partitioned or parallelized and the floating-point 

operations involved in the parallel algorithm but also by the communication and synchroni-

zation overhead involved which does not exist in the case of sequential algorithms. In 

order to determine this partitioning and the communication and synchronization overhead, 

one has to have some knowledge, at least at the abstract level, , of the architecture of the 

parallel computer on which the problem is to be solved. This is also necessary for the 

optimal design of the parallel algorithm such that it can exploit all the good architectural 

features of the parallel computer and at the same time also takes into account the various 

constraints of the parallel architecture. Otherwise, the performance of the algorithm may 

be very poor due to loss of parallelism and increased communication and synchronization 

overhead despite the high amount of inherent parallelism in the problem. For the purpose 

of choosing a suitable parallel architecture for our problem, this chapter first describes 

some of the important features of parallel architectures using Flynn's classification scheme 
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[38,39]. This is followed by a brief description of interconnection networks used by these 

parallel computers. Finally, a very simple but useful model of parallel computation is 

chosen for our problem and its architectural implementation is described in some detail. A 

brief discussion about the proper choice of number of processors to be used in solving a 

problem is also given. 

4.2. Taxonomy of Parallel Computers 

Of all the classification schemes for parallel computer architectures [38-42], Flynn's 

taxonomy [38,39] is the most commonly used in literature. Flynn characterized the con-

currency of data operation with respect to instruction streams by dividing architectures into 

four categories based on the number of instruction streams and the number of data streams. 

Single (SI) or multiple (Ml) instruction streams are combined with single (SD) or multiple 

(MD) data streams to form four architectural categories: 

(i) Single-instruction stream single-data stream (SISD) 

(ii) Single-instruction stream multiple-data stream (SIMD) 

(iii) Multiple-instruction stream single-data stream (MISD) 

(iv) Multiple-instruction stream multiple-data stream (MIMD) 

SISD computer organization: 

In SISD computer organization, instructions are executed sequentially but may be 

overlapped in their execution stages, i.e. may be pipelined. There is only one control unit 

(CU) and one processor unit (PU) which may have more than one functional unit in it. 

This is the conventional serial von Neumann computer and represents most serial comput-

ers built in the past. Examples are: IBM 7090, CDC 6600, VAX 11/780. 
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SIMD computer organization: 

This computer organization has a single control unit and hence, a single stream of 

instructions acting on multiple streams of data called vectors. Each element of the vector 

is a member of a separate data stream. This classification by Flynn includes all machines 

with vector instructions. 

There are two further sub-classifications of SIM]) computers [38]: Pipe-lined vector 

computers and processor arrays. Examples of pipelined vector computers are Cray-1 and 

Cyber-205. Processor arrays have multiple processing elements (PEs) supervised by the 

same control unit. All PEs receive the same instruction broadcast from the control unit but 

operate on different data sets from distinct data streams. Examples of processor arrays are: 

ILLIAC IV [43,44], ICL's Distributed Array Processor (DAP) [45], Goodyear Aerospace 

Massively Parallel Processor (MPP) [46], and the Connection Machine [ 12] from Thinking 

Machines Inc. 

MISD computer organization: 

In this organization, there are n instruction streams operating on a single data stream. 

This organization seems to be of no practical importance and no real implementation of 

this architecture exists at present. 

MIMD computer organization: 

Here, each processor executes its own stream of instructions and the data communica-

tion among the processors is either by message-passing or via shared memory. If the data 

communication is by message-passing, the resulting MIMD architecture is termed as 

"loosely coupled" as shown in Fig. 4.1(a). On the other hand, if the processors communi-
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cate via a shared memory, the resulting architecture is termed as "tightly coupled". Most 

multiprocessors belong to this category. Two further sub-classifications of tightly-coupled 

multiprocessors can be made. In one case shown in Fig. 4.1(b), the processors have no 

local memory. They fetch their instructions and data from the shared memory. This struc-

ture is suitable only if the number of processors is small. An example of this class ofmul-

tiprocessors is the supercomputer Cray-XMP with 2 or 4 processors. In the other case 

shown in Fig. 4.3(c), processors have their own local memories for storing their programs 

and local data and only shared variables are stored in the shared memory. This has the 

effect of significantly reducing the data communication traffic on the interconnection net-

work resulting in an improved multiprocessor performance. Almost all large multiproces-

sor systems have local or cashe memories associated with their processors apart from 

shared memories. Most of the current research effort is being directed to develop this class 

of parallel computers because of their greater flexibility to solve a wider variety of prob-

lems than is possible with SIMD computers. MIMD-type parallel computers built in the 

past or presently being built for research purposes are: C.mmp [47], Cm* [48], Siemens 

SMS2O1 [49], Denelcor HEP [50], Ultracomputer [25], PACS (51], Cedar [52], Hypercube 

[24], BBN Butterfly [53] and IBM RP3 [54]. Of the above, SMS-201, PACS, and Hyper-

cube are based on the message-passing model for data communication and can, therefore, 

be classified as loosely-coupled MIMI) multi-computers. The rest of the above MIMI) 

computers employ the shared-memory model for data communication among the processors 

and can, therefore, be classified as tightly-coupled multiprocessors. 

The above classification scheme covers most of the parallel computers employing a 

von-Neumann model of computation although classification for some of the architectures 

may not be as clear-cut. For example, systolic/wavefront-type architectures may employ 
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both multiprocessing and pipelining. Another parallel architecture which cannot be 

classified under the above scheme is the data flow computer [55] which does not have the 

concept of data streams or instruction streams. Instead, computing nodes containing 

instructions fire as soon as their input data becomes available [55]. 

43. Selection of an Architecture 

Of all the architectures described above, MIMD type of architecture is most suitable 

for our problem. SISD type computers, i.e. the usual serial computers, are too slow. 

MISD type computers do not exist. This leaves us with the choice of SIMD- or MIMD-

type parallel computers. In the following, it is shown that SIMD architecture is not very 

suitable for our problem which has a sparse structure and, therefore, does not give rise to a 

highly vectorized code with long vectors. 

43.1. Unsuitability of SIMD computers 

There are two sub-classifications of S1MD computers: processor arrays which are 

operated in a lock-step manner by the single control unit, and the vector computers which 

operate on vectors in a pipe-lined fashion. 

Processor arrays, such as, ILLIAC IV, ICL DAP employ a two-dimensional array of. 

identical processors connected in a nearest-neighbourhood mesh manner. All the proces-

sors perform the identical operation such as a multiplication on their own operands in a 

lock-step manner. They are, therefore, suitable for highly-structured computations as are, 

for example, encountered in the low-level image processing algorithms. 

Vector computers are suitable for problems which give rise to vector operations with 

very long vector lengths. For short vectors or for scalar operations, their performance 
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becomes very poor as compared to their peak vector performance. This can be seen by 

carrying out the following analysis [ 15] for the "add" pipe-line shown in Fig. 4.2. 

Let 

t = clock period 

L = length of the add pipe 

A,B= Nxlvectors 

st = overhead of starting the pipeline computation 

The operation to be performed is the addition of two vectors A and B of length N 

each. The operation of adding two scalar numbers is carried out in L stages as shown in 

Fig. 4.2. The time to fill the pipeline with operands is L r. Therefore, time to add first 

two elements of vectors A and B is (s 'r + L t). After the pipeline is filled, one element 

of resultant vector C comes out of the pipeline every clock cycler. Therefore, the remain-

ing (N - 1) elements of resultant vector C will take (N - 1) t time. 

Hence, total time to add two N xl vectors on a pipelined computer 

tp11,e = St + Lc + (N - 1)'r 

On a serial computer without any pipelining, this time will be 

T=LtN 

(4.1) 

(4.2) 

The speed-up which is defined as a ratio of time taken on a serial computer to time on a 

pipelined computer is given by 
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speed—up = tserial = LtN  

tpipe s'c+L'r+(N—l)'r 

=  LW  -  L  
s+L+(N—l) (s+L)(N—l)  

N N 

(4.3) 

only when N —p co (very large N), the speed-up tends to the ideal value of L. This is so 

because the overhead of starting the vector operation and filling the pipeline becomes 

negligible as compared to the actual computing time of the resultant vector C. 

The performance of the CDC Cyber-205 vector computer for adding two vectors of 

length N is shown in Fig. 4.3 as a function of the vector length N. As can be seen, the 

performance of the vector computer for vectors of length 100 is only 50% of the peak per-

formance. It is much smaller for vectors of shorter length. Hockney [ 15] defines a param-

eter nth to denote half-performance vector length required to achieve half the maximum 

performance. Since our problem does not give rise to very long vectors, the performance 

of the algorithm on a vector computer will not be very satisfactory. 

Another point to be noted is that some stages in an algorithm may vectorize to long 

vectors while the remaining stages may not be vectorized at all. As shown below [56], the 

overall performance of the algorithm in such a case is determined by the slower scalar por-

tion of the algorithm rather than the faster highly-vectorized portion of the algorithm. This 

is a direct consequence of the Amdahl's law as discussed in section 4.7 of this chapter. 

Let 

F Iar = 

Fvtor = 

fraction of the total computations that 
can be processed in scalar mode only 

(1 - F j) = fraction of the total computations that 
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Siar = 

S vector = 

Seff = 

can be processed in vector mode with long vectors 

speed of the vector computer for scalar operations 

speed of the vector computer for vector operations 

effective speed of the vector computer for 
solving the complete problem 

Then, the total computation time T is proportional to 

Ta Fsiar + Fvor = 

5 scalar Svr Seff 

For example, for CDC Cyber-205 [56], 

Sscalar = 

S vector = 

3.3 MFLOPS (millions of floating-point operations 
per second) 

100 MFLOPS (Single pipe) 

(4.4) 

Even if 75% of, the algorithm code is vectorized to long vectors with 

5vect0r = 100 MFLOPS , the overall MFLOP rate Se çç obtained is given by 

1 0.25 + 0.75 
Seff - 3.3 100 

or 
Seff = 12 MFLOPS 

which is much closer to S,.Iar than to Svor Therefore, the above two factors, namely, 

shorter vector lengths and the presence of slower scalar computations in the workload, are 

mainly responsible for vector computers not being suitable for unstructured problems such 

as our network problem. 
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The performance of MIMD-type computers, on the other hand, does not depend upon 

the ability to vetorie the computations completely. Rather, it depends upon the ability to 

suitably partition the problem is such a manner that processors share the computational 

load as equally as possible with a minimum of interaction among themselves during com-

putations. Therefore, this mode of parallel computation is quite suitable for unstructured 

problems as long as proper partitioning of the algorithm among the processors is possible. 

A slight variation of the true MIND operation known as quasi-MIMD mode has been 

chosen for our problem and is described in section 4.6 of this chapter. 

4.4. Interconnection Networks 

Interconnection networks play an important role in the performance of parallel com-

puters. They can be broadly classified as regular and irregular networks as shown by the 

classification scheme given in Fig. 4.4 [57]. Only regular networks are important from the 

point-of-view of parallel processing. Regular network topologies are further subdivided as 

static or dynamic. In a static topology, links between two processors are dedicated and 

cannot be reconfigured for direct connections to other processors. On the other hand, links 

in the dynamic category can be reconfigured by setting the network's active switching ele-

ments. 

4.4.1. Static network topologies 

Examples of a few static networks are shown in Fig. 4.5. In this figure, circles, 

represent the processors and lines represent the dedicated communication links between 

them. 
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Figure 4.5 Examples of static network topologies 
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Although drawn differently, the topologies of time-shared bus shown in Fig. 4.5(a) 

and star shown in Fig. 4.5(d) are quite close to each other. Except for the time-shared bus 

and the complete connection topology [Fig. 4.5(h)] the performance of these regular net-

works depends upon the structure of problem being solved. If the problem structure 

exactly matches with the network topology, the performance of the algorithm will be very 

good due to low communication overhead. On the other hand, if the two structures do not 

match well, the performance of the algorithm may be quite poor. For example, the near-

neighbourhood mesh topology shown in Fig. 4.5(f) is ideally suited to certain low-level 

image processing algorithms such as smoothing for noise removal because the network 

architecture matches exactly with the problem structure. This network is also suitable for 

certain matrix problems due to local communication patterns involved in the algorithms. 

However, the same network architecture will not be suitable for problem requiring global 

communication. For this network, for example, the ratio of communication times for com-

munication between the processors farthest apart and between the two nearest processors is 

2W where N is the total number of processors in the network. Furthermore, there may 

also be problems of contention over the use of dedicated links when heavy non-local com-

munication patterns occur which further increases the communication overhead. 

Similarly, the tree topology, shown in Fig. 4.5(e), is suitable for certain sorting and 

searching algorithms which take O(1og2 N) time on this architecture including the commun-

ication time. However, if an algorithm involves heavy global communication patterns, the 

performance of the algorithm may be quite poor due to saturation occurring at the root of 

the tree since much of the global communication may have to pass through the root node. 
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Another static network topology is the complete connection network as shown in Fig. 

4.5(h). Performance-wise, this topology has the lowest communication overhead as there 

is a complete connection among the processors, i.e. each processor is connected to every 

other processor in the network by a separate dedicated link. However, from the point-of-

view of hardware cost, this network is one of the most expensive, particularly for large 

networks due to its 0(N2) cost-dependence on the number of processors N in the network. 

Therefore, complete connection is used only when the number of processors is small, say 

less than ten or so. 

The final example of static networks is the binary ncube or hypercube [24] shown in 

Fig. 4.5(i). Each processor in this topology is connected to n of its nearest neighbours 

corresponding to n (- log2N) independent directions or axes in the hypercube where N is 

the total number of processors or nodes in the network. This architecture is ideally suited 

for certain problems such as FF1' computations since the data topology in FFT butterfly 

(combination of two data elements at a FF1' butterfly node which differ only in one bit 

position in the binary representation of their addresses which corresponds to a dedicated 

direct link between the processors in the binary n-cube) matches exactly with the network 

topology. For non-local communications, the data has to be routed through the intermedi-

ate nodes. The maximum distance between any two nodes in the network or the diameter 

of the network is log2 N which is better than the near-neighbourhood mesh (dia = 2I) 

but worse than the time-shared bus (diameter = 1). The hardware complexity of the net-

work grows as 0(N log2 N) which is better than the 0(N2) complexity of complete connec-

tion network of Fig. 4.5(h). I/O port complexity of each node grows as 0(10g2 N). 
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It is to be noted that if the problem structure does not exactly match with the network 

topology, such as a 'tree, mesh or hypercube, an attempt can be made to assign the compu-

tational modules of the problem in such a way that pairs of modules that communicate 

with each other are placed, as far as possible, on processors that are directly connected. 

This assignment of modules to processors is called mapping and the problem of maximiz-

ing the number of pairs of communicating modules that fall on pairs of directly connected 

processors is called the mapping problem [58]. The problem of finding the best mapping 

is, in general, very difficult. It has been shown [58] th be equivalent to the graph isomor-

phism problem which is one of the classical unsolved combinatorial problems and also 

equivalent to the problem of bandwidth reduction of sparse matrices which is also known 

to be NP-complete. Moreover, the best mapping from the point of view of least communi-

cation overhead may not be the best mapping from the point of view of load-balancing 

among the processors. 

In connection with the mapping problem, it is important to make a distinction 

between the problem structure and its parallel algorithm data communication structure. In 

general, it is the algorithm communication structure which is to be mapped on the network 

topology and not the problem structure. In some cases, the problem structure and its algo-

rithm communication structure may be the same. However, in general, it will not always 

be the case. For example, in the parallel version of the Porsching's algorithm for the 

numerical integration of hydraulic networks as discussed in Chapter 5, the algorithm com-

munication structure for computing the elements of matrix A and vector z is very close to 

the problem structure, i.e. the network structure. However, the data communication struc-

ture for solving the matrix equation A A W' +1 = z involves a series of data broadcasts 

which is not related to the problem structure at all. 
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Except for the time-shared bus and the equivalent star topology (which are suitable 

for shared-memory as well as message-passing models of computation), the remaining 

static network topologies shown in Fig. 4.5 are suitable only for the message-passing 

model of parallel computation. 

4.4.2. Dynamic network topologies 

Dynamic networks can be further classified as single-stage, multi-stage and cross-bar 

networks as shown in Fig. 4.4. 

4.4.2.1. Single-stage networks 

A single-stage network is composed of a stage of switching elements cascaded to a 

link connection pattern. An example of a single-stage network is the shuffle-exchange net-

work [59], based on a perfect-shuffle connection cascaded to a stage of switching elements 

as shown in Fig. 4.6 for N = 8. In this figure, the squares numbered 0, 1, 2, ..., 7 are the 

processors and the squares numbered SEO, SE1, SE2, SE3 are the switching elements. The 

single-stage network is also called a recirculating network because data items may have to 

recirculate through the single-stage several times before reaching their final destination. 

The "perfect shuffle" operation is given by 

f(s 1s2 s)=>s2s3 s,s 1 

where s, • is the binary representation of the processor number. In other words, 

the perfect shuffle operation is the same as the left rotate operation on the binary address 

of the processor. 

The "exchange" function is given by 
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Figure 4.6 Stone's shuffle-exchange network for N = 8 
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E(s 1 s2 s,_1 s) => s1 s2 s,_1 

This interconnection network has been shown [59] to be suitable for FFT computations and 

matrix transposition. However, for certain connections, the network has to go through 

many cycles to complete the required connection. For example, three network cycles are 

required to connect processor no. 1 to processor no. 7. This delay will be more in larger 

networks. 

4.4.2.2. Multi-stage networks 

Many stages of interconnected switches form a multi-stage network. For example, n 

stages of shuffle-exchange network connected in series form a multi-stage network known 

as Omega network [60]. A three-stage network: for connecting eight processors (N = 2) is 

shown in Fig. 4.7. For a multiprocessor configuration, the processors are connected on the 

left-hand side or the input side of the network and the same number of memory modules 

are connected on the right-hand side or output side of the network as shown in Fig. 4.7. 

The switches can have four configurations: straight, interchange, upper broadcast and lower 

broadcast. With this interconnection network, any processor can be connected to any 

memory module in a fixed time proportional to the number of network stages, i.e. log2 N, 

where N is. the number of processors in the network provided there is no contention or 

blocking in the network. The hardware complexity of the network is 0(N log2 N) and the 

theoretical bandwidth of the non-pipelined network is (N/log2 N) where N is the number 

of inputs to the network. 

One of the most attractive features of the network is its distributed control of the 

switches in the network as opposed to the centralized control which may be too time-

consuming for large networks and therefore may result in poor network performance. This 
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distributed routing of data or, in other words, distributed control is carried out as follows: 

let D = d1 d2 d, be the destination tag, i.e. the binary representation of the output 

number to which input number S is to be connected, and let S = s1 s2 s, be the 

source tag, i.e. binary representation of the input number. The first switch to which s is 

connected is set to switch input s to the upper output if d1 = 0 or the lower output if 

d1 = 1. This is shown in Fig. 4.7 for s = 010 , D = 110. In the next stage, the input is 

again switched to the upper output if d2 = 0 or to the lower output if d2 = 1. This pro-

cedure is continued at each stage until we get to the output end of the network which is the 

destination tag. The data read from the memory at the destination tag is routed back to the 

source tag by following the same algorithm as described for forward routing. 

It is to be noted that there is a unique path for each input-output connection through 

the network. Thus, there is a possibility of contention or conflict occurring if two sets of 

input-output connections have a common intermediate communication link through which 

the data has to be routed. For example, 000 -+ 000 and 100 - 010 paths in Fig. 4.7 

share a common connection link at the output of the first stage. Such networks are called 

blocking networks. For such situations, the data routing has to be serialized at those 

switches where the conflicting requests arrive by providing buffers or queues in the 

switches. If the multiple sources need access to a single destination address, then "combin-

ing" can be used at the intermediate switch at which the different access requests meet 

[25]. This improves the performance of the network by eliminating the serialization of 

multiple requests at the intermediate switches. 

A modified version of Omega network which employs "combining" of multiple 

requests to the same memory location is being developed for two large-scale research 
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multiprocessors- "Ultra Computer" [25], being developed at New York University and RP3 

[54], being developed at IBM's T.J. Watson Research Centre. 

The performance of Omega network has been analysed by Kruskal and Snir [61] by 

assuming uniform network traffic in space and time and infinitely lông queues at the 

switches. Under such unrealistic assumptions, the performance of the Omega network has 

been shown to be quite satisfactory [61]. Simulation experiments have also been carried 

out by IBM researchers considering a non-uniform traffic pattern consisting of a single 

"hot spot" of higher access rate caused by shared lock and synchronization data superim-

posed on a background of uniform traffic [62]. Their simulations revealed a severe degra-

dation of network performance even with a moderate hot spot traffic. Also, the degrada-

tion of network performance is global, i.e. it affects all memory access and not just the 

accessing of shared lock data. This degradation in network performance has been shown 

to be due to the "tree saturation" effect caused by distributed routing and finite length of 

queues at the switches. The use of an additional network which employs combining of 

messages at the switches has been proposed to solve this problem caused by shared syn-

chronization data. However, the extra hardware needed to support this feature is estimated 

to increase the switch size and cost by a factor of between 6 and 32 [62]. Even without 

this additional network, the total cost of the multiprocessor, as noted by Gottlieb et al. 

[25], is dominated by the network cost and not the cost of processors and memory. More-

over, a problem similar to hot spot is still likely to occur if the algorithm memory refer-

ences for shared data are not uniformly distributed but are localized to a few memory loca-

tions. It has not been shown in [62], whether message combining is effective in the case 

of general non-uniform memory traffic generated by accessing the program's shared data. 
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Due to the large amount of non-local wiring in the network, 32-bit wide links to con-

nect switches are not practical. Therefore, a bit-serial or a byte-serial approach has to be 

used, which reduces the effective bandwidth of the network. For example, for bit-serial 

communication, the effective bandwidth of the non-pipelined Omega network is given by 

effective bandwidth = N  
32 log2 N (4.5) 

This effective bandwidth has to be greater than 1 for Omega network in order to be faster 

than a 32-bit wide time-shared bus, i.e. 

N  >1 
32 log2 N - 

or N ≥ 256. 

Therefore, roughly speaking the bit-serial Omega network is faster than a 32-bit bus 

only when the number of processors in the multiprocessor is of the order of 256 or more. 

For the ideal fully pipelined Omega network, the bandwidth is equal to N. For the 

bit-serial Omega network to be faster than a 32-bit bus, 

or N≥32. 
32 - 

4.4.2.3. Crossbar switch 

In a crossbar switch every input port can be connected to a free output port without 

blocking. The number of switches employed in the network grows as N2 where N is the 

number of input or output ports in the network. Therefore, this network is suitable for 

connecting a relatively small number of processors. The C.mmp multi-processor [47] 

employed a 16 x16 crossbar switch to connect 16 minicomputers to 16 memory modules. 
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4.5. Selection of an Interconnection Network 

The implicit numerical integration method of Porsching is described in section 2.5 of 

Chapter 2 and section 3.2 of Chapter 3. This algorithm consists of two main stages, i.e. 

calculation of elements of matrix A and vector z from hydraulic network data and solution 

of the matrix equation A AW?2+l = z for determining A W'' at each time-step. The data 

communication structure for the first part of the algorithm is very similar to the hydraulic 

network structure. However, the solution of the matrix equation (which is the dominant 

part of the total computation for large size problems) by the parallel Gauss-Jordon algo-

rithm, as described in Chapter 5, involves a series of data broadcasts to other processors 

for which a bus architecture with data broadcast facility is the best architecture since it can 

broadcast a data to all the processors in unit time. Although data broadcast can also be 

carried out by other networks such as a tree, Omega network, or binary n-cube, the com-

munication time is longer and hardware complexity is significantly higher than a simple 

bus connection network. Other advantages of the time-shared bus architecture can be sum-

marized as follows: 

(i) The diameter of the bus network, i.e. the maximum distance between two nodes 

in .the network is unity. In other words, the data communication delay between 

two neighbouring processors is the same as the communication delay between 

two processors which are physically farthest apart. As a result, the difficult prob-

lem of mapping the problem structure to multi-processor communication structure 

does not exist in this case and the algorithm can be partitioned among the proces-

sors to satisfy the requirement of load balancing only among the processors 

without any concern for the optimal mapping of the problem from the point of 
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view of minimizing total communication delay. 

On the other hand, the diameter or the maximum communication delay for the 

case of two-dimensional mesh grows as 'Ii and for the case of tree, binary n-

cube, and Omega network it grows as log2 N. Therefore, except for the case of 

Omega network which has constant delay of log2 N for all memory references, 

the problem has to be mapped to the processor communication structure in order 

to minimize the total communication delay and it is quite likely that this mapping 

is different from the mapping resulting from load balancing considerations. 

Moreover, these networks generally use bit-serial communication links due to 

large non-local wiring requirements which further reduces their effective com-

munication bandwidth. Therefore, although these networks have high communi-

cation bandwidth due to their concurrent communication capability as compared 

to serial communication on a time-shared bus, this bandwidth is greatly reduced 

due to the above two reasons of non-local communication patterns in the problem 

and bit-serial communication links in the network. Hence, these network connec-

tions are to be preferred when connecting a very large number of processors 

together (say more than 256) so that their concurrent communication capability 

(proportional to N) more than compensates their drawbacks of large communica-

tion delay (proportional to log2 N) and bit-serial nature of data communication. 

The hardware complexity of bus communication network increases linearly with 

the number of processors N as compared to N2 or (N log2 N) complexity of 

other networks. 
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(iii) Incremental expansion of the bus-based architecture is relatively easy as com-

pared to other architectures based on complex interconnection networks. 

Considering the above factors, a time-shared bus-based architecture has been chosen 

for our problem because: 

(a) Much of the data communication for solving the large-size network problems (i.e. 

solution of matrix equation) involves data broadcast to other processors for which bus 

network is ideal (Chapter 5). 

(b) The other data communication in the problem (for example, calculation of matrix A 

coefficients) requires communication among non-local processors. 

(c) The number of processors that can be used for the parallel solution of the problem is 

not very large. In the first parallel algorithm, this number is equal to the number of 

chains (less than 25 in a typical large network) in the network. In the second parallel 

algorithm, it is equal to number of random links in the network which is less than 

150 in typical large hydraulic networks. 

(d) The granularity of computations in the parallel algorithms remains quite high so that 

the total communication overhead does not dominate the total processing time. 

Hence, the choice of interconnection network although important is not very critical 

for achieving good performance of these two parallel algorithms. 

The following section describes the architecture of the bus-based multiple processor 

system finally chosen for our problem. 
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4.6. Description of the Chosen Parallel Architecture 

The parallel architecture used in this thesis for determining the complexity of parallel 

algorithms is a simple time-shared bus-based multi-microprocessor system called Structured 

Multiprocessor System (SMS) proposed and actually built by Siemens researchers [49,63-

66]. It consists of a number of microcomputer modules [128 in models SMS-1O1 and 

SMS-201] each with its own local memory for program and data and 'a communication 

memory (CM) for data communication among the processor modules as shown in Fig. 4.8. 

The communication memories are connected either to slave processors or to the main pro-

cessor by the switches operated by main processor. These slave modules are supervised by 

the master or main processor. There are three distinct phases in the execution of a parallel 

program on this parallel processor system: 

1. Control Phase: The master processor. signals the slave processors to start execution 

of their assigned tasks. 

2. Autonomous Phase: In this phase, the slave processors work independently by exe-

cuting programs stored in their program memories. They write the values of com-

puted shared variables in the local communication memories which are connected to 

the slave processors as shown in Fig. 4.9(a): This phase terminates when all the pro-

cessors have finished their tasks. The synchronization of all processors to indicate 

completion of their tasks is done in hardware by "anding" their individual task com-

pletion interrupt signals to the master processor. 

3. Communication Phase: In this phase, the master processor has access to the com-

munication memories (CMs) of the slave processors as shown in Fig. 4.9(b). The 

master processor can transfer data from one CM to another CM or between a CM 
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and the main processor memory. It can also broadcast a data from one CM to all the 

remaining CMs in a single command cycle [65]. 

Another possible method for communicating shared data in this architecture is as fol-

lows: first, the master processor reads all the shared data from the communication 

memories of all the processors. After this, the master processor changes the switch posi-

tions of all the processors so that they are directly connected to the bus for reading their 

needed data on the bus. Then the master processor broadcasts shared data on the bus 

which is read by those processors which require it and is ignored by the remaining proces-

sors. 

Since slave processors do not transfer data themselves on the bus, bus contention 

cannot occur with the result that no time is wasted in the arbitration of bus requests and 

also arbitration hardware is not required. 

The above model of parallel computation for the SMS multi-microprocessor system is 

depicted in Fig. 4.10. Total processing time for one processing cycle of SMS 201 which 

consists of computation phase, synchronizing phase, communication phase and control 

phase is given by Fig. 4.11, 

Total processing time = maximum of 

(4.6) 

[Tf(1), T1 (2), T1 (N)] + + 

where, 

T1 (1) = Total computation time of task i on processor i 

Synchronization and control phase time 
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= Total data communication time 

In the autononous phase, the processors execute their own set of instructions as is the case 

with MIMI) computers. However, unlike the true MIME) computers which operate quite 

asynchronously, all the processors in SMS 201 have to finish the processing of their tasks 

before the communication phase can begin. Also, all processors start their tasks at the 

same time. These features of global synchronization are very similar to the control of prc5-

cessor arrays which fall under the SIMD architectures. However, in SIMD processor 

arrays, all processors execute the same instruction in a lock-step manner which is not the 

case with SMS. Therefore, this model of parallel computation can be classified as a kind 

of cross between the SIMD and MIMD computer organizations. This combined 

SIMD/MIML) mode of parallel computation is also supported by Hoshino's "PACS" (Pro-

cessor Array for Continuum Simulation), later renamed as "PAX" (Processor Array Experi-

ment), parallel processor system developed at the University of Tsukuba, Japan, although 

processors in this parallel computer are connected in a two-dimensional near-

neighbourhood manner [20,51,67-69]. Hoshino calls this mode of parallel processing as 

quasi-MIMD mode [20] and Wallach calls it ASP (Alternating Sequential/Parallel Process-

ing) [22]. Overall, this model of parallel computation is much closer to MIMD-type opera-

tion than SIMD-type operation. 

The result of employing the above features of quasi-MIMD operation, distributed 

communication memories, and data communication by the master processor is that no 

deadlocks or contentions for shared resources such as the use of bus can occur. Hence, the 

use of complicated semaphores, etc. in the software to avoid deadlocks/contentions and to 

ensure the correct execution of the algorithm becomes unnecessary. Moreover, as noted by 
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Hoshino [20], the process of algorithm design, programming and debugging is easier for 

the quasi-MTMD operation as compared to the asynchronous true MIMD operation. 

Another advantage of quasi-MIMD operation is that as a result of global synchronization 

of all processors at the synchronization points in the parallel algorithm, algorithm complex-

ity results in an analytical form similar to the form for sequential algorithm complexity 

results can be obtained. Consequently, the performance of the parallel algorithm on quasi-

MIMD architecture can be studied without resorting to simulations of the algorithm which 

is necessary for true MIMD mode of operation due to its asynchronous and non-

deterministic nature. 

Finally, because of the use of global synchronization by hardware ("anding" of pro-

cessor interrupts), the synchronization time is very small as compared to process synchroni-

zation in asynchronous MIMD computers by software means. For example, in PAX paral-

lel processor, all the processors can be synchronized in less than five floating-point opera-

tions time [20]. 

The constraints of the SMS -201 architecture are: 

1. The distribution of computational load among the processors should be as equal as 

possible so that the waiting time of processors (Fig. 4.11) is minimized. 

2. The granularity of the tasks on the processors should be sufficiently high so that the 

overhead of synchronization and data communication is not excessive as compared to 

• actual task computation time. 

4.7. On the Number of Processors to be Used 

An important decision that has to be made in performing parallel computations on 

multiple processor systems in a fast and efficient manner concerns the choice of the 
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number of processors to be used. Ideally, the performance characteristic for an N - 

processor systeth should be a speed-up of computations by a factor of N. However, the 

speed-up obtainable in actual practice is less than N even if the overhead of process syn-

chronization and data communication is negligibly small. This is due to the fact that in 

actual applications it is rarely possible to completely parallelize all the computations 

involved in solving a problem. Only a fraction x of the total computations can be parallel-

ized completely and the remaining fraction (1 - x) has to be processed sequentially. 

The sequential fraction (1 - x) of total computations determines the overall speed-up 

that can be obtained by parallel processing even if the parallel computation time for the 

parallel fraction x is reduced to negligibly small value by using a very large number of 

processors. This fact was first noted by Amdahl in his 1967 paper [70] and is now known 

as Amdahl's law. It states that if a computer has two speeds of operation, the slower 

mode will dominate overall performance even if the faster mode is infinitely fast. 

Ware's model of parallel computations [71] also captures the same idea as follows: 

Let 

T1 = problem computations time on single processor 

TN = problem computation time on N processors 

X = fraction of total computation that can be processed in 
parallel on N processors 

(1 - X) = fraction of total computations to be processed sequentially 

xT1 i Then TN = N + (1 - x) T1. Therefore, speed-up S s given by 
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T1 
s= =  

TN xT1 

T1 

or 

N +(1—x)T1 

1 

(4.7) 

When N —* co, the speed-up S is given by 

1  
— (1—x) 

Therefore, the overall speed-up is limited by the sequential fraction (1 - x) of the total 

computation. Hence, there is no advantage in using a very large number of processors if 

the sequential fraction (1 - x) is not very small. Speed-up as given by (4.7) is plotted in 

Fig. 4.12 as a function of the parallel fraction x for 8, 16, 32 and 64 processors. As can 

be seen from this plot, for parallel fraction x less than 0.9 or so, the overall speed-up fac-

tor obtained by using different numbers of processors is not much different from one 

another. Hence, a large number of processors should be used only when a very large frac-

tion of total computations can be parallelized. 

In our. case, the fraction of strictly sequential computation is very small. However, 

the parallel fraction of the total computations (Chapters 3 and 5) does not have arbitrarily 

large parallelism in it. Moreover, the amount of parallelism in the algorithms is different 

at different stages of the algorithm. For an algorithm having negligible sequential part but 

a fraction x having Pi parallelism in it and the remaining fraction (1 — x) having P2 paral-

lelism in it, the Ware's model can be modified as follows: 
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Figure 4.12 Ware's model of parallel computer speed-up for 8, 16, 32 and 64 proces-

sors 
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1  

..L+ (1—x)  

Pi P2 

(4.8) 

If high computational efficiency, i.e., better hardware utilization is the only criterion, 

then the number of processors equal to or less than the smaller of the Pi and P2 values 

should be chosen. On the other hand, if higher speed-up is the only criterion, then number 

of processors equal to the larger of the p I and P2 values should be chosen. In practice, 

however, it is desirable to choose the number of processors such that a reasonable 

efficiency (say 40-50 percent at present-day hardware cost) of parallel computation is 

achieved. If the past decrease in the hardware costs is any indication, the present high cost 

of 32-bit microprocessors, coprocessors etc. will fall significantly in the near future. Under 

these assumptions, efficiencies lower than 50% can be tolerated and therefore a larger 

number of processors can be used to achieve higher values of speed-up. It is also impor-

tant to note that, in general, the speed-up is not a continuous function of the number of 

processors. Rather, it varies in a discrete manner (depending on the particular algorithm) 

with the number of processors used. 

From the above considerations, the choice of number of processors equal to the 

number of chains in the network was found to be a good one. Another good choice was to 

use a number of processors equal to the number of random links in the network. As 

shown in Chapter 5, the first choice gives higher efficiency but lower speed-up than the 

second choice. Details of the actual speed-ups and efficiencies obtained are given in 

chapters 5 and 6. 



CHAPTER 5 

ALGORITHM PERFORMANCE ON MULTIPLE PROCESSOR SYSTEMS 

5.1. Introduction 

This chapter deals with the performance of the Porsching's numerical integration 

algorithm on multiple processor systems. Two direct parallel methods for solving the 

matrix equation A A W'' = z, which is the dominant computation per time-step in this 

algorithm for large network problems, are considered. An estimate of parallel computation 

time for each of these two methods of solving the matrix equation is obtained for three 

different situations, namely when (1) the number of slave processors is equal to the number 

of chains s in the network, (ii) number of slave processors is equal to the number of ran-

dom links q in the network, (iii) number of slave processors is equal to the number of 

chains s in the network and there is a two-dimensional mesh-connected array of q x q 

processors connected to the bus via a two-dimensional memory. An estimate of parallel 

computation time for performing the rest of the computations is also given. Finally, the 

speed-ups and efficiencies obtained for these different cases are studied as a function of the 

number of processors, ratio of one data communication time to one floating-point operation 

time, ratio of one synchronization time to one floating-point operation time, and the size of 

the network. 
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5.2. Parallel Computation of Flow-Rate Increments from the Matrix Equation (3.2) 

In this section, two direct parallel methods for solving the matrix equation (3.2) 

which correspond to thetwo direct sequential methods of sections 3.2.1.2.1 and 3.2.1.2.2 

are discussed. 

5.2.1. Direct parallel method I (Normal Gaussian elimination plus Gauss-Jordan 

elimination) 

The structural form of the matrix equation A A W'' = z is given in (3.2). Parallel 

solution of this equation by method I involves the following three main steps: 

(i) Partial forward elimination of matrix A by parallel Gaussian elimination of lower 

elements of all tridiagonal submatrices D1 and complete elimination of all row sub-

matrices B1, i = 1, 2, ...,s. For this computation, matrices B1 are partitioned row-

wise among the slave processors such that each slave processor is responsible for the 

elimination of FNP 1 rows of each matrix B1 where N is the number of processors 

and 11 is the ceiling function. After this computation, matrix equation (3.2) 

assumes the form shown in (3.4). 

(ii) Solution of the sub-vector A o from (3.6) by parallel Gauss-Jordan elimination 

[72]. 

In the Gauss-Jordan method, matrix elements below as well as above the pivot ele-

ments are eliminated at each elimination stage as opposed to the Gaussian elimination 

where elements below the pivot element only are eliminated. This difference in the two 

algorithms is shown in Fig. 5.1 which shows the partially eliminated matrix V at the kth 

elimination stage. It is clear from Fig. 5.1(a) that Gaussian elimination is not suitable for 
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Figure 5.1 Intermediate and final forms of matrix c in the forward elimination step 
for solving the matrix equation. 
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multiprocessing since the number of elements that can be eliminated concurrently (i.e. ele-

ments below the pivot element) decreases steadily as we proceed with the forward elimina-

tion process. Moreover, the back-substitution step in the Gaussian elimination is basically 

a recursive process. Consequently, it is not suitable for multiprocessing. On the other 

hand, the number of elements to be eliminated at each elimination step in the Gauss-Jordan 

method remain fixed and large, i.e. equal to the dimension of the matrix minus one 

throughout the elimination process as shown inFig. 5.1(b). After elimination, matrix A 

has only diagonal elements as non-zero elements and therefore the solution vector is 

recovered by dividing the right-hand side of the matrix equation by the diagonal elements. 

All these divisions can also be done in parallel. Thus, we observe that the Gauss-Jordan 

method for solving matrix equations has a very high concurrency in it. However, the 

Gauss-Jordan method takes about 33% more floating-point operations on a single processor 

as shown below. Hence, it is generally not used for solving matrix equations on conven-

tional serial computers. 

The elimination stage and .the pseudo-code for the sequential Gauss-Jordan algorithm 

for solving the general q th-order matrix equation C x = b is given in Fig. 5.2(a) and (b) 

respectively. In our case, C = V, x = A co + , and b = t,,+ ,. The total floating point 

operation count in the algorithm can be obtained as follows (refer to Fig. 5.2(b)). Opera-

q q-1 

tion count for the elimination stage is Y, Y, [1 + 2(q - k + 1)] 
k=I i=1 

= q3 + q2 _ 
-. 

Operation count for back-substitution is q. Therefore, total computation time 

Tj(GJ)=(q3+q2—q)t1 (5.1) 



j) 

q augmented matrix C = 1db] 

pivot = c(k.k) 
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Figure 5.2(a) kth-stage of Sequential Gauss-Jordan elimination for solving C x = b 

for k = 1 to q do {for each pivot} 

For i = 1 to q (i # k) do Cfor each row except pivot row} 

c(i, k)  
temp= c(k,k) 

For j = (k + 1) to (q + 1) do I for each element of a row]-

c (i, J) = c (i, j) - temp x c (k, j) {update element]-

end do {loop j} 

end do {loop i} 

end do floop k} 

For i' = 1 to q do {recover final solution by back-substitution]-- 

X(i)  

end do 

Figure 5.2(b) Pseudo-code for sequential Gauss-Jordan elimination for solving C x = b 
on a single processor. 
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The total sequential computation time for Gaussian elimination was obtained in 

Chapter 3 (Eqn: (3.9)). A comparison of the two computation times shows that Gauss-

Jordan algorithm is about 33% slower than Gaussian elimination on a single processor. 

Partitioning of the parallel Gauss-Jordan algorithm on N processors is shown in Fig. 

5.3(a) and the pseudo-code of the parallel algorithm is given in Fig. 5.3(b). In the parallel 

version of the algorithm, a slice of hr = It I rows of C x = b is stored in and assigned 

to each processor for elimination and back-substitution. The pivoting row is read by the 

master processor from the slave processor communication memory which holds it and is 

then broadcast to all the remaining slave processors. After receiving this pivot row, each 

slave processor performs the Gauss-Jordan elimination on its slice of rows. After perform-

ing the elimination step on its slice of rows, all the slave processors synchronize and the 

whole procedure is repeated again. After elimination, back substitution is also performed 

in parallel for the assigned variables x (i) to each slave processor. An estimate of compu-

tatidn time for parallel Gauss-Jordan algorithm can be obtained as follows: (refer Fig. 

5.3(b)). The slice of rows per processor has been assumed to be an integer in determining 

the operation count, i.e. hr 
It J N 

Floating-point operation count for parallel Gauss-Jordan elimination is 
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processor # 1 h = 

- 

processor 1/2 

processor 1/N 
p 

C x b 

Figure 5.3(a) Problem partitioning in parallel Gauss-Jordan algorithm 
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PARALLEL ELIMINATION STEP: 

for I = 1 to Np do (for each processor 1) 
for k = [(1 - 1)zr + I] to hr 1 do (for each row k of the assigned hr rows to a 

processor 1] 

broadcast row k and its position from processor 1 to all processors 

call pareliminate (k) 

synchronize all the processors 

end do (loop k} 

end do {loop I] 

PARALLEL BACK-SUBSTITUTION STEP: 

for I = 1 to Np pardo (perform the following computations concurrently on Np processors) 

for i = [(1 - l)hr + l]to hr 1 do (for each variable x(i) of the assigned hr number of 

elements to processor 1) 
X(i) = b'(i)/c(i, i) 

end do (loop i} 

end pardo 

Procedure Pareliminate (k): 

for 1 = 1 to Np pardo (perform the following computations concurrently on Np processors) 

for i = [(1 - 1)hr + 1] to lhr do (for each row i of the assigned hr to a processor 1] 

if i = k (do nothing for the pivot row] 

go to E 

end if 

temp = c(i, k)  
c(k, k) 

for j = (k + 1) to (q + 1) do (for each element of a row] 
c(i, j) = c(i, j) —temp x c(k, j) (update the element c(i, f)] 

E: end do{loopj} 

end do (loop i] 

end pardo 

Figure 5.3(b) Pseudo-code for parallel Gauss-Jordrn elimination for solving C x = b 

on N processors. 
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N hrl 

Z [1+2(q— k+1)] 

hr N 

= E hr [1 + 2(q - k + 1)] 
k=1 

= hr Eq2 + 2q] 

Floating-point operation count for back-substituttion is 

hr l 

=hr 

Therefore, total parallel time for performing the floating-point operations is 

hr[q2 + 2q + l]t1 = 2q + 1] tr If h., is not an integer, then 
NP 

Total parallel computitional time = Ft 1 [q2 + 2q + 1] tf 

If t is the time for one data transfer over the bus, then the total data communication time 

is 

q 

(q + 2—k)t 
k=1 

= [1-2 j1 +4 q]tc 

There are a total of q synchronizations involved in the algorithm. Therefore, if t is the 

time to carry out one synchronization, then the total synchronization time is q t. 

The total time to perform parallel Gauss-Jordan elimination is given by the sum of the 
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above three times. Hence, 

Total time to perform parallel Gauss-Jordan elimination on N processors, 

TN, (GJ )= Lt 4 2  1 Iq2+2q+i]tf+ [+.] tc+ts 

The speed-up obtained is given by 

T1 (GJ)  
speed—up S 

= TN (GJ) = 

(q 3 + q2 - q) t1 

+1)t1 + t + q t 

(5.2) 

(5.3) 

A better idea of the usefulness of the parallel Gauss-Jordan algorithm is obtained 

when it is compared with the best sequential algorithm, i.e. Gaussian elimination rather 

than the slower sequential Gauss-Jordan algorithm as done in (5.3). With this definition of 

speed-up, we have 

speed—up S - 
T1(Gauss) 

TN (GJ) - 

[ 2 3 2 7 •-  q +- q _. Jti 

I (q]2 +2q+1)tf+ I +q]tc+qts 

L2 2 

Efficiency of parallel computation is given by 

Efficiency = Actual speed—up  
Ideal speed—up x 100 = .- x 100 (5.5) 

The speed-up and efficiency as given by (5.3), (5.4) and (5.5) are plotted in Fig. 5.4(a) and 

(b) respectively for q = 15 to 150, t, = 0.1 t1, and t3 = 5 t . As can be seen from these 

plots, almost a linear speed-up with the number of processors and therefore a constant 

efficiency is obtained for q = N > 25. This is so because the data communication in the 

parallel Gauss-Jordan algorithm consists of a series of data broadcasts for which bus is the 
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(a) Speed-up versus order q of the equation 

150 

-------------------------

compared to serial Gaussian 
method 

compared to serial Gauss-

Jordan method 

50 order q 100 150 

(b) Efficiency versus order q of the equation 

Speed-up and efficiency of parallel processing for solving the matrix 
equation C x = b by Gauss-Jordan method 
(t =0.1xt1, =5.0xt1,N = q) 
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best communication network. Also, parallel computation time and data communication 

time both increase almost at the same rate with the size of the problem. When the order of 

the matrix equation is small, i.e. when q <25, the efficiency of parallel computation is 

relatively low due to the significant overhead of processor synchronization as compared to 

parallel computation time. 

(iii) Parallel computation of subvectors z. o)i from (3.7) 

Since all the operations for each i are independent of each other, they can be per-

formed concurrently on s processors. 

An estimate of parallel computation time for solving the matrix equation 

A i Wl" = z is now obtained. Three cases for the number of processors employed are 

considered: (a) number of processors equal to number of chains s in the network, (b) 

number of processors equal to number of random links q in the network, (c) number of 

processors equal to number of chains in the network and a two-dimensional mesh-

connected array of q x q processors connected to the bus via a two dimensional memory. 

5.2.1.1. Number of processors equal to number of chains in the network 

The pseudo-code of the parallel algorithm for solving A A W'" = z on s processors 

is given in Fig. 5.5. In this method, sub-matrix X = [B1 B2 B3 V +i1 of matrix 

[A is partitioned row-wise among the s processors such that a slice hr = 1 1 of 

rows of X is stored in and eliminated by each processor. The lower elements of D, are 

eliminated on the master processor concurrently with elimination of X on the slave proces-

sors. 
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[matrix [B1 B2 Bs V 1] has been partitioned tow-wise among s processors (see 
section 5.3.1.1 and pseudo-code of Fig. 5.19)} 

For  = 1 t (K - q) do [for each pivot row of Al 
broadcast the non-zero elements of the pivot row j of [A I z] from 
master to s slave processors 

par begin {perform the following computations concurrently} 
eleminate the only non-zero element a+j j of submatrix D 
on the master processor using (3.3) 
for 1 = 1 to s pardo {for each processor 1) 

for i = [(1 - 1)hr + 1] to lhr do 
if not (b1 =0) then 

eliminate element b1 and update non-zero elements of row i using 
(3.3) 

end if 
end do (loop i } 

end pardo 
par end 

synchronize processors 

end do {loop j  

{Now the matrix (3.2) assumes the form given in (3.4)} 
solve mtri equation (3.6) for Ao by parallel Gauss-Jordan elimination 

Now elements of are in each processor} 

broadcast solution vector Ao +1 to the s slave processors 
CD1, E, ti, i = 1, 2, , s have already been broadcast to slaves while eliminating 
B1} 

for i = 1 to s pardo { perform the following computations concurrently on s 
processors} 

solve Ami from (3.7) 
end pardo 

Figure 5.5 Pseudo-code for solving A A %V'' = z on s processors by direct 
method I 
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An estimate of parallel computation time can be obtained as follows. 

Let 

= average of non-zero elements per first or last column 
of all B1 matrices which is also equal to 
average degree of end-nodes of chains minus one 

dav = 

tc = 

'average degree of a non-chained node in the network 

one floating-point operation time 

one data communication time 

= processor synchronization time 

(i) Forward elimination of all B1 and lower elements of all D1. 

There are an average of ay non-zero elements per first and last column of each B1. 

In the worst case, all these non-zero elements in the first column as well as last column of 

each B1 can have their indices differing by one. In this case, row-wise partitioning of 

[B1 B2 B V would result in the allocation of all the non-zero elements of a 

column of B1 to a single slave processor only. As a result, only one of the slave proces-

sors and the master processor will have nonzero elements to be eliminated at any elimina-

tion step. The rest of the processors will be idle. The only advantage in this case is that, 

after this computation, matrix V and vector are automatically partitioned row-wise 

among the s slave processors with - rows per processor and therefore, no data transfer 

is required for the next computation, i.e. the solution of matrix equation c = 

Moreover, this computation is only a small fraction of the total computation for large net-

works as shown in Fig. 3.6 and therefore, does not degrade the efficiency of parallel com-

putation substantially for large network problems. In this case, the parallel computation 
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time will be equal to the sequential computation time for eliminating all B1. Elimination of 

lower elements -of DI proceeds concurrently on the master processor and does not affect 

the parallel computation time since operations involved in this elimination are less than the 

operation involved in eliminating B1 (section 3.2.1.2.1(i)). 

Assuming 100% overhead for sparse floating-point operations, parallel computation 

time T311(worst) is 

2 I(Ji)(2 fla9 +5flav)+(8fl+6na )]ti 
1=1 L 

or 

Tf 1(worst) = [(4 n0 + 10 n0) (K - q) + (12 n + 2 n) s  If (5.6) 

Assuming 100% overhead for transferring row and column indices of an element, 

data, communication time T301 is 

2 I(P 1) (na, + 3) + 2 na, + 2 
I tc 

or 

= 1(2 nov + 6) (K - q) + (2 n0 —2) (5.7) 

There are a total of (K - q) synchronizations in this computation as shown in the pseudo-

code of Fig. 5.5. Therefore, processor synchronization time is given by 

TS1=(K -1y.  

(ii) Solution of A (j), +1 from V A o = 

(5.8) 

A slice of Ii 1 rows of [ +] is in each processor memory after the above elim-



155 

ination step. The matrix equation is now solved by the parallel Gauss-Jordan algorithm as 

described in the-previous section. The parallel computation time is given by (5.2) which 

consists of processing time, communication time and synchronization time, i.e. 

f(q2+2q + 1)t1 (5.9) 

T=2 (5.10) 

T3,,,22 =q (5.11) 

(iii) Solution of A o, i = 1, 2,..., s from (3.7) 

A sub-vector A mi is solved on processor i using (3.7). Ibi, E, tj have already 

been broadcast to processors while eliminating Bi in step (i). Only elements of vector 

A (os+l are to be broadcast to master and slave processors. The computation time for cal-

culating one A mi is given by (refer section 3.2.1.2.1 (iii)) 

Computation time for one A (oi is [(4 ay + 3) p + (4 12av - 2)] t1 . 

For parallel computation, the computation time will be deiermined by the computation 

of A mi for the longest chain. If Pm 15 the length of the longest chain, the parallel compu-

tation time, T, is given by 

Tsf[(4nav +3)Pm +(4nav 2)]ti (5.12) 

Communication time to broadcast A is q tf . (5.13) 

Total parallel computation time to solve A A W'' = z for A W'' on s processors will be 
the sum of times given by (5.6) through (5.13). Therefore, total parallel computation time 
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is given by 

T3 (max) [1 1 (q2 + 2q) + (4 n + 10 n) (K— q) + (12 n,2, + 2 1av)S 

+(4 nav+3)Pm ]tf+ [+(2nv+6)(K_q) (5.14) 

+fq+(2na,_2)stc+Kts 

The sequential time T1(matrix) ona single processor is given by (3.11). The speed-up and 

efficiency of parallel computation versus network size are plotted in Fig. 5.6(a) and (b) for 

three values of data communication time t. Since the number of processors employed is 

relatively small, the granularity of computation remains high. As a result, data communi-

cation overhead in this case remains a relatively small percentage of total processing time 

and therefore, does not adversely affect the speed-up and efficiency of parallel computa-

tion. 

It can also be noted that the efficiency is rather low for smaller size networks as com-

pared to efficiency for large networks. This is due to the fact that parallel forward elimina-

tion of D1 and Bi from the matrix equation (3.2) is very inefficient and this computation 

forms a significant fraction of total computation time for smaller networks as was shown in 

Fig. 3.6. Also the worst-case situation was considered in estimating the parallel computa-

tion time for this part of computation as given by (5.6). The best case occurs when each 

non-zero element of a column of B1 is eliminated concurrently on a separate processor. 

The computation time in this case will be the computation time Tf I given by (5.6) divided 

by nap, i.e. 
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(a) Speed-up versus network size 

I I 
100 200 300 400 

NETWORK SIZE (NUMBER OF LINKS)  

(b) efficiency versus network size 

200 300 400 
NETWORK SIZE (NUMBER OF LINKS)  

Figure 5.6 Speed-up and efficiency of parallel processing for solving A A W' = z 

on s processors by direct method I. 
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Tp1(best) = [(4 av + 10) (K - q) + (12 n + 2)s] If (5.15) 

Actual computation time will lie in-between the two extreme values depending upon the 

network topology and the labeling employed for the terminating and initiating links to the 

end nodes of the chains. Finally, the efficiency for smaller size networks is low due to the 

inclusion of the master processor in counting the total number of processors in the 

definition of efficiency. This affects the computed efficiency more when the number of 

slave processors is small. 

Another point to be noted is that the efficiency obtained even for the large networks 

is not very high. This is due to the fact that the sequential Gauss-Jordan elimination 

method for solving the matrix (3.6) takes about 33% more time than the best sequential 

method, i.e. Gaussian elimination. The efficiencies have been obtained by dividing the best 

sequential time with the best parallel execution time, i.e. by using the sequential Gaussian 

elimination time and the parallel Gauss-Jordan elimination time. For large networks, solu-

tion of the matrix equation (3.6) dominates the total matrix solution time (Fig. 3.6). As 

such, the overall efficiency of parallel computation for the matrix equation (3.2) tends to 

66% for the large networks. The actual value for the efficiency for large networks is less 

than 66% due to overhead of data communication time and processor synchronization time. 

5.2.1.2. Number of processors equal to number of random links in the network 

Parallel computation time in this case is obtained as follows: 

(i) Forward elimination of all B1 and lower elements of all D, 

In this case, the submatrix [B1 B2 B8 V is partitioned row-wise among q 

slave processors such that a single row is stored in and operated upon by each processor. 
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The lower elements of Di are eliminated concurrently on the master processor as was done 

for the case of s slave processors. 

The parallel computation time in this case is given by 

S 

Tqf1= z 2[i - 1)(2flav 5)+(4 av + 3)] -If 

or 

Tq1j = [(4 av + 10) (K - q) + (4 av — 4) s I If (5.16) 

Since all the pivot rows are to be broadcast in the elimination process as in the case of s 

processors, the data communication time remains the same as given by (5.7). Therefore, 

Tqci [(2 na, + 6) (K -q) + (2 na, 2)3] tc 

The synchronization time is given by 

Tçyn1 =(K—q)t5 

(ii) Solution of A o from V A @+ = 

(5.17) 

(5.18) 

A single row i of ['c' 3+1] is in processor 1, i = 1, 2, ...,q after the previous elimi-

nation step. The matrix equation is now solved by the parallel Gauss-Jordan algorithm. 

Since N = q in the present case, -_ will be equal to unity in (5.2). Therefore, paralNp 

lel computation time, communication time and synchronization time will be given by 

Tq12 (q2+2q+1)rj (5.19) 

qc2 = [-12— 1 1  q 2 (5.20) 
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Tq.syn2 qt3 (5.21) 

(iii) Solution of A cot, i = 1, 2, ..., s from (3.7) 

A subvector Ami is computed on processor i, i = 1, 2, ..., s as was done for the case 

of s slave processors. The submatrices bi, ki  and subvectors Ci have already been broad-

cast to slave processors while carrying out the forward elimination of Bi in part (i). The 

computation and communication times are, therefore, the same as given by (5.12) and 

(5.13). Hence, 
c 

Tq3 = [(4 n, + 3) pm + (4 av - 2)] tf (5.22) 

Tqc3 =q t (5.23) 

A total of (q - s) processors remain idle for this part of the computation. However, this 

computation is a small fraction of the total computation (refer Fig. 3.6) for large networks. 

Hence, it does not significantly affect the efficiency of computation for large networks. 

The total computation time will be the sum of the above computation, communication 

and synchronization times given in (5.16) through (5.23). 

Therefore, total parallel computation time is given by 

Tq (max) = [q2 + (4 av + 10) (K - q) + 2q + (4 n,, — 4) s + (4 n,, + 3) pm] If 

(5.24) 

+ [4 +(2nav +6)(K_ • )+ f +(2nav _2)s]tc + Kt3 

The speed-up and efficiency obtained for the example networks are plotted in Fig. 5.7. 

Even though the communication and synchronization overhead in this case is the same as 
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(a) Speed-up versus network size 

200 300 400 
NETWORK SIZE (NUMBER OF LINKS)  

(b) Efficiency versus network size 

Figure 5.7 Speed-up and efficiency of parallel computations for solving 
A W"' = z on q processors by direct method I. 
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for the case of s slave processors, the efficiency of parallel computation is lower mainly 

due to smaller granularity of computation. In other words, communication and synchroni-

zation overhead becomes a larger fraction of total processing time thus lowering the 

efficiency of computation. For the same reason, the efficiency is more sensitive to com-

munication time t as shown in Fig. 5.7(b). The other reason for lower efficiency, particu-

larly for smaller networks is the inefficient parallel elimination of submatrices Bi from 

matrix A on q processors. 

However, if faster execution is the primary computational requirement rather than 

higher efficiency, then parallel solution on q slave processors should be carried out since, 

for large networks, it is about four times faster than solution on s processors. 

5.2.13. Number of processors equal to number of chains in the network plus a two-

dimensional mesh-connected array of q x q processors 

It was shown in Chapter 3 that, for large networks, most of the computational effort 

at each integration step is spent in solving the matrix equation A A W'' = z (Figs. 3.10(a) 

and (b)). It was also shown that, for large networks, most of the processing time in solv-

ing A A W' = z is taken up by the solution of the q-th order submatrix equation 

( A w +1 =+ (Fig. 3.6). In other words, the total computation time for large networks 

is dominated by the solution of the q -th order matrix equation 'c' A o = For real-

time applications, it is therefore, important that this matrix equation be solved in a very 

fast manner using a large number of processors. 

On the other hand, it is quite, difficult to use a very large number of prócess'ors 

efficiently in a multiprocessing mode with a simple bus interconnection network due to 

difficulties of problem partitioning among a large number of processors and high data 
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communication overhead. In order to avoid these difficulties, a number of researchers have 

proposed the solution of the matrix equation on a two-dimensional mesh-connected array of 

processors connected in a near-neighbourhood mesh (NNM) fashion [73-77]. Unlike the 

bus interconnection network where data communication is sequential, data communication 

in processor arrays is carried out concurrently. In most of these architectures, a combina-

tion of pipelining and multiprocessing is employed in the solution of the matrix equation. 

The parallel matrix solution time for a q -th order matrix equation is on the order of q, i.e. 

0(q) when run on a q x q processor array. The processors employed in these architec-

tures are relatively simple and identical with small amount of local memory and the inter-

connections are local, and short in length. All these characteristics are ideal for their VLSI 

or WSI (Wafer-scale integration) implementation where a number of these processors can 

be fabricated on a single chip [78,79]. Thus, the total number of separate chips required 

for constructing a large-size processor array is reduced. An experimental multi-chip imple-

mentation of a systolic array processors using off-the-shelf components is described in 

[80]. A similar implementation with additional torus connections is also presently being 

carried out in the Computer Science Department of the University of Calgary under the 

guidance of Dr. John Cleary. 

The processor array is used as an attached processor to the master processor [81] as 

shown iri Fig. 5.8 and linked with the master via buffers and word-to-bit-serial conversion 

hardware not shown in the figure. The master stores the data in the buffers in a word-

serial fashion which is converted to the bit-serial fashion and read by the processor array. 

After solving the matrix equation, the solution vector is transferred to the stack in a bit-

serial fashion and then read by the master in a word serial manner. A Global line, not 

shown in Fig. 5.8, is connected to all the processors of the array and the master processor 



Master Processor 

slave #1 slave #2 Slave 1/s 

Memory 
S • • 

Memory 

•5• 

'S 

q x q processor array 

Figure 5.8 Master processor with s slave processors and a two-dimensional mesh-

connected array of q x q processors 
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for synchronization purposes. 

The rest of the computations are performed on s full-fledged slave processors having 

communication memories, and large local memories for storing their respective programs 

and large amount of data such as steam tables, etc. 

Fawcett's algorithm [76], for solving a general q -th order dense matrix equation 

C x = b on processor array is used in this thesis and is described below. 

5.2.13.1. Fawcett's algorithm 

This algorithm uses L U factorization followed by forward and backward substitution 

using pipelining and multiprocessing on the q x q processor array (called cellular array in 

[76]). The main computational step in L U decomposition involves the formation of 

differences between the data array coefficients and inner products of previously computed 

elements of the triangular factors L and U, i.e.: 

i—i 

uj=c j — Y, 1ikUkj , 1≤i≤j≤q 
/c=1 

i—I 
lii = u17' cj - 11k Ukj , 1 ≤ j ≤ i ≤ q 

k=1 

(5.25) 

(5.26) 

where uj are the elements of upper-triangle matrix U and l, are the elements of lower tri-

angle matrix L, i.e., 



166 

1 

121 

131 132 1 

L= 

U= 

1q1 1q2 1 

U11 U12 U13 ...... U1q 

U22 U23 • U q 

uqq 

and C=LU. 

This variation of L U decomposition where all diagonal elements Iii of L are unity is 

called the Dolittle's method. The matrix equation to be solved can now be written as 

or 

LUx=b 

L z = b 

where Ux=z 

After performing the L U factorization, intermediate solution vector z is computed by 

i-i 

forward substitution given byLzborz =b— E ljj zk , i = 1,2,...,q. The final 
k=1 

solution vector x is recovered by the back-substitution U x = z 

xj=u'(zj— ± Ujkxk) , j=q,q-1,...,l. 
k=j+1 

or 

The processor array structure for carrying out these computations is shown in Fig. 

5.9. The c11 elements of the coefficient matrix C are initially loaded in the array as one 
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Figure 5.9 Fawcett's algorithm for solving C x = b on a mesh-connected array of 
q x q processors [76]. 
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element in each processor. Each processor performs a multiply and accumulate operation 

of the form suni = sum + data 1 * data2 with the data passed to it from processors to its 

north and west, with the exception of the processors on the main diagonal which perform 

the reciprocal of u. 

The product terms in (5.25) and (5.26) are accumulated in a series of passes of com-

putational wave-fronts across the processor array. The first pass originates at diagonal pro-

cessor ( 1,1) and travels across the array to the end of the array as shown by skew dotted 

lines in Fig. 5.9(a). Motion of the wavefront is indicated by the sequence of dotted lines 

in the figure. In each of the wavefronts, all of the processors are simultaneously busy 

forming the products required for the L U factors. The first pass forms the first product 

for all the lj and u1 terms in (5.25) and (5.26). As soon as the first wavefront has 

crossed processor (2,2), second pass of the wavefront begins at the diagonal processor 

(2,2) and travels across the array forming the second product terms in (5.25) and (5.26) 

and so on. The second pass of the wavefront is shown in Fig. 5.9(b). Each pass is pipe-

lined, so that the wavefront associated with each pass follows immediately behind its 

predecessor. There are a total of (2q - 1) stages of a single wavefront corresponding to 

(2q - 1) skew dotted lines. If t,,. is the time to perform one multiply and accumlate 

function plus one data communication to the nearest neighbour, then the time for one 

wavefront to reach the last processor is (2q - 1) t. The rest of the (q - 1) passes of 

the wavefronts follow behind the first pass in a pipelined fashion. Therefore, time to per-

form L U factorization is 

(2q — 1)t,, +(q — i)t,, 

=(3q- 3)t, 
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Forward and backward substitution computations are executed on the processor array 

as shown in Figs. 5.9(c) and (d). For forward substitution, a single pass of the wavefront 

occurs beginning at processor ( 1,1) as shown in Fig. 5.9(c). Similarly for back-

substitution, a single pass of the wavefront moving in opposite direction occurs beginning 

at processor (q ,q) and ending at processor ( 1,1) as shown in Fig. 5.9(d). Therefore, the 

forward substitution time is (2q - 1) t,, and the backward substitution time is 

(2q- 1)t,,. 

Therefore, total time for the solution of C x = b is given by 

T(ffr (matrix) = (3q - 3) t, + (2q - 1) t,, + (2q - 1) t, 

or 

T,,(matrix) = (7q - 5) t,, (5.27) 

In general, processor arrays can be operated either in a synchronized, lock-step manner or 

asynchronously. In the synchronous scheme, there is a global clock network such as an 

H-tree shown in Fig. 5.10 which distributes the clocking signals over the entire array. The 

global clock beats out the rythni to which all the processing elements in the array execute 

their sequential tasks. The clocking rate is determined by the slowest element in the array 

and by the system clock skew. It has been shown in [82] that the clock skew associated 

with the H-tree clocking signal distribution scheme is of order q3, i.e. 0(q3), where q is 

the size of the array. This result places a severe restriction on the ability to generate a glo-

bal, synchronous clock signal in a large processor array. Another feature of the synchro-

nous array is its total dedication to implementing a given algorithm. The array is not pro-

grammable and, therefore, involves an inflexibility which reduces its scope of applications. 
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processor 

Root of 

the H-Tree 

Figure 5.10 Clock distribution in synchronous or systolic arrays using H-tree 

An example of synchronous arrays is th systolic array first introduced by H.T Kung and 

C.E. Leiserson [74]. 

In contrast, in the asynchronous or self-timed or data flow scheme, there is no global 

clock, and data communication is by a simple handshaking protocol between each process-

ing element and its immediate neighbours. Whenever the data is available, the transmitting 

processor informs the receiver of that fact, and the receiver accepts the data whenever it is 

convenient for it to do so. This suggests that interprccessor communication employ data 

buffers and "Data Ready/Data Used" flags between adjacent processors as shown 'in Fig. 

5.11 [77]. 

In summary, it can be said that while the synchronous or systolic scheme may be 

used for a relatively small size processor array due to reasons of simplicity of design and 

implementation, asynchronous design may be preferable for large size arrays. 

An estimation of parallel computation time for this case is now obtained as follows. 
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Figure 5.11 Handshaking mechanism in asynchronous processor arrays [77]. 

(i) Forward Elimination of all B1 and lower elements of all D1. 

This computation is done on s slave processors as described in section 5.2.1.1 

Therefore, the computation time, communication time and synchronization time are 

given by (5.6), (5.7) and (5.8), i.e. 

TV = [(4 n + 10 n) (K - q) + (12 fl + 2 ay + s)] tf 

T31 = [(2 t'av + 6) (K - q) + (2 n., - 2)s] t 

(5.28) 

(5.29) 

(5.30) 

(ii) Solution of A 0 s+1 from IV 1 O)+i = s+1 

At the end of computations in part (i), matrix [cr I is stored row-wise among 

s slave processors with a slice of rows in each pi ocessor. The master processor now 
S 

reads these rows of [çr L1] and writes in the two-dimensional interface memory of the 
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processor array. 

Therefore, data communication time for transferring ['ç, I s+1] to two-dimensional 

memory is q (q + 1) t. The elements of 'c' are now read by the processor array row-wise 

and in a bit-serial fashion using a series of data shifts. Each processor of the array retains 

the first matrix element received from the north processor and passes the remaining ele-

ments to its south processor in a pipelined fashion till all the data has been read. Let t' 

be the communication time for transferring one data element (or one row) of 'c' to the pro-

cessor array. Then, data communication time for transferring '' to processor array is 

2q ta '. 

Therefore, the total data communication time T0,, 1 is given by 

Tar,01 = q(q + 1) t + 2q t' (5.31) 

Matrix equation solution time by using L U factorization on the array has been estimated 

previously and is given by (5.27). Therefore, matrix solution time is given by 

Ta,,. (matrix) = (7q - 5) t,,. (5.32) 

There is one synchronization involved when the processor array completes the matrix solu-

tion and informs the master processor so that 

Tarrsyn 1 = ts (5.33) 

(iii) Solution of A cot, i = 1, 2, ..., s from (3.7) on s processors. 

The solution vector A computed by the processor array is in the left peripheral 

memory of the array. It is read by the master processor and broadcast to the s slave pro-

cessors. Hence, the data communcation time Ta,,.c2 is 
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T,, 2=q t (5.34) 

Parallel solution time for computing A mi on s processors has been estimated in section 

5.2.1.1 and is given by (5.12). Hence, 

Tf [(4 flay + 3) p. +(14 2av —2)] tf (5.35) 

where Pm is the number of links in the longest chain in the network. 

Total parallel computation time to solve A A W' 4' = z will be the sum of the times 

given by (5.28) through (5.35), i.e. 

T. 0 (matrix) = [(4 fl + 10 na,) (K - q) +(12 n + 2 n) S + (4 ?iy + 3)Pm] If 

+ (7q —5) t + [q2 + (2 n + 6) (K - q) + 2q (5.36) 

+(2flav_2)S]t, + 2q t'+(K—q+1)t3 

Substituting t, = 2 + t' in (5.36) where tf' is one floating-point operation time on 

the array, we have 

Ts+array(maix) = [(4n + 10 n0 ) (K — q)+(12n + 2flav )S +(4n0 + 3)prn ] tj 

+(14q — 1O)t'+ [q2+(2n + 6)(K—q)+2q (5.37) 

+(2nav 2)s]tc +9qtc'+(K_q+1)ts 

The parallel processing time as given by (5.37) is shown in Fig. 5.12 for a number of net-

work examples and for different values of t, t ' and tj'. Somewhat better speed-up 

values are obtained if the best-case time for eliminating B• as given by (5.15) instead of 

worst-case time is used in (5.37). The actual speed-up will be in between the two extreme 
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values depending upon the network topology and the link numbering employed. 

As can be seen from these plots, the use of a processor array is beneficial only when, 

(i) the processors in the array have speeds comparable to the speed of slave processors, i.e. 

(t1' = t1), (ii) the neighbourhood connections in the array are 8-bit wide, i.e. (ta' = 4 ta ), 

(iii) t = 0.1 t1 or so and (iv) the size of the network is large. Otherwise, no special speed 

advantage is obtained by using the processor array. 

5.2.2. Direct parallel method II 

The sequential direct method II was described in section 3.2.1.2.2 of Chapter 3 where 

an expression for its computation time on a single processor was also obtained. This sec-

tion derives expressions for its computation time on multiple processor systems. Three 

cases corresponding to three different number of processors being used are considered as 

was done for direct parallel method I. 

5.2.2.1. Number of processors equal to number of chains in the network 

The pseudo-code for the parallel algorithm for this case is given in Fig. 5.13. The 

total computation time can be estimated as follows: 

(i) Computation of c, from c, = DI' j, i = 1, 2, ..., s 

Each vector ci is computed on a separate processor i. Therefore, the total processing 

time for this computation will be the time to solve the above equation for the longest 

chain. If Pm is the length of the longest chain, then the time to solve the tridiagonal equa-

tion D1 ci = C.j for the longest chain is given by (refer section 3.2.1.2.2) 

TV I = (8 Pm - 7) . (5.38) 
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{D1 , , , are computed in processor i , i =' l, 2, , s. Therefore no data transfer 
is required. 

Similarly, a slice £ of rows of V and C is computed in each processor i. Therefore no 

data transfer is required.]. 

For i = 1 to s pardo fperform the following computations concurrently on s slave processors]. 

c, = 

Ej = DI' R, 

h=B1c 

G=BE1 

end pardo 

Synchronize all processors 

Transfer a slice hr = Ii 1 of non-zero rows of h1 and Gi from row number [(1 - 1)hr + 1] 

to row number I hr to processor I , 1 = 1, 2, , s. 

for 1 = 1 to s pardo 

Compute a slice hr = £ of rows of matrix Y and vector x from row number 

[(1 - 1)hr + 1] to row number 1 hr on processor 1 using equations (3.21) and (3.22) 
end pardo 

Synchronize all the processors 

Compute M +1 from YM..1 = x using parallel Gauss-Jordan elimination. 

Synchronize all the processors 

broadcast the solution vector Aco + to all the processors 

For i = 1 to s pardo 

AO)i = ci - Ej A0 3+1 

end pardo 

Figure 5.13 Pseudo-code for solving A A W'' z on s processors by direct paral-
lel method II. 
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(ii) Computation of E1 from E1 = D 1 R, i = 1,1 2, ..., s 

Each Ej cOmputation involves solving 2 n thdiagonal systems of equations for each 

non-zero column in R1. However, L U factorization for D1 has already been done for 

computing c1. Therefore, only forward and backward substitutions as given by (3.23) and 

(3.24) in Chapter 3 are to be performed for each non-zero column of R1. The total compu-

tation time for computing all Ej will be determined by the longest chain in the network. 

Therefore, total computation time is given by (refer section 3.2.1.2.2) 

Tsiflav (5pm 3)ti . (5.39) 

(iii) Computation of h1 from h1 = B1 c, i = 1, 2, ..., s 

Let n.  be the maximum number of non-zero elements in a column of any B1. 

Then assuming 100% overhead for sparse computations, total computation time is given by 

T13 = 2(n nax + PZav) tf . (5.40) 

(iv) Computation of G1 from G1 = Bi E 

The maximum number' of non-zero full columns in any E1 is (n n,,x + av). There-

fore, 

2'3f4 = 2(n + av) (n + 'av) tf 

or Tsf 2(fl max +flav)2tf 

(v) Synchronization of processors 

(5.41) 

Now the processors have to be synchronized for the data transfer phase. Therefore, 
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= (5.42) 

(vi) Redistribution of hi and G, i = 1, 2, ..., s to the slave processors 

After step (iv), h1 and G• are in processor i, where i = 1, 2, ..., s. 

However, they are to be redistributed such that a slice of rows hr = £ from row 
S 

numbers [(1 - 1) hr + 1] to 1 hr is in processor 1, 1 = 1, 2, ..., s. Taking 100% commun-

ication overhead due to sparse data to be transferred, the total communication time is 

S 

T51 = 2 [2 n.y + (2 Zav) (2 nay)] t. 
i=1 

or 

= (8 + 4 n) s t, (5.43) 

(vii) Computation of vector x from x = - E h. 

A slice of elements of width If 1 of vector x is computed on a separate processor. 

There are 2 ay non-zero elements in one h1. The column indices of the non-zero ele-

ments in all the h1 vectors will be different from each other corresponding to those random 

links in the network whose two ends do not connect the end nodes of two disjointed 

chains. However, for a random link which connects the end nodes of two disjointed 

chains, there will be two hi vectors with identical non-zero element column indices. 

Therefore, it takes one subtraction to compute an element of x for some elements of x and 

two subtractions for the other elements of x. This load unbalancing can be minimized by 

numbering such links with a difference of If 1 integers rather than consecutively. 
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Therefore, taking 1.5 subtractions as the time to compute an element of x and taking 100% 

overhead for sparse computations, the time to compute vector x is given by 

T315 =2x Iilx15tj=3Is i1ti I I  

(viii) Computation of matrix Y from Y = V - G1. 

(5.44) 

There are 2 ay non-zero elements in matrix G. Here again, the same problem of 

unequal load distribution in computing elements of Y occurs as was the case of computing 

h•. Therefore, the parallel computation time for computing Y is given by 

T3f6=2X2flav Ii  I x 1.5 tf 

or T 6=6n [jIt1 

(vii) Synchronize all the processors 

(5.45) 

(5.46) 

(vii) Computation of vector A o+1 from Y A = x. 

This computation is carried out by parallel Gauss-Jordan elimination as described in 

section 5.2.1. The computation time is given by (5.2). Therefore, 

T 16 1s Il(q2+2q+1)tf 

T 1+3] 
SCZ L2 2 

(5.47) 

(5.48) 
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= q t5 (5.49) 

(viii) Synchronize the processors 

T 4=t 

(ix) Broadcast solution subvector A O) to all the processors. 

(5.50) 

T83 q (5.51) 

(x) Computation of A 0j from  mi = c — E1 A O.i, i = 1,2,..., S. 

Each subvector A mi is computed on a separate processor i, i = 1, 2, ..., s. There 

are 2 ay non-zero columns in matrix E8. if p,,, is the length of the longest chain, then, 

taking 100% overhead for sparse computations, 

T17 = 2(2 n + 2 nay) pm t1 

or T 7 = 8 nav Pm tf (5.52) 

The total parallel processing time is the sum total of times given by (5.38) through 

(5.51). Hence, 

T (max) [1 1 (q2 + 2q + 6 n) + (13 n + 8) p + 2(nm 

+ [+ q+(n+4nav)s]tc 
2 2 

+(q+3) 

tf 

(5.53) 

The serial computation time for direct method II on a single processor is given by (3.36). 

The speed-ups and efficiencies obtained are plotted in Fig. 5.14. As can be seen from 

these plots, the speed-ups and efficiencies are not very sensitive with respect to the data 
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Figure 5.14 Speed-up and efficiency of parallel computation for solving 
A A W"' = z on s processors by direct parallel method H. 
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communication time t,. Also, the speed-ups and efficiencies obtained are higher than the 

corresponding values for direct parallel method I (Fig. 5.6), particularly for the smaller size 

networks. Total • synchronization time is also less for this parallel method as compared to 

direct parallel method I. 

5.2.2.2. Number of Processors equal to number of random links in the network 

Parallel computation on q processors is very similar to the computation on s proces-

sors except that the submatrices D1, B1, R1, V of matrix A and subvectors 1 and s+1 of 

vector z are to be transferred to the slave processors. D1, B1, R1, j are transferred to pro-

cessor i, where i = 1, 2, ..., s and the submatrix V and subvectors are partitioned 

row-wise with one row per processor. This is so because the elements of matrix A and 

vector z are partitioned and computed on q processors in such a way that each processor 

computes an equal number of elements of A to ensure load balancing among the proces-

sors. This partitioning requirement is not the same as for solving the matrix equation. 

Another difference is that the matrix equation Y i = x is solved on q processors 

instead of s processors by assigning one row of Y to one processor. 

(i) Transfer of D1, B1, R1, and to s processors. - 

Total number of akV elements in matrix A where v # k has been calculated in section 

3.2.2 of Chapter 3 as 2K + (2 day - 4) (q + s) where day is the average degree of a 11011 

chained node in the network. Therefore, total number of akV elements of A including 

v = k is given by 

3K + (2 day - 4) (q + s) 

Since the elements of A are stored as sparse, the row and column indices of A also have to 
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be transferred along with their values. Taking 100% overhead for index transfers, 

Total data transfer time for A and z is given by, 

Tqc1 = [2f3K + (2 day - 4) (q + s)} + K] t 

or 

Tqc1 [7K+(4day_4)(q+s)]t (5.54) 

(ii) Compute c, E,, h1 and Gj on processor i, where i = 1, 2, ..., s. 

These computations are done on s of the q processors. Therefore, the computation 

time for this part is the same as for the case of s processors given in section 5.2.2.1 

Tq1 = [(5 n. + 8) p. + 2(/2 max + av)2 + 2@2max + - 3 2av - 71 tf (5.55) 

(iii) Synchronize all the processors 

Synchronization time Tq1 = t. (5.56) 

(iv) Transfer a row j of hi and G1 to processor j, i = 1, 2, ..., q and i = 1,2,..., S. 

This communication time is the same as given in (5.43) for s processors. Therefore, 

Tqcz(8nav+4nav)stc 

Now hi and G1 are partitioned row-wise with one row of each h, G, per processor. 

(v) Computation of vector x from x = - h 

(5.57) 

Each element of x is computed on a separate processor so that q elements of x are 

computed concurrently on q processors. Some elements of x require one subtraction and 

some require two subtractions as discussed in section 5.2.2.1. Assuming 100% overhead 
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for sparse computations. 

parallel computation time Tqf2 = 4 If (5.58) 

(vi) Computation of matrix Y from Y = V - G. 

Parallel computation time Tq13 = 2 X 2 x'2 n,, t1 

or 

Tq13 = 8 'av f (5.59) 

(vii) Synchronize all the processors 

Tq.sync2 = (5.60) 

(viii) Computation of A co vector from Y E O) = x by parallel Gauss-Jordan elimi-

nation on q processors. 

Parallel processing time for solving a q x q matrix equation has been derived in sec-

tion 5.2 and, for q processors;it is given by 

Tq14 (q2+2q + 1)t1 (5.61) 

Tqc3 = [i  + q] t (5.62) 

Tqsy,w3 = q t, (5.63) 

Now each element of A ü is in a different processor. 

(ix) Synchronize all the processors 
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tq3y4 = 

(x) Broadcast the solution subvector A to all the processors 

Tqc4 q t (5.65) 

(5.64) 

(xi) Computation of  01 from  COj =c1 — A i = 1,2,..., S. 

Each A Co1 is computed on a separate processor. Therefore, computation time is the 

same as given by (5.52). Therefore, 

Tqf8flavPmtf (5.66) 

The total processing time is the sum total of times given by (5.54) through (5.66). There-

fore, 

Tq(matiix)z [q2+(l3nav + 8)pm + 2q +2(n max +n0v)2]tf 

+ +7K + q + (4 da; —4) (q + s) + (8 flav)5]tc (5.67) 

+(q+3)t 

The speed-ups and efficiencies obtained by this method are plotted in Fig. 5.15. A com-

parison with the results of direct parallel method I (Fig. 5.7), shows that these speed-ups 

and efficiencies are higher than the direct parallel method I for large-size networks but are 

more or less the same for smaller networks. 
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Figure 5.15 Speed-up and efficiency of parallel computation for solving 

A A W' = z on q processors by direct method H. 
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5.2.2.3. Number of processors equal to the number of chains in the network and a 

two-dimensional mesh-connected array of q x q processors 

The pseudo-code of the direct parallel method II for this case is given in Fig. 5.16. 

The parallel processing time is estimated as follows: 

(i) Computation of c, E, hi and Gi on processor i, i = 1, 2, ..., s 

Since these computations are done on the s slave processors, the computation time is 

the same as given by (5.55). Therefore, 

T rrj1= [(5 nay +8)pm + 2(flm x+ nay )2+2(n max +nav)_3nav _7]tf (5.68) 

(ii) Synchronize all the s processors 

"s+arrsync 1 = ts (5.69) 

(iii) Transfer vectors 41' h, i = 1, 2, ..., $ from s processors to the array's first 

column of 2-1) interface memory. 

These vectors are stored in the interface memory as non-zero data element values 

together with their position in the vector (first the column index of the non-zero element 

and then its value). Therefore, data communication time is given by 

or 

S 

Tl+arrc  
1=1 I tc 

= [2q + 4 nov s t 1 (5.70) 
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{D1 , B, , R, , are computed on processor i, i = i, 2, , s. Therefore no data transfer 
is required}. 

for i = 1 to s pardo fperform the following computations concurrently on s slave processors} 

= Di 1 R, 

h, = B, c 

G, = B, E 

end pardo 

synchronize all the processors 

transfer vectors ( +1 , h , i = 1, 2, , s from s slave processors to the first column of the 
processor array's 2-D interface memory. 

read the and hi values from the interface memory into the q processors of the first 
column of the processor array. 

Compute vector x = - h1 in the array 

transfer the vector x from processor array to the left-hand 1-D interface memory. 

Synchronize array with the master processor. 

Transfer sparse matrices V, G, , i = 1, 2, ..., s from slave processors to the 2-D interface 
memory of the processor array. 

read V and G, values in to the processor array. 

Compute matrix Y = V - G, on the processor array. 

Solve the matrix equation Y A(,+1 = x for A0 3+1 on the array by the Fawcett's algorithm 

synchronize array with the master processor. 

read the solution subvector Ao + from the left-hand interface memory and broadcast to the s 
slave processors. 

for i = 1 to s pardo CPerform the following computations concurrently on s slave processors} 

Awj = c, - 

end pardo 

Figure 5.16 Pseudo-code for solving A L W' 4' = z on s processors plus a q x q 
processor array by direct method H. 
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(iv) Read the C and h• values from the interface memory to the processors in the first 

column of the array. 

First processor in the first column of the array reads the column index of a non-zero 

element of the vector and then its value. If the column index is not unity, it passes along 

the column index and the element value to the processor down below and so on. The 

same procedure is followed by the lower processors. They read these values from the 

upper neighbour processor. In this way, the jth non-zero element of any vector h1 is 

stored in the jth processor. Therefore, 

T 2=(2q +2X2flav S +q)t' 

or 

Ts+o,rc = (3q + 4 n.,, s) t' (5.71) 

The additional q data transfers in the above equation are for the worst-case when the last 

element read from the memory is for the bottom-most processor. Here t' is the time for 

one read operation by a processor in the array. 

(v) Compute vector x in the first column processors of the array 

The slowest processor has to perform two subtractions to compute an element of x as 

discussed in section 5.2.2.2. Therefore, 

T 12 =4r1 (5.72) 

where tf ' is the one floating-point operation time of a processor in the array. 

(vi) Transfer x to the left-hand interface memory 

Ts+ap.rayc tc' (5.73) 
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(vii) Synchronize array with-the master processor 

+array.sync2 = (5.74) 

(viii) Transfer matrices V and G•, i = 1, 2, ..., s from the s slave processors to the 

array's 2-D interface memory (non-zero column elements of matrices stored in the 

corresponding columns of the memory along with their row indices. 

If day is the average degree of a non-chained node in the network, then a random link 

gives rise to [1 + 2(da,, - 1)] non-zero elements. Hence, number of non-zero elements in 

the submatrix [B1 B2 .. . B3 V] is 

[2(dyl)+1]q 

=(2d- 1)q 

There are na, non-zero elements per first and last column of B.. Therefore, number of 

non-zero elements in matrix V is [(2 d - 1)q - 2 na, s]. 

Since the non-zero elements of V are stored along with their addresses, data transfer time 

for storing V in the interface memory is given by 

or 

Ts+arrayc4 = 2[(2 day - l)q —2 n0 s] t, 

Ts+arrayc4 = [(4 d - 2)q 4 na, s ] (5.75) 

Data transfer time for transferring G, i = 1, 2, ..., s to the interface memory, 

S 

Ts+arraycs E 2X2flav X2flav tc 
1=1 



192 

or +arrayc5 = 8 n s tc (5.76) 

(ix) Read V and GL values into the array 

If d is the maximum degree of a non-chained node in the network, then the max-

imum number of non-zero elements in any column of V is approximately equal to 

(dm - 1) + (day - 1) + 1 = (dmax + day - 1) = (dm + day). Hence, data transfer time 

for transferring V and G, submatrices from interface memory to the processor array is 

given by 

Ts+arrayc6 =2[(dmax +dav + 1 2Zay +] t 

or 

Ts+arrayc6 = [2(dmax + da,) + 4 na, s +] tc' (5.77) 

(x) Compute matrix Y = V -  Gi  on the processor array. 

The q2 processors compute the q2 elements of Y. The slowest processor has to per-

form two subtractions corresponding to two G1 with identical non-zero element positions 

which in turn corresponds to a random link connecting the end nodes of two disjointed 

chains. Therefore, 

Ts+arrayf4tf' (5.78) 

(xi) Solve the matrix equation Y A o = x on the processor array. 

The parallel computation time for solving the matrix equation has been obtained in 

section 5.1.2.3 and is given by (5.27). Hence, 
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T8 +arrayf, = (7q - 5) tn7ac 

where t,,,.,, is the processing time to carry out one multiply and accumulate operation plus 

one data communication to the nearest neighbour, i.e. t,,,,, = (2 tf' + ta'). 

Hence, T, +arrayf4 = (7q - 5) (2 r1' + ta ') 

(xii) Synchronize the array with the master processor 

TI +array.sync3 = ts 

(5.79) 

(5.80) 

(xiii) Read the solution vector A CO +i from the left interface memory and broadcast to 

the s slave processors. Thus 

Ts+arrayc7 q t . (5.81) 

(xiv) Compute A cot, i = 1, 2, ..., s on s slave processors. 

This computation time is the same as given in (5.52). Hence, 

Ts+ ,, ayfs=8flav Pm tf (5.82) 

The total processing time is the sum total of above times given by (5.68) through (5.82). 

Therefore, 

+array(mat11X) [(13 na, + 8) pm + 2(n + flav)2] 
If 

+l4qtf'+ [(4c1av +1)q+8ns]tc 

+(l2q+8ns)t'+3t3 

The speed-ups and efficiencies obtained for different values of t, t,', t1' are plotted 

in Fig. 5.17. As can be seen, the speed-up values obtained are higher than those obtained 

(5.83) 
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Figure 5.17 Speed-up of parallel processing for solving A A W' = z on s proces-
sors and a q x q processor array by direct method H. 
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for direct parallel method I as given by (5.37). Therefore, in this case, direct parallel 

method II is to - be preferred over the direct parallel method I. As was noted for direct 

parallel method I, processor arrays can be used to advantage only when, (i) tf' = tf, (ii) 

t' = 4 t, (iii) t = 0.1 t1, (iv) large-size network. A summary of computation, commun-

ication, and synchronization times for solving the matrix equation by direct methods I and 

II is given in Tables 5.1 and 5.2 respectively. 

A comparison of total processing times for solving the matrix equation by direct 

method I and direct method II is shown in Fig. 5.18. As can be seen from this plot, the 

direct method II is somewhat faster than direct method I for the case of one, s, and q pro-

cessors. It is significantly faster (a factor of about 2 to 5 depending upon the network 

size) for the case of s processors and a q x q processor array. 

53. Parallel Processing of the Remaining Computations 

In this section, as estimation of parallel processing time for the remaining computa-

tions is obtained. Two cases for the number of processors used are considered: ( 1) 

number of processors equal to s, (2) number of processors equal to q. For each case, the 

processing time will be slightly different depending on whether the matrix equation 

A , o = z is being solved by direct parallel method I or direct parallel method II. This is 

due to the different partitioning of the matrix A elements 1or the two parallel methods and 

hence different data communication times involved. 

53.1. Number of processors equal to s 

In this case, the computations are partitioned in such a way that computations for the 

links and nodes of a chain are done on a separate processor. Thus the s chains are parti-
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  Number of processors = s plus a q x q processor th-ray 

  Number of processors = q 

  Niunber of processors = s 

------•Nuniber of processors = 1 

Figure 5.18 A comparison of computation times for solving A i W' = z by direct 
method I and direct method II (t = 0.1 x t1). 
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tioned on s processors. This reduces data communication time. The computations for the 

random links and nodes are divided equally among the s slave processors. 

53.1.1. Matrix equation being solved by direct parallel method I 

The pseudo-code for parallel processing is given in Fig. 5.19. The computation time 

is obtained as follows: 

1. computation of o)7', j = 1, 2, ..., s+1. 

It'Pm is the length of the longest chain in the network, then 

T8f1 = [Pm + 11] tf (5.84) 

2. Computation of A (J, I = 1, 2, ..., N from (2.55) 

If day is the average degree of a non-chained node of degree greater than two includ-

ing the two end nodes of a chain, then computation time for the chained nodes is 

[5(Pm - 1) + 2(dav + 1)] t1. 

Now, total number of non-chained nodes N,. is N— E (p1 + 1) or 

N =(N — K + q —s). 

Computation time for the non—chained nodes is (2 d + 1) 1LS__  tf 

Therefore, total computation time for all A Uj is 

[5(pm — 1) + 2(2 d,, + 1) + (2 d,, + 1) 11]tf 
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{Each flow subvector M)7 is already computed and stored in processor j , j = 1, 2, ..., S 

and the A(o,++,' -subvector is partitioned row-wise among s processors (see section 5.2.1.1 and 

pseudocode of Fig. 5.5)} 

for j = 1 to s pardo {compute subsector cojn+l on processor j } 

()7+1 = 0)7 + 

end pardo 

Compute q elements of flow subvector coj1 on s processors 

Compute &T , , M1,  Pi u, v, P, H, ap1 for the chained nodes 
Dui ami 

(each chain on a separate processor) and for the random nodes (equally divided among s slave 

processors) 

synchronize the processors 

partially broadcast flow rates co for the random links only to processors requiring it. 

. ap• 
partially broadcast v1, P, H1, - ap)-, -j-. for the random nodes only 

UI_/j (ii VLj 

Compute fK+ fK+N+1 first for the chained links (one chain per processor) and then for the 

random links (equally divided among s processors) 

afk DAafk a k 
Compute ft, for the chained links and random links 

U1' Uj' DM1' aM 

synchronize the processors 

Figure 5.19 Pseudo-code for the parallel processing of the remaining computations 
on s slave processors (matrix equation to be solved by direct parallel 
method I) 
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partially broadcast fx+i fK+N+i for the random nodes only 

for j = 1 to s pardo {compute concurrently on s processors} 

compute C 

compute D 

compute B 

compute R1 

compute a slice j of -- rows of matrix V and subvector on processor j 

end pardo 

synchronize the processors 

Transfer C, ])j, R,, j = 1, 2, ..., s to the master 

store a slice of rows of width q of (B1 B2 B3] in each processor 

{Now all D, R., , I = 1, 2, , s are stored in the master and the matrix 

[B1 B2 B V c+il is partitioned mw-wise equally among s slave processors.} 

Figure 5.19 Continued 
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or 

Tsfzz[5pm+4dav +(2dav +1) 11] tf 

3. Computation of A M, i = 1, 2, ..., N from (2.56). 

or 

It is similar to the computation of A U. Therefore, 

T3f3 [2m_1)+2dav+dav 

T8f = [2Pm +dav 

4. Computation of U1"1, M1', u, v, i = 1, 2, ..., N. 

This time is given as 

vi = Volume (i)/M 

Tsi4[Pm+ 1.-1]ti 
5. Computation of P1, i = 1, 2, ..., N. 

If T t1 is the time to compute one value of P, then 

(5.85) 

(5.86) 

(5.87) 

= [ m+1)+ ILS"— I I I TP If . (5.88) 

6. Computation of H, i = 1,2,..., N. 
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H1 = u1 + P1 Vi 

Therefore, 

T1 =2 I-+ 1 + - I I If 

i' ai' 
7. Computation of .-, --, i = 1, 2, ..., N. 

Let 

Then, 

Tdpu tf = 

Tcipm tf 

time to compute one value of 
auj 

time to compute one value of 
ami 

Tsf  [ m + ne 
111 u [TdP' + TdPn  tf 

(5.89) 

(5.90) 

8. Synchronize processors. 

The synchronization time is given by 

(5.91) 

9. Partially broadcast flow rates wj1 for the random links only and v, P, H1, api 
Dui 

. Pi 
values for the random nodes onlami y. 

The data communication time T3, is given by 
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sci=[(q+2s)+s(2s)+s(N_K+q_s)]tc 

or 

T 1 = [5N - 5K + 6q + 7s] tc 

10. Computation of fK+i from (2.4), i = 1, 2, ..., N. 

Computation time for chained nodes is [4(p - 2) + 2(dav + day)] t1. 

INl 
Computation time for other nodes is i— I (day + day) tf. 

Is I 

Therefore, 

T3f8 = [4pm + 4 d,, — 8 + 2 da, 

11. Computation of fK+N+1 i = 1, 2, ..., N from (2.5). 

nc 11 - If S 

Tsf9 [Pm+2dav_4+(daY1) i1] tf 

12. Computation of fk, k = 1, 2, ..., K from (2.2). 

Pm +f&]]tf 

a!k a! 
13. Computation of—, -, k = 1, 2, ..., K from (2.2). au au1 

(5.92) 

(5.93) 

(5.94) 

(5.95) 

Tf 2[Pm + [1 11 tf (5.95) 
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14. Computation of - a! -, afkami k = 1, 2, ..., K from (2.2). 

TIf  8[rn + [j I ]  tf (5.96) 

15. Synchronize all the processors. 

= (5.98) 

16. Partially broadcast fK+ fK+N+i for the random nodes only. 

TS, 2=2(N—K+q+s)t (5.99) 

17. Computation of elements of subvectors , I = 1, 2, ..., s+1 of z from (2.57). 

Tsf310[Pm+ 11]ti (5.100) 

18. Computation of D1, B, R, 1 = 1,2,..., s from (2.58) and (2.59). 

T3114 =(17Pm + 12 day 18) t1 

19. Computation of elements of matrix V. 

Calculation of matrix V is partitioned row-wise among s processors. 

or 

Tsis1l11 s t 11St]1+3X2(day1)1'1ti 1  

sfs (6 d,, +5)t1. 1st 

(5.101) 

(5.102) 
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20. Synchronize all the processors. 

= 

21. Transfer Cj, D, R, j = 1, 2, ..., s to the master. 

T33 =(K—q)+ (3p 2)+2flav S 
1=1 

Tsc3 =[4(Kq)+(2n y _2)s]t 

(5.103) 

(5.104) 

22. Partition matrix [B1 B2 B3 ] row-wise among s processors. 

Matrices B1 are sparsely stored. Therefore, taking 100% overhead for communication 

of addresses of matrix elements, 

4n Tsc4 = av 5 (5.105) 

Now the matrix A and vector z are partitioned among the master and s slave processors as 

required by direct parallel method I for solving the matrix equation (refer section 5.2.1.1). 

Total processing time for the rest of the computations will be the sum of times given by 

(5.84) through (5.105). Therefore, 

T3 (rest) = [63 Pm + (34 + 6 day) 1-1 + (6 day + 4) 1 1 + 24 day - 28] If 

+ I(P_ + 1) + [-LS-- I I 
(Tp + Tdp + Tdpm) tf 

+ [7N_3K+4q+(6nav _7)s]tc +3t3 

Taking T = Tdpu = Tdpm = 25, 



205 

T (rest) = [138 Pm + (6 d + 34) [ + (6 day + 79) IN - K + q - s  
S 

(5.106) 

+ 24d + 47]ti + [7N — 3K + 4q + (6 d,,, _ 7)s]t +3t3 

The resulting speed-ups are plotted in Fig. 5.20(a) as a function of network size. 

53.1.2. Matrix equation to be solved by direct parallel method II 

The pseudo-code for this case is the same as given in Fig. 5.18 for direct parallel 

method I except that Cj, J), R1, B3 are not to be transferred as in the case of direct 

method I. Hence, the parallel processing time in this case is the same as given by (5.106) 

minus the communication times given by (5.104) and (5.105). Hence, 

T, (rest) = 113 8 pm + (6 day + 34) ••q 
S 

+ (6 day +79) IN - K q - s 1 +24 day + 47.] If 

+[7N-7K+8q]t+3t3 

(5.106) 

The speed-ups obtained in this case are somewhat higher than the previous case and are 

plotted in Fig. 5.20(b) 

53.2. Number of processors equal to number of random links q in the network 

In this case, all the computations are equally divided among q processors unlike the 

case of s processors where the computations are partitioned as one chain per processor for 

the chained links and nodes and the remaining computations are then equally divided 

among s processors. The parallel processing time for this case can be obtained similar to 

the case of s processors and is given by 
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Figure 5.20 Speed-up of parallel processing for the rest of the computations on s 
processors 
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Tq(rest) = [40 11 +(TP+Tdpu+T,m+6) 1-1 
+ 13[k - q _S1+(6dmax+ 1) N — K +q +s  

q 

+3 j2K +(2d — 4) (q +s)} I I If 
q 

+[7N + 6K +(2dav —4)(q +s)] t + 3t3 

1 (5.107) 

where dnm is the maximum degree of a node in the network. - Taking 

T = Tdpu = Tdpm = 25, we have [-Lq I 

T,, (rest) 
= [40 f.1 + 81 + 13 [K -; - 1 
+(6d+1)   

{2K + (2 d-4) (q + s)}  I I tf 
+[7N+6K+(2dy_4)(q+s)]t+3t3 

(5.108) 

This value of parallel computation time is the same irrespective of whether the matrix 

equation is solved by direct parallel method I or direct parallel method II since all the com-

puted values of elements of A and z are to be communicated in the two cases. The result-

ing speed-ups and efficiencies for a number of network examples are plotted in Fig. 5.21. 

The efficiency falls off with the increase in the problem size and the number of processors 

used. The fall in efficiency is rather drastic for the case when t = 0.5 t1 , i.e. for a slow 

bus with respect to the processors. However, as the problem size increases, the rest of the 
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Figure 5.21 Speed-up and efficiency of parallel processing for performing the rest of 
the computations on q processors. 
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computaions form a small fraction of the total computations as shown in Fig. 3.10(a) and 

(b). Therefore, the overall efficiency of parallel computation remains reasonable high as is 

shown in the next section. A summary of processing times for the rest of the computa-

tions is given in Table 5.3 

5.4. Parallel Processing Performance for Total Computations 

In the preceding sections, the parallel processing performance for the solution of 

matrix equation was considered separately from the rest of the computations. In this sec-

tion, the overall performance of total parallel computations is considered. Total parallel 

time is given by the sum of the parallel times for the matrix equation computations and the 

rest of the computations as given in Tables 5.1, 5,2 and 5.3. The speed-ups and 

efficiencies of total parallel computation are plotted in Fig. 5.22 through 5.27. 

The smallest permissible values of integration time-step for real-time computations 

are given in Tables 5.4(a) and (b) and also plotted in Fig. 5.28(a) and (b). 

From these plots, it can be seen that, for the case of a single processor, the minimum 

step size for real-time computations increases very rapidly with the size of the problem. 

These large values of step size cannot be used from the point of view of integration accu-

racy requirements. On the other hand, the step size requirements for real-time computing 

increase slowly when parallel processing is employed. For networks not too large in size 

(say, with upto 300 links), number of processors equal to the number of chains in the net-

work can be employed to give a reasonably small integration step size. For large net-

works, however, number of processors equal to the number of random links q in the net-

work should be employed in order to limit the step size to small values. Number of pro-

cessors equal to s plus a q x q processor array can also be employed for large-size 
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Table 5.1 

Summary of computation, communication, and synchronization times for 
solving A A W' = z by direct method I. 

Number of 
Processors 

Computing 
Time 

Communication 
Time 

Synchronization 
Time • 

1 

2332 
[-q +j-q +(4nav + 

l8nay+13)(Kq)+(12 

fla,12flay12)3 — q ]t1 

- 

Number 

of 

Chains s 

[I&l(q2+2q)(4n+10 
II 
av )(K—q )+( 12n+2 

av )s +(4n +3)Pm ]t1 

[9 +(2nay+6)(Kq) 
2 

+2.Sq +(2flav 2)s }t 

Kt 

Number 

of 

random 

links  

q2+2q +(4ny+10)(K—q) 

('av —4)s +(4flay +3) 

Pm )tf 
+2.5q +(2n —2)s ]t 

Kt 

Number 

of Chains 

S and 

aqxq 

processor 

array 

[(4n+10n y)(K—q) 

+(12flav+2flay)S+(4 oy 

+3)prnitf+(14q_10)tf' 

[q2+(2ny+6)(K—q )+2q 

+(2nav —2)s]t+9qt' 

(K—q+1)t 
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Table 5.2 

Summary of computation, communication, and synchronization times for 
solving A A W'' = z by direct method H. 

Number 
of 

Processors 

Computation 
Time 

Communication 
Time 

Synchronization 
Time 

1 

[q3.4J..q2( l3flav+8) 

(K—q )+( 16n+5n —7)s 

4qjt1 

- - 

Number 

of  

Chains 

i:( 2+2q 

+8)Pm+2(fl+flav)2]tf 

-. 
+6flav )( ' av 

(q +3)t8 

[j -+fq +(8 na + 

4flav)]tc 

Number 

of 

random 

links  

q2+2q+(13n 2y+8)p 

+2(n +n )21tf 

4 
(q +3)t 

q+7K) 

(q +s )+( a+4n )s It, 

Number 

of Chains 

sand 

aqxq 

processor 

array 

[(13n +8)p +2(n + flay )2} 

t1+14qt1' 

[(4d +1)q +8ns ]t + 

12q+8nys)t' 

3t 



Table 5.3 

Summary. of computation, communication and synchronization times for 
performing the rest of the computations. 

212 

Number 
of 

Processors 

Computing 
Time 

Communication 
Time 

Synchronization 
Time 

1 

[(576dav )K+(T +Tdpu +Tdpm 

+6day+7)N+(12day 24)(q+s )t1 

- - 

Number 

of 

Chains s 

[63Pm 1 [7N3K+4q+(6ny7)s Jt 
3t 

(6d,,,+34)+ 

(6dav+4)+(Pm+ 1 I +1)(Tp+ 
Tdpu+Tdpm )+24d0v 28]tf 

Number 

of 

random 

links q 

[40 I1 +(Tp+Tdp, +Tpm) [Ni 
+13 I-LS l+(6d0+1) q I 
[N_K±+s] 

3t 

• 

+3 [{2K+(2d4)(q+s)} 1 
q Jt 
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Figure 5.22 Speed-up and efficiency of parallel processing for total computations on 
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(a) Speed-up versus network size 
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Step-size values for real-time computations using processors with tf = 1 tsec. 
Matrix solution is by direct method H. (n = 2.0, n = 6, d = 3.0, pn = 20, 

t. =5.0t, tf tf, t'=4t) 

Network 
example 

Step-size for real-time computations (milliseconds) 

using one 
processor 

using s 
processors 

using q 
processors 

using s 
processors 

and aqxq array 
K=50, q=15, 
s3, N=45 

10.6 5.7 1.8 4.6 

K=100, q=30, 
s=5, N=90 

35.3 10.4 2.7 4.9 

K=200, q=60, 
s=10, N=180 

181.4 27.3 6.0 5.6 

K=300, q=90, 
s=15, N=270 

546.1 55.0 11.2 6.3 

K=400, q=120, 
s=20, 14=360 

1237.0 93.7 18.3 6.9 

K=500, q=150, 
s.=25, N=450 

2363.0 143.2 27.3 7.6 

(a) tc = 0.1 tf 

Network 
example 

Step-size for real-time computations (milliseconds) 

using one 
processor 

using s 
processors 

using q 
processors 

using s 
processors 

and aqxq array 
K=S0, ql5, 
s=3, N=45 

10.6 . 5.8 2.3 5.1 

K=100, q-30, 
s=5, N=90 

35.3 10.7 3.9 5.9 

K.200, q..6Q, 
s=10, N180 

181.4 28.3 8.8 7.6 

K=300, q=90, 
=15, N270 

546.1 57.2 15.9 9.3 

K=400, q=120, 
s.20, N=360 

1237.0 97.3 25.3 10.9 

K=500, q=150, 
s=25, N=450 

2363.0 148.6 36.9 12.6 

(b) tc = 0.5 tf 
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Table 5.5 

Effect of syhchronization time t on the permissible step-size for real-time computations. 
Matrix solution is by direct method II (t = 1 .Lsec, t f = t, t' = 4xt, t. = 0. lxtf) 

Network 
example 

- 

Step-size for real-time computations (milliseconds) 
Processors = s Processors = q Processors = s 

and q xq array 
ts=SXtf t3=5OXtf t=5x tS=5Oxtf t5-SXtf tS=5Oxrf 

4.8 K=50, q=15 
s-3, N-45 

5.7 6.6 1.8 2.7 4.6 

K=100, q=.30 
s=S, N=90 

10.4 12.0 2.7 4.3 4.9 5.1 

K=200, q-60 
s=1O, N=180 

27.3 30.2 6.0 8.9 5.6 5.8 

K=300, q=90 
s=15, N=270 

55.0 59.3 11.2 15.5 6.3 6.5 

K=400, q=120 
s=20, N=360 

93.7 99.3 18.3 23.9 6.9 7.1 

K=500, q=150 
s=25, N=450 

143.2 150.2 27.3 34.3 7.6 7.8 
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networks but this scheme is at present not very cost-effective because of large hardware 

requirement which -is not utilized very efficiently for this problem. However, with 

improvements in wafer-scale integration technology, even this solution may prove to be 

quite attractive as a result of integration of a number of processors of the processor array 

on a single chip. 

It can also be observed from Figs. 5.22 through 5.28 that the speed-ups and 

efficiencies of parallel computation are not severely affected when the communication time 

t is increased from 0.1 X tf to 0.5 x t1. This is particularly true when the number of pro-

cessors employed is equal to the number of chains s in the network Hence, the low-cbst 

time-shared bus as the inter-connection network is quite adequate for this problem. 

Finally, the effect of variation of synchronization time t from 5 x tf to 50 x tf on 

the permissible time step size for real-time computations is shown in Table 5.5. As can be 

seen from this table, the time-step size is not very sensitive to the synchronization time in 

this range. 

In summary, it can be stated that this parallel algorithm is quite robust with respect to 

variations in data communication time t, and processor synchronization time t3 within their 

considered range of values. 



CHAPTER 6 

PERFORMANCE OF A PARALLEL ITERATIVE METHOD 

6.1. Introduction 

In Chapter 5, two direct parallel methods for solving the matrix equation A A W = z 

were described. In this chapter, the performance of an iterative parallel method for solving 

this equation is studied. Simulation results for two network examples are also given. 

6.2. Jacobi's Iterative Method 

Jacobi's iterative method for computing the solution vector x from the Nth order 

matrix equation A x = b consists of performing the following iterations repeatedly until the 

convergence is achieved, i.e. the error between two successive iterations is less than a 

predetermined value c. 

N ,. ] a• b. 
.L 4m)+ ,l≤i≤N,m≥O 

j1j=i 
(6.1) 

until error(i) = I (m+1) - ≤ c, 1 ≤ i ≤ N ,m ≥ 0 where c is an arbitrarily small 

quantity. Sometimes the following criterion of Euclidean norm of total error is also used 

for determining convergence for the iterative process. 

½ 

total error = (X,(-+I) - Xi (-))2 ≤ e (6.2) 
Li =1 

In this iterative method, all the element values of vector x at the iteration m, i.e. x(m) are 

used in iteration m + 1. As a result, computations in (6.1) for differetit values of i can be 
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carried out concurrently as they are independent of each other. 

A sufficient condition for the convergence of the above iterative method is that the 

matrix A is strictly diagonally dominant [83], i.e. 

j=1,j7li 
(6.3) - 

In our case, all the off-diagonal elements akV of matrix A given by (2.54) are of the form 

X ( ) and all the diagonal elements akk given by (2.53) are of the form 

[1 - h x ( ) - x ( )]. Therefore, the matrix A in our case can be made diagonally 

dominant by choosing the time-step size h sufficiently small such that magnitudes of diag-

onal elements are large as compared to magnitudes of off-diagonal elements. 

These iterative methods, are generally not used when the matrix A is full as the com-

plexity of computation per iteration in this case is of the order of N2, i.e. 0(N2). How-

ever, these methods become attractive as compared to direct methods when the matrix is 

sparse, large and has random structure. In the case of sparse matrices, the number of non-

zero elements in each row does not grow with the size of the matrix and hence, the com-

putational complexity grows as 0(N). 

The pseudo-code for the Jacobi's iterative method of solving A x = b is given in Fig. 

6.1 

63. Algorithm Performance on a Single Processor 

Floating-point operation count per iteration for the Jacobi's iterative method on the 

serial computer can be obtained as follows: 
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Step 1: for i = 1 to N do {start the iterative process by assuming zero initial 
values for the vector x} 

Xo1d(l) = b(i)Ia(i, i) 

end {do} 

Step 2: for i = 1 to N do {compute new iterate values of vector x] 

Step 3: 

N 

Xnew() b(i)— a(i,j) Xo1d(J)I 
1 [  1 

a(i, i) j=1j*i J 

end {do} 

for i = 1 to N do 

error = abso1ute[x,. (1) - x0 (i)] 

if error> r= then {replace old x with. new x and repeat the iterations) 

for i = 1 to N do 

x0  (i) = X,., Y) 

end {do} 

goto Step 2 

else continue 

end {do} 

Step 4: Output the solution vector x, 

Figure 6.1 Pseudo-code for solving the matrix equation A x = b by Jacobi's itera-
tive method on a single processor. 
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(i) Initialization of A W(i) to z(i)/a(i,i). 

Computation tIme Ta = K tf 

(ii) Computation time per iteration for the chained links. 

Except for the two end links of a chain, the new value of the flow increment 

A W,.(i) is given by 

Z (i) - a(i,i - 1) A W0 (i - 1) - a(i,i + 1) A WO1d(i + 1)  
A W(i) =  (6.4) 

a(i,i) 

The total number of floating-point operation in (6.4) is 5 and there are (K - q - 2) such 

links. Therefore, the total operation count for such links is 5(K - q - 2s). 

If av is the average number of non-zero elements in the first or last row of R1, then taking 

100% overhead for sparse computations, the operation count for the end links is 

2X2s(2 nay + 3]. 

Hence, total computation time for chained links is 

Tb = [5(K - q - 2s) + (8 n,, + 12) s  tf (6.5) 

(iii) Computation time per iteration for the random links. 

If day is the average degree of an end-node of a random link, operation count for 

updating A W for one random link is 4(day - 1) + 1. 

Total operation count for q random links is (4 day - 3) q. Since these are sparse compu-

tations, taking 100% overhead for index manipulation, the total computation time for the 

random links T is 

= (8 day - 6) q t1 (6.6) 
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(iv) Computation time (worst case) for computing error of convergence 

At worst, the convergence error for K elements of vector A W will be computed 

before detecting non-convergence. At best, convergence error for the first element of A W 

is computed before detecting non-convergence. Taking an average value of - K -  computa-

tion for error before detecting convergence, the computation time Td is given by 

K 
Td=1t1 (6.7) 

Total computation time per time-step will be sum of Ta, Tb, T and Td. Therefore, total 

computation time per time-step is given by 

K+[5.5K+(8d_l1)q+(8n v +2)s]tf (6.8) 

If I is the total number of iterations required to achieve convergence, total computation 

time of Jacobi's method is given by 

T1(matrix) = [K + {5.5K + (8 day - 11) q + (8 n +2) SI!] 
If 

Neglecting the initialization time K tf at step (i), we have 

T1(matrix) = [5.5K + (8 day - 11) q + (8 n4 + 2) s I I tf . (6.10) 

(6.9) 

Total computation time to solve the matrix equation by direct method II has been obtained 

in Chapter 3 and is given by (3.36). Therefore, for the Jacobi's method to be more 

efficient than the direct method II, computing time given by (6.10) should be less than the 

time given by (3.36). This value of the number of iterations I for the iterative method to 

be faster is plotted in Fig. 6.2 as a function of the network size. From this figure, it is 

clear that this method is to be used only for very large-size networks having large number 
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Figure 6.2 Maximum number of iterations for Jicobi's method to be faster than the 
direct elimination method for solving A i W = z. 
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of random links. Also, the method is to be used where the iterations can be terminated 

early by using relatively large value of iteration error E. An example could be training 

simulators for the operators where a 5-10 percent error in the simulation results may not be 

noticeable to the operator. 

6.4. Algorithm Performance on Multiple Processors 

6.4.1. Parallel Jacobi's algorithm 

In the parallel version of Jacobi's algorithm [72,84], the iterative computations given 

by (6.1) are divided among N,, processors such that each processor updates 1 = vari-

ables, i.e. processor 1 updates variables x1 through x1, processor 2 updates variables x11 

through x21 etc. After this, the variables are checked for their convergence on their respec-

tive processors. If convergence has not occurred for one of the variables assigned to a 

processor, then that processor sets the flag equal to 1, sends a synchronization signal to the 

master and stops computations. Once all processors have finished computing and have 

sent their synchronization signals to master, the master processor reads the flags from the 

communication memories of slave processors and checks to see if any of the flags is unity, 

i.e. if the solution has not converged. If this is the case, the master reads the computed 

values of variables x(i) from communication memories and broadcasts on the bus for pro-

cessors requiring these values. After this, the whole procedure is repeated again till the 

convergence has occurred. 

The pseudo-code of the parallel Jacobi's method for solving A x = b is given in Fig. 

6.3. 
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{matrix equation A x = b is partitioned row-wise among N processors with 1 = -- rows of 

A, x and b per processor} NP 

Step 1: for n = 1 to N pardo {initialize all x(i) elements of vector x concurrently on Np 
processors} 

for i = [(n - 1)1 + 1] to ni do 

x0(i)= b(i) a(i,i) 

end do 
end pardo 

Step 2: Synchronize all the processors 

Step 3: Transfer xdd(i) values on the bus 

Step 4: for n = 1 to N pardo[concurrently initialize flag (n) =0 on processor n 
and compute new values of variables x(i)} 

flag(n) = 0 

for i = [(n - 1)1+1] to ni do {up-date a slice I of x(i) variables 
on each processor} 

[b(i)— N- a(i, j)xMw(t)_ xold(i)a(i,i)  

end do 
for i=[(n-1)l+1]tonldo 

error = absolute (i) - Xdd (i)] 
if error> r= then 

set flag(n) = 1 
for j = [(n-1)I+1] to ni do {replace old x(j) with new x(j) values} 
x0 (j) = 

end do 
stop computing and send synchronization signal 

else continue 
end do 

for i = [(h-1)l+1] to ni do {replace old values of x(i) with new values} 
x0 (i)=x,.(i) 

end do 
send synchronization signal from processor(n) 

end pardo (n) 

Figure 6.3 Pseudo-code for solving the matrix equation A x = b by parallel Jacobi's 
method on N processors 
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Step 5: read flags from slave processors to master processor 

Step 6: for £ = 1 to Np do {check the flags on the master processor. 
- Repeat the iterative procedure if convergence not occurred} 

if flag (i) = 1 then 
go to Step 3 

else continue 
end do 
output the solution vector x,,. 

Figure 6.3 Continued 
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6.4.2. Estimation of parallel computation time 

An estimation of parallel computing time for the matrix equation A A W = z will 

now be obtained. Since the computations in (6.1) are independent of each other, any arbi-

trary number of processors up to a maximum of K processors can be employed to perform 

parallel processing for solving A A W = z. However, analytical expressions for parallel 

computing time for the general case of N arbitrary number of processors cannot be 

obtained due to the dependence of communication time on the problem partitioning among 

N processors. Therefore, estimation of parallel computing time for the special case of 

number of processors equal to number of chains s in the network will be obtained. This 

choice of number of processors is also attractive from the performance point of view since 

the A W1 variables associated with a chain are computed on the same processor thus 

minimizing communication overhead. Also, the granularity of computations remains rela-

tively coarse so that the effect of communication and synchronization overhead on the 

computing efficiency is reduced. Since the chains in the network may be of different 

length, the computing load for different chains will be different. The load balancing can 

be achieved by suitably partitioning the iterations for the remaining q random links in the 

network among s processors such that the total load per processor for performing iterations 

for the chained links and random links is roughly the same for all the processors. How-

ever, for the sake of simplicity, it is assumed in the following analysis that iterations for 

the q random links are equally divided among s processors. This may result in somewhat 

poor speed-ups particularly for the case of a network having very long and very short 

chains. Estimation of parallel computing time is now obtained. 
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(i) Computation time to initialize A W0 (i). 

If Pm is the length of the longest chain, then time to initialize x0  (i) is given by 

Tsfl[Pm+Ih1]tf 

(ii) Time to synchronize processors. 

T.,fl h1 = t8 

(iii) Transfer A W0 (i) values on the bus. 

A W0,d (i) for the random links and ends links of chains are only to be transferred. 

Therefore, 

T8 1=[q+2s]r 

(iv) Time to compute A W,, (i) using A W0 (1). 

If Pm is the length of the longest chain, then 

= 2 X (2 fl +3) + 2) + 1 1 (8 d - 6) ] If 

or 

T312 [5Pm +8nav + 111 (8dav _6)+2]tf . 
1sf  

(v) Time to compute convergence error. The worst case time T3f3 is given by 

[m+ []] ti 
(vi) Time to synchronize the processors. 
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(vii) Time to read flag (i), i = 1, 2, ..., s from communication memories to master pro-

cessor. - 

T32 = s 

If I is the total number of iterations required for convergence, then total processing 

time will be sum of time in step (i) and I multiplied by sum of the times given in steps (ii) 

through (vii). Hence, 

T3 (matrix) = [m + tf + [{6 Pm + 8 av + [ (8 day 5) + 2  If 

+(q+3s)z+2t3 I 

Neglecting initialization time of [Pm + If I I tf at step (i), we have 
T, (matrix) [{6Prn + 8 nav + (8 day — 5) If 

(6.11) 

(6.12) 

+(q+3s)t+2t]I 

The speed-up of parallel processing will be the ratio of T1(matrix) given by (6.10) 

and 7. (matrix) given by (6.12). Since number of iterations I cancels out on the numerator 

and denominator side, the speed-up is independent of the number of iterations I. 

Effect of communication time t, synchronization time t, and the length p,, of the 

longest chain on the speed-up and efficiency of parallel processing is shown in Figs. 6.4, 

6.5 and 6.6 respectively. Although the speed-ups and efficiencies fall with an increase in 

the value of these parameters (particularly for larger-size networks), this degradation in 

performance is not very severe. This is due to the reasons of relatively coarse computa-
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(a) Speed-up versus network size 
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(b) Efficiency versus network size 

Effect of communication time t on the performance of Jacobi's iterative 

method for solving A A W = z on s processors (t = 5.0 X t1, p.. = 20). 
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(a) Speed-up versus network size 

(b) Efficiency versus network size 

Figure 6.5 

, I • - I 4 - I - 
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NETWORK SIZE 

Effect of synchronization time t3 on the performance of Jacobi's iterative 
method for solving A A W = z on s processors (t = 0.1 x t1, p,, = 20). 
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(a) Speed-up versus network size 

(b) Efficiency versus network size 

Figure 6.6 Effect of the length p.. of the longest chain in the network on the perfor-
mance of Jacobi's iterative method on s processors 
(t 0.1 Xtf,t: = 5.0Xt1) 
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tional granularity and minimization of shared data values to be communicated among the 

processors due to this particular partitioning of iterations among s processors. Moreover, 

the dependence of the algorithm on the longest chain length Pm can be minimized by suit-

ably dividing the iterations for the q random links among s processors instead of their 

equal division as was done for the purpose of this analysis. 

6.4.3. Simulation results 

In the previous section, the speed-up and efficiency of parallel processing using s 

processors has been studied by deriving analytical expressions for the computation times. 

Since the iterations in (6.1) are decoupled from each other, the number of processors 

larger than s and upto a maximum of K processors can be employed to perform these 

parallel computations.' However, the resulting efficiencies of parallel computation will be 

much smaller due to the fact that the communication and synchronization overhead now 

will form a larger fraction of the total processing time. This is due to the smaller granular-

ity of computation and increase in the shared data to be communicated among the proces-

sors. In order to study this degradation in algorithm performance with the increase in the 

number of processors, simulations for performing these parallel computations were carried 

out for an 8-node network example and a 64-node network example as described below. 

6.43.1. An 8-node network example 

Figure 6.7 shows the schematic diagram of a tank filled with water at high tempera-

ture and pressure and its 8-node and 8-link representation [6]. Parameters and initial con-

ditions associated with the nodel model are given in Table 6.1 and are the same as given in 

[6] except that they have been converted to MKS system of units. The transient is initiated 
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ACTUAL APPARATUS NODAL MODEL 

ORIFICE PLATE 

(CRITICAL FLOW PATH) 

Figure 6.7 Schematic of pressurized tank and control volume representation. (di-. 
mensions are in centimetres) 
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Table 6.1 

Parameters and initial conditions for the 8-node network of Fig. 6.7 

Node 
Number 

Volume 
(meter) 

Initial enthalpy 
(K Joule/Kg) 

Initial pressure 
(Kg/cm2) 

1 2.83 x i0 1181.7 164.30 

2 4.24 x 10-2 1181.7 164.28 

3 4.24x 10-2 1181.7 164.23 

4 4.24x 10-2 1181.7 164.19 

S 4.24x10 2 1181.7 164.13 

6 4.24 x 10-2 1181.7 164.09 

7 4.46 x i0 1181.7 164.11 

8 4.46 x i0 1181.7 164.11 

(a) Nodal Data 
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a 

Table 6.1. Continued 

Link 

Number 

L/A 

(meter') 

Initial Flow 

(Kg/Sec) 

Flow Area 

(meter2) 
D 

1 63.97 0 8.36 x10 3 0.06 

2 8.00 0 7.29 x 10-2 0.04 

3 8.00 0 7.29 x10 2 0.04 

4 8.00 0 7.29 x10 2 0.04 

5 8.00 0 7.29 xlcr2 0.04 

6 32.15 0 8.36 x10 3 0.06 

7 63.97 0 8.36 xi0 0.015 

8 0.0 0 3.14 x 10 0.0 

(b) Link Data 
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by opening the 2mm diameter disc in link 8 at time t = 0. For this network, the matrix A 

in equation A A W= z assumes the form of a tridiagonal matrix. Although the direct 

method of solving the matrix equation will be faster for this example due to tridiagonal 

matrix structure and its smaller size, JacobI's iterative method has been used to solve this 

problem to study the performance of this parallel algorithm. 

In order to compute the values of different variables such as pressure and its deriva-

tives with respect to other variables, steam flow data from steam tables [85] was stored in 

the form of polynomials fitted to the steam table data. The following times for the arith-

metic operations - which roughly correspond to INTEL 8086 processor with 8087 co-

processor [86] were used in the simulations: 

floating-point addition/subtraction time = 20 p.sec 

floating-point multiplication time = 20 p.sec 

floating-point divide time = 40 psec 

absolute value computation time = 2 .tsec 

integer decrement/increment time = 0.4 p.sec 

A time-step of 100 milliseconds was chosen for the integration of differential equa-

tions and simulations for 10 seconds of real-time were carried out. In the solution of Et W 

from the matrix equation A A W = z by Jacobi's iterative method, iterations were ter-

minated when J A W,.4(i) - A WQkj(i) was less than or equal to iO 3 for all the flow rate 

increments. In order to study the effect on speed-up and efficiency, the number of proces-

sors was increased from one to eight, the communication time t was set equal to t = 0, 

= 0.1 x tf and t = 0.5 X tf, the synchronization time t was set equal to t3 = 0, 
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= 5 X t and t3 = 50 x tf. 

The results obtained from the simulations are plotted in Figs. 6.8 through 6.10. Fig. 

6.8 shows the variation of flow rates W(1), W(4) and W(8) in links 1, 4 and 8 respectively 

and pressure P (8) of node 8. 

Figure 6.9 shows the normalized computation time for solving the problem when the 

number of processors is varied from one to eight. Figure 6.9(a) depicts the effect of com-

munication time t. Parallel computation time for this example is not very sensitive to the 

communication time. This is due to the fact that only a few data values are to be com-

municated among the processors because of the smaller size of the problem. Figure 6.9(b) 

shows the effect of synchronization time t3 on the parallel processing time which is 

significant due to the smaller granularity of parallel computation of this algorithm. 

Figure 6.10 shows the speed-ups and efficiencies obtained when the number of pro-

cessors is increased from one to eight. The efficiency goes down as the number of proces-

sors is increased. This is due to the fact that communication and synchronization overhead 

form a larger fraction of the total processing time as the number of processors is increased. 

Also, the plots are not smooth due to the unequal distribution of computing load on the 

processors for certain choices of number of processors. 

6.4.3.2. A 64-node network example 

In order to study the effect of problem size on the performance of the algorithm, the 

number of nodes in the network of Fig. 6.7 representing the pressurized water tank was 

increased from 5 nodes to 61 nodes so that the total number of nodes in the network was 

64 instead of S. The simulations were repeated for this larger network by varying the 

communication time z, synchronization time t3, and the number of processors employed. 
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(a) Flow rate versus Time 

(b) Pressure versus time 

Figure 6.8 Variation of link flow rates W(1), W(4) and W(8) and node pressure 
P(8) with time for the 8-node network example (leak diameter 2mm) 
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(a) Effect of Communication time t, (t3 = 5 x t1) 

(b) Effect of synchronization time i (t = 0.1 x t) 

Figure 6.9 Normalized parallel computation time versus number of processors for 
the 8-nude network (matrix solution by Jacobi's iterative method) 



247 

(a) Speed-up versus number of processors 

(b) Efficiency versus number of processors 

Figure 6.10 Speed-up and efficiency of parallel processing for the 8-node network 
example. Matrix solution is by Jacobi's iterative method (t = 5 x t1) 
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The simulation results obtained are plotted in Fig. 6.11 through 6.13. As shown in Fig. 

6.12, the effect of communication time t on the performance of the algorithm is now more 

serious than the 8-node example. This is due to the fact that larger number of data values 

are to be communicated among the processors when the number of processors is increased 

from 2 to 32. Effect of communication and synchronization overhead on computing 

efficiency can also be seen from Fig. 6.13. When the number of processors is small, syn-

chronization and communication overhead do not affect the efficiency very much. How-

ever, when the number of processors approaches the size of the matrix A, synchronization 

and communication overhead become very significant with respect to computing time and 

the efficiency of parallel processing becomes low. This situation is worse for larger-size 

networks (say, 500 link network) due to the larger data communication requirements. 

Hence, although number of processors equal to the size of the matrix A can be employed 

to perform the Jacobi's iterations, it is not a good choice from the hardware utilization 

point of view. The choice of number of processors equal to the number of chains s in the 

network ensures that the synchronization and communication overhead do not form a 

significant fraction of the computing time and thus resulting in good computing efficiency 

as was shown in section 6.4.2. (Figs. 6.4 through 6.6). 

The synchronization overhead in the Jacobi's iterative method can be avoided by 

using a shared memory-based architecture in which the processors read the shared variables 

from the shared memory and write the updated shared variables of iteration (6.1) to the 

shared memory. The processors do not wait for other processors to finish the updating of 

their assigned variables. Such algorithms which do not require any synchronization for 

their operation on multiple processor systems are termed asynchronous iterative algorithms 

by Kung in reference [87]. However, since the communication patterns become non-
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Figure 6.12 Speed-up and efficiency of parallel processing for the 64-node example. 
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(a) Effect ef comhiünjcatjorj time t on efficiency (t3 = 5 >< t1) 

(b) Effect of synchronization time on efficiency (t = 0.1 x if 

Figure 6.13 Effect of communication and synchronization times on the efficiency of 
parallel computation for the 64-node network. Matrix solution is by 
Jacobi's iterative method using N processors. 
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deterministic in the case of asynchronous iterative algorithm, a more powerful communica-

tion network than the simple time-shared bus is required in order to minimize delays due to 

contentions for the same communication paths. Moreover, since the iterations generated by 

an asynchronous iterative algorithm do not satisfy any recurrence relations such as (6.1) for 

the Jacobi's algorithm, it is difficult to obtain conditions for convergence such as given in 

(6.3) for the case of Jacobi's algorithm [87]. Hence, iterations for certain problems may 

not converge at all. 



CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

7.1. Conclusions 

• In this thesis, parallelization of Porsching's numerical integration algorithm for 

integrating thermo-hydraulic network differential equations which govern the dynamic 

behaviour of these networks, has been studied. Parallel solution of these differential equa-

tions is necessary in order to satisfy the real-time requirements for applications such as the 

development of operator training simulators and interactive computing requirements of 

design and development workstations. The following conclusions can be drawn from this 

study: 

1. For large networks, the solution of the matrix equation A A W = z at each integration 

time-step is the major computational effort in the serial Porsching's algorithm. The 

remaining computations form a small fraction of the total computing time. Therefore, 

this equation needs to be solved in a very fast and efficient manner. Two direct 

parallel methods and one iterative parallel method for solving this equation have been 

described in this thesis. The iterative method is to be preferred over direct methods 

only for simulating very large networks. 

2. Even though the remaining computations form a small fraction of the total computing 

time, it is still very important to parallelize these computations if good overall parallel 

processing performance is required. This is due to the fact that these remaining com-

putations begin to dominate the total computing time if the matrix solution only is 
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speeded up by using a large number of processors. This is a direôt consequence of 

Amdahl's law. 

3. The quasi-MIMD mode of parallel computation employing global synchronization and 

simple time-shared bus with broadcast facility as the inter-connection network and 

distributed communication memories is a good model of parallel computation for this 

problem as can be seen from the speed-up and efficiency results given in Chapters 5 

and 6. This solution has become all the more attractive with the recent availability of 

fast 32-bit microprocessors with on-chip floating-point computations facility in 

hardware. 

4. Partitioning of the Porsching's algorithm on the number of processors equal to the 

number of chains in the network is a good natural choice if high computing efficiency 

or hardware utilization is the primary requirement. This high efficiency results from 

localization of much of the data among the respective processors and from higher 

granularity of computation. 

5. Number of processors equal to the number of random links in the network is also a 

good choice if high speed-up rather than high efficiency is the main consideration. 

6. Even higher speed-ups can be achieved by employing a mesh-connected two-

dimensional array of processors connected as a peripheral device for solving the 

matrix equation. However, the resulting overall speed-up is not at all proportional to 

the additional very large, although simpler, number of processors employed. This is 

again due to the fact that the remaining computations in .the algorithm, which now 

form a significant fraction of the total processing time, are not speeded up on the 

array. Also the amount of the total data communication in the problem solution 
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increases substantially. This parallel solution, therefore, is not very attractive at 

present but may be employed after the development of wafer-scale integration tech-

nology where a number of processors can be integrated on a single chip. 

7. Potential for real-time performance does exist. The smallest step-size that can be 

used in the integration algorithm for real-time computations using one MFLOP 

microprocessors is given in Chapter 5. 

7.2. Recommendations for Further Work 

Recommendations for further work in this area are given below: 

1. The study of parallel algorithms reported in this thesis is only the first step in, the 

actual implementation of these ideas on a working parallel machine. The verification 

of these ideas can be carried out only if a parallel computer based on the model of 

computation described in this thesis• is actually built and the parallel software 

development tools such as a suitable parallel programming language for expressing 

these parallel algorithms, its compiler, debugger etc. are made available. 

2. It will be interesting to see how much improvement in the performance of these 

parallel algorithms can be achieved if a more powerful interconnection network such 

as a hypercube or an Omega network is employed for interconnecting the processors. 

Since the communication patterns now would be asynchronous in nature, accurate 

analytical results cannot be obtained in this case. Therefore, simulations of actual 

network examples will be necessary in order to study the performance of the algo-

rithms on processors connected by concurrent networks. Upper bounds on the perfor-

mance of these parallel algorithms are given in Chapter 5. These have been obtained 

by assuming zero communication time in the total processing time. 
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3. In the parallel iterative method for solving the matrix equation .A A W = z described 

in Chapter. 6, Jacobi's parallel method which generally converges more slowly than 

the Gauss-Siedel iterative method and also requires global synchronization at each 

pass of the iterative process has been used. A parallel iterative process called the 

"chaotic relaxation" method [87] which is similar to the Jacobi's method but which 

does not wait for results from other processors (and therefore, does not require any 

synchronization) up to a number of iterations can be tried. This can be done 

efficiently only on the shared memory machine with concurrent communication net-

work in order to minimize contention caused by random communication patterns. 

4. Porsching's integration algorithm is of the implicit type and, therefore, permits a 

larger step-size in the integration process but requires the solution of a matrix equa-

tion at each time-step. Another approach for dealing with this type of stiff problem 

having widely separated time-constants is the partitioning approach suggested by 

Palusinski et. al. [88]. This involves partitioning the system into a slow and a fast 

subsystem and then solving these resulting systems in parallel by explicit integration 

methods. Smaller step sizes can be used for the fast sub-system and larger time-step 

sizes can be used for the slower system. However, the authors report that the prob-

lem of partitioning the system without actually determining the eigenvalues of the 

linearized system is not yet solved in general. They also report that large errors may 

be introduced due to the use of interpolated values for the slow components in the 

fast components. If these and related problems can be solved, then this approach 

appears to be quite attractive specially from the point of view of parallel processing. 
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