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Abstract
Different kinds of solutions of the equation of motion (EOM) in a perfectly elastic medium have
been derived and also have been widely recognized. However, in fact, we can hardly find an
ideal medium without absorption. And, anelasticity of the earth causes physical dispersion of
seismic waves. Dispersion resulting from absorption in the propagation medium has been
included in the approximations of solutions of the equation of motion for some common sources
(a directed point force, double-couple-without-moment forces and a shear-dislocation force) by

replacing the velocity or slowness with the complex version. A velocity-frequency relation in the

1 1 1 w i .
form of @)~ v [1 — Eln (ww) + 5] has been used, where w is the angular frequency,

v(wy,) is the phase velocity at the reference frequency wg, . These approximations match very
well with the exact numerical results, and the anelastic waveforms have significant differences in
amplitude and shape than the elastic ones. Therefore, developing new solutions of the EOM with
absorption is a very meaningful thing.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Thesis Overview

In the past few decades, geophysicists have developed different solutions of the elastic
equation of motion for different sources, e.g., the solutions of the equation of motion showed in
Aki and Richards (2002), and these solutions have also been widely recognized. However, our
earth is not an ideal elastic body. Influence of absorption and dispersion caused by anelasticity
should be considered.

The objective of this project is to develop new solutions of the equation of motion with
absorption and dispersion effect for some common sources by converting the solutions of the
elastic equation of motion into frequency domain and replacing velocities with the complex
versions including absorption and dispersion terms in frequency domain, and then transform the
new solutions back into time domain.

Relevant background knowledge will be introduced in the following contents in chapter
1. Chapter 2 will give the basic methodology and algorithm about how to deal with this problem.
And, chapter 3, 4, and 5 will display the new solutions I have got for three different models (a
directed point force model, a double-couple-without-moment source model, and a shear-

dislocation source model), respectively. After that, this project will be summarized in chapter 6.

1.2 Equation of Motion

The equation of motion is an equation that describes the propagation characteristics of
seismic waves in a medium as a set of mathematical functions expressed in terms of dynamic
variables. The nature of these waves can be determined by solving the EOM (equation of

motion). By analyzing the changes in waveforms during the propagation process, we can further



2
deduce the structure and lithology of the medium and the properties of the seismic source. The

equation of motion, in component form is given by

do azui

o of o 00w 3
o, Ti=p5a =123 or 5,

gj

a'j _ 0

2
u;
otz '’

i=123. (1)

The equation (1) is the general equation of motion. If the summation convention and the

. . . . .. . d0ij doij 9o doj, . 90j3
simplified notation for partial derivatives i l=y3  —L=-—"4 L B =g
p p derivatives is used, ox; 1%, = ox, + 32, + 97s i1t
0%u; . . . .
Oi22 + 0133 = 055 and atzl = 1;, then the equation (1) is written as
_ .o . 3 _ .o .
oiii+fi=pil;, i=1,23.0r Yi_0;;+fi=pi;, i=123. 2)
J.Jj j JiJj

where f = f(x,t) is the body force density, p = p(X) is the density, 0 = (X, t) is the physical
stress tensor, X is position, and t is time. u = u(X, t) is the displacement and it = 0?u/dt? is the
acceleration.

Over the past few decades, many kinds of the solutions of the equation of motion in a
perfectly elastic medium have been derived and also have been widely recognized. For example,
the solution of the EOM for a directed point force (see, e.g., Aki and Richards I, 2002, p. 72, eq.

4.23, and Achenbach, 1973, p. 100) is

3v.v: —8::) (T/B R Sii — ViV
ui(x,o:(m—”)f YOS PSR 1/ Y (S T C. Tk 17) NS
r/a

Ampr3 Ampa?r a AmpB?r B

= uV + u¥ + u5, i=1,23 (3)
where u; is the i-th component of displacement, x is the vector from the origin to the observation
point (i.e., the location of the seismometer), and r is the distance between origin and observation
point, and y = X/r is a unit vector in the direction of x (i.e., y,, = x,, /7 is the direction cosine

between x and the x,, axis). Since the wave travels from the origin to x, the vectors x and y are in



3
the direction of wave propagation. j indicates the direction of the point force. a is the velocity of

P-wave and f is the velocity of S-wave,

A+2u U
o=y, = / . B=v,= |- “)
p 5 B =vs 5

and p is density. §;; is the Kronecker delta (named after Leopold Kronecker) and it is defined as

follows:

_ (0 ifi#j
5U_{1 ifi=j ©)

The first term, u;", is the near-field term. It dominates over the other two terms at small
values of 7. u;N term is a convolution integral. This means that if the source pulse s(t) has finite
duration T (i.e., s(t) # 0 only for 0 <t < T), then u;" is non-zero only in the range (r/a) <
t < (r/B) + T. The second term, u;”, is the far-field P wave term. And the third term, u;5, is the
far-field S wave term.

Note that the far-field terms decay as 1/r due to the geometrical spreading of the
wavefronts. The near-field term appears to decay as 1/r3 but it actually does not decay that fast
because r appears in the limits of the integral, making the integral a function of ». For example,
for an impulse (or, in general, a pulse s(t) of short duration), the near-field term decays roughly
as 1/r2. Thus, it is the dominant term in u; for small 7 (i.e., in the near-field). However, note
also that the terms “near-field” and “far-field” have meaning only if the source pulse is “short”
enough, i.e., if the pulse duration is significantly smaller than the typical travel-times, or
equivalently, if the receiver distance r is large enough. Otherwise, for “long” pulses (or small 7),

both the near-field and far-field terms are important at all 7, i.e., neither dominates (Krebes,

2004).
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Geophysicists recognized that most earthquakes are caused by shear faulting (e.g.,
Gilbert, 1884; Lawson, 1908; Reid, 1910), and a shear fault in anisotropic elastic medium is
equivalent to a distribution of double-couple mechanisms over the fault surface (Maruyama,
1963; Burridge and Knopoff, 1964).

Besides that, a wide variety of processes, including unsteady fluid flow, shear faulting on
ring structures, and tensile faulting are particularly likely in geothermal and volcanic
environments, where observed non-DC observations are commonest (Julian et al., 1998).

Therefore, in addition to the solution of the equation of motion for a directed point force I
mentioned above, I will also discuss about the solutions of the EOM for a double-couple-
without-moment source mechanism, and a shear dislocation source.

For the general cases we mentioned above, both of them can be derived from the solution
of the EOM (6), which gives the radiation from any moment tensor M (the formula can be found

in Aki and Richards, 2002, eq. 4.29, p. 77):

s
15v;v:ive — 3Vi0i, — 3Vi0i, — 3V:0;:) 1 (B
u;(x,t) =( Yi¥iVk — 5Vi ’:ﬂp YiOue — SV l’)ﬁfrBTM,-k(t—r) dr

a

(6ViVij —Yibjx — VO — Vk5ij) 1 r
* Amtpa? r_ZMjk (t Bl _)

(6ViVij —Yibjk — VO — ZVk5ij) 1 ( r)
_ — M, (t

41p > T2 B
Yivive 1 . T _Vk(ViVj _51'1')1 ; ( _Z) 6
+4npa3rM”‘ (t a) ampp3 " ‘ B ©

The near-field terms in this displacement field are proportional to r~* f://f ™) (t —

7) dt, and the far-field terms are proportional to r‘lek (t —r/a) (P-waves) or to r‘lek (t-

r/B) (S-waves). Present in (6) are some terms proportional to r~?M;; (t — r/a) and r=* M, (t —



r/B). Since their asymptotic properties, at small and large values of r, are intermediate to the
asymptotic properties of the near-field and far-field displacements, we can naturally call these
the intermediate-field terms. This is, however, a slightly misleading name, since there is no
intermediate range of distances in which these terms dominate, so it is common to include them
with the near-field terms. Vidale et al. (1995) pointed out an unusual example where an effect of
these intermediate terms is observable at great distance from a very large deep earthquake.

Mjy is called the moment tensor. The moment tensor is a second-rank tensor, which
describes a superposition of nine elementary force systems, with each component of the tensor
giving the moment of one force system. The diagonal components M;;, M,,, and Ms;
correspond to linear dipoles the exert no torque, and the off-diagonal elements M;,, M3,
My, My3, M3, and M3, correspond to force couples. It it usually assumed that the moment
tensor is symmetric (M, = My, M3 = M54, M,3 = M3,), so that the force couples exert no net
torque, in which case only six moment tensor components are independent (Julian ef al., 1998).
M), represents a force couple in the sense that as & — 0, F; — oo in such a way that Mj;, remains
finite. M;) (t) = F;(t)¢y is the moment, or torque, produced by the j-th component of the force
F, applied at §, about the origin — see Fig.1(a) below. Also, Mjk (t) = P}(t)fk. Diagrams

representing the components M, are shown in Fig.1(b).
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Fig.1. (a) Physical meaning of the moment tensor (F{§, = M, =torque about origin O due

to 1_7)1, and F,&; = M, =torque about origin O due to 1_7)2). (b) Force couples corresponding
to the moment tensor components. (the figure can be found in Krebes, 2004, Figure DPF-6)

Aki and Richards (2002) also turn the expression (6), for the displacement field radiated
by a shear dislocation, from its Cartesian form into a form that naturally brings out the radial and

transverse components of motion (see, eq. 4.30, p. 78).
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The averaged displacement discontinuity, U, is then parallel to the fault surface: u-v =

0, where v is normal to the fault surface. And Mj, = u(u;vy + U, v;)A for a fault with area A.

In recent research, when we refer to the solutions of the EOM for seismic waves for some
common source (e.g., the solutions of the EOM for a directed point force, a double-couple-
without-moment source, and a shear-dislocation source (Equation (3) and Equation (6)) we
mentioned above) we always think of the ideal situation, i.e., a perfectly elastic medium, with no
absorption.

However, in fact, we can hardly find an ideal medium in practical applications. In real
materials, wave energy is absorbed due to internal friction or anelasticity (a short table about
quality factor Q and velocity for different materials has been showed in Table 1). In addition,
typical values of Q in the Earth are: Q = 5-20 for near surface layers, Q = 20-100 for the upper
crust, Q = 50-150 for the lower crust, and Q = 100-500 for the upper mantle. For most materials,
Q >1. Absorption is frequency dependent, i.e., different frequencies are absorbed by different
amounts. One consequence of this is that the waveform changes with distance travelled.
Therefore, developing new solutions of the equation of motion with absorption is a very

meaningful thing.



Table 1. Q and velocity for reference materials*

Material Q V(km/sec)! Mode Frequency ramge
Aluminum 200,000 5.00 Longitudinal resonance 1 to 200 kHz
5,900 6.32 P-wave pulse 3.1t0 7.5 MEz
7,630 6.32 P-wave pulse 5to 15 MHz
19,400 3.10 S-wave pulse 35t04.5 Mz
17,200 3.10 S-wave pulse 310 6.8 MHz
Brass 655 3.48 Flexural resonance —
Copper
Unannealed 2,180 3.81 Longitudinal resonance 2.5 to 30 kHz
4,380 2.32 Torsional resonance 3 to 30 kHz
1,770 4.76 P-wave pulse 15 to 65 MHz
Annealed 5,830 5.01 P-wave pulse 25 to 75 MHz
Lead 36 1.21 Longitudinal resonance 1.6 to 15 kHz
34 0.69 Torsional resonance 1to9kHz
Magnesium 965 5.717 P-wave pulse 7 to 76 MHz
Nickel 980 4.90 Flexural resonance 12to 33 Hz
Steel 1,850 5.20 Flexural resonance 2to 8 Hz
Celluloid 7 2.81 Flexural resonance 0.5t0 18 Hz
Fused Quartz 44,500 3.76 S-wave pulse 5to 19 Hz
Glass 490 5.36 Flexural resonance 12 to 27 Hz
Glass (Pyrex) 1,860 5.17 Longitudinal resonance 10 kHz
Glass (Soda lime) 1,450 4.54 Longitudinal resonance 5.61t0 6.1 kHz
1,340 2.84 Torsional resonance 3.6 to 64 kHz
Lucite? 23 2.11 Longitudinal resonance 1 kHz
Plexiglas? 20 2.59 Longitudinal resonance 10 kHz
Polystyrene 240 2.24 Longitudinal resonance 20 to 60 kHz
Air
Dry 562 0.343 Resonance 100 Hz
3,485 0.343 10 kHz
100 percent
humidity 4,139 0.345 Resonance 100 Hz
1,434 0.345 10 kHz
Water
Fresh (17°C) 210,000 1.48 Resonance 100 kHz
Salt (36 ppm) 63,000 1.52 150 kHz

* These data are taken primarily from the compilations of Bradley and Fort (1966), Knopoff (1964), and the Chemi-

cal Rubber Company Handbook of Chemistry and Physics.
'Velocities represent typical values for the mode of excitation listed.

2Winkler, K., 1979, Ph.D. thesis, Stanford Uniyv.
3 Johnston, D.H., 1978, Ph.D. thesis, Massachusetts Institute of Technology.

Table.1 Q and velocity for reference materials (Johnston, 1981, Table 1)

1.3 Absorption
All the solutions of the EOM we talked above are all defined in a perfectly elastic
medium. However, from many researches, the fact that seismic waves attenuate with distance

and that free oscillations decay with time indicate that the Earth is not an ideal elastic body. A lot
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of works have shown the differences between wave propagation in anelastic media and in elastic
media, such as Lockett (1962), Cooper and Reiss (1966), Cooper (1967), Shaw and Bugl (1969),
Buchen (1971), Schoenberg (1971), Borcherdt (1973, 1977), Krebes (1983), and Krebes and
Daley (2007), and Carcione (2007).

Other processes which attenuate waves include geometrical spreading, reflection and
transmission, diffraction, and scattering. But in this project, we will only consider absorption.

In real materials, wave energy is absorbed due to internal friction or anelasticity.
Anelastic media are sometimes called dissipative media. Absorption is frequency dependent, i.e.,
different frequencies are absorbed by different amounts. One consequence of this is that the
waveform changes with distance travelled. And we are accustomed to using the quality factor Q
to express the effect of absorption on the waveform.

A dimensionless parameter useful for describing energy loss is Q1. In some treatments,
21mQ ™1 is defined as the ratio of the loss in energy density per cycle of forced oscillation to the
peak energy density stored during the cycle (e.g. Zener, 1948; Kolsky, 1963; Knopoff, 1964b;
Anderson et al., 1965). In some other literatures, “mean” is used instead of “peak” (e.g. Buchen,
1971; O’Connell and Budiansky, 1978).

We first review the basic theory associated with this problem. Most of this theory is taken
from Krebes (2004).

A dimensionless frequency-dependent parameter Q, which called the quality factor, is
used as the standard measure of inverse-attenuation in nowadays, see (Pilant, 1979).

Consider a sinusoidal wave passing through a volume of material. Let £ be the peak
strain energy stored in the volume per cycle. Let A be the peak amplitude of the oscillation. In

some treatments, “mean” is used instead of “peak”. Let —AE and —AA be the energy and
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amplitude, respectively, lost in each cycle due to anelasticity (AE and AA are < 0). Then the

quality factor Q is defined as follows:

1 AE 1 M
Qw) 2nE 7 Q) 7A

®)

The second equation comes from the fact that E~A?, meaning 8E/E~28A/A. For a
perfectly elastic medium, Q = oo and the loss factor 1/Q = 0.

Normally, it is assumed that absorption is a linear phenomenon, so that Fourier analysis
can be used. Also, there are, technically, two types of Q: temporal and spatial.

Qtemp 1s obtained from the decay in time of the peak amplitude of a signal measured at a
fixed spatial location (e.g., a seismic trace, a standing wave, the Earth’s free oscillation data).

Qspac 1s obtained from the decay in space of the peak amplitude of a signal measured at a
fixed time (e.g., a photo of a medium in wave motion). Qspee is used in seismic wave
propagation studies because we are interested in the spatial decay of a wave due to anelasticity.

The “decay” mentioned above refers to decay due to absorption, not geometrical
spreading or any other effect. Generally, Qspqr # Qremp- For example, consider an absorbing
medium containing a point source producing a continuous sine wave, sin[wyt]. A receiver
somewhere in the medium would also record a continuous sine wave. Its amplitude would be < 1
(due to absorption occurring between the source and receiver), but it would be a constant
amplitude, i.e., the sine wave on the receiver trace would not be damped, meaning Qe = 0.
However, the medium is anelastic, i.e., a photograph of the medium at a fixed time would show
the peak amplitude of the sine wave decaying with distance, meaning Qgpq; is finite. Since the
medium is anelastic, we want Q to be finite in value, so Qspq; Would be used here. For another

example, consider the opposite case, i.e., consider the source pulse to be a decaying sine wave,
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but the medium to be perfectly elastic (= o0). The receiver trace would show a decaying sine
wave, meaning Qremp 1s finite. But we want Q to be infinite since the medium is perfectly
elastic. Hence, in both examples, and generally in wave absorption studies, Qspqs i used.
Consequently, from here on, we will drop the subscript “spat” on Q, and assume that “Q” is the
spatial Q.

Consider a photograph or snapshot of an absorbing medium taken while a wave is
travelling in the x direction. Consider a small distance §x. Let A be the wavelength and V the
wave speed. Assume Q >> 1 (weak absorption), which is true for most materials. Assuming weak
absorption also means that A and A do not change much over a cycle, meaning that the concepts
of “amplitude” and “wavelength” are still physically meaningful. We then have

_ change  change distance 6A dA/1 _ dA2nV

AA = — . - ==
A cycle distance cycle ox "7 dx dx w ©)
Substituting this into (8) then gives
. [57g]4 = 4o =4 - 10
ax ~  l2vg = OeXp[ zvo] (10)

A similar argument for temporal Q gives A(t) = Apexp[—wt/2Q] (With Q = Qremyp)-
Consider a 1D sinusoidal wave
u = Aexpli(Kx — wt)], K=w/V (11)
in an absorbing medium. Substituting (10) into this gives
u = Agexp[—ax]expli(Kx — wt)] = u = Agexpli(kx — wt)],

w

a =55 k=K+ia=(%)<1+%). (12)
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This shows that absorption can be included in wave motion by making the wavenumber
complex (with the frequency w being real). Equivalently, one can make the slowness complex,

i.e.,if k = w/v, where v is the complex wave speed, then

or,forQ > 1, v= V<1 — —) (13)

Where the rule {(1+ z)€ = 1 + €z, |ez| < 1} has been used to get the last equation in
(13). And, where V and Q are arbitrary positive real-valued constants. The imaginary parts of the
complex velocities are the absorption terms.

The equation (13) are also well-known formulas for the complex velocity corresponding
to a non-causal model of dissipative medium, which includes the effects of anelasticity by
making the P-wave and S-wave velocities complex (e.g., Kennett, 1975; O’Neill and Hill, 1979).

Generally, an absorbing medium is dispersive, i.e., V= V(w) and Q = Q(w). Absorption
can be included for a temporal Q by making w complex (and keeping the wavenumber real).

But for seismic body waves, Q is nearly independent of frequency. The essentially
constant-Q condition has been discussed by Kolsky (1960) and Knopoff (1964b). It has been
found that the parameter Q depends only very slightly on frequency in a broad range of
frequencies (Lomnitz, 1957; Liu et al., 1976; Kjartansson, 1979).

Lots of researches about the quality factor Q have been introduced in last few decades.

Anderson and Archambeau (1964) and Anderson et al. (1965) investigated a range of
simple Q models and concluded that there was a low-Q zone at the top of the mantle, that Q

increased with depth in the mantle, and that losses in pure compression were negligible
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compared to those in shear. The Q for shear waves in the upper 400 km of the mantle seems to
vary from about 50 to about 150. The Q for mantle Rayleigh waves is greater than the Q for
mantle Love waves (Anderson et al., 1965).

Anderson and Hart (1978) presented a family of models to determine a self-consistent
earth model (Jeffreys, 1965; Davles, 1967; Akopyan et al., 1975; Liu et al., 1976; Anderson et al.,
1976; Hart et al., 1976, 1977) and to help identify the normal modes spectral peaks (Gilbert and
Dziewonski, 1975). They also indicated that there is a low-Q upper mantle layer underlying a
high-Q lithosphere. And Q smoothly increase with depth over most of the lower mantle and a
low-Q zone at the base of the mantle.

The Q of the outer core is apparently extremely high. Most of studies infer a Q of greater
than 4000 (e.g., Buchbinder, 1971; Sacks, 1972; Muller, 1973; Qamar and Eisenberg, 1974.), and
an average inner core Q around 500 (see, e.g., Buchbinder, 1971; Qamar and Eisenberg, 1974;
Buland and Gilbert, 1978).

Further information about Q can be found in Knopoff, 1964b.

1.4 Dispersion

We have talked about how to include absorption effect into solutions of the equation of
motion above, but to be physically realistic, one must also include dispersion in the calculations,
to ensure causality.

Anelasticity of the earth causes physical dispersion of seismic waves. The significant
effect of physical dispersion on surface wave phase and group velocities and free oscillation
periods has been discussed many times, e.g. Jeffreys (1965), Davies (1967), Randall (1976),

Kanamori and Anderson (1977).
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It has been found that the effects of velocity dispersion due to attenuation are rather
significant and well-measurable, see, e.g., Liu et al. (1976), Richards (1979).

Although Kennett (1975) suggests that above approximation should be adequate for
band-limited source functions unless Q is very low, later researches (e.g. Kanamori and
Anderson, 1977; O’Neill and Hill, 1979) indicate that the physical dispersion of seismic waves is
required by causality and linearity when Q is nearly frequency-independent. Otherwise,
significant errors may be introduced into computed travel times and wave forms by a noncausal
approximation.

The consequences of dispersions are that one cannot directly compare body wave, surface
wave, and free oscillation data or compare laboratory ultrasonic and shock wave data with
seismic data, unless corrections are made for phase velocity dispersion arising from anelasticity
(Liu et al., 1976).

And Strick also indicated in 1970 that the effect of absorption is to round off the apparent
(visual) onset as well as the peak of the impulse response.

Nonlinear friction is commonly assumed to be the dominant attenuation mechanism,
especially in crustal rocks (see, e.g., McDonal et al., 1958; White, 1966; Gordan and Davis, 1968;
Johnston and Toksoz, 1977; Lockner et al., 1977; Tutuncu et al., 1998; Zhao and Cai, 2001;
Mashinskii, 2006; Sleep et al. 2017). However, the fact is that a satisfactory nonlinear friction
model for attenuation has never been developed to the point where meaningful predictions could
be made about the propagation of waves (Kjartansson, 1979).

In addition to the linear models, some other models have been created to express
dispersion effect. For example, based on the matrix formulation devised by Thomson (1950) and

Haskell (1953), various surface-wave dispersion computations have been described by Dorman,
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Ewing, and Oliver (1960); Press, Harkrider, and Seafeldt (1961); Harkrider (1964); Ben-
Menahem and Harkrider (1964); and Schwab and Knopoff (1970). While Randall (1967) also
discussed this problem based on Knopoff’s (1964a) method.

Several linear models of causal absorption conform well with Q-constant theory in the
seismic frequency range. The most commonly used are the models of Futterman (1962), Lomnitz
(1957) and Kjartansson (1979).

Dispersion relations of the Kramers-Krénig (K-K) type (Kramers, 1927; Krénig, 1926) is
well known in electric circuit theory (Bode, 1945; Guilleman, 1949). Futterman (1962) gave an

almost constant Q model based on the K-K type:

v(w) = v(w,) [1 + %ln <a%)] or v(t)) = v((lur) [1 — %ln <a%)] (14)

where v(w) is the phase velocity of body waves, surface waves, or free oscillations, w is the

angular frequency, w = 2nf, v(w,) is the phase velocity at the reference frequency w,., and Q is
the quality factor appropriate for the wave considered.

In the formulas (14), Futterman assumed that Q is large enough so that we can drop terms
that are second-order and higher in 1/Q and keep only first-order terms. Then, the rule (18) can
be used to verify these two formulas are consistent.

Kanamori and Anderson (1977) also did some examinations of various absorption, and
their models leaded us to the conclusion that expression (14) must be used for correcting the
effect of physical dispersion arising from anelasticity.

Except for the Futterman’s dispersion model, Lomnitz’s model and Kjartansson’s model

(see, Lomnitz, 1957, and Kjartansson, 1979) are also commonly used.
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Lomnitz (1957, 1962) derived a model for wave attenuation with Q approximately

independent of frequency for large Q based on a logarithmic creep function and Boltzmann’s
after-effect equation (e.g., Gross, 1968).

Lomnitz’s model is given by:

1/2
v(la)) - v(ia) [1 - %l" (w%)] (15)

where wy, is some very high frequency (say, w, = 101°Hz).

O’Neill and Hill (1979) incorporates Lomnitz’s causal formulation of anelasticity into the
Fuchs-Muller-Kennett reflectivity program (Fuchs and Muller, 1971; Kennett, 1975), and finds
for waves passing through a highly attenuating upper-mantle low-velocity zone (Q=35), the first
pulse is larger and more abrupt, and the peaks and troughs are somewhat later for causal
absorption than for noncausal absorption.

Kolsky (1956) and Lomnitz (1957) also gave linear descriptions of the absorption that
could account for the observed frequency independence and were also consistent with other
independent observations of the transient creep in rocks and the change in shape of pulses
propagation through thin rods.

Kjartansson (1979) discussed some nearly constant Q theories (e.g., Lomnitz, 1957;
Futterman, 1962; Strick, 1970; Liu et al., 1976) and found none of them could provide a better
description of the attenuation in actual rocks than the constant Q theory (e.g., Bland, 1960; Strick,
1967; Kjartansson, 1979) does.

Kjartansson’s model is given by:

V) (&) (16)

v(w)  \w,
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where y = %tan‘1 (%)

The properties of these models are well described in the literature, e.g., Dziewonski
(1979), Mavko et al. (1979), Pilant (1979) and Savage and O’Neill (1975). Let us only mention
that the model by Kjartansson may be used for all frequencies, from zero to infinity. However,
Futterman’s model and Lomnitz’s model are band-limited, so they fail for very low and very
high frequencies.

Laboratory experiments on many solids have shown that, up to moderately high
frequencies, the dimensionless quantity Q is indeed independent of frequency to a very good
approximation. For example, Cerveny et al. (1982) indicated that the frequency range used in our
body wave computations is usually rather narrow. In this narrow frequency range all the three
models yielded practically the same results in all cases.

Therefore, for simplicity, we can present here only the results obtained by Futterman’s
model.

Applying relation (14) to the elastic velocity v, in the complex velocity formula (13),

gives

v(w) = vo(w) (1 — i) = v(woy) [1 + %ln (w“;r)] (1 3 i)

~ v(wopy) [1 + %ln(

W ) i ] (17)
Wor ZQ
In the formulas above, we assumed that Q is large enough so that we can drop terms that

are second-order and higher in 1/Q (i.e., terms in 1/Q?, etc.) and keep only first-order terms

(i.e., terms of order 1/Q). That means that we are using the rule

1
1+x)"~1+nx, |x|]<1 |Example:(1+x)""?2~1—=x (18)
P 2
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So, in formula (17), only first-order terms in 1/Q were kept. Or, equivalently, again

keeping only first-order terms in 1/Q,

v(lw) N v(wloa [1 - %l“ (f) +i] (19)

which we could also obtain from equation (13).
The absorption related to the dispersion by the dispersion relation is usually called the
causal absorption.

In some treatments of dispersion, Q follows a similar rule (instead of being constant), i.e.,

Q(lw) - Q(iur) 1+ nQ(lwr) In (wﬂ)] or Q@) = Q@) |1 -~ Q(lwr) In (wﬂ)] (20)

In this rule, Q is nearly constant, because the logarithm In (x) increases very slowly with x. Note

also that v(w)Q(w) is constant (to first order in 1/Q) in this model, which is similar to

Futterman’s model (1962).

1.5 The Fourier Transform

To add absorption and dispersion effect into the solutions of the EOM, the first step is
converting them into frequency domain from time domain.

The Fourier transform decomposes a function of time (a signal) into the frequencies that
make it up.

The Fourier transform, and inverse Fourier transform of g(t) are defined as

0]

g(w) =f g(t)ewtde (21a)

1 r® . 21
90 =5 [ g@e " do (21b)
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The integral over t (time) is the forward Fourier transform, and the integral over w
(frequency, w = 2m/f) is the inverse Fourier transform.
g(w) is the frequency spectrum of g(t). Since it is in general a complex number, it can
be written as
g(w) = Re(g) +ilm(g) = |g(w)[e™?®) (22a)
, where | g(w)| is the amplitude spectrum of g(t) and ¢ (w) is the phase spectrum of g(t), and

where

|g(w)] = v/[Re(@)]? + [Im(g)]? (22b)
¢(w) = tan~[Im(g)/Re(g)] (22¢)

If c(t) is the convolution of two continuous signals x(t) and g(t), so c(t) is defined as:

0]

(=209 = [ x@gtt-Ddr

Convolution is used to model seismic traces. The Fourier transform (FT) of c(t) is

calculated as follows:

t(w) = foox(t) x g(t) e tdt = foo foox(r)g(t — 1) e®tdr dt

= f_o:o x(1) U_o:og(t —T) ei“’tdtl dr = f_o:o x(1) Uo:og(u) ei“’”dul el dt

= foox(‘[)ei“” dt X g(w) = x(w)g(w)

Therefore, we can obtain the convolution theorem (Bracewell, 1965, p. 108),
FT {(x(¢) x g()} = ¥() §(w) (23)
And, we can also proof that if FT g(w) of a function g(t) satisfies g(—w) = g(w) *,

then g(t) is real, i.e., g(t) = g(t) *. Proof:
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g(t) = ifoog'(w)e‘i‘”t dw = g(t)" = ifoog—(w)*eiwt dow =
21 —o 21 o
90" = f T gwet do = — f  gw)e vt (—dv) =
2 — 00 2T .

1

90 =5 | gweav =g (242)

Similarly, if g(t) isreal (i.e., g(t) = g(t) *) then §(—w) = g(w) *. Proof:

0]

g(w) =f g®etdt = glw)* =f g e @t dt =

— 00

0]

3(w)" = f g(De—t dt = g(—w) (24b)

Besides that, in MATLAB, we will use the “fft” function for a forward Fourier transform
and the “ifft” function for an inverse Fourier transform. Both of the two functions are based on
the theory of discrete Fourier transform (DFT).

We first review the basic theory for the DFT. Most of the theory is taken from Krebes
(2011). When we apply the DFT theory, x will refer to the time t and wavenumber k will refer to
the frequency f.

Consider a real function h(x) which is “causal”, i.e., h(x) = 0 for x < 0. Suppose h(x)
is sampled at N points with a sample interval of Ax, giving

(hO' hli Tty hN—l)' hm = h(xm)
(25)
with x,, = mAx, m=0,12,---,N—1
The function h(x) is sampled between x = 0 and x = (N — 1)Ax. We assume that either

h(x) is zero beyond this range, or that N sampled points are more or less typical of what h(x)

looks like everywhere.
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Similarly, H(k) (k is the wavenumber), the spectrum of h(x), can be sampled with N

points as well. Assume N is an even number. Because H (k) is non-zero for both positive and
negative wavenumbers k, the N samples would be spread more or less evenly over both negative

and positive wavenumbers as follows:

<H_%+1,H_%+2'... 'H%)' Hn = H(kn)' kn = nAk'
(26)
__N +1 N + 2 N 1 N
nETT ATy T Y
For example, for N = 8, we would have
(H_3, H—Z'H—liHO'Hli Hz,H3, H4), Hn = H(kn) = H(nAk), kn = nAk,
(27)

n=-3,-2,-1,0,1,2,3,4.
H,, can be obtained from h,,, via a discrete Fourier transform (DFT), as explained below.
We know from sampling theory that is the spectrum H (k) of a continuous function h(x)

is band-limited to wavenumbers that lie in the range (—Kyyq, +Kpyq), Where

1
knyg = T Nyquist wavenumber (28)

i.e., H(k) is zero outside this range, then the continuous function h(x) can be completely
recovered from its samples h,,. If H(k) is not band-limited to this range, then the values of H (k)
outside of the range will be added to the values of H (k) inside of the range, giving an inaccurate
distorted spectrum. The wavenumbers outside the range are disguised or aliased as wavenumbers
inside the range, and hence are erroneously added to the range, giving a false spectrum. Clearly,
the smaller Ax is, the larger is ky,,,, meaning that Ax, the sampling interval, must be chosen
small enough so that the Nyquist range (—kyyq, +Kyyq) covers the whole spectrum, with the

spectrum being zero (or at least approximately zero) outside of the Nyquist range.
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When given the samples h,,, we assume that h(x) has been properly sampled, i.e., with a

small enough Ax so that the spectrum is band-limited to the Nyquist range. We then perform a

DFT on h,,, and inspect the spectrum values H,. If these values do not go to zero as k = Kyy,4,

then aliasing has likely taken place, rendering the spectrum inaccurate and distorted, and h(x)
needs to be resampled with a smaller interval first before a DFT is performed.

Evidently then, the wavenumber range of the discrete spectrum H,, is confined to the

Nyquist range. This means that the highest wavenumber in the range, i.e., the one forn = N/2 in

(26), would be the Nyquist wavenumber k.4

N 1
v=g A=k =08y T AT 29)
Which is the relationship between the two sampling intervals.
We now compute H,, from h,, using a DFT.
o N-1 N-1
Hn — f h(x)e—ZTtiknx dx ~ h(xm)e—zmknxm Ax = Ax Z hme—ZTrimnAkAx
-® m=0 m=0
N-1 N-1
> Hy=Ax ) hpe N o H = A ) Ry (30a)
m=0 m=0
Where (29) was used in the last line. This is the DFT of h(x).
And,
N-1
h, = Ak z H, g2mimn/N (30b)
n=0

This is the inverse discrete Fourier transform.
The sums for H, and h,, are easily computed. In the sum for h,,, for a specific value of m,

there are N complex multiplications. Computing this sum N times (for all the N different values
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of m) would mean N? operations in total to obtain all the h,,. However, a fast-efficient scheme
for computing the sums, known as the Fast Fourier Transform (FFT) has been developed. FFT is
the approach which used in Matlab functions. The FFT exploits the mathematical properties of
the DFT to greatly reduce the number of computations required. For the FFT, only about
Nlog,N operations are required in total to obtain all the h,,. For example, if N = 26 = 64, then
N2 =14096, but Nlog,N = 2°log,2° = 6 x 2°log,2 = 6 X 26 =384, which is a great

reduction in the number of operations required.

N-1 ' (31a)
H,=H,Ax, H,= z h,, e ~2mmn/N
m=0
1 N-1
= 32 ) Hpe?mmnin (31b)
n=0

Most FFT programs compute H,, in (31a) as the FFT, and h,, in (31b) as the invers FFT.
This means that the FFT result must be multiplied by Ax to get the true value H,, of the spectrum.
But the true value for h,, is given directly by the inverse FFT in (31b). Of course, H,, in (31a) is
the true value of spectrum divided by Ax, which must be remembered when sampling a spectrum

and applying an inverse FFT.
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CHAPTER 2: METHODOLOGY AND ALGORITHM

2.1 Principle

Because absorption and dispersion are frequency dependent, if we want to add their
influence into the solutions of the EOM, firstly, we should translate the solutions of the EOM for
some common sources without absorption in time domain into frequency domain, and then
transform back. For no dispersion, the anelastic waveforms usually have the same form and
shape as the elastic ones. When we include dispersion in general, it is not possible to do the
integrals analytically. But they can be done numerically, and one of the steps in my thesis is to
write a program to compute the same results with velocity dispersion. One finds that the anelastic
waveforms have a different shape than the elastic ones.

In general, the correct way to approach this problem is to transform the viscoelastic
equation of motion into the frequency domain (one obtains the same thing as when one
transforms the elastic equation of motion into the frequency domain, except that the elastic
modulus ¢ and A are complex, meaning the velocities are complex), then solve it in the
frequency domain (with the complex modulus), and then transform back into the time
domain. But instead, what we did is to transform the solution of the elastic equation of motion
into the frequency domain, then replace the velocity or slowness with the complex version, then
transform back.

However, if we go through the calculation on pages 80-84 of the book “Seismic Ray
Theory” by V. Cerveny (2001), we can see that the solution of the elastic equation of motion in
the frequency domain applies to the viscoelastic case as well if we make the velocity
complex. And we can also go through the derivation of the Weyl integral for viscoelasticity on

page 76 of that book, which is,
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exp[—iw(t — pix;)] (32)

expl—iw(t—r1/c)] o ([ dpidp,
r B Eﬁ

—00 3
and we will find that Weyl integral applies to the viscoelastic case as well (where the velocity in
the Weyl integral is complex).

Therefore, we can justify that our approach gives the correct result.

2.2 Work Flow

Select the solution of the EOM

!

Do Fourier transform of the solution of the EOM

without absorption to convert it into frequency domain

!



-

AN

Replace v with v, (1 = i) to involve absorption effect, or

w

replace v with v(w,) [1 + % In ( ) - i] to involve

Wor

absorption and dispersion effect

~

!

-~

-

Do inverse Fourier transform (IFT) of the new solutions of
the EOM (where the velocity is complex) to transform them

back to time domain.

~

)

!

-~

Create programs by Matlab to compute the exact results with
velocity dispersion numerically to verify the accuracy of our

approximations

~

/
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2.3 Sources and Models

2.3.1 Source pulse S(w) and s(t)

For all the situations we are going to talk about, they all need a suitable source which has

been defined in frequency domain.

In order to make the calculation easier, we will assume that all the situations discussed in

this thesis use the same expression of source S(w),

where a is a positive constant has the units of seconds, and A is also a constant has the units of

mass *length.

0.04

m

o o

o (=]

N w
T T

o

o

—_
T

phase [rad]

§(w) = Aiwe @]

the amplitude spectrum of s(w)

a=10s

-1.5 -1 -0.5 0 0.5 1 1.5
w [HZ]
the phase spectrum of s(w)

a=10s

-1.5 -1 -0.5 0 0.5 1 1.5
w [HZ]

Fig.2. The plots of the amplitude and phase spectra of s(w)
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—alw|

The above Fig.2 shows the plots of the amplitude spectrum, |Awl|e , and phase
spectrum of S(w), where we assume A = 1 and a = 10s.
Also using inverse Fourier transform to convert S(w), formula (33), into time domain,

then we could get the source pulse s(t) in time domain,

2atA

(t) — i OOA- —alw| , —-iwt dw =
S\W= 2m)_, twe ¢ ©= m(a? + t2)2

(34)

and the source pulse s(t) is plotted in Fig.3 for a = 10s,

x 10° source pulse s(t)
25 . | |

2r a=10s

1.5¢ 1

1+ -

0.5

s(t)

0

-0.5 1

1t 4

-1.5 .

2+ -

_2-5 | | |
-100 -50 0 50 100

t[s]

Fig.3. The source pulse in time domain s(t)
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5(w) and s(t) are the source pulse in frequency domain and time domain which we will

use for a directed point force. For the double-couple-without-moment forces and a dislocation
force, we will assume M, (w) = §(w) and My(t) = s(t) as well. And we should also notice that
this source is non-causal, but for our purposes, this is acceptable because it allows us to derive
mathematical formulas for the absorption response, and because we can think of the source pulse
as being effectively causal if we take the arrival point of the pulse at a point on the negative side

where it is effectively zero, e.g., at = -50 s in Figure 3.

2.3.2 A directed point force
To simplify the question, for a directed point force, we will only talk about the x
component of displacement of a point force in x direction in this time.

Figure 4 shows what this situation looks like in a Cartesian coordinate system.

Z

X

Fig.4. A directed point force in x direction
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Substitute this situation into equation (3), where u; is the i -th component of
displacement, so in there u; = u;. Let us assume f = s(t)5(x)e; (the point force is in the x

direction, i.e.,e; = eq). Then, we can obtain

T
(3y1y1 — 611) (B Y1V r (611 — v1v1) r
’ t)y =———— —_ —_— _— —_—
u; (x,t) 4 A ws(t—1)dt+ 4npa2rs (t a) + dmppr s(t ﬁ)

a

1 [T/ 1 r

= t — [

2o fr/a s(t —1)dt + Impalr s(t a) (35)

where the Kronecker delta §;; is a piecewise function of variables i and j which we have
indicated in equation (5). For example, §;, = 0, whereas 6;; = 1.

And we have known y,, = x,/r from above, so y; = x;/r. In our assumption, X =

(x1,0,0), and 7 = /x2 + y2 + z% = \/x,% 4+ 02 + 02 = x;. Hence, we can obtainy; = % = 1.
The S-wave moves as a shear or transverse wave, so motion is perpendicular to the
direction of wave propagation. While, in isotropic and homogeneous solids, the mode of
propagation of a P-wave is always longitudinal; thus, the particles in the solid vibrate along the
axis of propagation (the direction of motion) of the wave energy. Since we are talking about the
component of displacement along the direction of wave propagation, we can only see the near-
field term and the far-field P wave term in the above equation (35). The particle motion is only

perpendicular to the direction of wave propagation for the far-field S wave term.

2.3.3 A double-couple-without-moment source
The double-couple-without-moment is now accepted as the best body-force model of an

earthquake source. It is composed of two single couples with opposite moments.
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For example, in this thesis we are going to consider a vertical fault coinciding with the xz

plane. From Fig.1(b), the only non-zero components of the moment tensor are then M;, =
M,; = M,. And To use a more general formula, for a receiver lying on a circle surrounding the
origin, then we have y;2 + y,2 = 1 and y3 = 0. Applying (6) to obtain the displacement due to

the double-couple gives:

T
15y; —3¥;61, — 3y:6:» — 3v-,0;1) 1 (B
u(x, ) :( YiV1Y2 Vi Zzﬂp V10i2 V2 11)Fﬁﬁ My, (t — 1) dr
a
(6¥i¥1V2 — Vi012 — V16i2 — ¥20i1) 1 r
* 4mpa? 72 Mz (t B E)

(6¥i¥1V2 — ¥i012 — ¥V16i2 — 2¥26:1) 1 ( r)
- _M12
AmtpB? r?

Yiviv2 1 . ry Y2iva — 61 . r
+4npa3;Mlz (t__) ( Bl )

+ (15y¥2¥1 — 3¥i021 — 3¥20i1 — 3¥16;2)
4mtp

T
1 (s
r—4fBTM21(t —1)dt

T

(6¥i¥2¥1 — ¥i021 — ¥20i1 — ¥10:2) 1 r
+ Atpa? r_2M21 (t )

(6¥i¥2¥1 — Vi021 — ¥V20i1 — 2¥16i2) 1 ( r)
- _M21

4mpB? r? B
; 1. r V2 —0i2) 1 . r
+ZLV2V13_M21( __)_Vl(mz : i2) 1 21( __)
npa3r 4mtpp T p
T
15y; —3y10i2 —3y2611) 1 (B
u; (%, t) :( Yiha¥e 23;; 2 = OFa ll)FﬁBTMo(t—T) dt

a
(6¥i¥1¥2 — ¥10i2 — ¥26i1) 1 r
+ 2npa’ r_ZMO (t )

_ (12y;¥1¥2 — 3¥10i2 — 326i1) i < 7‘)
AmtpB? rz= 0
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Yiva¥a 1 . N Qviviva —v16iz — v20i1) 1 . r
* 2npadr Mo ( ) 4mp B3 21 <t ) (36)

B

a

Then the three components (X, y and z components) of the displacement on the receiver

point are:
T
(15y1%y2 —3y2) 1 (B
u, (x, t) = 2mp —4f£ ™, (t — 1) dt
a
Lentr -y 1 (t B Z) 12y =3y 1 ( _1)
2mpa? 12 0 a AmtpB? rz= 0 B
e 1. N Cn*r-v)l ( r)
My (t——) -2 222y (e —— 37
2rpadr O( a) 4ripB3 1 ° B (372)
r
(1511y,° —3y) 1 (B
u,(x,t) = 2mp r_‘*fz ™, (t — 1) dt
a
6 2 1 r 12 2-3 1 r
OAE Zyl)_ZMO (t__) ~(2p1p2* =3r) 1 O( __)
2mpa r a AmtpB? r? B
ny2t 1. N Cny? -yl ( r)
22 My (t-—) - M, (e - 37b
2rpadr O( a) 4rtpB3 1 ° B (370)
us;(x,t) =0 (37¢)

Since we assume the source is on the origin and the receiver point is on the xy plane
somewhere, so ;2 + ¥,2 = 1 and y3 = 0. Because cos20 + sin?0 = 1 as well, we can set y; =

cos @ and y, = sin 8, where @ is the angle from the x axis.

T
15co0s%0sinf —3sin@) 1 (B

h o t) = )TfﬁrMo(t—T) dr
2np r*Jr

a

N (6c0s?0sinf —sinf) 1 y (t r)
2npa’ rz =0
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(12c0s?6sinf — 3sinh) 1 ( r)
- oMo

4mppp? 2ot p

cos?0sinf1 . ( r) (2cos?6sin® —sinf) 1 . ( r)
T a3 0 - — WMo

2npad r a AmpB3 r B
T
15cos 0 sin?0 —3cosf) 1 (7
L t) = )TIBTMO(LL—T) dr
2np reJr

a

(6 cos O sin? —cosB) 1 y r
* 2mpa? rz 0 ( )

(12 cos O sin?0 —3cosf) 1 ( r)
- oMo

4mppp? 2ot p

cos@sin?61 . rN (2cos@sin?0 —cosO)1 . r
L) o)
AmpB3 r

2npad r B
us;(x,t) =0
Simplify the above equations, then we will get:
s
(94+15cos26)sinf 1 (B
u, (x,t) = amp il ™My (t — 1) dt
a
(2+3cos20)sinf 1 r (3+ 6c0s26)sinf 1 r
(et () L)
2npa r AmtpB? r? B
+(1+c0529)sin91M ( r) cos20sinf1 . (t r) 18
Ampa’ r 0 a 4rtpp3 1 ° B (382)
T
(9—-15cos20)cos8 1 (7
u,(x,t) = amp il ™My (t — 1) dt
a
(2—3cos26)cosf 1 T (3—6cos20)cosf 1 T
[ttt (). L)
2mpa r AmtpB? r? B
+(1—2c0529)cost9M ( r) cos20cosO1 . (t r) 38b
Ampas 0 a 4rtpp3 1 ° B (38b)
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u;(x,t) =0 (38¢)
Since we assume the source is on the origin and the receiver point is on the xy plane
somewhere, and the moment tensor M;, = M,; = M, are perpendicular to the z-axis, so in this

situation, the displacement on the z direction is zero.

2.3.4 A shear-dislocation source

From the generality of formula (6), which gives the radiation from any moment tensor M,
we shall often specialize to cases where M arises from a shear dislocation (7).

In this case, if we assume the xy plane is the ground surface, and if the fault plane is the
xz plane, then using M;, = u(ut;vy + 4, v;)A from Aki and Richards (2002), where the v vector
is perpendicular to the fault surface, andu - v = 0, we get v; = v; = 0, and 4, = 0, and so we
have:

My; = My, = pyv,A and Mz = M3, = ptizv,4A
All other M, are zero.

So M;,, M,;, M,3, M5, are not zero for the shear dislocation case. But with four non-
zero components of the moment tensor, this could be a lot of work.

In Aki and Richards (2002, p.78), the paragraph under equation (4.30), they “choose the
X-axis to be the direction of slip, so that u = (5, 0, 0)”. Therefore, to simplify this question, we
could assume the fault lies in the (x;, x3) plane, i.e. v = (0,1,0), and choose the x, axis to be the
direction of slip as well, i.e. u=(1;,0,0). Then, we will have only two non-zero components of
the moment tensor, My, = M,; = uu; A.

If so, substitute this situation into equation (7), then we have
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==

15y; U, — 3V;¥y — 301V,
1% 6) :( YiY1Y2V2 i1 i1Y2 Z)HA_[ (¢ — 1) de

2mpr* T
a

(6YiV1Y2V2 — Vive — 6i1VaV2) r
* 2mpa’r? HAtL (t B _)

_ (2yivavav, —3viys = 38uveve) ( r)

A t——
4Tpfr? HAt 73

YiV1V2 V2 Az ( B 1) _ 2Yi1YeV2 — Vi1 — Su¥aV2 oK (t _ Z)
27Tp0(37‘ 1 4npﬂ3r u 1 ﬂ

T

15y, vy — 3v;¥, — 38174V B

+( YiV2Y1V1 l];Z i1Y1V1) uA fﬁfaz(t—T) dt
2mpr r

a

(6YiV2¥1V1 — ViV2 — 8i2VaV1) r
2rpa?r? nA (t B _)

+

(A2y;¥2v1v1 — 3y, — 38i2v1v1) ( r)
- ﬂAuZ t —_
4mpBr? B

YiV2V1V1 A ( B 1) _ 2Vi¥2VaVi — ViVs — Sp¥as i (t _ Z)
27Tp0(37‘ 2 4npﬂ3r u 2 ﬂ

==

15y;¥1¥2 — 3viy1 — 36;
0D _ (5yiniva znp;zl 11]/2)# " fr Pt — 1) dr
a

6Y; — vy — 0; r
+( YiV1iY2 iV1 i1Y2) LA, (t _ _)

2mpa?r?

(A2y;¥1v2 — 3viv1 — 38uY2) ( r)
- ﬂAul t —_ =
AmtpB2r?

YiVi¥2 N 2ViViY¥2 —Vivi — 6uV2 ( r)
_ ) — A t——
2npadr Atly ( ) AmtpB3r HAth B (39)

Assume the source is on origin and the receiver point is on the xy plane somewhere, so

y12 +YZ2 =1 andY3 =0.
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Then the three components of the displacement on the receiver point are,

(15¥42y;2 — 3v2)

T
UA frﬁ Tt (t — 1) dt

b)) =
ul(x ) 27‘[p7‘4
a
Lt -v) o (t B Z) _ U2y, =3y - (t _ 1)
2mpa?r? 1 AmtpB2r? 1 B
Y1%V> A ( _ 1) _ 27122 — 72 At <t _ z) (40a)
2npa3rﬂ 1 a AmtpB3r Hath B
T
15 2-3 B
u,(x,t) = ( V12V; " 7 uA frﬁ i, (t — 1) dt
p a
Jenyt-v) o (c-2)- A2y1y2° = 3y) - (t _z)
2rpa?r? 1 AmpB?r? 1 B
I () e (0T
2npa3ru 1 AmpB3r Hath B
uz(x,t) =0 (40c)

Again, since y;% + y,2 = 1 and y; = 0, and cos?6 + sin?0 = 1, we can assume y; =

cos @ and y, = sin 8, where @ is the angle from the x axis.

T
15c0s?6sinf — 3sinH) 1 B
( )FyAﬁBTﬁl(t—T) dt

,t) =
uy (%, t) 2mp
a
(6cos?0sinf® —sinf) 1 r
* 2mpa’? r_ZMAul (t Bl E)
(12c0s?6sinf — 3sinh) 1 . (t r)
4mpp? r2HE T
cos?6sin6 1 . '(t r) (2cos?0sinf —sin9) 1 . '(t r)
2npas P a AmtpB3 Pl B
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s
(15cos O sin®g —3cosf) 1 B
u,(x,t) = 2mp r_‘*ﬂAfL T (t — 1) dt
a
(6cosBOsin’g —cosB) 1 r
* 2mpa’ r_ZHAul (t Bl E)
(12 cos 0 sin?0 —3cosf) 1 . (t r)
4mpp? re g
cos 0 sin?6 1 . '(t r) (2 cos 0 sin*0 — cos0) 1 . '(t r)
2npas Pk a AmtpB3 Pl B
u;(x,t) =0
Simplify the above equations, then we will get:
T
(94 15cos260)sinf 1 B _
u, (x,t) = amp 7 UA fl T (t — 1) dt
a
(24+3cos26)sin6 1 T
* 2mpa’ r_ZHAul (t Bl E)
(3+ 6c0s26)sinf 1 i (t r)
amppz r2H TR
+(1+c0529)sin91 A '(t r) cos20sin61 i '(t r) a1
Apad P a AmtpB3 HAth B (412)
T
(9—15cos20)cosf 1 B _
u,(x,t) = amp 7 UA fl T (t — 1) dt
a
(2—3cos20)cosf 1 T
* 2mpa’? r_ZMAul (t Bl E)
(3—6cos20)cosf 1 A (t r)
amppz 2\ Tp
+(1—2c0529)cost9 i '(t r) cos 26 cosf 1 i '(t r) a1b
Ampas HAth a AmtpB3 P B (410)



us;(x,t) =0

(41c)

38
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CHAPTER 3: A DIRECTED POINT FORCE
3.1 Converting the solution to frequency domain
We have discussed above that the first thing we should do is to do Fourier transform of

the solution of the equation of motion for a directed point force, i.e. equation (35),

r/p
u (%, £) = f rs(t = DT+ —— st — 1) (35)

2mpr3 J, Ampa®r a

to convert it into frequency domain.

*r 1 (7/F 1 r] .
i, (x,w) = t—1)d t——)|e@tdt
(%, w) f_oo lanr3 fr/a s(t —t)dt + mpatr s( a)l e

T
1 ” B ilwt 1 foo 1 r ilwt
_ —s-L £
2o f_oo Uﬁ Ts(t T)dT]E dt+4npr = s(t——)eltdt  (42)
a

Firstly, we can use the convolution theorem (equation 23) to solve the first part of the

2mpr3

1 r/ﬁl ® .
[ = f f s(t—1 e”"tdtl tdt
2mpr3 )y 1w ( )

Assume v =t—1T =

.
integration, i.e., [ = ! ffooo lfzﬁ Ts(t — T)dTl elotdt.
a

1
~ 2mpr3

/B[ oo ,
f [ f s(v)elC@*Dq (v + r)l tdt
r/a —co

1 (B[ . :
= 2npr3f U s(v)e”‘”’dvl te'®tdt
r/a -

0]

and, foos(v)ei““’dv = f s(t)e@tdt = FT{s(t)} = 5(w)

1 (E
= 3 f te!“tdt X S(w) (43a)
2mpre ) g
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Then, let us assume that

<7t<

f(r) = { ' (43b)
0, others

Substituting this into the (43a), we will get

| =

QI

1 @ .
= 2npr3_f f(@)e“tdt X 5(w) =

prg f(@) §() (430)

So, to obtain the solution of the first part, we only need to compute f(w) and §(w), and

then multiply them together.

T
_ 0 . 1 (/B ' 1 7 \e“F 1 eiwg
f(w)=f f(T)eled‘EZZf ’[delwr_(___.) < i)

£ _(=_L (44)
r/a w P w al w
And we have assumed 5(w) and s(t) in Chapter 2, equation (33) and (34), i.e
§(w) = Aiwe @] (33)
1 ([ . 2atA (34)
N : —alw| ,—iwt —
s(t) o f_ooAlwe e dw (@ 1 192
Therefore,
A 1 r eiw% 1 r \e“a
— —__ Y ime —alol
2npr3 f) 5(w) = 2mpr3 <a) B ) <a) a l) w | 1°
A i r i r ., T
= B — [+ 2 ei@g| e—alwl
2mpr3 [(a) ﬁ) ¢ <a) + a) ¢ a] ¢ 45)

For the second term of equ. (42), k =

Mprf ooazs(t ) el@tdt

1 * T i(t-1) AN
_47rpa2rf_oos(t a)e a/d(t a)e a

1 il Aiw a .
= S = —alw| plw
47Tpa2rs(w)e ¢ Ampa’r ¢ ¢ (46)
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Substituting (45) and (46) into (42), then we will get the solution of the EOM for a

directed point force in an elastic medium in frequency domain.

A i 7\ iol i r\ ;.7 Aiw T
U = —_4 — B —|— 4 —)pw —alw| —a|w| ,iw
o (% ) 2mpr3 [(a) + ﬁ) <a) + a) € a] € + dmpa’r e e a (47)

Also, substitute s(t) into equation (35) to get the solution in an elastic medium in time

domain to compare with results including absorption later.

r
r/f 2a(t — 1) A 2a (t _E)
u (x,t) = —f T T+ 2
2mpr3 ra m(a? + (t —1)?%)2 Ampa?r \2
T <a2 + (t - E) )
| an (24| 5 2a(c-1)
_ A art B a B N A a

2npr3 [m(a? + (t — 1)?) i T 4mpa’r \2\?

| a T <a2 + (t - —) )

A 1
=5 2.3|ar 2\ 2
2mpr ﬁ<a2+<t—%)> a<a2+(t—£))
T r T
et L(BE A a(t-2)
+ tan — | —tan + > (48)
a 2m?pa’r ( r\2
( +(t—a))

3.2 The solutions of the EOM including absorption but no dispersion
The expression v = v, (1 — i) , 18 a low-loss approximation. It is based on the

assumption that Q > 1. The formula for v for any Q (including small Q) is a much more
complicated function of Q. For example, see equations 14-19 in Krebes and Daley (2007), or

equations 5, 6, 9, 10 in Krebes (1983).
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That also means that — = Ul(l + i) for Q > 1. Note that the Q_12 terms have been
0

v
dropped, because Q > 1.

Therefore, we will have

%zv—z2<1+%)2z v—12<1+é) (49)

That means that in the equation (47), we should replace lv withlv = (1 + i), and —

1
Vo v2
with % = Uiz (1 + é), to be consistent with the low-loss approximation.
0

A i 7\ iol i r\ ;.7 Aiw T
u = — — L — | — _ lw —alw]| —alw]| ,lw
(% ) 2mpr3 [(a) * ﬁ) <a) * a) ¢ a] ¢ * Ampa’r ¢ ere (47)

In our solution above, we can find two kinds of velocities, i.e., speed @ of compressional
wave and speed 8 of shear wave. And the quality factor Q, and Q4 for them respectively are
different from each other. There, we assume Q, and Q4 to be nearly independent of frequency

for seismic body waves, i.e., @, and Qp are nearly constant.

So, let us replace i and % as:

1 1 i 1 1 i
E:a_0<1+20a)' ?:a_OZ(”Q_a) G0
Lot(t), ot (50)
B Bo ZQB B Bo QB

To avoid causality, and to keep linearity (so that Fourier analysis can be used), we must
include velocity dispersion, but here we make the approximation that velocity is independent of
frequency,

After replacing, then we will get,
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+4npr05_02<1+0_a)e et 170:) (51)

The next step we should do is to do inverse Fourier transform (IFT) of the new solution
in frequency domain (51) to back to time domain.

Do inverse Fourier transform (IFT) of (51),

1 *{ A i r 1 i (1451
t) = — - —(14+— Bo" 2Qg
1% 6) ZnL{anﬁ (w%( +ZQB>>6

Aiow 1 i iwL(HL) .
— (14— a 2Qq4 —a|lw| p—iwt
+ drpr ay? ( + Qa) e % e e ' dw (52a)

As we said before, if a function g(t) is real, then g(—w) = g(w) *, and also the fact that
for a complex number z, we have z + z* = 2Re(z).

Then one may write:
g(t) = ifoog'(w)e‘i“’t do = lRe foog'(a))e‘i“’t dw
2w )_ I8 0

In words, if g(t) is real, then in the inverse Fourier transform that gives g(t), one may
replace the integral from —oo to oo with 2 times the real part of the integral from 0 to oo.
And, even though the quality factor Q and velocity terms are strictly functions of

frequency w, we assume they are constant here, so we can take them outside the integral.
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Therefore, we can rewrite the equation (52a) and solve it as:

1 «© i B S—— VR
m(X,t):mRe{fo <1+—>e <2Qﬁﬁ° ) el(ﬁo t)wdw}

2Qp
1 ® [ —(a+5+—)w i(——t)w
—mRE{fO <1+20a)€ ( ZQ“aO) e (ao ) da)}

1 i et (L LT
+WR€ {f ée‘a“’ (e ZQﬁBOwel(ﬁo t)w —e 2Qaf’fowel(f’fo t)w>dw}
0

0]

e f iwe " agm)? (@ g,
ATl pray? 0

1
——— R
4nprag2Q, "’U

Applying Euler’s formula, e™* = cosx + isinx to the above equation:

0]

we—(a+m)wei(a%—t)wdw}

uy (%, t)
1 © i —<L+a>w T T
=————Re f 14+—|e \2@sho [cos (—w — tw) +isin <—w — tw)] dw}
2m?pr? By { 0 ( 20;?) Bo Qo
1 *® i _(a+ r )w T . . T
———Re f (1 + ) e 2Qa a0 [cos <—w — tw) +isin <—w — tw)] dw}
2n?pria, 0 2Q, a, a,
st (T - w) 130 -]
2o e » e e cos A w—tw isin A w—tw

T . r T
— e 2Qaao [cos <—w — tw) +isin <—a) — tw)] dw
0(0 aO

1 «© _ r r r
+———Re {f iwe (a+ZQa“0)w [cos <—a) — tw) + isin <—w — tw)] dw}
0

2 2
4mipra, Qo Qo

1 © _(a+L)w r T
———— Re we 2Qqao [cos <—w — tw) + isin <—w — tw)] dw
42 prag®Qq 0 Qo Qo
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1 ® (st r 1 (5500t r
?f e <2Qﬁﬁ° a>w cos (— - t) w|— —e <2Qﬁﬁ° a>w sin (— - t) w |dw
2meprefy J, Bo 2Qp Bo

© r r
— ;f e_(a+20a“0)w cos <L — t) w |- ! e_(a+20a“0)w sin <L — t) w |dw
2mlpriag J, a, 2Q, a,
o T _ _r
+ #f 1 e_(a+20a“0)w sin <L - t) w |- 1 e <a+2Qﬁﬁ°>w sin (L - t) w |dw
2mlpr3 ), w @, 1) Bo
1 < r
_ —f we (a+ZQaao)w sin <L — t) w |dw
Am2pray? J, a,

1 R PO S r
_ —f we (a+ZQaao)w cos <— — t) w |dw
42 prag®Qq Jo Qo

For Spiegel (1968), we know

«© b
fo e sinbxdx = Z 1D
fooe‘ax cosbx dx = _*
o a? + b2
© e~ sin bx
f —  dx=tan -
0 X
o a2 _ b2
fo xe ¥ cosbxdx = m
fooxe‘ax sin bx dx = i
o ~ (a? + b?)?
Therefore,
1 ( t ) 1 t
> \a+s5a— —l\a+
e (x.t) = Bo\" " 20Qp B o (e zqa)
1 ) -

T (v gig) + (-] (et ) ()
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r _ r_
+—2 ;4 =| tan™* L N j —tan~! Bo :
e “F 20 “+ 20,8
A (e + 20.3) (7~ ¥) 2
2 2
T (vt + ()
4 (o + ZQZaO)Z (- t)z 2 2b)
2 2
T Qe ((“ + ZQZaO)Z + (aLO - t)z)

Now, we got the new solution of the EOM for a directed point force which includes
absorption but no dispersion, i.e., equation (52b). (52b) is a new and exact result, and that even
though it is absorption without dispersion, it could be applied in cases where absorption (and
therefore dispersion) is small, to estimate the effect of absorption.

If we let Q4 and Qp in (52b) go to infinity, so 1/Q, — 0, 1/Qz — 0, then we will have,

a
_ Bo Qo
2m?pr2 o2 +<ﬁL—t)2 a2 +(L_t)2

0

A “(aLO‘t)

e ())

which leads to the correct result for the elastic case (48).
In order to show the influence of the absorption on the wave propagation process, we will

develop Matlab code to generate plots of the solution of the equation of motion for a directed
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point force s(t) for different receiver distance r (r = 0.3,1,2,5,10 km) without absorption (48)
and with absorption (52b), respectively.
There, the parameters 1 used in the figures are a = 0.02s,p = lkg/m3,A = 1kg *
km,Q, = 40,Qp = 20,ay =5 km/s and By = 3 km/s.
The measurements of Q around near-surface have been discussed by Ewing and Press
(1954 a, b), Sato (1958), Pandit and Savage (1973) and so on. Q, = 40,Qpz = 20 are values for
Q in the near-surface and are more like the values of Q in exploration geophysics. That is also

why we make the distances more like the distances one sees in exploration geophysics.

For r=0.3 km
1

—elastic

6" - - anelastic with absorption ||
near field + far field

u(x,t)

-10 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5

t[s]

Fig.5a. The solution of the EOM for a directed point force with absorption (r=0.3km)



u(x,t)

15

0.5

-0.5

2.5

For r=1 km

48

far field
near field

—elastic
- - anelastic with absorption

0 0.5 1 1.5
t[s]

2.5

Fig.5b. The solution of the EOM for a directed point force with absorption (r=1km)

0.8

0.6

-0.2

-0.4

-0.6

-0.8

For r=2 km

3.5

far field

near field

—elastic

- - anelastic with absorption ||

0 0.5 1 15
t[s]

25

Fig.5c. The solution of the EOM for a directed point force with absorption (r=2km)

3.5
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For r=5 km
0.4 ‘

—elastic
0.3 - - anelastic with absorption

far field

near field

u(x,t)

-0.2 [~ -

-0.3 [~ -

\ \ \ \
0 05 1 15 2 25 3 35
t[s]

Fig.5d. The solution of the EOM for a directed point force with absorption (r=5km)

For r=10 km
0.2 ‘

—elastic

0.15 [~ - - anelastic with absorption [
far field

0.05 — ) —
near field

0 —

u(x,t)

-0.05 — -

01 -

0.2 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5

tls]

Fig.5e. The solution of the EOM for a directed point force with absorption (r=10km)

The red curves are the results of eclastic waveforms, and the blue curves are anelastic
waveforms. The effect of absorption becomes more and more obvious as the propagation

distance increases.
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At small values of distance, e.g., r=0.3km, the near-field term and far-field term cannot

be distinguished. While, for a relative long distance, e.g., r=2km, they can be distinguished
easily. And for a longer distance, e.g., r=10km, the far-field term dominates over the near-field

term (especially in an anelastic medium).

3.3 The solutions of the EOM including absorption and dispersion

3.3.1 Find the analytical approximation

As 1 mentioned before, the expression (50) we used before are not quite physically
realistic, because they do not include velocity dispersion.

We have been assuming that both velocity v and the quality factor Q are independent of
frequency f. But to be physically realistic, one must include dispersion in the calculations, to

ensure causality.

A velocity-frequency relation in the form of — : [1 —%ln( “ )+$] has

v(@)  v(wor) wor
been discussed in Chapter 1(equation 14). For seismic body waves, both v and Q vary with
frequency f. But often Q is nearly constant (i.e., independent of frequency f). Q is not
necessarily nearly constant for all types of seismic wave problems, but let us start with assuming

Q is effectively constant.

Still, note that the Q_12 terms have been dropped, because Q > 1.

Therefore, we will have
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vzgm) - vozl((o) (1 + é) - %ﬂ)w) [1 B %ln <wa:,r)] (1 + é)

(53)
1 2 w i
~ V2 (wor) [1 “me™ <w0r) * 5]
So, let us replacei - ﬁw) and % ﬁ) as:
1 1 1 w i
a(w) ~ alw,) [1 “, " <w0r) " ZQa]'
(54a)
1 1 2 w i
a?(w) - aZ(wo,) [1 B @ln <a)0r) + Q_a]
11 ll_lln<w)+il
Bw) Blwo)|” mQp \wor/  2Qp[ (54b)

1 1 ll 2 l ( w )+ 1
= _—— n _—
ﬁZ(w) ﬁz((l)Or) T[QB Wor QB
Substitute (54) into the solution of the EOM for a directed point force in an elastic

medium, i.e., equation (47):

~ A i r 1 w i [ (2 )t ]
B(wor) TL’Q Wor Q
(% w) = 2mpr3 Ka) B(wor) l 7Q; in (ww) + ZQBD ¢ b e

, , ' 1 L
— <L + d [1 — 1 ln( ® ) + i ]) elw“((zor)[l ”QaLn(wior) I Zéa] e_alwl
w a(wOT) T[Qa

N Aiw 1
47Tp7‘ a? ((1)07")

i , r 1 w i
[1— : ln<‘“)+L]el”—a<w0r)[1‘ml“(w—w)+m]e—alwl (55a)
T[Qa Wor a

Note that in the above formula, the argument of the exponential is non-linear in w,
making it impossible to integrate. However, if one considers a signal spectrum $(w) that is
narrow-band and centered on the reference frequency wy, (i.e., a spectrum that is zero except for

frequencies near wg, ), then one can use the following rule to make the argument linear in w,

meaning that it can be integrated:
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x—1

Inx =~

W ) .o [(w/ww) —1

x near 1, = wln (
Woy (0)/0)0,«)

|=0-00 66

And we suppose that this is what was done in the papers by Cerveny and Frangie (1980).

Applying this rule to (55a),

w
. wln . w\ iw
U (x, w) = A i+ U P (‘“OT) + ‘ e B(wOT)[ Qg (w0r)+m]
’ 2mpr3 [\ w - B(wor) mQpw 2Qp
w
; wln . .
B O P s IR | WSS AR S
w  a(wer) QW 2Qq
i;[w _iwln< w )+i£:| a((x)()r)[ wln(wa;r) Zlg)a:le_alwl
47Tp7‘ aZ ((1)07") T[Qa wOr a

A l(l r ll _ W — Wor n i l) (wOT)[ (w w0r)+2Qﬁ]
" 2npr® |\w  Bwor) nQpw  2Qp

. _ . LT 1 iw
_<L+ ; [1—w e ])elm[“m(w—“’w”m] ealol
w a(wOr) T[Qaw Qa

[ ] ., T 1 iw
A : [ : ((U - 0)07-) + lﬂ:l ela(wOT)[w_m(w_wor)-l_m]e—a|w|

— a) — —
47Tp7‘ aZ ((1)07") T[Qa Qa
P . T [ . Wor [ Lo
4 Kl r l 1 + Bor + l l)elﬁ(ww)l ”Qﬁ 71((2);; ZQg] alow]
~ 2npr® |\w  B(wor) nQp mQpw  2Qp

P i ., T [ w T, iw
—<i+ r [1— ! b or | ¢ ])el“(ww)l 7 0 20 “'“"l
w a(wOr) T[Qa T[Qaw zQa

+i;[w_2_‘“ 2Wor i‘“] ) e e
Amtpr a?(wg,) Q. mQ,

1(_ TWoy >+ r (1_ 1 N i)
nQgB(wor))  B(wor) Qg  2Qp

i TWor [ w : ilw ]—a|w|
X e ﬂQﬁB(wOr)e B(wOr)l nQg 2Qg

A
- 2mpr3
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B (% (i + ﬂQ:;)(O(:)or)) * a((:OT) <1 - ”(12“ * 22?))

i Trwor r [ w :iw]—alwl
X e ”Qaa(wor)e “(wor)l TQy 2Qq

N A i [ <1 2 N i)+2a)0r]
47Tp7‘ 052((1)07") @ ﬂQa Qa T[Qa

TWor iw

X e'”Qa“(wor)e “(wor)[ ”Qa ZQa] alw] (55b)

Then, do inverse Fourier transform (IFT) of (55b). And again, if g(t) is real, then in the

inverse Fourier transform that gives g(t), one may replace the integral from —oo to co with 2

times the real part of the integral from 0 to co.

1 (| A 1/, TWor r 1 i
b t) = 2nf 2mpr3 Z(‘*n%ﬁ(w))+ﬂ(w0r)<1‘no,;+zo,;>

i [ iw ]—a|w|
X e ”Qﬁﬁ(wor)e B(wor) ”Qﬁ ZQﬁ

B (% (i + ﬂQ:;)(O(:)or)) * a((:OT) <1 - ”(12“ * 22?))

i Trwor [ w : iw]—alwl
X e ”Qa“(wor)e “(wor)l Qg 2Qq

N A i [ <1 2 N l)+20)0r]
47Tp7‘ 052((1)07") @ ﬂQa Qa T[Qa

i Trwor r [ w :iw]—alwl )
X e ”Qa“(wor)e “(wor)l TQq 2Qq e 1ot .,

S S A
2m2pr3 0 QpB(wor))  B(wor) nQp 20

R e O e oy
X e TL’Qﬁﬁ(wor)e ZQﬁB(wOr) B(wor) mQgB(wor)
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B E O ) w1 G mlza * zzlz)]

. Twor _ r ) . r r
X el”Qa“(wor)e (ZQa“(wor) I a)welw(“(wor) TQqa(wor) t) da)}

+

4 R foo : [ (1 2 4 i)+2w°r]
e —|w|1-— —
47‘[2p7‘ 0 az(wOr) T[Qa Qa T[Qa

., TWwor r ) i r r
X el”Qa“(Owor)e_(ZQa“(wor) I a)welw(“(wor) TQqa(wor) t) da)}
A *1 TWoy ) l ( TWor ) ( TWor )l
S > P f —|i+——F7+~——=<]|coOS| ———=< |+ isin| ———=
2m2pr3 { 0 w( Qs S (wor) Qs S (wor) Qs S (woy)

« (r_ r —t) +__(r_ r —t)
O\ Blwer) ~ 1By )Y )T M\ Blwor) T mQpB @ )¢

r
X e _<2Qﬁﬁ(w0r)+a>w

— % (i + %) [cos <ﬁ) + isin (ﬁ)]

X [cos(( T __ r —t)w>+isin<< T __ r —t)w)]
a(wey) mQua(wy,) a(wer) mQua(wy,)

X e ‘(m“‘)“’}

+—A Refoo r (1—L+L>
2m?pr3 o Blwoy) Qg  2Qp
( err > + .. ( err )l
O\ mQpBwon)) T\ 7QpB(@or)

« (r_ r —t) +__(r_ r —t)
S\ Blwer) ~ 1By )Y )T M\ Blwor) T mQpB @ )¢

X
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r
X e _<2Qﬁﬁ(w0r)+a>w

- 05((:0r) <1 - T[éa " zéa) [COS <7TQ:;)(O£J0r)) *isin <7TQ:;)(O;O7"))]

X [cos(( T __ r —t)w>+isin<< T __ r —t)w)]
a(wer) mQua(wy,) a(wer) mQua(wy,)

X e _(m”)w dw}

N A R f‘” ) ( 2i 1)
47T2pT ¢ 0 az((l)Or) ! T[Qa Qa

X [cos <7TQ:;)(O£J0r)) + isin (%)]

X [cos(( T __ r —t)w>+isin<< T __ r —t)w)]
a(wer) mQua(wy,) a(wer) mQua(wy,)

X e _(m”)w dw}

N A R f°° Lwoy [ ( TWor ) s ( TWor )]
———Re cos isin| ———
27'[3p7‘ 0 0{2((007«)0“ T[Qaa(wOr) T[Qaa(wOr)

X [cos(( T __ r —t)w>+isin<< T __ r —t)w)]
a(wer) mQua(wy,) a(wer) mQua(wy,)

X e _(m”)w dow

A © 1 TWor _ r r
‘_znzpr3f0 Tw (w;;ﬁ(ww))““ (ﬁ(ww) " 7QpBwor) _t>“’

1 TWor r r
ool (ﬂQgﬁ(%J) €08 (ﬁ(ww) T 1QpBwor) t) @
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+l TWor ( TWor ) ( r r —t)
wQsBwor)  \1QsBwer) ) \\Blwor) ~ mQsBwer) )

_l err . ( err > . ( r _ r —t)
wQsB o) \1QsBwer) ) \\Blwor)  mQsBlwer) )
v o TR

1 TWor

~ < (et " (<a(c:0r) o ewal) “’)

I
| ——|

-G <nQ:;)(OZJOr)) 0 (<a(f:w) o em ) “’)

r

1 rwy TWor T
" o nQqalwg) <noaa(w0r>) 0 (<a(w0r) " mQqa(we) ) “’)

—l Wor sin( or )sin ( r__ r —t)a)
w T[Qaa(wOr) T[Qaa(wOr) a(wOr) T[Qaa(wOr)

X e_(ZQa“T&wor)-l_a)w} dow

N A f‘” r (1_ 1) ( TWor ) ( r r —t)
212pr3 )y ||Blwo) "~ 7Qs) " \QsB(@or)) O\ \Blwor) ~ mQsBwor) )

_r<1_1>_<rw0r )_(r_ r —t)
Blwm " 705 " \7QpBwor) ) \\Blwor) ~ QpB o) )

B r (err )_(r_ r —t)
2058 (@or)  \1QpBwor) ) " \\Blwor) ~ 7QpBwer) )

B r ( TWor ) ( r r —t)
2058 (o) \1QpBwor) ) S \\Blwor) ~ 7QpBwer) )
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r
X e _<2Qﬁﬁ(w0r)+a>w

B [a(;w) (1- n(lz) o3 (g ration) (<a(c:0r) romal) “’)

Rrmioe n(lz) in (e geaton) " (<a(c:0r) ~mgaa ) “’)

B zQaar(won 0 <nQZZE’;w>) o (<a(f:w) B noaar(ww) -¢) “’)

~ Tmatony " (Featomy) (<a(<:w> gy ) w)]

X e _(m”)w} dow

i fow {[‘ o (1 700) (et (<a(c:0r) oy ) “’)

B aZ(C:)Or) (1- n(zz) o <nQ:;)(OZJOr>) 0 (<a(f:w) B noaar(ww) -¢) “’)

- ol <nQ:;)(OZJOr>) <00 (<a(f:w) ~ TGty ) “’)

g o (e - =)o )|

X e _(m”)w} dow

A @ Wor TWor _ r r
* 2n3prfo {[‘ o0t (Gratin) (<a(w0r) oy ) “’)
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Wor . < rWor ) < r r t)
- sin cos - —tw
az(wOr)Qa T[Qaa(wOr) 0{(0)07«) ﬂQaa(wOr)
T
X e_(ZQa“(wor)+a)w} dow
From a mathematical handbook (Spiegel, 1968), we know that:

[0/0)
f e sinbxdx =
0

a? + b2
fooe‘ax cosbx dx = _*
0 a? + b2
© e~ sin bx 1
——dx =tan ' -
0 X
o a2 _ b2
xe Y*cosbxdx =——
fo (a? + b2)2
f xe ¥ sinbx dx = i
0 (a? + b2)2

Applying these integrals, then we will have:

A
(% 6) 2m?pr3
r r
_ (cos( TWor ) L T@or sin( TWor )) tan-1 B(wo) mQpBwor) t
T[Qﬁﬁ(wOr) T[Qﬁﬁ(wOr) T[Qﬁﬁ(wOr) W +a
B or
ro r _

TWor TWoyr . TWor - 0{(0)07«) T[Qaa(wOr)

(o (gratiom) * maatony ™™ (Gratimy)) =

T
- +
2Qqa(wor) ¢

, A
— X
2m?pr3
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l r (1— 1 )cos TWor — il sin TWor l il +a
B (wo,) Qg Qpf(wor) )  2QpB(wor) Qg (wor) ) [\ 2058 (wo,)

2

T 2 r r
(TQBﬁ—(wOr) * “) * (ﬁ(ww) T nQpBlwer) t)

l r (1_ 1 )sin TWoy l ro r _t
ﬁ((UOr) T[QB ﬂQBﬁ((UOr) ﬁ(a)Or) ﬂQBﬁ((UOr)

2

T 2 T r
(TQBﬁ—(wOr) * “) * (ﬁ(ww) T nQpBlwer) t)

l r oS TWor l ro r _t
ZQBﬁ(OJOr) ﬂQﬁﬁ((UOr) B (woy) ﬂQﬁﬁ((UOr)

2

T 2 r r
(TQBﬁ—(wOr) * “) * (ﬁ(ww) T nQpBlwer) t)

o (1700 s (raratin) ~ 20ty (rosetm)| (zazat@ey * 9)

(W * a)z * <a(a7;0r) - nQaar(wOr) N t)z

N [t (1~ 70) " (et (o ~ ety )

(W * a)z * <Ul((:0r) B T[Qaar((UOr) Bl t)z

rwoy

s e (et (@ ~ Tt - t)}

(W * a)z * <a(a7;0r) - nQaar(wOr) N t)z

LA
X
Am2pr

(1~ 7g) cos (%) 2 (W +a) <a(£0r) ~ TOnalan) J

o) 2 ]
o km* ) + (o ~ 70 1) l




(1 Qa) sin <7TQ:;)(0£)07")) <zQaar(w0r) i a)z B <a(07;0 ) ﬂQaar((Uo ) t)z
2( Or) 2
X l(zQaar((UOr) + a) + <a((‘r)0 ) T[Qaa(wo l
1 TWor <zQaar(w0r) * a)z - <a(0)0 ) T[Qaa(wo t)z
B az(wOr)Qa €08 <7TQaa(w0r)) 2

1 . ( T Wy,

r r

) 2(2gzacaey * ) (a(ww) " mQpa(wy) J

l(W * a)z * <0{(a)0 ) ﬂQaa((Uo )Zl

+ sin
aZ ((DOr)Qa

A

- X
2m3pr

Wor [
—S7— ~~ | COS
aZ ((DOr)Qa

T[Qaa((UOr

)

KW * "‘)2 * (a(aiw) - T0eaon) t)l

( TWor
T[Qaa((UOr

)) <a(£0r) ~ T0aalan) t)]

|

Wor .
s (w00 )04 [S‘“ (noaa(w

(W * a)z * <a(a7;0r) - nQaar(wOr) N t)z

rwoy

r
<zQaa(w0r) +

N A fc’o 1
2m2pr3 ),

1 TWor

Or)) <zQaar((U0r) i a)] }

a)z * <Ul((:0r) B T[Qaar((UOr) Bl t)z

ot ()
QB wor)) " \\Blwer)  7QpBwor) ) ”

wﬂQ;;ﬁ(wo ) <

( TWor ) ( r r —t)
QB wor) ) \\Bwor)  7QsBwor) )

r
X e _<2Qﬁ3(w0r)+a>w

1

rwg

[— o sin <m) cos

(<a((:0r) - T[Qaar((UOr) - t) w)

ZJ
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1 rwy TWor r r
T onQualwe) <noaa(w0r>) 0 (<a(w0r) " mQqa(wer) ) “’)]
X e‘(zoaar(ww)”)w} dw (57a)

Now, what we need to consider is about how to solve the integrals M,

A @ 1 rWor r r
M ——znzprsfo _ZSHl(—nQBﬁ(wor))COS (ﬁ(ww)‘noﬁﬁ(a}w)‘o“’

+l TWoy ( TWor ) ( r r —t)
wQsBwor)  \1QsBwer) ) \\Blwor) ~ mQsBlwer) )

r
X e _<2Qﬁﬁ(w0r)+a>w

_ [— % sin <ﬁ) cos (<05((:0r) B ﬂQaar(wOr) - t) w)

1 rwy TWor r r
T onQualwe) <noaa(w0r>) 0 (<a(w0r) " mQqa(wer) ) “’)]
X e‘(zoaar(ww)”)w} dw (58)

In (58), we have four integrals, each of which has the form foooicos(aw) e’®dw. This

cannot be done, because the integrand goes to infinity as w goes to zero.
Therefore, we can try to calculate them approximately by approximating the integrand
with a simpler function that can be integrated. Plot the integrand for different parameter values

to see if it can be replaced approximately with something simpler, like a straight-line function or

a parabola.
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To see if the integrand can be replaced approximately with something simpler, we first
plot the integrand versus w. Consider the range which Q is constant, I assumed the lowest
angular frequency is 0.3Hz, and the sampling interval is 1.
If we assume parameters are r = 150km, a = 1s, Q, = 180, Qp = 150, a = 5km/s,
B =3km/s, wy,. = 1Hz, t = 1s, p = lkg/m3,w = 0.3 —50Hz, then the integrand of M
looks like below:

%107

-1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
angular frequency w

Fig.6a. The integrand of M (w = 0.3 — 50H2)

To amplify the part of the above figure to see more detail from 0.3 to 5 Hz, so we are

going to reduce the interval to 0.01Hz, and the integrand looks like,
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x10"

-8 | | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

angular frequency w

Fig.6b. The integrand of M (w = 0.3 — 5H2)

We can see from Fig.6b that it is basically a damped sinusoid. After trying some different
formulas and parameters, I found a function which is very similar to the integrand:

S1 = 0.0017e 25 sin(47.5w) (59)

Plot the approximation (59) versus w as well,
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g X 107 simpler function
T T T

-8 | | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

angular frequency w

Fig.6¢c. The simpler function S1 (w = 0.3 — 5Hz)

Put the integrand and the approximation together for comparison in Fig.6d (w = 0.3 —
50Hz) and Fig.6e (w = 0.3 —50Hz). Red curves indicate the integrand and blue curves

indicate the simpler function. We can see that they coincide well in both pictures.
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8 x10 ‘ ‘

the integrand
simpler function
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0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

angular frequency w

Fig.6d. The integrand of M and the simpler function S1 (w = 0.3 — 5H2)

-4
10
7 X T T

the integrand
simpler function

1 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

angular frequency w

Fig.6e. The integrand of M and the simpler function S1 (w = 0.3 — 50H2)
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I also tried some different parameters in the integrand to test if a damped sinusoid
function can work for all of them, and I can say it works well.
I will show another case here, which the parameters in the integrand are r = 10km, a =
1s, Q, = 40, Qg = 20, a = 5km/s, B = 3km/s, wo, = 1Hz, t = 1s, p = 1kg/m>.
In this case, the simpler approximation is:
S2 = 0.00035e 3% sin(—3.7w) (60)

Show the result together like Fig.6d and Fig.6e in Fig.7a and Fig.7b:

2 T T T T T T T T T

the integrand
simpler function

10 -

42 - i

14 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

angular frequency w

Fig.7a. The integrand of M and the simpler function S2 (w = 0.3 — 10Hz)
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2 T T T T T T T T T

the integrand
simpler function

-10 H -

14 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

angular frequency w

Fig.7b. The integrand of M and the simpler function S2 (w = 0.3 — 50Hz2)

If we use this simpler function S1(or S2) to replace the integrand in the integral M, and

then solve the integral, we will have:

For S1:
A ® _
Re f 0.0017¢ ™25 5in(47.50) dw
2m2pr3 0
L 0.0017 475 5.36 x 10713
=———0. ———— ~ 536 X
2121503 2.52 + 4752
For S2:
A

———Re {f 0.00035¢>* sin(—3.5w) dw}
0

2m?pr3
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1 5
= WOOOOSSW ~—292x107°

This answer is much smaller than the other parts in (57a) (around 10"-7 for S1, 10"-5 for
S$2), so it is alright to directly ignore the integral M. I tried some other medium parameters as
well, even though values of the results were very different, all of the values of the integral M in
different medium were much smaller than other parts of the approximation.

Then, the new solution of the EOM for a directed point force with dispersion is:

ul(x, t) = W X
r _ r —t
_ (cos ( TWor > + TWor sin ( rWor )) tan-1 ﬁ(wOr) T[Qﬁﬁ(wOr)
T[Qﬁﬁ(wOr) T[Qﬁﬁ(wOr) T[Qﬁﬁ(wOr) W +a
B or
r _ r —t
TWor TWor . TWor -1 0{(0)07«) T[Qaa(wOr)
* <COS <7TQaa(wOr)) * T[Qaa(wOr) ! <7TQaa(wOr))) wan W +a
a or
A
+ 2m?pr3 X

l r (1— 1 )cos T Wor — il sin [Wor l il +a
B (wo,) Qg Qpf(wor) )  2QpB(wor) Qg (wor) ) [\ 2058 (wo,)

2

T 2 r r
(TQ,;ﬁ—(wOr) * “) * (ﬁ(ww) T nQpBlwer) t)

l r (1_ 1 )sin TWoy l ro r _t
ﬁ((UOr) T[QB T[Qﬁﬁ(wOr) ﬁ(wOr) T[Qﬁﬁ(wOr)

2

T 2 T r
(TQ,;ﬁ—(wOr) * “) * (ﬁ(ww) T nQpBlwer) t)
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l r oS TWor l ro r _t
_ ZQBﬁ(OJOr) ﬂQﬁﬁ((UOr) B (woy) ﬂQﬁﬁ((UOr)

T 2 T T 2
(TQBﬁ—(wOr) * “) * (ﬁ(ww) T QpBlwer) t)

g (1~ 7g0) s (raraten) ~ z0mtony ™ (raaton)) (zomat@ey * )

(W * “)2 * <a(<:0 )~ wlalan) t)z

n [Q(Z’Or) (1 ~mQ Sm <7TQ:;)(O(UO )] <a(a)0 ) ﬂQaa((Uo B t)

(W )2 * <Ul((:0r) T[Qaar((UOr) Bl t)z

TrWor r r

s et (it (wtam - mQua(wor) t)}

(W * a)z * <a(a7;0r) - nQaar(wOr) N t)

LA
X
Am2pr

(1 Qa) cos <%) 2 <m i a) <a(a)0 ) ﬂQaa((Uo )

a?(wor) 2 2
X l(W-}_ a) * <a(a)0 ) ﬂQaa((Uo ) l

2

(1 Qa) sin <7TQ:;)(0£)07")) <2Qaar(w0r) i a)z j <a(07;0 ) ﬂQaar((Uo ) t)

a?(wo,) 2
’ KW +a) +(a(£0) Teaan) l

2

- coS< "Wor ) <m + a)z B <a(a)0 ) nQaa((uO t)

_Z(Or)a a(OT) ’ 1
a?(wg,)Q mQqa(w l(W‘*‘Q) +<a(a)o) ﬂQaa(wo )l
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2

1 ( r W, ) Z(W +a)<a(£0r)‘nqaar(w0r)‘t)

+ sin
az(wOr)Qa T[Qaa((UOr) 2 2
K—zoaar(ww) * "‘) * (a(aiw) - 0o t) l

A
- X
2m3pr

#ﬁ:)% [COS <7TQ:;)(O£J0r)) <05((:0r) B T[Qaar((UOr) B t)]

(W * a)z * <a(a7;0r) - noaar(ww) N t)z

s 0{2((‘;’# [Si“ (nng)(o@w)) (20aar(w0r) i “)]

(57b)

(W * a)z * <05((:0r) B ﬂQanr((UOr) Bl t)z

TWor r

TQyv(wor) v 2Qyv(wor)

To simply this complicated expression, let us assume F, =

a,and G, = —— — . — t, substitute these relations into (57b), then we could have a
v(wor) TQyv(wor)

simpler expression:

u, (x,t) =

s | (Cos(Fy) + Fysin) ant (22 4 (costh) + s tan ()|

A (ﬁ((ZOT) - wF_(i) (Hg cos(Fg) — Gp sin(Fp)) — (Hg — a)(Hg sin(Fg) + Gp cos(Fy))

2m2prs3 Hp® + Gg*
r F, . :
o (G — 2 ) (Ha c05(Fe) = G sin(F)) = (He = @) (Ho in(Fe) + G cos(Fe)
2m?pr3 H,* +G,*

a [P (1-25) cos(R)| 2H, 6 - [€2355e + (1 - 220 sin()| (K - 6.)

+
Am2pr a2(wor) (Hy? + G,2)"
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B A  F,(cos(F,) G, + sin(F,) H,)
27'[2p7‘2 a(wOr)(Haz + Gaz)

(61)

(61) is a new approximate result with absorption and dispersion. Even though it is an
approximation, approximations are still useful in that they can be used to study which factors are

important and also to sometimes reduce computation time.

3.3.2 Compare with exact numerical results

To verify the accuracy of the approximation (61), we created a program by Matlab to
compute the exact results with velocity dispersion numerically. The basic idea is using “ifft”
function in Matlab to apply inverse fast Fourier transform to (55a) to get some exact numerical
results in time domain.

All the codes I used can be found in appendix.

To use the codes, one of the problem is how to choose parameters in them.

In this case, we will still simulate a near-surface area, like in exploration geophysics.
Therefore, we assume r =0.3,1,2,5,10 km, Q, = 40,0z = 20,ao =5km/s and B, =
3 km/s. Also, the pulse width should be relative small, e.g., 0.05 s, so the value of “a” could not
be too large, then we assume a = 0.02s here.

As for wy,., this is the reference angular frequency, and v(wy,) is the known wave speed
at wg,. If the angular frequency vector goes from w = 1Hz to 100Hz, and if wy,=1Hz, then the
lowest v is at the lowest angular frequency w = 1Hz. But if you change wg, to 10Hz, then the
term log (w/wy,) will be negative for w = 1Hz to 10Hz, and the lowest v will change to

something smaller. This also affects the travel times.
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Since the approximation we used for dispersion is only good for a narrow spectrum
U, (%, w) with w near wy,., it will be better to plot the spectrum %, (X, w) vs. w to see if it is
narrow and the frequencies w are near wy,-.

And we should also check to see if the approximation w * In(w/wgy,) = @ — Wy, is
satisfied for frequencies within the range where %, (X, w) has appreciable non-zero values. For
example, find the maximum value, ; (X, @)nqr» Which occurs at some angular frequency Wy, gy,
then check to see if the frequencies w for which %, (X, @) max /U1 (X, @) < 100, say, satisfy w *
In(w/wy,) = w — wg,. That means, we can look at the value of the ratio, wln(w/wy,.)/(w —
woy) to see if this ratio around 1 for the frequencies where i, (X, ) is not zero. Also, it is better
to test if w/wq, = 1 as well.

After trying some different combinations of parameters, I found that w,, should always
be chosen as the value of w at the “peak™, i.e., the maximum value of %, (X, w), of the amplitude
spectrum of %, (X, w). That way, all the w values on the curve on either side of the peak will, on

average, be closer to w,,, and so the approximation will be better.
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. 1078 ul(w) vs w
T
25 b
2 - -
§ 15+ .
=}
1 4
0.5 ,
0 | | | | | |
-80 -60 -40 -20 0 20 40 60 80
w [Hz]

Fig.8a. U; (X, w) vs. w

(a=0.025,Q, =40,Qp = 20,9 = 5 km/s and By = 3 km/s)

An example has been showed in Fig.8 above, where a = 0.02s,Q, = 40,Qz = 20,q, =
5km/s and f, = 3 km/s.

In the graph above, the peak is around w = 20Hz, therefore, for this graph, we should
choose wy, = 20Hz (or something close to that). The significant frequency range for this graph,
is 10 to 50 Hz. So if wy, = 20Hz, and if we pick a frequency inside this range, e.g., w = 40Hz,
then w/w,, = 2, which is not close to 1, but the value of |1, (X, w)| at w = 40Hz will also be
much smaller than %; (X, @) 4y, Meaning it will probably have a small negative effect on the

approximation, and so the approximation could still be fairly good. Similarly, high value of
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wln(w/wy,)/(w — wy,) is 1.53, which is not close to 1, but the value of |, (X, w)| is also
much smaller than #; (X, @) mqx» SO the approximation could still be fairly good.

Just to clarify, if we always choose wg, at the peak (which means different wg, for
different “a”), then the approximation works for all “a”. But if we choose only one wy, (e.g., 1
Hz), then the approximation only works for some “a” but is bad for other “a”, because for
different “a”, the peak of spectrum also changes, while the other parameters do not affect the
position of peak much. For example, if we leta = 1s,7 = 10km, Q, = 40,05 = 20,a, =

5 km/s and 8, = 3 km/s, then the spectrum is,

-4 ul(w) vs w
3.5 x10 T
3r 4
251 A
2r 4
B
=
15 4
1 | - -
0.5 - ,
0 | | | |
-6 -4 -2 0 2 4 6

w [Hz]

Fig.8b. u; (X, ) vs. w
(a=1s5,Q,=40,Q = 20,ay = 5 km/s and By = 3 km/s)
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In Fig.8b, we can see the peak has changed around w = 1Hz when we only change a

from 0.02s to 1s. If we keep a constant and change other parameters, like a = 1s,r = 20km,
Q¢ = 100,Q5 = 50,ay = 15 km/s and B, = 10 km/s. The spectrum is showed in Fig.8c. The

peak is still around w = 1Hz.

5 ul(w) vs w
15 x10 ‘

ut(w)

6 -4 -2 0 2 4 6
w [Hz]

Fig.8¢c. uy (X, w) vs. w

(a=1s5,Q, =100,Q = 50,ay = 15 km/s and By = 10 km/s)

Also, there is another problem we should think of. The spectrum §(w) has frequencies
that go all the way to zero, and at w = 0, we have In(w/w,,) going to —infinity. But in reality,
Q is constant only over a finite range of frequencies (see Fig.9, after Figure 3 in Liu et al., 1976),

and the velocity v obeys the In formula inside this range, and is constant outside of the range.
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Fig.9. (a) Internal friction coefficient as a function of frequency,

(b) phase and group velocity dispersion. (Liu et al., 1976, figure 3)

So, for numerical modeling purposes, we could pick the lower and upper limits of this
frequency range and use the In formula for v in this range only. So v would not go to —infinity.

About the frequency range, for example, if we let the range from 1072 to 10°, then Q is
constant only in this range and v is constant outside this range. Since I need to use the frequency
from —Nyquist frequency to Nyquist frequency in my code, according to symmetry, I will have
another range from —1072 to —10°. So, inside the ranges, we could let the velocity v obeys the
In formula. While outside the ranges, v is constant, and we could use the equation without
dispersion which we have derived before.

And, for the same medium, we should use the same velocity vs. frequency function, but

v(wq,) would be different if w, is different.
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Then, I used the Matlab code to do IFFT to the solution of the anelastic EOM in
frequency domain (55a) to compute the exact results with velocity dispersion in time domain
numerically and compare the approximation and exact numerical result for different distances in
Fig.10a-e. The red lines indicate exact numerical results, and the black dash lines indicate the
approximation (61). We can see they coincide well.

Therefore, we could say that our approximation (61) can be a good expression for the
solution of the EOM for a directed point force including absorption and dispersion.

However, we should notice that even though we involved dispersion effect to ensure
causality, the waveforms are still non-causal (source pulse appears before zero second, e.g., Fig.
10a), because the function of source we used is a non-causal source. As mentioned previously,
this is however acceptable because for our purposes, we can think of the source pulse we used as
being causal if we merely shift the starting point of the pulse to a point on the negative side
where the pulse is effectively zero, e.g., to the point # = -50 s in Figure 3. The effects of
dispersion can still be seen with this pulse.

The parameters I used in the below figures are a = 0.02s, w,, = 20Hz, p = 1kg/

m3,A=1kg xkm,r =0.3,1,2,5,10 km, Q, = 40, Qp = 20,qp = 5km/s and , = 3 km/s.
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For r=0.3 km
8 \ \ I I
—exact numerical result
e - - approximation i
4ar near field + far field N
ol _
z
> —
! ! ! ! ! ! !
0.5 1 1.5 2 25 3 35

{[s]

Fig.10a. Comparison of the approximation (61) and exact numerical result for the solution
of the EOM for a directed point force with dispersion (r=0.3km)

For r=1 km
1 \ \ \ I I
—exact numerical result
o5 far field - - approximation
near field
0
X051 -
>
- —
15+ _
2 \ \ \ \ \ \ \ \
0 0.5 1 1.5 2 25 3 35

t[s]

Fig.10b. Comparison of the approximation (61) and exact numerical result for the solution
of the EOM for a directed point force with dispersion (r=1km)
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For r=2 km

0.6 T T I I
—exact numerical result

- - approximation L

041 far field

02— )
near field

u(x,t)

-0.6 [~

-0.8

Fig.10c. Comparison of the approximation (61) and exact numerical result for the solution
of the EOM for a directed point force with dispersion (r=2km)

For r=5 km
0.1 \ll T T ‘ ‘
far field | —exact qumgrlcal result
' - - approximation
0.05 |- !
! near field
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0
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> 1
{
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01 - 1} |
I
1
-0.15 [ _
02 \ \ \ \ \ \ \ \
0 0.5 1 15 2 25 3 3.5
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Fig.10d. Comparison of the approximation (61) and exact numerical result for the solution
of the EOM for a directed point force with dispersion (r=Skm)
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For r=10 km
0.03 I I I I
| —exact numerical result
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Fig.10e. Comparison of the approximation (61) and exact numerical result for the solution
of the EOM for a directed point force with dispersion (r=10km)

Then, let us use the same parameters with above Fig.10a-e and see the differences

between seismic waves in elastic medium (48) and in anelastic medium with absorption and

dispersion effect (61).
For r=0.3 km
8 , I I
I - - elastic
6 | —anelastic with dispersion | |
1]
4r near field + far field N
ol i
= 0
X
= = |
-4 — —
-6 — —
-8 — —
10 L3 \ \ \ \ \ \ \
0 0.5 1 1.5 2 25 3 35
tls]

Fig.11a. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the elastic one (48) (r=0.3km)
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For r=1 km
1.5 ‘ ‘ I
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1 farfield Inl —anelastic with dispersion [

A
1 .
0.5 Wr field *

-0.5 - —

u(x,t)

-1.5 —

25 ‘

i[s]

Fig.11b. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the elastic one (48) (r=1km)

For r=2 km
0.8 I I I I
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1
061 far field )
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02t ' , near field |
l\
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-0.2 —

u(x,t)

0.4+

t[s]

Fig.11¢c. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the elastic one (48) (r=2km)
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For r=5 km
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Fig.11d. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the elastic one (48) (r=5km)

For r=10 km
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Fig.11e. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the elastic one (48) (r=10km)

In above pictures, Fig.11a-e, the dash blue curves are the results of elastic waveforms,
and the red curves are anelastic waveforms including dispersion influence. The effect of

absorption and dispersion becomes more and more obvious as the propagation distance
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increases. This trend is very similar to the solutions with only absorption effect but no
dispersion.

However, for no dispersion, i.e., Fig.5a-e, the anelastic waveforms have the similar form
and shape as the elastic ones, because the pulse does not oscillate much. While, when we include
dispersion, the shape of anelastic waveforms is a little bit different from the elastic ones. It looks

like the waveforms are wider in anelastic medium.

3.4 Effect of dispersion

To see the effect of dispersion, let us plot the exact solution only having absorption and
no dispersion (52b) and the approximate solution have both absorption and dispersion (61) in
same pictures.

For the parameters, we are still using a = 0.02s, w,, = 20Hz, p = 1kg/m3,A = 1lkg *

km,r =0.3,1,2,5,10 km, Q, = 40, Qp = 20,q0 = 5km/s and 8, = 3 km/s.

For r=0.3 km
8 I I I I
—absorption and dispersion
6~ only absorption i
4l near field + far field B
2 - —
N\
= 0_ e ————————— e e e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e et
X
S5 ol |
-4 _
-6 — —
-8 —
10 | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5

t[s]

Fig.12a. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the solution only having absorption and no dispersion (52b)
(r=0.3km)
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For r=1 km
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Fig.12b. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the solution only having absorption and no dispersion (52b)

(r=1km)

For r=2 km
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0.8 ‘
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Fig.12c. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the solution only having absorption and no dispersion (52b)

(r=2km)
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For r=5 km
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Fig.12d. Comparison of the approximate anelastic solution of the EOM for a directed point
force with dispersion (61) and the solution only having absorption and no dispersion (52b)
(r=5km)
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Fig.12e. Comparison of the approximate anelastic solution of the EOM for a directed point

force with dispersion (61) and the solution only having absorption and no dispersion (52b)
(r=10km)

In Fig.12a-e, green dash lines indicate the solution of the EOM for a directed point force

including only absorption no dispersion (52b), and red lines show the solution which has both
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influence of absorption and dispersion. We can easily tell the differences between them, and it is
obvious that dispersion has a greater impact on far-field term.

To see more specific, let us amplify the far-field term part in Fig.12e:

For r=10 km
0.04 T i i

— absorption and dispersion
0.03 — only absorption H

0.02 -
0.01 - \ ]

-0.01 - -

u(x,t)

-0.02 - —

-0.03 - —

-0.04 — —

-0.05 \ \ \ \
1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 23 24 25

Fig.12f. Amplification of the far-field term in Fig.12e

We can see from Fig.12f that the red wave (with dispersion) arrived before the green one
(without dispersion). And the shape of them are also different.
In general, compared to the elastic wave under dispersion effect, both the arrive time and

the shape of the no dispersion one is more like the waveform in elastic medium.
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CHAPTER 4: A DOUBLE-COUPLE-WITHOUT-MOMENT SOURCE

In chapter 4 and chapter 5, we will follow the same steps in the chapter 3 to derive new
solutions of the EOM for a double-couple-without-moment source and a shear-dislocation source,
respectively.

But in these two chapters, we will only talk about the dispersion situation, because to be

physically realistic, the new solutions must include velocity dispersion.

4.1 Converting the solution to frequency domain

This time, we are going to do Fourier transform of the solution of the equation of motion
for a double-couple-without-moment source in perfect elastic medium to convert it into
frequency domain.

As we said in chapter 2, we are going to consider a vertical fault coinciding with the xz
plane. The only non-zero components of the moment tensor are then M;, = M,; = M,. And To
use a more general formula, for a receiver lying on a circle surrounding the origin, then we have
Y12 +7v22 =1landy; = 0.

We already have three components of the displacement for the solution of the EOM for a
double-couple-without-moment source in an elastic medium, i.e., (38a, b, and c). Here, we will

add dispersion effect on the x component of the displacement, which is (38a):

T
94 15cos20)sinf@ 1 (B

h o t) = ) — P eyt - ) dr
4mtp r*Jr

a

(2+3cos20)sinf 1 r (3+ 6c0s26)sinf 1 r
; L (e-7) - (e )

M
2npa? r? AmtpB? r?
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(14 cos26)sinB 1M r cos 20 sin 8 1M T 18
L (D))

And, to make the calculations easier, we will assume source M, (t) = s(t), and My(w) =

5(w), which means

2atA
My (t) = m (62a)

My(w) = Aiwe ™! (62b)

Use Fourier transform to convert u, (X, t) into frequency domain,

T
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LELLA P L L LLE P P O
Atpa r a AmpB3 1 B
T
9+ 15cos20)sinf 1 (* (B .
= ( ) —4f fBTMO(t—T) dr e'@tdt
4mtp r* ) _ JT
a
(24+3cos26)sinf 1 r
> f O _ elwtdt
2npa - a
(3+6c0529)sm91 @ r\ .
f O __ elwtdt
4mpB? o
(14 cos20)sin61 [~ . rN .
— My(t——)e'@tdt
+ 4rtpa3 r f_oo 0 ( a) €
cos20sinf1 f°° i (t r) ot 4y 6
ampB® 1), °\" T B)° (632)

Like what we have done in chapter 3, (43b) and (44), we can assume that

(43b)
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and,
® 1 (7R 1 r eiw% 1 r\ea
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Since we still assume M (t) =”(a2a—+t2)2, and M, (w) = Aiwe™®! then we can get
tgglw M,(t) = 0. So,
< ry . — ol
f M, (t - —) eltdt = —iwMy(w)e v (65)
v
—o00

Substitute (64) and (65) into (63a),
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Also, substitute M, (t) into equation (38a) to get the solution in an elastic medium in time

domain to compare with results including dispersion later
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4.2 The solutions of the EOM including absorption and dispersion
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A velocity-frequency relation in the form of Tt))
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(66)

)+l
2Q

equation (14), will be used again. We assume Q is nearly constant (independent of frequency)

and keep only first-order terms.

We have derived velocity-frequency relations f — and

will also need a velocity-frequency relation of #ﬁ)),
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Substitute the above equations into #, (X, ), i.e., (63b), then we will have:
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And again, if g(t) is real, then in the inverse Fourier transform that gives g(t), one may

replace the integral from —oo to oo with 2 times the real part of the integral from 0 to oo.
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B(wor) noﬁﬁ(ww) t) “’)]

w? TWor r r

T @3 w0) (1- naa) 0 <noaa(w0r>) 0 (<a(w0r) " mQqa(wer) ) “’)

2

B a3€)w0r) (1- naa) o <nQ:;)(OZJOr)) o (<a(c:0r) B noaar(ww) -¢) “’)
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3w? TWor _ r r
T 203 (00r) Q0 <noaa(w0r>) St <a(w0r) T Qea(wor) t) @

3w? _ TWor r r
T 203 (@00 <noaa(w0r>) €os <a(w0r) T TQua(wer) t) @

X e (m )“’d

_AcosZHsian 3wg,w TWor )cos( r r —t)w

4m2pr nQpp? ((DOr) T[Qﬁﬁ(wOr) B(wor) mQpL(wor)
3wo,w ( TWor ) ( r r —t)

T 1QpB% (o) \ QB (@or) Blwe)  mQsBlwe) )"

ot e S o) S e e orm )
B\ 105) " \1QsBwen)) “*\\Blwor) ~ mQsBwor) )

L O R (et
Blwg)\ Q)" \nQsB(wor) Blwor)  mQpBlwer) )

i) (i)
28%(wor) Qs \ Qs B (@or) B(wor) noﬁﬁ(ww) @

B 3w ( TWor ) t)
28%(wor) Qs \ Q5B (@or) ﬁ(wOr) noﬁﬁ(ww) @

s
y e—<m+“>‘” do

Because, from a mathematical handbook (Spiegel, 1968):

e Ysinbxdx =———
fo a? + b2

a

e Ycosbxdx =——
fo a? + b2

e~ sin bx b
———dx =tan"'—
0 X a
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@ a? — b?
—ax bxdx = ——
fo xe cosbx ax (az n bz)z
e b dit 2ab
. xe Sinbx ax = (az n bz)z
f‘” 29-a% cos by dy — 2a3 — 6ab?
. xce cospxax = (az n b2)3
O aw 6a’b — 2b3
. x-e sin bx dx = m

Applying these integrals, then we will have:

A(9 + 15cos 26) sin 0
ul(xl t) = 47_[2pr4 X

r r
_ lcos ( TWor ) + TWoy sin( TWor >l tan-1 B(wor) - ﬂQﬁﬁ(wOr) —t
nQpf(wor))  mQpB(wor) " \1mQpB(wor) Zngﬁr((UOr) a

r 1 TWoy r
L F@o) (1 B no,g) €08 (w,mwm) (ZQ;;B(wOr) * a)

2

T 2 r T
<_203ﬁ—(w0r) * “) * (ﬁ(ww) " QpBlwer) t)

" sin [Wor il +a
_ ZQBﬁ((UOr) ﬂQﬁﬁ((UOr) ZQBﬁ(wOr)

2

T 2 r T
<_203ﬁ—(w0r) * “) * (ﬁ(ww) " QpB(wer) t)

r (1_ 1 )sin TWoy ro r _t
_ ﬁ((UOr) T[QB T[Qﬁﬁ(wOr) ﬁ(wOr) ﬂQBﬁ(wOr)

2

T 2 r r
(TQ,;ﬁ—(wOr) * “) * (ﬁ(ww) T 1QpBlwer) t)
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il C0S | —Aedr - - —t
_ZQBﬁ((UOr) ﬂQﬁﬁ((UOr) B (woy) ﬂQﬁﬁ((UOr)

<zQﬁﬁr(w0r) + a) + (ﬁ((ZOr) B ﬂQﬁﬁr((UOr) B t)
+ [COS< — ) + o . ( — )] tan~! a((zw) _ nQ“ar((‘JOT)

T[Qaa(wOr) T[Qaa(wOr) T[Qaa(wOr) ZQ+(O)) +a
a or

-t

~ g (1~ 70) 08 (wi%m) (zoaar(ww) +a)

(W * a)z * <a(ar)0r) - nQaar(wOr) N t)z

rwor

Gty (reatnn) Gazatamy * )

(W * a)z * <a(50r) - noaar(ww) N t)z

N g (1~ 7)™ (i) () ~ ety 1)

(W * a)z * <a(50r) - noaar(ww) N t)z

s gt (waiton) () ~ et - t)}
(W * a) * <Ul((:0r) B T[Qaar(wOr) B t)

_ A(9 + 15 cos 26) sian TWo, > ( ro r B t)
an?prt nQ,;ﬁ(wOr) Blwo)  1QsBlwor) ) ”
L1 @ (L) ( r __ T _t>
T 0 1QsBwor) O\ 70sBwen) ) \\Blwor) ~ 70Blwe) )¢
« o FesBE o)
1 TWor r r
) [‘Zsm (Gt (<a(w0r) et ) “’)

., N (S 1|

X e _(m+a)wdw
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N A(2 4+ 3cos26)sin6
2m?pr?

X

( : ) o ( rw(o )) : <m i a) <“(07;0r) B ﬂQaar((UOr) ~ t)
a?(wor)Qq mQ a(wy, l( . . a)Z ) ( - r : t)Zl
) )

2

zQaa((‘JOr a(wo ) ﬂQaa((Uo

<m i a)z j <0{(a)0 ) ﬂQaa((Uo )2

2

1 rwy
B az(wOr)Qa €08 <7TQaa(w0r))

l(zQaa((uo ) <0{(a)0 ) ﬂQaa((Uo t)zl

2

(1- Qa)‘m(%) (20aa(wo )(a(m) nQaa(wo t) 2
<

- a?(wor) 2
X l(zQaa((uo ) * 0{(07;0 ) ﬂQaa((Uo t) l
_ (1 Qa) sin <7TQ:;)(OZJ0r)) <ZQaa(a)0 )2 <a(07;0 ) ﬂQaa((Uo t)z
a?(wor) 2]?
X l(zQaa((uo ) <0{(a)0 ) ﬂQaa((Uo t) l
_ 2wor < TWor ) <Ul((zor) B ﬂQaar((Uor) B t)
e gy + )+ (e g )
__ 2w ( rWor ) <20+(wo) * a)
e ) + ety mmaam )
_A(3 + 6 cos 26) sin 0 y

42 pr?

2( 57— +a LA ——
1 _ ( rwy ) ZQBﬁ((UOr) B(wor) ﬂQﬁﬁ((UOr)
B2 (00 \7QpB (o) [( )

2 . . 2712
2058 (wor) “) * (ﬁ(ww) " QpBlwer) t) ]



T (@0 \TQpB(wor) 2

r
1 ( TWoy ) (203ﬁ(w0r) ) (ﬁ(ww) "Qﬁﬁ(‘“OT)_t>
[ +

. 2
(zqﬁﬁ(ww) ) Bl nQ,;ﬁ(wOr)‘t”

<1 ) _ TWor r ¢
T w0s) * \mQpB(wor) ?\2q58 G * ) Bt ~ 708
ﬁ ((1)07") [ 2]

r
(20Bﬁ(w0r) >+<ﬁ(w0r) nqﬁﬁ(ww)‘t”

. 2
[(20gﬁ(w0r) ) (ﬁ(ww) nQBﬁ(wOr)‘t”

r
zQﬁﬁ((UOr) ) (ﬁ((UOr) ﬂQBﬁ(OJOr) B t)

rWor
(1 QB) sin (T[Qﬁﬁ((UOr)>
ﬁ ((1)07")

2

r _ r ¢
ﬁ((UOr) T[Qﬁﬁ((UOr)

. 20)07’ ( TWor )
nQgf?(wor) €08 Qg P (wor) ? r r :
(2(2,gﬁ( o) ) +<ﬁ(w0r)‘n0,;ﬁ(w0r)‘t>

2w Sin( rwor ) (203ﬁr(w0r)+a>
mQpB%(wo,) " \mQpB(wor) (zQﬁﬁr(ww) N a>2 N <a(£0r) B nQaar(wor) B t)z
A(1 + cos20)sin6
* 4m?pr %

g (L) (s @) (et~ satwey =)
«@3(wor) «@(woy) 2

T . K—zoaar(ww)”) +<a(£0r) o) " )l
_ ng({ ) ! (Q”"(Or )) 2<20aar(w0r)+a)<“(£0r) ﬂQaa(wOr) t)
Qa3 (o, TQ a(wy, 2 212

Km”) +<a(£0r) 0raan) t)l
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(1 - fTa) €os (FQ:;)(OLW)) 2 zoaar(ww) M a)
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+
a3 ((1)07")

(1) = (rgatin) _©(zatany * )

(0)0 ) T[Qa ¢4 ((UO t)

l(W * a)z * a(wo,) ﬂQaa((Uo )Zl

a3 ((1)07")

(e
(e

l(W * a)z * <a(a)0 ) ﬂQaa((Uo t)zl
(e

(1- Qa)m(ﬂQ:;fu(Ong)) 6<zoaar(w0r)+a)2 a(w,,) noaa(wo t)

3

3((1)07") r

KW * “)2 +(atey ~ moatan

+ (1 Qa) sin <7TQ:;)(O£J0r)) 2 <Uf((:0r) B T[Qaar((UOr -

)‘t) l

a ((1)07") r

r r

)~ t)l

KW * "‘)2 * (a(ww) ~ mQ.alwor

3 cos <%) 6 (W i a)z <05((U0r) j 1Qqa(woy) !

20{3((1)07")00( r 2 r r
K—zoaa(ww) * “) * <a(w0r) " 1Qqa(wy)
3
_ TWor r___ r _
N 3 cos <noaa(w0r>) 2 (a(ww) 7Qaa(wor) t)
20{3((1)07")00( r 2 r r
l(zQaa((‘JOr) + a) + <a(w0r) B 7TQacOf((UOr B
3
: err —T'
_ 3 s <7TQaa(w0r)) 2 <zQaa(w0r) + a)
20{3((1)07")00( r 2 r r
K—zoaa(a}w) + “) + <a(w0r) T mQqa(wer)

r r

35 (pratony) 8 20atny ) (Gt ~ opatag) -

203 (wor)Qq l(m_l_a)z_}_( r r

Acos20sinb
4m?pr

0{(0)07«) T[Qaa((UOr B

3
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2

Qs (o)~ \1QpB(wor)

2

r 2 r r
3w, ( rwo, ) <203ﬁ(w0r) * a) B (ﬁ((vw) - QB (wor) t)

T 2 r r i
(20Bﬁ(w0r) * a) * (ﬁ(a’w) - mQpB(wor) t) ]

T QB (wor) T \TQsB (@or)

r r r
3wy _ ( TWq, ) 2 <ZQBﬁ(a’0r) * a) (ﬁ(a’w) B T[Qﬁﬁ((UOr) B t)
r 2 r r 2
[(T(zﬁﬁ(ww) +a) + (ﬁ(ww) ~ mQpBwe) t) ]
3 TWoy r 3
N (1 B @) cos (n%(w)) 2 (20Bﬁ(w0r) * a)
,83((00r) r 2 T T ’
[(T(zﬁﬁ(ww) +a) + (ﬁ(ww) ~ mQpBwe) t) ]
3 r'Wor r — r — r — 2
) (1~ @) cos (nQBﬁ(wOr)> 6 (ZQ;;B(wOr) * “) (ﬁ(ww) QB @or) ’f)
:83((1)07") r 2 r r 2
<_203ﬁ—(w0r) * “) * (ﬁ(ww) T nQpBlwer) t)
3 . TrWor r ’ r _ r —
(1~ no,g) sin (nQBﬁ(wOr)> 6 <—203ﬁ(w0r) * “) (ﬁ(ww) 7QpB(wor) ’f)
B3(wor) . 2 . . 2)?
[<_ZQ;;B—(w0r) * “) * (ﬁ(ww) T nQpBlwer) t) ]
3 : err r — r — ’
N (1 B @) S <—ﬂ03ﬁ(w0r)> 2 (ﬁ(ww) Qs P (wor) ’f)
B3(wor) . 2 . . :
[(T(zﬁﬁ(ww) +a) + (ﬁ(ww) ~ mQpBwe) t) ]

rwe, r ’ r_ r -
3 cos (m) 6 (203ﬁ(w0r) * a) (ﬁ(ww) mQpf (wor) t)
2ﬁ3((1)0r)Q/3 [(

3
3

3

r 2 r r 21’
205 (wor) “) * (ﬁ(ww) T 1QpBlwer) t) ]
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3 cos | —t2or___ 2 r___ r —t 3
ﬂQﬁﬁ((UOr) B(wor) ﬂQﬁﬁ((UOr)
2ﬁ3((1)0r)Q/3 [<

3

T z r r i
ZQBﬁ(wOr) + a) + (ﬁ(wOr) B ﬂQBﬁ((UOT) B t) ]

: TWor r ’
3sin <—ﬂ03ﬁ(w0r)> 2 <—203ﬁ(w0r) * a)
2ﬁ3((1)0r)Q/3 [(

r 2 r r 21’
205B(wor) “) * (ﬁ(ww) T nQpBlwer) t) ]

. TWor __r I - ’ - 2
3sin (W) 6 <203ﬁ(a’0r) * a) (ﬁ (wor) QgL (woy) t)
2ﬁ3((1)0r)Q/3 [(

3

T z r r i
2058 @or) a) + (ﬁ(ww) T QB wer) t) ]

As we discussed in chapter 3, the integral in the form of foooicos(aw) e’“dw can be

ignored. Therefore, we can directly move the integrals from the above formula, then a new
solution including dispersion of the EOM for a double-couple-without-moment source will be:

A(9 + 15cos 26) sin 0
wxt) = 4m?prt %

r T
— lCOS ( TWor ) + TWor Sin( rwor )l tan-1 ﬁ(wOr) - T[Qﬁﬁ(wor) —
HOpflor)] - mQplor) =\ Qul ) 20,8

t

r 1 TWoy r
L F@o) (1 B no,g) €08 (w,mwm) (ZQ;;B(wOr) * a)

2

T g T T
<_203ﬁ—(w0r) * “) * (ﬁ(ww) T 1QsB(wor) t)

r . TWor T ta
_ 2Q5B(we) " \1QsB(wor) ) \ 2Q5Bwoy)

2

T 2 r T
<_203ﬁ—(w0r) * “) * (ﬁ(ww) " QpB(wer) t)
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r (1_ 1 )sin TWoy ro r _t
_ ﬁ((UOr) T[QB T[Qﬁﬁ((UOr) ﬁ((UOr) ﬂQBﬁ(OJOr)

2

T 2 r r
(TQ,;ﬁ—(wOr) * “) * (ﬁ(ww) T 1QpBlwer) t)

il C0S | —Aedr - - —t
_ZQBﬁ((UOr) ﬂQﬁﬁ((UOr) B (woy) ﬂQﬁﬁ((UOr)

2

<ZQ/3ﬁT(w0r) + a) + (ﬁ((:w) B ﬂQﬁﬁr((UOr) B t)
* [COS< v ) rmh ( G )] tan~! a(Z)Or) B ﬂQaar((UOr) B

1Qua(wo)) ' Qe (wor) " \nQuat(wor)

t

r
S
zQaa((‘JOr) ¢

~ g (1~ 70a) 0 <nQ:§U(°LOr>) (zQaar(wOr) +a)

(W * a)z * <a(a7;0r) - nQaar(wOr) N t)z

R e (rectnn) Gamatamy * )

(W * a)z * <a(50r) - noaar(ww) N t)z

N g (1~ 7)™ (i) (o) ~ ety ~ 1)

(W * a)z * <a(50r) - nQaar(wOr) N t)z

s gt (waiton) () ~ et - t)}

2 2
r r r
sA—r—+a) + —~ —t
(zoaa(ww) "‘) <a(w0r) Qe @ (wor) )
N A(2 4+ 3cos26)sin6
2m?pr?

X

r r

—sin (o) ? (gt * ) (@ ~ ozt )

2(wor)Qq o2 (wor) ’ 2
) o [<m + a) + (a(aiw) B ﬂQaar(‘UOr) - t) l

2
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(W ) (a(ww) 0w t)z

2

. gsaton)

KW * ) +<a(w0r) 0raan) t)l

T[Qaa((UOr)
a ((1)07")

(1- noa)m(&) 2<zoaa<w0r> a)(a(woa nQaa(wOr) t)
(e

[(zoaa(ww) )* o) ~ T0aal@) t)l

(1- Qa)m( e )(zoaarww)*a) (a(ww) noaa(ww) t)z

) AT 2
R [(zoaa(ww) ) <a(w0r) T0aaCan) t)l
B o
oo SR O o R IR (o R s k)

70 zaazjzm 59 (rgeatond) T (WM) r 2}
oo O g ) + (Gt~ raatn )

A(3+ 6c0s260)sinf
- X
42 pr?

r
(zqﬁﬁ(ww) )(ﬁ(ww) TQpBwer) ’f)

1 _ ( TWo, )
ﬁz(wOr)QBSIH Qg B (wor) )
[(203ﬁ(w0r) ) ( (wor)  mQgBwoy) ]

B 1 ( TWor ) <2Q3ﬁ(a)0T)+a> (((UOr) ﬂQﬁﬁ((UOr) t)
B2 (0o \1QpB (o) [( )

2

ZQBﬁ(OJOr)+a> (ﬁ(%r) ”Qﬁﬁ(‘“w) t>]



TWor r ro r _
_(1 noﬁ)c°s<no,;ﬁ(w0r)> 2(—203ﬁ(w0r)+a>(ﬁ(w0r) 7QsB(@or) ’f)

ﬁ ((1)07")
[(zo,;ﬁ(ww)”) +(ﬁ(w0r) oo t)]
rwoy r _ T _ r _
_(1 no,;)sm (nQBﬁ(wOr)> (zqﬁﬁ(w()r)*“) (ﬁ(ww) 7QpB (wor) ’f)
ﬁ ((1)07") 212
[(203ﬁ(0)0r)+a> (ﬁ(ww) nqﬁﬁ(ww) t)]
ro r ¢
_ 20)07’ ( rwor ) ﬁ(a)Or) T[Qﬁﬁ((UOr)
nQgf?(wor) €08 Qg P (wor) ? r r :
<ZQ;;B( o) ) +<ﬁ(w0r)_ﬂ03ﬁ(w0r)_t>
(s )
2w sin( TWoy ) 2Qp8 (wor)
ﬂQBﬁZ ((DOr) T[Qﬁﬁ(wOr) r ? r r 2
(20Bﬁ(w0r) + a) + <a(w0r) B T[Qaa((UOr) B t)

A(1 + cos20)sin6
+
4m?pr

3wor < T Wor ) (W-}_a)z _<Uf((:0r) ﬂQaa((UOr) )

T[Qaa3((1)0r) T[Qaa((UOr)

KW +a)2+<a(£0r) Oeaon) )

oy (0w ) 2 (20t * ) @ ~ 00t Y

B T[Qaa3((1)0r) T[Qaa((UOr) 2

KW +a)2+<a(£0r) 0raan) t)l

- 700) s (rgeater) 2 (o ) 3

) 2 |
o Km”) +<a(£0r)‘n0aar(wor>_t)l
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(1 B ﬂiQa) €0s <%) 6 <m + a) <a(a)0 ) ﬂQaa((Uo )2

o Km”ﬂ(a(mo) 0y t)l
(1-500) 9 (mpraton) 5 (gt ) (e ~rozaam )

B Km*af*(a(iw T0malay )‘t)zr
+(1 ﬂQa)?Zf;:;Q:;)—((Z)w)) 2<a(£0r)‘n0aar(w0r)‘t)3 3

KW * "‘)2 * (a(aiw) ~ T0eaon) t)l

_ 3 cos (ﬂQ:;)(OZJOr)) 6 (W + a)z <a(a7;0r) B nQaar(a)Or) h t)

2a3(w0,)Qq l(m s a)z N <a(07;0r) - ﬂQaar((UOr) B t)zl

3

205 (i) (et~ gty )
203 (w00) Qa 2 il
T o) + (i)
2in i) ? (et * )

3

203 (wg,)Qy l(m s a)z N <a(07;0r) - ﬂQaar((UOr) - t)zl

35 (rgratsy) 6 (zomatagy * @) (i) ~ mamatany t)z
20 (wor) Qs 2 ’
T g o)+ (e )|

3

Acos20sinb
4m?pr
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2

Qs (o)~ \1QpB(wor)

2

r 2 r r
3w, ( rwo, ) <203ﬁ(w0r) * a) B (ﬁ((vw) - QB (wor) t)

T 2 r r i
(20Bﬁ(w0r) * a) * (ﬁ(a’w) - mQpB(wor) t) ]

T QB (wor) T \TQsB (@or)

r r r
3wy _ ( TWq, ) 2 <ZQBﬁ(a’0r) * a) (ﬁ(a’w) B T[Qﬁﬁ((UOr) B t)
r 2 r r 2
[(T(zﬁﬁ(ww) +a) + (ﬁ(ww) ~ mQpBwe) t) ]
3 TWoy r 3
N (1 B @) cos (n%(w)) 2 (20Bﬁ(w0r) * a)
,83((00r) r 2 T T ’
[(T(zﬁﬁ(ww) +a) + (ﬁ(ww) ~ mQpBwe) t) ]
3 r'Wor r — r — r — 2
) (1~ @) cos (nQBﬁ(wOr)> 6 (ZQ;;B(wOr) * “) (ﬁ(ww) QB @or) ’f)
:83((1)07") r 2 r r 2
<_203ﬁ—(w0r) * “) * (ﬁ(ww) T nQpBlwer) t)
3 . TrWor r ’ r _ r —
(1~ no,g) sin (nQBﬁ(wOr)> 6 <—203ﬁ(w0r) * “) (ﬁ(ww) 7QpB(wor) ’f)
B3(wor) . 2 . . 2)?
[<_ZQ;;B—(w0r) * “) * (ﬁ(ww) T nQpBlwer) t) ]
3 : err r — r — ’
N (1 B @) S <—ﬂ03ﬁ(w0r)> 2 (ﬁ(ww) Qs P (wor) ’f)
B3(wor) . 2 . . :
[(T(zﬁﬁ(ww) +a) + (ﬁ(ww) ~ mQpBwe) t) ]

rwe, r ’ r_ r -
3 cos (m) 6 (203ﬁ(w0r) * a) (ﬁ(ww) mQpf (wor) t)
2ﬁ3((1)0r)Q/3 [(

3
3

3

r 2 r r 21’
205 (wor) “) * (ﬁ(ww) T 1QpBlwer) t) ]
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3 cos | —t2or___ 2 r___ r —t 3
ﬂQﬁﬁ((UOr) B(wor) ﬂQﬁﬁ((UOr)
Zﬁ ((DOr)QB [<

3

T z r r i
ZQBﬁ((UOr) + a) + (ﬁ((UOr) B ﬂQBﬁ(OJOT) B t) ]

. TWor r ’
3sin <—ﬂ03ﬁ(w0r)> 2 <—203ﬁ(w0r) * a)
2ﬁ3((1)0r)Q/3 [(

3

r 2 r r ?
205B(wor) “) * (ﬁ(ww) T nQpBlwer) t) ]

. Wor r r _ r . ’
3sin (noﬁﬁ(w()r)) 6<—zoﬁﬁ(w0r)+“) (ﬁ(ww) QB (wor) t)

70
Zﬁ ((DOr)QB [< ( )

3

T z r r i
ZQBﬁ(OJOr) + a) + (ﬁ((‘JOr) B ﬂQﬁﬁ((‘JOr) B t) ]

It is hard to see such a long formula, so, let us rewrite it to make it looks simpler.

If we assume

[(v(wor), Qy) =
B [cos( TWor ) TWor 1n< TWor )] tan-1 U(SOT) B nvir(wOr)

ﬂvi((‘JOr) ﬂvi((‘JOr) 7-[vi(a)m") ZQ+(O)) +a
v or

-t

e (- s (wff(oaﬁw)) R o o) L AR

(o *2) *+ ey~ mommey 1)

sty (= 7)™ (et (st ~ matagy )

(W * a)z * <U((:0r) B ﬂvir((UOr) Bl t)z

T TWor ro T _
_20,v(we) *° (Foeston) (v ~ 703y~ ) (71a)

(W * a)z * <v(c:0r) ~ o) t)z
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J(w(wo), Qy) =

! Sin( %o ) 2<szvr(w0r)+a) (U(Q’TOr)_ﬂvir(UJOr)_t)
2(wor)Qy wV(Wor) 2 2]?
A [<—zqvv?w0r_)+a) +<v(£0 )~ w0y )‘t)l
() (ot )~ (st~ 7oty )
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Substitute (71s) into (70), then (70) becomes:

A(9 + 15cos 26) sin 0

[I(ﬁ(wO‘r); Qﬁ) - I(a(a’O‘r‘)l Qa)]

u, (x,t) =

Am?pr4
A(2 + 3cos26)sin6 A(3+ 6c0s260)sin6
P e @00, Q) — 5 s (B(wor), Q)
A(1 + cos26)sin 6 Acos20sin8 (72)
+ anipr K(a(wor), Qx) _TZPT,K(ﬁ((UOr)'QB)

Again, to verify the accuracy of the approximation (72), we will use the Matlab code we
mentioned before to compare the exact numerical results and our approximation.

In this case, we will still simulate a near-surface area, like in exploration geophysics.
Therefore, we keep assuming r =0.3,1,2,5,10 km, Qo = 40,Qp = 20,2y = 5 km/s and
Po = 3 km/s,a = 0.02s. The new parameter "6" in Matlab should be in radian form, so we
choose 6 = /6 in this time.

In this situation, if we plot the spectrum i, (X, w), i.e., (69a), versus w,

ul(w) vs w
0.015 T
0.01 - b
B
5
0.005 b
o 1 1 1 1
-150 -100 -50 0 50 100 150

w [Hz]
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Fig.13. U; (X, w) vs. ®
(a=0.025,Q,=40,Q3 = 20,0 =m/6,ap = 5 km/s and B, = 3 km/s)

We can find in Fig.13 that the peak is around w = 40Hz. Therefore, we should choose wg, =
40Hz (or something close to that). The significant frequency range for this graph, is around 20
to 80 Hz. As we talked before, if w,y, = 40Hz, and if we pick a frequency inside this range, e.g.,
w = 80Hz, then w/w,, = 2, which is not close to 1, but the value of |1, (X, w)| at w = 40Hz is
also much smaller than %, (X, )4, Meaning it will probably have a small negative effect on
the approximation, and so the approximation could still be fairly good.

Then, we used the Matlab code to compute the exact results with velocity dispersion
numerically and compare the approximation and exact numerical result for different distances in
Fig.14a-e. The parameters we used in the below figures are a = 0.02s, wy, = 40Hz, p =
1kg/m® A =1kg+km, r =03,1,2,510 km, Q, = 40,Qg = 20,y =5 km/s and B, =

3km/s, 60 =m/6.

200

For r=0.3 km
T T 1 I
——exact numerical result

150 |- = = approximation
100 — =

near field + far field

50 — —

0
-50 — M —

-100 — —

u(x,t)

-150 | | | | | | | |

{[s]

Fig.14a. Comparison of the approximation (72) and exact numerical result for the solution
of the EOM for a double-couple-without-moment force with dispersion (r=0.3km)
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= = approximation M
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Fig.14b. Comparison of the approximation (72) and exact numerical result for the solution
of the EOM for a double-couple-without-moment force with dispersion (r=1km)

For r=2 km
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I
I
’ |
I

near field

] ]
—— exact numerical result
— — approximation

0.5
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Fig.14c. Comparison of the approximation (72) and exact numerical result for the solution
of the EOM for a double-couple-without-moment force with dispersion (r=2km)
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For r=5 km
2 \ \ I I
—— exact numerical result
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. _
g 05 near field |
=}
il
0 | |
1
-05 — =
1 | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5
t[s]

Fig.14d. Comparison of the approximation (72) and exact numerical result for the solution
of the EOM for a double-couple-without-moment force with dispersion (r=5km)

For r=10 km
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= — approximation
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I
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02 \ \ \ \ \ \ \
0 0.5 1 1.5 2 25 3 3.5
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Fig.14e. Comparison of the approximation (72) and exact numerical result for the solution
of the EOM for a double-couple-without-moment force with dispersion (r=10km)

The red lines indicate exact numerical results, and the black dash lines indicate the

approximation (72). We can see they coincide well.
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Therefore, we could say that our approximation (72) can be a good expression for the
solution of the EOM for a double-couple-without-moment source including absorption and

dispersion.

4.3 Compare the new solution of the EOM including absorption and dispersion with the
elastic one

Then, again, let us use the same parameters with above Fig.14a-e, i.e.,a = 0.02s, wy, =
40Hz, p = 1kg/m3,A = 1kg*km,r =03,1,2,5,10 km, Q, = 40,Q5 = 20,q0 = 5km/s
and S, = 3 km/s, 0 = /6, and see the differences between seismic waves in elastic medium
(66) and in anelastic medium with absorption and dispersion effect (72).

For r=0.3 km
200 = I I I

.| - = elastic
150 - Hn — anelastic with dispersion
I
I
I

near field + far field
100 —

50— -

u(x,t)

-100 —

—— .

-150 ‘

t[s]

Fig.15a. Comparison of the approximate anelastic solution of the EOM for a double-
couple-without-moment force with dispersion (72) and the elastic one (66) (a =
0.02s, wo, = 40Hz, p = 1kg/m3,A = 1kg « km, Q, = 40, Qg =20,ag =5 km/s and
Bo=3km/s,0 =m/6,1r =0.3 km)
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For r=1 km
40 T I
s - — elastic
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Fig.15b. Comparison of the approximate anelastic solution of the EOM for a double-
couple-without-moment force with dispersion (72) and the elastic one (66) (a =
0.02s, wo, = 40Hz, p = 1kg/m3,A = 1kg « km, Q, = 40, Qg =20,ag =5 km/s and
Bo=3km/s,0 =n/6,r =1km)

For r=2 km
20 \ I \ I

1 - = elastic
15 farfield ! —— anelastic with dispersion [

near field *

t[s]

Fig.15¢c. Comparison of the approximate anelastic solution of the EOM for a double-couple-
without-moment force with dispersion (72) and the elastic one (66) (a = 0.02s, wq, =
40Hz, p = 1kg/m3,A = 1kg » km, Q, = 40, Qg =20,a9 =5 km/s and By = 3 km/s,
0=m/6,r=2km)
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For r=5 km
| [ [ I
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Fig.15d. Comparison of the approximate anelastic solution of the EOM for a double-
couple-without-moment force with dispersion (72) and the elastic one (66) (a =
0.02s, wo, = 40Hz, p = 1kg/m3,A = 1kg « km, Q, = 40, Qp =20,ag =5 km/s and
Bo=3km/s,0 =m/6,r =5 km)

u(x,t)

For r=10 km
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- - elastic
—— anelastic with dispersion ||

~
|

T
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—————

0 0.5

t[s]

25

Fig.15e. Comparison of the approximate anelastic solution of the EOM for a double-couple-
without-moment force with dispersion (72) and the elastic one (66) (a = 0.02s, wq, =
40Hz, p = 1kg/m3,A = 1kg  km, Q, = 40, Qg =20,a9 =5 km/s and By = 3 km/s,
0=m/6,r =10 km)
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The pulses in Fig.15d and Fig.15¢ are hard to see, so let us show the amplification of the

pulses in the following graphs:

For r=5 km
8 I ‘
n - = elastic
8 .”| — anelastic with dispersion ||
a4l 1 far field _

u(x,t)
T

near field

0.8 1 1.2 1.4 1.6 1.8
t[s]

Fig.15f. Amplification of the pulses in Fig.15d

For r=10 km
4 ] T T I
n = = elastic
3 n —— anelastic with dispersion [

2 “| far field -

u(x,t)
T

[ 1 o
2 1, nearfield

{[s]

Fig.15g. Amplification of the pulses in Fig.15¢

In above Fig.15a-e, the blue dash curves are the results of waveforms in elastic medium,

and the red curves are anelastic waveforms including dispersion influence. The effect of
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absorption and dispersion becomes more and more obvious as the propagation distance
increases. And, this time, not only the attenuation of amplitudes but also the changes of the
waveforms can be observed easily, especially when distance is larger.

So far, we only discussed about the exploration geophysics situation, which is in the near-
surface area. This should also be interesting to see what will happen in a relative deep area if we
put dispersion influence into it.

For a deeper place, we will suppose the distance are r = 20,50,100, 150,200 km. The
effect of absorption will weaken, so the quality factor Q should become bigger, then we could
assume Q, = 180,Qp = 120. To see waves more clearly, we will use a bigger a as well, e.g.,
a = 1s. And we can find from Fig.8b and Fig.8c that when a = 1s, w,, should be w,, = 1Hz.

In general, the parameters we are going to use are a = 1s, wy, = 1Hz, p = 1kg/
m3,A=1kg xkm , r =20,50,100,150,200 km , Q, = 180, Qp =120,y = 5km/s and
Bo =3 km/s, 0 =mn/6.

%107 For r=20 km
T 1 1 ]
- — elastic

— anelastic with dispersion | |

near field + far field —

u(x,t)

10 20 30 40 50 60 70
t[s]

Fig.16a. Comparison of the approximate anelastic solution of the EOM for a double-
couple-without-moment force with dispersion (72) and the elastic one (66) (a = 1s, wy, =
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1Hz, p = 1kg/m3,A = 1kg  km, Q, = 180, Qg =120,a¢p =5 km/s and By = 3 km/s,
0=m/6,r =20 km)

For r=50 km
I 1 ]
- - elastic
\ — anelastic with dispersion ||
1
| near field
| _
I
1 AY
I
I
= |
X I =
S {
I
-4 I |
1
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-6 — I -
I
[
-8 — u —
]
10 | | | | | | | |
0 10 20 30 40 50 60 70
t[s]

Fig.16b. Comparison of the approximate anelastic solution of the EOM for a double-
couple-without-moment force with dispersion (72) and the elastic one (66) (a = 1s, wy, =
1Hz, p = 1kg/m3,A = 1kg » km, Q, = 180, Qp =120,ayp =5 km/s and By = 3 km/s,
0 =m/6,r =50 km)
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Fig.16c. Comparison of the approximate anelastic solution of the EOM for a double-couple-
without-moment force with dispersion (72) and the elastic one (66) (a = 1s, w,, = 1Hz,
p =1kg/m3,A = 1kg « km, Q, = 180, Qg =120,ap =5 km/s and By = 3 km/s, 6 =
/6,r = 100 km)

3 X 10 For r=150 km

1 1 1 I
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— anelastic with dispersion
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° near field

\ \ \ \
0 10 20 30 40 50 60 70
t[s]

Fig.16d. Comparison of the approximate anelastic solution of the EOM for a double-
couple-without-moment force with dispersion (72) and the elastic one (66) (a = 1s, wy, =
1Hz, p = 1kg/m3,A = 1kg » km, Q, = 180, Qp =120,ayp =5 km/s and By = 3 km/s,
0 =m/6,r =150 km)
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Fig.16e. Comparison of the approximate anelastic solution of the EOM for a double-couple-
without-moment force with dispersion (72) and the elastic one (66) (a = 1s, w,, = 1Hz,
p =1kg/m3,A = 1kg « km, Q, = 180, Qg =120,ap =5 km/s and By = 3 km/s, 6 =
/6,r =200 km)

Still, the blue dash curves are the results of waveforms in elastic medium, and the red
curves are anelastic waveforms including dispersion influence. The effect of absorption and
dispersion becomes more and more obvious as the propagation distance increases. But in
Fig.16a-e, we can see that when quality factor Q is large, even though distance is long, the

attenuation and deformation of seismic waves is not that significant as when Q is small.
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CHAPTER 5: A SHEAR-DISLOCATION SOURCE

In this chapter, we will only talk about the dispersion situation as well. Because to be
physically realistic, the new solutions must include velocity dispersion.

Consider the situation we talked in chapter 2. If we assume the xy plane is the ground
surface, and if the fault plane is the xz plane, then using Mj, = u(ut;vy + 4, v;)A from Aki and
Richards (2002), where the v vector is perpendicular to the fault surface, andu - v = 0, we get
v, =v3 = 0, and U, = 0, and so we have:

My; = My, = pyv,A and Mz = M3, = ptizv,4
All other M, are zero.

So M;,, M,;, M,;, M5, are not zero for the shear dislocation case. But with four non-
zero components of the moment tensor, this could be a lot of work.

In Aki and Richards (2002, p.78), the paragraph under equation (4.30), they “choose the
X-axis to be the direction of slip, so that u = (5, 0, 0)”. Therefore, to simplify this question, we
could assume the fault lies in the (x;, x3) plane, i.e. v = (0,1,0), and choose the x, axis to be the
direction of slip as well, i.e. u=(1;,0,0). Then, we will have only two non-zero components of
the moment tensor, My, = M,; = utu; A.

Assume the source is on origin and the receiver point is on the xy plane somewhere, so
Y12+ v,2 = 1and y; = 0. Again, since ;2 + ¥,%2 = 1 andy; = 0, and cos 82 + sin6% = 1, we
can assume y; = cos @ and y, = sin 8, where 0 is the angle from the x axis.

Based on this assumption, we derived the three components of the displacement on the
receiver point (41a, b, and c). Here, we will add dispersion effect on the x component of the

displacement, which is (41a):
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s
(94 15cos260)sinf 1 B _
u, (x,t) = yy prdl fr T (t — 1) dt
P a
(24+3cos26)sin6 1 T
* 2mpa’ r_ZHAul (t Bl E)
(3+ 6c0s26)sinf 1 i (t r)
amppz r2H TR
+(1+c0529)sin91 A"(t r) cos20sin61 A"(t r) a1
Apad RO a AmtpB3 R B (412)

To make the calculations easier, we still assume source My(t) = M, = M,; = s(t) =

2atB

@A) and M,(w) = 5(w) = Biwe~**! (we turned the constant A into B here to distinguish

the constant A from the area A we used in (41a)). And according to the definition My(t) =

M12 = M21 = ﬂﬁlva, we Wlll haVe:

_ 1 M (6) = 2atB -
U= pA 0 T pAm(a? + t2)2 (73)
Substitute (73) into (41a),
T
(94+15cos26)sinf 1 (B
u;(x,t) = 47 il ™, (t — 1) dt
a
(2+3cos260)sin6 1 T
* 2npa’ 72 Mo (t B _)
(3+6c0s20)sinf 1 ( r)
41p P> rz270\ B
+(1+c0529)sin91M,( r) cos20sin61 '(t r) 24
Apad r 0 a 4rpB3 1 ° B (74)

And the x-component displacement u, (X, t) (74) is exactly the same result with what I

got from the case of a double-couple-without-moment forces (38a).
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s
94+ 15cos20)sinf@ 1 (B

h ) = ) — P eyt - ) dr
4mtp r*Jr

a

(2+3cos20)sinf 1 r (3+ 6c0s26)sinf 1 r
My (e =) - 72 (e 5)

2npa’ r2 AmtpB? r?

(14 cos26)sinf1 . r cos20sinf1 . r
+ M (¢ - =) o(t-7) (382)

Ampas r Ca B

If we review the assumptions we made in chapter 4 and chapter 5, we can see that, in
both of them, we assumed a vertical fault coinciding with the xz plane, and the only non-zero
components of the moment tensor are then M;, = M,;. Therefore, basically, under these
assumptions, what we did in this chapter is identical to what we did for a double-couple-without-
moment force in chapter 4. We do not need to do the whole works one more time. If we let My,
M,,, M,3, M3, all be non-zero components of the moment tensor, then the answer should be

quite different. But if so, the calculations could even be much more complicated than what we

did in chapter 4.
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CHAPTER 6: CONCLUSION

In real materials, wave energy is absorbed due to internal friction or anelasticity.
Absorption is frequency dependent, i.e., different frequencies are absorbed by different amounts.
One consequence of this is that the waveform changes with distance travelled. And, anelasticity
of the earth causes physical dispersion of seismic waves. So, to be physically realistic, one must
also include dispersion in the calculations, to ensure causality. Generally, an absorbing medium
is dispersive, i.e., V=V(w) and Q = Q(w). And for seismic body waves, Q is nearly
independent of frequency.

To obtain new solutions of the equation of motion for some common source (such as a
directed point force, a double-couple-without-moment source, a shear-dislocation source and so
on) with absorption or dispersion effect, we carried out the following derivation procedure:

1. Select the suitable solutions of the EOM in perfect elastic medium (all the solutions I
used are all from Aki and Richard (2002)).

2. Do Fourier transform of the solutions of the EOM without absorption to convert it into

frequency domain.

3. Replace v with v, (1 — i) to involve absorption effect, or replace v with v(w,.) [1 +

Lin ( = ) — L] to involve absorption and dispersion effect.
nQ Wor 2Q

4. Do inverse Fourier transform (IFT) of the new solutions of the EOM to convert it back
into time domain. This step gives solutions with Q.
5. Create programs by Matlab to compute the exact results with velocity dispersion

numerically to verify the accuracy of our approximations.
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The new solutions I got have been showed in (52b) (only absorption, for a directed point
force), (61) (absorption and dispersion, for a directed point force), and (72) (absorption and
dispersion, for a double-couple-without-moment force).

Equation (52b) is a new and exact result, and that even though this new solution without
dispersion, it could be applied in cases where absorption (and therefore dispersion) is small, to
estimate the effect of absorption. On the other hand, (61) and (72) are new approximate results
with absorption and dispersion. Although they are approximations, approximations are still
useful in that they can be used to study which factors are important and also to sometimes reduce
computation time.

The following table summarizes our solutions.

Solution Equation | Comments | Elastic | Absorption | Dispersion | Exact | Approximate
(48) v v
Point force Solution
: : v v
directed in x (52b) along x
direction 1) axis \/ \/ \/
double-
couple- (66) v v
without-
moment force My, =
causing a Mz, =
vertical fault M,, others
in the xz (72) Zero v v v
plane; shear-
dislocation
source

Table.2 Summary of derived equations

After plotting and comparing waveforms of the new solutions of the EOM with
absorption and dispersion effect and the elastic ones, we found that the effect of absorption and

dispersion becomes more and more obvious as the propagation distance increases. And for no
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dispersion, the amplitude and shape of anelastic waveforms usually didn’t change that significant
as when include dispersion. We also verified that when quality factor Q is large, even though
distance is long, the attenuation and deformation of seismic waves is not that significant as when

Q is small.
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APPENDIX A: MATLAB CODE

This code has been used to plot Fig.5, Fig.10, Fig.11, Fig.12, Fig.14, Fig.15, and Fig.16.
In the code, the parameter al represents a, w0 indicates the angular frequency wy,-, rho is density
p, theta is angle 6, rr means distance 7, a is P-wave velocity a, and b is S-wave velocity f3,, and
Qais Qg, Qbis Qp.

Also, Hk in the following code could be the solution of the EOM including dispersion
effect in frequency domain for a directed point force or a double-couple-without-moment source.
Hifft is the exact numerical result which derived from Hk by doing IFFT. Besides that,
point_appro and double appro are the approximate anelasitc solution of the EOM with
dispersion in time domain for a directed point force and a double-couple-without-moment source
respectively. While, point_elastic and double elastic show the elastic solution of the EOM for
both of them. And, point nodisper is the solution of the EOM for a directed point force which
only includes influence of absorption.

The code is showed from here:

clear;

clc;

xhigh=4; xmin=-4; N=2048; dx = (xhigh-xmin)/(N-1); No2 = N/2;
kNyq = 1/(2*dx); dk = 1/(N*dx);
x = [xmin:dx:xhigh]'";

t=X;
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al=0.02; A=1; rho=1; Qa=40; Qb=20; a=5; b=3; w0=20; theta=pi/6;
k = linspace((-kNyq)*2*pi,(kNyq-dk)*2*pi,N);

r=[0.3,1,2,5,10];

for i=1:5
r=rr(i);
for n=1:N
if (k(n)>0.01 && k(n)<1e05)|| (k(n)<-0.01 && k(n)>-1e05)
%a directed point source
Hk(n) = A./2./pi./rtho./r.~3.*((11./k(n)+r./b.*(1-
1./pi./Qb.*log(k(n)./w0)+11./2./Qb)). *exp(1i.*k(n).*r./b.*(1-1./pi./Qb.*log(k(n)./w0)+1i./2./Qb))-
(11./k(n)+r./a.*(1-1./pi./Qa.*log(k(n)./w0)+11./2./Qa)).*exp(11.*k(n).*r./a.*(1-
1./pi./Qa.*log(k(n)./w0)+1i./2./Qa))).*exp(-al.*abs(k(n)))+A.*1i.*k(n)./4./pi./rtho./a. 2 ./r.*(1-
2./pi./Qa.*log(k(n)./ w0)+11./Qa).*exp(1i.*k(n).*r./a.*(1-

1./pi./Qa.*log(k(n)./w0)+1i./2./Qa)).*exp(-al.*abs(k(n)));

%a double-couple without movement forces
% Hk(n)=(9+15.*cos(2.*theta)).*sin(theta)./4./pi./rho. *A./r. 4. *exp(-
al.*abs(k(n))).*...
% ((1i./k(n)+r./b.*(1-1./pi./Qb.*log(k(n)./w0)+11./2./Qb)).*exp(1i.*k(n). *r./b.*(1-
1./pi./Qb.*log(k(n)./w0)+11./2./Qb))...
% -(1i./k(n)+r./a.*(1-1./pi./Qa.*log(k(n)./w0)+1i./2./Qa)).*exp(1i.*k(n). *r./a.*(1-

1./pi./Qa.*log(k(n)./w0)+1i./2./Qa)))...
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% +(2+3.*cos(2.*theta)). *sin(theta)./2./pi./tho. * A ./t 2.*%...

% 1./a72.*(1-2./pi./Qa.*log(k(n)./w0)+11./Qa).*11.*k(n). *exp(-
al.*abs(k(n))).*exp(1i.*k(n).*r./a.*(1-1./pi./Qa.*log(k(n)./w0)+1i./2./Qa))...

% -(3+6.*cos(2.*theta)).*sin(theta)./4./pi./tho. *A./r. /2. %...

% 1./6./2.%(1-2./pi./Qb.*log(k(n)./w0)+11./Qb).* 11.*k(n). *exp(-
al.*abs(k(n))).*exp(1i.*k(n).*r./b.*(1-1./pi./Qb.*log(k(n)./w0)+1i./2./Qb))...

% +(1+cos(2.*theta)). *sin(theta)./4./pi./rho.*A./r.*...

% 1./a.~3.%(1-3./pi./Qa.*log(k(n)./w0)+3.*11./2./Qa).*k(n).”2.*exp(-
al.*abs(k(n))).*exp(1i.*k(n).*r./a.*(1-1./pi./Qa.*log(k(n)./w0)+1i./2./Qa))...

% -cos(2.*theta). *sin(theta)./4./pi./rho. *A./r.*...

% 1./6.73.%(1-3./pi./Qb.*log(k(n)./w0)+3.*11./2./Qb).*k(n)."2.*exp(-

al . *abs(k(n))). *exp(1i.*k(n).*r./b.*(1-1./pi./Qb.*log(k(n)./w0)+1i./2./Qb));

else
%a direct point force
Hk(n)=1./2./pi./rtho./t.*3.*((j./k(n)+r./b).*exp(j.*k(n).*r./b)-
(j./k(n)+r./a).*exp(j.*k(n).*r./a)).*exp(-al.*abs(k(n)))+j.*k(n)./4./pi./a."2./r. *exp(-

al.*abs(k(n))).*exp(j.*k(n).*r./a);

%double-couple-without-moment
% Hk(n)=(9+15.*cos(2.*theta)). *sin(theta)./4./pi./rho. *A./r. 4. *exp(-

al.*abs(k(n))).*((1i./k(n)+r./b).*exp(1i.*k(n).*r./b)-(1i./k(n)+r./a). *exp(11i.*k(n). *r./a))...
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% +(2+3.*cos(2.*theta)). *sin(theta)./2./pi./rtho./a. 2. % A./r.A2.*11.%k(n). *exp(-
al.*abs(k(n))).*exp(1i.*k(n).*r./a)...

% -(3+6.*cos(2.*theta)).*sin(theta)./4./pi./rho./b.~2. *A./r. A 2. % 11.%k(n). *exp(-
al.*abs(k(n))).*exp(1i.*k(n).*r./b)...

% +(1+cos(2.*theta)). *sin(theta)./4./pi./rho./a. 3. *A./r. ¥k(n). 2. *exp(-
al.*abs(k(n))).*exp(1i.*k(n).*r./a)...

% -cos(2.*theta). *sin(theta)./4./pi./rho./b."3.*A./r.*k(n)."2.*exp(-
al.*abs(k(n))).*exp(1i.*k(n).*r./b);

end

end

Hk(k==0)=0;

Hifft = N*dk*ifft(ifftshift(Hk));

Hifft=Hifft(N:-1:1);

Hifftp = Hifft(1:No2+1); % the N/2 + 1 values for k >= 0 in the DFT.
Hifftn = Hifft(No2+2:N); % the N/2 - 1 values for k < 0 in the DFT.

Hifft = [Hifftn, Hifftp];

point_appro=A./2./pi.*2./tho./t.A3.*...
(-(cos(r.*w0./pi./Qb./b)+r.*w0./pi./Qb./b.*sin(r.*w0./pi./Qb./b)).*atan((r./b-
1./pi./Qb./b-x)./(1./2./Qb./b+al))...
+(cos(r.*w0./pi./Qa./a)+r.*w0./pi./Qa./a.*sin(r.*w0./pi./Qa./a)). *atan((r./a-r./pi./Qa./a-

X)./(r./2./Qa./a+al ))+3.75%107(-5))...
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+A./2./pi2./tho./t.A3.%...

((r./b.*(1-1./p1./Qb).*cos(r.*w0./pi./Qb./b)-
1./2./Qb./b.*sin(r.*w0./pi./Qb./b)).*(r./2./Qb./b+al)./((r./2./Qb./b+al)."2+(r./b-r./pi./Qb./b-
X).2)...

-(r./b.*(1-1./p1./Qb).*sin(r.*w0./p1./Qb./b)+r./2./Qb./b.*cos(r.*w0./pi./Qb./b)).*(r./b-
r./pi./Qb./b-x)./((r./2./Qb./b+al). " 2+(r./b-r./pi./Qb./b-x)."2)...

-(r./a.*(1-1./p1./Qa).*cos(r.*w0./pi./Qa./a)-
r./2./Qa./a. *sin(r.*w0./pi./Qa./a)).*(r./2./Qa./a+al)./((r./2./Qa./a+al)."2+(r./a-r./pi./Qa./a-X)."2)...

+(r./a.*(1-1./pi./Qa). *sin(r.*w0./pi./Qa./a)+r./2./Qa./a.*cos(r.*w0./pi./Qa./a)).*(r./a-
r./pi./Qa./a-x)./((r./2./Qa./at+al). 2+(r./a-1./pi./Qa./a-x)."2))...

+A./4./pi2./tho./t.*...

(-(2-4./p1./Qa).*cos(r.*w0./pi./Qa./a)./a.”2./((r./2./Qa./a+al). 2+(r./a-r./pi./Qa./a-
X)."2)."2.%(r./2./Qa./at+al). *(r./a-1r./pi./Qa./a-X)...

-(1-2./pi./Qa). *sin(r.*w0./pi./Qa./a)./a.*2./((r./2./Qa./atal). 2+(r./a-1./pi./Qa./a-
X)."2)./2.%((r./2./Qa./atal). 2-(r./a-r./pi./Qa./a-X)."2)...

-1./a.72./Qa.*cos(r.*w0./pi./Qa./a)./((r./2./Qa./at+al).”2+(r./a-r./pi./Qa./a-
X)."2)./2.%((r./2./Qa./atal). 2-(r./a-r./pi./Qa./a-X)."2)...

+2./a.°2./Qa. *sin(r.*w0./pi./Qa./a)./((r./2./Qa./at+al).”2+(r./a-r./pi./Qa./a-

X)."2). 2. %(r./2./Qa./at+al). *(r./a-r./pi./Qa./a-X))...

-A./2./p1i."3./tho./r.*...

w0./a.”2./Qa.*(cos(r.*w0./pi./Qa./a).*(r./a-r./pi./Qa./a-

x)+sin(r.*w0./pi./Qa./a).*(r./2./Qa./a+al))./((r./2./Qa./atal). 2+(r./a-1./pi./Qa./a-x)."2);
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% double_appro=A.*(9+15.*cos(2.*theta)).*sin(theta)./4./pi.*2./tho./r. 4. %...

%  (-(cos(r.*w0./pi./Qb./b)+r.*w0./pi./Qb./b.*sin(r.*w0./pi./Qb./b)).*atan((r./b-
1./pi./Qb./b-t)./(r./2./Qb./b+al))...

%  +(r./b.*(1-1./pi./Qb).*cos(r.*w0./pi./Qb./b)-
r./2./Qb./b.*sin(r.*w0./pi./Qb./b)).*(r./2./Qb./b+al)./((r./2./Qb./b+al). " 2+(r./b-r./pi./Qb./b-
t).72)...

%  -(r./b.*(1-1./p1./Qb).*sin(r.*wO0./pi./Qb./b)+r./2./Qb./b.*cos(r.*w0./pi./Qb./b)).*(r./b-
r./pi./Qb./b-t)./((r./2./Qb./b+al).”"2+(r./b-r./pi./Qb./b-t)."2)...

%  H(cos(r.*w0./pi./Qa./a)+r.*w0./pi./Qa./a. *sin(r.*w0./pi./Qa./a)). *atan((r./a-
r./pi./Qa./a-t)./(r./2./Qa./a+al))...

% -(r./a.*(1-1./pi./Qa).*cos(r.*w0./pi./Qa./a)-
r./2./Qa./a. *sin(r.*w0./pi./Qa./a)).*(r./2./Qa./a+al)./((r./2./Qa./a+al). 2+(r./a-1./pi./Qa./a-t)./2)...

%  +(r./a.*(1-1./pi./Qa).*sin(r.*w0./pi./Qa./a)+r./2./Qa./a. *cos(r.*w0./pi./Qa./a)). *(r./a-
r./pi./Qa./a-t)./((r./2./Qa./atal). 2+(r./a-r./pi./Qa./a-t)."2))...

%  +A.*(2+3.*cos(2.*theta)).*sin(theta)./2./pi.*2./tho./r.~2.*...

%  ((1./a.72./Qa.*sin(r.*w0./pi./Qa./a)-(1-
2./pi./Qa).*cos(r.*w0./pi./Qa./a)./a."2).*¥2.*(r./2./Qa./atal).*(r./a-1./pi./Qa./a-
t)./((r./2./Qa./at+al). 2+(r./a-1./pi./Qa./a-1)."2). 2 ...

% -(1./a°2./Qa.*cos(r.*w0./pi./Qa./a)+(1-
2./pi./Qa).*sin(r.*w0./pi./Qa./a)./a."2).*((r./2./Qa./a+al). 2-(r./a-r./pi./Qa./a-
t).72)./((r./2./Qa./atal). 2+(r./a-r./pi./Qa./a-1)."2). 2 ...

% -2.*w0./pi./Qa./a.*2.*cos(r.*w0./pi./Qa./a).*(r./a-1./pi./Qa./a-

£)./((r./2./Qa./a+al). 2+(r./a-r./pi./Qa./a-t).A2)...



150

% -
2.*w0./pi./Qa./a."2.*sin(r.*w0./pi./Qa./a).*(r./2./Qa./a+al)./((r./2./Qa./a+al)."2+(r./a-r./pi./Qa./a-
t).72))...

% -A.*(3+6.*cos(2.*theta)). *sin(theta)./4./pi.*2./tho./r. " 2.%...

%  ((1./6.22./Qb.*sin(r.*w0./pi./Qb./b)-(1-
2./pi./Qb).*cos(r.*w0./pi./Qb./b)./b."2).¥2.%(1./2./Qb./b+al).*(r./b-r./pi./Qb./b-
t)./((r./2./Qb./b+al)."2+(r./b-r./pi./Qb./b-t)."2)."2 ...

% -(1./b.22./Qb.*cos(r.*w0./pi./Qb./b)+(1-
2./pi./Qb).*sin(r.*w0./pi./Qb./b)./b.~2).*((r./2./Qb./b+al).”2-(r./b-1./pi./Qb./b-
t).22)./((r./2./Qb./b+al). 2+(r./b-r./pi./Qb./b-t)."2). 2 ...

%  -2.*w0./pi./Qb./b.*2.*cos(r.*w0./pi./Qb./b).*(r./b-r./pi./Qb./b-
t)./((r./2./Qb./b+al). " 2+(r./b-r./pi./Qb./b-t)."2)...

% -
2.*w0./p1./Qb./b.A2.*sin(r. *w0./pi./Qb./b).*(r./2./Qb./b+al)./((r./2./Qb./b+al). 2+(r./b-
1./pi./Qb./b-t)."2))...

%  +A.*(1+cos(2.*theta)).*sin(theta)./4./pi.*2./tho./r.*...

%  (3.*w0./pi./Qa./a."3.*cos(r.*w0./pi./Qa./a).*((r./2./Qa./a+al ). 2-(r./a-r./pi./Qa./a-
t).72)./((r./2./Qa./atal). 2+(r./a-r./pi./Qa./a-1)."2). 2 ...

%  -3.*w0./pi./Qa./a.*3.*sin(r.*w0./pi./Qa./a).*2.*(r./2./Qa./a+al).*(r./a-r./pi./Qa./a-
t)./((r./2./Qa./at+al). 2+(r./a-1./pi./Qa./a-1)."2). 2 ...

%  +((1-3./pi./Qa).*cos(r.*w0./pi./Qa./a)./a."3-
3.*sin(r.*w0./pi./Qa./a)./2./a."3./Qa). *(2.%(r./2./Qa./a+al)."3-6.*%(r./2./Qa./at+al).*(r./a-

r./pi./Qa./a-t)."2)./((r./2./Qa./a+al). 2+(r./a-1./pi./Qa./a-t).*2)."3 ...
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% -((1-
3./pi./Qa).*sin(r.*w0./pi./Qa./a)./a.*3+3 . *cos(r.*w0./pi1./Qa./a)./2./a."3./Qa).*(6.*(r./2./Qa./a+al)

A2.%(r./a-r./pi./Qa./a-t)-2.*(r./a-1./pi./Qa./a-t).”3)./((1./2./Qa./a+al ). 2+(r./a-1./p1./Qa./a-t)."2)."3)

%  -A.*cos(2.*theta).*sin(theta)./4./pi.2./tho./r.*...

%  (3.*w0./pi./Qb./b.”3 . *cos(r.*w0./pi./Qb./b).*((r./2./Qb./b+al).”2-(r./b-r./pi./Qb./b-
t).72)./((r./2./Qb./b+al). 2+(r./b-r./pi./Qb./b-t)."2). 2 ...

%  -3.*w0./pi./Qb./b."3 *sin(r.*w0./pi./Qb./b).*2.%(r./2./Qb./b+al).*(r./b-r./pi./Qb./b-
t)./((r./2./Qb./b+al)."2+(r./b-r./pi./Qb./b-t)."2)."2 ...

%  +((1-3./pi./Qb).*cos(r.*w0./pi./Qb./b)./b."3-
3.*sin(r.*w0./pi./Qb./b)./2./b.73./Qb).*(2.%(r./2./Qb./b+al).*3-6.%(r./2./Qb./b+al ). *(r./b-
r./pi./Qb./b-t)."2)./((r./2./Qb./b+al). 2+(r./b-1./pi./Qb./b-t)."2)."3 ...

% (-
3./p1./Qb).*sin(r.*w0./pi./Qb./b)./b.*3+3 . *cos(r.*w0./pi./Qb./b)./2./b./3./Qb).*(6.*(r./2./Qb./b+al
).2.%(x./b-1./p1./Qb./b-t)-2.%(r./b-1./pi./Qb./b-t).”3)./((r./2./Qb./b+al). 2 +(r./b-1./pi./Qb./b-

£)./2)./3);

point_elastic=A./2./pi.*2./tho./r. 3. *(al. *r.*(1./(b.*(al."2+(t-r./b)."2))-1./(a. *(al A 2+(t-
r./a)."2)))+atan((r./a-t)./al)-atan((r./b-t)./al))...

+A./2./pi.2./tho.*al./(a."2.%r).*(t-r./a)./(al A 2+(t-1./a).”2)."2;

% double_elastic=A.*(9+15.*cos(2.*theta)).*sin(theta)./4./pi."2./tho./r."4.* ...
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% (al.*r./b./(al.~2+(t-r./b)."2)-atan((r./b-t)./al)-al.*r./a./(al ~2+(t-r./a)."2)+atan((r./a-
t)./al))...

%  +(2+3.*cos(2.*theta)). *sin(theta)./pi.*2./rho./a.*2./r. /2. *al . *(t-r./a).* A./(al /" 2+(t-
1./a)."2)."2 ...

%  -(3+6.*cos(2.*theta)).*sin(theta)./2./p1.*2./rho./b./2./r.A2.*al . *(t-r./b).* A./(al /" 2+(t-
1./b)."2).~2 ...

%  +(1+cos(2.*theta)).*sin(theta)./2./pi.*2./tho./a."3./r.*al. *A.*((al A 2+(t-r./a)."2)-
4 *(t-r./a)."2)./(al ~2+(t-r./a).~2) .13 ...

%  -cos(2.*theta).*sin(theta)./2./pi.*2./tho./b."3./r.*al *A.*((al.~2+(t-1./b)."2)-4.%(t-

1./6)./2)./(al A2+(t-1./b).A2).A3;

point_nodisper=A./4./r."2./pi."2*(1./b.*(2.*al+t./Qb)./((al+r./2./Qb./b)."2+(r./b-t)."2)-
1./a.*(2.*al+t./Qa)./((al+r./2./Qa./a). 2+(1./a-t)."2))...
+A./2./p1."2./r. /3. *(atan((r./a-t)./(al+r./2./Qa./a))-atan((r./b-t)./(al+1./2./Qb./b)))...
-A2./pi 2.k /a2 ¥ ((al+r./2./Qa./a). *(1./a-t)./((al +1./2./Qa./a) . 2+(r./a-1).2).2)...
-A/4./pi 2. /r./ar2./Qa*((al+r./2./Qa./a)."2-(1./a-t).”2)./((al+r./2./Qa./a). 2+(r./a-

£).42)./2;

figure;
plot(x,point_elastic,'--b",'Linewidth',2)
hold on;

plot(x,Hifft,'r','Linewidth',2)

hold on;



%plot(x,point_appro,'--k','Linewidth',2)

%hold on;

%plot(x,point_nodisper,'--g','Linewidth',2)
%Ilegend('exact numerical result','approximation')
legend('elastic','anelastic with dispersion')
%Ilegend(‘absorption and dispersion','only absorption')
title(['For r='",num2str(rr(1)),' km'])

xlabel('t[s]")

ylabel('u(x,t)")

end
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