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ABSTRACT 

A general simulation methodology for analyzing two-

dimensional (planar) multi body systems with variable topology 

has been proposed. A computer model capable of analyzing the 

systems with one-sided constraints has been created. The 

rigid bodies are approximated by disks or rigid conglomerates 

of disks, thus providing an ease in the determination of the 

system's topology. Line segments are used to define the 

system boundaries (wall) and the inter-boundary obstructions, 

which allows for creation ( r approximation) of even very 

complex boundaries. 

The potential flow -theory is used to determine fluid flow 

velocity field within the system. The panel method is used 

for this purpose, which is directly compatible with line 

segment boundary description. 

The rigid bodies present in the system, can be either 

predefined or generated. The rigid bodies can be generated at 

random with respect to their size, shape, position, and th 

frequency of appearances. Any type of probability density 

function for any of the above variables associated with the 

rigid bodies can be randomly sampled. Henceforth, a wide 

array of stochastic processes involving multi body systems can 

be modeled. 

The mathematical description of the system's behaviour is 
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based on the Lagrangian dynamics. The Lagrangian equations o 

the second type together with a set of constraint equations 

are used to describe the motion of the system. The 

topological analysis is used to reduce the number of the 

differential equations of motion and the number of algebraic 

constraint equations. 

The minimization of the number of the motion and 

constraint equations necessitated that one-sided constraints 

are treated as double-sided constraints until the 

corresponding contact ( constraint) forces become tensile, at 

which point they are broken. It is for this purpose that an 

alternate (not based on Lagrangian approach) method of contact 

force computation has been developed. The method is based on 

both the dynamic and static (D'Alambert principle) analysis. 

This method also allows for explicit treatment of friction 

among the system's elements. 

Collisions among the rigid bodies are detected and 

handled, and the corresponding impact loads calculated. 

Classical (Newtonian) theory of col'lisions is used. 

The appropriate computer routines were programmed and the 

number of numerical experiments, some of which are presented 

in this report, were performed. 
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CHAPTER 2. 

INTRODUCTION AND OBJECTIVES 

1.1 PROLOGUE 

A system which consists of a number of independent and 

identifiable rigid bodies is termed a multi-body system. A 

system of rigid bodies in which the individual bodies can move 

freely relative to one another, is called here a multi-body 

system with variable topology. The notion of variable 

topology is introduced to indicate the variability of 

geometrical arrangements ( inter-connectivity) between the 

bodies. This is a distinctive feature of the multi-body 

systems treated here. Examples of such systems include a 

conglomeration of rocks, a sediment accumulated by a river, or 

broken ice in a channel. Multi-body systems can also be 

characterized by fixed inter-connectivity, in which the 

individual components are constrained relative to one another. 

Such systems are termed as multi-body systems with fixed 

topology. A clock mechanism or a robot are examples of such 

systems. 

One could propose an endless number of examples of multi-

body systems, and an infinite array of the processes that 
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involve such systems. The importance of the ability to 

analyze their behaviour, becomes apparent. 

Multi-body systems subjected to external loads, move and 

deform. In general, the behaviour of such systems, although, 

just like for any other entity, subject to certain universal 

laws, as for example Newton's laws of motion, conservation of 

energy, or Hooke's law of elasticity, is mostly governed by 

the system parameters and the character of the external loads 

applied. The external loads acting on the system are 

dependent on the environment to which the system is exposed, 

and therefore can usually be established. The governing 

universal laws can also be readily identified. However, the 

mathematical formulation, i.e. the implementation of the 

universal laws to the given system, and the subsequent set up 

and the solution of the resulting equations describing the 

system's behaviour, constitute the major problem, and are an 

art in themselves. 

The complexity of the behaviour of many multi-body 

systems, is perpetuated by the interactions that occur among 

the individual bodies. The larger the number of component 

bodies, the more interactions occur, and hence, the more 

complex the behaviour. The interactions among the individual 

bodies which, among other things, include friction, adhesion, 

crushing, etc., may, in turn, be dependent on the environment 
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to which the system is subjected. Moreover, there also are 

the interactions between the bodies and the environment itself 

to consider. Consequently, the mathematical formulation of 

the process, which the given system is undergoing, becomes 

immensely complicated, and very difficult to implement. 

The implementation of the mathematical description almost 

always requires a number of simplifying assumptions to be 

imposed. Consequently, the description is not a true 

representation of the process, but it can usually be 

considered as close enough for all practical purposes. Hence, 

the formulation is often referred to as a mathematical model, 

and the process of analyzing the behaviour of the system as 

modelling. 

Keeping in mind the complexity inherent in many systems 

it is not surprising that no serious efforts to model them 

were made until recently, with the developments in digital 

computers. In general the best that can be hoped for is to 

develop a model represented by a set of equations in such a 

way that it reflects the process (which a given system is 

undergoing) as closely as possible, and with as few 

assumptions as possible. 

The purpose of the.present research is the development of 

a computer model that can be used in analyzing a variety of 
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the multi-body 

which can be 

identified. 

implementation 

systems. In this chapter the types of systems 

analyzed by the present method will be 

The mathematical model and its computer 

will be presented in the subsequent chapters. 
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1.2 GENERAL 

Multi-body systems encompass a large variety of different 

systems. The systems can represent a bridge structure 

composed of truss, beam, and plate rigid bodies, or a 

conglomeration of gravel in a river bed, with pieces of debris 

as separate rigid bodies, or perhaps, collections of ice floes 

in the sea being pushed against an off-shore drilling 

platform. All these systems, although different in character, 

have one thing in common, namely that all the component bodies 

can be considered rigid. By rigid, it is understood that the 

deformations of the individual bodies are negligible with 

respect to their overall dimensions. The above statement 

constitutes a fundamental assumption that will be used 

throughout the present thesis. Therefore, any change in the 

geometry, or the topology of the system is attributed only to 

the movement of the individual bodies, and not to their 

deformations. 

The multi-rigid body systems can be classified as: 

Rigid systems. A system is rigid when the component bodies 

within the system have zero degrees of freedom. This 

implies, that since the motion of the bodies within the 

system is restricted, the overall geometry of the system 
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remains unchanged. The individual rigid bodies can 

deform under external loads, however, a position of any 

given body with respect to all other bodies in the system 

does not change. An example of such system would be a 

bridge structure. 

Flexible systems. A system is flexible if it is not rigid. 

For this class of systems relative motion among the 

individual rigid bodies may occur. Consequently, the 

topology of such a system may change as it is undergoing 

a given process. An example of a flexible system would 

be a link chain. 

Figure 1.1 below shows simple examples of a rigid and a 

flexible multi-body systems. 

(a) 

Figure I.I. An example of rigid (a), and 
flexible ( b) systems. 
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The systems can also be classified according to the 

constraints among the bodies making up the system. 

Consequently, we can identify: 

Coupled System. In this system all the component rigid bodies 

are connected ( coupled) to one another. In other words 

a coupled system has no bodies which are not connected to 

any other bodies in the system. 

Separated System. A separated system is defined as one, in 

which none of the component bodies are connected to any 

other bodies in the system. 

Figure 1.2 shows examples of coupled and separated multi-rigid 

body systems. 

(a) (b) 

Figure 1.2. An example of coupled ( a) 
and separated (b) systems. 



8 

From the above definitions it becomes clear that a rigid 

system must be coupled, whereas a flexible system may be 

either coupled or separated. Also an important characteristic 

of flexible systems is the presence of one-sided constraints, 

wherein a motion of a body along a certain orientation is 

restricted in only one direction. 

Any multi-body system can be represented as a combination 

of different type sub-systems listed above. Let us consider 

an example of an automobile. The frame and the body comprise 

a rigid sub-system, whereas the wheels and the components of 

the drive train can be considered a flexible coupled sub-

system. The passengers in the vehicle, if they are not 

wearing the seat belts, would then be represented by the 

separated sub-system. 

Another example that can be considered is that of a 

granular material which moves through a chute. If the 

material is assumed to be cohesionless then clearly such a 

system will always remain separated. If on the other hand, 

the material possesses cohesion then some particles or debris 

may adhere to others, and consequently, coupled flexible and 

rigid sub-systems may form. 

The ability to identify and classify different sub-

systems in a given multi-body system is very important and can 
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lead to great simplifications in the mathematical model 

describing the system. To demonstrate this point we will 

consider the number of equations needed to describe the motion 

of a body. In two dimensions every body in a separated sub-

system has three degrees of freedom, two translational and one 

rotational. Consequently, for every body in the sub-system 

there are three corresponding equations of motion. Let us now 

suppose that two of the bodies are connected ( coupled). The 

number of degrees of freedom for two coupled bodies is four, 

instead of six for two separated bodies. Hence, the number of 

equations of motion is reduced by two. If the given sub-

system is rigid, then regardless of the number of the bodies 

comprising it, the number of the degrees of freedom for it is 

three, and hence, only three equations are needed to describe 

its motion. The advantage of being able to identify different 

sub-systems becomes apparent, especially when dealing with 

large systems. 
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1.3 OBJECTIVES 

The objective of the present study is the development of 

a computer model to simulate the movement of 'planar multi-body 

systems with variable topology under the action of specified 

external forces. 

There are no restrictions placed on the character of the 

system itself, which suggests that the system can be composed 

of any types of sub-systems. In the following chapters a 

multi-body system with variable topology will be, for the sake 

of simplicity, referred to as a multi-body system (MBS). 

It is also intended that the modelling can be done for 

systems which are submerged in a fluid medium. 

There is, however, a restriction placed on the shapes of 

rigid bodies. Namely, that the rigid bodies can be 

approximated by disks. This restriction effectively suggests 

that the model is most suitable for analyzing systems which 

involve rigid bodies with comparable dimensions. The types of 

processes that the present model is most suitable for include: 

a motion of granular material ( cohesionless or not), a flow of 

solid-fluid mixtures, ice transportation in open seas or 

rivers and channels, etc.. 
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The subject of modelling of systems of this type will be 

introduced in detail in Chapter 2. Also in this chapter the 

methodological foundations of the present model will be 

established. The subsequent chapters will deal with 

presentation of the theory and its implementation on a digital 

computer. 



CHAPTER 2 

MODELLING OF THE MOVEMENT OF MULTI-BODY SYSTEMS 

SUBJECT REVIEW 

2.1 INTRODUCTION 

As was stated in Chapter 1, the present research is 

directed towards the modelling of the flexible multi-body 

systems, which could be both coupled and separated, and in 

which the individual rigid bodies can be approximated by 

spheres in three dimensions or disks in two dimensions. 

Most of the research on modelling of such multi-body 

systems has been concentrated in the areas of the mechanics of 

granular materials [ 2], [ 5], [19], [ 20], [ 22],[24], [ 26], [ 30], soil 

mechanics [ 9],[29],[33], and more recently in ice mechanics 

[1], [ 32], [ 35], [ 36],:where processes such as ice transportation 

in rivers and channels, ice jams, or ice off-shore structure 

interaction, became of great interest. 

In the bodies of water near the polar regions, ice floes 

driven by the forces of wind and current, can exert 

significant forces on such offshore structures as drilling 

12 
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platforms and lighthouses. In the rivers and channels in 

freezing temperature zones, ice floes moving with the current 

may accumulate around the bridge piers, thus imparting loads 

on them. In such instances, the ability to estimate ice 

loads on the in-water structures, and to determine the regions 

of ice accumulation, becomes imperative for any design work. 

In geotechnical engineering, for example, the designers 

may be faced with the problem of predicting the soil 

resistance to the movement of anchors and foundations. 

A design of a' chute-conveyer system for transporting 

gravel, may require a knowledge of the expected transporting 

capacity of the equipment. Or perhaps, the critical transport 

rate, at which the jam-up in the equipment occurs, needs to be 

evaluated. 

The above are some examples of the processes and 

instances in which the analysis of the motion of flexible 

multi-body systems is of great importance. Due to the high 

cost and relatively low availability of both full and small 

scale experimental modelling, there seems to be an increased 

interest in the mathematical modelling of such systems. 

Moreover, in repent years with the considerable 

improvements in the speed and the capacity of digital 
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computers, and their increased ability to handle large 

systems, there is a strong tendency to incorporate the 

mathematical models into a numerical simulation. The purpose 

of such simulation is to provide the required information 

about the behaviour of the system, from the initial set of 

data and process conditions. 

In this chapter various existing mathematical models will 

be discussed. Subsequently, the methodology of the present 

model will be introduced. The following chapters will deal 

with detailed presentation of the mathematical model and its 

incorporation into numerical simulations. 
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2.2 TECHNIQUES OF MODELLING MULTI-BODY SYSTEMS 

A REVIEW OF VARIOUS EXISTING MODELS 

Perhaps the first attempt to analyze the motion of the 

solid system in a fluid was made by Einstein in 1906. 

Einstein studied the effect of dispersion of solid grains on 

the shear resistance of fluids. His analysis was limited to 

the process involving small spheres with concentrations small 

enough to neglect the effects of one grain on another. 

Einstein concluded that such liquid-solid mixture can be 

treated as a liquid with its viscosity modified to account for 

the presence of the solid particles. Namely, he anticipated 

that viscosity increases due to increased viscous dissipation 

in the presence of solids, that is, 

Peff = 1i(1+2.5C) 

where is the viscosity of the fluid and C the concentration 

of solids. 

The simple approach of considering the solid-liquid 

mixture as a continuous medium with modified parameters, which 

was initiated by Einstein, became the basis for the majority 

of the models of the granular type systems. It was not, 

however, until the 70's when the full use of the continuum 
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theory was made with the improved power of digital computers, 

which themselves provided the only hope of obtaining a 

solution to the continuum equations. 

In 1954, Bangold [ 5] investigated a one-dimensional flow 

of uniformly dispersed granular material in fluid under shear. 

This was perhaps the first attempt in analyzing granular 

systems in which the effect of particle interaction was 

considered. Bangold, besides a constant shear strain rate, 

also assumed a constant kinetic energy density (uniform 

dispersion of solids), and no relative velocity of fluid with 

respect to the solid particles. He identified two basic flow 

regimes. The first regime for which the effects of grain 

inertia are negligible compared to the effects of fluid 

viscosity, would correspond to the flow with low shear rates 

and low solid concentrations. He concluded that in such 

instances the solid-liquid system could be treated as a liquid 

medium, and hence the theory postulated by Einstein could be 

applied. The second flow regime ( identified by Bangold.) 

corresponded to the rapidly sheared flow in which the effects 

of the grain inertia dominated. He proposed that in this flow 

regime the momentum transfer between colliding solids 

dominates the stress producing mechanism. He analyzed the 

particle collisions in a scheme of rigid wall reflection, 

wherein particles from one layer reflect off the particles in 

the adjacent layer in the same way that they would reflect off 
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the solid wall. He argued that because both the momentum 

exchanged in the collisions and the frequency of collisions 

are proportional to the mean shear rate, the shear stress must 

be proportional to the square of the mean shear rate. He then 

proceeded to determine the constants of proportionality 

experimentally. 

The above model for granular materials assumes that there 

is no relative velocity between the solids and the surrounding 

fluid. Consequently, the effect of interstitial fluid is 

neglected. Inevitably, there appears to be some doubt 

regarding the proposed mechanism for collisions among the 

particles on which the entire model is based. Nevertheless, 

Bangold's work created a basis for many recent models. 

In the seventies, there appeared two basic approaches to 

the modelling of the mechanical behaviour of granular 

materials. The first approach was based on the so-called 

microscopic or particulate theory. This approach considers an 

ensemble of particles of finite size (typically idealized as 

rigid spheres of uniform size), and attempts to deduce the 

laws governing the mechanical behaviour of the entire ensemble 

[51,. It cannot, however, be well adapted to obtaining the 

quantitative results as it depends greatly on the 

configuration of the particles. 
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The second method is referred to as the macroscopic 

approach [ 18] and is based on considering the granular 

material as continuous medium. Such an approach can more 

readily provide the quantitative results; however, it loses 

the concept of individual solid particles, and fails to 

incorporate the inter-particle interactions. This approach 

can also be applied only to systems which are at, or near to 

the closely packed state. 

Numerous researchers combined the two approaches into a 

so-called mixed approach [ 2],[22],[26],[30J, which involves 

obtaining quantitative continuum equations based on the 

microscopic properties of constituent particles. 

Kanatani [ 22] proposed a micropolar continuum theory for 

the flow of closely packed granular materials. He set up 

quantitative equations based on conservation of mass, linear 

momentum, angular momentum, and energy. He then proceeded to 

determine the rate of energy dissipation due to the inter-

particle friction by assuming constant material deformation 

rates on the inter-'particle distances, and accordingly, by 

calculating the relative tangential velocity components at the 

particle interfaces. 

By analogy to turbulent flow, Ogava et al. [ 2 6 ] noted the 

importance of th fluctuation velocities of the particles, 
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which inevitably result from the collisions among them. They 

introduced a term of fluctuation energy and attempted to 

determine it from the inter-particle collisions. They adapted 

Bangold's wall reflection scheme to a three-dimensional 

sphere. The radius of the sphere was equal to the mean free 

particle path which was determined by the particle density. 

The points on the sphere which correspond to the neighbouring 

particles, were assumed to instantaneously move with the mean 

flow velocity. The particle inside the sphere moved, of 

course, with the fluctuation velocity relative to the sphere. 

Ogava et al. assumed that during the collisions, a fraction of 

the particles adhered to the spheres with the remainder 

reflecting off them, with a loss of energy. They then 

proceeded to determine the total rate of change of fluctuation 

energy by averaging over all possible collisions, assuming 

equal reflection probability in all orientations. 

Ackermann and Shen [ 2], [ 30], came up with a similar model 

additionally including the effect of the interstitial fluid 

and the mechanical properties of the solid particles on the 

rate of change of fluctuation energy. They suggested that the 

rate of dissipation of fluctuation energy depends on the 

frequency of inter-particle collisions which, in turn, depends 

on the physical properties of the solid particles and the 

interstitial fluid. 
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In the early 80's new models appeared in which the 

problem of flow of granular material was put in the context of 

the kinetic theory of gasses [ 19],[24]. 

In ice mechanics, Ackermann and Shen, [ 1], proposed a 

continuum method of modelling the process of broken ice 

transportation in rivers and channels. They considered the 

case of closely packed ice floes moving on the water surface. 

Ackermann and Shen treated the ice floe ensemble as a 

continuous medium and derived the momentum equation in the 

direction of the river flow, in terms of the stresses in the 

ice. They then used Bangold's [ 5] stress creation mechanism 

to set up the equations of motion. The numerical solutions to 

'the equations were obtained over large range of variables and 

parameters which were later correlated through experimental 

observations. The model, however, failed to include other 

stress forming mechanisms, like inter-floe friction, adhesion, 

or crushing. Moreover, the model cannot accommodate the 

variability in the shapes and sizes of the ice floes as well 

as the presence of voids within the ice cover, the attributes 

which would commonly be present. Consequently, it is doubtful 

whether, without constant experimental verification, the model 

could be used to obtain quantitative results for a general 

case. 

Several models based on the continuum theory have been 
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discussed. The number of different models is probably as 

large as the number of researchers involved with the subject. 

The models vary in complexity, and in the number and the 

character of simplifying assumptions. All the models, 

however, originate from the same point. They carry the 

assumption that the granular material can be treated as 

continuous medium. Thereafter, the continuum equations of the 

conservation of mass, momentum ( linear and angular), and 

energy are set up. The physical properties of the solid 

particles and interstitial fluid are then incorporated into 

the continuum equations through the assumed microscopic 

mechanisms of particle interactions. The continuum models can 

therefore be applied to the systems in which the solid bodies, 

represented by spheres and disks, are closely packed. These 

models also relate only to the processes involving high shear 

rate flows, as the inter-particle interactions are assumed to 

be the dominant mechanism in stress creation. 

The continuum models are not suitable for analyzing the 

loosely packed systems with large voids (containing no solid 

particles) present, or systems with non-homogenous dispersion 

of solid bodies, as can often be the case with many processes. 

Moreover, such models cannot account for the variations in 

particle sizes and in their physical properties. Also the 

inter-particle adhesion and the resulting particle clustering 

cannot be accounted for. 
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The continuum models are, also, written using Eulerian 

description. This means that the focus is put on certain 

fixed points in space through which different solid particles 

pass at different times, rather than on certain particles or 

ensembles of particles. Consequently, these models cannot be 

used to analyze processes in which the identification of the 

critical areas of solid bodies accumulation, or the 

predictions of the regions of jam-up, are vital. 

Considering the difficulties with the application of 

continuum models to various processes involving the multi-body 

systems, it is not surprising that during the past decade, a 

new approach to the modelling of such systems, based on 

discrete analysis, appeared [9], [ 29], [ 31], [ 33], [ 35]. With the 

increasing power of digital computers, it became feasible to 

model the granular type multi-body systems as a particulate 

rather then continuous material. In such an approach, each 

solid particle (rigid body) in the system is looked at as an 

individual entity whose motion is followed throughout the 

process (Lagrangian description). The interactions among the 

particles are derived from their particular positions and 

velocities, and their physical properties, rather then by 

averaging procedures, as is the case in continuum models. 

Consequently, the motion of each particle is established at 

any time during the process, and hence, the behaviour of the 

entire system determined. 
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The first attempts at discrete modelling of granular 

assemblies were done by Cundall and Strack [ 9]. The model was 

directed at problems in geotechnical engineering, and in 

particular, soil mechanics. Various simulation programs were 

developed based on this model [ 29],[33]. The interest in 

discrete modelling of soils was bolstered by the fact that it 

provided the researchers with a possible tool for handling the 

problems which present a major difficulty for conventional 

continuum models, such as a considerable soil non-homogeneity, 

non-linear soil response, or non-linear soil-structure 

interaction. 

The Discrete Element Method (DEM) utilized in [ 9],[33], 

is a, two-dimensional model in which solid bodies are 

represented by disks. The model is based on setting up the 

equations of motion from Newton's Second Law, for each 

individual disk. The forces and moments acting on each disk 

include both the external and the interaction loads. The 

interaction between the individual disks is modelled using a 

spring and damper system. Therein, the shear and normal 

contact forces are determined from the amount of overlap that 

appears among the disks during the simulation, and the rate of 

change of the overlap. Once all the loads (external and 

contact) acting on each individual disk, are evaluated, the 

linear and angular acceleration terms are computed from the 

equations of motion, and subsequently integrated over a small 
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time interval to yield new positions and velocities of the 

particles. 

This model was applied, with some success, to certain 

segregation and anchor pull-out problems. It can handle 

Coulomb friction and non-homogeneity of the material as 

different spring-damper systems can be applied at different 

contact points. It can also accommodate the non-linear 

behaviour of the material through nonlinear springs an 

dampers. The model, however, seems very sensitive with regard 

to the time step, and the spring and damper constants, since 

during the simulation the overlap among the particles is a 

determining factor in the computation of forces. For larger 

time steps and stiffer spring-damper systems, unrealistically 

high contact forces may result, while smaller time steps and 

softer springs may not allow for the proper accommodation of 

the impact forces among the solid bodies. 

A similar approach was applied in ice mechanics in [ 17]. 

In this model the ice floes and ice sheets were represented by 

finite elements. The formulation was based on the solution of 

the dynamic equilibrium equations with a set of decoupled 

orthogonal nodal equations for each element. In the model the 

element interaction occurred through the boundary forces. 
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A different approach to discrete analysis was postulated 

in [ 35],[38] and further developed in [ 31]. The mathematical 

formulation in this approach is based on the Lagrangian 

dynamics. The rigid bodies are approximated by disks. Here, 

rather then setting up the dynamic equilibrium equations for 

each disk individually, the equations of motion are derived 

for the entire disk conglomeration in terms of generalized 

coordinates. The interactions among the rigid bodies are 

identified through the so-called constraint equations. The 

system of differential equations of motion together with the 

algebraic constraint equations, is solved for the generalized 

coordinates and the unknown constrain forces. Consequently, 

the new positions of all the bodies in the system are 

determined. 

The advantage of such a model is in the fact that the 

momentum transfer among the rigid bodies during collisions can 

be readily included.' Also, the friction among the bodies can 

be handled without much difficulty, since the frictional 

forces depend on the constraint forces, which, as stated 

above, are computed. 

The method has a disadvantage however, which is the 

system of differential algebraic equations (DAE). Obtaining 

a solution to a large system of DAE's presents a significant 

numerical difficulty [ 11],[12],[13]. In fact, not much is 
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known about the general methods of solution, and problems with 

numerical instability can be frequently encountered. 

The numerical model for analyzing the behaviour of 

granular type multi-body systems developed in the present 

research work is based on the Lagrangian approach. As will be 

seen in the following chapters, certain ideas and 

simplifications are incorporated into the model to reduce the 

number of DAE's, and to improve the stability of the solution. 
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2.3 PROPOSED TECHNIQUE OF MODELLING 

The present research is directed at the development of a 

two-dimensional computer model for analyzing the behaviour of 

flexible multi-body systems, in which the individual rigid 

bodies can be approximated by disks. Although, in principle, 

any type of flexible system can be modelled by this technique, 

particular attention is paid to the modelling of separated 

systems ( Figure l.2b). Analyzing the behaviour of such 

systems is difficult, and no general methodologies exist. 

Since the present analysis is directed specifically 

towards the flexible multi-body systems, in this thesis we 

will refer to such systems as simply multi-body systems (MBS). 

A NBS is a specific type of system. The individual rigid 

bodies cannot overlap onto, or penetrate one another, and 

hence the motion of the bodies is constrained in the direction 

towards one another. On the other hand, the rigid bodies can 

separate from other bodies, if some appropriate conditions are 

met, and thus their motion away from one another i's 

unconstrained. This type of system is characterized as having 

the so-called one sided constraints. 

It is due to the presence of one sided constraints that 
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the topology of NBS constantly changes with time, as the 

connections disappear and new connections are formed. 

Moreover, the moments in time when the topology of the system 

changes are unknown and cannot be predicted, since it i's 

unknown for how long certain bodies will remain in contact, or 

how soon a given body will attach to any other body in the 

system. Consequently, the governing equations of motion for 

the system cannot be written in advance. It, therefore, 

becomes clear that the only feasible approach to the analysis 

of MBS is through computer simulations. 

In this section a general methodology of the proposed 

numerical simulation of multi-body systems with one sided 

constraints will be discussed. 
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2.3.1 General Approach 

The computer simulation takes place in a designated 

space, or a control volume, and a designated time frame. The 

control volume is conveniently chosen by the program user, and 

represents the area in which the simulation is to be carried 

out. 

All the solid boundaries and obstacles inside the control 

volume, with which the rigid bodies may interact, are 

represented by their contours. The contours are discretized 

into a set of straight line segments, in which form they are 

entered into the simulation program. The solid boundary is 

assumed to be impregnable to the rigid bodies. In order to 

avoid a singularity at the solid boundary, small arcs are 

created at the points where the two adjacent line segments 

(describing the boundary) meet. 

Inside the control volume there are also boundaries at 

which the rigid bodies enter the system, and at which they 

leave it. These are referred to as the generation and the 

exit boundaries, and are discussed in more detail in Chapter 

4. 

The rigid bodies are represented in the model by disks or 
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rigid sets of disks. The sizes of the rigid bodies are either 

predetermined or randomly picked by the program according to 

a specified distribution function, which is supplied as an 

input. Similarly, the rigid bodies can be placed inside the 

control area in specified positions, or generated at the 

generation boundary at random time intervals and random 

locations. The methodology of the generation of rigid bodies 

is discussed in detail in Chapter 4. 

A typical representation of the physical domain in which 

the simulation of the motion of MBS is to be carried out, as 

used by the model is shown in Figure 2.1. 

All the disks present in the control volume are acted 

upon by the external forces. The character of the forces 

present in the system must be identified prior to the start of 

the simulation procedure. The external forces can be, for 

example, drag forces if the given MBS is moving in a fluid 

medium, or gravity forces if the MBS represents a conglomerate 

of dry granular material sliding down a chute. 

In a typical simulation procedure the disks (rigid 

bodies), which are either placed or generated, move through 

the control volume due to the action of the external forces. 

The disks interact with other disks and with the obstruction 

line segments. The motion of the disks is modelled with the 
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CONTROL 
VOLUME 

a) 

RIGID BODIES 
/ ENTERING THE 
/ CONTROL VOL. 

6-0  er ----i 

b) 

RIGID BODIES 
LEAVING THE 
CONTROL VOL. 

Figure 2.1. A typical example of a phy-
sical domain ( a) and its model represen-
tation (b). 

equations of motion which are derived from the principles of 

Lagrangian dynamics of rigid bodies. . The mathematical 

formulation of the equations of motion was developed in [ 31] 

and is briefly presented in Chapter 3. At each time step 

during the simulation, the equations of motion for the entire 

disk ensemble are established. These equations are then 

integrated over a specified time interval, and the new 

positions for the disks, at the new time step, are obtained. 

At this time, again, the external forces are determined and a 

new set of equations of motion is set up, and the procedure 

repeated. 
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At each time step the equations of motion are set up 

according to the topology of the MBS. During the simulation 

process the topology of the system will undergo constant 

changes. Some disks will collide with one another, while 

others may adhere to the solid boundary or other disks. 

Consequently, the topology at each time step must be 

determined. The topological analyses of MBSs were proposed in 

[35] and [ 38], and developed in [ 31]. This will be briefly 

discussed in the next section. 
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2.3.2 Topological Analysis 

The system under consideration consists of so-called base 

elements. These are disks representing the rigid bodies, and 

the line segment, denoting the solid boundary. Each disk is 

assigned a radius and a mass. A position of a disk is 

described by the coordinates of its center. Such a base 

element' is mobile which means that its position may change in 

time. A line segment is a base element which is considered 

fixed in space. The position of the element is given by the 

coordinates of its endpoints. 

In the present simulation program, it is assumed that the 

base elements cannot overlap. This implies that any two given 

line segments cannot cross, a disk cannot penetrate into a 

line segment ( solid boundary), and two disks cannot overlap at 

any time during the simulation. The base elements can, 

however, become attached, which means that they have a point 

of contact. From the definition of the base elements, it 

becomes clear that ahy two elements can have at most one point 

of contact. 

A group of disks, such that each disk in that group has 

at least one point of contact, is termed a cluster. Hence, 

any MBS is a combination of clusters and single bodies. 
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A disk which is in contact with a line segment is termed 

a root disk. A root disk can belong to a cluster, in whiàh 

case the cluster is said to be rooted. 

A single disk is referred to as a simple rigid body. 

A complex rigid body is a cluster of disks arranged in such a 

way that it will not change its shape provided that the 

connectivities among the disks are maintained. Using the 

analogy to a two-dimensional truss system, we can write the 

following conditions. 

1) A cluster of disks is not rigid if and only if 

- fl > 3 

where nd is a number of disks in the cluster, and n is 

a number of points of contact. 

2) A cluster of disks is rigid if and only if 

- ≤ 3 

and a) there are no disks with one point of contact, 

b) any disk having two points of contact cannot 

be touching any other disk with two points of 

contact. 
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Figure 2.2, below, exemplifies the above conditions for 

the rigidity of the clusters of disks. 

c) d) 

Figure 2.2. Sample clusters for the identification 
of rigid bodies. 

In Figure 2.2 for cluster ( a) nd = 5 = 6, and thus 

condition 1) is satisfied. Hence, the cluster is not rigid. 

This can also be verified by inspection. 

For cluster (b) nd = 6 = 9, and evidently condition 
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2) is satisfied which indicates that the given cluster can be 

rigid. However, there is one disk which has only one point of 

contact. Consequently, condition 2a) is not satisfied, and 

thus, as can be verified by inspection, the cluster is not 

rigid. 

For cluster ( c) in the figure nd = 7 , = 11. Condition 

2) is satisfied. Part b) of the condition is not satisfied, 

as there exist two disks in the cluster, having two points of 

contact, which are also in contact with another disk having 

only two points of contact. Hence, cluster c) is not rigid. 

For cluster ( d) nd = ' = 11. This cluster is rigid. 

Condition 2) is satisfied together with additional conditions 

a) and b). There are no disks with one point of contact, and 

the disks with two points of contact are not touching any 

other disks with two points of contact. The rigidity of this 

cluster can be easily verified by inspection. 

The present simulation program is capable of generating 

both the simple and the complex rigid bodies. Chapter 4 

discusses the generation of the rigid bodies in detail. 

It is assumed that the simple rigid bodies (disks) have 

only two degrees of freedom. In other words, the rotation of 

a disk with respect to its center is neglected, as it does not 

affect the geometry of the entire system. 
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The complex bodies (rigid clusters) possess three degrees 

of freedom, two translational and one rotational. 

Consequently, three coordinates are needed to describe the 

position of a complex body, for example, two cartesian 

coordinates of the center of gravity, and the angle of 

rotation between an axis fixed with the cluster and the X-

axis. This, of course, holds true regardless of the number of 

disks composing the cluster. 

The observation that a rigid cluster has only three 

degrees of freedom is an important one. The number of 

equations needed to describe the motion of a MBS is equal to 

the number of degrees of freedom. Consequently, the 

identification of all the clusters which during a given time 

step can be considered rigid, can greatly reduce the number of 

equations of motion required. This brings us to the concept 

of rigid multi-body subsystems (PNBS). This concept was 

postulated in [ 37] and developed in [ 31]. 

RMBS are the bodies of the same type as the complex rigid 

bodies ( CRB) in the sense that provided that all the 

connections are maintained the entire configuration will 

remain unchanged. Unlike the CRB's in which the 

connectivities among the disks are maintained throughout the 

simulation process, the connections among the disks composing 

a given RMBS may be deleted during the simulation, if a 
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certain condition is met. Namely, that the contact force is 

tensile. Also, during the simulation new disks may join the 

RMBS, once the appropriate connections are created. A. 

condition for a new disk to be added to a RMBS is that it 

forms a connection with any two disks already present in the 

RMBS. 

To summarize the above definitions, we can say that rigid 

multi-body sub-systems are rigid clusters whose respective 

topologies, although unchanged over some time interval, may 

change during the simulation process, while complex rigid 

bodies are rigid clusters whose topology remains constant 

throughout the simulation. Incidently, an RMBS can be 

composed of several CRBs and a number of single disks. 

Having identified all the different bodies and elements, 

we can proceed with the description of the topological 

analysis on which the mathematical formulation of our model is 

based. 

As mentioned above any MBS is composed of individual 

disks and clusters of disks. A cluster as an object is 

characterized by the number of disks, the coordinates of their 

centers, and the coordinates of the points of contact. This 

data describes the topology of the system. If the pairs of 

contacting disks are represented by the line segments joining 
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their centers, then a cluster can be uniquely represented by 

a graph. Figure 2.3 shows a cluster with a corresponding 

graph defining its topology. 

7 

b) 

Figure 2.3. A cluster of disks ( a), and 
the corresponding graph (b). 

The centers of the disks composing the cluster are 

referred to as the nodes, while the line segments joining the 

respective centers as the edges. A base node is identified 

for each cluster, with respect to which all other nodes 

(centers of disks) can be defined. In the case of a cluster 

adhering to the boundary line segment, a root node (root disk) 

becomes a base node. A graph of a cluster of disks is 

conveniently stored in an incidence array [I]. The entries of 
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this array are either one or zero. An entry of 1 indicates 

that a connection exists between the two respective disks. 

Zero is equivalent to no connection. Hence, if Ij = 1, then 

connection exists between disk i and disk j. For the example 

in Figure 2.3 the incidence matrix would be as follows: 

-. 1 0 0 0 0 0 

11 1100 

01 1 1000 

[I] = 0 1 1 1 0 0 

0101 1 11 

00001 1 

000011 

The diagonal elements in the above matrix are not indicated as 

they are used to store a number of different parameters. 

A path is defined as the shortest route along the edges 

of the graph from the base node to the given node. A set of 

paths constitutes what is referred to as the topological tree. 

The edges spanning the respective nodes in the topological 

tree are described as branches. 

For the cluster of Figure 2.3, the corresponding 

topological tree is shown in Figure 2.4. 

A topological tree can be represented numerically in 

terms of a two-dimensional array [T]. This array, unlike the 
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a) 

4 

3 

7 

b) 

2 

Figure 2.4. An example of a cluster ( a) 
and the corresponding topological tree 
(b). 

incidence array [I] , is not symmetric. Its entries can be 

either zero or one. Each row of array [T] represents a path 

to the corresponding disk. The entries in any given row, 

equal to one indicate that the corresponding node (disk) is on 

the path from the base node to the given node. For example, 

if T = 1, then this means that node j is along the path from 

the base node to node i. For the situation shown in Figure 

2.4 the topological tree array would be as follows: 
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[T] = 

1000000 

1100000 

1110000 

1101000 

1100100 

1100110 

1100101 

The two arrays [I], [ T] are sufficient to define the 

connectivities in, and the topological tree of, any cluster of 

disks. From these two arrays the positional vector of any 

disk with respect to the base disk (base node) can be defined, 

and hence, the equations of motion can be set up. 

The length of each branch on the topological tree is 

equal to the length of the vector spanning the respective 

nodes ( centers of the disks). Consequently, if the positional 

vector of the base node of the cluster is known along with the 

topological tree, then the positional vector of any other node 

(disk) can be determined by "vectorially following" an 

appropriate path. For example, from Figure 2.4 a positional 

vector for disk ( 7) would be given by 

1 7 = f .l. + 1, 2 + 1 2 5 + 7 

The above equation can also be written in terms of the two 

arrays, in the form that it can be implemented numerically. 

Namely, in a general' case, 
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ND-i F ND 
= fo + : ; (IjkTjjTjkfjk) 

ji k=j+i 

where f0 represents a positional vector of the root node of 

the given cluster and ND is the number of disks comprising the 

cluster. 

A positional vector representing a branch of the tree 

(such as f2,5) is defined by its length, which is known and 

equal to the sum of respective radii ( for disk 2 and 5), and 

by its orientation, which is given by the angle between it and 

the x-axis. These angles are referred to as the generalized 

coordinates for the cluster. Evidently, a positional vector 

of the center of any disk in the given cluster can be defined 

in terms of the positional vector for the base disk and the 

generalized coordinates corresponding to the branches of the 

topological tree. The equations of motion for a cluster, and 

the entire MBS are, as we shall see in Chapter 3, derived in 

terms of the generalized coordinates. 

In the above examples the topological analysis was 

performed on a cluster composed of disks. In a similar way, 

the topology of a cluster in which complex rigid bodies ( CLB), 

or rigid multi-body sub-systems (RMBS) are present, can be 

analyzed. Here, every rigid body would be treated in the sain 

way as an individual disk. 
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The detailed topological analysis of MBS's used by this 

model, utilizing the concept of rigid multi-body sub-systems, 

was numerically implemented in [ 31]. 
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2.3.3 Events 

During the simulation, every occurrence at which the 

topology of the system changes, is referred to as an event. 

A new disk entering a control volume represents an event, as 

does a collision, between two disks or between a disk and the 

obstruction. A disk separating from, or joining a cluster of 

disks is also considered an event. 

Since an event corresponds to a change in topology, i't 

follows that the generated equations of motion are valid only 

between the events ( i.e. the time intervals over which the 

topology of the system remains constant). Consequently, all 

the events must be detected and the times of their occurrence 

determined. The topology of the system must then be 

reanalysed and the new set of equations of motion generated. 

There are three primary types of events: a disk event, a 

distance event, and a force event. The latter two, in terms 

of numerical simulation, correspond to a change in constraint 

conditions of the system, while the first type of event (disk 

event) represents an addition of a new body to the system. 

A disk event is relatively easy to handle. The 

simulation model in the process of generating the rigid 
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bodies, generates the time increments between the consecutive 

disk events ( Chapter 4). Therefore, the times of disk events 

are always known. Consequently, the simulation time step is 

adjusted in such a way that the disk event coincides with the 

incremented simulation time, at which point the topology of 

the system can be reanalysed to include a new disk. 

Handling of the distance and force events is not as 

straight forward as that for a disk event. These events 

correspond to the interactions among the different elements in 

the system, such as collisions between disks, separation of a 

disk from, or adherence of a disk to a cluster, etc.. The 

times when such events take place during the simulation can 

not be predicted beforehand. They must be determined during 

the course of the simulation. 

Typically, a force or distance event would take place at 

some point between two consecutive time steps at which a 

detection of an event can be carried out. If an event is 

detected over the given time interval, then the simulation is 

stepped back over this time interval until the instance, at 

which the event occurred, is determined. The simulation clock 

is then set back to that point in time, the topology of the 

new system analyzed, and the new set of equations of motion 

generated. 
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As was stated in the previous section, during the 

simulation the topology of the system, on which the equations 

of motion are based, is considered constant during short time 

intervals over which the equations of motion are integrated. 

In other words, it is assumed that during the time increments 

the constraints (connections) among the disks and the 

obstruction line segments are unchanged. A constraint is 

maintained until the corresponding contact force between the 

two elements becomes tensile and exceeds a certain predefined 

limit. If such a situation arises, then it is said that a 

force event occurred, and the corresponding constraint is 

eliminated. This, of course, is equivalent to breaking the 

appropriate connection. If one-sided constraints are modeled 

then the limit for the contact force is zero, which indicates 

that the elements are unrestrained in the direction away from 

one another. This would be the case if a system involving 

cohesionless solid bodies, was modelled. If, on the other 

hand, complex rigid bodies are involved, or if cohesion needs 

to be accounted for, then this limit could represent the 

tensile strength of the given connection. To determine 

whether a force event occurred, all the contact forces among 

the elements present in the system (disks and obstruction line 

segments) are calculated at the beginning of each time step. 

The computation of contact forces is discussed in Chapter 7. 

The final type of event is a distance event. This event 
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occurs when a disk collides with another disk or an 

obstruction line segment. In terms of the numerical 

simulation, this takes place if during the simulation an 

overlap develops between any two elements in the system. An 

overlap between two disks occurs if the distance between their 

centers is smaller then the sum of the respective radii. An 

overlap between a disk and an obstruction line segment occurs 

if the distance from the center of the disk to the line 

segment is shorter then the radius of the disk. 

A presence of an overlap between a disk and another 

element, at a given time during the simulation suggests that 

at some point during the preceding time interval, the disk 

involved must have come in contact with that element. 

Consequently, the motion of the disk, which was assumed 

unconstrained in the particular direction at the beginning of 

the time step, became constrained at that point in time. 

Henceforth, the equations of motion, which were originally 

assumed valid over the entire time interval, were only valid 

up until the time of collision. After that time, a different 

set of equations described the motion of the system, as its 

topology changed. Moreover, if a disk collides with a 

cluster, then the impact produced by the collision results in 

impulsive loading at all connections in the cluster involved. 

As a consequence, other, connections can be broken or created. 

It is therefore evident that the time, at which the collision, 
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represented by the distance event, takes place, must be 

determined. 

To detecta distance event, the coordinates of the center 

of every disk present in the system, in the inertial frame of 

reference, are determined at all times during simulation. 

From these locations a distance from the center of any given 

disk to another element in the system can be computed. The 

event is detected if that distance is shorter then the radius 

of the disk. Figure 2.5 illustrates a distance event between 

two disks. 

d 

ti  
A 4k 

00- -L 
NO OVERLAP 

H to 

OVERLAP 

Figure 2.5. An illustration of a distance event. 
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An overlap is defined in terms of variable z, 

z = R1 +R2 -d 

A negative value of the variable z indicates no overlap, 

whereas a positive one corresponds to an overlap. 

Once a distance event is detected over some time step 

i t, the exact point in time at which the event occurred, must 

be determined. This is done by dividing the time interval 

into two sub-intervals 2t1 , At2, such that: 

AC1 = (C , t+AC1) , At2 = (t+AC1 , t-i-At) 

The distance event must occur during either of the two 

subintervals. 

First, sub-interval At1 in considered. The simulation 

clock is set back to the beginning of this time step ( C), and 

subsequently, the simulation is carried out over At1. If an 

overlap is detected at time C + At,, then the given distance 

event occurred during this time step. If such is not the 

case, then clearly the distance event must occur during sub-

interval At2. 

Having identified the time sub-interval over which the 
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distance event occurs, we repeat the above procedure thus 

narrowing the event's time frame. The whole process is 

carried out until the size of the final sub-interval is equal 

to the assumed tolerance for the time of the event. The mid 

point of the final sub-interval is the determined time of the 

distance event. 

There are two methods for the division of a given time 

interval into two sub-intervals, that were considered for the 

present simulation model. The first one is based on the 

bisection method. Here, the interval is always divided into 

two equal sub-intervals (divided in half). Hence, 

At1 = At2 At 
2 

The second method is based on the linear interpolation. 

Here, use is made of the amount of separation at time t and 

the amount of overlap at the time at which the event was 

detected ( t + A t). It is assumed that the formation of the 

overlap is linear with time, and hence the sub-intervals 

should be in the same proportion relative to each other, as 

are the amounts of the separation and the overlap. From this 

condition the sizes of the sub-intervals can be determined. 

Using the example of Figure 2.5 the interpolation method is 

illustrated in Figure 2.6. 
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  ANTICIPATED TIME 
OF EVENT 

Figure 2.6. A diagram for the division 
of an interval using interpolation. 

From the diagram we have 

At1 - At2 - At 

z2 z1J + z2 

Consequently, the sizes of subintervals are determined, 

and 

At1 

At2 

= At  Izil  
I zil + z 

= At 
Z2 

2 

At the present time the bisection method for dividing the 

time interval is used. It is however believed that the linear 

interpolation method would in the majority of instances yield 
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results faster. 

The methodology of event determination and handling 

discussed in this section, was numerically implemented in [ 31] 

and the detailed analysis of this can be found in the 

reference. 
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2.4 CONCLUSIONS 

in this chapter, the subject of modelling of multi-body 

systems with one-sided constraints was introduced. Two basic 

approaches to the modelling of such systems were identified: 

a continuum approach, and a discrete approach. The continuum 

approach can, at best, be used in modelling the systems in 

which solid bodies are closely packed, or can be assumed fully 

fluidized, since the motion of a system is described by one 

set of equations which are assumed applicable at any point in 

time. Consequently, the interactions among the rigid bodies 

can only be considered in a statistical sense, through the 

averaging procedures. It is evident that such a methodology 

can provide a good physical representation for systems which 

are characterized by a loose and non-uniform distribution of 

solid bodies. The difficulty in analyzing such systems lies 

in the fact that their behaviour is greatly influenced by 

relative positions of the solid bodies and the interactions 

among them. These, however, undergo constant changes, and 

thus cannot be predicted beforehand. Bearing this in mind, it 

becomes clear that a discrete approach combined with a time-

based numerical simulation is the only viable alternative to 

modelling of multi-body systems. The present thesis deals 

with the development of simulation methodology based on the 

discrete approach. 
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During the simulation, the motion of each solid body is 

traced throughout the entire process, and the body's 

interactions with other objects in the system established. 

The equations of motion governing the behaviour of the system 

are not permanent throughout the simulation, but are 

constantly regenerated to accommodate the changing topology 

and the constraint conditions of the system. The topology of 

the system changes due to the changing interactions among the 

system's elements. The changes in interactions and their 

character were classified as events. Three fundamental types 

of events were identified: 

breaking of a constraint, 

additional constraint, and 

a force event which results in the 

a distance event which creates an 

a disk event which adds a new rigid 

body to the system. During the simulation the events are 

determined and the topology of the system modified 

accordingly. 

It is believed that the present model can be used to 

analyze a large variety of multi-body systems with one-sided 

constraints. Although at the present stage the model is only 

two-dimensional and, a number of simplifying assumptions is 

made, the mathematical formulation of the problem is exact. 

Consequently, the validity of the analysis and the results 

that it yields, is only limited by our ability to physically 

identify and interpret all the interactions present in the 

actual system. 



CHAPTER 3 

MATHEMATICAL MODEL 

3.1 INTRODUCTION 

The mathematical model incorporated into the present 

numerical simulation of MBSs is based on Lagrangian principles 

of solid body dynamics. The Lagrangian dynamics provides us 

with a set of motion and constraint equations which describe 

the behaviour of the system. A given set of equations is only 

valid over the time interval during which the topology of the 

system remains constant. Consequently, the constraint and 

motion equations are constantly adjusted and reset to 

accommodate the changes in the topology. The topological 

analysis which was discussed in Section 2.3.2 provides us with 

the means of conveniently generating these equations. 

In this chapter a mathematical formulation of the 

equations of motion together with the constraint equations 

will be discussed. The equations of motion are given by the 

second order non-linear differential equations, which are 

commonly referred to as the Lagrangian equations of the second 

type. The constraint equations represent a set of algebraic 

equations. Together, the motion and constraint equations 

56 
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comprise what is known as the set of differential algebraic 

equations (DAE). 

It is assumed that the multi-body systems under 

consideration can only have geometrical constraints imposed 

upon them. Such systems are referred to asholonomic. In the 

following analysis we will limit ourselves to the 

consideration of only such systems. 



58 

3.2 LAGRANGIAN DYNAMICS 

In this section a derivation of the Lagrangian equations 

of motion is briefly presented. This is done for the 

convenience of the reader and the completeness of the thesis. 

A detailed derivation of the equations can be found in any 

textbook on Lagrangian dynamics ( see, for example [ 39]). 

D'Alambert's principle states that any position of a 

system during its motion can be analyzed as a position of 

equilibrium by adding the inertia forces to the active forces 

acting on the system at that instant. The principle thus 

allows the application of static methods to dynamic problems. 

Let us consider a system containing N particles. Using 

D'Alambert's principle, the equilibrium condition for each 

particle can be written as: 

Fj - mjäj 
= Rj (j = l • • , N) 

where Rj are the reaction forces resulting from the 

constraints imposed on the system. Since the system is in 

equilibrium then the application of the principle of virtual 

work yields: 
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(1! -m ã).8f = 0 (3.1) 

where 6f represents a set of virtual displacements. In the 

above equation the term E1  '8f represents the virtual work 

done by the active forces of the system, while term Emãôf, 

represents the virtual work of the inertia forces. These will 

be denoted as 6W, 8Z respectively. We could therefore write 

Equation ( 3.1) as 

6W = 6z 

Let us also assume that the given system possesses n degrees 

of freedom (the number of particle coordinates minus the 

number of geometrical constraints). We can thus select a set 

of n independent variables q1, referred to as generalized 

coordinates, such that the position of any particle in the 

system can be uniquely represented as a function of these 

coordinates and time. We write, 

= f(t. q1, •.., q) , (j=1,", N) 

Since the virtual displacements 8f represent the virtual 

differentials ( fixed in time) of the positional vectors f we 

have 

ôf = (3.2) 
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Substituting Equation ( 3.2) into Equation ( 3.1) we can write 

the former as 

 : o i] = E[miäi  : 

Since the order of summation in the above expression is not 

important, we can perform the summation over j first. We may 

therefore write 

__ = __ 
1=1 j=1 aqji=1 j=1 

(3.3) 

In the above equation the term on the LHS represents the 

virtual work done by the active forces, while the term on the 

RHS corresponds to the virtual work of inertia forces. We 

will write Equation ( 3.3) as 

where: 

Qi = 

= Q1oq1 = L8q = ÔZ 

I = 

(3.4) 

Coefficients Q1 are referred to as generalized forces. 

Coefficients L1 which represent generalized inertia forces can 

be expressed in terms of the kinetic energy of the system T, 
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(see Appendix A), as 

Li L  aT -  31' 
dt a -1 aq1 

Equation ( 3.4) is satisfied for any arbitrary set of 

generalized virtual displacements 8 1. It therefore follows, 

that the corresponding terms must be equal. We write, 

Li = Q , (i=1,",n) 

Substituting the expressions for 

equation we obtain: 

d aT aT 

dt a = Q , 

L1 , Q1 into the above 

(i = 1, •., n) (3.5) 

Equations ( 3.5) are known as the Lagrangian equations of 

motion of the second type. The kinetic energy of the system 

T, present in Equation ( 3.5), can be determined in terms of 

the generalized coordinates and time. Namely, 

T = =  

but 

df. a Z_  f. 
= .7 + .7  

d1 at E  aq1 

and therefore 
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T =   + 
2 E ( at 12 J.(a.7 f.   + aq at 

After the dot product of the two vectors in the brackets is 

calculated and the resulting terms are grouped, we can obtain 

the following expression for the kinetic energy: 

T = a1q1g + Ea11+ a0 
2,k'i. i=2. 

(3.6) 

where coefficients alk, a1 , ac are the functions of 

generalized coordinates and time, given by the following 

relations: 

ak 

N -..-. %- or. or. 
- L Mi a 3 -  q1 " k 

N a a-
a1 = Emja'i a 

N -. -. 

a0 = Emj at at 

(3 .7a) 

(3.7b) 

(3 .7c) 

For the scleronoiuic type systems, such as essentially all 

multi-body systems with one-sided constraints, the time does 

not enter explicitly into the relations for the positional 

vectors f3. Henceforth,. 



63 

at = a , (j=N) 

and thus the terms in Equation ( 3.7b) and Equation ( 3.7c) will 

vanish. The kinetic energy for such systems will therefore be 

given by: 

T = E  aik  
i, k=1 

which in matrix form could be written as 

T = 

2 

(3.8) 

(3.9) 

It is evident from Equation ( 3.7a) that matrix [A] is 

symmetric. Hence, 

aT 
= 

aT 
= i;-1 aalk 

Substituting the above expressions into Equation ( 3.5) and 

remembering that for scieronomic systems, 

d 

dt 

we can obtain the equation of motion for the system in terms 

of generalized coordinates: 
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where: 

k=1 

bak 

'kqk + = (3.10) 

= ; [aaak + 1 a1  
i 

In matrix form Equation ( 3.10) can be written as 

+ [B][] = [Q] (3.11) 

The above system of equations represents the Lagrangian 

equations of motion for a scleronoinic system of N particles in 

terms of the generalized coordinates. 

It was assumed that {q1} is a set of independent 

coordinates. If such is the case than it can be shown that 

matrix [A] in Equation ( 3.11) achieves a full rank, i.e., is 

non-singular, and the equations can be solved for the 

generalized coordinates uniquely. If, however, the 

generalized coordinates are dependent then the matrix [A] will 

not achieve the full rank, and will become singular. This can 

occur if, for example, four or more generalized coordinates 

are used to describe the three Cartesian coordinates of the 

position of one of the particles. 

A situation may arise such that the number of the 

generalized coordinates chosen is higher then the number of 
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degrees of freedom of the system. This may not necessarily 

result in the singularity of the matrix, and the system of 

equations may be solvable. In such a case the solution does 

not reflect all the constraints that the system was originally 

subjected to. 

On the other hand, during the motion additional 

constraints may suddenly be imposed upon the system. These 

may frequently occur in systems for which the topology does 

not remain constant. Each additional constraint reduces the 

number of degrees of freedom of the system 

dependence among the generalized coordinates. 

there are more generalized coordinates than 

and creates a 

Consequently, 

are needed to 

describe the system, and hence some of them become redundant. 

Clearly, the coordinate dependencies resulting from these 

constraints, have to be included in the system analysis, 

otherwise the solution of the equations of motion will not 

represent the motion of a constrained system. This can be 

achieved through what is known as the constraint equations, 

which are discussed next. 
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3.3 CONSTRAINT EQUATIONS 

The constraint equations are equations indicating the 

geometrical and kinetic dependencies among the particles 

comprising a given system. In the present analysis only the 

geometrical constraints are considered, as only such will be 

encountered in systems for which our model is designed. 

The geometrical constraints establish the spatial 

dependencies among the system's particles, and, for 

scleronoinic systems, can be described by the following 

equation: 

f(f) = 0 I (c = 1,•••, d) 

where d indicates the number of dependent (redundant) 

coordinates in the chosen system of coordinates. As an 

example let us consider a geometrical constraint defining a 

fixed distance L between two particles i and j in the system. 

The corresponding constraint equation would be given by: 

(f - f) . (f - f) - L2 = 0 

The constraint equations can be written in terms of the 

generalized coordinates, 
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f(q1 , q2 , q) = 0 (3.12) 

There are two basic methods to handle the constraints. 

The first method, which suggests itself naturally, is based on 

solving the additional constraint equations (which are here 

assumed to be holonomic or integrable) for the redundant 

coordinates explicitly in terms of the remaining coordinates 

(now independent), and then substituting them into the 

equations of motion ( Equation ( 3.11)). This approach is not 

very feasible especially for large systems as it will greatly 

increase the complexity of already complicated equations of 

motion. The second method makes use of Lagrange multipliers, 

and provides much more convenient means of handling the 

constraint equations. 

In a moving system of particles, constraints result in 

reaction forces. We recall that the equations of motion which 

were derived from the virtual work principle, Equation ( 3.1), 

carried the assumption that the virtual work of the system's 

reaction forces was zero. This is of course true, since in 

the properly defined ( in terms of generalized coordinates) 

system the relative virtual displacements are possible only in 

the directions normal to the corresponding reaction 

(constraint) forces. However, if the chosen system of 

coordinates contains the redundant coordinates then the 

virtual displacements will not be in conformity with the 
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constraints. Hence; the virtual work by the reaction forces 

in the constraints will not be zero, and thus must be 

included. 

In terms of the generalized coordinates, the virtual 

displacement in a constraint, by Equation ( 3.12), is: 

= ôq (3.13) 
i=1 qj 

The virtual work by the constraint forces would then be: 

d d n 

8wf = = aq 
(3.14) 

where A. are constraint forces in a generalized sense, called 

Lagrange multipliers. Similarly to Equation ( 3.3), we can 

change the order of summation and write Equation ( 3.14) as 

8wr = A1 8q1 A2 = E  I qj (3.15) 



69 

d 32' aT 
- 3q1 

= Qi + A , (i = iF ", n) (3.16) 

By the analogy to Equation ( 3.11), the equations of motion can 

be written in a matrix form. Namely, 

where: 

+ [B]'[4] = [Q] + [A] 

[A] = [G]T[A} 
gai 

- 3f 

ag-i 

(3.17) 

Equation ( 3.17) represents a system of n differential 

equations in n+d unknowns {q}, {A}, which together with the 

set of d algebraic constraint equations (Equation ( 3.12)) 

comprise a system of differential algebraic equations (DAE) of 

motion of the system. 

Instead of solving the constraint equations for the 

redundant coordinates, the above system of DAEs can be solved. 

The, solution of these equations for the generalized 

coordinates will reflect the constrained motion of the system. 
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3.4 TREATMENT OF RIGID BODIES 

The equations of motion derived in the previous two 

sections can be readily applied to a system containing rigid 

bodies instead of particles. Indeed, the virtual work 

principle, Equation ( 3.1), will now contain the rotational 

terms, in addition to the linear terms. We write: 

- ôf + (Mi - = 0 (3.18) 

where Mj is the moment about a certain point in the body from 

all the external loads applied, I is the body's moment of 

inertia about the instantaneous axis of rotation passing 

through that point, is angular acceleration vector, 86, is 

the vector of virtual angular displacements, and, 

Ii = q,) 

q) 

Repeating the procedure of Section 3.2 we can write the 

equations of motion for a system of rigid bodies, similarly to 

Equation ( 3.16), 

daTaT 
3Q_i = Q•A Qi = + (3.19) 
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where T is the kinetic energy of the system and A1 is given 

by Equation ( 3.15). 

In general, the kinetic energy of a rigid body is given 

by ( see Appendix B), 

Mj ( df0 dfcG + (3.20) T. = + m. N j) 
2 dt ) dt dt 2 b 

where fo, is the positional vector of some chosen point within 

rigid body j in the inertial frame of reference, fC.G is the 

vector from that point to the body's center of gravity in the 

local frame of reference ( fixed to the body), and is the 

angular position vector of the local reference frame. The 

kinetic energy of the system is now given by: 

T =E T = T1 + T 2 + (3.21) 

where T1, T2 , 1 correspond to the first, second, and third 

terms in Equation ( 3.20). By the analogy to Section 3.2 terms 

T1 , 2'3, can be evaluated according to Equation ( 3.6) in terms 

of generalized coordinates, 

TI. = _i. 
i,ki 

N  3f08f0 
ak=E - aq 

(3.22a) 



72 

T3 = - E 
i,Ic=1 

N E U'Jj UUj 

j=1 ' ij ;i k 

(3.22b) 

Evaluation of term T2 is more complicated as it involves a 

triple product. We have, for a single body, 

T2 =M   

df0 dfcG j 

dt dt 

df0 d. -. 

- m   3 xr 
dt de C. G. 

which in terms of the generalized coordinates can be written 

as: 

T2 j 
Z.S. 

aer 
= m E I E prs a aq iJ i dk 

i, k=1 P, X, 

where superscripts p, r, s denote the cartesian coordinates 

of the respective vectors and EP., is the permutation 

constant. Summing over all the rigid bodies, we obtain the 

following relation: 

T 2 2  

where 

N r 

ak = 2 E m j Eprs ag' aq 

Finally, 

= 

I, k=1 
aq1q (3.22c) 

T = a ik  
I, k=1 

alk = alk + a k + a1k 
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The generalized forces Q1 and the kinetic energy T of the 

system were thus determined in terms of the generalized 

coordinates q.. The final form of the differential algebraic 

equations (DAEs) of motion for a system of N rigid bodies can 

be written as: 

[A][J + [B][] = [0] + [G] T [A] 

(3.24) 

= 0 , (c=l,,d) 

where the coefficients âjk of matrix [A] are defined by 

Equation ( 3.23), coefficients bik of matrix [B] are related to 

âik through Equation ( 3.10), the generalized forces Q1 are 

given by Equation ( 3.19), and the coefficients g 1 of matrix[G] 

are established in Equation ( 3.17). Provided that the 

positional and orientational vectors for every rigid 

body in the system are known, these coefficients can always be 

evaluated and the system of equations ( 3.24) set up. 

The generation of the system of DAEs of Equation ( 3.24) 

on a digital computer for an arbitrary system of rigid bodies 

was developed in [ 31], and the appropriate algorithms can be 

found in that reference. As a final note to the presentation 

of the mathematical model, a proposed system of coordinates 

used in the present'model should be discussed. This will be 

done briefly in the next section. 
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3.5 PROPOSED SYSTEM OF GENERALIZED COORDINATES 

In the previous section the Lagrangian equations of 

motion for a general three-dimensional case were established. 

In this section we will present our choice of generalized 

coordinates. Herein we shall limit ourselves only to a two,-

dimensional case, since at the present our model is only two-

dimensional. 

We recall that rigid bodies are approximated by disks. 

Simple rigid bodies, which are represented by single disks, 

are treated like particles, and thus can have a maximum of two 

degrees of freedom, that is their rotational motion is 

neglected. On the other hand, the complex rigid bodies, which 

are represented by rigid configurations of disks will have a 

maximum of three degrees of freedom ( one rotational and two 

translational). 

For a single isolated disk the chosen generalized 

coordinates represent the cartesian coordinates of the center 

of the disk. Hence, 

= xi 

Ii 
q2 =y 

= q11 + q2  
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A single disk being in contact with another object in the 

system has only one degree of freedom. Consequently, its 

position is represented by only one generalized coordinate, 

provided that the object's location in the system is known. 

Figure 3.1 shows the choices of the generalized coordinates in 

cases when the disk is contacting an obstruction line segment 

(a), or another disk (b). 

a (b) 

Figure 3.1. Definition of chosen genera-
lized coordinates for a disk in contact 
with a line segment ( a) and a disk (b). 

For a disk in contact with an obstruction line segment, the 

generalized coordinate is chosen as the distance from one of 

the ends of the line segment to the point of contact. We thus 

have: 

= (x+q1t+Rn)i + (Y+q1t+RJn)j 
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where n,,, t,, t, are cartesian components of the normal 

and tangential vectors for the given line segment, as shown in 

the figure. 

For a single disk contacting another disk, the 

generalized coordinate is chosen as the angle that the line 

connecting the centers of the two disks makes with the x-axis, 

Figure 3.lb. We therefore have: 

(x0 + (R + R0) cos ( 91) ) i + (y0 + (R + R0) sin (q,) ) j 

where x0 , y0 are the components of the known positional vector 

of the other disk. 

Figure 3.2 shows the definition of the generalized 

coordinates for a complex rigid body. 

BASE DISK 

i— REFERENCE DISK 

MW 

REFERENCE LINE 

0=q 1 x 

Figure 3.2. Definition of generalized 
coordinates for a complex rigid body. 
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The chosen generalized coordinates represent the two cartesian 

components of the positional vector of the base disk, and the 

angle that the reference line makes with the x-axis. The 

reference line is defined as a line connecting the centers of 

the base disk and some other disk selected within the body. 

This line defines the angular position of the entire body. 

The positional and angular vectors can be defined as: 

xO = y0 , q3 =f3 

= q3k 

If the given complex body is in contact with another 

object in the system then the contacting disk is always chosen 

as the base disk for that body. Thereafter, the generalized 

coordinates describing the positional vector for this disk 

(f0) are chosen in the same way as for a single disk in 

contact. 

This concludes the. mathematical formulation of the 

present model. The positional and angular vectors for every 

body in the system are defined. The kinetic energy as well as 

the generalized forces can be determined in terms of the 

proposed generalized coordinates. 
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3.6 CONCLUSIONS 

In this chapter the mathematical formulation for the 

model was presented. The motion of the system was described 

in terms of a set of simultaneous differential algebraic 

equations (DAE). Equation ( 3.24) shows the final form of the 

equations of motion. It should be pointed out here that the 

mathematical formulation of the problem was exact, as no 

simplifying assumptions were made during the formulation. Any 

such assumptions that are later imposed, are done so for the 

purpose of reducing the difficulty in obtaining a numerical 

solution and increasing the computational speed, or for the 

purpose of reducing the number of generalized coordinates. 

Treating a single disk as a particle is an example of the 

latter. Also, inadvertently, for many systems some 

simplifications will have to be made in the determination of 

the character of the external loads acting on the system which 

will lead to inherent errors in the generalized forces. 

Nevertheless, the mathematical formulation for the model is 

exact. 



CHAPTER 4 

GENERATION OF RIGID BODIES 

4.1 INTRODUCTION 

The processes involving the systems of a large number of 

rigid bodies nearly always possess a certain degree of 

randomness. This randomness is associated with a large 

variety of shapes and sizes of the rigid bodies as well as 

their varying concentrations and spatial distributions 

throughout the system. In computer simulations of processes 

such as these it is useful to be able to generate the rigid 

bodies at random, thus avoiding a biases associated with 

systems for which the rigid bodies are predefined. For this 

purpose a random number generator was incorporated into the 

computer model. This generator provides our model with a 

uniformly distributed sequence of random numbers which are, 

consequently, sampled to randomly generate the sizes of rigid 

bodies and their spatial positions according to specified 

distributions. The last statement seems at first sight to be 

contradictory. However, as we shall see in Section 4.3, it is 

possible to generate a given variable associated with a rigid 

body ( such as its size, for example) completely at random £n 

such a way that globally, this variable will be distributed 

according to some specified function. 

79 
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Before presenting the methodology of rigid bodies 

generation and its numerical implementation, several basic 

ideas need to be discussed. Let us consider the example shown 

in Figure 4.1. 

\ \ 
P2 

Figure 4.1. A schematic diagram for the 
rigid body generation. 

The broken line in the figure represents a conveniently 

chosen boundary of the control area or the domain in which the 

simulation is carried out. The three main types of boundaries 

that can be identified are: 

a) Solid Boundary, indicated by the line ( P1 P2 ) as well as by 

the closed curve S. This type of boundary typically 

represents physical structures such as the walls of a channel 
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or an obstruction. 

b) Generation Boundary, represented in the figure by the line 

segment ( P1 P3) . This boundary is chosen by the user and is 

used for the rigid body generation. 

c) Exit Boundary, indicated by the segment (P3 P2) . Once a 

rigid body generated on the generation boundary crosses the 

exit boundary it is automatically deleted from the simulation 

procedure. 

In our simulation program the disks are generated at the 

generation boundary one at a time. They move towards the 

solid boundary being acted on by the external forces of the 

system. Consequently, as the simulation progresses, more and 

more disks are present in the system. Every disk generation 

is considered as a random event, characterised by three random 

variables associated with it. Those are the size of a disk 

represented by its radius R, its position along the generation 

boundary x, and the time interval At after which the next 

generation is taking place. The disk generation procedure 

thus is reduced to generating the above three random 

variables. These variables are assumed to be continuous over 

their respective domains, for example, the radius of a disk 

can vary continuously from some minimum to some maximum value. 

Each of the random variables has a certain probability 

distribution function. If X denotes a random variable and x 

is its value then, the cumulative distribution function F(x) 
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is defined as the probability that a random selection of X 

gives a value less than x. We write 

F(x) = P{X<x} (4.1) 

From the definition of the distribution function it is evident 

that 0 ≤ F(x) ≤ 1. If a given random variable X has all 

values fall within some interval, x ≤ x:9 x, then 

= 0 , F(x,) =1 

We can also identify the probability that the value of a 

random variable X falls within a specified interval ( x11x2) 

Namely, if ( x11x2) e then 

P{x≤X≤x2} = F(x2) - F(x1) (4.2) 

In the specific case when the size of the interval is (dx) we 

may write Equation ( 4.2) as 

P(XEdx} = F(x+dx) - F, (X) = f(x)dx (4.3) 

where f ( x) = dF ( x) / dx is known as the probability density 

function of a random variable X. 

Conversely, if a probability density function for a given 
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random variable is known then the cumulative distribution can 

be calculated: 

F, (X) = I 
,ctlin 

(4.4) 

The above result suggests that the cumulative distribution of 

a random variable is equal to the area under the probability 

density function, as shown in Figure 4.2. 

Figure 4.2. Correlation between F(x) and 
f(x). 

Each of the three random variables associated with the 

generation of a rigid body has a probability density function 

associated with it as well as a uniformly distributed random 

number sequence. The sequence is used to randomly sample the 

given variable according to its distribution. 

The methods of obtaining uniformly distributed random 

numbers on the ( 0,1) interval are presented in Section 4.2 and 
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the sampling techniques are discussed in Section 4.3. 

For the purpose of this model it is assumed that the 

radii of the disks are distributed according to a Gaussian 

distribution, their positions along the generation boundary 

are described by a uniform distribution, and the time 

increments are Poissonian inputs. The methodology of sampling 

of these random variables is presented in detail in Section 

4.4. 
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4.2 RANDOM NUMBER GENERATORS 

With the recent evolution 

improved capabilities there 

computational methods (such 

stochastic simulation), in 

in digital computers and their 

is an increased interest in 

as Monte Carlo methods or 

which certain phenomena or 

processes are studied by carrying out the computations for a 

large number of sets of randomly chosen parameters of the 

processes. Such methods make use of random numbers in 

modelling the process or computing an outcome of an event 

which is stochastic in nature. By stochastic process it is 

meant a process described by a sequence of states whose 

evolution is determined by random events. During the 

computation such random events are prescribed by the random 

numbers used. 

Many physical devices have been constructed for the 

purpose of generating random numbers. Those are based on 

physical processes which are statistically considered random. 

There are also random number tables available on disks and 

magnetic tapes, which were generated by the physical processes 

and subjected to a number of statistical tests (references to 

the rand tables can be found in [ 15]). These tables are often 

considered a standard input for the computer programs which 

rely on the randomness in the strictest sense. 
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Often in practice an extremely high degree of randomness 

of the numbers may not be required for simulation of a 

particular phenomenon. In such instances it is convenient to 

generate the numbers one at a time, as they are needed, by a 

specified rule. The rule can be devised in such a way that 

the generated sequence of numbers will have desire 

statistical properties and no significant deviation from 

randomness will be detected when the sequence is subjected to 

statistical tests. Such a sequence of numbers is called 

pseudo-random and, although, not genuinely random, it can be 

close enough to randomness for practical applications. The 

advantage of using computer generated random numbers in the 

simulation of stochastic processes is that any given sequence 

of numbers can be readily reproduced if, for example, a 

verification of results is required or a comparison of 

different methodologies is made. 

Most of the pseudo-random number (PRN) generators are 

based on recurrence formulas where the next number in the 

sequence is obtained from its predecessor. Different types of 

PRN generators are discussed in Appendix C. 

For the purpose of our model a mixed congruential 

generator ( Equation ( C.8)) is chosen, based on [ 21]. 

x 1 = Xx ,, + b (mod P) 



87 

At the present time the simulation is carried out on a 

32-bit binary machine. Therefore, 232 is selected as the base 

of number representation P. The parameter A is chosen so it 

satisfies the conditions necessary for the generator to attain 

a maximum period of rrrax = 232 (see Appendix C). Reference [ 21] 

suggests 1812433253 as the value for the parameter. The 

increment b should not have a common divisor with P and hence, 

for our choice of P any odd integer can be used. Parameter b 

is selected to be equal to the prime number 317. 

In summary the PRN generator used for obtaining the PRN 

sequences on ( 0,1) interval, is in our model as follows, 

= Xxn + b (mod P) 
x12+1 

n+1 = P 

with p = 2 32 

A = 1812433253 [ 1 ( mod P) ] 

b = 317 

X0 a large odd number. 

(4.5) 

Our computer model requires three separate PRN sequences. 

Those are obtained by starting the generator of Equation ( 4.5) 

with three different initial numbers or seeds, x0. Also, 

these numbers are used by the program only at the time of the 

rigid body generation. There is, consequently, no need to 

store the entire sequence. The routine for generating random 
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numbers is thus designed in such a way that the new number is 

stored in place of its predecessor. Such a generator 

automatically reseeds itself. Logically this is written as 

x Ax+b (mod P) (4.6) 

If numbers ' are drawn at random from the ( 0,1) 

interval, then their distribution should be uniform over the 

interval. This is evident since"randomness" implies that the 

probability of choosing any particular number from this 

interval is the same. A good PRN generator will supply a 

sequence of numbers with a uniform distribution. Hence, we 

write 

= 1 (4.7) 

and the cumulative distribution by Equation ( 4.4) becomes, 

= , (0,1) (4.8) 

Now, by Equation ( 4.2) the probability that a chosen random 

number falls within a specified interval, E (, 2 ) I is 

E ( 1'2 ) } = (4.9) 

The selected PRN generator can also be used for the 

generation of pairs of.random 'numbers (, r) with a uniform 

distribution over a square with a unit side. A uniform 
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distribution of pairs of numbers implies that 

P{(,t-1) EA} = (4.10) 

where AA E ] 2 is some area within the square. 
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4.3 SAMPLING TECHNIQUES 

In the computer simulation of stochastic processes, as is 

the case in the present study, it is often required that 

certain variables be drawn randomly from a specified 

distribution, in other words, that randomly chosen variables 

be distributed according to a given distribution function. 

Such selection of random variables is called sampling. 

To define sampling mathematically, let us consider some 

space 1' which can be either discrete or continuous. We 

denote the elements of this space as x, xeF0. We assume 

that there exists a continuous or discrete probability density 

function, .f(x) such that: 

f f W  dx = 1 
F0 

(4.11) 

Sampling is now defined as a procedure of producing a sequence 

of random variables 

any sub-space r c 

I such that for 

{x E } = f f W dx ≤ 1.. (4.12) 
r 

We note that the proper rules of integration should be obeyed 

when a discrete space or a discrete distribution function is 

used, although the above equations are written for both cases. 
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If a given space is one-dimensional, such as an interval 

(Xmjn , Xm ) E R then, 

P{x1 E ( a, b) = ff(x) dx 
a 

(4.13) 

for any sub-interval ( a, b) E (xmjn , X,,,). In the limiting 

case when the given interval becomes an infinitesimal 

neighbourhood ôx of point x then we may write 

P(x E öx} = f(x) 18X  (4. 14) 

The present analysis will be limited to sampling one-

dimensional distributions as only such are used in the model. 

One can, however, develop similar sampling techniques for 

multi-dimensional distributions. 

We start with a set of random numbers, , uniformly 

distributed on ( 0,1). It is assumed that the numbers are 

provided by the generator of Equation ( 4.5) and have the 

cumulative distribution given by Equation ( 4.8). Sampling of 

a random variable x E ç) with the corresponding 

probability density function f (x) can consequently be reduced 

to finding a transformation function . which maps ( one to 

one) the ( 0,1) interval onto the (Xmjn , Xm ) interval, 

E (0,1) 
XE (X n ,Xm ) 

(4.15) 
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so that a set of uniformly distributed numbers ( j) produces 

a set of random variables { x} which are distributed according 

to f(x) . If we also require that the transformation function 

be non-decreasing then: 

< t } = p{9( 1) <.()} (4.16) 

and by Equation ( 4.15) 

P( < U = P{x < x} (4.17) 

Hence, from Equation ( 4. 1), we have 

F() = F(x) (4.18) 

and finally with the application of Equation ( 4.4) and 

Equation ( 4.8) we may write, 

F, (x) = f f (,n ) dn (4.19) 

The desired transformation function Jrcan now be defined by 

solving the integral equation ( 4.19) in terms of x. This is 

equivalent to finding an inverse of the cumulative 

distribution function, denoted here as F. In short we can 

write: 

x = '() = F 1 () (4.20) 
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One could anticipate the .result of Equation ( 4.19). A 

similarity between and F(x) suggests itself since both have 

their values between 0 and 1. If we again consider a small 

interval 8x, then from Equation ( 4.3), the LHS of Equation 

(4.14) is simply 8F(x) 8F(x) represents a probability 

that the value of the random variable x falls within 6x. 

Now, if for any such interval 6x we choose a corresponding 

infinitesimal interval 8 = 8F(x) and, moreover, if we assume 

that for any random number e ö we select a random variable 

such that x E ox, then 

P(x E 6x} = e O} = = f(x) Ox (4.21) 

The above result is analogous to Equation ( 4.14). Hence, the 

random variable x is distributed according to .f(x). Such a 

mapping of infinitesimal intervals is equivalent to the 

transformation function of Equation (4.15) since 

d = f ( x) dx represents relation ( 4.19). This concludes our 

argument. Figure 4.3 shows the graphical representation of 

the mapping which defines the sampling procedure. 

The sampling procedure described above is often referred 

to as sampling by a variable transformation. We generate a 

sequence of random numbers {} E (0, 1) , and then apply a 

transformation of Equation ( 4.20) to obtain the desired 

sequence of random variables {x1} € (Xmin , x) . Often one may 
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E 

at 

F(x) 

N 
Xmjn 16X: X 

Figure 4.3. A graphical representation 
of the mapping of ( 0,1) onto x-domain. 

not be able to find an analytical expression for the 

transformation function (F;'), and a numerical solution of the 

integral equation ( 4.19) may not be economical. If such is 

the case, sampling can be performed by what is known as 

discretization of the probability density function. 

Let us consider a one-dimensional domain (Xmjni Xm) with 

a continuous probability density function, f (x), prescribed 

on it, as shown in Figure 4.4. We divide the interval 

(Xmini X m ) into a series of small finite rather than 

infinitesimal intervals 1x,, Ax2r , , over which the 

probability density function (PDF) can be assumed constant. 

If f, j, f, , , are the values of PDF over the respective 
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Figure 4.4. Discretization of the 
probability density function f(x). 

intervals, then 

= 1 (4.22) 

and 

P{xEix1} = fi Axj (4.23) 

The above result suggests that selecting a random variable 

x E Ex can be thought of as a random event the probability 

of which is equal to fAx1. We have n such intervals, and 

hence, sampling process reduces to randomly choosing one of 

the n random events E1 , , , E with respective probabilities 

being P{E1} = fAx1 ., (.i=1,n) 



96 

We now divide ( 0,1) into n discrete subintervals 

1' A2 and we say that if a generated random number 

falls within sub-interval i, i.e. E L j E (0,1), then we 

select event E1. From Equation ( 4.9) it can be seen that the 

probability that a random number on ( 0,1) falls within a 

specified interval is simply equal to the length of this 

interval, i.e. E = A. Consequently, if we require 

that event E have a specified probability then the length of 

the corresponding interval must be equal to this 

probability. We can write this condition as 

P{E} = Pf 9 E = 

Since event Ej represents selecting random variable x from 

interval Ix then, 

and therefore: 

P{E1} = P{xeLx1} = 

= .f•Ax (4.24) 

The result of Equation ( 4.24) represents a mapping of discrete 

intervals in a-domain onto discrete intervals in i-domain, and 

since f ( x) = const on each interval, such mapping is 

described by a linear transformation function. We write this 

as 9 : -. X, E A , x E Lx. If we use superscripts 1 
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and 2 to denote the end points of the respective intervals 

then similarly to Equation ( 4.15) we may write 

5t E 
x  ( XI, XD 

and by Equation ( 4.19) we have 

- = f(x - x) 

Whence, the selected random variable x is given by 

X = () = X + (4.25) 

It is evident from Equation ( 4.24) that = x. Also, 

n 

= 1. 

The above method of "allocation and selection" will, 

thus, produce a set of random variables { x} distributed 

according to f(x) from a sequence of uniformly distributed 

random numbers {}. These are, of course, provided by the PRN 

generator, Section 4.2. 

Perhaps the easiest way of discretizing the two domains 
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is by selecting n-i points x', x2 , . , x' within the given 

interval (Xmjni x) such that 

xmin <X'<x 2 < 

Now, if we denote Xmjn = X ° X", = then we can define the 

sub-intervals Ax as 

Ax1 (x1 ', x " ) , (i=l,n) (4.26) 

and 

Ax! = x i - xi -i. 

Constants fj are taken as the values of PDF at the mid-points 

of the respective intervals. Thus, 

fi = f (X+X l ) 

Using the definition of ( 4.26) we define intervals A 1 in such 

a way that relation ( 4.24) is satisfied. Namely, we set 

V = O, and we let 

f'Ax 

and if 

then 

(i=l,n) (4.27) 

(4.28) 
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Ixi = V  - i-1 
= E(fil"A -  

= 

This satisfies condition ( 4.24) and hence, -domain is 

discretized properly. Now the sampling methodology can be 

summarized as follows. We generate a random number 

E (O;l) and locate the sub-interval within which that 

number falls ( Aki as defined by Equation ( 4.28)). This 

establishes the corresponding sub-interval Axi from which the 

random variable x is drawn according to relation ( 4.25). 

As a final note we will now consider what is known as 

rejection sampling method. This is often, in terms of the 

computer time involved, the quickest and the most efficient 

sampling technique. It is a very general method and it can be 

used to sample virtually any probability distribution 

function. It is particularly useful for sampling 

distributions for which the variable transformation method 

cannot be easily applied, and offers advantages over the 

discretization technique where considerable computer time can 

be lost on searching through the intervals and allocating the 

variables. However, this method requires a good square PRN 

generator, i.e., a generator which is capable of generating 

uniformly distributed pairs of random numbers. As before we 

will again confine ourselves to one-dimensional distributions 

only. Let us consider a situation shown in Figure 4.5. 
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Figure 4. S. Sampling of the PDF by a 
rejection technique. 

We wish to choose variables x at random from(xmjn , Xm ) 

in such a way that the variable is distributed according to 

f(x) . The sampling technique presented here relies on 

generating a pair of random numbers (, i) , 0 ≤ ,'r1 ≤ 1 

These two numbers correspond to coordinates of some point 

P(x,f) in the x-f plane respectively, i.e. 

€ ( 0,1) °c XE ( Xmin i Xma. ) 

11E(0,1) cc f€(0,f(x)) 
(4.29) 

The linear correspondences in Equation ( 4.29) are given by, 
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X - X1 

X rr - Xmin 

f  

- fmax(X) 

X = + . (xM'X - Xmin ) 

f = 11fxnax (X) 

(4.30) 

where tmax (x) = max denotes the maximum value of the PDF on the 

given interval (Xmjn iX x ). The probability density function 

consists of a set of points in x-f plane for which .f = f (x) 

Equations ( 4.30) define a one-to-one transformation of 

—i domain (a square with a unit side) into x-f domain 

represented by a rectangle with sides being (Xmjni X) and 

(0, fmax  . Since the transformation is one-to--one, it is 

evident that every point will have one, and only one, 

point ( x, f) corresponding to it. 

Sampling of x is now performed in the following way. We 

generate a pair of random numbers , il. From Equation ( 4.30) 

we determine the corresponding point (x, f) . If this point 

falls below the PDF curve f(x) ( i.e., falls within the shaded 

area in the diagram in Fig. ( 4.5) ) then we select variable x, 

otherwise we reject it and generate another pair of random 

numbers which, again, are tested, and so on. In the end we 

have a sequence of random variables {x} which were accepted. 

The condition for accepting a variable x given a pair of 

random numbers is that: 
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f ≤ f  (4.31) 

Lastly, we need to verify that the generated sequence of 

random variables has, indeed, a desired distribution f ( x) 

Let us consider an infinitesimal interval öx E (Xmjn, x), as 

shown in Figure 4.5. We are interested in finding the 

probability that a selected random variable x falls within 

that interval. This is equivalent to estimating the 

probability that a generated point (x, f) belongs to th 

incremental area under the PDF curve ÔA provided that only 

successful points are considered. We can write this as: 

P{x E 8xj success } = .P{ ( x, f) E ÔA I success} 

which can be written as 

P{x E 8x I success) = P{x E 8x I .f ≤ f(x) } 

Since the variables x, f are obtained from a linear 

transformation of random numbers t, they are independent 

and uniformly distributed over their respective domains. 

Hence, the conditional probability on the LHS of the above 

equation is simply equal to the product of the probabilities 

of the components. We write: 
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P{x E ox I success } = Ox .f(x) 

The above result is the same as the one in Equation ( 4.14), 

and hence, we can conclude that random variables generated by 

this method will be distributed according to the given PDF. 

The method of selection and rejection presented above is 

relatively simple and can easily be implemented on a digital 

computer provided that a good square generator is available. 

The disadvantage is that for certain PDF's it may have a low 

efficiency, i.e., many values may be rejected before one is 

accepted in which case sampling by discretization may be a 

better technique. Such situation arises when the area under 

the PDF curve is small compared to the entire domain 

f1 ' (x - Xmin ) . Figure 4.6 shows a suitable and unsuitable 

PDFs for the application of rejection method. 

ff(x) 

f 

ff(x) 

Z / A 

Figure 4.6. Typical PDF's, suitable ( a) 
and unsuitable (b) for the application of 
rejection sampling technique. 
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4.4 METHODOLOGY OF GENERATING RIGID BODIES 

In our model the generation of a rigid body is assumed to 

be a random event wherein a new body enters our control area 

somewhere on the generation boundary. It is evident that if 

a truly stochastic simulation of a process is to be carried 

out, then the point of entry must be random as must be the 

size of the rigid body and the time intervals between the 

consecutive entries (generations). For example, let us 

consider a process of interaction of ice carried by a river 

with a bridge pier. An observer standing on the river bank 

will see ice floes moving towards the bridge pier. It will 

seem to him that the floes entering his viewing area are of 

different sizes and hapes and that they appear with different 

frequencies and at different distances from the shore. He 

will not be able to establish any dependencies between the 

appearances of consecutive floes and will not be able to 

predict the spatial or physical characteristics of the next 

floe to enter the viewing area. In other words, an observer 

will perceive the appearance of a floe as a random event and 

the parameters associated with it as random variables. He may 

also notice that some sizes of the floes are more common then 

others as also may be the case with other variables. Hence, 

he may conclude that the characteristics of the floes, 

although random, may be distributed in a certain way, i.e., 
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that certain values of the associated parameters may be more 

likely to occur then others. 

In the simulation of such a process it is desirable to 

retain its, stochastic nature. Hence, the generation of a 

rigid body ( i.e., its entry into the control area) is 

interpreted as a random event. Each such event has three 

random variables associated with it, namely: size (radius of 

the disk), location at which it enters, and the time interval 

until the next generation ( entry). Each random variable has 

a corresponding numerical value and an assumed distribution 

function. Consequently, the procedure of a rigid body 

generation boils down to random sampling of the three random 

variables. For this purpose we use the PRN generator of 

Section 4.2, which is capable of generating a sequence of 

random numbers on ( 0,1) with good one- and two-dimensional 

distributions. Three independent PRN sequences, one for each 

variable, are started. Every time the rigid body generation 

is to take place, one random number from each sequence is 

generated. These are then used to sample the respective 

distribution functions for the values of the random variables. 

Sampling techniques were discussed in Section 4.3 and those 

will only be referenced in this section. 

A schematic block diagram of the generation routine used 

by the model is shown in Figure 4.7. The methodologies for 
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sampling of particular random variables and their computer 

implementations are discussed in the consecutive subsections 

of this section. 

SET THE INITIAL PARAMETERS 
FOR THE GENERATION ROUTINE 

GENERATE THE SIZE 
OF THE RIGID BODY 

V 
GENERATE THE LOCATION 
ON THE GENERATION 

BOUNDARY 

CAN THE 
BODY BE POSITIONED 
AT THE GENERATED 

POINT 

YES 

POSITION THE BODY 

ADVANCE THE RIGID 
BODY COUNTER 

NO 

DETEMINE ALL 
INTERFERENCE INTERVALS 
ON THE GENERATION 

BOUNDARY 

DOES THE 
INTERFERENCE ZONE 

STRETCH OVER THE ENTIRE 
GENERATION 
BOUNDARY 

GENERATE THE TIME 
INCREMENT TO THE NEXT 
RIGID BODY GENERATION 

NO 

POSITION THE BODY 
AT THE LOCATION 
NEAREST TO THE 

ORIGINAL ONE 

RETURN 

EXIT WITHOUT 
GENERATION 

YES  
oft 

Figure 4.7. Block diagram of the generation routine 
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4.4.1 Sampling for the size of a rigid body 

Rigid bodies are represented by disks whose sizes are 

determined by their radii. It is assumed that the radii are 

distributed according to a Gaussian distribution given by 

f(x) = 1  exp'-  (X 11  
2o 

where jt is the expected or mean value, 

(_oo < x < oo) (4.32) 

+00 

= E(x) = fxf(x)dx 
-00 

and 0 2 is the variance of the random variable defined as 

+00 

VAR (X) = f (x - [t) 2 f (x) dx 
-00 

The two constants, p,a, are the characteristic parameters of 

the distribution and must be entered as inputs into the 

program. 

The cumulative distribution of the random variable X for 

the given PDF, by equations ( 4.1) and ( 4.4), is given by the 

following relation 
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F, (X) 

X x 

= f f (_V) d-y = f [ '  'expl-  2 \1dy = ert(x) 
-00 -00 2a 

There is no analytical solution of the above integral and 

therefore sampling by a variable transformation cannot be 

used. One of the other two techniques is considered. Since 

the chosen PRN generator gives -a good distribution for the 

pairs of numbers it is suggested that the selection-rejection 

sampling technique be used. It is also believed that the 

efficiency of the method is sufficient for a Gaussian PDF. 

We will sample random variable X representing the radius 

of a disk by a rejection method ( Section 4.3). The variable 

will be sampled from a finite interval (Xmjn i x) rather then 

an infinite one. The governing condition is shown in Equation 

(4.31). The maximum value of the PDF over the interval, 

provided, of course, that p E x), is 

= 4oax (x) = f(x=) = 
1  

The points Xmin xmx correspond, respectively, to a minimum 

and a maximum value for the radii of the disks used by the 

program and are entered as inputs. 

Using the PRN generator we generate two random numbers 

We then apply the transformation equation ( 4.30) to 
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obtain the corresponding pair of variables, x, f, i.e., 

I 
Now if 

X = Xmin + • (X Xmin ) 

= 1 

a  

1  .exp(_ (x- i)2 ) 
CF V _27C 20 2 

then we accept the variable x. If not then we generate 

another pair of random numbers and repeat the above steps. 

This procedure is repeated until a successful selection is 

made. The generated size is then 

R = x 

t 

This concludes the methodology of sampling for size. The 

appropriate routine was programmed on the computer. 
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4.4.2 Sampling for position 

The position of a rigid body at the entrance into the 

control area, is defined as the distance along the generation 

boundary from some conveniently chosen reference point. The 

generation boundary is defined by a set of straight line 

segments. A typical generation boundary is shown in Figure 

4.8. 

RP 

2 

Xma x 

3 

3 

Figure 4.8. Sampling for the position of 
a rigid body. 

The reference point (RP) is chosen atone end of the boundary. 

The maximum position xmx is then equal to the sum of the 

lengths of the individual line segments that make up the 

boundary. 



It is assumed that the probability that the generated 

rigid body occupies any position along the boundary is the 

same. Hence the random variable x representing position i 

distributed uniformly over interval ( 0 , Xm ) , and thus the 

corresponding probability density function is constant. Here, 

(4.33) 

The cumulative distribution function, by Equation ( 4.4), is 

therefore 

F(x) = 
x 

X max 

The above result suggests sampling by variable transformation. 

We use the PRN generator to produce a random number . Then 

by Equation ( 4.19) we have 

x 
X = Xmax (4.34) 

Variable x in Equation ( 4.34) represents the randomly sampled 

position of the generated rigid body along the generation 

boundary. This position corresponds to the coordinates of the 

center of the disk (x0, yo) that represents , the rigid body. 
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4.4.3 Sampling for the time interval 

We assume that generations of rigid bodies are, in terms 

of time, Poissonian events or Poissonian walk. Hence, the 

time increments between consecutive generations are governed 

by the Poisson distribution. 

Suppose an event occurs randomly but on average A times 

per unit time. The probability that exactly k events will 

occur during time t is given by the Poisson distribution, 

defined by 

P{N= k   T= b} = (4.35) 

The probability that no events occur during the time interval 

t will thus be 

P{N = 0 I T = t} = 

since 0! = 1. Now the probability that at least one event 

will take place during time interval t is obviously one less 

the probability that no events occur, i.e. 

P{Zsl ≥ 1 1 T = = 1 - e (4.36) 

If we want the Poisson distribution to simulate a random 
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process such as the generation of rigid bodies, then what we 

want is to generate randomly "approximate waiting" times for 

the next event to occur. If T represents a random variable of 

time increment to the next event, then we want to define its 

cumulative distribution, i.e. the probability that T is less 

than t,(P{T< t}). But  can be less than t only if at least 

one event occurs in time t, hence using Equation ( 4.36) we 

wr.ite 

FT(t) = 1 - 

Now if is the generated PRN then by Equation ( 4.21) 

= 1 - et t = --Lln(i - •) 

(4. 37) 

and since the distribution of ( 1 - ) is the same as the 

distribution of t we have 

t = + mn () (4.38) 

Equation ( 4.38) governs the sampling for the time increment to 

the next generation of a rigid body. It is evident that the 

time increment can vary from zero to positive infinity, 

o < t < . Accepting very large time increments between 

consecutive generations may not be very practical in terms of 

the computer simulation. Hence, we wish to sample the time 
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increments from some finite interval ( tmjfl f tm ) , and still 

retain the Poisson distribution. 

It can be easily demonstrated that the average time 

between the consecutive events for a Poisson distribution is 

tave = E(t) = -i-. The expected value of t, E(t) was defined in 

Sec.(4.4.l). This is also expected from the definition of 

parameter A. 

We would like to set up our interval in such a way that 

the average time remains -i.. Thus, 

E(t) = 

A 

tMax 

f t- f 0 dt 
tMin 

(4.39) 

and with the use of Equation ( 4.3) and Equation ( 4.37) we may 

write 

Hence, 

1 

A 

1 

A = f X t d t 
tmifl 

1 
= (1 + At) e t] 

t1ax 

tmin 

(4.40) 

The relation between the endpoints of the time interval, 

tminl t is therefore given by 
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(1+A tin )e" = 1 + (i+At )e max 
(4.41) 

If we assume that A, t are specified as inputs then the RHs 

of Equation ( 4.41) is constant and we have, 

Atmin = ln(i + Atmin) - ln(C) (4.42) 

where C is equal to the RHS of Equation ( 4.41). The above 

equation can be easily solved numerically by a fixed point 

iterative procedure to yield tmjfl . 

Once the interval ( tmjni tmax) , from which the time 

increments between the consecutive events are sampled, has 

been established, the cumulative distribution function can be 

adjusted so that FTC tmin) = 0 FTC tmax) = I. Hence, 

where 

FT ( t) = A [ 1 - exp (- A ( b - tmin))] 

A = 1 
1 - exp(- A ( tmax - t) 

Finally, the relation governing sampling is given by 

= tmin (4.43) 
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The above equation is the modified form of Equation ( 4.38) 

and random variable t sampled according to it, will have a 

Poisson distribution and will fall within ( ti,, ti,,,). The 

appropriate routine was programmed on the computer. 
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4.4.4 Positioning of the generated rigid bodies 

The generated rigid bodies have to be positioned on the 

generation boundary in such a way that they do not overlap 

with any other rigid bodies already in the system, or with any 

of the obstruction line segments. The methodology of testing 

for the overlap and the subsequent adjustment of the position 

of the generated rigid body will be presented in this sub-

section. 

x 

Figure 4.9. Overlap between two disks. 

The overlap between two disks can be easily tested for. 

The radii of the disks are known and so are the coordinates of 

their centers. Fig. ( 4.9) shows a typical situation. The 

overlap exists if the following condition is satisfied: 

(4.44) 
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In the limiting case when condition ( 4.44) becomes an 

equality, the overlap consists of just one point. 

Testing for the overlap of a disk with a line segment 

(a,b) is shown in Fig. ( 4.10). 

a 

Figure 4.10. Overlap of a disk with a 
line segment. 

It is convenient to perform the testing in the local system of 

coordinates, with the origin located at one of the endpoints 

and with the x-axis coinciding with the line segment. The 

coordinates of the center of the disk are transformed from the 

global to the local coordinate system. Since our program 

already evaluates the unit normal vector ii for every line 

segment of the solid boundary, those will be used to define 

the transformation. We will use upper case letters to denote 
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the global coordinate system and lower case letters for the 

local system of coordinates. Let fly , fl be the components of 

the unit normal vector of the straight line segment (a,b) in 

the global system of coordinates. If the coordinates of the 

endpoints of the segment are Xa,i Ya i Xb, Yb, then the above 

transformation is given by 

X = fly(XXa) 12x(Ya) 

Y = 21x (X a) + fly(YYa) } (4.45) 
Clearly, the transformed coordinates of the endpoints of the 

line segment are: X = 0, ya = 0, Xb = 1ab' Yb = 0, where 

lab 
= I(a,b)i = V1 (Xb _Xa)2 - ( rb - a) 2 

if x0 , y0 denote the transformed coordinates of the center of 

the disk then, clearly, an overlap with a line segment can 

occur only if 

y0 ≤R (4.46) 

If condition ( 4.46) is satisfied then the circle of Figure 

4.10 intersects the x-axis. There are two points of 

intersection which we will denote as x 1 , x 2 . If equality in 

condition ( 4.46) holds then the two points will coincide as 

the circle will be tangent to the axis. The equation of the 

circle in Figure 4.10 is given by 
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(x- x0)2 + (Y - Y0)2 = R2 

The intercept points can be evaluated by setting y = 0. 

Hence, 

= ± IR (4.47) 

Finally, the overlap between the disk and the solid boundary 

line segment occurs if 

(a,b) fl (x11x2) } 6 e 

which is equivalent to at least one of the following two 

conditions being satisfied: 

1) E (a,b) 

2) X2 E (a, b) 

(4.48) 

If an overlap is detected for a generated, disk 

(2CO 3 Y0, R) then the position of this disk has to be adjusted 

so that no overlap occurs. Since the position is represented 

by a uniformly distributed random variable, the generality of 

the model will not be jeopardised if this variable is 

adjusted. Let us consider the example shown in Fig. ( 4.11). 

In the figure the shaded lines represent the solid boundary 

and the straight line connecting points A and B is the 
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Figure 4.11. Definition of the overlap 
zone and overlap intervals. 

generation boundary. There are already four disks present in 

the system, numbered 1 to 4. The broken-line involute around 

the disks and the solid boundary line segments encloses what 

is termed as an "overlap 

where a generated disk of 

a resulting overlap. It 

zone", i.e., an area in the system 

size R cannot be positioned without 

is clear that the involute is at a 

distance R from the surfaces of the respective bodies. There 

are six individual overlap zones. These result from four 

disks and two solid boundary line segments. The overlap 

intervals are defined as the areas on the generation boundary 

which lie inside the overlap zones. In other words, the 

overlap intervals are the areas of the generation boundary 
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where the generated disk with radius R can not be positioned. 

In our example there are five overlap intervals, three from 

disks 1, 3, and 4, and two from the solid boundary at points 

A and B. If z represents the distance along the generation 

boundary from its reference point (point A here), then the 

overlap intervals can be defined as the subsets of AlL The 

subscripts 1 and 2 are used to denote the endpoints of the 

respective overlap intervals, while the superscripts identify 

the bodies creating them. In the example shown those are 

(z  ,z) , (z,z) , (z,z) , (z,,z) , (zj81 z) 

Since the overlap intervals from disks 3 and disk 4 overlie, 

3 3 4 they can be combined into one, i.e., (zJ., z) U (z, zfl 

Z3.  4). Hence, in the example shown there are four resulting 

discrete overlap intervals. In general there could, of 

course, be more of such discrete intervals. 

If a would-be overlap is detected for the generated disk 

then all the overlap intervals from the bodies already in the 

system are established. Consequently, the generated position 

z (see Section 4.4.2) is adjusted in such a way that it falls 

outside any of the identified overlap intervals. The 

adjustment is also made so that the adjusted position is in 

the closest proximity to the original one. Hence, the disk 

generated at the new position will not overlap, either with 
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any of the other disks already present in the system, or with 

the line segments of the solid boundary. If a situation 

arises, where the overlap extends over the entire generation 

boundary, then the generation of a rigid body is skipped for 

this instant in time. The time increment to the new 

generation is however retained. 

The methodology behind the procedure identifying the 

overlap intervals will not be presented here. It largely 

involves geometrical manipulations of circles and straight 

line segments. The appropriate computer routines were 

programmed and tested. These are described in Appendix D. 
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4.5 SURFACE DENSITY CONCEPT 

Let us suppose that using the methodology described in 

Section 4.4 we generated say, N disks. Let us also assume 

that after, the generation the disks moved away from the 

generation boundary at a constant rate. With our choice of 

parameters a, V , ), what is the surface density of the disks 

in the system? We define surface density as the ratio of the 

total area of the disks to the control area that these disks 

occupy. We write 

p 
AD 

ATOT A I TOT E 

where x2 denotes the size (radius) of a disk. 

(4.49) 

Let us now consider a situation shown in Figure 4.12. We 

assume that the generation boundary () has length L and the 

velocity with which the generated disks are moving away is v. 

If the generation is being carried out over some time interval 

T, then assuming that T > --, the approximate number of 

disks in the system is given by: 

NT = T (4.50) 

We assume that the areas of the disks Yj are distributed 
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vT 

Figure 4.12. Diagram for evaluating the surface 
density. 

according to a probability density function if7 ( y) . If we 

consider a small disk area increment by then the number of 

disks with areas which fall within this interval, using 

Equation ( 4.14), is 

ôN8 = NT P{y E 8y} = NT f (.v) by (4.51) 

The total area occupied by these disks is clearly the number 

of disks multiplied by their size, . In the limiting case 

this relation can be written as 

Using the result of Equation ( 4.50) we can write an expression 

for the total area occupied by the disks 
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{Ymax 
I T 

L 
AD = f yf(y) dy 

Ymjn 

(4.52) 

The term in square brackets in the above equation represents 

the expected or mean value E ( y) , and since the total control 

area which encloses the disks is ATOT = LvT, we can write an 

expression for the surface density as: 

= XE(y) 
vL 

(4.53) 

The expected value E ( y) in the above equation can be 

determined since y = y(x) and the distribution for the random 

variable x, .f(x) is known. Namely, since y(x) = 7C X2 isv, 

for positive values, a non-decreasing function of x, then the 

corresponding cumulative distributions are equal, i.e., 

F(y) = F(x) , (see Section 4.3). And hence we may write, 

fy (y)dy = f(x)dx 

Substituting the above result into Equation ( 4.52) we obtain: it Xmax 

E(y) = f x 2 f(x) dx 

mm 
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If our input comprises of parameters a, p, then the 

integral of Equation ( 4.54) can be evaluated numerically and 

the Poissonian constant ? can be determined so that the 

desired surface density of the disks is achieved. Namely, 

= pvL 
E(y) 

(4.55) 

As a final note it should be mentioned that if the 

maximum time increment to the next generation tmax < -, then 

the program will automatically set t = 4-. and the minimum 

time increment will be evaluated according to Equation ( 4.42). 
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4.6 OTHER RELATED TOPICS 

4.6.1 Other shapes for rigid bodies 

A variety of shapes can be composed from disks. At the 

present, we shall limit ourselves to the consideration of 

equilateral triangles and squares. Figure 4.13 shows the two 

shapes under consideration. 

(b) 

Figure 4.13. Different shapes of rigid bodies, 
triangle ( a), and square (b). 

A triangle is composed of ten equal disks, while a square is 

composed out of nine large and four small disks. It is 

evident from the geometry of the shapes that if we maintain 

the connectivity among, the corresponding disks, as shown in 

Figure 4.13, then the entire configuration will remain 
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unchanged, and hence such a body will be, indeed, rigid. In 

terms of our computer model this means that the specified 

connections among the disks will not be cancelled at any time 

in the program. Consequently, the shapes of such bodies will 

not be altered throughout the simulation. 

The generation of complex. bodies is performed in very 

similar way to that for the simple bodies, ( Section 4.4). We 

again have three random variables: size, position, and the 

time increment. These random variables are sampled according 

to the procedures presented in Section 4.4. 

The random variable of position corresponds to a point on 

the generation bounèlary denoted as ( 2Cc, Y0). The generated 

complex body is positioned on the generation boundary in such 

a way that its center of gravity coincides with this point. 

From the geometry of the bodies shown in Figure 4.13 it 

becomes evident that the respective centers of gravity for 

triangular and square bodies are at the centers of the 

corresponding central disks ( C.G.). At the time of generation 

the central disk will, thus, occupy the position defined by 

coordinates ( X0 , Y0). We now need to establish the 

coordinates of the centers of all other disks comprising the 

body ( X2 , Y2). This can be accomplished by first defining the 

coordinates relative to the body's center of gravity in a 

local system of coordinates. The origin of such a system of 
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coordinates is located at the center of gravity of the body, 

as shown in Figure 4.13. We will denote local coordinates as 

We now define the expression for the transformation 

from a local into the global coordinate system. We write 

Xi = + xo 

Yi = Yi + Yo 
(4.56) 

The local coordinates depend only on the radii of the disks 

comprising the body and thus, can be readily computed. For 

example, the local coordinates of the center of disk 3 of the 

triangular body are x3 = R , y3 = R. The global 

coordinates by Equation ( 4.56) are thus X3 = + R, 

= YO  + R/3- - 

The random variable representing the size of a complex 

body corresponds to a distance from the body's center of 

gravity to the most outer point on the body. This variable is 

denoted as RB in Figure 4.13 and is generated by the program. 

From the figure it can be seen that for a triangular body 

RB = R (1 + 2y'). Similarly, for a square body we have 

RB = 3R + 2r. From the geometry of the square body we can 

establish the relation between the radii of small and large 

disks as: r = R - 1) Now the radii of the disks that 

comprise both triangular and square bodies can be computed in 

terms of RB . For a triangular body 



131 

R =  RB (4.57a) 
2 f + 1 

and for a square body, 

R 
RB 

1 + 2,/-2-
(4.57b) 

r = R   
1+2f J 

This concludes the definition of a complex body. Upon the 

generation of RB the radii of the disk can be determined from 

Equation ( 4.57). Consequently, the body can be positioned on 

the generation boundary and the coordinates of the centers of 

all component disks established by Equation ( 4.56). 
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4.6.2 Generation of random shapes 

Two-dimensional random shapes can be generated as 

polygons whose vertices are randomly generated points on the 

plane. Perhaps the easiest way of achieving this is to 

generate a set of random points given by cylindrical 

coordinates (ri, These coordinates correspond to pairs 

of uniformly distributed random numbers (, 11) which are 

obtained from the square PRN generator ( Section 4.2). The 

governing relation is given by: 

where 

= -1min + 91 *(-rmax - rmjn) 

Oj = TI i 

rmjn , 

O E ( 0 , 2it 

E (rmjn,r) 1 
(4.58) 

are the chosen limits for the radial 

coordinate. An example in Figure 4.14 illustrates a situation 

where ten points were generated. 

The generated points are sorted according to the 

tangential coordinate 0, in ascending order. The 

corresponding points are then joined in this order to create 

a polygon. 

For the example shown in Figure 4.14 the random shape is 

given thus by a polygon established from the points in the 
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Figure 4.14. A polygon type two dimen-
sional random shape. 

following order 3-5-4-1-9-7-8-2-10-6-3. 

Another way of obtaining a random shape is by generating 

a number of disks having random radii which are then connected 

randomly in such a manner that the resulting geometrical 

figure is a rigid body. Such rigid bodies are more suitable 

for our model, although the polygon type shapes can also be 

handled. Figure 4.15 shows an example of random shape created 

with a set of twelve disks. 

The method of creating randomly shaped rigid bodies 
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Figure 4.15. A random shape rigid body 
created from disks of random size. 

composed of disks, which was developed for the purpose of our 

model, consists of generating the individual disks one at a 

time and randomly adding them to the existing body in such a 

way that the rigidity of the geometrical figure is maintained. 

Such addition is achieved by placing a given disk in contact 

with a randomly chosen pair of neighbouring disks which are 

already a part of the body. 

Figure 4.16 shows the process of creating a random shape 

rigid body from randomly generated disks.. We start with three 

disks of random size arranged in a triangle as shown in Figure 

4.16a. There are three pairs of neighbouring disks to which 

the next disk can be added, namely 1-2, 1-3, 2-3. We now 

randomly generate the radius of the next disk ( 4) and randomly 
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(a) 

(c) 

(b) 

(d) 

Figure 4.16. An example of creating a random shape 
rigid body. 

choose one of the three pairs of neighbouring disks, say 2-3. 

We add the new disk ( 4) to the body by positioning it in 

contact with disks ( 2) and ( 3), Figure 4.16b. Now there are 

four disks composing the body. There are also four pairs of 

neighbouring disks to which the next disk can be added. Thos 
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are indicated in the figure as line segments connecting the 

centers of the respective disks. 

Similarly we add disk ( 5), Figure 4.16c, and disk ( 6), 

Figure 4.16d. The procedure is repeated until the body is 

composed of twelve disks. Each time a disk is added to the 

body its local coordinates are evaluated. The local system of 

coordinates is chosen in such a way that its origin is at the 

center of disk ( 1) and its x-axis runs along the line 

connecting the centers of disks ( 1) and ( 2), as shown in 

Figure 4.16. 

For the purpos6 of our model the radii of the disks, R1, 

comprising the rigid body are randomly picked from ( 0.5,1) 

interval. For this we use the PRN generator of Section 4.2. 

If represents a random number generated from ( 0,1) interval 

then the corresponding radius of a disk is given by 

R = 

2 
(4.58') 

The pair of neighbouring disks to which the new disk is 

attached is randomly chosen from a set of all such possible 

pairs.. Each pair of disks, to which the addition of a new 

disk is possible, is numbered from 1 to N, where N represents 

the total number of such pairs. Consequently, the selection 

of a pair of disks is reduced to randomly choosing an integer 
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between 1 and N. Again, we use the PRN generator of Section 

4.2 to generate a random number 1 E (0, 1) , and we select a 

pair of disks according to 

:1 = 1 + INT(N) (4.59) 

All the pairs of disks are stored in a two-dimensional 

incidence matrix IRS(2,N). This matrix has N columns which 

correspond to the numbers of disk pairs, and each column has 

two elements which store the numbers of the disks comprising 

the pair. For example, elements IRS(1,j) and IRS(2,j) store 

the numbers of the two disks belonging to disk pair j. For 

the situation shown in Figure 4.16c the incidence matrix would 

be 

12435 

24351 

From the above matrix, for example, disk pair 3 which 

corresponds to the third column, is thus created by disks 3 

and 4. 

An addition of a new disk to the given rigid' body 

consists of generating a pair of random numbers (, ii). The 

size of the disk and its relative position in the body ( i.e., 

with which two disks it is to be in contact) are determined 

from Equations ( 4.58) and ( 4.59). The coordinates of the 

center of the new disk can now be computed. Let us assume 
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that the new disk of radius R is to be placed in contact with 

two neighbouring ( in contact) disks, i, j, with respective 

radii and coordinates of their centers being (R1 , x1 , y1) 

(Ri , x3 , y) , as shown in Figure 4.17. 

Figure 4.17. Calculation of coordinates 
of the center of a new disk being added 
to the rigid body. 

If the new disk is to be in contact with the two disks then 

the equations governing the coordinates of the new disk 

(x, y) are given by 

(x- x)2 + (y - yi) 2 = (R+R) 2 

(x- x) 2 + (y - y) 2 = 

We define two constants, 

(4.60) 
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a1 = (R+R1 )2 -x-y a2 = (R+R) 2 -x-y 

Now, the coordinates x, y are evaluated as follows: 

if yj 0 Y1 then 

B . ± /B2 _4AC 

2A 2A 

y = al a2  X.  x . - x I 
2(y- y) yj - yi 

where: 

Xi  X,  
A = i+l 

I\ Yj - Y1 

B = -2x - (al - a2 ) (xi -x) 

C 

(Yj - Yj) 2 

+ 2y 

(  a1 - a, '2 al a2 

I'  Yj = ' 2 - y) ) - i• yj - 

and if yj = y1 then, 

= i   

2 

y+a1+ 2XX _ x 2 

Xi - x1 

yi - Yt 

a1 

(4.61) 

(4.62) 

The plus-minus signs in Equation ( 4.61) and Equation ( 4.62). 

correspond to the two possibilities of positioning a disk in 

contact with two other disks. In terms of generating the 

rigid body, these possibilities represent the inside and the 

outside of the contour polygon ( shown as solid lines in Figure 
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4.16. Consequently, the disk is positioned to the outside of 

the polygon. 

Once the new disk is attached to the pair of neighbouring 

disks, that pair cannot accept any more disks, and hence is 

deleted from a set of possible pairs. However, the addition 

of the disk creates two new pairs which are added to the set. 

These involve the new disk and each of the two disks that 

formed the original pair. If we use the example shown in 

Figure 4.16, then for part ( c) the incidence matrix is 

12435 

24351 

If another disk ( 6) is added to the rigid body as shown in 

part ( d) of the figure, then the disk pair 1-2 is deleted and 

two new pairs, 1-6 and 2-6, are added in its place. The 

incidence matrix would thus become 

162435 

624351 

This concludes the description of the methodology of 

creating the randomly shaped rigid bodies out of disks. The 

shape of such a body will remain unchanged as long as the 

specified connections among the disks are maintained. 

Randomly shaped rigid bodies are treated by the program 



141 

in the same way that are the square or the triangular bodies 

discussed in Section 4.6.1. After the body is created it can 

be entered into the system ( i.e., positioned on the generation 

boundary) in very much the same way. We again have two 

generated random variables: the size and the position on the 

generation boundary. These two variables are always 

maintained by the model regardless of whether the body is 

complex or simple. 

As indicated before the random variable of position which 

is generated by the program corresponds to the point on the 

generation boundary ( X0 , Y0) at which the center of gravity 

of the generated body ( simple or complex) is positioned. For 

the randomly shaped rigid body the location of the center of 

gravity is not known beforehand and has to be computed. Since 

the coordinates of the centers of all disks ( xi , Y) and 

their respective radii (R1) are known in the local system of 

coordinates ( see Figure 4.16), the position of the center of 

gravity of the body ( xe , Y) can be determined from the 

following relation: 

X  

N N 

- - E -Vi 1tR 

I Y  (4.63) 

where N is the total number of disks comprising the rigid 
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body. 

The coordinates of the centers of individual disks with 

respect to the body's center of gravity ( x , y) can now be 

computed from a simple transformation, 

4 = xi - xc 

= yi - yc 

(4.64) 

The generated random variable of size (RB), which is 

assigned to the rigid body, corresponds to the distance from 

the body's center of gravity to the most outer point on its 

surface. Since the radii of the disks comprising such a body 

are randomly picked values between 0.5 and 1, it is very 

unlikely that for the created random shape rigid body the 

maximum distance will coincide with the previously generated 

size. Consequently, the given rigid body has to be rescaled, 

so that it fits the proper size. If we denote the scaling 

factor as k then we can write 

R = ks. max {Rj+V(4)2 + (y) 2 , (i=l,AT) } 

The maximum value ofthe expression in braces can be evaluated 

for any given body and hence, the scaling factor can be 

determined, 
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k RB 

max {R1 + v'(x)2 • ( /) 2} 
(4.65) 

For the rescaled body the radii of the disks (RI) and the 

coordinates of their centers with respect to body's center of 

gravity ( xl, y.) can be evaluated, 

R = k5R1 , = k5x , = ky (4.66) 

The given random shape rigid body represented by a set of 

disks is now defined in a proper context and can now be 

positioned on the generation boundary. The radii of the disks 

are given by (R) and the global coordinates of the respective 

centers ( X1 , Y1) are determined by the following coordinate 

transformation: 

Xi = x + 

Yi = + YO 

(4.67) 

This concludes the process of generation of the random 

shape rigid body composed of a set of random disks. 
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4.7 CONCLUSIONS 

The method of rigid body generation presented in this 

chapter was successfully implemented in the model. 

The generated rigid bodies can have a variety of shapes, 

ranging from circular, square, and triangular to random ones. 

The overall sizes of the rigid bodies can be randomly sampled 

according to any chosen distribution function, both continuous 

and discrete. All considered, the developed method of rigid 

body generation provides a user with a very versatile tool in 

the modelling of stochastic type processes, involving the 

dynamics of solid-fluid systems. 

The PRN generator chosen in Section 4.2 proved to be 

versatile in generating the sequences of single numbers and 

the pairs of numbers with good statistical properties. 

The method also allows for the random generation of rigid 

bodies in such a way that overall, a certain specified surface 

density of rigid bodies is retained throughout the simulation 

process. 



CHAPTER 5 

FLUID FLOW VELOCITY FIELD 

5.1 INTRODUCTION 

Since the simulation model is also directed at analyzing 

the motion of multi-body systems in a fluid medium, it is 

necessary to consider the interactions between the solids and 

the surrounding fluid. These interactions occur at the 

solid-fluid interfaces and are governed by the relative 

velocities of one with respect to the other. The existence of 

such differences in velocities gives rise to the interaction 

forces in the form of drag and lift, which in turn affect the 

motion of the solid bodies. 

If multi-body systems are to be analyzed in a stream of 

moving fluid, then the velocity field of the fluid flow is a 

necessary input for the model. This chapter describes a set 

of computer routines which were developed for the computation 

of the flow velocity fields. The free stream velocity and the 

geometry of the solid boundaries are the initial inputs. The 

flow is assumed to be two-dimensional. Both a flow around an 

obstruction as well as the channel flow are considered. 
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The general equations governing the motion of the fluid, 

as we shall see in the next section, are very complicated and 

solving them presents considerable mathematical difficulty. 

These equations, however, can be greatly simplified with the 

assumptions of incompressibility and irrotationality of the 

flow. The two assumptions bring us to what is known as the 

potential flow theory and the corresponding equations of 

motion are readily solved. 

Many types of fluid flow can be considered as being 

potential, such as for example, a uniform flow approaching a 

structure, a channel flow around a bend, or any type of 

converging flow. There are flows, however, for which the 

potential theory does not apply. These include boundary 

layers, wakes, jets, and the areas of significant boundary 

layer separation. 

Frequently interactions between a structure and solid 

bodies flowing with the fluid and the loads exerted on the 

structure due to those interactions may be of interest. The 

solid-structure interactions occur mainly on the part of the 

structure's boundary which is facing the flow. In such 

instances the flow dan be considered irrotational and, hence, 

potential flow theory is applicable. 
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5.2 EQUATIONS OF MOTION 

The equations of motion for a fluid particle are 

formulated in accordance with the basic laws of mechanics - 

conservation of mass and energy, and Newton's laws of motion. 

These equations involve physical and kinematic properties of 

the fluid, such as velocity, pressure, density, and 

temperature, which are assumed to vary continuously throughout 

the fluid. In order to be able to define these properties at 

any point in the fluid one must make an assumption that the 

fluid is a continuous medium and that continuum mechanics is, 

in general, applicable. Consequently, it is assumed that at 

each point in the fluid there is a fluid particle and that 

each volume of fluid, no matter how small, contains an 

infinite number of such particles. 

The first principal equation governing the fluid flow is 

the conservation of mass, also known as the continuity 

equation. This condition can be written as ( see Appendix E): 

ap + V(pt7) = at 0 (5.1) 

where p is fluid's density and LT the velocity vector of a 

fluid particle. For an incompressible flow ( i.e. p=const) 

the continuity equation reduces to a very simple form, 
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V•17 = 0 (5.2) 

An interesting observation can be made here. Time does not 

enter the continuity equation for an incompressible fluid flow 

explicitly, even if the flow itself is unsteady. 

The second fundamental equation of motion is the momentum 

equation which for a Newtonian fluid may be written as 

(Appendix E): 

di7 
= -Vp + + t.) V(V•LI) + I.LV2 7+ pB (5.3) 

Equation ( 5.3) is known as the generalized Navier-Stoke 

equation for a Newtonian fluid. In the equation p is the 

coefficient of viscosity and . is the second viscosity 

coefficient. It is common engineering practice to relate the 

two independent viscosity coefficients according to Stokes 

condition = -- 4L) since the second viscosity is difficult 

to measure and is not known for many fluids. In the equation 

the term d/dt is referred to as the material time derivative 

and is given by the following relation: 

d a 
= (5.4) 

If fluid incompressibility is assumed, then by Equation ( 5.2) 

the term involving ? . vanishes from the momentum equation 

(5.3). Hence, the Navier-Stokes equations for an 
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incompressible fluid are given by: 

dt 
= -Vp + 1LV2 t7 + pS (5.5) 

Equations ( 5.2) and ( 5.5) constitute the principal equations 

of motion for an incompressible fluid. A detailed derivation 

of these equations can, readily, be found in many textbooks on 

fluid dynamics or continuum mechanics ( see for example [ 4],-

[25], [ 34]). 

It can be noticed that Equation ( 5.5) is a non-linear 

partial differential equation in U. The non-linearity appears 

in the material time derivative of the velocity vector 

(inertial acceleration term: pdu/dt), and interestingly, it 

does not vanish even when ideal, frictionless, fluid is 

considered. It is due to this non-linearity that there are no 

known general solutions to the Navier-Stokes equations. It was 

not until recently, with the considerable developments in 

numerical methods and digital computers that the solutions to 

the generalized Navier-Stokes equations were obtained. Most 

commonly, the solutions are based on finite element or finite 

difference techniques [ 4], [ 10]. These methods in themselves 

present a considerable mathematical difficulty and are well 

beyond the scope of the present thesis. 

As a final note we will introduce a quantity called a 
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vorticity vector 6 and defined as the curl of the velocity 

vector field: 

65 = Vxü (5.6) 

As we shall see in the next section an irrotational flow, 

i.e. with zero vorticity, represents a special type of flow 

for which the corresponding equations of motion can be solved 

much more readily then the full Navier-Stokes equations. Many 

types of real flow can be considered irrotational and hence, 

the assumption of irrotationality ( i.e. öS = 0) can prove to 

be very useful in flow computation. 
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5.3 POTENTIAL FLOW THEORY 

Under certain conditions the motion of a fluid can be 

described mathematically by potential functions. A well known 

theorem of vector calculus states that a curl of a vector 

field equal to zero is a necessary and sufficient condition 

for the existence of a scalar potential function such that the 

vector field can be derived as the gradient of this function. 

In fluid mechanics this implies that the absence of vorticity 

in the flow is a necessary and sufficient condition for the 

existence of a scalar velocity potential. 

Hence, if 6 = Vx ü = , then there exists a scalar 

velocity potential 4' such that 

= V4 (5.7) 

Conversely, if the flow velocity vector field can be 

expressed in terms of a gradient of a scalar potential 

function as in Equation ( 5.7), then the flow is 

irrotational since the vorticity Co = V  ( V4) = for any such 

function. 

For incompressible flow the continuity equation, ( 5.2) 

can be expressed in terms of a velocity potential. Namely, 
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V . V4 = V24 = 0 (5.8) 

Hence, the velocity potential satisfies the Laplace equation. 

The momentum equation for an incompressible and an 

irrotational flow can also be expressed in terms of a velocity 

potential. Namely ( see Appendix F), 

p\ - (5.9) - 

1at 2 

It is apparent from the above result that a potential flow can 

occur only in the presence of conservative (potential) body 

forces. If H represents a known body force potential then by 

definition: S = VU, and Equation ( 5.9) becomes 

= 0 (5.10) 

This implies that the quantity in parentheses must either be 

constant or a function of time alone. Hence, 

+ II = f(t) (5.11) 

This is known as the generalized Bernoulli equation for an 

incompressible and an irrotational flow. In a specific case 

when the body force comprises of only gravity, then in 
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cartesian coordinates, using the summation convention for 

repeated indices, the force potential is equal to, II = -gxn, 

where ni is a directional cosine of the angle between the j 

axis of the chosen spatial coordinate system and the vertical 

axis of the global reference coordinate system. 

As was demonstrated, the introduction of the velocity 

potential replaced the three unknown velocity components with 

a single scalar function 4, thus greatly simplifying the 

equations of motion. Consequently, with the assumptions that 

he flow is incompressible and irrotational, the four general 

equations of motion ( one continuity, Equation ( 5.1), and 

three momentum, Equation ( 5.3)) in four unknowns (three 

velocity components and pressure) were replaced by two 

equations Equation ( 5.8) and Equation ( 5.11), in two unknowns, 

4, p. A solution to these two equations can be obtained 

without significant mathematical difficulties. One, however, 

is compelled to address the question of the validity of the 

assumptions used and hence, the applicability of the potential 

flow equations. 

It is generally accepted, [ 14], [ 16], [ 34], that the 

assumption of incompressibility is valid for all flows where 

the local Mach number does not exceed one half. The 

assumption that the flow is irrotational is justified for high 

Reynolds Number (Re = pu1/) flows outside the boundary layer 
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and the regions of considerable separation ( for example: 

wakes). The significance of the Reynolds number lies in the 

fact that it is of the same order of magnitude as the ratio of 

the inertia forces term (pdu1/dt) to the viscous forces term 

(V2 ) in Equation ( 5.5). High Reynolds numbers would, thus', 

indicate that the viscous forces are small with respect to the 

inertia forces and can be neglected. This is equivalent to 

the assumption that the flow is irrotational (Appendix F, 

Equation (F.5)). It therefore becomes apparent that the 

equations of motion derived from the potential flow theory 

constitute an adequate description of the flows considered in 

the present model. Furthermore, it is assumed that the flow 

is steady. Consequently, the time-variant terms in Equation 

(5.11) will vanish. Also, since our present model is two-

dimensional, with events and interactions occurring in the 

horizontal x-y plane, the term involving the body forces will 

also disappear. Hence, the final form of the equations of 

motion used in the -present model is 

V24 = 0 

+ .2. = const 

P 

(5.12) 

(5.13) 

Since the viscous effects were neglected the boundary 

condition at the solid surface is that the local velocity be 

parallel to the surface. In other words, that the velocity 
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component normal to the surface be zero ( impermeability 

condition). 

= 0 (5.14) an 

where n indicates a direction normal to the surface. The 

above condition is equivalent to: 7i1 = 0. Hence, using 

Equation ( 5.12) the boundary condition may be written as: 

V4 ii = 0 (5.15.) 

The Laplace equation ( 5.12) together with the boundary 

condition ( 5.14) comprise what is known as the Neumann 

problem. 

The exact analytic solutions to the Laplace equation are 

possible only for some specific axisyminetric and three-

dimensional cases. These solutions employ the technique of 

separation of variables, wherein, the Laplace equation is 

transformed into ordinary differential equations. This 

necessitates that the boundary be a coordinate surface for on je 

of the special orthogonal coordinate systems for which the 

separation of variables is possible. For arbitrary 

boundaries, however, any analytical formulation will in the 

end, inevitably, become numerical. Several methods of 

solving this elliptic PDE (partial differential equation) are 

presented in [ 4] and [ 23]. Most of these methods employ 
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finite difference schemes or a form of Green's function. In 

some two-dimensional cases the direct problem of potential 

flow can be solved through what is known as the conformal 

transformation methods. These methods are based on finding an 

appropriate conformal transformation that transforms the 

boundary curve of the body into a curve for which the solution 

is known. They are, however, unsuitable for the computation 

of the flow about several bodies. 

The method of solution which appears to be the most 

efficient for the application in a fluid flow, and which was 

consequently chosen, is known as the panel method [ 16], [ 27]. 

This method is based on replacing the required solution to the 

Laplace equation over the given domain with a surf ace 

integral. The advantage of using the panel method is in the 

fact that the pressure distribution over the solid boundary 

can be obtained directly, without the necessity of solving for 

the flow field throughout the entire domain. 

The implementation of the panel method is presented in 

the next section. 

Once the Laplace equation is solved for the potential 

function 4s over the entire domain the velocity vector can be 

computed from Equation ( 5.7). The pressures are then 

determined from Equation ( 5.13). 
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5.4 PROPOSED METHOD OF FLOW COMPUTATION 

In this section we will establish a numerical methodology 

for the solution of the Laplace equation, Equation ( 5.12), 

which, with the boundary condition ( 5.14), is governing the 

flow of an incompressible and irrotational fluid. We will 

also assume that the flow is two-dimensional and steady. 

Although, the methodology for a general three-dimensional case 

is analogous. Therefore in the present analysis the domain 

over which the solution is sought reduces to a region within 

the x-y plane and the solid boundary becomes a line in this 

plane. A typical situation is shown in Figure 5.1. 

y 

x 

Figure 5.1. A schematic diagram of a 
physical domain for the Laplace equation. 

The solution tq the Laplace equation is obtained by what 

is known as the panel method [ 16],[27]. In this method the 
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solution to the equation over the domain is replaced with the 

surface integral. Consequently the problem is reduced to the 

solution of a system of linear algebraic equations for the 

strengths of the sources distributed on the solid boundary. 

If represents a scalar function that satisfies a two-

dimensional Laplace equation, 

V24 = a2 + a24 = 

ax  32 
0 (5.16) 

then it can be shown ( see, for example, [ 4], [ 25]) that at any 

given point P(x,y) within the domain, the scalar function 4 

of Equation ( 5.16) is given by: 

4(x,y) = S -i_[1n(r) a . aln(r)  
2,t an an I 

ds  

The first term in square brackets in Equation ( 5.17) 

corresponds to the Neumann problem for which 34/an is 

prescribed on the boundary ( of interest here). The second 

term in the brackets, together with Equation ( 5.16), comprises 

a Dirichiet boundary value problem, for which 4' is specified 

on the boundary. In fluid flow these two terms correspond to 

the contributions made to 4 by sources and doublets 

distributed on the solid boundary, respectively. Hence, we 

may write 
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cl(x,y) = —_ aln(r)dS 
27r 

S 

(5.18) 

where a is interpreted as a surface source distribution per 

unit length. 

If the solution to the Laplace equation ( 5.16), with a 

Neumann condition ( 5.14) prescribed on the boundary, is sought 

over the given domain on which a flow having a potential 4 

is superimposed, then this potential is included in Equation 

(5.18) and 

(x, Y) = (0.  + -1--aln(r)dS 
2 7c f (5.19) 

The line source distribution a is obtained from the boundary 

condition on S: 

a4 
an = V4 ii = ü•ii = 

n 
UB (5.20) 

where u is the normal velocity component of the rigid 

boundary. Clearly, if the boundary is stationary then 

U 2 = 0. 

Let us now consider a problem of a steady potential flow 

around an arbitrary body. The flow is governed by the 

potential function of Equation ( 5.19), where 4(x,y) 

represents the potential of the free (undisturbed) stream, r 

is the distance from point P(x,y) to the given point on the 
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boundary, and a is the unknown source strength distribution 

function. The source distribution function can be established 

by replacing the surface of the body with small line segments 

or panels over which a can be considered constant, as shown 

if Figure 5.2. 

Figure 5.2. A panel representation of a 
body. 

The strength of each source panel is chosen in such a way that 

the resultant global velocity field satisfies the boundary 

conditions at each panel. Namely, 

component in the direction normal 

N represents the number of panels 

body than the total potential at a 

that the relative velocity 

to that panel is zero. If 

used to describe the rigid 

given external point is the 

sum of contributions from each panel. Hence Equation ( 5.19) 

may be rewritten as 
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(x, Y) = 4(x,y) + -i  - E ajf ln(r)ds 
j 

N 

(5.21) 

where 03 represents the strength of the source distributed 

over panel j. The line integral in the above equation can be 

thought of as a potential generated by a unit strength source 

distributed on panel j and for the simplicity of the equations 

we will denote it as 4,. Equation ( 5.21) becomes 

N 

(5.22) 

A control point is chosen for each panel at which the boundary 

condition must be satisfied. Hence, we may write N boundary 

conditions ( one for each of the N panels). By Equation ( 5.20) 

we have 

2E aV4 •zI 
N 

= -V4•iI + I (i=1 ' 1V) (5.23') 

where -i-. 4 = ---4 (x, y) represents the potential induced by 
the unit strength panel j on the control point of panel i, and 

n is the unit outward normal vector of panel i. Also, by 

Equation ( 5.7) we let = denote the velocity induced 

by unit strength panel j on the control point of panel i. 

Equation ( 5.23) can now be conveniently written as 

ajiqi + UP (i=1 ' IV) (5.24) 
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where aij = un is referred to as the influence coefficient 

of panel j on panel i. The terms on the left hand side of 

Equation ( 5.24) are known, since they depend only on the free 

stream velocity field and the motion of the rigid boundaries. 

Herein the potential flow problem was reduced to solving the 

above system 

strengths of 

depend only 

of N linear algebraic equations for N unknown 

source panels. 

on the known 

consideration, and therefore, 

The influence coefficients a1j 

geometry of the body under 

can always be determined. 

Consider a line segment of a uniformly distributed source 

of unit strength and having length (d), (Figure 5.3). 

y 

r 

s=1 
dz/  

z 

d/2 d/2 

Uy 

ux 

x 

Figure 5.3. A diagram for calculating a 
velocity induced by a source line 
segment. 

The velocity induced by an infinitesimal section of the 

segment (dz) on point P(x,y) is: 



du 

du 

1 x - z 

2 7 (x-z) 2 +y2 

1 Y 
23t (x-z) 2 +y 2 
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dz (5.25a) 

dz (5.25b) 

Integrating Equations ( 5.25) over z from (-d/2) to (d/2) we 

obtain the expressions for the velocity components: 

ux = _ln[  ( x + d/2) 2 + y21 
4 7c (x - + y2j 

(5.26a) 

uY = 1-(x + d/2\ - tan--  - d/2\] (5.26b) 
27t[ y / Y fl  

We recall that an influence coefficient, a1 , is a dot 

product of an outer normal vector of panel i, iI , and a 

vector of velocity, ü , induced at the control point of panel 

i, P ( x11 y1) , by a uniformly distributed source of a unit 

strength at panel j. 

au = czj.-di (5.27) 

It can be easily demonstrated that the dot product of two 

vectors in cartesian coordinates does not depend on the choice 

of the origin or the orientation (rotation) of the system of 

coordinates. Consequently, the influence coefficients can be 

evaluated in a conveniently chosen local system of 

coordinates. The natural choice for the local system of 
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coordinates seems to be the one for which the origin is 

located at the mid point of the source panel and for which the 

x-axis coincides with the panel itself, as shown in Figure 

5.4. 

PANEL I 

Pi (x. ,y.) ni 

r 

PANEL I 

LOCAL SYSTEM 

OF 000DINATES 

X 
GLOBAL SYSTEM 

OF 000DINATES 

Figure 5.4. A schematic diagram for 
calculation of the influence coef-
ficients. 

We will use upper case letters to denote the global system of 

coordinates and lower case letters for the local system of 

coordinates. 

In the local system of coordinates the components of the 

velocity induced at the control point of some panel i, by 

panel j, are readily computed from Equation ( 5.26a) and 

(5.26b), where x = x1 , y = '1, are the coordinates of the 

control point of panel i expressed in the local system of 
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coordinates. We may therefore write Equation ( 5.27) in terms 

of coordinate components as 

= u n1 + u n,. (5.28) 

where n, , n,1, are the local components of the normal 

vector of panel i. These components are known in the global 

system of coordinates and can be expressed in the local 

coordinate system through the following transformation: 

fix1 = n yj nXi -  n Xi  y1 

nYj = Xi n1 + n YJ n1 

(5.29a) 

(5.29b) 

where n. n pz, , n , are, respectively, the known 

components of outward unit normal vectors of panels j and i 

expressed in the global system of coordinates. 

In a similar way the local coordinates of the control 

point on panel i can be determined: 

xi = n Yj (x - x) - flx (Y1 - Y) 

yi = Xj (X1 - X) + fl Yj (Y - Y) 

(5.30a) 

(5.30b) 

This concludes the computation of the influence 

coefficients. The system of linear algebraic equations ( 5.24) 

can now be solved for the strength of panel sources a. 
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The flow velocity vector at any point P(X, Y) can now 

be calculated according to: 

z7(x,Y) = ci(x,y) + (5.31) 

where Q(X,Y) deno1es the velocity vector induced by a unit 

strength source panel j. The components of this vector are 

evaluated first in the local system of coordinates using 

Equation ( 5.26a) and Equation ( 5.26b) and then are transformed 

in to the global system of coordinates by applying an inverse 

transformation to the one used in Equation ( 5.29). 

Finally, the pressure at any point in the flow is 

determined from Equation ( 5.13). 

Pc. + - p[u(X,Y)] 2 (5.32) 

This concludes the analytical formulation of a problem of 

two-dimensional potential flow around an arbitrary body. The 

appropriate computer routines were programmed and tested. The 

system of linear algebraic equations ( 5.24) is, at present, 

solved using a standard Gaussian elimination method with 

backward substitution. The advantage of using this method its 

in simplicity of its application. However, the method is not 

as fast as some others particularly for a large number of 

equations. Approximately N3 multiplications are required, as 
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well as, N 2 additions and divisions. Consequently, the 

accumulation of round-off errors through the many algebraic 

operations can cause the accuracy to deteriorate if N is 

large. At present, this does not seem to constitute a 

problem. Should, however, such a situation arise, the 

Gaussian elimination can be substituted with one of the 

iterative methods, for example, Gauss-Seidel or SOR 

(successive over-relaxation), which allow for any desired 

accuracy of computations [ 7]. Regrettably, the iterative 

procedures require the introduction of an initial guess which 

proximity to the actual solution will affect the speed of 

computation. Incidently, such a guess could be provided by 

the standard Gaussian elimination method. 

The method of validation of the presently used computer 

routines for flow calculation will be presented briefly in the 

next section of this chapter. 



168 

5.5 VERIFICATION OF THE PROPOSED METHOD OF FLOW COMPUTATION 

In order to verify the methodology of potential flow 

computation developed in this chapter, a velocity field around 

a certain body was calculated and compared with the exact 

analytical solution. 

Uco 

Figure 5.5. A panel representation for 
the cylinder. 

As a test for the external flow a stationary cylinder of 

radius R was considered ( in two dimensions the cylinder 

reduces to a circle), in an onset flow parallel to the x-axis 

having a free stream velocity u. The cylinder was 

represented by eight panels as shown in Figure 5.5. The 

analytic solution to the problem was obtained by placing a 

doublet at the center . of the circle. The strength of the 

doublet was determined from the boundary condition that 
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u ( x = -R, y = 0) = 0. The resultant, analytical description 

is given by the following equations. 

and 

U = 

(x 2 + y2)2 

+  R 2 

x2 + y2 

R2 (y2 - x2)  

(x2 + y2)2 I 
2R2xy 

(5.33') 

(5.34a) 

(5.34b) 

The computed flow velocities agreed well with those 

determined analytically, even though a relatively low number 

of panels ( 8) were used. 

The applicability of the computational methodology to th'e 

channel flow was verified using the example shown in Figure 

5.6. The figure shows a channel with an "L" bend and the 

corresponding panel representation. The velocity profile in 

the cross-section marked A-A was computed and compared with 

the analytical solution. 

Since a fluid flow around the bend shown in Figure 5.6 is 

potential it must be irrotational. Such motion would then be 

equivalent to a free, irrotational vortex. Hence, the 

analytical solution is obtained from the appropriate governing 

equations. We have: 
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UO3 

Figure 5. 6. Panel representation of a 
"L" shaped channel. 

ux U..   
Y (R0 - R1) 

= - 
(x2 + y2) ln(R0/R1) 

Uy U.   
X ( R0 - R) 

=  
(x2 +y2) ln(R0/R1) 

(5.35a) 

(5.35b) 

The computed and analytical velocity fields were found to be 

in good agreement. 

The examples considered added strength to the argument of 

applicability of this particular method of potential flow 

calculation in both external and channel flows. It cannot, 

however, be guaranteed that good results will be obtained for 

any shape of the boundaries. Practice shows, for example, 

that problems may be encountered when the flow around a body 

with sharp concave corners is being computed. For such 

systems a considerable " leakage" through the solid boundary 
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may be encountered. The " leakage" occurs because the source 

panel is of some finite length. The boundary condition is 

satisfied at the control point, but may not necessarily be 

satisfied at any other point on the panel. Consequently there 

may exist a net flow through the boundary. The problem of 

leakage may be corrected by introducing more panels to smooth 

out the sharp concave corners or by using a variable source 

distribution over the panels rather than a uniform one, and by 

applying the boundary conditions to appropriately more control 

points at each panel. One could also incorporate an 

integration scheme into the procedure of calculating the 

strengths of the panel sources, whereby, the boundary 

conditions would reflect zero net flow over the entire 

element, rather than a zero relative velocity component at the 

specified control point of the panel. 
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5.6 CONCLUSIONS 

The method of flow determination presented in this 

chapter has been successfully implemented within the model. 

The method has been found applicable to both the external and 

channel flows. 

The model's description of the solid boundaries using 

straight line segments is directly compatible with the 

definition of source panels used for flow computation. Hence, 

the present routine can be integrated in the model straight 

away, without any need of redefining the boundaries. 

In terms of the numerical computation, the primary goal 

in establishing the flow field is the determination of the 

source panel strengths. The strengths of the source panels 

which are given by the system of simultaneous algebraic 

equations, Equation ( 5.24), are successfully computed by ths 

analysis. 

No significant " leakage" through the solid boundaries was 

found for a variety of different systems tested. And, the 

methods of treating this problem, should it arise, are briefly 

discussed in Section 5.5. 
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It is believed that for a vast majority of systems for 

which the present model is intended, the potential flow theory 

constitutes an adequate tool for flow determination. 

It should also be stated that at present the effects of 

the solid bodies on the fluid flow are neglected. This, in 

terms of the simulation process, can be partially corrected 

with, modifications to the drag coefficients used in 

determining the forces acting on the solid bodies. 



CHAPTER 6 

FORCES ON RIGID BODIES 

6.1 INTRODUCTION 

Two primary types of forces that the rigid bodies present 

in the system experience, are the external forces which depend 

on the particular process that the multi-body system is 

undergoing, and the internal forces which are the result of 

the interactions among the individual bodies. 

The character of the external forces for a particular 

process must be identified, and it comprises a necessary input 

for the simulation program. This is discussed in Section 6.2. 

The internal forces include the contact, friction, and 

impact forces. The contact forces deserve special mention, 

and these are discussed in Chapter 7. The friction and impact 

forces are considered in this chapter in Section 6.3. 

174 
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6.2 EXTERNAL FORCES 

The external forces represent a driving mechanism for the 

motion of multi-body systems, and thus must be supplied to the 

simulation program as an input. In the simulation program a 

special routine is allocated in which the character of the 

external forces acting on the system is pre-programmed. The 

routine communicates the information about the forces to the 

main simulation program. The routine must be programmed in 

such a way that for every rigid body in the system the x and 

y components of the total external force can be determined 

from the position of the body's center, its velocity, and its 

acceleration and mass. The simple rigid bodies which are 

represented by disks are treated like particles, and the 

external forces are applied to their respective centers. For 

the complex rigid bodies or quasi rigid body sub-systems, the 

external forces are calculated for every disk comprising them 

and applied to its center. 

The external forces and their character will differ 

depending on the process under consideration and thus cannot 

be described in a general sense. Two specific cases will 

however be discussed next. 
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Gravitational Force. The gravitational force acting on 

a given disk j is given by: 

F = (6.1) 

where is the gravitational acceleration. The components of 

for a particular choice of the inertial frame of reference 

must be known. 

Drag forces. The drag forces must be determined when a 

motion of a multi-body system in a fluid media is unde 

consideration. In general a drag force on a solid body is 

proportional to the square of the relative velocity of the 

body with respect to the fluid. Consequently, the computation 

of the drag forces requires the knowledge of the fluid 

velocity field. This information can be either supplied as an 

input for a particular system or generated by the model 

(Chapter 5). 

There are two types of drag force: a form drag and a skin 

friction drag. Both types can be described by one general 

relation. Namely, if UB denotes the velocity of the cente 

of a disk and Ü,, to be the velocity of the fluid at that 

point then the drag force on the disk is given by 

F (6.2) 
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where Aett is the effective projected area and CD the drag 

coefficient. For the skin friction drag A0ff represents the 

area of the body's surface exposed to the fluid. In the case 

of the form drag A0 is the maximum cross-sectional area of 

the body normal to the direction of the mean flow. The 

coefficient of drag CD for skin friction depends mostly on the 

roughness of the solid surface and the viscosity of the fluid 

involved and have to be determined experimentally. For the 

form drag CD depends on the shape of the body, and similarly 

to skin friction drag coefficient, is determined 

experimentally. Drag coefficients can be frequently found 

tabulated for various shapes in textbooks on fluid mechanics 

(see [ 6] for example). 
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6.3 INTERNAL FORCES 

The two types of internal forces that are of interest 

here are the frictional and impact forces. The frictional 

forces result from the relative motion of bodies in contact 

and depend on the unknown reaction (constraint) forces. Dry 

friction is only considered here. It is assumed that the 

frictional force is proportional to the reaction force 

(Coulomb Law of friction). 

The impact loads result from the collisions among the 

rigid bodies. It is assumed that a collision occurs every 

time a disk event (Chapter 2) takes place. The general 

collision theory is used in the Lagrangian form to model 

impacts. The impact forces must be evaluated as these may 

significantly affect the contact forces among the bodies, and 

thus cause a force event. As a final assumption it should 

also be stated that the collision theory used assumes no 

friction. 

The following two sub-sections present the formulation 

for the evaluation of the frictional and impact forces used in 

the present model. 
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6.3.1 Frictional Forces 

In the general case of modelling a system of rigid bodies 

the friction can be handled by simply modifying the 

generalized forces. Similarly to Equation ( 3.13) we could 

write an expression for the virtual work done by the 

frictional forces, 81tç. Namely, for a system of particles, 

d 

owv = E a[Ev iô i] 
In 

where Vc is the generalized frictional matrix given by 

= I E axj' 
j]. 8q1 

(6.3) 

(6.4) 

where superscripts p, r, s denote the appropriate Cartesian 

coordinates, is the permutation constant, and 

represents the cartesian components of the vector orthogonal 

to both the constraint force and the relative velocity vector, 

whose length is equal to the coefficient of friction. 

The equations of motion ( 3.17) for a system of particles, 

or Equation ( 3.24) for rigid bodies, with friction included 

can now be written as 
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[A] *[Cl] + [B]-[ ti = [Q] + [G] T•[A] + [] T [A] (6.5) 

Coefficients v of matrix [ tb] are in general, non-linear with 

respect to 4 and q. Consequently, the equations of ( 6.5) are 

highly non-linear and cannot be, except for some very simple 

cases, solved without a grave numerical difficulty, that is, 

if the equations can be generated at all. 

It is common practice in modelling of multi-body systems 

[28] that during the time simulation the frictional forces 

calculated in the preceding time step are entered into the 

equations of motion ( 6.5) as known parameters. This is, of 

course, analogous to modification of the generalized forces. 

Namely, we can write symbolically, 

= [Q1+ + [] 

The equations ( 6.5) now become identical to equations given by 

(3.17) where the vector of the generalized forces is given by 

[Q]*• The modified equations can be solved, and upon the 

solution new frictional forces can be computed for the next 

time increment. In other words, the frictional forces " lag" 

the constraint forces by a time step. This suggests that an 

error is introduced systematically during the simulation. 

However, this error is of second order ( acceleration) and is 

not considered significant. This approach is also used in our 
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model. 

The above reasoning suggests that since the frictional 

forces are assumed known at every time step, they can be 

simply evaluated in the cartesian coordinate system and then 

added to the active forces of the system from which, by the 

application of the principle of virtual work, the modified 

generalized forces can be computed. This can be explained by 

considering a general model for friction as illustrated in 

Figure 6.1. For the clarity of reasoning the sphere is 

representing a rigid body. 

Figure 6.1. An illustration of the 
frictional forces. 

In the figure 89 is the vector of angular virtual 

displacements, 6 is the total virtual displacement across the 

constraint, f0 represents a vector from some chosen point 

within the body (center of the sphere) to the point of 

interface on the body's surface, and 1 is the frictional 
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force at the constraint. The other interacting body is 

represented by a stationary plane. This does not reduce the 

generality of the model, since the indicated displacements can 

be thought of as the relative displacements of one body with 

respect to the other. 

The virtual work done by the friction in the constraint 

can be written as 

8w = (6.6) 

The virtual displacement across the constraint can be 

calculated as 

= of + 8xf0 

and hence Equation ( 6.6) is rewritten as 

oW = (Of + 8xf0) . 

Remembering that a dot product is commutative and the triple 

product does not depend on the order of components as long as 

the cyclic permutation with respect to the cross product is 

maintained, we can write the above relation as: 

8 WV = 18f + fxI,8 (6.7) 
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The second term in the above equation represents a moment 

created by the frictional force about point "0". We write,. 

8w 

which is directly compatible with the virtual work principle 

for a system of rigid bodies, Equation ( 3.18). Consequently, 

friction can be handled by simply adding the corresponding 

frictional forces and frictional moments to the active loads 

and proceeding with setting up the equations of motion as in 

(Section 3.5) with new modified loads. 

The equivalence of our method with the general procedure, 

Equation ( 6.5) can be demonstrated as follows. For a system 

of N particles we have, 

6ç= 

but, Fvj = 1_7 xiç. Also repeating the procedure of Section 3.2 

to obtain an expression for virtual work in terms of 

generalized coordinates, and remembering that 

8f = 8q , Ri = tl (6.8) 

we obtain 
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N 1 d 

Exf] .[E : oiJ (6.9) 

Performing the triple product of Equation ( 6.9), and 

rearranging the terms Equation ( 6.3) can be obtained. 

To complete the proposed friction handling method we need 

to evaluate the vector of frictional force. This is 

equivalent to the determination of the vector I. For thi's 

reason we will define two vectors ñ'R3I fluj which represent unit 

vectors in the direction of the constraint force and the 

relative velocity at the constraint of body j. The two 

vectors are given by 

A Rj 
1j 

n.Uj 
Ui 

where zTj is the vector of relative velocity. Vector can 

now be expressed as 

= CfñUXflR (6.10) 

where c is the coefficient of friction. The frictional force 

which must be orthogonal to the constraint (contact) force 

Ri is thus given by 
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(6.11) 

The frictional forces on every body in the system can now be 

calculated. The corresponding loads, as identified by 

Equation ( 6.7) can be determined and added to the active 

loads ( forces and moments) acting on the body. The resultant 

equations of motion are represented by Equation ( 3.24) with 

the modified vector of the generalized forces. 

As a final note we should again point out that our choice 

of generalized coordinates ( Section 3.6), the utilization of 

the concept of quasi rigid body subsystems ( Section 2.3.2), 

and proposed methodology of event determination and handling 

(Section 2.3.3), was aimed at reducing the number of the 

algebraic constraint equations in the overall system of motion 

equations. Therefore, in effect, not all the constraints are 

represented by the corresponding constraint equations, and 

hence, not all constraint (contact) forces can be evaluated 

through the use of Lagrange multipliers as given by Equation 

(6.8). Thereafter the contact forces are evaluated by a 

different method. This will be described in Chapter 7. 
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6.3.2 Impact Forces 

Every time a disk event is detected, it is assumed that 

a collision occurred. A collision can be described by a 

Newton's collision rule. 

(V 
\ flj,j) 1 = (6.12) 

where e is the coefficient of restitution, the subscript ni/i 

indicates a normal component of the velocity of disk i 

relative to disk j, and the subscripts 0 and 1 refer to times 

just prior to and right after the collision, respectively. 

Alternately, Equation ( 6.12) could be written as, 

- ' ni - ' flj) 0 (6.13) 

The normal direction is identified as being along the line 

connecting the centers of the colliding disks. 

The change of sign in Equation ( 6.12) suggests that 

during the collision, there is an instant in time at which the 

relative velocity becomes zero. This instant is referred to 

as the point of maximum compression, and it will be denoted 

with a subscript "c". It is assumed that during the 

collision the bodies involved deform (compress) up until this 
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point. This is followed by the process of restitution during 

which the shapes of the bodies return to their original form 

and kinetic energy which was stored as the strain energy, is 

returned ( in whole or in part) to the bodies. At the point of 

maximum compression we thus have, 

(V \ = 
' 2iij ) 0 ( 21) = ( 2j) (6.14) 

With the use of Equation ( 6.14), Newton's Law of collision, 

Equation ( 6.13), can be written in the form of the following 

two conditions: 

(T7\ 
\ 'i/. I -v 

' ni/\ c 

= _c.{() —( n)] 

= •[(;) -()] 

(6.15) 

Since, normal components of the velocities before collision 

(0) are known, then the normal velocity components after the 

collision ( 1) can be evaluated from Equation ( 6.15), provided 

that the normal velocity components at the point of maximum 

compression ( c) can be determined. 

For a system of N disks which are in contact the general 

theory of collisions used in the present model assumes that 

the point of maximum compression is reached by all disk pairs 

at the same time. Hence, we can introduce the so-called 
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impulse forces . and apply a conservation of momentum 

principle to each disk from the initial state (before the 

collision) to the point of maximum compression. We have 

rn1 (v i) C 
- 

= j I 
(i=1,N) (6.16) 

where the subscript j denotes all disks which are in contact 

with the given disk i. The orientations of the impulse forces 

are along the lines connecting the centers of the respective 

disks, and thus are known. Hence, Equation ( 6.16) represents 

a system of 2N with 2N + Nc unknowns, 2N velocity components 

and Nc magnitudes of the impulse forces, where Nc is the 

number of the points of contact in the disk cluster. However, 

at the point of maximum compression we additionally haveN 

conditions of Equation ( 6.14) ( one for every connection). The 

system of equations ( 6.16) together with a set of conditions 

(6.14) can be solved for the velocity components at the point 

of maximum compression. Thereafter, the normal velocity 

components at this point can be calculated. Subsequent use of 

Equation ( 6.15) will yield the velocities of the rigid bodies 

at the instant in time after the collisions. 

Finally, if during the solution of Equation ( 6.16) one of 

the impulse forces . becomes positive (tensile) then the 

appropriate connection is deleted from the system, as such a 

situation cannot arise for a system with one-sided 
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constraints. 

The methodology for handling the collisions among the 

rigid bodies was developed in [ 31]. The method of generation 

of the appropriate collision equations and its numerical 

implementation can be found in that reference. In this 

section the general theory was briefly presented for 

completeness. 
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6.4 CONCLUSIONS 

In this chapter various external and internal forces that 

the rigid bodies experience were identified and discussed. In 

Section ( 6.2) it was demonstrated that the drag forces acting 

on the rigid bodies in a fluid media can be estimated in the 

present model. The computer routine that computes the fluid 

velocity field ( Chapter 5) is based on the potential flow 

theory. At present, the influence of the solid bodies on the 

fluid flow is not considered. 

The method of handling friction among the rigid bodies 

was presented in Section 6.3.1. It was proposed that at each 

time increment the frictional forces be calculated after the 

equations of motion (modified by frictional forces from the 

previoud time step) are integrated. This technique allowed us 

to consider friction which otherwise could not be considered'. 

This, however, led to the introduction of a second order 

error. 

The method of handling impacts among the rigid bodies, 

which was developed in [ 31] was presented here for 

completeness. This method does not consider friction, as the 

tangential components of velocity are assumed unchanged during 

collisions. 



CHAPTER 7 

CONTACT FORCES AMONG THE RIGID BODIES AND OBSTRUCTIONS 

7.1 INTRODUCTION 

Contact forces^ among the rigid bodies and obstruction 

line segments result from the external forces acting on the 

rigid bodies, and are the forces which must be applied to the 

respective bodies at the points of contact in order for the 

entire configuration to move in the same manner that it would 

if the rigid bodies were jointed at these points. For 

example, let us consider a pair of disks in contact. There 

are some external forces applied to each disk. We can replace 

the specified connection between the two disks with two forces 

of equal magnitude and opposite direction (no additional net 

force on the system) applied to each body at the point of 

contact. These two forces can now be considered as external 

forces. Consequently, the pair of disks is replaced by two 

separate disks which will behave as if the two disks were 

connected. 

The contact forces are said to be tensile if they are 

directed away from the point of contact, and compressive 

otherwise. Figure ( 7.1) shows an example of tensile and 

191 
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(a) 

compressive contact forces. The tensile contact forces are 

assumed positive, while the compressive contact forces will 

have a negative sign. This convention will be used throughout 

this chapter. 

F2 F1 

(b) 

Figure 7.1. An example of tensile ( a) 
and compressive (b) contact forces. 

At each point in time during the simulation procedure the 

contact forces among the rigid bodies and obstruction line 

segments must be known. This is because the connectivities 

among the rigid bodies and obstruction line segments are 

maintained during the simulation process until the contact 

forces between the given bodies become tensile and greater 

then some pre-specified value. For example, if a motion of a 

cohesionless granular material is to be simulated then 

whenever a contact force greater then zero (tension) is 
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encountered, the corresponding connection is deleted. 

Similarly, if the cohesion between the rigid bodies is 

present, then the given connection is deleted whenever the 

corresponding contact force is greater then the cohesive 

strength. 

The contact forces are evaluated not only among the 

particular rigid bodies but also among the disks composing the 

complex bodies present in the system (Chapter 4). This is 

done in order to be able to simulate the processes in which a 

break-up of solids may occur, for example, an interaction of 

moving ice with a structure. In such an instant, a break-up 

of a rigid body takes place whenever the contact forces 

between the component disks, along some line through the body 

are greater then the strength of the material. Clearly, the 

simple rigid bodies, i.e. those composed of only a single 

disk, cannot be broken. 

The following chapter will deal with the evaluation of 

the contact forces among all the disks present in the system. 

This, as mentioned above, includes both the disks representing 

simple bodies and those which are a part of the complex 

bodies. 

Since our model is two-dimensional, then for every disk 

present in the system there are two corresponding equations 
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representing Newton's Second Law of motion. These equations 

correlate the total acceleration of the disk to the net force 

on it, including the contact forces. Consequently, for any 

conglomerate of disks for which the number of points of 

contact is less than or equal to the number of available 

dynamic equilibrium equations, i.e. twice the number of disks, 

the unknown, contact forces can be evaluated using these 

equations. This will be referred to as the method of dynamic 

equilibrium. 

It may however occur that the number of points of contact 

in a given disk conglomerate exceeds the number of equations 

of motion, and the dynamic equilibrium cannot be used to 

evaluate the contact forces. In this case it is proposed that 

the entire conglomerate be replaced by a truss system. In 

such a system a truss would represent two disks in contact, 

with its endpoints located at the centers of the respective 

disks. Clearly, the centers of the disks would become nodes 

at which the external forces, including the inertial 

acceleration terms, are applied. The entire structure can 

then be solved from static equilibrium for the forces in the 

trusses which, of course, are the unknown contact forces among 

the disks. This method is referred to as the method of static 

equilibrium. 

The two methods of determination of the contact forces 

are presented in this chapter. 
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7.2 DYNAMIC EQUILIBRIUM ANALYSIS 

If a disk is in contact with one or two other entities 

(those could be other disks or the obstruction line segments), 

then the contact forces between a given disk and the entities 

can be calculated from the dynamic equilibrium equations. 

These equations are based on Newton's Second Law of motion. 

The law states that the sum of all the forces in a given 

direction is equal to the mass of the body multiplied by its 

acceleration in that direction. This can be written as: 

E F = 

where indicates a given direction. Since our model is two-

dimensional, we can write two such equations for a disk, in 

two distinct directions. Hence, the limitation that the given 

disk has no more then two points of contact. 

We will now present the method of utilizing the above 

equation to calculate the contact forces for disks having one 

or two points of contact. The contact forces will be denoted 

as F. A contact force between two disks is directed along 

the line connecting their centers, while a contact force 

between a disk and an obstruction line segment is along the 

line connecting the center of a disk with the corresponding 
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point of contact. 

The computation of contact forces using this method is 

done in the following way. The given disk conglomerate is 

searched for disks with a one or two points of contact. Once 

such a disk is identified the contact forces acting on it are 

computed from the dynamic equilibrium equations. The disk is 

then, temporarily deleted from the conglomeration, and in its 

place, the computed contact forces are applied to the entities 

that it contacted, as external forces. The remaining disks 

are then again scanned for the number of points of contact, 

and the ones with one or two points have the corresponding 

contact forces determined. The procedure is repeated until 

each of the remaining disks have at least three points of 

contact. At such an instant the dynamic equilibrium cannot be 

used for evaluation of the contact forces, and the method of 

static analysis Sect4on 7.3 is then used. 
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7.2.1 Disks with One Point of Contact 

Let us assume that disk i is in contact with disk, or a 

line segment, j, as shown in Figure 7.2. The two 

possibilities will be treated in the same way. 

Figure 7.2. Diagram for determination of 
contact forces for a disk with one point 
of contact. 

In the figure nj-axis passes through the center of disk i and 

point j. This axis represents the direction of the contact 

force. We will define the following variables: 

X, Y - coordinates of disk i. 

XJ , Y - coordinates of point j, i.e. center of a disk, 

if the entity in contact is a disk, or the 

coordinates of the point of contact, if the entity 

is an obstruction line segment. 
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ij mj - directional cosines for "j" direction, i.e. 

cosines of the angles between 11 -axis and the X-

and 7-axis respectively. 

Lji - a characteristic length 

Ljj = R1 + R - if j is a disk 

Ljj = R1 - if j is an obstruction line segment 

M1 - mass of disk i. 

We define the directional cosines as: 

ii 
Xi -  Xi 

Lji 
mj 

- Yi - Yi 

L ji 

and we can write the dynamic equilibrium equation in 11 

direction as 

= M ( i .C'Xi + mj a 1) 

Hence the contact force is determined as: 

Fc = (M1 a 2 - F1 ) + raj (M1 ayj - F1 ) (7. 1) 
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7.2.2. Disks with Two Points of Contact 

Let us assume that a given disk i is in contact with two 

entities j and k, as shown in Figure 7.2. 

y 

Figure 7.3. Diagram for determination of 
contact forces for a disk with two points 
of contact 

The two contact forces are denoted by Fck, and their 

corresponding directions as T, 11k• Using the same notation 

as in Section 7.2.1 we can write the equilibrium equations in 

the two directions, similarly to Equation ( 7.1), as 

and 

Fcj + ljk•Fck = (M a1 - F1 ) + mj ( M ayi -  Fyj  ) 

FCk + 1jk = 1k ( M a, 1 -  Fxi  ) + 1k ( M  ayi - ) 
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where 1jk is the cosine of the angle between the two 

directions, i.e. 

1jk = cos <( nj,lk) = (X - - X) + (Y - - Y1) 
L1 ' Li k 

The equilibrium equations in two unknown contact forces become 

linearly dependent for 1jk equal to 1 or -1, in which case 

they cannot be solved. The condition that no overlap between 

the disks can occur, suggests that the directional cosine 

cannot be equal to 1. However, Ijk can be equal to -1. In 

this case the two directions (namely, llj, TIA coincide and 

effectively we only have one equation. Hence, the contact 

forces cannot be determined. If however, 1 jk then the 

equilibrium equations can be solved. The contact forces can 

then be evaluated according to the following relations: 

FCj 

Fck 

=  1  
1 - 1Jk {(M a - - 1 k 1 jk) + (M - - 1 jk) 

(7.2) 

-  1  
- 1 1jk [(Mi - FXI)(lk - i lJI) + (M a - FY )(mk - m uk)] 
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7.3 STATIC EQUILIBRIUM ANALYSIS 

The following method of evaluating the contact forces 

among the disks present in the system is based on converting 

the conglomeration of the disks into an equivalent truss 

system. In the system, the center of each disk represents a 

node to which all the external forces acting on the given 

disk (Fr, Fr ), as well as the disk's inertial forces 

(-mar , -may,), are applied. Each pair of contacting disks is 

replaced by a truss element spanning between the respective 

nodes, as shown below. 

A PAIR OF 
CONTACTING 
DISKS 

AN EQUIVALENT 
TRUSS ELEMENT 

The length length of a truss element is equal to the sum of the 

radii of the two disks that the truss replaces, i.e.: 

iij = R+ R. The spatial positions of all the nodes are, 

thus, the same as those for the original disks. The base 

disks, i.e. those which are in contact with obstruction line 

segments are replaced by shorter truss elements running 

between the centers of those disks and the respective points 

of contact. Consequently, the points of contact between the 
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(a) (b) 

disks and the obstruction line segments become the additional 

nodes. A sample configuration of disks and the corresponding 

truss system are shown in Figure 7.4. The unknown contact 

forces are equivalent to the forces in the corresponding 

trusses. 

9 

Figure 7.4. An example of a disk conglomeration (a), 
and the corresponding equivalent truss system (b). 

The advantage of setting up the truss system in the 

manner described above, is that the truss system can be mapped 

directly from the topology of the disk conglomerate, and 

without any changes to its geometry. 

The analysis of the equivalent truss system which 
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replaces the given configuration of disks is carried out by 

what is known as the matrix structure analysis or a direct 

method of finite element analysis [ 3]. This method is based 

on solving a 

displacements 

system of algebraic equations for the nodal 

of the structure after the load is applied to 

it. The force in 

element' s change 

each truss element is determined from the 

in length resulting from the relative 

displacements of the two nodes that span it. Although this 

method can be applied to a variety of different structures, 

including frames and plates, we shall limit ourselves only to 

analyzing two-dimensional truss systems. 

In this section an introductory theory with its major 

assumptions is briefly presented. The method of setting up 

the system of algebraic equations in terms of displacements, 

and its subsequent solution, is then discussed. 
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7.3.1 Introductory Theory 

A matrix structure analysis is based on the assumption 

that the material composing the structure is in the linear 

(elastic) region at any time during the process, i.e. that no 

plastic deformations occur. From the linearity assumption it 

follows that the load-deflection relationship for the 

structure is linear. In other words, if all the external 

forces acting on the, structure are multiplied by some constant 

C, then all the deflections of the structure will be "C" times 

the previous deflections. This also means that the total 

deflection of a structure at some point from all the external 

forces, will be equal to the sum of the deflections from the 

individual forces. It is also assumed that the forces are 

applied to the structure in a quasi-linear manner, that is the 

application is gradual, starting from zero and steadily 

increasing until the final value is reached. 

Moreover, it is assumed that the deflections that occur 

are small enough not to cause any significant changes in 

geometry, i.e. that the geometry of the structure can be 

considered constant at all times during the deflection. 

Let us consider an elastic linear body to which the 

forces are applied in a quasi-linear manner, as shown in 
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Figure 7.5. Let P1 represent the external forces applied t 

the body, and Aj be the corresponding displacements at the 

points at which the forces are applied and in the direction of 

the forces. 

DEFORMED BODY 

ORIGINAL BODY 
- - 

P1 2 

Figure 7.5. A schematic diagram for the 
formulation of the matrix equations 

If the linearity principle holds, then the total work done by 

the external forces on the body, using the summation 

convention for repeated indices, can be written as: 

U = (7.3) 

From the conservation energy the work done on the body by the 

external forces is equal to the strain energy of the body. 

If, now, a small variation of the strain is introduced to, 

say, A1, then the corresponding variation of the strain energy 
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can be correlated according to: 

au 1 api = p + 

aAj 2' j_aA j 

According to Castiglanos first theorem, however, 

au 
= p1 

and therefore Equation ( 7.4) may be written as: 

(7.4) 

(7.5) 

a. 
P1 = (i,j = 1, N) (7.6) 

OAj 

Equation ( 7.6) represents a system of N simultaneous algebraic 

equations in N unknown displacements 1. If we designate 

K1 = _ apiaAj (7.7) 

then Equation ( 7.6) can be conveniently written in a matrix 

form as, 

[P] = [K] . [A] (7.8) 

The term on the LHS of Equation ( 7.8) is known since it 

represents the known vector of external forces applied to the 

body. 
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Physically, the coefficients of the matrix on the RHS of 

the equation (K1 ) as defined by Equation ( 7.7) represent the 

holding force required at point j in order to keep the body in 

equilibrium, after a unit displacement is introduced at point 

i. Figure 7.6 illustrates this point. 

sçORIGINAL BODY 

DEFORMED BODY 

=1 

(1) 

Figure 7.6. Physical interpretation of 
the coefficients of matrix K. 

It, therefore, becomes clear that the coefficients K1 depend 

only on the geometry of the body, the points at which the 

external loads are applied, and the elastic properties of the 

particular material which makes up the body. Since these are 

known, coefficients K1 can always be computed. 

Matrix [K] is usually referred to as the global stiffness 

matrix of a body or a structure. After the assembly of the 

stiffness matrix the system of the algebraic equations ( 7.8) 

can be solved for the displacements. 
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A global stiffness matrix is a special type of matrix. 

Visualising its properties can lead to the possibility of 

using the numerical procedures which will require far less 

computational time. 

It can be observed that the global stiffness matrix is 

symmetric, i.e. K1 = K 1. Namely, by Equation ( 7.5) we have 

Kij = - a (_au -  a2u  - a ( au 
aix1 Iaix) aAa a..aA) 

- K j 

Most of the effort during the matrix structural analysis goes 

into the assembly of the structure stiffness matrix. In terms 

of computational time involved, the symmetry of the matrix 

enables a considerable reduction, as only half of the matrix 

elements need to be evaluated. 

The global stiffness matrix is positive definite. A 

matrix [A] is positive definite if and only if, for any real 

vector [ x] 0 [0] the following condition is satisfied 

[x]7'[A] [ x] > 0 

The above condition, using a summation convention for repeated 

indices, can be written for the stiffness matrix as 

xi *Kij ,xj > 0 (7.10) 
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If x1 are thought of as the displacements of some body 

subjected to external forces P, then by Equation 

Equation ( 7.6), and.Equation ( 7.3) 

x •x = xP = 2U (7.11) 

And, evidently condition ( 7.10) is satisfied, since the strain 

energy is always greater then zero for any non-singular set of 

real displacements. 

When analyzing a structure, using a stiffness matrix 

method, one typically divides the structure into elements. 

Those could be bars, trusses, frames, plates, blocks, etc. 

One also identifies the key points within the structure which 

are referred to as nodes. The nodes are located on the 

interfaces or the boundaries between the individual elements, 

and are the points at which the structure's deflections are to 

be computed. The proper choice of nodes and elements is 

largely a matter of experience, and, in itself, constitutes an 

art in using the stiffness matrix method for structural 

analysis. 

It is also assumed that the external loads can only be 

applied to the nodes, that is, a force cannot be applied in 

the "middle" of an element. Consequently, the system of 

equations for nodal displacements, as given by Equation ( 7.8), 

can be set-up once the appropriate stiffness matrix is 
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evaluated. The arrays appearing in Equation ( 7.8) are 

referred to as: 

[P] - generalized force vector 

[K] - nodal structure stiffness matrix 

[A] - generalized nodal displacement vector. 

The stiffness matrix is made up of the stiffness of the 

individual elements that comprise the structure. An entry of 

this matrix Kij represents a generalized holding force 

required at node i after a unit generalized displacement is 

introduced at node j. In other words, Kij represents a 

stiffness of the structural element spanned between nodes i 

and j. An entry on the main diagonal of the matrix K1 

represents a generalized force at node i required to cause a 

unit generalized displacement at this node. 

There are two basic conditions that have to be satisfied 

at each node. Those are the displacement compatibility 

condition and the force equilibrium. The displacement 

compatibility states that the displacements at a given node 

for all structural elements joining at this node are the same 

and equal to the total displacement of the node. This 

condition can be written as: 

AJ - Ak AT . . . - A 
- - - - Lj =A1 (7.12) 
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where Aldenotes a generalized displacement of node i of 

element i-j. This statement is equivalent to the condition 

that the structure at a given node remains continuous and the 

elements involved do not separate from one another. 

The force equilibrium states that the external force 

applied to a node is balanced by the internal forces of the 

elements joining at the node. Using the same notation as for 

the displacement compatibility, this condition can be written 

as: 

=Pi + p/C + P in +...+ Pf (7.13,) 

Let us now consider a single element i-j, as shown on 

Figure ( 7.7) below. 

ELEMENT j-I NODE J 

A11 

Figure 7.7. A diagram for evaluating a 
force in a single element. 

It is evident that since the material is linear, the 

contributions from the displacements at the two nodes can be 
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added. Hence, using the definition of the coefficients of the 

stiffness matrix, the element force at node i is given by: 

ph = K11 1 + K1 (7.14) 

Substituting the above result into force equilibrium equation 

(7.13) and making use of displacement compatibility equation 

(7.12), we may write 

P1 = A. -E(K xi) + (7.15) 

where summation over x indicates a summation over all 

structure elements joined at node i, i.e. x = j,k,m,....,n. 

By comparing the result of Equation ( 7.15) with Equation ( 7.8) 

it becomes evident ' that the coefficients of the stiffness 

matrix on the main diagonal K1 are the sums of the 

corresponding stiffnesses Ki'j of all contributing elements i-

x. We may therefore write 

K1 = Kjj + K J, + KJ + + K (7.16) 

Typically, coefficients K11 are referred to as the nodal 

stiffnesses, while coefficients K1 are termed as element 

stiffnesses. 

The global stiffness matrix can now be assembled from the 

stiffnesses of the individual elements in the following way: 
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Step 1. Number all the nodes in the structure from 1 to N, 

where N represents the total number of nodes. 

Step 2. For every i between 1 and N repeat step 3. 

Step 3. For every j between i+1 and N do the following if 

nodes i and j span an element: 

- calculate Kid and add it to the i,i location of the 

global stiffness matrix [K]. 

- calculate Kf and add it to the j,j location of [K]. 

- calculate K1 and place it in the i,j location of [K]. 

- set K 1 = (symmetry). 

The problem of setting up a system of equations for the 

nodal displacements in the structure was thus reduced to 

evaluating the appropriate nodal and element stiffnesses for 

each identified structural element. 

For three dimensional structures the generalized nodal 

displacements and the generalized forces can have up to six 

components - three translational and three rotational. 

Consequently, the element and nodal stiffnesses 

themselves, represent matrices with up to six rows and six 

columns. We will refer to these as the elemental stiffness 

matrices. The fact, that the global stiffness matrix is 

composed of the elemental stiffness matrices rather then 

single numbers, does not reduce the generality of the above 
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considerations since our problem is a linear one. For a 

general three-dimensional case we, simply, have 6N equations 

in 6N real displacements. 

It may often be convenient to evaluate the elemental 

stiffnesses in a local coordinate system. These can then be 

transferred into the global system of coordinates. To 

demonstrate this, let us consider a system of equations 

expressed in local coordinates. 

[p] = [k] [ 8] (7.17) 

The above equation should also be valid in the global system 

of coordinates. We write: 

[P1 = [K] (A] (7.18) 

If matrix [ RI represents a transformation from local to 

global coordinates then [ p] = [RI [ P] , [8] [RI [ A] , and 

we may write Equation ( 7.17) as 

[R] [P] = 1k] [RI [A] 

Substituting for [ P] from Equation ( 7.18) and rearranging the 

terms, 

( [R] [ K] - [k] [ RI ). [A] = 0 
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Since the above equation is satisfied for any arbitrary real 

vector [i.] , it follows that the term in brackets must vanish'. 

Therefore, 

[K] = [R'] [ k] [ R] (7.19) 

For a cartesian system of coordinates the inverse of the 

transformation matrix is equal to the transpose of the matrix, 

([R'] = [RTI). Using the result of Equation ( 7.19), we may 

finally write an expression for the elemental stiffness 

matrices. 

[K!] = [R] [k/i] [R] 

[K] = [R2 .7 i [ ku ] [ Ru ] 

(7.20) 

In the above expression [R1 ] represents a transformation 

matrix from local coordinate system chosen at node i for 

element i-j, into the global system of coordinates. It should 

be pointed out that the choice of coordinate system maybe 

different at the two nodes, hence, [R] in Equation ( 7.20). 

In our model, we are dealing only with equivalent two-

dimensional truss systems. The discussion of method of 

evaluation of the elemental stiffness matrices for general 

three-dimensional elements is therefore beyond the scope of 

this section. The implementation of the general methodology 

described here, to the equivalent truss systems will be 
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presented in the following sub-sections. 

As a final note, we will briefly discuss the aspect of 

boundary conditions that may be prescribed on the structure. 

Typically, the boundary conditions are specified in terms of 

certain required nodal displacements (nodal constraints). For 

example, fixed supports at certain nodes, would necessitate 

that the nodal displacements at these points be zero. If a 

boundary condition prescribes a zero displacement at some 

node, say 2 = 0, than clearly, this displacement does not 

contribute to any of the external forces in Equation ( 7.8) 

(the contribution is represented here by the i-th column of 

the stiffness matrix [K]). Moreover, the equation 

corresponding to this node (given by the i-th row of matrix 

[K]) becomes redundant. Consequently, the boundary condition 

is implemented by deleting the i-th row and the i-th column 

from the global stiffness matrix. The new reduced system of 

equations will then represent the constrained structure. 
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7.3.2 Equivalent Truss System 

As mentioned before, a conglomeration of disks for which 

the contact forces cannot be computed using the dynamic 

equilibrium, is transformed into the equivalent two-

dimensional truss system. Such a system is created by, placing 

a node at the center of each disk, and by replacing each pair 

of contacting disks with a truss element which spans the two 

nodes. The length of a truss element is thus, equal to the 

sum of the radii of the two disks that the given element 

replaced. 

Each point of contact between a disk and a boundary line 

segment is also made into ,a node. We will refer to such a 

node as a base node. The contacting disk is replaced by a 

truss which runs between the node at the center of the disk 

and the given base node. Such truss element will be called a 

base element. The length of a base element is equal to the 

radius of the disk that it replaces. We assume that a base 

node is constrained, that is that zero displacements are 

prescribed at this node. Therefore the base nodes will not 

contribute any equations to the global system, see Section 

7.3.1. The base elements, however, will contribute to the 

nodal stiffness of its other (non-base) node. Figure ( 7.8) 

shows the definition of the elements described above. 
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ELEMENT ('- 1) 

BASE ELEMENT 

(I-') 

NODE (I) 

N 
/ 

NODE ( I) 

/ 
\ / 

/- - ELEMENT ( j- k) 

NODE ( k) 
BASE NODES 

(I), (rn) (m), BASE ELEMENT 
(k- m) 

Figure 7.8. A definition of the elements 
in the equivalent truss system. 

The non-base nodes are numbered from 1 to N while the 

base nodes are numbered from N+1 to N+NB. The global 

coordinates of the nodes are the same as the coordinates of 

the centers of respective disks, which are always known. We 

will denote them as X1 , 1'1 • 

The length of each truss element is also known. The 

length of truss element i-j is defined as: Lij = + R. 

For two-dimensional truss systems the generalized nodal 

displacements Ai can have only two translational components. 

The situation is similar for the generalized forces P1. 

Hence, the element and nodal stiffnesses K1 , K 1, are 

represented by two-dimensional square matrices. We write, 
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Ai P1 , Kjj 
K11 K12 

K21 K22 
Iii 

(7.21) 

It is evident that the condition for the equilibrium of forces 

at each node will consist of two corresponding equations (one 

for each of the two force components). Consequently, there 

will be 2N equations in 2N unknown real displacements. The 

system of equations is organized in such a way that the 

equilibrium equations for a node will occupy two consecutive 

lines. Therein, the equilibrium equations for node 1 will 

occupy lines 1 and 2, while those for, say, node i will be 

located on lines 2i-1 and 2i. Therefore, the following 

allocation of variables will be used; 

and 

K21 

K12 

K22 

K2 _1, 2j-1 K2 ..1, 2j 

K2,2 _1 K21,2 

(7.22) 

(7.23) 

The elemental stiffness matrices of Equation ( 7.23) can 

be obtained by first calculating them in a conveniently chosen 

local system of coordinates and then transforming them into 

the global system by the application of Equation ( 7.20) 

derived in Section 7.3.1. 
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For a truss element we chose a local coordinate system at 

each node in the following manner. The origin of the system 

is located at the given node. The x-axis runs along the 

length of the element and in the direction away from the node. 

Figure ( 7.9) shows our choice of local coordinates at the 

respective nodes. 

x 
Figure 7.9. Definition of local systems 
of coordinates and the corresponding 
displacements. 

The choice of the local coordinate systems at the two 

nodes with different orientation of axis, as shown in Figure 

7.9, enables us to treat each node in the same way. 

The coordinate transformation matrix describing a 

rotation of the cartesian system of coordinates [R] is given 
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by: 

[R] - fi. mlj 
- [12 m2j 

ii 

where 11 , m1 are the directional cosines of 

Y-axis, and 1 2, m2 the directional cosines 

and Y-axis, respectively. Subscripts ij 

system of coordinates chosen for node i of 

(7.24) 

x-axis with X- and 

of y-axis with X-

indicate a local 

element i-j. 

From the definition of the coordinate systems it becomes 

evident that 

[R 1] = - [R1j ] (7.25) 

Since a truss element can experience only a change of 

length, in the local system of coordinates the nodal 

displacement 8J takes place only in x direction. That is, 

only x component of the displacement is present. Similarly, 

the forces induced at the nodes by the nodal displacements, 

can only be directed along the truss, and thus in local 

coordinates, have only the x component present. Consequently, 

the local elemental stiffness matrix [k] will have only one 

non-zero entry, located in the first row and the first column. 

This is demonstrated by the following relation 

ox 

0 0 0 
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We can, therefore, drop the second row in the above equation 

(all zeros), as well as the second column of the elemental 

stiffness matrix. Hence, we will write 

p1 =k 8i (7.25) 

Pij denotes here, a force induced at node i of element i-j by 

a displacement 6 at node j, while maintaining the equilibrium 

of the element. Using this convention we can also write: 

-7 
Pu - i_j1 .5j 

h (7.26) 

The above equations, ( 7.25) and ( 7.26), represent a simple 

load-deflection relation for a linear member. Consequently, 

for a uniform cross-section truss element we have a very 

familiar expression for the stiffnesses, 

- 7- -  11 (_ffl 
L 

1-7 

(7.27) 

where E is the elastic modulus of the material, A is the 

cross-sectional area of the truss element, and L is its 

length. 

If we recall that if [R] represents the coordinate 

transformation matrix from a global to a local systems then, 

[8 ] = [R] .[ i] , [p] = [R] -[ P]. For the truss element we can 
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write this as 

raxl f1 m11 11x1 
1 o = 112 m2j.. yi 

px 
0 

= [1 mu fPxl 
[.Z in2].. p I 

ij L YJj 

It is evident that the second equation in the above relation 

is redundant ( 0 = 0), and thus can be deleted. Hence, in our 

case, the coordinate transformation matrix is given only by 

the top row, i.e. [1 MI ]. We may therefore write 

l 
[Rf ] = [j [R 1] = [- 1 -m] (7.28) 

i  

The directional cosines of Equation ( 7.28) are evaluated from 

the spacial position of the truss in the global coordinate 

system. Namely, 

1 in 
Yi - Yj 

L ij 
(7.29) 

Now, combining Equation ( 7.20), Equation ( 7.27) and Equation 

(7.28) we can obtain the expressions for the elemental 

stiffness matrices in global coordinates. We have, 

[K] 

and 
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[K 1] = [1]()[1 m] ij 

We define a two-dimensional square matrix as: 

[B] 
12 urn 

urn in2 
(7.30) 

Using the definition of Equation ( 7.30) we can write the 

expressions for elemental stiffnesses as 

[ 

and 

K1 ] 

[Kg] 

= Bt j  (7.31) 

(7.32) 

With our choice of the local system of coordinates, node j of 

truss element i-j is treated in the same way as node i. We 

could, therefore, by Equation ( 7.20), write for node j: 

{ Kfj ] 

and in short, 

= •- lj ij .(Efl .[_,  -rn]ij 

[KJ.] (7.33) 

Equations ( 7.31), ( 7.32), and ( 7.33) define the elemental 

stiffness matrices. The global stiffness matrix can now be 
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assembled from the elemental matrices, provided that the 

equivalent stiffness of the truss element (EA/L) 1 is known. 

The computation of the equivalent stiffnesses will be 

discussed in Section 7.3.3 and the method of assembly of the 

global stiffness matrix will be presented in Section 7.3.4. 

Finally, the system of equations for the nodal 

displacements can be set up once the vector representing the 

external forces [P] is determined. A conglomeration of disks 

is a dynamic system, with component disks experiencing 

accelerations. On the other hand, the equivalent truss 

system, for the application with the present method, must be 

quasi-static. Hence, the dynamic terms of acceleration 

present in a disk conglomerate must be, therefore, converted 

to inertia forces. This is done by adding the dynamic term 

(mass times acceleration) of a disk to the external force 

acting on it. Henceforth, for node i, which replaces disk i, 

we have: 

[Pd] 
- ma 

F - ma 
(7.34) 

where: F, F are the components of the total external force 

acting on disk i1 ' ay are the components of the 

acceleration experienced by the center of the disk, and m 

represents the disk's mass. 
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The system of linear algebraic equations for the nodal 

displacements of the equivalent truss system will be of the 

following form: 

F' 

P2 

i-i 

p2i 

K,, K,2 

'< 1 '< 2 

1-i1 i-12 

• K 1 2j-1 K, 2 

• K 2 2j-1 K22 

K 1 2N-1 1 2N 

2N-1 K 2 2N 

R_12i_1 i-12j < i12N1 K2i-12N 

1 K 2i 2 I<2i 2j-1 K21 2j K21 2N-1 K 2i 2N 

2N-1 K 2N-11 K2N_, 2 1V-12j-1 K 2N-12j .V-12N-1 1V-12N 

2N - - K 2N1 K2N2 K2N2j-1 I<2N2j K 2N2N-1 K 2N2N 

S 

Al 

A2 

A2 

A 2N-1 

(7.35) 

The coefficients of the global stiffness matrix in 

Equation ( 7.35) are explained by the allocation condition 

(7.23). For example, 

FK2,, 2j-1 K2N_,, 2j 
LK2 2j-1 K2N 

K,, K,2 

K2, K22 
= [KNj] 

represents the element stiffness matrix for truss element N-j, 

as given by Equation ( 7.31). 

The force and the displacement vectors in Equation ( 7.35) 

are given by the variable allocation conditions ( 7.22), i.e. 
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P, 

P2 

P21-1 

p21 

xN 

yN ANN - A2N 

(7.36) 

This concludes the consideration of the equivalent truss 

system which replaces the given disk conglomerate. The 

subject covered in this section represents an adaptation of 

the general theory presented in Section 7.3.1 to the 

equivalent truss system. In the following sections the above 

theory will be implemented to create a computer program which 

will set up the system of equations ( 7.35) and solve them for 

displacements. Consequently, the internal forces in the truss 

elements, which themselves represent the required contact 

forces, will be computed. 
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7.3.3 Equivalent Element Stiffness 

The equivalent stiffness of a truss element i-j is 

denoted as (EA/L) 1 , and represents the amount of force 

required at the nodes to cause a unit change in length of the 

element. Consider the diagram of Figure 7.10 below. 

Figure 7.10. A diagram for evaluating the 
equivalent element stiffness. 

For disk i we have, 

Gj (x) 
P  

- A. (X) ' 

141 (x) = 2tjVRj2 -XI 
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Since we are dealing with a two-dimensional case, we will 

consider everything in terms of a unit thickness ( t1 = tj = 1). 

The strain for the disk is thus given by: 

= o(x) = p 

E 

Similarly for disk j, 

Now, the change in length of the element is 

Rj Ri 

8 = f ej (z) dx1 + f ej (x) dx 

and 

IR1 

8 = 1  dx+ Rj f  1  dx 

2E[ VR - x. a 

Hence, the equivalent stiffness becomes, 

2E 

2E 

(7.37) 
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7.3.4 Assembly of the Global Stiffness Matrix 

The equivalent truss system contains N non-base nodes and 

N11 base nodes. The non-base nodes are numbered from 1 to N, 

while the base nodes are numbered N+l, N+2 , , , N+NB . As 

pointed out earlier, the base nodes are assumed to be 

constrained. In other words, the generalized displacements at 

these nodes are zero. We can write this condition as 

Axi = Ixyj = 0 , (N < j ≤ N-i-N11 ) 

Therefore, as demonstrated in Section 7.3.1, the equilibrithn 

equations for these nodes become redundant. Also, since the 

displacements corresponding to these nodes are zero, they do 

not contribute to the force equilibrium equations for any 

other nodes. Consequently, the elemental stiffness matrices, 

[K], [ K], [ Kf], need not be calculated. It follows from 

here that the global stiffness matrix [K] will have the 

dimension of 2N. It should, however, be pointed out that the 

existence of a base element connecting'a non-base node i to a 

base node j implies that the nodal stiffness at i is affected. 

Hence, [K/i] has to be computed and included in the global 

stiffness matrix [K]. 



231 

In our program the topology of the equivalent truss 

system is given by the node connectivity. array, IC(i,j). The 

dimension of this array is [N x N+NB ]. The square part of the 

array, [N x N], corresponds to the connectivities among the 

non-base nodes, while the rectangular part, [N X NB ], 

represents the connectivities between the non-base nodes and 

the base nodes. An element of this array can be either 1 or 

0. IC(i,j) = 1 indicates that nodes i and j are connected by 

a truss element. Zero, of course, means that no such 

connection exists. 

Using the procedure outlined in Section 7.3.1, the 

algorithm for the assembly of the global stiffness matrix of 

the equivalent truss system can now be summarized as follows. 

Step 1. For .1 = 1, 2, , , N-i do Steps 2-10 

Step 2. For j = .1+1, .1+2, , , N do Steps 3-9 provided 

that IC(i, j) = 1, i.e. an element exists betweeri 

the two nodes ( 1, j). 

Step 3. Calculate the length of the element. 

Lij =Ri + R 
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Step 4. Calculate the equivalent element stiffness 

in local coordinates, Equation ( 7.37). 

EA\ 

L ij 

2E 

It 

Step 5. Calculate the coefficients of the 

coordinate transformation matrix, Equation ( 7.29). 

Xi -  x. 
.2 = Lij 0' m Ljj 

Yi - Yj 

Step 6. Calculate the element stiffness [K1 ] 

according to Equation ( 7.31) and place it in the 

appropriate location of fK], Equation ( 7.23). 

2E 11 2 1in I  K21_12 
- Ic  {lm m 2 ] •K2i-12j-1 K 21 K22 

Step 7. Set [K 1] = [K] and place it in the global 

matrix [K], Equation ( 7.23). 

{ K212 . K2i_l2ij 1K212_1 K 2j 2i-1 

K2 2j-1 K2 2j K2_1 2i K2 2i 
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Step 8. Calculate the nodal stiffness [K] from 

Equation ( 7.32) and add it to the appropriate 

location of [K]. 

2E 12 liii + I<i12i1 I<i12i 

It lm m2 1(21 2i-1 I<2i 2i 

;i-1 2i-1 ; i-1 21 

K221_1 1<2121 

Step 9. Calculate the nodal stiffness [Kf] from 

Equation ( 7.33) and add it to [K]. 

2 E f 2 lml I K21 2j-1 2j I I ; j-1. 2j-1 K2_1 2j 

[im 2] + [ 1 2j2j ] [ K22 ..1 K22 

Step 10. For j = N-i-i, N+2, , , N+NB do Steps 11 and 12 

provided that IC(i, j) 

Step 11. Calculate the length of the element. 

Lij = R1 

Step 12. Repeat Steps 4, 5, and 8. 

Step 13. For I = N repeat Step 10. 
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The global stiffness matrix for the equivalent truss 

system is now assembled. The system of equations ( 7.35) can 

now be set up. The external force vector is determined from 

Equation ( 7.34) and allocated according to Equation ( 7.36). 

We will now proceed with describing the methodology of solving 

the equations for the nodal displacements. 
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7.3.5 Solution for Nodal Displacements 

In this section a solution of the system of equations 

(7.35) will be discussed. The global stiffness matrix was 

assembled in Section 7.3.4. It was demonstrated in Section 

7.3.1 that for the general case the stiffness matrix is 

positive definite. This statement holds true provided that 

the structure is in static equilibrium, i.e. that the number 

of degrees of freedom for the structure is zero. Clearly if 

this were not the case, then Equation ( 7.3), on which the 

entire static analysis is based, would, in addition to strain 

energy, also have had to include the change in kinetic and 

potential energies. Consequently, a stiffness matrix 

representing a system which is not in static equilibrium, 

would become singular. Since, regardless of the situation, a 

stiffness matrix is always symmetric, it follows that some 

rows of the matrix are proportional, or in general, that the 

rows are linearly dependent, 

turn, implies that some of 

displacements are redundant 

Discarding an equation for 

as are the columns. This, in 

the equations for the nodal 

and should be discardedi 

the nodal displacements is 

equivalent to eliminating the corresponding row and column 

from the stiffness matrix, which, in the physical sense, is 

analogous to putting a constraint on the corresponding 

displacement. This, of course is the same as adding an 
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appropriate support to the structure. This point can be 

explained by considering a simple example below. 

P1 

x 

The structure shown in the sketch above, which consists of 

just one truss element, is not in static equilibrium. It has 

one degree of freedom, that being translation in the X 

direction. Because of the supports at nodes 1 and 2, the •Y 

components of the displacements at the two nodes are zero. 

Hence, the system of equations for the nodal displacements of 

structure would have the following form: 

{Pi 

P2 

EA EA 
L L 

EA EA 
L L 

S 

A1 

A2 

The stiffness matrix in the above relation is clearly 

singular. Hence one of the above equations is redundant and 

should be eliminated. We may chose to discard the second one 

(i.e., the one for the force equilibrium at node 2), which we 

do by placing an appropriate support at node 2 ( an appropriate 

constraint on a displacement at 2). This is shown in a sketch 
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below. 

x 

The new, " supported", structure is in static equilibrium, as 

it has zero degrees of freedom. We now have only, one force 

equilibrium equation, that being for node 1 in the direction 

of X, 

EA Al 
L 

The redundancy in force equilibrium equations in the example 

above was expected from the beginning. We had at our disposal 

an additional equation for the structure as a whole, i.e. one 

of the static equilibrium equations. Namely, that the sum of 

all external forces on the structure in X direction is equal 

to zero. This equation would provide us with condition 

= P 2 . And hence, would reduce the system of two force 

equilibrium equations at the two nodes, to just one equation 

at one of the nodes. Effectively, adding the support to the 

structure was equivalent to utilizing the static equilibriun 

condition. 
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In general, for structures the number of degrees of 

freedom is equal to the number of additional supports 

(constraints on displacements) that are required so that the 

structure is in static equilibrium. Keeping the 

considerations of the previous paragraphs in mind , we could 

also state that the number of degrees of freedom of the 

structure is equal to the number of linearly dependent rows 

(or columns) in the stiffness matrix for this structure. 

Hence, the rank of the stiffness matrix is its dimension less 

the number of degrees of freedom. The converse also holds 

true. Namely, if the rank of the stiffness matrix was found 

to be less then the dimension of the matrix, by some number, 

then this number is equal to the number of degrees of freedom 

of the structure, which, in turn, represents the number of 

additional supports required. If we denote the number of 

degrees of freedom as N. then for the equivalent truss 

system we can write: 

= 2N - rank{[K]} 

The equivalent truss system will very seldom be in static 

equilibrium. Consequently, the rank of the stiffness matrix 

will, almost always, be less then its dimension ( 2N), and 

hence some supports will have to be added. Once the rank of 

the global stiffness matrix is evaluated, then the appropriate 

number of constraints (given by the above condition) is added 
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to the system. The corresponding displacements are set to 

zero, and all the remaining displacements are solved for, from 

the reduced system of equations. 

Even if the rank of the stiffness matrix is known before 

hand, for the equivalent truss system in general, it is very 

difficult to determine at which nodes the constraints should 

be added to the system. The problem that presents itself 

here, is that after the addition of constraints and the 

subsequent deletion of the corresponding rows and columns from 

the global stiffness matrix, the resultant matrix must be 

composed of only linearly independent rows. Evidently, an 

addition of any arbitrary constraints will not guarantee the 

independence of the remaining equations. It is therefore 

proposed in this thesis that the determination of all the 

linearly independent equations (which is equivalent to the 

rank of the stiffness matrix) be attempted. Once this is 

accomplished all the remaining equations are disregarded and 

the corresponding displacements are set to zero. 

Numerically, this can be carried out by applying a 

Gaussian elimination to the original system of equations to 

convert it to the one defined by an upper triangular matrix. 

Namely, the original system of equations which is given by 
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[P] = [K][i] 

is reduced to 

where [K'] is 

[K'] = 

[P'] = [K] -[A] 

I I / .. / K11 K12 K1 r K1 2N 

0 K2 KI 

0 0 K K 

0 0 0 KI 

0 0 0 0 0 

0 0 0 0 0 

(7.38) 

(7.39) 

The first say, r rows of the reduced matrix of Equation 

(7.39), which are not entirely composed of zeros, correspond 

to all the linearly independent equations. Hence, in the 

example above, the rank of the matrix is r. All the rows 

composed entirely of zeros represent the linearly dependent 

equations which are discarded. Consequently, the 

corresponding displacements ('+ A+2 

zero. We have, 

r+1 = r+2 = = A 2N = 0 

A2N) are set to 
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The remaining displacements are obtained by solving the 

reduced system of equations: 

Pi 
I / K11 K12 

0 K 2 

0 0 

/ I 
Ki r_i K11 

I / 
K2 Z-1 K21 

/ I 
K1_11_1  

0 0 • 0 

Al 

A2 

A1...1 

A1 

The above system of equations can readily be solved through a 

backward substitution. Clearly, each equation in the above 

system has exactly one unknown less than the' preceding 

equation, with the last equation having only one unknown. 

Hence, the last coefficient of the displacement vector, A1, 

can be solved for. It is then substituted into the next, i.e. 

.r- 1st, equation, which now has only one unknown, and the 

next displacement ( A1...1) is computed. The procedure is 

repeated by progresively stepping up to the higher equations 

and evaluating the corresponding displacements until the last 

of them, A1, is determined. 

This concludes the determination of the displacements of 

the equivalent truss system. The forces in the truss 

elements, which are the same as the contact forces among the 

disks, can now be computed. This is discussed in the next 

section. 
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The algorithms for the Gaussian elimination and the 

backward substitution will not be discussed here. They are 

standard items in any introductory textbook on numerical 

methods, and therefore can easily be found ( see [ 7], for 

example). 

In closing it should be pointed out that during Gaussian 

elimination, one frequently refers to inter-changing the rows 

in the system of equations. This is done so that the 

elimination can still proceed, even though an element on the 

main diagonal of the matrix becomes zero. In the end, in the 

reduced matrix the all-zero rows always occupy the last 

locations. If the row inter-changing takes place then the 

equations in the reduced system may not necessarily occupy the 

original positions. To avoid putting the constraints on the 

wrong displacements, a track of all the original equation 

numbers during the elimination must be kept. In our program 

this is done by creating a one-dimensional integer array 

IEN(2N), which stores the original equation numbers. In the 

event that two equations are interchanged, the corresponding 

entries in lEN are interchanged as well. Subsequently, after 

the displacements are computed according to the methodology 

outlined in this section, they are rearranged back according 

to lEN, so they appear at the appropriate locations 

corresponding to the original vector. 
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7.3.6 Determination of Contact Forces 

The contact forces among the disks are equal to the 

forces in the corresponding truss elements of the equivalent 

truss system. The forces in the trusses depend on the 

displacements of the corresponding nodes that span the 

elements. 

The methodology of calculating the nodal displacements 

for the equivalent truss system was presented in Section 

7.3.5. As was pointed out in that section, the equivalent 

truss system, in a vast majority of situations, will not be in 

static equilibrium, and therefore, typically, a number of 

additional constraints on displacements ( supports) will be 

added to the system. If such is the case, then it may appear 

to the reader that the given structure can be constrained in 

a number of different ways. In other words, the required 

constraints can be added to the system at a variety of 

different places, just as the set of linearly independent 

equations can be selected from the global set in a number of 

different ways. The reader may therefore argue that, 

considering the method used in finding the set of linearly 

independent equations, a different numbering of the disks 

could result in different constraints being added, and hence, 

a different computed nodal displacement vectors. This, of 
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course, is true. The displacements as computed in Section 

7.3.5 represent the absolute nodal displacements experienced 

by the structure which is constrained in a certain way. If 

the given structure is constrained in a different way, theh 

the corresponding absolute nodal displacements will, 

inevitably, be different as well. However, the relative 

displacements among the nodes will remain unchanged. In other 

words, regardless of where the required constraints are added 

to the structure, as long as the resulting system is in static 

'equilibrium, the displacements of the nodes relative to one 

another will remain the same. The relative displacements 

amongst the nodes are the measure of the internal stiffness or 

rigidity of the given structure, which in turn, depends on the 

arrangement of the structural elements comprising it, and not 

on the particular way in which the structure is fixed in 

space. The method with which the nodal displacements are 

computed does not affect the rigidity of our equivalent truss 

system, but it merely restricts its movement in the directions 

corresponding to the system's degrees of freedom, or simply 

"fixes" it in space. Consequently, since we are only 

interested in the internal forces of the truss elements, which 

depend on the relative nodal displacements of the system, it 

can be concluded that the proposed method of computation is 

justified. 
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We will now proceed with calculation of the forces in the 

truss elements. A typical truss is shown in Figure 7.9 in 

Section 7.3.2. We recall that in local coordinate system a 

truss element can only experience a change of length. Hence, 

similarly to Equation ( 7.14) we may write an expression for 

the force in a truss, 

Pi 
(7.40) 

Using Equation ( 7.27) and Equation ( 7.37) the above can be 

written as 

,,2 
fr' 1 = _..( 7C i + o) 

But since the local displacements can be related to the global 

displacements through the coordinate transformatiàn matrix, we 

may write, 

r.'J 
.fr' 1 

and by Equation ( 7.28) and Equation ( 7.21) this becomes 

3 
Pi 

2E 1 (AX r1 i FA1 ' 

= It MI Y J I - [Ay]J L  

(7.41) 

where coefficients 1, m, in the above equation are defined by 

Equation ( 7.29). 
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The components of the nodal displacements can be obtained 

from the computed global displacement vector according to 

Equation ( 7.36). The determination of the contact forces now 

becomes straight forward and can be summarized as follows: 

1). Contact forces among disks. 

If disk i and disk j are in contact, i.e. IC(i,j) = 1, 

then: 

Lij = R1 +R , 1 

and 

= xi - xj 
Ljj 

.Y. - Y. M =  1 J 

Lij 

2E 
-:j --• .[ 1(A2_1 - + - I&2j) 

2). Contact forces between the disks and the obstruction 

If disk i and obstruction line segment j are in contact, 

i.e. IC(i,j) = 1, then: 

Lij = R1 1 
= xi - xj 

Lij 
M 

Lij 

where Xj , Y are the coordinates of the point of contact, 

and 
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= 
7t 1 2i-]. + m21 ] 

This concludes the computation of the contact forces. 

For our choice of the local systems of coordinates the 

positive contact forces will indicate the tension between the 

disks, while the negative contact forces will correspond to 

compression. 
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7.4 CONCLUSIONS 

The method of determination of the contact forces, 

presented in this chapter was programmed and successfully 

incorporated into our model. The method consists of two major 

parts: dynamic and static analysis. 

The dynamic analysis is based on Newton's Second Law of 

motion. It is easy to implement and requires relatively low 

computational times. The technique, however cannot be used to 

determine the contact forces for disks having more than two 

points of contact. 

The static analysis is based on a well known technique of 

structural mechanics, often referred to as the matrix 

structure analysis or stiffness method. The introductory 

theory for this technique was discussed briefly in Section 

7.3.1. More detailed description of the theory can be readily 

found in many textbooks on structural analysis, [ 3],[8]. The 

implementation of the methodology presented in Section 7.3.1, 

to analyze the equivalent truss systems which replace the disk 

conglomerates was presented in Section 7.3.2. The technique 

developed is very versatile and can be used to determine the 

contact forces among any conglomerates or clusters of disks, 

regardless of whether they are rigid or not, or whether they 
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are constrained or unconstrained. Moreover this technique can 

be used to calculate the contact forces among the disks with 

one or two points of contact. Consequently, one global system 

of static equilibrium equations could be set up for all the 

disks present in the system, from which the contact forces 

could be computed. In other words, static equilibrium 

analysis alone could be used for this purpose. The 

versatility of the static analysis method in handling any type 

of disk conglomeration and the disks with any number of points 

of contact, has, however, its drawback. The problem is that 

the method involves a large number of computations, summations 

and multiplications, which is of the order of ( 2N) 4, where N 

represents the number of disks in the system. Henceforth, a 

seemingly redundant and unnecessary dynamic analysis becomes 

not so in terms of the computational time involved. 

The dynamic method is very fast in comparison to the 

static one, and can quickly reduce a given system of disks 

into a much smaller sub-system to which the static analysis 

can then be applied and the remaining contact forces computed. 

The verification of both methods was performed. Disk 

conglomerates for which the contact forces could be determined 

by either method, were used in the verification procedure. 

The contact forces computed by both methods were the same. 



CHAPTER 8 

APPLICATIONS 

8.1 INTRODUCTION 

A computer simulation program has been developed which 

allows a user, through the choice of the initial parameters, 

configuration of the system's boundaries, and the external 

force routine, to model virtually any two-dimensional multi-

body systems. Th'is chapter will discuss some of the 

foreseeable applications. It is not the purpose of the 

present thesis to go in depth to understand the nature of th 

internal interactions, external forces present, and the 

parameters, of any specific system that can be modelled. 

Therefore, in this chapter we shall limit ourselves to 

indicating various possibilities for this model and presenting 

the visualization of the process that the chosen system is 

undergoing. 

Although, as indicated earlier, this model is very 

general and can be applied to virtually any planar multi-body 

system, the main purpose for its development was its use in 

modelling the motion of the broken ice in open water as well 

as in rivers and channels. The very nature of the processes 

250 
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involving the broken ice such as jam-ups, ice accumulation, 

non-homogenous and time dependth-it ice surface density, and 

inherent randomness of the shapes, sizes, and frequencies of 

appearances, prevent models based on the continuum theory from 

being applied successfully. It is believed that the present 

model, which is discrete and thus not hindered by the problems 

facing continuum models, can be used successfully in analyzing 

the motion of broken ice. 

An application for the model, which naturally suggests 

itself, is the flow of granular material in chutes and on 

conveyors. This possibility is also contemplated here. 

The motion of orbiting bodies, whose trajectories may 

change with time, is another possible area in which the model 

could be applied. 

Before proceeding with the presentation of different 

examples of application, a verification of the accumulation of 

the numerical errors is done. For this we used ten disks of 

equal radius, arranged to form a vertical stack, as shown on 

the next page. The only external forces specified were the 

gravity forces (acting vertically downwards), and all the 

initial velocities were set to zero. 

Such a configuration of disks is clearly in static 
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equilibrium and it should, ideally, remain so throughout the 

simulation, since the initial velocities are zero and the "x" 

components of the external forces acting on the system are 

zero. 

The accumulation of the numerical error during the 

computer simulation provides a "necessary disturbance" to 

create an instability in a system such as this. Over the many 

iterations during which the equations of motion are generated 

and integrated, the small numerical error will accumulate 

sufficiently to give rise to a small change of the transverse 

coordinate of the center of one of the disks. Consequently, 

the position of the disk shifts away from the vertical line of 

equilibrium and since the total force on it is no longer along 

the corresponding constraint, a small downward acceleration 

develops and the entire system becomes unstable. 

In the example shown here the time step used was 0.001 

seconds. The program was executed in single precision 

arithmetics. The instability developed at about 5 seconds, 

which is equivalent to 5000 time steps. Such level of 

accumulation of numerical error, considering the complexity of 

the processes that this model is intended for, is viewed as 

acceptable. 
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8.2 MOTION OF BROKEN ICE 

As will be seen in this section the program shows a great 

potential for modelling the motion of broken ice in open 

waters as well as in the rivers and channels. There is a 

great flexibility in generating the ice floes and the creation 

of obstructions which allows a variety of scenarios to be 

considered. For example, a complicated shape of a river bank 

could be reconstructed, and the ice floes could be generated 

at random according to some observed distribution. Also, to 

this end, random shape ice floes could be created from disks 

(Section 4.6). This would give a great similarity to the 

actual process being modelled. 

Two examples will be presented in this section to 

demonstrate the model's applicability to both rivers and 

channels, and to open water. 
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8.2.1 Rivers and Channels 

There are two instances during the yearly cycle of river 

temperature regimes, when the flow of isolated ice bodies 

occurs. In the fall the freezing process is accompanied by 

the flow of small ice formations ( ice pans), which leads to 

subsequent ice accumulation and eventual freeze-up. In the 

spring the melting of the ice cover leads to break-up and the 

ice run. The present model is directed towards the analysis 

of systems of isolated bodies, and it is thus believed that it 

can be applied to study the phenomena associated with river 

ice transportation, such as rate of ice accumulation arouna 

obstructions, formation of ice jams, or bridging. 

As a numerical example a part of the Liard river geometry 

is considered, as shown in Figure 8.1 below. The banks of the 

river were discretized using 58 line segments. 

The ice floes were generated at the entrance to the 

control area, located on the left side. The velocity of the 

stream at this point was assumed to be 2m/s. Thereafter, the 

flow field over 

boundaries) was 

the entire 

calculated 

Chapter 5. Ice floes of 

control area (within the solid 

using the computer routine of 

circular shape were randomly 

generated using the routine of Chapter 4. It was assumed that 
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Figure 81. Control area of the section of Liard 
river. 

the radii of the ice floes were distributed according to the 

Gaussian distribution with the following parameters: 

/.h=55m, Xm BOm, Xmin3OIfl, a=15m. 

It was also assumed that the frequency with which the floes 

enter the control area is given by a Poissonian distribution 

which parameters were determined ( Section 4.5) from the value 

of the ice surface density p. A sample run was conducted with 

p = 0.345 and the results are shown on the next two pages. 
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t = 1300 sec. 
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t = 1200 sec. 
p = 0.117 

t = 1200 sec. 
p = 0.345 

t = 1200 sec. 
p = 0.235 

t = 1200 sec. 
= 0.682 

Figure 8.2. An illustration of various surface densities. 

In the example shown in Figure 8.2 simulation was carried 

out for four different surface densities with the same 

parameters as in the previous example. The surface densities 

used are indicated in the Figure. At low ice concentrations 

the individual floes move with the mean current velocities 
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[1]. At high concentrations of ice (high surface density) the 

motion of the floes is mostly governed by the ice-ice 

interactions. Consequently, the increased clustering occurs 

and the motion of ice does not necessarily comply with the 

mean flow. The results of the numerical simulation performed 

seem to be in general agreement with the above statements. 

At high levels •of surface concentrations of ice, the 

interactions among the floes and the walls of the channel may 

result in sufficiently large contact forces ( or stresses) to 

greatly hinder, or even ( at sufficient concentrations of ice) 

prevent the movement of the surface ice layer. It is believed 

that the present model can be used to model the occurrences of 

such no-flow conditions. An illustration of this is shown on 

the next page. The section of Liard river was considered and 

the surface density p was increased to 0.68. At a time of 

about 1000 sec. intothe simulation a considerable clogging-up 

of the channel took place, resulting in a significant 

reduction of the surface discharge of ice. A jam-up (no-flow 

condition) was not observed as the channel is diverging at 

this particular place. 

It should be pointed out, that the mathematical model is 

restricted to two dimensions and thus can only describe the 

flow on the water surfaOe. Consequently, only the initiation 

of an ice jam can be simulated with this, model, since after 
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that instant in time ridging frequently occurs and the ice 

system becomes three-dimensional. 
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8.2.2 Open Water 

Two computer runs were carried out to illustrate the 

applicability of the model to analyzing the motion of broken 

ice in open water or an ice-off-shore structure interaction. 

The structure was assumed to be of a square shape with cut-off 

corners. The free stream velocity was set to be in the 

positive x direction with a magnitude of 0.5m/s. The ice 

floes were assumed to be distributed according to the Gaussian 

distribution with the following parameters: 

/h=7.5n1, a=l.5m, xm =lOm, xmjn =5m. 

The coefficient of restitution was chosen to be 0.4, and the 

coefficient of friction was selected as 0.5. The ice floes 

were assumed to be circular in shape. The computer routine of 

Chapter 5 was used to determine the stream velocity field 

around the structure. 

The first run was conducted with a relatively low surface 

density p, of 0.05. The computer print-out of this instance 

is shown on the next two pages. The simulation was carried 

out over an extended period of time. No significant 

accumulation of ice (with time) around the structure was 

observed, which would suggest that low ice densities should 

not pose a problem for off-shore structures. 
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The second computer run was carried out with the ice 

surface density p of 0.15, i.e. three times higher than that 

in the previous example. The results from the run are shown 

on the next two pages. In this instance a steady increase of 

the number of ice floes attached to the structure was 

observed, which could suggest the possibility of the 

accumulation of ice around the structure. 



o2 00 

0 

0 ° 

00 
0 

I  

T- 909.1 crnd  

002 00 

2b 0 c 

0 0 cg 0 0 

00 
0 

1- cnrd  



0 
o 9 OC 

Oco 

O O dD 

00 0 0000) 0 0 

0 ° b 'b00 0 C 

1- 1304. seconds 



269 

8.3 MOTION OF GRANULAR MATERIAL 

In the following example the model is used for analyzing 

the filling of a bin with dry cohesionless granular material 

travelling through a chute. The individual granules are 

represented by disks. The external forces consist of only 

gravity. The rigid bodies were generated at the top of the 

chute with average rate of arrival ) equal to 1.75/sec. The 

size distribution of the rigid bodies was assumed to be 

Gaussian with the following parameters: 

= 7.5cm. , Xmac = 10cm. , Xmin = 5cm. , o = 1.5cm. 

The size of the bin was 200cm. wide and 100cm. high. The 

results are indicated on the next three pages. 

The issue that was of primary interest here was the 

demonstration of the applicability of the model to investigate 

the material transport capacity of such systems. The 

graphical data shown indicates that the chute-bin system used 

in this example was capable of transporting the material at 

the given rate of 1.75/sec. 
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8.4 CONCLUSIONS 

In this chapter various possible applications of the 

computer model were illustrated. The present thesis deals 

with the development of the general simulation methodology, 

rather than with a detailed analysis of any particular system, 

and thus no quantitative data, such as the distribution of 

stresses within the granular material or the forces exerted on 

the solid boundaries, was presented. This type of undertaking 

would require a prior detailed analysis of the given system 

and the character of the internal and the external forces 

present, which itself in many instances represents a 

considerable challenge. 

The main purpose of this chapter was to show the variety 

of different systems, and situations that can be simulated, as 

well as the versatility of the developed model. It is 

believed that this was accomplished. It should also be 

pointed out that all the tools necessary for obtaining 

quantitative data are in place, as they comprise a necessary 

part of computations. For example, the contact forces among 

the rigid bodies, or the loads exerted by the rigid bodies on 

the solid boundaries (walls of a channel, or an obstruction) 

are computed at every time step during the simulation, which 

in turn can be translated into the shear or normal stresses. 
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Moreover, various checks were performed on the model, and 

it was concluded that the model is dynamically correct, that 

is, that it complies with the basic laws of mechanics such as 

Newton's second law or the conservation of momentum. 

Also, as illustrated in Section 8.1 a test was performed 

on the amount of numerical error accumulation. The test 

involved ten disks and one obstruction line segment. The 

error accumulation was at acceptable level despite the fact 

that only single precision arithmetics were used. 



CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 CONCLUSIONS 

A general simulation methodology for analyzing two-

dimensional topologically variable multi-body systems has been 

developed. The mathematical model and the resulting equations 

of motion have been derived from the principles of Lagrangian 

dynamics. A motion of a system is described by a set of 

differential equations of motion and a set of algebraic 

constraint equations. The mathematical formulation is exact 

since no simplifying assumptions were made during the 

formulation. Disks and straight line segments have been 

chosen as the two primary elements to represent the actual 

systems. With these any shape of solid boundaries and rigid 

bodies can be described. Overall the methodology offers a 

great versatility in modelling a variety of multi-body systems 

with either one-sided or double-sided constraints. 

The main accomplishments of the present investigation can 

be summarized as follovs: 

275 
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1. A concept of static and dynamic analysis has been 

introduced to handle the one-sided constraints. It was 

proposed that the constraints ( connections) remain intact 

throughout the simulations until the time at which the 

constraint forces become tensile. Thus the constraint is 

replaced by the assumed dependence among the generalized 

coordinates, which in turn allows for a reduction in the 

number of the generalized coordinates and in the number 

of constraint equations. Consequently, the unknown 

constraint forces cannot be computed from the constraint 

equations and must be determined by other means. This is 

accomplished through the dynamic analysis (based on the 

Newton ts second law) and the static analysis ( based on 

finite element truss system analysis). 

2. An algorithm to perform the above analysis on any 

arbitrary multi-body system has been developed and 

successfully implemented on a digital computer. 

3. A method of handling the inter-body friction was 

introduced and numerically implemented. The difficulty 

in handling friction lies in the fact that the friction 

forces depend not only on the unknown constraint forces 

but also on the unknown orientations of the relative 

velocities across the constraints. Whence, the equations 

of motion which include frictional effects, qannot, in 
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general, be generated for variable topology multi-body 

systems. The proposed technique solves for the 

frictional forces independently of the solution for the 

generalized coordinates. This in effect makes the 

frictional forces " lag" one time step behind all other 

parameters. The numerical errors thus introduced are not 

considered significant as, at the most, these represent 

second order terms with respect to time. 

4. A method of fluid flow calculation has been established 

that allows for the calculations of the drag forces on 

the rigid bodies. The method is based on the potential 

flow theory. The flow field is governed by the Laplace 

equation with Neumann boundary conditions. The solution 

to the field equations is obtained through the so-called 

panel method. 

5. The above method has been successfully implemented for 

both channel flow and flow around an obstruction. The 

panels are obtained by automatically dividing the 

obstruction line segments. The developed method also 

allows for the moving boundaries to be considered. 

6. A concept of random rigid body generation has been 

introduced. A pseudo-random number generator which gives 

uniformly distributed random numbers and pairs of numbers 
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between 0 and 1, has been employed. The sizes of the 

rigid bodies are randomly sampled from a specified 

probability density function, which can be either 

continuous or discrete. The generated rigid bodies are 

entered into the control area ( control volume) at random 

locations and at random time intervals, so selected that 

the generation process resembles a Poissonian walk. 

7. An algorithm for the generation of randomly shaped rigid 

bodies comprised of random size disks has been developed. 

The technique of composing random shapes is directly 

compatible with the process of identification of quasi-

rigid body subsystems used by the model for the purpose 

of reducing the number of motion and constraint 

equations. 

8. A concept of surface density of the randomly distributed 

bodies was introduced and the corresponding algorithm 

developed. This option allows for treatment of systems 

characterized by a certain surface density. 

9. The fortran code for the above algorithms has been 

generated, tested, and successfully implemented. 
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As mentioned earlier the present computer model offers 

great versatility in analyzing multi-body systems. Several 

points can be made to demonstrate this: 

a) The type of system that is being considered can be 

identified by the user-supplied external force routine. 

b) The character of the system's interactions can be 

identified by a' set of parameters such as coefficients of 

drag, friction, and restitution. 

C) The concentration of rigid bodies in the system can be 

easily chosen through the generation parameters such as 

mean size and the surface density. 

The use of a pseudo-random number generator not only 

provides the user with the sequences of numbers that for 

all practical purposes can be considered random, but also 

enables him to reproduce any such sequence. 

e) The random generation of rigid bodies according to any 

chosen probability density function permits modelling of 

stochastic type systems, for which the bias associated 

with a predefined set of rigid bodies should be avoided. 

f) The model can accommodate cohesion among the rigid bodies 
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by simply specifying a connection strength. Once a 

connection is formed, it is maintained until the tensile 

force in this connection exceeds the connection strength. 

g) For systems involving broken ice, the effect of 

adfreezing and melting can be modelled by simply varying 

the strength of a connection depending on the extent of 

time that the given connection is maintained. 

Presented in this thesis is a general simulation 

methodology for analyzing the motion of topologically variable 

multi-body systems. The developed computer model is, to the 

best of the author's knowledge, the first attempt at 

investigating unconstrained multi-body systems, in which the 

mathematical formulation and the resulting equations of motion 

are based on the principles of Lagrangian dynamics. The 

novelty of this work hinges not on the development of new 

theories, but on the adoption of existing theories, and their 

integration into a single concise module. It is also believed 

that a random generation of rigid bodies is a novelty in the 

field, where both the continuum and discrete models deal with 

predefined shapes and sizes of the rigid bodies. 

Finally, the limited experience in the area of dynamics 

of the topologically variable multi-body systems and the lack 
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of available software makes the present model a viable 

contribution to the area. 
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9.2 RECOMMENDATIONS 

The following tasks and investigations may be carried out 

as an extension to the present work: 

1. An experimental validation of the model. Regardless of 

how thorough and precise the mathematical description is, 

a model should be verified experimentally. 

2. An inclusion of the rotational degrees of freedom for the 

individual disks. At present in order to reduce the 

number of generalized coordinates, the rotation of the 

individual disks was neglected. This course of action 

was dictated by the lack of computational power available 

in our department. 

3. Inclusion of the effects of the rigid bodies on the fluid 

velocity field. This could be accomplished by replacing 

the rigid bodies with panels and since the velocities of 

each such panel would be known, the field equation could 

be solved to include all the bodies in the system. At 

present this effect is neglected since it would 

considerably increase the amount of computations 

involved. 
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4. Transferring the computer model to a more powerful 

computer. At the present the model is running on a Sun 

computer system, which basically is a 386-based machine. 

The University' of Calgary has in its possession a CDC 

mainframe computer. Transferring our model onto that 

machine and utilizing the machine's parallel processing 

capability would enable us to not only implement the 

above changes, but also would provide us with much 

increased computational speed (by the order of about 10) 

and the possibility of analyzing much bigger systems or 

problems. 

5. Extending the model to include the third dimension. 
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APPENDIX A 

DERIVATION OF GENERALIZED INERTIA FORCES L. 

The kinetic energy of the system of N particles, or 

material points is given by: 

T = 
2 E (Mj Vj - Vj) 

where Vj is a velocity vector of a particle given by: 

V i = 

df 

dt at 
n 

+ g k 

(A. 1) 

(A. 2) 

Let us now recall that the generalized inertia forces are 

given by: 

and 

Li = Emjä'j.4E1qj L d. af. 
= L m.7 . -1 

pl# 
1=1 

= fj : - Emj.- f aqj : 

(A.3) 

(A.4) 

Let us now consider some of the terms in Equation (A. 4). 

Using Equation (A.2), we can write: 

a f = a2 f  + a2f = aj 
dt äq1 aq1 ae aq1aq 

(A.5) 
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Also, from Equation (A.2) it can be seen that the velocity 

vector Vj is a linear function in the derivatives of 

generalized coordinates di. It follows from here that: 

af. 
aqi =  ,  Vi U = 1 , n ; j = 1 , N) (A. 6) 

Substituting Equation (A.5) and Equation (A.6) into Equation 

(A.4) we obtain, 

can be written as 

Li E{ 4 mj ?j ] 

(A.7) 

- _T  (A. (A.8) 

And finally, by Equation (A. 1) we have 

d aT - aT 
dt a-1 aq (A.9) 
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APPENDIX B 

CALCULATION OF KINETIC ENERGY FOR RIGID BODIES 

A notion of any rigid body can 

combination of a translational motion 

respect to some point within the body. 

be considered as a 

and a rotation with 

Figure B.l shows a 

typical situation. We define f0 as a positional vector of the 

point of rotation and fb as a positional vector from this 

point to some other point in the body. 

Figure B.1. Diagram for calculating T. 

The positional vector to any point in the body can be defined 

as 

(B.1) 

The velocity of any point of the body can be calculated as: 
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df = = dfodfb 
d  d  d  

U 0 
f 

+  d  

d  
(B.2) 

Term 7.7 represents the velocity of the chosen point "of 

rotation" F0, and represents the translational part of the 

motion, while term (dfb /dt) represents the rotation. Since 

the positional vector f1, spans two given points of the rigid 

body, it follows that its length does not change. Its 

orientation, however, does, and hence, (dfb/dt) = (OXfb. We 

can write Equation (B.2) as 

= ffO + ra X e b (B.3) 

The kinetic energy of the body is given by 

T = -Lf U7 - U7 dM = + fo xfbo +x fbcm = 

= f ffo2 dm + f('uO .(;xfb)dm + + fxfb 2dm (B.4) 

For the simplicity of expressions we will use a square to 

denote a dot product of two identical vectors, i.e. a2 

In Equation (B.4) L70 and do not depend on the position of 

a point within the rigid body, and hence can be taken outside 

the integration. We also , notice that 

frbdm = Mr-C.G. f( C) X f  b) 2 dM = 10) 

where fC.G. is the positional vector from point P0 to the 
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body's center of gravity, and I is the body's moment of 

inertia with respect to the axis along . We can now write 

Equation (B.4) as 

T = + Mu0'u + 62  (B.5) 

where ÜCG = (dfc G /dt) = coxrCG is the velocity of the 

body's center of gravity relative to the point about which the 

rotation was considered. 

Equation (B.5) represents the kinetic energy of a rigid 

body of mass K and having a moment of inertia I with respect 

to the instantaneous axis of rotation S. Alternately, 

Equation (B.5) could be written as 

T 1 M ' dZ0 + M df0 df  
2 dt dt 

+ (_A, 2 (B.6) 

2 0 dt) 

where 6 is a vector of rotation indicating the body's 

orientation in the inertial frame of reference. 



294 

APPENDIX C 

TYPES OF PSEUDO—RANDOM NUMBER GENERATORS 

The earliest attempt in generating a PRN sequence is due 

to von Newman. This is known as ' midsquare' method in which 

a number is generated by squaring its predecessor and taking 

the middle digits and is given by the following formula: 

X 1 
xn.,1 = (C.1) 

• This generator was, however, found unsatisfactory as it 

becomes a cyclic one, often with a very short period [ 13]. 

Most of the modern general use PRN generators are based 

on linear recurrence formula, [ 12],[13]. Here, 

= a0x + +"+ + b ( modP) (C.2) 

where b, P, are constants. The generator is initiated by 

providing the first j+1 numbers x0 , x1 , . ., x3. Every PRN 

generator is characterised by a certain period or a number of 

times that the generator can be used before the sequence 

starts to repeat itself. For the generator given by Equation 
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(C.2) the maximum period that can be attained is: t rnax = p(i+1) • 

The length of the period depends on the choice of the 

generator constants. In addition to achieving a maximum 

period one is also concerned with generating a sequence of 

numbers which in a statistical sense is indistinguishable from 

truly random sequences. Whereas the period r can be predicted 

from the choice of the constants, the statistical properties 

of the PRN sequence are very much a matter of trial and error. 

The generators of Equation ( C.2) give numbers between 0 

and P, i.e. 0 ≤ P. These can be mapped on to (0,1) 

interval according to: 

Ei 
Xi 

P 
(C.3) 

Two important special cases of the generator of Equation 

(C.2) that are frequently used are the Multiplicative 

Congruential Generator and the Mixed Congruential Generator. 

Multiplicative Congruential Generator is obtained from 

Equation ( C.2) for b = 0, aj = 0 ( i≥l) 

Xn-i = Ax (mod P) (C.4) 

For this type of generator the maximum period t is always 

less then P. Since P is an integer it can always be 

represented as a unique product of prime numbers. It follows 

form here that: 
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P = 2 131 13 • 01 
01 P2 qn 

where q1, q2 , , , , g are distinct primes. The maximum period 

will be equal to the lowest common multiple (LCM) of the 

individual periods. We write: 

tma,c(P) = LCM{(2a) , ( q 1) , , , (C.5) 

where the individual periods ( q) are computed according to: 

and 

( q i 13j-1 
= q (q1 -1) 

1 24 

1 ,( a=O,1) 
=  2 ( a = 2) 

2 (a > 2) 
(C.6) 

The maximum period Tmax as given by Equation ( C.5) can always 

be achieved provided that parameter ). satisfies the following 

conditions: 

In s 1 ( mod q1?1) 

1 ( mod 2) 
3 ( mod 4) 
3, 5 ( mod 8) 

(0 < n < ( qi) 

(a = 1) 
(a = 2) 
(a > 2) 

(C.7) 

and that the initial ( starting) number x0 is prime relative 

to P. 

Mixed Congruential Generator is obtained from Equation (C.4) 

when parameter b in Equation (C.2) is no set to zero. Hence, 

the generator is governed by: 
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x 1 = Ax + b (mod P) (c.8) 

Here, unlike in the case of multiplicative congruential 

generator, a full period P can always be achieved, i.e. 

max = P. It appears [ 13] that the value of increment  has 

little effect on the behaviour of the generator and the 

maximum period can be attained as long as b and P have no 

common divisor. The statistical properties of the generator 

are mostly governed by parameter X. In order to achieve a 

full period P, ?. must satisfy the following conditions: 

1) ?. 1 ( mod q) for every prime factor g- of P, 

2) ? 1 ( mod 4) if P is a multiple of 4, 

and X. must be prime with respect to P. 

In most applications P is chosen to be 20 for binary 

computers or 10 0 for decimal computers. Modulo function is 

then equivalent to retaining only 13 significant digits from 

the expressions on the LHS's of equations ( C.2) and ( C.8). 

If 13 is taken as the word length of the computer, then the 

unwanted digits are automatically disregarded when the 

computer does integer arithmetics. 
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APPENDIX D 

RIGID BODY GENERATION COMPUTER ROUTINE DESCRIPTION 

A block diagram of a computer routine generating the 

rigid bodies and positioning them on the generation boundary 

is shown in Fig(D.l). 

GENER 

SIZEG 

RAND PDFS INTERD COND 

T 
RAND 

COMN 

T . 
LOCATE TMGEN 

INTERW 

t 
COMN 

RAND 

Figure D.I. Block diagram for the generation routine. 

The subroutine and function subprograms that comprise the 

computer routine are: 

GENER 

This is the main subroutine. It sets up the generation 
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boundary and Poissonian interval for time increment 

generation, and performs other organisational tasks. It 

also generates the location of the rigid body along the 

generation boundary. This subprogram receives the 

necessary input from the main program, executes all other 

subroutines, and returns the output back to the main 

program. It is called every time a rigid body is to be 

generated. 

SIZEG 

This subroutine is responsible for generating the size of 

a rigid body according to the methodology described in 

Section 4.4.1. It uses two function subprograms: RAND 

which supplies it with pairs of random numbers, and PDFS 

which contains the assumed probability density function 

for the size distribution. 

LOCATE  

This subroutine locates the rigid bodies on the 

generation boundary i.e, determines the coordinates of 

the center of the disk representing the generated rigid 

body. If for the position supplied by GENER there is no 

overlap then it positions the rigid body at that point. 

If, however, the would-be overlap is detected it 

establishes all the discrete overlap intervals ( Section 

4.4.4) and adjusts the position accordingly. It uses 
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INTERD, INTERW, COND, and COMN subroutines for the task 

of identifying the overlap intervals. 

INTERD  

This subroutine establishes the overlap interval between 

a disk and a generation boundary line segment. It uses 

methodology described in Section 4.4.4, Equations ( 4.45 - 

4.48), and subroutine COMN for this purpose. 

COMN 

This subroutine determines the intersection of two given 

intervals on the real axis, i.e. it finds x 1 , x2 such 

that 

(x1 , x 2 ) = ( 1, a 2 ) fl (b1, b2) 

where a1 , a2) (b1, b2) are the two intervals. If the 

intersection is an empty set then it returns an 

appropriate message. 

INTERW 

This subroutine identifies the overlap intervals on the 

generation boundary which are caused by the solid 

boundary line segments, ( Section 4.4.4). It uses COMM 

subroutine similarly to INTERD. 
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COND  

This subroutine condenses an arbitrary set of 

subintervals in the given interval into a discrete set. 

TMGEN 

This subroutine determines the random time increment to 

the next rigid body generation. It samples a Poissonian 

distribution according to the methodology described in 

Section 4.4.3. It uses RAND function subprogram to 

provide it with random numbers on ( 0,1). 

RAND 

This function subprogram comprises a pseudo-random number 

generator. It generates a PPN sequence according to the 

governing Formula ( 4.5) in Section 4.2. This routine 

reseeds itself. 

PDFS 

This function subprogram contains the probability density 

function for the size distribution. The PDF can be both 

continuous or discrete. 
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APPENDIX E 

DERIVATION OF THE FLUID FLOW EQUATIONS 

Conservation of Mass 

Let us consider an arbitrary volume V fixed in space and 

entirely within the fluid enclosed by a control surface S, as 

shown in Figure E.l. 

Figure E.1 A schematic diagram for the 
formulation of the continuity equation. 

Conservation of mass dictates that the net mass flux through 

surface S be equal to the rate of the accumulation of mass 

inside volume V with a negative sign. This condition can be 

written as 

fpdV = (E.].) 
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where: p is the fluid density and ü is the velocity vector. 

Applying the divergence theorem to the surface integral, 

equation ( E.l) can be rewritten as: 

f4 -dV + fdiv(pu) dv = 0 (E.2) 

Since Equation ( E.2) is satisfied for any arbitrary volume, it 

follows that, 

+ V(pi7) = 
at 

0 (E.3) 

The above result is known as the continuity equation. 

Conservation of linear momentum 

In Equation (E.l) a partial differentiation with respect 

to time, of an integral over some spatial volume V represents 

a local rate of change of the total quantity (mass, in 

Equation ( E.l)) inside this volume. In setting up the 

equation for the conservation of momentum we need to determine 

the rate of change of a quantity (momentum, here) while 

following the mass system that instantaneously occupies a 

given spatial volume. In this case not only does the 

integrand change with time, but so does the volume over which 

the integral is taken. Such a rate of c1ange is denoted by 

(d/dt) and is called a material time derivative. A material 
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time derivative operator is given by the following relation: 

d a 
= at (E.4) 

The operator can be applied to a scalar, a vector, or a 

tensor. The first term in equation (E.4) is referred to as 

the local rate of change at a given point in space, whereas 

the second term describes the convective rate of change in the 

neighbourhood of a fluid particle as it moves to a different 

point. 

We will now compute a rate of change of the total amount 

of the quantity (which could be a mass, momentum, energy, 

etc.) that is carried by a mass system which instantaneously 

occupies a certain spatial volume V. If 9 denotes the 

quantity per unit mass then the rate of change of the total 

amount of this quantity is given by Reynolds transport 

theorem. 

fgpdVdt 
= fa (9p) dV + f9p ff - c at (E.5) 

Utilizing the divergence theorem, the continuity equation 

(E.3), and Equation (E.4), the above relationship can be 

simplified: 

2 fpdV = 

dt (E. 6') 



305 

Quantity X can be a scalar, a vector, or a tensor. In a 

specific case if this quantity represents, for example, a 

velocity vector, i.e. the momentum per unit mass, then: 

fpcidv = fpficlv = f( at + iZ•v i7)dv (E.7) 

would represent a rate of change of the total momentum 

possessed by a given mass system that instantaneously occupies 

a spatial volume V. We can now formulate the momentum 

equation for a moving fluid. Newton's Second Law of motion. 

states that the rate of change of the momentum experienced by 

a fluid particle is equal to the net force acting on it. Let 

V represent a certain spatial volume enclosed by a control 

surface S and entirely within the fluid, as shown in Figure 

E.2) 

pb 

Figure E.2 A schematic diagram of 
momentum balance. 

Providing that Newton's Third Law of action and reaction 
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holds, the rate of change of total momentum of the mass system 

that instantaneously occupies the given volume v is equal to 

the total external force acting on this mass system. Using 

the result of Equation ( E.7) this can be written as 

f P -!•ff' dVdt = fP HdV + f t-dS (E.8) 
V S 

where t- is the vector of external force per unit area acting 

on the mass system and S is the vector of a body force per 

unit mass. The external forces acting on the mass system are 

equilibrated by the internal stresses according to 

= ziT (E.9) 

where T is the symmetric two-dimensional stress tensor and ii 

is the unit normal vector of the surface. Substituting 

Equation ( E.9) and using the divergence theorem to transfori 

the surface integral, Equation ( E.8) may be written as 

fp da dV = f(V-T+P.6)dv 
dt (E. 10) 

Since Equation ( E.10) is satisfied for any arbitrary volume V, 

it follows that 

= VT + PS (E.11) 

The above result is known as the Cauchy's equations of motion 
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or Cauchy 's first law of motion. The stress tensor T can be 

related to the rate of deformation tensor D by the following 

Navier-Poisson law of a Newtonian fluid: 

T = -p1 + + 2p.D (E.12) 

where I is the identity tensor and p is the fluid pressure at 

a given point. The rate of deformation and the identity 

tensors are given by the following relation: 

Djj = 
a1 auj 

2 3x1 Iii = (E. 13) 

Combining Equations (E.11), ( E.12), and ( E.13) the momentum 

equation for a Newtonian fluid may be written as 

dü' 
= -Vp + (A + R)V(VQ) + tiV2 7+ p1 (E.14) 

dt 

Equation ( E.14) is known as the generalized Navier-Stokes 

equation for a Newtonian Fluid. In the equation g is the 

coefficient of viscosity and A is the second viscosity 

coefficient. 
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APPENDIX F 

MOMENTUM EQUATION FOR POTENTIAL FLOW 

The general form of the momentum equation as derived in 

Appendix E, Equation ( E.14), is 

di7 
dt 

= -Vp +( . + p.)V(Vi7) + IV2Ti+ p.6 

Since the flow is potential then the velocity vector is: 

= V4 (F. 1a) 

This also means that the flow is incompressible and 

irrotational. These two conditions can be written as 

V'ti = 0 (F. 1b) 

= Vxü = 0 (F. 1c) 

By the incompressibility condition ( F.lb) the term involving 

? drops out from the momentum equation, and it can be written 

as: 

p- = -Vp + i.V2t7 + pS (F.2) 

Let us now consider a following vector identity: 
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V2i7 V(V7) - Vx(Vxti) (F.3) 

The first term on the left hand side of Equation ( F.3) 

vanishes by the incompressibility condition ( F.lb). The 

second term represents a curl of the vorticity vector. Thus 

for an incompressible fluid: 

V2z7 = VxS (F.4) 

Substituting the result of Equation ( F.4) into Equation ( F.2) 

the momentum equation becomes: 

d  
d  

= -VP + ILVx + pS (F.5) 

The above result suggests an analogy between the viscosity and 

the vorticity. The viscous term ( Vx) vanishes from the 

momentum equation ( F.5) for either an irrotational flow 

= 0), or a flow of a perfect ( inviscid) fluid ( p. = 0). 

Hence, with the use of Equation (E.4) we may write the 

momentum equation for an incompressible and irrotational fluid 

as: 

p-- + p(ciV)ci = -Vp + pS 

Consider another vector identity: 

(F.6) 
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(iiV)tZ E (F.7) 

Since the flow is irrotational the second term on the right 

hand side of identity (F.7) vanishes and the momentum equation 

takes on the following form: 

p- + - pV(z7t7) = -Vp + pB (F.8) 

Rearranging the terms and using Equation (F.la)) an alternate 

form of the momentum equation for an irrotational and 

incompressible flow is obtained. 

v (-L• + I U 2 + pat 2 ' - (F.9) 

Equation ( F.9) represents the final form of the momentum 

equation for a potential flow. 


