
THE UNIVERSITY OF CALGARY

RV-Tools:

Development Tools for Building

Register Vector Parsers

by

David R. Astels

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 1994

Rj David R. Astels 1994

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "RV-Tools: Development Tools

for Building Register Vector Parsers" submitted by David R. Astels in partial fulfill-

ment of the requirements for the degree of Master of Science.

Bruce MacDoil'ald,

Department of Computer Science

John Archibald,

Department of Linguistics

Mildred Shaw,

Department of Computer Science

Date No\,) 2ç, qqt1-

11

Abstract

Natural language understanding is and always has been an important area of research

and development in artificial intelligence. Natural language understanding is made up

of several processing stages, including morphological, lexical, syntactic, semantic, and

discourse. The stages of processing morphology, lexicon, and syntax are commonly

combined and called parsing. For natural language understanding to be widely useful

an efficient model of language must be used for each stage, and it must be convenient

for a system developer to implement language processors using the model.

The Register Vector (RV) model of language is an efficient parsing model, having

fixed space complexity and linear time complexity. RV is a low-level formalism, which

results in its efficiency but also makes it difficult to build RV parsers.

The work described in this thesis is an attempt to make it easier to develop RV

parsers by providing a set of interactive tools. These tools allow non-linear, inter-

active, incremental browsing/editing of parsers, immediate error feedback, as well as

interactive debugging.

The system described here has been implemented using Smalltalk-80 on Sun 3

and SparcStation platforms. This work is the first to try to develop a convenient,

interactive environment for developing RV parsers.

111

Acknowledgements

I would like to thank the following people, without whom this thesis would not have

been possible:

• Bruce, my supervisor, for his moral and financial support, and for being a

friend as well as a supervisor;

• NSERC, for their financial support in the form of PGS A & B scholarships;

• The faculty and staff of the computer science department at the University

of Calgary, who made me feel at home from the start, and who were always

friendly and helpful;

• My friends who read drafts of the thesis, for their insightful and helpful com-

ments, specifically David McFadzean and Murray Mowchenko;

• My brother, Stephen, for his ongoing support and his assistance with the

property simplification algorithm;

• Ted O'Grady, for his contagious conviction that Smailtalk is THE ONLY way

to program;

• Ernie Chang, my boss, for giving me the time off work when I needed it to

complete this work;

• Kate, my wife, for giving me the time and encouragement to complete the

thesis.

iv

Dedication

For Kate, Tasha, and Jason: my family.

V

Contents

Approval Sheet ii

Abstract iii

Acknowledgements iv

Dedication v

Contents vi

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1
1.1. Motivation 3
1.2. Goals 5
1.3. Scope of the Thesis 6
1.4. Thesis Outline 7
1.5. Summary 8

Chapter 2. Register Vector Processors 9
2.1. Definition 9

2.1.1. Operation 13
2.2. A Simple Example 17
2.3. Embedding 18
2.4. Backtracking 20
2.5. Sub categorization 21
2.6. Sub categorization Example 21
2.7. The Lexicon 22

2.7.1. Lexical Entries 23
2.7.2. Paradigms 24

2.7.2.1. Morphosyntactic Properties 25
2.7.3. Lexical Trie 26
2.7.4. Word Recognition 27

vi

2.7.5. An Example Lexicon 28
2.8. Semantics 29

2.8.1. Semantic Entries 29
2.8.2. Relations 33
2.8.3. Grammatical Roles 34
2.8.4. Agreement 35
2.8.5. An Example 35

2.9. Actions 36

2.9.1. Embedding 36
2.9.2. Boundary Registers 37
2.9.3. Property Manipulation 38
2.9.4. Semantics 38
2.9.5. Agreement 40

2.10. Summary 40

Chapter 3. Related Work 41
3.1. Existing RV Development Systems 41

3.1.1. Blank's System 41
3.1.1.1. Example RV parser specification 42
3.1.1.2. Example RV Lexicon 45
3.1.1.3. Sample session 45
3.1.1.4. Sample debugging session 46

3.1.2. Reed's System 47
3.1.3. How RV-Tools Differs 51

3.2. Lexical Acquisition Systems 51
3.3. Summary 52

Chapter 4. Brief Introduction to Smalltalk-80 54
4.1. An Introductory Example 54
4.2. Object Oriented Programming with Smalltalk-80 57

4.2.1. Classes 57
4.2.2. Instance Variables 57
4.2.3. Methods / 57
4.2.4. Objects 59

4.3. The Model-View-Controller Paradigm 59
4.4. Summary 63

Chapter 5. Extensions 64
5.1. The duff: Vector Operation 64
5.2. Lexical Acquisition 65

5.2.1. Handling of Unknown Words 65
5.2.2. Paradigm—Set Nodes 65
5.2.3. Aging Mechanism 66

5.3. Production Selection 66

VII

5.4. Summary 68

Chapter 6. Parser and Lexicon Implementation 70
6.1. The Lexicon 70

6.1.1. Lexical Entries 70
6.2. Agreement and Semantics 71

6.2.1. Grammatical Roles 71
6.2.2. Semantic Information 71
6.2.3. Semantic Entries 73
6.2.4. Relations 73

6.3. The Parser 76
6.3.1. Productions 76

6.3.1.1. Ternary Vectors 76
6.3.1.2. Actions 77

6.3.2. Boundary Registers 77
6.3.2.1. Lexical Interpretations 80

6.4. Summary 80

Chapter 7. Development Tool Design 81
7.1. Design Requirements 81
7.2. Background 86
7.3. Syntax Browser 87
7.4. Ternary Vector Editing 90
7.5. Lexicon Browser 91

7.5.1. MorphoSyntactic Property Editing 92
7.6. Restricted browsers 95
7.7. Graph Browsers 96

7.7.1. Lexical Trie Browser 97
7.7.2. Semantic Structure Browser 98

7.8. Debugger Design 99
7.9. Launcher 102
7.10. Summary 102

Chapter 8. Vocabulary Learner 104
8.1. Learning the Lexicon 105

8.1.1. Learning anew word 105
8.1.1.1. Initial trie path creation 105
8.1.1.2. Rearranging the suffix 107
8.1.1.3. Paradigm—set node creation. 109
8.1.1.4. Initial category assignment. 109

8.1.2. Adjustment of Categories 110
8.2. Changes to the LOOKUP Algorithm 111
8.3. Limitations and Problems 113
8.4. Summary 114

vii'

Chapter 9. Evaluation 116
9.1. Evaluating the Parser Engine 117

9.1.1. Subject-Verb-Object 117
9.1.2. Noun Phrases 118

9.1.3. Wil Questions 118
9.1.4. Relative Clauses 118

9.1.5. Subcategorization 118
9.1.6. MorphoSyntactic Properties 118
9.1.7. Boundary Registers 119

9.2. Evaluating the Development Tools 119
9.3. Evaluating the Lexical Acquisition Mechanism 130
9.4. Implementation Status 131
9.5. Limitations and Future Directions 131
9.6. Summary 133

Chapter 10. Conclusions 135

References 141

Appendix A. Comparison with Finite State Machines 144

Appendix B. Test Parsers 147

B.1. Subject-Verb-Object 147

B.2. Noun Phrases 148
B.3. WET Questions 150
B.4. Relative Clauses 152

B.5. Sub categorization 155
B.6. MorphoSyntactic Properties 163
B.'7. Boundary Registers 167

Appendix C. Vocabulary Acquisition Test 181

C.1. Test Lexicon 181
C.2. Sentence Testbed 191

Appendix D. UNIX File Management Parser 195

Appendix E. File Management Application 201
E.I. Is-client.cc 201
E.2. DirectoryLister.cc 202

E.3. SemEntry.cc 205
E.4. Socket.cc 207

Appendix F. User Manual 211

F.1. Introduction 211
F.2. Launcher 212

F.2.1. Parser List 212
F.2.2. Tool Buttons 213

ix

F.3. Grammar Browser 213
F.3.1. Boundary View 215
F.3.2. Ordering Feature View 215

F.3.2.1. Feature macro editor 215
F.M. Production Category View 216
F.3.4. Vector Format Buttons 218
F.3.5. Production View 218
F.3.6. Editing View 220

F.3.6.1. Editing Ternary Vectors 221
F.4. Lexicon Browser 221

F.4.1, Semantic Feature View 223
F.4.2. Semantic Relation View 223
F.4.3. Property View 223
F.4.4. Paradigm View 224
F.4.5. Entry Category View 225
F.4.6. Entry Format Buttons 227
F.4.7. Entry View 227
F.4.8. Editing View 228

F.5. Lexical Trie Browser 229
F.6. Debugger 229

F.6.1. Input View 230
F.6.2. Control Buttons 233
F.6.3. Trace View 235
F.6.4. Boundary Register Inspector 237

F.6.4.1. Comparing productions 238
F.6.5. Grammatical Role Inspector 238

F.6.5.1. Reference Inspector 239

List of Tables

2.1 Trace of "George ate an apple." 18
2.2 Sample agreement properties 25
2.3 Possible combinations of paradigms P3 and P4 26
2.4 Paradigms used by the example lexical trie. $ means an empty string. 30

4.1 Description of Turtle 55

6.1 Ternary Element Codes 77

8.1 Paradigm - Lexical Entry correspondences 110

A.1 The RV Productions for Subject-Verb-Object Language 144
A.2 The RV Productions for Partially Free-Order Language 145

xi

List of Figures

1.1 Augmented Transition Network Example 4
1.2 Phrase Structure Grammar Example 4
1.3 RV Example 5

2.1 Production organization. 12
2.2 RV parser organization. 14
2.3 Algorithm PARSE 14
2.4 Algorithm CYCLE 15
2.5 Algorithm FIND-PRODUCTION 16
2.6 Example RV Grammar and Lexicon 17
2.7 A Grammar Implementing Sub categorization 23
2.8 Definition of "love" 24
2.9 Trie node structure 27
2.10 Algorithm LOOKUP 28
2.11 Example Lexical Trie 29
2.12 Semantic Data Structures. 31
2.13 Structure for " George gave Martha the candy.". 31
2.14 Structure for "Is the block sitting on the table red?" 31
2.15 Structure for " George gave Martha". 32
2.16 The FROM-FOSS and TO-FOSS relations. 33
2.17 Usage of relations 34
2.18 Actions for the NAME, SUBJ, and BITRANS Productions 37

3.1 Data flow in Blank's Development System 42
3.2 Phrase structure grammar for the English auxiliary system 48
3.3 Initial finite state automaton for the auxiliary system. 49
3.4 Reduced finite state automaton for the auxiliary system 49
3.5 Resulting set of RV productions. 50
3.6 Hand optimized RV productions 50
3.7 Diagram of RV-Tools. 51

xli

4.1 Response of Turtle to Instructions 55
4.2 Inheritance Hierarchy of Turtles 56
4.3 Turtle class declarations. 57
4.4 Turtle class method definitions. 58
4.5 ColorTurtle method definitions. 58
4.6 RadianTurtle method definitions. 58
4.7 Cooperating turtles 59
4.8 Code for cooperating turtles. 60
4.9 Models, Views, and Controllers 61
4.10 A Model can have multiple Views 62
4.11 Model-View dependency structure 62

5.1 Internal Structure of the new Paradigm-Set node. 66
5.2 Production Selection Algorithm 67

6.1 Reference Storage Structure 72
6.2 Semantic Information of "borrow" 74
6.3 Relations in "borrow" 74
6.4 Binding Arrays 75
6.5 Algorithm FILL-SLOT 76
6.6 Action class hierarchy 78

7.1 Production creation. 82
7.2 Production editing. 82
7.3 Layout of the syntax browser 88
7.4 Syntax browser model-view structure 89
7.5 Layout of the lexicon browser. 92
7.6 Lexicon browser model-view structure. 93
7.7 Property simplification algorithm 95
7.8 Layout of the graph browsers 97
7.9 Example trie presentation 98
7.10 Example semantic structure presentation 99
7.11 Debugger layout 100

8.1 Algorithm LEARN 106
8.2 Learning "communication" (a), "communicating" (b-f) and "commu-

nicate" (g) 107
8.3 Learning "cooking" (a-c) and "cooked" (d). 108
8.4 Algorithm UPDATE 111
8.5 The revised algorithm LOOKUP with support for vocabulary acquisition. 112

9.1 Production Definition Template 123
9.2 Definition of the Production ADJ 124

9.3 Spell Checking Mechanism at Work 125
9.4 Final Definition of ADJ 126

9.5 Failure of ADJ the second time 127
9.6 Comparing ADJ with the Parser State. 128

9.7 Parsing Multiple Adjectives. 129

A.1 The Finite State Machine Transition Diagram for the Subject-Verb-
Object Language 145

A.2 The Finite State Machine Transition Diagram for Partially Free-Order
Language 145

F.1 Launcher Window 212

F.2 Grammar Browser Window 214
F.3 Ordering Feature Macro Editor 216
F.4 Lexicon Browser Window 222
F.5 Relation: AGENTTOLOC 223

F.6 Example Paradigm Definition 225

F.7 Semantic Information for borrow 228
P.8 Lexical Trie Browser 230
F.9 Debugger Window 231
F.10 Semantic Browser 232

xiv

CHAPTER 1

Introduction

Natural language understanding is and always has been an important area of research

and development in artificial intelligence. One of the goals of this area is to enable

computers to communicate with people in a natural way.

According to (Bar & Feigenbaum, 1981),

"Artificial Intelligence is the part of computer science concerned with

designing intelligent computer systems, that is, systems that exhibit

the characteristics we associate with intelligence in human behavior -

understanding language, learning, reasoning, solving problems, and so

on. ,,

Natural language understanding is the area of artificial intelligence that studies the

use of natural language by computer. This area consist of several sub-areas of process-

ing, including morphological, lexical, syntactic, semantic, and discourse. The initial

phases of processing (morphological, lexical, and syntactic) are commonly combined

and referred to as parsing.

If a language understanding system is to be used interactively, all components must

be efficient. Given an efficient model of language parsing, and it must be convenient

for a system developer to implement language processors using the model if it is to be

used. Many of the systems used for work in natural language parsing, Context Free

1

1. INTRODUCTION 2

Grammars and Augmented Transition Networks for example, have time complexity

of 0(n3). This is the price paid for the great power of these system. However, the

power of these system is not required to model natural language performance. This

is because humans are "limited, finite devices" (Miller & Chomsky, 1963). Register

Vector (RV) is a new model of language which models language performance, thus

using limited, finite resources. It is efficient, having fixed space complexity, and linear

time complexity. The subject of this thesis is the design and development of a set of

tools for convenient implementation of RV parsers.

The first step in the work this thesis describes was the implementation of an RV

processor. This was done building on Blank's work as well as my own previous work.

The resulting system conforms to the current specification of RV at the time the work

began (early 1992), with the exclusion of discontinuous idioms (see Chapter 9). This

system has been designed with the goal in mind of creating natural language front-

ends to end-user applications. As such it does not support the entirety of human

language usage. For example, it can not parse more esoteric forms such as poetry.

The target languages are subsets of a natural language such as might be used in

information retrieval applications'.

In addition to reimplementing the RV parser engine, I have developed textual and

graphical browsers for manipulating the various parts of an RV parser, which are as

follows:

• syntactic boundaries;

• syntactic ordering features;

• productions;

'Blank's later work involves building an interface to an Air Traffic Information System (ATIS)
application.

1. INTRODUCTION 3

• semantic features;

• semantic relations;

• morphosyntactic features;

• paradigmatic morphological variation;

• lexical entries.

The thesis work also includes a debugger that allows single stepping, breakpointing,

and examination of parser data structures.

RV is a new model of language developed in the mid nineteen-eighties by Blank'

(Blank, 1985; Blank, 1989). Since it is such a recently developed model there are

few tools supporting the construction of RV parsers. The value of RV-Tools is that it

provides a convenient, incremental, and interactive way of constructing and debugging

RV parsers. RV-Tools is meant to be used by researchers that need to develop RV

parsers. They may be using RV to provide natural language capabilities to another

system, or working on extending RV itself.

1.1. Motivation

The RV formalism (Astels, 1991; Blank, 1985; Blank, 1989; Blank, 1991) is attrac-

tive for use in building natural language parsers. This is mainly due to its efficiency.

Storage requirements are determined by the parser designer, and do not grow during

operation. RV has a linear time complexity, i.e. 0(n) where n is the number of

words in the sentence. The number of syntax productions does not affect the time

complexity because only a small fraction of them are searched any time one is re-

quired. Although it uses limited resources, RV has been carefully designed to model

the complexity of language performance by native speakers. This is done by limiting

'Glenn Blank is the foremost researcher working on RV.

1. INTRODUCTION 4

embedding depth and memory of alternative interpretations in a way that reflects a

native speaker's abilities. These limitations enable the fixed space and linear time

complexities.

A fundamental problem with RV is that it is a more awkward formalism than

more familiar ones (e.g., augmented transition networks (Woods, 1970) and phrase

structure grammars (Chomsky, 1957)). Figures 1.1, 1.2, and 1.3 show three systems

for recognizing the same simple subject-verb-object language. Subjects and objects

have the same form: a name, or a noun optionally preceded by a determiner.

name

Actions: 1. subj := *

2. pred := *

3. obi :=*

4. head := *

6. art *

7. head :=

FIGURE 1.1. Augmented Transition Network Example

SENT-4SUBJECT VP
VP - VERB
VP-+VERB OBJECT

SUBJECT- NP
OBJECT-+NP

NP- NAME
NP- NOUN
NP-DET NOUN

FIGURE 1.2. Phrase Structure Grammar Example

1. INTRODUCTION 5

SUBJ +???- -??++

VERB -+??- ?-???

OBJ ?-+?- ??-++

CLOSE --??- +++--

DET ???+? ???-?

NOUN ????+

NAME ???++ ???--

FIGURE 1.3. RV Example

Building an RV parser can be a difficult procedure since designers find it tedious

and awkward to specify a language using the RV model. Two approaches to making

it easier are: a) automate the process (by using a learning mechanism), and/or b)

provide a good development environment. This thesis presents the latter approach,

as well as some preliminary work on automated vocabulary acquisition.

1.2. Goals

The goal of this work is a set of RV development tools that meet the following

criteria:

• convenient editing of parsers, through the use of structured editors;

• automatic validity checking of identifiers, and suggestion of spelling correc-

tions;

• identification of incorrect actions;

• automatic updating of all uses of an identifier when it is changed (i.e. re-

named);

• protection against removal of referenced identifiers;

• the use of shorthand notations where useful;

• the ability to view the parser from various viewpoints;

• support for freely cross referencing information;

1. INTRODUCTION 6

• the ability to view the parser at various levels of granularity;

• convenient testing and debugging of parsers, which involves:

- sentence testbeds;

- single stepping;

- access to internal structures;

- provision of relevant, useful information;

- convenient alteration of the acquisition mechanism's operational param-

eters.

Smalltalk-80 was chosen as the implementation language for several reasons:

• Smalltalk is a dynamic, object-oriented language; (this allows interactive de-

bugging, garbage collection, and all the advantages of object-oriented devel-

opment)

• The Smalitalk environment includes an interactive, visual development envi-

ronment to use as an example; and

• The implementation of Smalltalk's development environment is available to be

used as a basis upon which to build development tools.

1.3. Scope of the Thesis

This thesis describes the RV model of natural language parsing and the development

of a set of interactive development tools for building RV parsers. It does not address

the problems and issues involved in natural language understanding, or reasoning

about the information contained in a language act. This thesis concerns only a system

for translating a textual surface form in a natural language into a representation that

could be used as input to an understanding system.

1. INTRODUCTION

1.4. Thesis Outline

7

This thesis presents the Register Vector parser formalism and a set of development

tools for building RV parsers.

Chapter 1 described what was accomplished and the motivation.

Chapter 2 provides a detailed definition and description of the RV formalism as

this system implements it.

Chapter 3 examines existing RV development systems. Basic operation is dis-

cussed and limitations /shortcomings are detailed. It also briefly discusses how RV-

Tools differs from those presented, and presents some related work in the area of

lexicon acquisition.

Chapter 4 describes the central concepts of object oriented programming, Smalltallc-

80, and the Model-View-Controller application framework.

Chapter 5 describes extensions that I have made to the RV formalism defined in

Chapter 2.

Chapter 6 describes the implementation of the RV parser engine that is the central

element of the development system.

Chapter 7 describes the design and operation of the RV development tools. This

chapter and the next present the majority of this work's original content.

Chapter 8 describes the vocabulary learning mechanism that is part of the devel-

opment system.

Chapter 9 evaluates the development system, RV parser engine, and vocabulary

learning mechanism. Directions for future work are explored.

Chapter 10 summarizes the contributions of the research presented in this thesis.

Appendix A compares RV to non-deterministic finite automata, showing the ef-

fects on each formalism as syntactic constraints are weakened.

1. INTRODUCTION 8

Appendix B presents several of Blank's RV parsers that were used to test the

development tools, along with test sentences.

Appendix C contains the lexicon and sentences used in testing the vocabulary

acquisition mechanism (described in Chapter 8).

Appendix F is a user manual for the development system.

1.5. Summary

This chapter briefly introduced RV: a new parsing formalism with favorable time

and space complexity. However, RV is a low level formalism, and as such is awkward

for parser developers to use. This problem is dealt with by developing a set of tools

that make it easier and more convenient to develop RV parsers. The scope of the

work presented in this thesis is limited to language parsing.

N.

CHAPTER 2

Register Vector Processors

This chapter defines the RV processor and describes its design. Examples of simple RV

parsers are provided. An RV parser is a set of data structures that specify a language.

The RV processor is an engine that uses an RV parser to translate sentences in the

specified language into a semantic structure. An RV processor operates in 0(n) time,

where n. is the number of words in the sentence (Blank, 1989).

2.1. Definition

An RV parser is defined formally as a nine-tuple:

M = (S,I,,C,B,E,a,A,6),where:

S = a finite set of states, where a state s

is a binary n-vector over
I E S = the initial state

F C S = a set of accepting states

C = a finite set of syntactic categories

B = a set of syntactic boundaries

E = the set of input symbols (i.e. the vocabulary)

a = a set of possible actions

= a mapping from input symbols to categories (the lexicon)

5: S xC—S x 2 = the transition relation U

9

2. REGISTER VECTOR PROCESSORS 10

States are encoded by vectors which are ordered sets of elements. Each element can

have a value of + or -. Each element of the state vector represents some constraint

which is called an ordering feature. Possible features include: the subject has been

parsed, and expect an indirect object. Vector elements (i.e. ordering features) are

named. For example, the element indicating whether the subject has been parsed

could be called S.

State vectors are a special case of ternary vectors. These are vectors of three-valued

elements. Elements can have a value of? along with + and -. The? value is a don't

care and is used to allow discontinuous constraints' to pass unaffected through one

or more states. The ? element value is a generalized +1- value, thus state vectors are

fully specific ternary vectors.

There are three fundamental operations on ternary vectors (in all cases n. is the

size of the vectors):

match:

A match: B=/\(a=b)V(a1=?)V(b=?)

This operation checks if A and B match. Vectors match if each corresponding

pair of elements match. A pair of elements match if either is ?, or both are the

same.

change:

I A change: B (Vi = 1 . . . n), b b if ai = ?
ai otherwise

All non-? elements of A are copied to the corresponding position of B.

'These are constraints that are not syntacticly adjacent.

2. REGISTER VECTOR PROCESSORS 11

refine:

1bi ifa=?
A refine: B = (Vi = 1 . . . a j otherwise

All? elements of A are replaced by the corresponding elements of B.

The syntax specification of an RV parser consists primarily of a set of productions

which have the basic form (cat, type, condition, change, actions). The transition

relation S is embodied in these productions as well (see below for details).

Cat is the unique name of the production. This corresponds to a member of C

which is the set of syntactic categories. For example, there would be a production

named NOUN, another named VERB, and so on.

Type indicates the type of the production. There are four possibilities.

Non-lexical: These productions are not constrained by the input, i.e. their use is

not dependent on the current input token. Also, they do not consume input. An

example is SUBJECT.

Semi-lexical: These are constrained by input but do not consume it. They are used

to implement sub categorization'. An example is TRANSITIVE.

Lexical: These productions are constrained by input, and they do consume input.

An example is VERB

Init-final: These are a special form of lexical productions. Their change vectors

define the start state. Because of this, all mit-final productions must have the

same change vector. Note that this means that their change vectors must not

be generalized, i.e. contain no ? elements. The condition vectors of mit-final

productions define the set of accepting/final states for the parser, i.e. F.

'The capability of a syntactic entity to determine the complements that it has.

2. REGISTER VECTOR PROCESSORS 12

Condition and change are ternary vectors. Condition is compared, using match,

to the parser state. If these two vectors match, the production can be used if all of its

actions can be successfully executed. Change is used to modify the parser state using

the change operation to produce the next state. Actions is a subset of a, possibly

empty. These are operations that will be performed when a production is used,

after the state transition is made. These actions can perform various tasks ranging

from saving backtracking information to construction semantic representations of the

input. However, there are a small number of possible actions and they are very simple.

Actions are described in detail in §2.9.

The production data structures are shown in Figure 2.1. The productions are in

the center. On the left is the mapping from production names (cat) to productions,

and on the right is the ordering of non-lexical productions.

production

mapping:

cati

cat2

cat3

cat4

catS

cat6

Productions

Type
Condition Vector
Change Vector
Action...

Non-lexical

>1 (Semi)lexical

 Non-lexical

Non-lexical

(Semi)lexical

non-

lexicals

FIGURE 2.1. Production organization.

2. REGISTER VECTOR PROCESSORS 13

The transition relation, 8, is a set of triples (Si, C, 52) such t'hat:

(1) There is a production (cat, type, condition, change, actions);

(2) (.si, match: condition) returns true;

(3) cat and c are the same;

(4) After (change change: si), s is the same as 2•

There is a subtle different between transitions and productions. Since the condition

and change vectors of productions can be generalized, each production can specify a

set of transitions.

Figure 2.2 shows the organization of an RV parser. The various parts of the diagram

will be discussed in the rest of this chapter. The diagram shows how the various data

structures are related (the relation shown is a has—a relation). A single box denotes a

singular instance of a structure, while two solid boxes indicates exactly two instances

(see the ordering feature vectors, there are exactly two per production, condition and

change), and the addition of a dashed box indicates that there can be any number of

instances.

2.1.1. Operation. Figure 2.3 shows the top level parse algorithm. The operation

of the parser engine is divided into cycles. A cycle is considered to be one pass through

the core parser algorithm, which is shown in Figure 2.4. Before every invocation

of CYCLE the parser performs backtracking and the parser state is saved in the

boundary register Curr after each successful pass through the algorithm. In this way,

the current state is saved between invocations of CYCLE.

The LOOKUP algorithm will be described later (2.7.4), but a brief description is

required here. LOOKUP scans the specified input stream, trying to recognise words.

Several words could be recognized. For example, if the input was "onto... ", both

"on" and "onto" would be recognised. Each recognised word is encapsulated in an

2. REGISTER VECTOR PROCESSORS 14

semantic
role

semantic
entry

semantic
feature
vector

PARSE

relation

lexical
entry

paradigm
node

literal
node

category

lexical
trie

reference

reference
queue

Parser

FIGURE 2.2. RV parser organization.

gramrole

production

boundary
register

ordering
feature
vector

action

interpretations is assigned LOOKTJP(input, lexical trie root, all properties)
(see Figure 2.10)

if interpretations is empty

signal an unknown word
else

store the initial state in the WORD and CURR boundaries
push the WORD boundary on the backtracking stack

push the CURR boundary on the backtracking stack
while the backtracking stack is not empty

pop a register off the backtracking stack and update the parser state from it
call the CYCLE algorithm (see Figure 2.4)

FIGURE 2.3. Algorithm PARSE

2. REGISTER VECTOR PROCESSORS 15

CYCLE

found is assigned FIND-PRODUCTION() (see Figure 2.5)
if found is a valid production

disable found from being used again for this interpretation
found.change change: currentState
if found.type E {Lexical Init-final}

if the input is completed and found.type = mit-final
append a copy of the grammatical role MainO to parserResults

else
interpretations is assigned

LOOKUP (remaining input, lexical trie root, all properties)
(see Figure 2.10)

if interpretations is empty
signal an unknown word

else
save the current state in Word

save the current state in Curr

FIGURE 2.4. Algorithm CYCLE

interpretation. The collection of these interpretations is returned by LOOKUP. This

interpretation collection is sorted in decreasing order on the amount of input that

each interpretation accounts for. This ordering ensures that, for example, "onto" is

considered before "on". Interpretations also record what productions have been used

while the interpretation was being used. This is done to avoid loops in production

use.

When a production is considered for use, three tests are performed which must all

succeed for the production to be used.

(1) The production must not have been previously used, as recorded in the current

interpretation.

(2) The condition vector of the production must match the current state vector.

2. REGISTER VECTOR PROCESSORS 16

FIND-PRODUCTION

"look for a lexically constrained production"

while the current interpretation is valid
let intrep be the current interpretation
for each production prod E interp.lexical-entry.categories

if (prod.condition match: currentState) and each of prod.actions
can be executed in the context of interp

return prod
else

advance to the next interpretation

"look for a non-lexical production"

for each non-lexical production, nonlex
for each intrep E interpretations

if (nonlex. condition match: currentState) and each of nonlex.actions
can be executed in the context of interp

return nonlex
return nil

FIGURE 2.5. Algorithm FIND-PRODUCTION

(3) All actions associated with the production must be successfully performed.

Lexical and semi-lexical productions are checked first. They are specified by the

categorization of the most recent interpretations of the upcoming input characters.

The search begins with the active interpretation, and continues through those re-

maining until one is found that specifies a usable (semi)lexical production.

If no (semi)lexical production is found non-lexical productions are checked. When

non-lexical productions are searched, each one is checked for each of the possible

interpretations of the upcoming input. When a usable production is found, the in-

terpretation with which it is usable becomes the active interpretation.

The algorithm is shown in Figure 2.5.

2. REGISTER VECTOR PROCESSORS

Ordering Features: S V 0 DET HEAD

GRAMMAR LEXICON
cat flag condition change

SUBJ N +S -HEAD -S +DET. . HEAD

VERB L -S +V -HEAD -V

OBJ N -V +0 -HEAD -O +DET. . HEAD
CLOSE I -S -V -HEAD +S. . 0 -DET. . HEAD

ART L +DET -DET

NOUN L +HEAD -DET. . HEAD

NAME L +DET. . HEAD -DET. . HEAD

word cats

George NAME

ate VERB

apple NOUN

the ART

an ART

CLOSE

FIGURE 2.6. Example RV Grammar and Lexicon

2.2. A Simple Example

17

To help clarify the above description a simple example is provided here. The

following conventions will be used in this and subsequent examples.

(1) Features will be referred to by symbolic names only (e.g. NAME). These names

are taken from the ' Ordering Features' section of the grammar. Correspon-

dence is by position. The order of these features define the meaning of each

vector element.

(2) The notation +NAME will mean that the feature NAME is given the value +.

Similarly for -NAME and ?NAME.

(3) The notation NAME1. . NAME2 will indicate the list of features from NAME1 to

NAME2, inclusive. A ternary value can be applied to an entire range as well as

a single feature (see item 2).

2. REGISTER VECTOR PROCESSORS 18

production state before
SVODH

state after
SVODH

input consumed

SUBJ -++++

NAME -++++ -++-- George
VERB -++-- --+-- ate
OBJ --+-- ---++

ART ---++ ----+ an
NOUN ----+ apple
CLOSE

TABLE 2.1. Trace of "George ate an apple."

The grammar and lexicon for a simple language is shown in Figure 2.6. In this

example, the lexicon simply associates character sequences with a syntactic category.

This example shows how the sentence "George ate an apple." is processed.

Firstly, the current state is initialized by the change vector of the mit-final produc-

tion CLOSE: +++--. Also, the first word is read from the input: "George". The only

lexical category associated with "George" is NAME. Since the NAME production requires

a state matching ???++ it will not fire yet. The non lexical production SUBJ does

match the current state [i.e. match(+++--, +???-) -+ true] and thus fires. The cur-

rent state is changed by SUBJ's change vector (-??++), becoming -++++. Now, since

(-++++ match: ???++) is true, the NAME production can fire, consuming "George",

reading the next word: "ate", and changing the current state to -++---. This process

continues, resulting in the sequence of production activations shown in Table 2.1.

2.3. Embedding

One of the reasons cited for the claim that natural languages require highly com-

plex parsing systems is clause embedding. This occurs when a modifying clause is

embedded in the middle of a sentence. In the sentence "Men who eat quiche hate

2. REGISTER VECTOR PROCESSORS 19

pizza", the embedded clause is "who eat quiche". The embedded clause is a sentence

within a sentence: who is the subject, eat is the verb, and quiche is the object.

It may seem at first that center embedding poses a problem because it seems

to require an unlimited, recursive solution. Fortunately, there are constraints on

clause embedding in natural languages. Most importantly, human memory limitations

place constraints of the depth of center embedding (Blank, 1989; Miller & Chomsky,

1963). The following example (from (Blank, 1989)) demonstrates this. One level of

embedding is understandable, but two levels are difficult to understand without extra

effort:

(1)

(2) The mouse

The mouse the cat chased squeaked.

the cat the dog bit chased squeaked.

Because of this restriction, the allowable depth of center embedding does not have

to be large. Blank claims that only two levels are required beyond the level of the

sentence (Blank, 1989). To support this, the parser allows three levels of embedding,

the main sentence (level 1) and two levels below that. The level is controlled by a

pair of actions sh±ftdown and returnup which embed and unembed respectively3.

This embedding mechanism is required only for center embedded clauses. Both

left embedding (genitive phrases, see (3) below) and right embedding (complement

phrases, see (4) below) are not limited in many natural languages. They can simply

reuse parts of the state vector that have already been finished with, or that will not be

used again until the embedded clause has been processed. Although this sometimes

causes alternative interpretations to be lost, it does not degrade RV's performance to

a level below that of a native speaker.

3Actions are discussed in detail in §2.9.

(3)

2. REGISTER VECTOR PROCESSORS

My mother 's girlfriend 's husband

(4) I saw a dog

's car broke down.

20

that chased a cat that caught a mouse that ate some cheese.

2.4. Backtracking

RV copes with ambiguity by using bounded backtracking. The parser maintains a

finite set of boundary registers. These hold information about the parser's state at

points in the parse to which backtracking can occur. These points are generally at

natural syntactic boundaries such as the beginnings and ends of clauses and phrases.

The finite bounded backtracking scheme models the limitations of human short term

memory; when a boundary is saved any prior contents are forgotten. Church (Church,

1982, p. 57) has noted that "in some sense, [bounded] backtracking, lookahead, and

parallelism are all very similar". Boundary backtracking is the primary factor in

achieving linear time complexity.

The backtracking mechanism is central to the parser's operation in addition to

managing ambiguity. As the algorithm in Figure 2.4 shows, boundary registers Curr

and Word are used to store the parser's state after each cycle and input token, re-

spectively. The first step in the parse cycle is to backtrack. Since boundary registers

are accessible in the opposite order they were saved, the first register used will be

the Curr register. If nothing can be done in that state, backtracking will retrieve the

next register stored on the stack.

Part of a parser's specification is a list of boundaries which is used to generate a

set of boundary registers. There is a boundary register for each boundary at each

allowable embedding level.

'See (Carrithers & Bever, 1984) and (Garrett & Bever, 1970) for evidence of syntactic boundaries.

2. REGISTER VECTOR PROCESSORS 21

2.5. Sub categorization

Sub categorization deals with the capability of a noun, verb, or other syntactic entity

to determine the complements that it has. For example, the verb "put" requires both

an object and a location. Sentence (5) is correct, but neither (6) nor (7) are.

(5)

(6)

(7)

I put something somewhere.

*1 put something. (no location)

*1 put somewhere. (no object)

Syntactic entities can also limit their complements. An example of this is the verb

hope which cannot take a progressive clause (8) or a bare infinitive (9).

(8)

(9)

*1 hope leaving.

*1 hope leave.

Sub categorization also constrains how phrases are mapped semantically. Depend-

ing on the verb, the same phrase can have different roles. The following two sentences

demonstrate this, in (10) Sam is the agent, in (11) it is the object:

(10) Sam is eager to please.

(11) Sam is easy to please.

RV treats sub categorization as constraints on the grammar that are built into the

lexicon. This makes sub categorization easy to implement at the cost of additional

complexity in the lexicon. By using semi-lexical productions, a lexical entry can

enable the use of its accepted complements.

2.6. Sub categorization Example

The example in Figure 2.7 (from (Blank & Owens, 1990)) shows the use of semi-

lexical productions to implement sub categorization. The example parses use the

following format:

2. REGISTER VECTOR PROCESSORS 22

productions used

'SUBJ:NAMT George

input consumed

The following shows how this grammar processes some sample sentences (for now we

ignore word form differences):

(12) George hopes.

SUB J: NAME: George; INTRANS: THAT: INF: VERB: hopes; CLOSE:.;

(13) George believes Martha.

SUB J: NAME: George; TRANS: XO: THAT: VERB: believes; OBJ : NAME: Martha;

CLOSE:.;

(14) George believes.

SUB J:NAME: George; TRANS: XO: THAT: VERB: believes; XOBJ:CLOSE:.;

It is of particular interest to compare (13) and (14). Of interest is the use of the

semi-lexical production XO which enables a truncated object. The XOBJ production

supplies the truncated object if XO has been used and there is no real object.

2.7. The Lexicon

Lexical analysis in an RV system is designed for time and space efficiency, and

is based on characters rather than tokens. This allows multi-word idioms to be

recognized.

The lexicon consists of two things:

(1) a collection of structures representing words that the system can recognise;

and

(2) a way of indexing these structures so that they can be efficiently recognised.

Features:

2. REGISTER VECTOR PROCESSORS

S TR V 0 DET HEAD XO THAT INF

GRAMMAR LEXICON

cat flag condition change

SUBJ

TRANS

INTRANS

X0

THAT

INF

VERB

OBJ

XOBJ

THAT

CTHAT

INF

CLOSE

ART

NOUN

NAME

word catlist

N +S

S -S+TR

S -S+TR

S -TR +0

S -TR -INF

S -TR

L -TR +V

N -V +0

N -V+O+XO

L -V +THAT

N -V +THAT

L -V +INF

I -S. . HEAD

L +DET. . HEAD

L +HEAD

L +DET. . HEAD

FIGURE

-s +DET. . HEAD
-TR

-TR -O

+XO

+THAT

+INF

-V

-O +DET. . HEAD

-O -XO

+S. . 0 -DET. . INF

+S. . 0 -DEL. , INF

-5 +TR. . 0 -DET. INF

+S. . 0 -DET. . INF

-DET

-DET. . HEAD

-DET. . HEAD

love TRANS VERB

believe TRANS XO THAT

VERB

leave INTRANS VERB

hurry INTRANS TRANS

VERB

hope INTRANS THAT

INF VERB

to INF

that THAT

George NAME

Martha NAME

robot NOUN

the ART

a ART

CLOSE

2.7. A Grammar Implementing Subcategorization

23

The lexicon is formally a many-to-many mapping from entry identifiers (word forms)

to entries (structures representing semantically related words).

2.7.1. Lexical Entries. Each lexical entry has a unique identifier which is usu-

ally the word stem, although there are no constraints on it other than uniqueness.

Each entry also contains a set of syntactic and subcategorizing categories which are

the names of lexical and semi-lexical productions, respectively. These are considered

when this entry is recognised in the input.

The ordering of categories is important as it determines the order in which the

parser considers productions. Two general rules of thumb are to place the most

commonly used categories early in the list, and to place semi-lexical categories before

the lexical category they subcategorize. The reason for this is that lexical categories

2. REGISTER VECTOR PROCESSORS 24

Name: love
Categories: PASS TRANS ADJPASS NOUN
Wordpath: IoveBED...

lov.LOVE
Semantics: inh -ANIMATE. .WHITE +STATE..FEELJNG -ACTION. .TRANSFER

subj +ANIMATE -STATE. .TRANSFER
obj -STATE. .TRANSFER

FIGURE 2.8. Definition of "love"

cause the input token to be consumed, and it is thus no longer available. Since semi-

lexical categories are dependent on the token they have to be processed first, while the

token is available. Semi-lexical categories are subordinate to lexical categories in that

a lexical category can be subcategorized by a specific set of semi-lexical categories.

For example, transitivity related categories only subcategorize the VERB category.

Each lexical entry also has at least one spelling associated with it. This specifies a

path through the lexical trie (see 2.7.3). A lexical entry can be used to represent a

single word or a collection of semanticly related words. For example, Figure 2.8 shows

the definition of the lexical entry "love". This can either be a verb, noun, or passive

adjective. The verb and noun forms have different sets of endings, thus requiring two

wordpaths.

The final item contained by a lexical entry is a semantic definition. Details on this

are given later, in 2.8.

2.7.2. Paradigms. A paradigm' is a collection of ordered pairs (string, proper-

ties) where properties is a set of morphosyntactic properties. The pairs are ordered

'To be consistent, the use of the term paradigm is the same as Blank's (Blank, 1989): "a table of
pairs, each associating an orthographic (or possibly phonological) substring with its morphosyntactic
properties".

2. REGISTER VECTOR PROCESSORS 25

on the length of string, in descending order. This ordering is imposed to ensure that

the most specific string is matched'.

2.7.2.1. Morphosyntactic Properties. Morphosyntactic properties are properties

that a word form has as a result of its morphology. For instance "called" has the

property past due to the "- ed" affix.

There are two types of properties defined by the RV system: agreement and non-

agreement. Agreement properties are used in performing agreement checks (e.g.

subject—verb agreement). Agreement properties are grouped by the "feature" they

are associated with. To illustrate this, Table 2.2 shows several agreement features

and their associated properties.

Feature Properties

gender male, female
number singular, plural
person first, second, third
tense present, past

TABLE 2.2. Sample agreement properties

Non-agreement properties are not involved in agreement checks and include prop-

erties such as past-participle, infinitive, and nominal. They are used for enforcing

agreement within a word (see §2.3 for an example) and as a constraint on produc-

tion selection. For example, a typical production to process nouns would include the

action lexprop <nom> to insure that a noun was being processed. All noun forms

of words would be given the nom property by a noun specific paradigm. In fact an

empty paradigm can be created for this purpose, containing a single pair with an

empty string and the nom property.

'As shown in Figure 2.10, paradigm processing is stopped once a siring is matched.

2. REGISTER VECTOR PROCESSORS 26

Word From P3 From P4 Intersection Validity
creeping {inf pres3 prespart} {prespart} {prespart}
creeps {inf pres3 prespart} {pres3} {pres3}
creept {inf pres3 prespart} {past pastpart} q x
creep {inf pres3 prespart} {inf} {inf}
creping {past pastpart} {prespart} 0 x
creps {past pastpart} {pres3} 0 x
crept {past pastpart} {past pastpart} {past pastpart}
crep {pastpastpart} - {inf} x

ABLE 2.3. Possib l e combinations of paradigms P3 and P4

Agreement feature names (e.g. "gender") are not currently used in the RV system,

but the properties are grouped into feature related sets (e.g. male, female). So, for

example, the properties in Table 2.2 would be defined as <male, female> <singular,

plural> <first, second, third> <present, past>. These properties work in combina-

tion to constrain agreement, e.g. "we" is first person plural. To support this, the

Cartesian product is taken over all agreement sets. The result is the set of compound

agreement properties that are used in cheeks, e.g. male:plural:first:present.

If there are multiple paradigms in the spelling of a word, an intersection is made of

the property sets selected from each. If the resulting set is empty then the word does

not have consistent morphology. Table 2.3 shows how paradigms P3 and P4 in the

path for creep are used to eliminate invalid spellings. See Figure 2.11 and Table 2.4

for the lexicon and paradigm definitions, respectively.

2.7.3. Lexical Trie. The lexicon is indexed by a structure similar to a trie(Aho,

Sethi & Ullman, 1986). This is a character based structure, and as such supports

multi-word idioms. This is possible since space characters are allowed in the spelling

of a word. As mentioned above, this is not a true trie in that leaves, which are

2. REGISTER VECTOR PROCESSORS 27

lexical entries, can have multiple parents'. This capability allows the direct support

of multiple spellings for a single lexical entry. An example of this was shown in

Figure 2.11. The entry "call" has two spellings: one corresponding to the verb form,

and another for the noun form. In this case the different spellings are required due

to the different (and mutually exclusive) sets of allowable endings for each form.

Each internal trio node has a pattern that input is matched against. The pattern

is either a literal string, or a paradigm. Each internal node also has one or more

descendants that are either lexical entries or tries. There are two types of internal

node, depending on the pattern in it:

(1) literal - the pattern is a string literal that is matched against characters in

the input stream;

(2) paradigm - the pattern is a paradigm, as described in 2.7.2.

The structure of the internal nodes and leaf nodes (i.e. lexical entries) is shown in

Figure 2.9.

Lexical Entry
id
category,
word path,
semantics

Paradigm Pattern
string (property, ...)

FIGURE 2.9. Trie node structure.

2.7.4. Word Recognition. The RV parser uses the lexicon to find the cate-

gories and properties of words in the input. The LOOKUP algorithm of Figure 2.10

outlines how this is done. The algorithm traverses the trie to find a path from the

7lnternal nodes can currently have only one parent.

2. REGISTER VECTOR PROCESSORS 28

LOOKUP (input, node, props)

interpretations is initialized empty
case node

leaf
if input is empty or the first character is non-alphabetic

add (node, props) to interpretations

string pattern
if node.string matches a prefix of input

add to interpretations:
Uchild LOOKUP (remaining input, node.child, props)

paradigm pattern
for each (string, properties) of the paradigm

if string matches a prefix of input and props fl properties
add to interpretations:

Uchjld LOOKUP (remaining input, node.child, props fl properties)
return interpretations

return interpretations

FIGURE 2.10. Algorithm LOOKUP

root to one or more leaves that match the input stream and has a consistent set of

properties. LOOKUP is a recursive algorithm, and is initially called with the root

of the lexicon trie and the set of all possible properties as its second and third argu-

ments, respectively. It returns a list of interpretations (details in § 6.3.2.1) - possible

lexical entries plus the properties they would have - for the upcoming input. Inter-

pretations are ordered to prefer longer matches, so idioms are preferred over literal

interpretations and more specific matches are considered first (e.g. "onto" vs. "on").

The properties associated with an interpretation can be used for agreement (in tense,

number, gender, etc) and to further constrain the selection of productions.

2.7.5. An Example Lexicon. As an example, Figure 2.11 shows the trie for a

simple lexicon. The syntactic categories used in this example are: Verb, Noun, and

2. REGISTER VECTOR PROCESSORS 29

FIGURE 2.11. Example Lexical Trie

Determiner. Table 2.4 lists the six required paradigms including two for "creep", one

for the suffixes and one for the "e" / "ee" variation.

2.8. Semantics

A parser has two main purposes: a) to verify that an input is in the language; and

b) to convert the input into a more useful form. In the case of an RV parser, this

more useful form is a semantic structure that represents the meaning of the input.

In order to maintain constant space and linear time complexities this is done simply,

efficiently, and in a consistent manner.

2.8.1. Semantic Entries. The representation used for meaning in RV follows

the general design criteria of being simple, consistent, and using limited resources.

Actions (see §2.9) are provided to build a graph corresponding to the meaning of an

input. This meaning graph is built up of frame-like elements referred to as semantic

entries. Being frame-like, each semantic entry consists of a collection of slots. The

2. REGISTER VECTOR PROCESSORS 30

P1 (e.g. "cat") P2 (e.g. "call") P3 (e.g. "creep")
s'
's
s
$

{genpl}
{gensng}
{pl}
{sng}

ing
ed
s

$

{prespart}
{past, pastpart}
{pres3}
{inf, pres}

ee

e

{inf, pres3,
prespart}

{past, pastpart}

P4 (e.g. "crept") P5 (e.g. "love") P6 (e.g. "make")
ing
s
t

$

{prespart}
{pres3}
{past, pastpart}
{inf}

ing
es
ed
e

{prespart}
{pres3}
{past, pastpart}
{inf}

king
kes
de
ke

{prespart}
{pres3}
{past, pastpart}
{inf}

'ABLE 2.4. Paradigms used by the example lexical trie. $ means an
empty string.

term semantic roles is used to refer to the names of these slots. Semantic roles

are completely arbitrary and defined as part of the parser specification. Examples

of common semantic roles are: Agent, Instrument, and Beneficiary. However,

using such meaningful slot names can be misleading. This is because the use of slots

depends on the context of the semantic entry (e.g. what verb does it represent?).

Blank advocates the use of meaningless semantic roles such as argi, arg2, etc. In

addition to the predefined semantic roles, there can be any number of modifier slots.

These are labelled Modi, Mod2, ..., Modn. Figure 2.12 shows the organization of the

semantic data structures, while Figures 2.13 and 2.14 show the structure constructed

for the inputs " George gave Martha the candy." and "Is the block sitting on the table

red?", respectively.

Semantic entry slots can impose constraints on possible fillers. These are called

selectional restrictions and are implemented using ternary vectors. Unlike vectors

in productions, elements in selectional restriction vectors are labeled by semantic

properties (e.g. ANIMATE, HUMAN, ...). The ternary match operation is used to

2. REGISTER VECTOR PROCESSORS 31

references

Least Recently Used

semantic entry

grammatical
roles

MainO

Most Recently Used

MainO

properties
sem entry

lexical entry

properties

reference
sem-rolel

sem-ro1e2

FIGURE 2.12. Semantic Data Structures.

Entry g1ve28

Properties past

Agent

Object

Beneficiary

Entry ge0rg029

Properties proper

lexical entry

properties

reference
sem-rolel

sem-ro1e2

'Entry

Properties

candy27

the nom 3rd-sg ,

e
Entry martha30

Properties proper 3rd-sn ,

FIGURE 2.13. Structure for "George gave Martha the candy.".

Entry s1t23

Properties yn-quest prog

present 3rd-sg

Agent

Modifier

Modifier

Entry b1ock25

Properties the nom 3rd-sg

Entry 0n26

Properties pp 3rd-sg

Object
Entry tab1e27

Properties the nom 3rd-sg

Entry nu1133

Properties adjunct 3rd-sg 3rd-pi

Modifier >'(Entiy

FIGURE 2.14. Structure for "Is the block sitting on the table red?".

red)

2. REGISTER VECTOR PROCESSORS 32

test role fillers for appropriateness. A role has a vector pattern associated with it

and every entity has a vector embodying its inherent properties. These two (inherent

properties and role pattern) are matched to test whether an entity can fill a role.

To illustrate the selectional restriction mechanism, consider the parsing of sen-

tences 15 and 16 below:

(15) " George gave Martha the candy."

(16) "George gave Martha today."

In both cases, assume that "George gave Martha" has been successfully parsed, re-

sulting in the structure shown in Figure 2.15.

MainO

Entry give28

Properties past

Agent

Beneficiary

Object

Entry ge0rge29

Properties proper

>
Entry martha30

•Properties proper 3rd-sg

-animate -human -state -emotion

-action -transfer -location -time

FIGURE 2.15. Structure for "George gave Martha".

In (15), the object is "the candy" which has the following inherent properties:

{—ANIMATE —HUMAN +MOBILE ?ROUND —STATE —EMOTION

—ACTION —TRANSFER —POSSESSION —LOCATION —TIME —DEST

—INSIDE —SUPPORTED —PERM}

This matches the selectional restriction of the object slot of give, specifically:

{—ANIMATE —HUMAN —STATE —EMOTION

—ACTION —TRANSFER —LOCATION —TIME}

2. REGISTER VECTOR PROCESSORS 33

Other features are not specified for the slot (i.e. they are implicitly '?') and so are

ignored by the match. Thus "candy" matches and is used to fill the slot. Figure 2.13

shows the resulting structure.

The potential object of (16) is "today" which has the element +TIME in its inherent

properties. Since the object slot of "give" specifies -TIME, "today" is rejected as a

filler. The parser would then try any other possible interpretations of the sentence.

When none are found, the sentence is rejected as being ungrammatical.

When a filler is found for a role, the inherent properties of the filler are updated

from those of the slot. This is done using the refine: operation. This fills in any ?

elements in the filler's vector with corresponding values from the slot's. The filler is

then placed in the slot, replacing the selectional restriction vector.

2.8.2. Relations. A relation is a connection between constituent items in a sen-

tence which is implied by complex predicates. A relation is much the same as a

semantic entry. The difference is that a slot in a relation can be filled by a slot filler

of the predicate implying the relation. For example, Figure 2.16 shows the relations

FROM-POSS and TO-FOSS which are used with verbs that result in a transfer of pos-

session. Figure 2.17 shows how these relations are used in the semantic structure

corresponding to " George gave Martha the candy.".

FROM-FOSS TO-FOSS

Role Filler Role Filler

Object:
Beneficiary:

Object
Agent

Object:
Beneficiary:

Object
Beneficiary

FIGURE 2.16. The FROM-POSS and TO-FOSS relations.

2. REGISTER VECTOR PROCESSORS 34

MainO

Entry g1ve28

Properties

Agent

Object

Beneficiary

Relation 1

past

\Relation2
Entry

Object

Beneficiary

TO-POs

--

'-Entry

-a -

-.

Entry
'I . >

.. '.,Properties

FROM-POSS

Object

Beneficiary I

I:

FIGURE 2.17. Usage of relations

'Entry

Properties

george29

proper

En

Pro .erties

cand27

the nom 3rd.sQ,

martha30

proper 3rd-sg I

2.8.3. Grammatical Roles. As a meaning structure is being built, entries are

accessed through grammatical roles (sometimes referred to as gramroles). These

correspond to the set of boundary registers'. This is done since syntactic boundaries

correspond to semantic units (e.g. subject, noun phrase, etc).

The parser contains a dictionary that binds each grammatical role to a reference.

A reference contains two pieces of information: a set of morphosyntactic properties

(used for agreement) and a semantic entry. There are a fixed number of references

in the system, which are allocated when the parser is created. Because of this, it is

conceivable that a situation would occur in which all references have been used. When

a new reference is required the one that has been least recently used is reused. This

handling of reference storage is a factor in maintaining constant space complexity.

8This is a 1-1 and onto correspondence, so the same names are used for corresponding boundaries
and grammatical roles, SUBJ for example).

2. REGISTER VECTOR PROCESSORS 35

2.8.4. Agreement. As discussed in §2.7.2.1 there are two types of morphosyn-

tactic properties: agreement and non-agreement. This section is only concerned with

agreement properties, since they are the ones that convey agreement information.

When morphosyntactic agreement of a grammatical role is checked, either against

another grammatical role or a reading, only the agreement properties are used. They

are extracted from the property sets of both items involved and intersected. If this

intersection is empty the check fails. If the intersection is non-empty, it is assigned as

the agreement property set of the LJHS and the check succeeds. The non-agreement

properties of both items remain unchanged except in one case. If agreement is be-

ing checked against the current interpretation, and it succeeds, the non-agreement

properties of the reading are added to those of the grammatical role. This is done

to initialize the non-agreement properties of the grammatical role, since none are

assigned when the grammatical role is given a new reference.

This agreement method is directional and does not suffer from the problem of non-

distinctness that recent unification-based approaches do (Blank & Labuda, 1991).

Directionality allows one item to restrict another, possibly leaving the first neutral.

This capability is not required so much for English, but is for other languages with a

less impoverished agreement system such as German.

2.8.5. An Example. For example, the actions for three productions (NAME,

SUBJect, BITRANSitive verb) are shown in Figure 2.l8. I will use these to illustrate

how agreement, selectional restrictions, and meaning-graph building are performed

in parsing "George gave" in sentence 15 or 16.

'Actions are described in detail in the next section.

2. REGISTER VECTOR PROCESSORS 36

When "George" is recognized, it enables the NAME production. When NAME is used

its actions are executed. They assign the lexical entry "George" to the grammatical

role NP and add properties specifying a proper noun and third person singular".

Next, "George" is recognized as the subject of the sentence by the SUBJ production.

The associated actions do two things:

• Set a backtracking point in the Subj boundary register.

• Set the Subj grammatical role to refer to the same semantic entry as NP (which

was just loaded with the lexical entry for "George").

Finally, the BITRANS production is used to process "gave". The actions construct

the semantic entry for the main predicate of the sentence:

• Save a backtracking point in the Fred register.

• Connect the current lexical entry ("give") to the Pred grammatical role.

• Check agreement and selectional restrictions on the subject role, and if the

checks succeed assign the previously constructed subject to the subject role of

the new predicate structure.

2.9. Actions

This section describes the actions of RV. There are twelve actions, organized into

five categories. Each of these categories is considered separately.

2.9.1. Embedding. Embedding actions control the level of embedding being

used.

"By adding these properties with the production responsible for parsing names, it saves the work
and storage requirements involved in specifying them for all names in the lexicon
"Actually, the INTRANSitive and TRANSitive productions would be tried as well. The backtracking
mechanism would eliminate those that did not match the argument structure of the sentence.

2. REGISTER VECTOR PROCESSORS 37

NAME

NP1ex set the lexical entry for the name

NP addprop <proper 3rd*sg> set the appropriate properties for a name

SUBJ
save Subj
Subj : NP

set a backtracking point

the most recent noun phrase is the subject

BITRANS

save Fred set a backtracking point

Pred1 ex set the lexical entry for the verb/predicate
Subj Pred. subj check agreement and selectional restric-

tions. If these are consistent, set the sub-

ject of the predicate

FIGURE 2.18. Actions for the NAME, SUBJ, and BITRANS Productions.

shiftdown

Embed one level deeper. Fails if the parser is currently embedded two levels

below the main sentence, succeeds otherwise.

returnup

LJnembed one level. Fails if the parser is currently at the main sentence level,

succeeds otherwise.

2.9.2. Boundary Registers. Boundary related actions manage the saving and

restoring of parser state information. Much of this work is done automatically by the

parser engine during its normal operation, but there are situations where it useful to

do this explicitly.

save boundary

Save the current parser state in the boundary register named boundary. The

2. REGISTER VECTOR PROCESSORS 38

parser engine saves the state in the CURR register after each production applica-

tion'2 and in the WORD register after each token is read from the input. The

save action is used to place explicit backtracking points. Always succeeds.

adjoin boundary

This is used to explicitly restore the parser state from the boundary register

named boundary. This action is rarely used. Always succeeds.

2.9.3. Property Manipulation. There are actions to test for and modify mor-

phosyntactic properties.

lexprop properties

This action tests the current input token's property set. This is done by inter-

secting properties and the token's properties. This action is very useful when a

word having certain properties is required. For example, in the sentence "I had

to go.", the verb following "to" has to have the property infinitive. Succeeds

if the result is non-empty, fails otherwise.

gramrole addprop properties

The addprop action adds the properties in properties to the property set of the

semantic entry associated with gramrole. An example of this was shown in §2.8.

Always succeeds.

2.9.4. Semantics. There are several actions used for building the semantic struc-

ture from an input.

gramrole new

This assigns a new semantic entry to the grammatical role gramrole. Always

succeeds.

"This is an integral part of the engine's operation.

2. REGISTER VECTOR PROCESSORS 39

gramrole := null

Assigns the null semantic entry to the grammatical role gramrole. This is used

to create placeholder nodes in the semantic structure or to add nodes where

there is no corresponding lexical entry in the input. For example, this action is

useful when parsing adjectives. A null role is created for the expected noun. The

adjectives then modify this null entry, which is eventually filled in by the head

noun. Always succeeds.

gramroleL gramroleR

These are three variations on a single action. All three assign the contents of

the grammatical role gramroleR to gramroleL. The first form is a simple assign-

ment. The second has gramroleR prefixed by ". In this case, the contents of

gramroleR from the next more shallow embedding level are used. The final form

prefixes gramroleR with "\". This form uses the contents of gramroleR from

the next deeper embedding level. Succeeds if gramroleR has a valid value, fails

otherwise.

gramroleL = lex

gramroleL = gramroleR[. role 1[. ro1e2]]

These actions actually do the structure building. The first form matches the

semantic contents of gramroleL with that of the current input token. If they

are compatible, the contents of gramrole are refined by that of the input token.

The second form operates between gramrolcs. It can optionally take the name

of a role within gramroleR's contents. In that case the specified role is filled by

gramroleL. The second role specifier can be present if the first identifies a relation

role. Succeeds if the action was successfull (i.e. contents were compatible), fails

otherwise.

2. REGISTER VECTOR PROCESSORS 40

gramroleL -> lex

gramroleL -> gramroleR

These are the actions that add modifiers to a semantic entry. The first form

adds the current input token as a modifier of gramroleL'3, while the second adds

gramroleR as a modifier. Always succeeds.

2.9.5. Agreement. The actions in this section check agreement of morphosyn-

tactic properties. Agreement checks are performed by intersecting the agreement

properties of the two arguments and setting those of the left argument to the result

if it is non-empty.

gramroleL agree lex

gramroleL agree gramroleR

The first form checks agreement of gramroleL with the current input token. The

second form checks it with another grammatical role. Succeeds if the intersection

of the two agreement property sets is non empty, fails otherwise.

2.10. Summary

This chapter described, in detail, the design and operation of the RV formalism.

Several parsers were provided as examples. The chapter began with a formal definition

of RV, then went on to describe the underlying data structures and operations on

them. The discussion covered all areas of the parser's responsibility: syntax, lexicon,

and semantics.

13 The seemingly backwards arrow notation was kept to be consistent with Blank's notation.

CHAPTER 3

Related Work

This chapter presents work related to that described in this thesis. First two RV

development systems are described. The second section briefly describes some lexical

acquisition systems that have been reported.

3.1. Existing RV Development Systems

This section discusses the two known existing development systems for RV parsers:

Blank's, which provides the parser developer with tools with which to construct RV

parsers, but conforms to the traditional edit-compile-debug approach; and Reed's

which compiles phrase structure grammars to RV productions. Finally, the ways in.

which RV-Tools differs will be discussed.

3.1.1. Blank's System. Glenn Blank developed the original RV development

system (Blank, 1989; Blank, 1991; Blank & others, 1992). This system is text based

and command line oriented. Syntax rules and lexical entries are specified using a

text editor (such as Emacs). Each is contained in a separate file. Sections 3.1.1.1

and 3.1.1.2 show sample syntax and lexicon specification file, respectively.

This system is typical of the traditional compiled language paradigm: a source file

is edited, compiled and then tested. If problems are detected the sequence is repeated.

Figure 3.1 shows the organization of Blank's system.

41

3. RELATED WORK 42

Input
Sentences

(Text -
Editor

Syntax
Specification

Lexicon
Specification

Syntax
Assembler

Lexicon
Assembler

Syntax
Implementation

Lexicon
Implementation

Parser
Engine

V
Lexical/Syntactic/
Semantic Structure

FIGURE 3.1. Data flow in Blank's Development System

I,-
 Debugger

Once the syntax and lexicon specification files have been prepared they are pro-

cessed to create syntax and lexicon implementation files which are used by the parser.

Operation of the parser is controlled by a set of command menus. The appropriate

menu is printed at any time, and a selection is made by means of a keystroke. Sec-

tion 3.1.1.3 shows part of a typical session, while Section 3.1.1.4 shows part of a

debugging session.

3.1.1.1. Example RV parser specification.

{A fragment demonstrating affix agreement as described in agree9l.ps}

morpho syntact ic...propert ies

<first second third> <sg p1> pres past pastpart prespart inf nom

ordering-:features

OPEN S TOP TENS MODAL AUX HAVE BE NEG V 10 0 THAT XO XIO BARE INF

PPR PASS MAINC

NP DET NUM ADJ HEAD DENOM NEND NROLE REL

INFL PREP PNP GAP XS RELEND

macros features

##NPon

##NPoff

##NPmod

##NPend

##NRo1e

+DET.

—DET.

—DET.

—DET.

—DET.

.HEAD -DENOM. . NEND {enable/require noun phrase up to head}

.REL {disable or require noun phrase off}

.HEAD +DENOM. . NROLE {Past head of NP}

.HEAD +NEND +REL {Before end of NP}

.HEAD +NROLE {condition for SUBJ, OBJ, etc.}

{ClauseOn initializes requirements for most clauses--note embedded #NPoff}

##ClauseOn +S. . 0 -THAT. . PASS +PPR +NP -AUX -INFL. . RELEND #NPoff

##ClauseOff -OPEN. . 0 -DET. . GAP {disable/require constituents off}

3. RELATED WORK

default cond #NPoff ?DENOM ?NROLE ?REL {in clause, not phrase} -OPEN

boundaries Topic Tense Subj Pred Obj Clause NP NPmod

productions

p TENSE N morph pres past {TENSE must observe a tensed morphological form}

cond -I-TENS -I-NROLE -XS -PREP change -TENS +INFL -NP +PNP

action save Tense

p TENSV N morph pres past -CTENSV fires for tensed main verbs (not auxiliary)}

cond +TENS +NROLE -PREP change -TENS. . BE -I-INFL +AUX -I-NP

p BE L cond +INFL -I-BE -TOP change -MODAL -HAVE -BE -INFL

{Verb subcategories: INTRANS for no object, TRANS for one, BITRANS for two)-

p INTRANS S cond -S +0 +INFL -1-AUX change -MODAL. . NEG -NP -O -10

action save Pred -CINTRANS rules out OBJ or IOBJ}

p TRANS S cond -S +10 +INFL +AUX change -MODAL. . NEG -Ia action save Fred

p V L cond -S +V -AUX. . NEG +INFL change -V -INFL -REL -PNP

p CADJ L conI -BE' -S +V change #ClauseOff -NP

action save Fred

-(The following productions follow NPEND (and assign grammatical roles))--

p SUBJ N cond #NRole ?NEND +S -TENS +V change -S #NPoff -TOP

action save Subj

p OB.J N cond #NRolo ?NEND -V +0

action save Obj

change -O -NP -DEMON -NROLE

{NP introduces a noun phrase (skipped by PREP and other prep productions))--

p NP N cond -I-NP #NPoff ?REL -INFL -AUX -PREP -PNP change #NPon +NROLE

-(save at opening of phrase)-

{Noun phrase

pDET L

pNOUN L

cond #NPon ?DET. . ADJ

p NAME L cond #NPon

p PRON L cond #NPon

action save NPmod

p NPEND N cond -HEAD +NEND

action save NPmod

action save NP

productions)--

cond #NPon change -DET -(determiner)-

morph nom -(Must be a nominal, not a verb affix)-

change #NPmod -1-REL

change #NPmod -(George, etc J-
change #NPoff +NROLE -PREP -AUX

-(Pronouns have no post-modifiers)-

change #NPoff -AUX ?NROLE -PREP

-(Relative clauses come in several varieties, which cross-categorize:

They may open with explicit relative pronouns: RELR or RELC are Lexicals,

or not: RELRO or RELCO are Non-lexicals rivalling RELR and RELC

They may right embed--RELR or RELRO--if clause is "on the table": -S. . 0 -GAP

or center-embed--RELC or RELCO--if clause not yet seen S,V,O or GAP

Next, they may be full relative clauses--REL----enabling SUBJ, AUX, GAP

or reduced relative clauses--REDREL-disabling SUBJ, AUX, GAP

}

43

3. RELATED WORK 44

p RELR L cond #NPend -S. . 0 -GAP {" clause on the table": -S. . 0 -GAP)

change #ClauseOn +OPEN -TOP -MAINC ?RELEND {thru from RELC} +GAP

action save Clause {right-embed, but allow resumption of adjuncts)

p RELC L cond #NPend +0 -RELEND {clause not yet on table: +0 -RELEND} -PNP

change #ClauseOn +OPEN -TOP -MAINC +RELEND

action shiftdown {center-embed--next clause level)

p RELRO N cond #NPend -S. . 0 -GAP {" clause on the table": -S. . 0 -GAP) ?NP

change #ClauseOn +OPEN -TOP -MAINC ?NP {thru to REL} ?RELEND +REL

action save Clause {right-embed, but allow resumption of adjuncts)
p RELCO N cond #NPend +0 -RELEND {clause not yet on table +0 -RELEND} -PNP

change #ClauseOn +OPEN -TOP -MAINC +RELEND +REL {+RELno Subj Gap)

action shiftdown {center-embed--next clause level)

{REDREL--reduced relative clause (no SUBJ, AUX, NGAP), e.g. " cat sleeping.. . III

p REDFtEL N morph pastpart prespart

cond +OPEN -MAINC +REL

change -OPEN. . BE -NP {Disable SUBJ, AUX} -REL

{REL--full relative clause (with SUBJ & AUX), e.g. " cat [which] I pet")

p REL N cond +OPEN -MAINC +NP change -OPEN +GAP {NGAP in full rel clause)

{RELEND marks end center-embedded post-modifiers: shifts up a clause level)

p RELEND N cond #Clause0ff +RELEND

change -DET. . DENOM -REL {Continue noun phrase at higher level)

action returnup {return from center-embedding)

{WH-questions require an NGAP in place of an NP: +GAP}

p WE L cond +OPEM +MAINC change +GAP +XS -OPEN -NP action save Topic
{NGAP meets GAP requirement; NGAP requires an NROLE production)

p NGAP N cond ?DET. . NEND -NROLE -REL +GAP

change #NPoff +NROLE -GAP

'(Main clause opening productions)

p OPEN N cond +OPEN +MAINC change -OPEN action save Topic

'(Clause InitFinal production)

p CLOSE I cond #ClauseOff -RELEND ?NEND

change +OPEN #ClauseOn +MAINC

5 emact ions

p DET

p NOUN

p NAME

p TENSE

p TENSV

p SUBJ

p

p OBJ

p REL

p REDREL

p WE
p NGAP

NP <= lex

NP <= lex

NP <= lex

Tense <= lex

Tense <= lex

Subj := NP Subj <= Tense

Pred <= lex

Obj := NP

Topic : NP

Subj : NP

Topic <= lex

NP := Topic

3. RELATED WORK 45

3.1.1.2. Example RV Lexicon.

paradigms

m BED s <third*pl nom>

/ <third*sg nom>

m SHEEP / <third nolu>

in PULL I <first second third*pl pres>
s <third*sg pres>

ing <prespart>

ed <past pastpart>

in LOVE e <first second third*pl pres>

es <third*sg pres>

ing <prespart>

ed <past pastpart>

in BE are <pres p1> is <pres third*sg> am <pres first*sg>

was <past first*sg third*sg> were <past pl second*sg>

be <inf> been <pastpart> being <prespart>

m A / <third*sg>
m THE / <third>

entries

e clock cat NOUN morph clock_BED_

e sheep cat NOUN morph sheep_SHEEP...

e tick cat INTRANS V NOUN morph tick-PULL- in tick_BED_

e graze cat INTRANS V morph graz_LOVE_

e be cat BE morph _BE_

e fat cat CADJ

e hungry cat CADJ

e a cat DET morph a_A_

e the cat DET morph the_THE_

e that cat RELC RELR DET

e . cat CLOSE

3.1.1.3. Sample session.

/.rvg

Register Vector Grammar, Version 3 9.6

Copyright 1990 -- G. Blank, Lehigh University

Grammar assembled from sep92.syn

Lexicon assembled from 5ep92.lex

Parser,Trace,Sentence file,Graimnar,Lexicon,Words , Os,Help,eXit RVG: s

Keyboard,From file: sentin.txt,Change file,Goto,Repeat , Help,eXit menu:f

Reading from sentin.txt

Parser,Trace,Sentence file,Granuuar,Lexicon,Words , Os,Help,eXit RVG:p
#We start by honoring our first first family once more:

1)George loves Martha.

3. RELATED WORK 46

Parse succeeds

S: NP: NAME: George; NPEND: TENSV: SUBJ: TRANS: love; NP:NAME:Nartha; OBJ:CLOSE:.;
MainO:love0 present 3rd-sg

Lsubj:Georgel proper 3rd-sg

Lobj:Martha2 proper 3rd-sg

Inspect , Roles , TraceMenu,SentenceMenu,Granunar,Lexicon,Os , Help,eXit ,<space>:

#A famous syntactically ambiguous sentence:

2)Time flies like an arrow.

Parse succeeds

S:INP:TRANS:time; NP:NOUN:fly; OBJ:PPR:PREP:like; INDEF:an; NOUN:arrow; C:

PPEND:CLOSE:.;

MainO:time3 imperative present inf lst-sg Ist-pi 2nd-sg 2nd-pi 3rd-pl

Lobj:f1y4 nom 3rd-pl

mod:like5 pp 3rd-sg

Lobj:arrow6 a nom 3rd-sg

Inspect , Roles , TraceMenu,SentenceMenu,Granunar,Lexicon,Os ,Help,eXit ,<space>;

3)Is the block sitting on the table red?

Parse succeeds

S:qUES:BE:be; NP:DEF:the; NOUN:block; SUBJ:PROG: INTRANS: sit; PPR:PFtEP:on;

DEF;the; NOUN:table; PPEND:ADVNP:ADJ:red; ADJHEAD:C:ADVNPEND:CLOSE:?;
Main0:sit23 yn_quest prog present 3rd-sg

Lsubj:b10ck25 the nom 3rd-sg

mod:on26 pp 3rd-sg

Lobj:tab1e27 the nom 3rd-sg

mod:nu1133 adjunct 3rd-sg 3rd-pi

mod: red

Inspect,Roles , TraceMenu, SentenceNenu,Grammar, , 0s , Help , eXit ,<space>:

3.1.1.4. Sample debugging session.

'/.rvg

Register Vector Grammar, Version 3.9.6

Copyright 1990 -- G. Blank, Lehigh University

Grammar assembled from agree2.syn

Lexicon assembled from agree2.lex

Parser,Trace,Sentence file,Grammar,Lexicon,Words , Os,Help, eXit RVG:t

Quick,Backtracking,Step,Changes,To breakpt , No prompt,Options,Help,eXit menu:b

Parser,Trace,Sentence file,Graimuar,Lexicon,Words , Os,Help, eXit RVG:t

Quick,Backtracking,Step,Cha.nges , To breakpt , No prompt,Options , Help,eXit menu: s

Parser,Trace,Sentence file,Granunar,Lexicon,Words , Os,Help, eXit RVG:p

Sentence: the fat sheep is hungry.

OPEN:

Inspect , Roles , TraceNenu,SentenceNenu,Granuuar,Lexicon,Os ,Help,eXit ,<space>:

OPEN:NP:

Inspect , Roles , TraceMenu,SentenceMenu,Grammar,Lexicon,Os ,Help,eXit ,<space>:

OPEN : NP : DET : the

Inspect , Roles , TraceMenu,SentenceMenu,Grammar,Lexicon,Os ,Help,eXit ,<space>: i

)the fat sheep is hungry.

OPEN : NP : DET : the

LexEntry: *the

3. RELATED WORK 47

Categories: DET

morph props:third-sg third-pi

ContPt : none

Syntactic state vector at ClauseLevel 0:

-QPEN+S+TOP+TENS+MODAL--AUX+HAVE+BE+NEG+V+IO+O-THAT.-XO-XIO-BARE-INF+PPR_PASS

+MAINC+NP-DET+NUM+ADJ+HEAD-DENON-NEND+NROLE-REL-INFL-PREP--PNP.--GAP-XS-RELEND

Choose a production (or List,Registers,Help,<Enter> to quit):r

1:SynState now 2:Curr 3:Prod 7:TopicO 13:NPO

Choose a state register NUMBER (or <enter> to quit):13

Showing NPO:

)the fat sheep is hungry.

OPEN:

LexEntry: *the

Categories: DET

morph props:third-sg third-pi

ContPt : none

Syntactic state vector at ClauseLevel 0:

-OPEN+S+TQP+TENS+MODAL-AUX+HAVE+BE+NEG+V+IO+O-THAT-XO-XIO-BARE-INF+PPR-PASS

+}1AINC+NP-DET-NUM-ADJ-HEAD-DENOM-NEND-NROLE-REL-INFL-pREp--pNp-GAp-xS-RELEIjTJ

Choose a production (or List,Registers,Help,<Enter> to quit) :NOUN
NOUN's cond differs:+HEAD

3.1.2. Reed's System. When RV was still in the process of maturing, Jonathan

Reed developed a system that compiled phrase structure grammar rules into an RV

representation by using a finite state automaton as an intermediate representation

(Reed, 1987; Reed, 1989). His system used RV as an efficient engine underlying a

phrase structure grammar specification. It was able to make use of much of RV's

efficiency in terms of processing speed, but it generated many more syntax rules than

would be necessary in a pure RV approach. Also, not all phrase structure grammars

can be converted to finite state automata. Thus, the applicability of this method is

limited. Specifically, finite state automata can not implement embedding so phrase

structure grammars that use embedding can not be used with this method. This

severely limits its use in natural language parsing systems.

To illustrate the operation of the compiler, the English auxiliary system is used as

an example (Reed, 1989). The phrase structure grammar to RV compiler first converts

3. RELATED WORK 48

the phrase structure grammar specification (Figure 3.2) to a finite state automaton

(Figure 3.3) which is then reduced.

AUX - modal
AUX -+ modal not
AUX - have
AUX -+ have not
AUX be
AUX - be not
AUX -+ modal have be
AUX -+ modal not have be
AUX modal have
AUX -+ modal not have
AUX -+ modal be
AUX - modal not be
AUX -+ have be
AUX - have not be

FIGURE 3.2. Phrase structure grammar for the English auxiliary system

Using standard finite state automaton reduction, the resulting automaton would

have the characteristic that a single state could be entered by arcs labeled with

different symbols. This complicates the conversion to RV so a reduction is used that

does not merge states that are entered by arcs with different labels (Figure 3.4).

This finite state automaton is then converted into a set of RV productions (Fig-

ure 3.5). The resulting productions conform to the following rules:

(1) Production names and input symbols are equivalent;

(2) Vector elements correspond to productions, in the same order as productions

are listed;

(3) The condition vector of a production contains a + in the element corresponding

to itself, and - in all others;

3. RELATED WORK 49

FIGURE 3.3. Initial finite state automaton for the auxiliary system.

FIGURE 3.4. Reduced finite state automaton for the auxiliary system.

3. RELATED WORK 50

(4) The result vector of a production contains a + in all positions for which the

finite state automaton changes state;

(5) If a production represents a final state, the elements of the result vector cor-

responding to "close" contains +, otherwise it contains -.

The resulting 1W parser should be hand optimized to attain maximum efficiency

(Figure 3.6).

Label condition
vector

change
vector

mit
modal1
not1
have1
not2
be1
not3
have2
be2
close

??????+??

++

++

+

FIGURE 3.5. Resulting set of RV productions.

Label condition
vector

change
vector

mit
modal
not
have1
be1
have2
be2
close

FIGURE 3.6. Hand optimized RV productions

3. RELATED WORK 51

Reed's system is interesting but does not fully address the problem of developing

RV parsers. It simply uses RV as an efficient implementation system for phrase

structure grammars. Also, the system generates only productions useful for syntactic

analysis: there is no support for handling agreement and semantics which must be

added manually to the resulting productions. These productions may not be designed

appropriately, thus requiring some redesign. Finally, the lexicon has to be built

completely by hand.

3.1.3. How RV-Tools Differs. RV-Tools follows the Smalltalk approach of de-

veloping in an interactive, largely modeless environment. There is no compilation

step, and editing can be performed while the parser is being debugged, with changes

taking effect immediately. This results in a interactive, incremental parser develop-

ment environment. The organization of RV-Tools is shown in Figure 3.7.

(Grammar Browser Grammar Input Sentences

>(Debugger

Lexicon Learner)

FIGURE 3.7. Diagram of RV-Tools.

3.2. Lexical Acquisition Systems

Lexical/Syntactic/

Semantic Structures

This section describes some of the notable lexical acquisition systems, and com-

ments briefly on how they relate to the one presented in this thesis.

3. RELATED WORK 52

Harris (Harris, 1977) developed a mechanism for acquiring vocabulary by learn-

ing associations between actions/objects and words. This is the inspiration for the

category pruning mechanism described in Chapter 8.

Hasting et. al. (Hastings, Lytinen & Lindsay, 1991) describe a system for learning

word—concept associations within a fixed domain. All concepts involved are known

ahead of time and stored in a hierarchy, along with their type and the types of any

slot fillers. Slot filler types are used to incrementally induce the meanings of unknown

words. This system does not learn any morphology, it just labels concepts.

Kazman (Kazman, 1991) presents a psychologically motivated model of lexical ac-

quisition. This system has no prior knowledge of affixes. It discovers stems and affixes

by comparison of different word forms. It then uses these affixes with other words of

the same type. The system does use a frequency based reinforcement mechanism to

prune out any unused combinations (such as loots and goed).

Paul Kogut (Kogut, 1992) worked on learning lexical semantics for RV from both

text corpora, and the lexical database "Wordnet", developed at the Princeton Cog-

nitive Science laboratory. This is a good way to learn a large, standard vocabulary

for a new domain, but it does not provide a way to dynamically adapt to a specific

user and domain.

3.3. Summary

This chapter described the two existing, documented systems which support devel-

opment of RV parsers: Blank's and Reed's. RV-Tools' philosophical differences with

these were described briefly:

3. RELATED WORK 53

• Blank's system has a traditional edit—compile—test development paradigm whereas

RV-Tools provides various views of the systems under development, is inter-

active, and allows modification of the parser at any time;

• Reed's system was designed to use RV as an efficient mechanism for imple-

menting phrase structure grammars, and does not address direct development

of RV parsers. RV-Tools, on the other hand, is targeted at the parser developer

who is working directly with the RV formalism.

Finally, related work in the area of automated lexical acquisition was briefly de-

scribed. Most of the systems presented strive to be psychologically valid, while those

that are primarily pragmatic are generally not interactive or incremental. This con-

trasts to the vocabulary acquisition mechanism of RV-Tools, described in Chapter 8,

which is designed for interactive, incremental operation.

CHAPTER 4

Brief Introduction to Smalltalk-80

This chapter provides a brief overview of object-oriented programming concepts as

they apply to Smalltalk-80. It also introduces the concepts involved in the Model-

View-Controller paradigm used by the Smalltalk-80 system.

The concepts and terminology introduced here provide background for later chap-

ters which deal with RV-Tools implementation issues.

4.1. An Introductory Example

Before any details about Smalltalk-80 are described, I present a simple illustrative

example.

The example presented is that of the turtle in a turtle graphics environment, such

as LOGO. A turtle in a graphics system has the capability of moving in a straight line

and turning any angle, all while dragging along a pen that can either be touching the

surface the turtle is traversing or held away from it. The turtle responds to a small

set of commands: move forward a specified amount, turn clockwise by a specified

number of degrees, lower the pen so that it touches the surface, and raise the pen

away from the surface.

Using an object-oriented approach we would describe the turtle as shown in Ta-

ble 4.1. Figure 4.1 shows how the turtle responds to a sequence of instructions.

54

4. BRIEF INTRODUCTION TO SMALLTALK-80 55

Attributes Actions

location move distance

direction turn angle

pen status pen up/down
TABLE 4.1. Description of Turtle

PEN DOWN

MOVE 10

TURN 90

PEN UP

MOVE 10

TURN 90

PEN DOWN

MOVE 10

FIGURE 4.1. Response of Turtle to Instructions

4. BRIEF INTRODUCTION TO SMALLTALK-80 56

The simple turtle that is described here uses several object-oriented principles. The

main point is that the programming model of the turtle is a self-contained entity. It

has certain attributes that are not directly accessible from outside, and it understands

and responds to a set of commands. To illustrate other properties of object-oriented

programming, more turtles are added to the system. One carries a selection of differ-

ent colored pens. This new turtle would behave the same as the original one with an

additional attribute indicating the color of the pen being dragged, and another action

for selecting a specific pen. Yet another turtle could respond to the turn instruction

by interpreting the number as an angle measured in radians rather than degrees.

These three turtles would be related by inheritance. Each of the new turtles would

inherit attributes and actions from the original, while possessing additional capabili-

ties, and possibly modifications to some of the inherited actions. Such a relationship

can be represented by an inheritance hierarchy such as in Figure 4.2.

Turtle
state

pen status

location

direction
behavior

pen up
pen down
move
turn

N
Color Turtle

state
pen color

behavior
color

Radian Turtle
state

behavior
turn

FIGURE 4.2. Inheritance Hierarchy of Turtles

4. BRIEF INTRODUCTION TO SMALLTALK-80 57

4.2. Object Oriented Programming with Smalltalk-80

This section briefly describes some of the concepts central to object-oriented pro-

gramming in Smalltalk-80. To do so, I will show how the turtle in the previous section

could be implemented.

4.2.1. Classes. The class is the unit of encapsulation in Smalltalk. A class

defines the state and behavior of all objects that are instantiations of that class. To

implement the turtle example, three classes would be needed: Turtle, ColorTurtle,

and RadianTurtle. Figure 4.3 shows the class declarations for these.

View subclass: #Turtle

instanceVariableNames: ' position penStatus direction

ColorTurtle subclass: #Turtle

instanceVariableNames: ' color

RadianTurtle subclass: #Turtle

instanceVariableNames: 11

FIGURE 4.3. Turtle class declarations.

4.2.2. Instance Variables. A class's state is defined by its instance variables.

Each member of the class will have a private copy of these variables. Again, see

Figure 4.3 for the definition of the turtle classes' instance variables on the lines starting

with instanceVariableNames.

4.2.3. Methods. A class's behavior is defined by its methods. Each method

defines a single behavior. The behaviors of Turtle, ColorTurtle, and RadianTurtle

are defined by the methods shown in Figures 4.4, 4.5, and 4.6, respectively.

4. BRIEF INTRODUCTION TO SMALLTALK-80 58

move: distance

"Move the turtle distance units"

I newPosition I
newPosition := position + ((distance * direction sin)

@(distance * direction cos)).
penStatus == #down

ifTrue: [self graphicsContext displayLineFrom: position

to: newPosition].

position := newPosition

turn: degrees

"Turn the turtle degrees degrees clockwise"

direction := direction + degrees degreesToRadians

penDown

"Start drawing"

penStatus := #down

p enUp

"Stop drawing"

penStatus := #up

FIGURE 4.4. Turtle class method definitions.

color: inkColor

"Set the drawing color"

color := inkColor.

self graphicsContext color: inkColor

FIGURE 4.5. ColorTurtle method definitions.

turn: radians

"Turn the turtle radians radians clockwise"

direction := direction + radians

FIGURE 4.6. RadianTurtle method definitions.

4. BRIEF INTRODUCTION TO SMALLTALK-80 59

4.2.4. Objects. Objects are the things that actually do most of the work in an

object-oriented system. Objects are instances of classes, i.e. a concrete embodiment

of the specifications defined by a class. In Smalltalk, classes are themselves objects

(instances of the meta-class), and so classes can have state and behavior as well.

To illustrate the use of objects, consider a group of turtles working together as

shown in Figure 4.7. Each turtle is an independent object, an instance of the Turtle

class. The code to produce the operation shown in Figure 4.7 is shown in Figure 4.8.

FIGURE 4.7. Cooperating turtles.

4.3. The Model-View-Controller Paradigm

The application framework paradigm that Smalltalk-80 uses is called Model-View-

Controller. In this paradigm, applications are composed of three pieces: models,

views, and controllers. Models encapsulate the data processing parts of applications,

4. BRIEF INTRODUCTION TO SMALLTALK-80 60

I turtles I

"set up an array

turtles := Array

of four turtles"

with: Turtle new

with: Turtle new

with: Turtle new

with: Turtle new.

"set the initial orientations"

turtles inject: 45 into:

[:angle :t I
t turn: angle;

penDown.

angle + 90].

"move each turtle to draw the design"

4 timesRepeat:

[turtles do:

[:t I
t move: 10;

turn: 90]]

FIGURE 4.8. Code for cooperating turtles.

Display

4. BRIEF INTRODUCTION TO SMALLTALK-80 61

views are responsible for presenting the data to the user, and controllers handle user

interaction. This division of labor is illustrated in Figure 4.9.

Menu

cut

copy

paste

FIGURE 4.9. Models, Views, and Controllers.

Views and Controllers are generally paired: a specific view would visually represent

a list and a specific controller would work in conjunction with it allow the user to

operate on the list. A feature of this paradigm is that it allows a model to have

several possible view—controller pairs. This is shown in Figure 4.10. In this example,

the data in the sales history model can be represented as a bar graph, a textual list,

or both. Different views can presents the same aspect of the model in different ways,

or they can present different aspect of the model.

Another facet of this paradigm is the use of dependents to propagate change. Each

model has a list of views that represent its various aspects. This structure is shown

in Figure 4.11. Whenever the model's data changes, the model informs its dependent

views of the change. Views that are responsible for representing the data that has

changed update their representation accordingly.

4. BRIEF INTRODUCTION TO SMALLTALK-80 62

FIGURE 4.10. A Model can have multiple Views

Model

Dependants
0000

 1

View!
Controller

FIGURE 4.11. Model—View dependency structure.

4. BRIEF INTRODUCTION TO SMALLTALK-80 63

4.4. Summary

This chapter introduced some basic concepts of object-oriented programming as

it applies to Smalltalk-80. This is required as background to the implementation

sections of this thesis. An object-oriented system is made up of objects which have

state and behavior. This state and behaviour is defined by the object's class. Classes

can be defined to inherit from another. This allows a new class to specialize an

existing class, without having to replicate all of the information. This chapter also

introduced the Model-View-Controller paradigm that forms the basis of the RV de-

velopment environment. This paradigm provides the ability of separating data from

its representation.

CHAPTER 5

Extensions

I have extended RV in several ways in support of the development tools and lexical ac-

quisition mechanism, or to increase efficiency. This chapter describes these extensions

and the reasons for them.

5.1. The duff: Vector Operation

A fourth element value has been added to the definition of ternary vectors. They are

still referred to as ternary vectors, both for consistency and, because of the semantics

of the new element value. The new value is denoted by '' and is functionally identical

to '?' as far as the match:, change:, and refine: operations are concerned. The

addition of the ' c' value supports a convenience feature in the editing of vectors. A

default vector can be defined (for both condition and change vectors). When the user

defines a vector, that definition is combined with the appropriate default. When a

vector definition is to be displayed the user expects to see the definition that they

previously specified, so the default must be removed. This is done by a new vector

operation called duff:, which is defined as:

? ifa=b

L. bi otherwise

The '' value in the output of duff: specifies that the element in B was '?', whereas

'V indicates that the values of A and B were the same. This is used to allow the user

64

5. EXTENSIONS 65

to override elements in the default vectors with a '?' value. For example,

(+ + -?+) duff: (?- +?+) - (0 - +??).

5.2. Lexical Acquisition

An experimental lexical acquisition mechanism has been added to RV, and is fully

described in Chapter 8. In this section, I will describe the changes to the RV definition

that were required to support the acquisition mechanism.

5.2.1. Handling of Unknown Words. In the original description of 1W en-

countering an unknown word is an error condition (see Figures 2.3 an:l 2.4). This has

been changed so that encountering an unknown word invokes the acquisition mecha-

nism to try and learn the spelling and categorization of the word. The unknown word

consist of characters from the current position in the input to the next punctuation

or space character. The character sequence is extracted from the input and passed

to the acquisition algorithm. This algorithm will be discussed in Chapter 8.

5.2.2. Paradigm—Set Nodes. As described in §2.7 the lexicon originally has

two types of internal node. A third is added to support the learner: the paradigm-set

node. This type of node represents a set of possible paradigms, rather than a single

one. The paradigms in the set are those that contain a string for each suffix matched

by the node. The set of suffixes matched by the node are also maintained. Since the

learner only uses suffixes, paradigm-set nodes are used only as immediate parents of

leaf nodes (i.e. lexical entries).

Paradigm—set nodes contain two pieces of information: a set of strings that the

node has been used to account for, and a set of productions that account for those

strings. The internal structure is shown in Figure 5.1.

5. EXTENSIONS 66

FIGURE 5.1. Internal Structure of the new Paradigm-Set node.

The addition of a new type of node in the lexical trie requires an extension of the

LOOKUP algorithm of Figure 2.10. The extended algorithm is shown in Figure 8.5

and will be discussed in §8.2 since the changes constitute part of the acquisition

mechanism.

5.2.3. Aging Mechanism. The lexicon acquisition mechanism tries to learn

the categories of the lexical entry being acquired. It almost always assigns an overly

general set of categories. To cope with this, a category aging mechanism has been

added to the system. This mechanism keeps track of how often a category has led

to the entry being used in a successful parse. Categories that prove to be highly

useful (are frequently found in a successful parse) are made persistent, while those

that prove otherwise are eventually removed.

5.3. Production Selection

In order to increase the efficiency of the parser, the production selection algorithm

has been extended. The new algorithm is shown in Figure 5.2.

In addition to the previously defined tests (see §2.1.1) there is an additional one.

Either the previously used production was not semi-lexical, or the production being

considered fits into the active sub categorization framework. If the current production

5. EXTENSIONS 67

FIND-PRODUCTION

"look for a lexically constrained production"

while the current interpretation is valid
let intrep be the current interpretation
for each production prod E interp.lexical-entry.categories

if (prod.condition match: currentState) and each of prod.actions
can be executed in the context of interp

return prod
else

advance to the next interpretation
if the most recently used production was semi-lexical

return nil

"look for a non-lexical production"

for each non-lexical production, nonlex
for each intrep E interpretations

if (nonlex. condition match: currentState) and each of nonlex.actions
can be executed in the context of interp
return nonlex

return nil

FIGURE 5.2. Production Selection Algorithm

5. EXTENSIONS 68

is semi-lexical this means that the intersection between the set of productions it

can subcategorize and the active sub categorization set is non-empty. If the current

production is lexical, it must be a member of the active sub categorization set. Non-

lexical productions are not considered since the fact that the previous production was

semi-lexical means that non-lexical productions won't be searched.

When a semi-lexical production is used, the active sub categorization set is inter-

sected by that of the production. The active set is reset to include all productions

when a lexical production is used.

In support of this change, semi-lexical productions now store the set of lexical pro-

ductions that they can be used with. For example, the TRANSITIVE production

can subcategorize the VERB production.

The benefit of this change is that it limits the number of dead-end branches in the

search for successful parsers and the use of irrelevant productions. An example of

irrelevant productions would be using TRANSITIVE and NOUN together, which

could occur with a word that can be either a transitive verb or a noun such as "call".

5.4. Summary

This chapter has described improvements and extensions to the RV formalism as

described in Chapter 2. These include:

• the duff: vector operation and the '' element value;

• a lexical acquisition mechanism and support for it, both the parser's handling

of unknown words and the addition of a new type of node for the lexical trie;

and

• an extension of the production selection algorithm to use information about

which lexical productions are associated with each semi-lexical production,

5. EXTENSIONS 69

in order to reduce the number of impossible production sequences that are

considered.

CHAPTER 6

Parser and Lexicon Implementation

This chapter details my implementation of the RV parser and lexicon that was de-

scribed in Chapter 2, including extensions to that description. The lexicon will be

described first, as understanding the parser depends on understanding the lexicon.

6.1. The Lexicon

The lexicon involves only the LOOKUP algorithm detailed in Figure 2.10. The

data structure that comprise the lexicon are those to the right of (and including) the

lexical trie in Figure 2.2. The only complex structure is the lexical entry which is

described next.

6.1.1. Lexical Entries. Each set of semantically related words (for example, the

verb and noun "call") is represented by a lexical entry, which is made up of several

pieces of information:

• a name - a label used to identify the entry;

• a list of lexical and semi-lexical productions - the productions that will be

examined when the lexical entry is recognized in the input stream;

• a collection of wordpath(s) - nodes in the lexical trie (See §2.7.3); (These

are the ends of paths through the trie that constitute a valid spelling for the

entry.)

70

6. PARSER AND LEXICON IMPLEMENTATION 71

• an set of semantic roles - defines the semantics of the entry; (See §2.8)

• the entry category - for subdividing the entries in the lexicon browser (See

§7.5);

• a comment - describes the entry;

• a reference to an RV parser - the parser of which the entry is part.

The last three items from the above list serve no inherently functional purpose, they

are either for development support (category and comment) or are an implementation

detail (associated parser).

6.2. Agreement and Semantics

Section 2.8 described the design of the semantic and agreement mechanisms. In

this section we look at some of the implementation details of various aspects of this

subsystem.

6.2.1. Grammatical Roles. In addition to specifying boundary register names,

the list of boundaries is used to generate a list of grammatical roles, often called

gramroles. Grammatical Roles are used for morphosyntactic agreement and semantic

processing. As described in §2.8.3 references are managed using a least recently used

policy. The class Ref erenceQueue is used to implement this policy. Figure 6.1 shows

the structure used by Ref erenceQueue to manage references. When a new reference is

required it is taken from the least-recently-used end of the list. Whenever a reference

is used it is moved to the most-recently-used end of the list. The use of a doubly

linked list increases the time efficiency of reference use.

6.2.2. Semantic Information. The atomic pieces of semantic information in

this system are stored in semantic roles. In addition to the semantic information, a

grammatical
roles

6. PARSER AND LEXICON IMPLEMENTATION 72

Least Recently Used

Main

NP

Obi

Most Recently Used

FIGURE 6.1. Reference Storage Structure

references

semantic role contains an ordered collection to store a binding array used to support

relations. (see §6.2.4). The information stored in a semantic role can be one of:

Symbol: the name of a relation;

Semantic Entry: a semantic structure;

Lexical Entry: a reference to an entry in the lexicon (this is often the case in

modifying roles);

Ternary Vector: a semantic feature vector, used to implement selectional restric-

tions.

Semantic roles are stored in dictionaries that organize the information by storing

each semantic role under a role name.

6. PARSER AND LEXICON IMPLEMENTATION 73

6.2.3. Semantic Entries. Semantic entries encapsulate atomic pieces of com-

plex meaning. Their main component is a semantic role dictionary. Another im-

portant piece of information is a reference to the lexical entry associated with this

semantic entry. The final piece of information is the index of the reference that refers

to this semantic entry.

As was discussed earlier, morphosyntactic properties are stored in references, which

are dynamic in that they can be modified by backtracking. This means that the

properties stored in the references associated with the semantic entries in the structure

built by the parser must be retrieved whenever an interpretation is found. For this

purpose semantic entries also contain a property set. When an interpretation is found,

this property set is assigned the properties of the associated reference. Also at that

time, a copy of the semantic structure rooted in the grammatical role Main 1 is made.

The parser collects all copies of all interpretations and returns them along with the

associated productions traces.

6.2.4. Relations. Semantic relations are specializations of semantic entries. One

difference is that they have no associated lexical entry. In addition, role fillers can be

references to roles in the semantic entry that references an instance of the relation.

These roles in the relation instance are updated to reflect the value of the associated

role in the semantic entry.

When the semantic information of the lexical entry is used by an agreement check,

the contents of the reference are copied to a new semantic entry which is used in place

of the relation to fill the associated role.

Furthermore, the role fillers in a relation can have only two types of values:

Symbol: a reference to a role of the enclosing predicate;

TernaryVector: a semantic feature vector.

6. PARSER AND LEXICON IMPLEMENTATION 74

Role I Initial Contents
inh -ANIMATE. . FEELING +ACTION. . POSSESSION
obj -ANIMATE. . HUMAN -STATE. . TRANSFER

dat +ANIMATE. . HUMAN -STATE. . LOCATION -SUPPORTED

rell $FROM-POSS-TEMP

rel2 $TO-POSS-TEMP

FIGURE 6.2. Semantic Information of "borrow"

FROM-FOSS-TEMP TO-FOSS-TEMP

Role Filler Role Filler
inh

obj

dat

-ANIMATE. . FEELING +ACTION

• . POSSESSION -DEST -PERM
obj

'subj

inh -ANIMATE. . FEELING +ACTION

• . POSSESSION +DEST -PERM

obj obj

dat dat

FIGURE 6.3. Relations in "borrow"

When a role filler of a relation is a symbol, it is taken as a role name referring

to a role in the lexical entry (and subsequently the semantic entry) that refers to

the relation. When the lexical entry definition is processed, an entry is added to

the binding arrays of all roles which are referenced by any relations used by the

lexical entry. Binding array entries are ordered pairs consisting of the role name that

references the relation and the role within the relation.

As an example, consider the semantic information of the verb "borrow", shown

in Figure 6.2, and the two relations referred to, showii in Figure 6.3. The role obj

will have two pairs in its binding array, while subj and dat each have one. The

resulting binding arrays are shown in Figure 6.4. Semantic role values (other than

the relations) are omitted for clarity.

When a role with a non-empty binding array has a filler assigned, the binding array

is traversed. Each pair in the binding array is used to bind the new filler to a role (the

6. PARSER AND LEXICON IMPLEMENTATION 75

semantic entry

inh

subj

obj

7

7

dat

rell

rel2

inh ?

subj ?

obj Aobj

dat A subj

inh ?

subj

obj Aobj

dat Adat

} binding lists

relations

FIGURE 6.4. Binding Arrays

6. PARSER AND LEXICON IMPLEMENTATION 76

second element of the pair) within an outer role (the first element) of the semantic

entry being updated. In this way the role fillers of relations are kept consistent with

the semantic entry's roles which the relation refers to. The FILL-SLOT algorithm is

Figure 6.5 shows how this is done.

FILL-SLOT (entry, slot, filler)

entry,slot.value is assigned filler
for each binding in entry. slot. bindings

(entry. (binding. reference).value) . (binding. role).value'is assigned filler

FIGURE 6.5. Algorithm FILL-SLOT

6.3. The Parser

Having described the implementation of the lexical and the agreement /semantic

aspects of the system, I now present the details of the parser implementation.

The algorithms that make up the parser engine have already been shown, in Fig-

ures 2.3, 2.4, and 2.5. The main data structures have been outlined already in

Chapter 2 (specifically, see Figure 2.2).

6.3.1. Productions.

6.3.1.1. Ternary Vectors. The class Ternary Vector is central to the parsing mech-

anism. Vector contents are implemented by two parallel bit vectors, called bitO and

biti. A single element consists of one bit from each of these vectors. The two bits are

combined to make a two bit code which corresponds to a ternary element, according

to Table 6.1. The bit from biti is the MSB, and that from bitO is the LSB.

This representation allows the ternary vector operations defined in § 2.1 to be effi-

ciently implemented using parallel bit vector operations: AND, OR, and XOR.

6. PARSER AND LEXICON IMPLEMENTATION 77

Code Element

00

01 +

10 -

11

TABLE 6.1. Ternary Element Codes

6.3.1.2. Actions. There are five general types of actions, based on the number

of arguments each takes: none, one, two, three, or four. These action types are

implemented as hierarchically related abstract base classes rooted by Action (actions

taking no arguments). Each subclass adds support for an additional action: Action

is the superclass of OneArgAction, which is the superclass of TwoArgAction, and so

on. Most of these abstract classes have subclasses representing specific actions. For

example, SaveAction is a subclass of OneArgAction. The action hierarchy is shown

in Figure 6.6.

6.3.2. Boundary Registers. The main structure involved in the backtracking

mechanism is the boundary register. In addition to an identifying name and a reference

to a parser, boundary registers are made up of the following:

• A string containing the linear trace of the parse i.e. the history of production

applications and input consumption (primarily for debugging purposes);

• A ternary vector that is a copy of the parser state;

• The embedding depth;

• The production being considered;

• The most recent production used for the current input token;

• The set of lexical productions that are being subcategorized; (This is used by

the production selection mechanism as described in § 2.1.1.)

6. PARSER AND LEXICON IMPLEMENTATION 78

Action
ReturnUpAction
ShiftDownAction
OneArgAction

Adj oinAction
AssignNewAction
AssignNuflAction
LexAgreeAction
LexPropAction
ModLexAction
MorphAgreeAction
SaveAction
TwoArgAction

AddPropAction
AssignAction

AssignHigherAction
AssignLowerAction

GramAgreeAction
ModAction
SemAgreeAction
ThreeArgAction

FourArgAction
SemRoleAgreeAction

FIGURE 6.6. Action class hierarchy

6. PARSER AND LEXICON IMPLEMENTATION 79

• The set of production names (categories) that have already been used for this

boundary register; (Keeping track of this prevents the reuse of productions.

This avoids loops, both immediate and after backtracking.)

• The list of Readings (details are presented in the next section) containing all

the possible interpretations of the input;

• The index, into list of readings, of the interpretation under consideration;

• The position in the input stream;

• A copy of the reference queue (see Figure 6.1);

• A mapping of grammatical roles to reference indexes (see Figure 6.1).

The parser state is saved in a boundary register, either by the parser engine itself

for the boundaries Curr and Word, or by a save action for all other boundaries.

When the state is saved, the current embedding level is appended to the name of the

boundary, except in the case of the pseudo-boundaries Curr and Word. For example,

saving in register Clause at level 2 results in the register name Clause2. This name

is then pushed onto the resume stack. When the parser backtracks, a boundary name

is popped from resume and the state is restored from that boundary register.

The resume stack is a stack that does not allow duplicates. When an item is pushed

onto it, any duplicate on the stack is first removed. The reason for this is the central

goal of achieving linear time complexity. Boundary registers are reused, overwriting

any previous contents when the parser state is saved in them. This invalidates any

previous use of the register, requiring it to be removed from the resume stack. While

this may seem to be throwing away valuable information, it models the abilities of a

native speaker. As an example, consider the sentence:

(17) The horse raced past the barn fell.

6. PARSER AND LEXICON IMPLEMENTATION 80

The reason that it is difficult to understand is that "raced" is used as an passive post-

modifier of horse (meaning the horse that was raced), but the initial interpretation

is generally as a verb, thus the MAIN-PREDICATE boundary is used. When "fell"

is later encountered the MAIN-PREDICATE boundary is reused, losing the previous

value. Thus it is difficult for a person to backtrack in order to reinterpret "raced",

and impossible for RV.

6.3.2.1. Lexical Interpretations. When the lexical analyzer finds an interpretation

for the upcoming input it creates an interpretation record, called a reading, to repre-

sent it. All such readings are stored in a collection, sorted in descending order by the

number of input characters it accounts for. This places interpretations that consume

more input toward the first of the collection, giving them higher priority (by virtue

of being considered first). This gives the parser its preference for idiomatic, rather

than literal, interpretations.

Readings are comprised of three pieces of information:

(1) The entry in the lexicon that accounts for the input;

(2) The position in the input stream following that which is accounted for by the

reading; (This is directly related to the number of characters accounted for,

since all simultaneous readings start at the same position in the input. Thus,

sorting is actually done on this value.)

(3) The set of morphosyntactic properties returned by the lexical trie search.

6.4. Summary

This chapter described my implementation of the RV parser engine, including the

lexical and semantic components. The implementation of a parser engine was the

necessary first step in developing an RV development environment.

CHAPTER 7

Development Tool Design

This chapter describes the design of the RV development tools. The first section

outlines the design requirements, while the remainder of the chapter describes the

design of the tools including how the requirements were met.

7.1. Design Requirements

A fundamental requirement of the development environment is that it be interactive

and promote incremental parser development. The developer should be able to use

any of the tools at any time, i.e. it should be a modeless environment. It follows from

this that the editing tools must be available while a parser is being tested and changes

made at that time should take effect immediately. This ability allows the developer to

gradually refine a parser, without the discontinuity that a non-interactive environment

imposes (e.g. waiting for a lengthy compile and changing tools constantly).

An important requirement is that parsers be convenient to edit. To accomplish

this, a variety of structured editors are required, one for each structure in the system:

• productions;

• relations;

• paradigms; and

• lexical entries.

81

7. DEVELOPMENT TOOL DESIGN 82

When one of these is to be created, a template is provided for the user to fill in.

When a definition is to be edited, the current definition is placed in the template and

presented to the user. As an example, Figures 7.1 and 7.2 show production creation

and editing, respectively.

Name:
Comment:
Type:
Cond:
Change:
Actions:

<production name>
<comment text>
<lexical type>
<condition vector>
<change vector>
<actions>

FIGURE 7.1. Production creation.

Name:
Comment:
Type:
Cond:
Change:
Actions:

<COMPAR>
<>

<?DET..NTJM +ADJ..HEAD -NN -REL>
<-DET..NTJM>
<
lexprop <compar>
Word new
Word = lex
Word agree lex
NP -> Word

>

FIGURE 7.2. Production editing.

There are various identifiers that the user has to enter in the course of defining a

structure (e.g. a production). Many of these refer to other items in the system and

must be correctly spelled. This introduces a source of error into the development

process. However, these critical identifiers always refer to one of the following items:

a boundary;

7. DEVELOPMENT TOOL DESIGN 83

• an ordering feature;

• a production;

• a semantic feature;

• a relation;

• a morphosyntactic property; or

• a paradigm.

All of these items are present in a list that is part of the parser definition. A re-

quirement of the development environment design is that it automatically check the

validity of these identifiers when the developer uses them. If one is invalid, the system

must present the developer with a list of reasonable alternatives. If a correction is

selected, the system should automatically make the correction in the definition being

edited.

In the case of an error in the specification of an action, the system should identify

the incorrect action and allow the developer to correct the error.

There are several sets of identifiers that are used in various places throughout

an RV parser, boundary names for example. The parser editing tools should auto-

matically update all uses of such an identifier when one is changed. For example,

when a boundary is renamed, all productions that reference that boundary should

be updated. Furthermore, when the developer asks to remove a boundary (or other

such identifier) the system should check to see if it is being used anywhere in the

parser. If so, the developer should not be allowed to remove it. References to it

can be removed by using the appropriate cross-reference browsers (in this case, the

"productions referencing a specified boundary" browser.

Specifying an RV parser involves many low-level details, specifically feature vectors

(both ordering and semantic) and morphosyntactic property sets. To ease the work

7. DEVELOPMENT TOOL DESIGN 84

involved in this for the developer, a design requirement is that shorthand notations

be available for doing these specifications. For feature vectors, this takes the form of

macros, including a default condition and change vector for productions. For property

sets, support for using simplest descriptions is required.

Another requirement is that the developer be able to view the parser from various

viewpoints and freely cross-reference information'. To support this, several browsers

will be needed to allow the user to access various facets of a parser:

• overall syntactic information;

• productions that reference a specified boundary;

• productions that reference a specified morphosyntactic property in lexprop

or addprop actions;

• productions that categorize a specified lexical entry;

• non-lexical productions and their ordering;

• overall lexical information;

• lexical entries that are categorized by a specified production;

• lexical entries that reference a specified relation;

• lexical entries that reference a specified paradigm in their wordpath(es); and

• paradigms that reference a specified property.

It is sometimes useful to have the ability to examine an item in isolation. For

example, if the developer wishes to compare two production definitions it would be

convenient to be able to open a browser containing only a single production. This

leads to another design requirement, specifically to provide browsers that operate at

the following levels of granularity:

• overall syntactic information;

'Appendix F details how the cross-referencing operates and how the various browsers are invoked.

7. DEVELOPMENT TOOL DESIGN 85

• single productions;

• overall lexical information;

• single relation;

• single paradigm; and

• single lexical entry.

Being able to conveniently specify a parser is of little value if it is awkward to test.

Thus, another requirement is that parsers be convenient to test and debug. This

requirement implies several more:

• There must be a facility for testing the parser with a testbed file of sentences,

and a way of easily stepping through it;

• There must be a way to step through a parse, on a production by production

basis;

• The developer must have access to the internal structures of the parser, during

the parse;

• The debugger must provide useful information regarding the operations the

parser is performing. The different types of information should be individually

suppressible to allow the developer to concentrate on the information that is

relevant. This information includes:

- what productions are used, and when;

- what productions are being considered for use each time a production is

to be selected;

- the reason that productions are not selected;

- details of each action that is executed, and whether it succeeds or fails;

7. DEVELOPMENT TOOL DESIGN 86

- an indication of when the parser backtracks, and what boundary register

is involved; (There should be an option to suppress this information when

the Curr register is being used, as this is so frequent.)

- a report of the current linear parser trace after each production applica-

tion; (There should be an option of having backtracking points marked

in the linear trace.)

- a report of the semantic structure representing the input's meaning, after

each production application;

- a trace of the LOOKUP algorithm as it searches the lexical trie;

- reporting of any unrecognizable input, when the acquisition mechanism

is disabled; and

- a trace of the lexical acquisition mechanism's operation, when it is en-

abled.

• There should be a convenient way to set the acquisition mechanism's opera-

tional parameters (e.g. the score at which a category become persistent, see

Figure 8.4).

7.2. Background

The tools are designed using the Smalltalk-80 Model-View-Controller (MVC) para-

digm (Systems, 1990; Goldberg, 1990). In this paradigm the model is responsible for

all data storage and manipulation. The view handles the visual presentation of the

data. Finally, the controller handles user input. Chapter 4 describes MVC in more

detail.

7. DEVELOPMENT TOOL DESIGN 87

The browser windows are subdivided into several component views, most of which

contain lists. When a item in a list is selected, a message is sent to the associated

model'. Likewise whenever a view needs to update its contents, a message is sent to

the model to retrieve the data to be presented. Both browsers have a text editing

view. This view sends messages to retrieve its contents from the model and to signal

when the user has accepted changes. The final type of subview is a button. Buttons

send a message to the model indicating that they have been activated.

7,3. Syntax Browser

The layout of the syntax browser is shown in Figure 7.3 and consists of six areas:

Boundary View: A list of boundary names;

Feature View: A list of ordering features;

Category View: A list of production categories;

Production View: A list of production names;

Display Buttons: Two buttons controlling how vector definitions are displayed

in production definitions;

Editing View: A text editor for editing production definitions.

Some of the views in the syntax browser are dependent on others in that a change

in one causes a change in another. These dependencies are shown by the heavy arrows

in Figure 7.3 and described below:

Making a selection in the boundary, feature, or production view, causes the

corresponding boundary comment, feature comment, or production definition,

respectively, to be displayed in the editing view

'The message is specified by the programmer when the list view is created.
3 A application usually has a single model but several view-controller pairs.

7. DEVELOPMENT TOOL DESIGN 88

Boundary View Category View

Production View

Display Buttons

FIGURE 7.3. Layout of the syntax browser.

• Making a selection in the category view causes the names of productions in

that category to be presented in production view;

• Setting the display buttons determines the way ternary vectors are formated.

The model—view structure of the syntax browser is presented in Figure 7.4. The

central syntax browser is the model, and is connected to the list, button, and editor

views to the left, right, and bottom. The parser is at the top and communicates with

the browser. Connecting lines indicate messages that are sent between specific views

and the browser model. The lines are labeled with the purpose of the message.

7. DEVELOPMENT TOOL DESIGN 89

Boundary

List

' Get Boundaries

Boundary Selected

Set Boundary

 I

(Get Features

Feature Feature Selected

List < Set Feature

 -I

Labels Button Labels State

Labels Pressed

RV Parser

Various

Messages

 3

Syntax

Browser

Get New Contents

- Get Categories

Category Selected

Set Category

Get Productions

oduction Selected

Set Production

Ranges Pressed

Ranges State

Accept Contents

[Text Editor]

Category

List

Production

List

Ranges Button

FIGURE 7.4. Syntax browser model—view structure.

7. DEVELOPMENT TOOL DESIGN 90

7.4. Ternary Vector Editing

Part of the design goal was to make the low level of detail inherent in RV convenient

for the developer to manage. To this end, Blank's notion of vector macros (Blank,

1989) has been designed into the browsers. These macros provide the ability for de-

veloper to define shorthands for commonly used feature configurations. For example,

there is generally a large set of productions that are not usable while parsing noun

phrases. In their condition vectors, they check for feature values that indicate that

a noun phrase is not being parsed, e.g. -DET. . HEAD. Instead of the developer having

to specify -DET. . HEAD in the condition vector for each of these productions, they can

define a macro, called NP off for example, which has the value -DET. . HEAD. They can

then use this macro in a vector definition, e.g. +S +AUX #NPoff.

This macro feature is also available in the lexicon browser for use with semantic

feature vectors. An example of its use here is in constructing a hierarchy of features.

For example, given the features ANIMATE HUMAN PERMANENT STATE FEELING EVENT

ACTION TRANSFER FOSS LOC DEST, some macros that could be used to construct a

hierarchy are: (also shown are the resulting vectors)

ANIMATE: +ANIMATE -STATE. . DEST

+ANIMATE -STATE. .DEST

HUMAN: #ANIMATE +HUMAN

+ANIMATE. .HUMAN -STATE. .DEST

STATE: -ANIMATE. . PERMANENT +STATE -ACTION.. TRANSFER

-ANIMATE..PERMANENT +STATE -ACTION. .TRANSFER

EMOTION: #STATE +FEELING

-ANIMATE..PERMANENT +STATE. .FEELING -ACTION..TRANSFER

7. DEVELOPMENT TOOL DESIGN 91

Notice that macros can be defined in terms of other macros. This applies to ordering

feature macros in the syntax browser as well.

The syntax and lexicon browsers both provide access to macros through a popup

dialog box that allows macros to be created, edited, and deleted.

7.5. Lexicon Browser

The layout of the lexicon browser is shown in Figure 7.5 and consists of eight areas:

Feature View: A list of semantic features;

Relation View: A list of relation names;

Property View: A list of morphosyntactic properties;

Paradigm View: A list of paradigm names;

Category View: A list of lexical entry categories;

Entry View: A list of lexical entry names;

Display Buttons: Two buttons which control the format of the entry display,

specifically:

(1) whether categories removed by the aging mechanism are displayed,

(2) whether category scores are shown.

Editing View: A text editor for editing eniiry, paradigm, and relation definitions,

agreement sets, and feature comments.

As with the syntax browser, some of the views in the lexicon browser are dependent

on others. These dependencies are shown by the heavy arrows in Figure 7.5 and

described below:

• Making a selection in the feature, relation, paradigm, or entry view causes

the corresponding feature comment, relation definition, paradigm definition,

or entry definition, respectively, to be displayed in the editing view;

7. DEVELOPMENT TOOL DESIGN 92

Paradigm View. Property View Category View

Feature View

Relation View

Editing View
ii I I

Display Buttons

FIGURE 7.5. Layout of the lexicon browser.

Entry View

• Making a selection in the category view causes the names of lexical entries in

that category to be presented in the entry view;

• Setting the display buttons enables or disables the display of the category

aging information.

The model—view structure of the lexicon browser is presented in Figure 7.6.

7.5.1. MorphoSyntactic Property Editing. To make editing of agreement

properties more convenient for the parser developer, the browser provides a shorthand

notation when editing paradigm definitions.

Specific properties can be entered, e.g. first:plural:past from the example in §2.7.2.1.

However, suppose the only thing of interest is the first-person-plural property. The

7. DEVELOPMENT TOOL DESIGN 93

RV Parser

Various

Messages

1 Get Sem Features.,

Semantic Feature Sem Feature Se1ectei

List Set Sem Feature

Property

List

Get Properties

Property Selected

Set Property

(Get Categories

Category Category Selected

List Set Category

Scores Button) Scores Pressed

Scores State

Lexicon

Browser

Get New Contents

- Get Relations

Relation Selected

Set Relation

Relation

List

Get Paradigms I
Paradigm Selected Paradigm

Set Paradigm List

Get Entries

Entry Selected

I

Set Entry

Pruned Pressed

Pruned State

Accept Contents

(
Text Editor

 •1

Entry

List

Pruned Button

FIGURE 7.6. Lexicon browser model—view structure.

7. DEVELOPMENT TOOL DESIGN 94

shorthand allows the designer to specify first:plural. This denotes the subset of agree-

ment properties that contain first and plural. In this case the full set of specified

properties is {first:plural:past, first:plural:present}. When a paradigm definition is

displayed, the property sets are simplified as much as possible to provide the developer

with the simplest property set description. The algorithm for doing this is detailed

in Figure 7.7. The following example illustrates how the algorithm works.

Assume three agreement sets4: A = {ai a2 a3}, B = {b1 b2 b3}, and C = {ci c2}.

The cross product of these would result in eighteen agreement properties. Now sup-

pose we want to specify the set of agreement properties: S = {ai : : c2 a1 : b3: c2 a1:

b2: c1 a1:b2:c2 a2:b2:c1 a2:b2:c2 a3:b2:c1 a3:b2:c2}. A simplest description of S is

{ a : c2 b2}. A simplest description specifies only members of those agreement sets

that are constrained, any sets that have no members specified imply all members of

that set. In our example, the description means:

fall xBx{c2}UAx{b2} x

Referring to Figure 7.7, props is initialized to S. We go through each agreement

set (A, B, and C) beginning with A, so aSet = A. Looking for an element of S

containing a1 (i.e. p) we find {ai b1 c2}. This becomes the first instantiation of

propSet. Next, we check if {a2 b1 c2} and {a3 b1 c2} are also members of S. We do

this since rest = {b1 c2} and we are looking for all sets that are supersets of rest

and whose elements other than rest are proper subsets of aSet, in this case A. In

this example, this means that we are looking for sets that are made up of {b1 c2}

and something from A. If so, mark all three and add {b1 c2} to S. Further, if all

elements found (e.g. all three containing {b1 c2}) were already marked the element

'An agreement set is a set of property values for an agreement feature.

7. DEVELOPMENT TOOL DESIGN 95

that is added is marked as well. Note that a marked element can still be used in the

search. We continue by searching for the next element of S containing a1. This is

repeated until all elements of S have been examined. This results in S = {{ai b1 c2}

{ a1 b3 c2} {ai b2 c1}* {ai b2 c2} {a2 b2 c1}* {a2 b2 c2} {a3 b2 c1}* {a3 b2 c2} {b2 c1}}.

We repeat this for sets B and C. At the end of this process S = {{ai b1 c2}*

{ a1 b3 c2}* {ai b2 c1}* {aj b2 c2}* {a2 b2 c1}* {a2 b2 c2}* {a3 b2 c1}* {a3 b2 c2}*

{b2 c1 }* {b2c2}* {a1 c2} jai b2}* {a2 b2}* {a3 b2}* {b2}}.

The minimal description of S consists of those elements that remain unmarked:

{{ai c2}{b2}}.

SIMPLIFY (someProps)

props is assigned the contents of someProps
for each agreement set (aSet)
p is assigned the first element of aSet

for each propSet in props containing p

rest is assigned propSet - p
group is assigned all ps in props such that

rest is a subset of ps and (ps - rest) is a proper subset of aSet
if each member of group contains a unique member of aSet

rest is marked if all members of group are
mark all members of group
add rest to props

FIGURE 7.7. Property simplification algorithm

7.6. Restricted browsers

In addition to the two general browsers described above, the system includes several

more limited browsers. These allow access to the parser at various levels of granularity.

Typically these limited browsers are opened in response to an operate menu command

from the related pane in another browser. These browsers are described below:

7. DEVELOPMENT TOOL DESIGN 96

• Browse productions that refer to a specified boundary; (Opened from the

boundary view of the syntax browser.)

• Browse productions that are named in the category set of a specified lexical

entry; (Opened from the entry view of the lexicon browser.)

• Browse a single production; (Opened from the production view of the syntax

browser. This is of use when a production is desired for comparison with

others. This saves keeping a full syntax browser open just for this.)

• Browse non-lexical productions; (Opened from the category view of the syntax

browser.)

• Browse a single lexical entry; (This serves a similar purpose to the single

production browser.)

• Browse all lexical entries that name a specified production in their category

set; (Opened from the production view of the syntax browser.)

• Browse all paradigms that reference a specified property. (Opened from the

property view of the lexicon browser.)

7.'7. Graph Browsers

The previously described browsers are textual. The development environment also

provides two graphical browsers: one for the lexical trie, and one for semantic struc-

tures. Both browsers have identical structure and so are discussed together. They

consist of two views, shown in Figure 7.8. The graph view presents a graphical repre-

sentation of a graph structure: the lexical trie or a semantic structure. Clicking the

left mouse button on a node in the displayed graph causes the textual definition of

the contents of that node to be displayed in the data view. Thus, there is a single

inter-view dependency in these browsers, as shown by the heavy arrows in Figure 7.8.

7. DEVELOPMENT TOOL DESIGN 97

Graph View

Data View I
FIGURE 7.8. Layout of the graph browsers.

The graph browsers require facilities for the construction, layout and presentation

of simple, directed graphs with the option of labelling edges'. A easy-to-incorporate,

public domain package was found that met these requirements. It is the Grapher

package written by Mario Wolczko at The University of Manchester (Wolczko, 1992). I

decided to use this package to meet the graph display requirements of the development

tools.

Having now discussed general issues of the graph browsers, I now discuss design

issues particular to each.

7.7.1. Lexical Trie Browser. Figure 7.9 shows an example trie as the browser

would present it.

Any node can be selected and its contents shown in the data view. This can then

be edited and accepted. For internal nodes this value is what is displayed in the node.

'This requirement is explained in 7.7.2.

7. DEVELOPMENT TOOL DESIGN 98

FIGURE 7.9. Example trie presentation.

For a lexical entry (i.e. the leaf nodes) the full definition of the node is presented, as

in the lexicon browser.

In addition to this display-and-edit capability, there is a menu associated with each

node in the trie. This menu allows the developer to inspect the internal structure of

the node or to remove the node and its descendants from the trie.

A final feature of the trie browser is the ability to select text in the data view and

have the trie perform a LOOKUP of it. If the lookup is successful (i.e. the selected

text was recognised) the path(es) through the trie that resulted in the recognition are

highlighted. This is done by using heavier lines for arcs and node outlines.

7.7.2. Semantic Structure Browser. Nodes in the semantic structure are rep-

resented by displaying the name of the associated lexical entry. Relationships between

nodes are more involved than in the trie. In the trie, the only relationship is a parent-

child one. In a semantic structure, the exact relationship is based on what semantic

• 7. DEVELOPMENT TOOL DESIGN 99

role the child is bound to. This requires a method of denoting these relationships in

the graphical representation of the structure. The graphing package's edge labelling

capabilities were made use of here, enabling the name of the relationship (i.e. the

semantic role) to be used as a label on the arcs connecting nodes. Figure 7.10 shows

an example of a semantic structure as the browser would present it.

give

George

candy

FIGURE 7.10. Example semantic structure presentation.

7.8. Debugger Design

As with the browsers, the debugger window consists of several views as shown in

Figure 7.11:

Input View: Contains text to be parsed.

Control Panel: Contains various buttons and switches that control the operation

of the debugger.

Trace View: Displays parser and debugger output.

Boundary List: Contains the list of boundary register names.

Boundary Display: Displays the contents of a boundary register.

Gramrole List: Contains the list of grammatical role names.

Gramrole Display: Displays the contents of a grammatical role.

7. DEVELOPMENT TOOL DESIGN 100

Input View

Control Panel

Trace View

Boundary List

Boundary Display Gramrole List Gramrole Display

FIGURE 7.11. Debugger layout.

Inter-view dependencies are much simpler in the debugger than in either textual

browser: selecting an item from the boundary or grammatical role list causes the

corresponding display view to display the contents of the selected item. This is shown

by the heavy arrows in Figure 7.11.

The trace view is a transcript that the parser writes its output to. The operate

menu for the trace view gives the user access to dialog boxes that allow them to

determine the level of detail in the parser's output. Other than that, only a Clear

operation is available which empties the trace view.

The debugger operates in one of two modes: single-stepping or free-running. The

mode is controlled by the switch at the right end of the control panel. The central part

of the control panel contains buttons for controlling the parser. Parse and Parse

to... are used in free-running mode, while Step, Stop at..., and Continue are

7. DEVELOPMENT TOOL DESIGN 101

used in single-stepping mode. When the parser is started, it is given the selection in

the input view as its input stream. The parser controls are described below:

• Free running mode:

Parse: Starts the parser in free-running mode.

Parse to...: As Parse but stops when a specified production has fired (the

user is given a dialog box for choosing the production).

• Single stepping mode

Step: Causes the parser to execute the CYCLE algorithm once (see §2.1.1).

Stop at...: Switches to free-running mode until a specified production is

fired.

Continue: Switches to free-running mode and continues the parse to com-

pletion.

To the left of the parser controls there is a button that passes the input view's

selection to the lexical acquisition module. This is mainly useful in testing of the

learning mechanism.

To meet the design requirement that there be convenient access to sentence testbeds,

the input view may contain any amount of text, each sentence terminated by a

carriage-return character. Lines may be made comments by prepending them with a

'' character. This provides a method of annotating testbeds. At the far left of the

control panel are two buttons for moving through the input view. The top button

causes the first sentence in the input view to be selected. The other button moves

the selection to the next sentence.

The debugger was designed to provide the parser developer access to all pertinent

information. This is accomplished by the trace view, the boundary list and the

grammatical role list. The trace view shows step by step operations of the parser in

7. DEVELOPMENT TOOL DESIGN 102

a selectable level of detail. The boundary list allows access to all boundary registers,

including CURR which contains the parser's state. When a boundary register is being

displayed, the operate menu of the display view contains an option which allows the

developer to compare the condition vector of any production to the state that is stored

in the displayed register. The result of the comparison is a vector that could be used

to change the state in the register to allow the selected production to match it.

The grammatical role list provides access to the semantic structure that is be-

ing built, during the parse. When the parse has completed, the resulting semantic

structures can be accessed using the semantic structure browser.

7.9. Launcher

The final component of the RV development environment is the launcher. This is

a small tool that is used to manage parsers. It allows several parsers to be loaded

and easily accessible. This is done by presenting the names of the parsers in a list. It

allows parsers to be loaded from files, written to files (in both human and machine

readable formats), renamed, copied, and removed from the system. Finally it provides

a set of buttons that allow the browsers and debugger to be opened on the parser

selected in the list.

7.10. Summary

This chapter began by presenting the design requirements for a set of RV develop-

ment tools. Put concisely, these requirements are:

• The tools should allow and encourage interactive and incremental develop-

ment;

• Editing should be convenient for the developer, minimizing the sources of

operator error (e.g. spelling errors);

7. DEVELOPMENT TOOL DESIGN 103

• The system under development should be able to be viewed from various or-

ganizational standpoints and at various levels of granularity;

• Adequate information should be provided (in controllable detail) to the devel-

oper during parser testing.

The bulk of the chapter described the design of the tools. The result of this design

is a comprehensive set of tools allowing incremental, online browsing, editing, and

debugging of all aspects of an RV system.

CHAPTER 8

Vocabulary Learner

A broad coverage lexicon has to be large. There are two alternatives in construct-

ing a large lexicon: 1) by hand or 2) (semi-)automatically. The latter reduces the

load on the parser developer, and also reduces the possibility of making errors while

entering lexical information. The lexicon acquisition mechanism described here, is

semi-automatic. The developer must create a skeletal lexicon, containing definitions

of paradigmatic variation and representative open class words. The acquisition mech-

anism (referred to as the learner) can then acquire more open class words on the fly,

based on information in the skeletal lexicon.

As the learner sees different forms of a word, it tries to recognise known suffixes.

The learner maintains associations between suffix sets (implemented by paradigms

(see §2.7.2)) and categories (see §2.7.1). This allows it to infer the categories of

a word from the possible sets of suffixes for the word. This results in an overly

general categorization of the word. Unused categories are later removed by an aging

mechanism.

The learner makes assumptions about prior knowledge. Specificly, it assumes that

all suffix sets are known, and that for each suffix set there is at least one word in the

initial lexicon that uses it. The learner is intended to extend a lexicon, not generate

104

8. VOCABULARY LEARNER 105

one from scratch. Also, the initial lexicon should contain all closed class words (e.g.

prepositions and pronouns) and words that do not have a regular suffix structure.

8.1. Learning the Lexicon

This section explains the learning mechanism. There are two stages to the mech-

anism's operation: 1) incorporating a new word into the lexicon, and 2) refining

the new word's categorization. The learning algorithm is shown in Figure 8.1, and

explained below.

8.1.1. Learning a new word. When LOOKUP can not recognise a word, the

word is extracted from the input stream. For this purpose, a word is defined as

being terminated by whitespace or punctuation. The learner must then create both

a lexical entry and trie-path for the new word. Literal nodes are first added to the

trie. The final internal node in the path (i.e. the parent of the lexical entry) is then

processed with the goal of converting a recognised suffix or suffixes to one or more

paradigm-set nodes. The new lexical entry is then assigned categories based on the

paradigms contained in its immediate parent(s).

The final step is to organize the trie for optimum efficiency. During processing of

the node(s) containing the possible suffix, some rearrangement of that part of the trie

may need to be undone. Once the new word has been incorporated into the lexicon,

parsing can resume at the point where the new word was encountered. This time it

will be recognised and parsing can proceed.

8.1.1.1. Initial trie path creation. The LEARN algorithm creates a path in the

trie for the new word by using only literal nodes. This can involve both the insertion

of new nodes and the splitting of existing ones. Figure 8.2a shows the string "commu-

nication" being added to the trie of Figure 2.11. In this case a literal node is added.

8. VOCABULARY LEARNER 106

LEARN (word)

Add a template for word to the lexicon dictionary
Add literal nodes to the lexical trie so that word will be matched

(If necessary split existing literal nodes when there is a partial match)
Add new-leaf to the end of the new word path, for the new lexical entry
p is assigned the parent node of new-leaf
potential-suffixes is assigned:

the set of all known suffixes partially matching p such that
there is a node containing a vowel between the root and new-leaf,
excluding the suffix being considered

if potential-suffixes is empty
flatten the trie in the region of p (see text)
p is again assigned the parent node of new-leaf
potential-suffixes is again assigned:

the set of all known suffixes partially matching p such that
there is a node containing a vowel between the root and new-leaf,
excluding the suffix being considered

if potential-suffixes is not empty
parent is assigned the parent of p
remove p from parent
add a subtrie to parent for each member of potential-suffixes
group these new subries within parent

for each parent of new-leaf
invoke LEARN-WITH-SUFFIX (parent, new-leaf)

refactor the trie to restore the correct trie structure

LEARN-WITH-SUFFIX (suffix-node, leaf)

1. Create a new paradigm-set node
if suffix-node.string is known

replace suffix-node with a new paradigm-set node
that includes all paradigms with suffix-node.string as a string

add suffix-node.string to the paradigm-set suffixes

2. Assign categories
Give leaf the set of all categories associated with its parents' paradigms
if the lexical entry now has an empty category set

(i.e. no paradigm or paradigm-set parents; the suffix is not known)
give it all possible lexical and semi-lexical categories

FIGURE 8.1. Algorithm LEARN

8. VOCABULARY LEARNER

(mmunication) ommunicati

communication

V N D

a

communicating

(ing)(P2 P4 P5)

communicating

V

e

communication

V N D

communication

V N D

communicating

C

omraunicat ion

communication

V N D

communicating communication

5f-icaLt 5 ommunicat

(ing)(P2 P4 P5)

communicating

V

communication

V

(ing e) (PS)

communicating

V

g

107

V D

d

communication

V N D

FIGURE 8.2. Learning "communication" (a), "communicating" (b—f)
and "communicate" (g).

The word "communicating" is added in Figure 8.2b. This causes the "ommunication"

node to be split.

8.1.1.2. Rearranging the suffix. The goal of the learner is to recognise a suffix' in

the parent node of the new lexical entry. It is unlikely that the node contains exactly

a suffix. In most cases, there will be extra characters in the node, or the suffix may

be split between two nodes.

The first case is handled by creating all right-justified substrings from the contents

of the node. A branch is made in the trie for each suffix found. For example, the

string "oking" added in Figure 8.3, results in the strings: "oking", "king", " ing",

"ng", "g". Using the paradigms in Table 2.4 we see that the strings "king" (from

P6) and "ing" (from P2, P4, and P5) are valid suffixes. In this case the "o" is split

'Note that for my purposes in this chapter, a suffix is defined as a string that occurs in a paradigm
which is found in parent nodes of lexical entries.

8. VOCABULARY LEARNER

a b d

FIGURE 8.3. Learning "cooking" (a—c) and "cooked" (d).

108

off into a separate node and two branches are created: one containing "k" and " ing",

and the other containing "king".

There is a constraint on what suffixes can be used: they must result in a reasonable

word stem. For English-like languages, stipulating that the stem contain a vowel

seems valid. This means that if the suffix is removed from the last internal node on

the new word path, at least one of the nodes on the path contains a vowel. For a

literal node, it is simply a matter of checking for a vowel in the string. For a paradigm

node, each substring must contain a vowel. Finally, for 'a paradigm—set node at least

one candidate paradigm must have a vowel in all substrings. This constraint keeps the

mechanism from missegmenting in some cases. Without this constraint, the learner

would interpret "red", and "ring" as the stem "r" with suffixes "ed" and "ing".

If the lexical entry's parent does not contain a suffix, the suffix may be split be-

tween that node and its parent. The trie is flattened locally (only the lexical entry's

grandparent, parent, and parent's siblings are involved). A suffix is again searched

for as described above.

8. VOCABULARY LEARNER 109

Figures 8.2b and 8.2c show "communicating" being added to the trie. The second

"i" is placed in the stem string by the trie-building mechanism, leaving "ng" in a

node by itself. The "ommunicati" node and its children must now be flattened. The

string from this node is prepended to each child's string. The children are then

added as children of their grandparent and their original parent node is removed.

Figure 8.2c shows the result of doing this. The "ing" suffix can now be found in the

"ommunicating" node, as shown in Figure 8.2d.

8.1.1.3. Paradigm-set node creation. If there is now a known suffix in the lexical-

entry's parent node, it is replaced with a paradigm-set node containing all paradigms

that cover the suffix. In Figure 8.2e the "ing" from "communicating" is replaced by

a paradigm-set node containing paradigms P2, P4 and P5. Also, Figure 8.3c shows

this for "ing" in P2, P4 and PS, as well as "king" in P6.

The set of new branches containing paradigm-set nodes is remembered by their

common parent. This is used by a later learning mechanism. For example, in Fig-

ure 8.3c the two paths leading to "cooking" are grouped together and remembered.

8.1.1.4. Initial category assignment. The set of initial categories for a new lexical

entry is computed by first collecting all paradigms from its paradigm-set parents.

Each paradigm has associated with it a set of categories. The union is taken of all

these category sets. This is the lexical entry's initial category set.

The paradigm-+categories association is computed by taking the union of the cate-

gory sets of all lexical entries that have one or more parents containing the paradigm.

For efficiency, this association is cached by storing the set union in the paradigm.

If the new lexical entry has only literal parents (i.e. no suffixes were found) its

initial category set contains all lexical and semi-lexical categories. Figure 8.2a shows

this for " communication".

8. VOCABULARY LEARNER 110

Paradigm

P2
P4
P5

Lexical Entries
call
creep

communicating, love
P6 make

Categories
V, N
V
V
V

TABLE 8.1. Paradigm - Lexical Entry correspondences

An example of initial category assignment occurs when "cooking" is learned. Its

parents contain P2, P4, P5, and PG between them. The category associations for these

paradigms are shown in Table 8.1. The categories from column three of the table are

placed in a set, resulting in {v, N} being the initial category set of "cooking".

8.1.2. Adjustment of Categories. The initial category set assigned to a new

lexical entry is always a superset of the correct category set. When paradigms are

removed from a paradigm-set parent, categories that are no longer supported by the

parents' paradigms are removed. This helps reduce the generality of the category

sets. Only productions named in the category sets will be examined when the lexical

entry is encountered. Because of this, it is in the best interest of efficiency to have the

category set as small as possible. To this end, there is an aging mechanism that keeps

track of how frequently each category is used. Frequently used categories become

persistent and rarely used ones are removed. If the system is provided with sentences

representative of the accepted usage of the new lexical entry, the category set should

converge on an appropriate, stable value.

Refer to the lexical entry "cooking" from the above examples. As it is used in

sentences (for purposes of this example, I assume that "cook" is used predominately

as a verb and not as a noun) the scores of the V and N categories are adjusted. As V

is used frequently and N infrequently (if at all), V will become permanent and N will

8. VOCABULARY LEARNER 111

UPDATE (update-info)
for each (lex-entry, cats-used) in update-info

for each used-cat in cats-used
if lex-ent ry. used- cat is not persistent

increase lex-ent ry. used- cat.score
if lex-ent ry. used- cat.score > persistence-threshold
make lex-entry. used- cat persistent

assign -1 to lex-entry. used-cat .age
for each cat in the category set of lex-entry

increase lex-entry. used- cat. age
if lex-ent ry. used- cat.age > the old-age threshold

decrease lex-entry. used- cat.score
if lex-ent ry. used- cat.score = 0

remove used-cat from lex-entry's category list

FIGURE 8.4. Algorithm UPDATE

be removed. If "cooking" (i.e. "cook") is also frequently used a noun both categories

will eventually become permanent. The aging mechanism works as shown in the

UPDATE algorithm in Figure 8.4. The input to UPDATE is a dictionary that maps

lexical entries to sets of categories. This mapping is constructed throughout the parse.

UPDATE is called whenever a successful parse is found.

8.2. Changes to the LOOKUP Algorithm

The LOOKUP algorithm (see Figure 2.10) has to be extended to handle the new

paradigm-set node. The new algorithm is shown in Figure 8.5. The added lines are

marked on the left.

When different forms of the word are seen later, their suffixes are added to the

paradigm set. This causes the removal of paradigms that no longer cover all suffixes

encountered. Figure 8.3d shows the result of encountering "cooked". The string "ked"

is not included in paradigm P4, nor in P6, so when LOOKUP adds "ked" to suffixes

8. VOCABULARY LEARNER 112

LOOKUP (input, node, props)

interpretations is initialized empty
case node

leaf
if input is empty or the first character is non-alphabetic

add (node, props) to interpretations

string pattern
if node.string matches a prefix of input

add to interpretations:
Uchild LOOKUP (remaining input, node.child, props)

paradigm pattern
for each (string, properties) of the paradigm

if string matches a prefix of input and props fl properties 54
add to interpretations:

Uchild LOOKUP (remaining input, node.child, props fl properties)
return interpretations

paradigm-set pattern
for each (string, properties) of each paradigm in (suffixes, paradigms)

if string matches a prefix pref of input and props fl properties
let temp-interpretations be

Uchild LOOKUP (remaining input, node.child, props fl properties)
if temp-interpretations is not empty

add to interpretations: temp-interpretations
add pref to suffixes
delete any member of paradigms that does not contain pref
if paradigms is now empty

remove the trie branch containing node

for each group of children, cg, which contains a path to a leaf
for each child in cg which did not lead to a leaf

remove the subtrie rooted at child (except the leaf) form the trie
return interpretations

FIGURE 8.5. The revised algorithm LOOKUP with support for vocab-
ulary acquisition.

8. VOCABULARY LEARNER 113

in the paradigm—set node that includes P6, P6 is deleted. Since the node now has no

paradigms, that branch of the trie can be removed. Also P4 is removed from the other

node since it does not cover "ed". Figure 8.2g shows the removal of the paradigms

P2 and P4 from the new paradigm—set node, when "communicate" is encountered.

Recall that when children were added by the acquisition mechanism (see Figure 8.1)

they were grouped together. This grouping information is now used: trie branches

are removed only if at least one other member of the group provides a path to a leaf.

8.3. Limitations and Problems

The vocabulary learner described in this section is the initial attempt at adding

automated lexical acquisition to the RV parser and development system. In its current

form it has several problems.

Of major concern is the removal of paradigms from paradigm—set nodes. If the

word being learned has a single set of endings, (i.e. the paradigm—set node should

ideally reduce to a single paradigm) then there is no problem. However, if the word

can validly take more than one set of endings there is a problem. Consider the lexical

entry for "call" in Figure 2.11: it takes two sets of endings as described by paradigms

P1 (" call" as a noun) and P2 (" call" as a verb). If call was being learned and both

forms were being encountered, two things could happen:

(1) If a common suffix is encountered first, the paradigm-set node will contain

both paradigms (P1 and P2). The next form that does not contain one of

the common suffixes will dominate, causing the other paradigm (and hence

wordsense) to be removed and lost. If "call" is then used in the other sense,

there are two possibilities:

8. VOCABULARY LEARNER 114

(a) If a common suffix is used the word will be recognized using the existing

paradigm and miscategorized. This will very likely cause the parse to

fail.

(b) If a form-specific suffix is used, a new lexical entry will be created for

this sense of the word.

(2) If, for example, a noun-specific suffix is first encountered the first occurrence

of a verb-specific suffix will cause a new lexical entry to be created.

A possible approach to correcting this deficiency of the current algorithm would

be not to remove paradigms (and trie branches) based on what suffixes they cover

versus what suffixes have been encountered. Rather, paradigms (and branches) would

only be removed when a category is removed from the lexical entry by the category

aging mechanism. Any paradigms that only supported the removed category would

be removed. This could be done since usage of the word indicates that that category is

inappropriate, and thus paradigms specific to that category are also not appropriate.

Another approach that would avoid this problem to some extent is to have paradigms

marked by the parser designer as being general or special purpose'. The learner would

then only consider general purpose paradigms when evaluating the validity of suffixes

and constructing paradigm-set nodes.

8.4. Summary

This chapter described a method for acquiring vocabulary on-the-fly in RV systems.

The learner incorporates new words into the lexicon and trie, and assigns an initial set

of categories. As more forms of the word are encountered, a paradigm will eventually

be selected to account for the set of suffixes seen, and a more precise categorization

'An example of this is P6, which is designed for use with the irregular verb "make".

8. VOCABULARY LEARNER 115

will be assigned as useful categories are repeatedly seen. The learning system runs

together with the parser, so that vocabulary learning does not require extra effort

from the user.

CHAPTER 9

Evaluation

This chapter evaluates the parser engine, development tools, and lexical acquisition

mechanism. Limitations of the system and directions for future work are also dis-

cussed.

The goal of the work described in this thesis is to design and develop a set of tools

to be used for developing RV parsers. The criteria that these tools must meet are:

(1) convenient editing of parsers, through the use of structured editors;

(2) automatic validity checking of identifiers, and suggestion of spelling correc-

tions;

(3) identification of incorrect actions;

(4) automatic updating of all uses of an identifier when it is changed (i.e. re-

named);

(5) protection against removal of referenced identifiers;

(6) the use of shorthand notations where useful;

(7) the ability to view the parser from various viewpoints;

(8) support for freely cross referencing information;

(9) the ability to view the parser at various levels of granularity;

(10) convenient testing and debugging of parsers, which involves:

. sentence testbeds;

116

9. EVALUATION 117

• single stepping;

• access to internal structures;

• provision of relevant, useful information;

• convenient alteration of the acquisition mechanism's operational param-

eters.

These tools can be divided into three parts;

• an RV parser engine;

• parser definition editing tools; and

• parser debugging tools.

Each of these parts will be discussed and evaluated separately, followed by an evalu-

ation of the system as a whole and the integration of the three parts.

9.1. Evaluating the Parser Engine

The best way to evaluate the parser engine is to use it, along with an appropriate

parser specification, to parse sentences which test various aspects of the RV design.

This is what has been done. Appendix B lists several parsers that were developed by

Blank for testing and illustrating various aspects the parser engine's operation.

The development system was used to enter several parsers written by Blank. These

performed successfully on sentences used by Blank with his implementation. The

definition of these parsers (both syntax and lexicon) and the sentences each was tested

with appear in Appendix B. Each of these parsers will now be discussed briefly.

9.1.1. Subject-Verb-Object. This parser (B.1) is meant as a illustration of

the basic RV components. It tests the functioning of the basic parser control algo-

rithms, ternary vector operations, and lexical lookup.

9. EVALUATION 118

9.1.2. Noun Phrases. This parser (B.2) tests the ability to restrict produc-

tions to a specific type of clause, specificly noun phrases. It shows processing at the

sentence level being suspended while the noun phrase is begin processed. This is

accomplished by specifying the -HEAD feature in sentences level productions.

9.1.3. WH Questions. This parser (B.3) adds support for WET questions (the

lexicon only contains who). This is done by adding the concept of a gap, which is

represented by the GAP feature. When the WET-question word is encountered, a gap

is created. The gap has to be accounted for before the sentence can be successfully

parsed. The gap can be accounted for by being used in place of a missing noun phrase.

This tests the ability of the parser to handle discontinuous constraints.

9.1.4. Relative Clauses. This parser (B.4) tests/shows the use of embedding,

both right and center. For example, sentence (31) shows the use of both center

embedding ("hate men that eat quiche love pizza", introduced by who) and, within

that, right embedding (" eat quiche", introduced by that).

9.1.5. Sub categorization. This parser (B.5) demonstrates how subcategoriza-

tion is implemented using semi-lexical productions/categories. For example, consider

the sub categorization of believe. Sentence (35) makes use of no semi-lexical cate-

gories, while (36) and (37) use THAT, and XO_, respectively. Sentence (39) is rejected

because believe does not subcategorize with INF. (which enable the INF production

that handles infinitive clauses).

9.1.6. Morpho Syntactic Properties. This parser (B.6) shows how morphosyn-

tactic properties can be used to constrain production use. This constraint is imple-

mented by lexprop actions (e.g. see the QUES production).

9. EVALUATION 119

9.1.7. Boundary Registers. This parser (B.7) exercises the boundary back-

tracking mechanism. Sentence (46) (" The horse raced past the barn fell." which is

equivalent to " The horse that was raced past the barn fell.") shows what happens

when a boundary register is reused during a parse, particularly the Pred boundary at

embedding level one (i.e. Predi). This boundary is saved by the V production which

is responsible for processing and consuming main predicates. In this sentence "raced"

is initially recognised as the main predicate. Later in the parse "fell" is encountered.

This is also recognised as the main predicate. Now there is a problem and the parser

has to backtrack to search for an alternate interpretation that avoids this conflict.

However, since "fell" was processed as a main predicate by the V production, the

boundary Predi was reused. As a result the original contents of Predi. (saved when

"raced" was processed) is no longer available and the parser can not backtrack to

that point so as to search for alternate interpretations of "raced".

The remaining test sentences show how the backtracking mechanism is used to find

alternate interpretations.

9.2. Evaluating the Development Tools

The goal of this thesis is to design a set of interactive RV development tools which

meet the criteria listed at the beginning of this chapter. This section will examine

the degree of success achieved in meeting this goal.

The browsers present the syntax and lexicon in a much more structured way than

the linear textual representation of Blank's system. Structure is imposed by initially

providing a template for the developer to fill in, and later placing an existing definition

in a template. This makes editing easier since the user always knows what information

is expected, and in what order (satisfying criteria 1). This capability is not the same

as a full language sensitive editor, in that there is no support for automatic formatting

9. EVALUATION 120

other than that done initially and there is no attempt made to keep the user from

editing text other than that in the fields.

To make editing more convenient when working with feature vectors and property

sets, shorthands are provided: macros (7.4) and simplest descriptions (7.5.1), re-

spectively. This satisfies criteria 6. The macro editing facility is one way: when a

vector is specified macros can be entered, but when an existing vector is displayed,

there is no attempt made to replace its literal contents with macros. The simplest

property description facility is bidirectional, however. Abbreviated descriptions can

be entered and simplest descriptions are displayed for existing property sets. There

is, however, no attempt made to preserve the actual property set specification: the

system might generate a different specification than that which the user entered.

The information is cross-referenced, satisfying criteria 8. Not all possible cross

references are maintained, just those that promised to be useful (e.g. finding all

properties referenced by a paradigm is not useful since properties are fixed early in

the development process, but finding all paradigms that reference a specified property

is useful, so the latter is supported but not the former). This means that the developer

can immediately call for a list of, for example, all productions referencing the selected

boundary. This, along with the graphical semantic and lexical trie browsers, provides

various views of the parser, satisfying criteria 7. For example, the developer can view

all the productions, those that reference a specified boundary or property, and those

that categorize a specified lexical entry. Also, they can view all lexical entries, those

that are categorized by a specified production, and those that reference a specified

paradigm. Also, a browser can be opened on a single production or lexical entry, which

goes most of the way to satisfying criteria 9. The satisfaction of criteria 7 and 9 are

naturally limited. There are very few ways to look at the parser specification other

9. EVALUATION 121

than different groupings (both in terms of the relationship between the members and

group size) of productions, lexical entries, relations, and paradigms.

The browsers also perform consistency checks when information is accepted. This

is done by automatic spell-checking of categories (production names), properties,

boundaries, features (both ordering and semantic), and paradigm names. When one

of these items is referenced and can not be found in the system, the user is presented

with the most likely candidates if any are close enough to the specified item. One

of these can be selected to automatically replace the offending item. This capability

satisfies criteria 2. The validity of production actions is also verified. Actions are very

simple and there are few of them. This makes it quite easy for the system to validate

action keywords (e.g. addprop, ->). Action parameters are all textual identifiers

and are checked for validity at run-time, but each action has a fixed structure so

the number of arguments is also checked at entry time. This functionality satisfies

criteria 3.

Whenever an identifier (as listed above) is changed, all references to it are updated,

i.e. any item that references the changed identifier is updated to refer to the new one

(criteria 4). This includes embedded identifiers like feature names.

Finally, the user is not allowed to remove an item (property, boundary, etc.) which

is referenced (criteria 5). The user can then use the cross referencing capabilities to

find all references to the identifier and deal with them appropriately.

The interactiveness and modelessness of the tools make for a responsive debugging

environment: when an error occurs during a parse, the browsers can be used to fix

the error immediately. The debugger limits this capability in that it, does not allow

an operation to be restarted. The debugger almost completely satisfies criteria 10.

Three things are missing:

9. EVALUATION 122

(1) a parse cannot be stopped on demand;

(2) a parser cannot be restarted at a specified point;

(3) all internal structures are displayable, but boundary registers, the register

stack (resume), and grammatical roles are not editable (all others are).

The remainder of this section is a brief example of the operation of the development

tools, specifically entering a production definition and subsequently debugging it.

Figure 9.1 shows the syntax browser with a production definition template ready to

be filled in. Figure 9.2 shows the the ADJ production being defined in the parser

of §B.2. Note that the feature HEAD has been misspelled. Once complete, the

definition is accepted by the developer. Since HEAD was misspelled, the system

will notify the developer and ask if he want the system to find a correction. After

the developer responds affirmatively, the system finds a single acceptable correction:

HEAD. The developer is asked to confirm the correction. This is shown in Figure 9.3.

If there were more than a single candidate, the system would provide a menu of the

alternatives. Once the correction has been accepted, the production definition is

redisplayed, without the omitted optional fields. Figure 9.4 shows this.

In the traditional RV development system, production definitions are placed into

a linear text file using a text editor. No checking is performed until the definition is

converted into a format usable by the RV parser engine. In contrast to this, RV-Tools

provides a skeletal production definition to be completed, and immediate feedback

that aids in correcting common errors before they can create a problem.

I now turn to the parser debugging and testing facilities. As an example, assume

that the developer wishes to extend the parser to allow multiple adjectives. By

enabling information regarding the reason productions are not used, it can be seen

9. EVALUATION 123

V

A

S
V
0

V

ever"thinq

labels

V

SUBJ

ame: <p1'oductlon narn.>
comment: ccommwt t>
Type: clexka/ typ
Cond: <condition i'ector>
Change: <ciange vcto>
Actions: <actions>

FIGURE 9.1. Production Definition Template

9. EVALUATION 124

RVGrwiiBrowsero:NP 02 91
V V

V

S
V
0
DET
ADJ
HEAD

A

clausal
hrasal

> labels ranges

V

DET
NAME
NOUN

V

Name:
comment: <comment texr
Type: <I>
Cond:

Change: <—det,.c
Actions: <QctIons

FIGURE 9.2. Definition of the Production ADJ

9. EVALUATION 125

X RITGrcraracttBrc'v,seror: 1TP
y V

DET
NAME
NOUN

A A

V

clausal
A

-

hrasal

V

A

S
V
0
DET
ADJ
HEAD

 jlabels ranges jlabels ranges

Nanu:

Comment: <comn?ent reyr>
Type: </>

Conti:

V

Change: <—'et,ad

Actions: c'ctions> Confirm correction to HEAD

L1 yes no

FIGURE 9.3. Spell Checking Mechanism at Work

9. EVALUATION 126

RVGr Browser on: NF PR
V

V

V

S
V
0
DET
ADJ
HEAD

V

clausal
hrasal

labels ranqes

V

ADI
DET
NAME
NOUN

V

ame: <ADJ'

Comment: <>

Type:

Cond: <+ADJ,HEAD'

Change: <—DET,ADJ>

Actions: <>

FIGURE 9.4. Final Definition of ADJ

9. EVALUATION 127

that the condition vector of the ADJ production does not match the parser state

vector once ADJ has been used once. Figure 9.5 shows this.

RITLbzggrorz.:1'.T2'
OR Hi

V

The big red robot loves Martha

V

First Learn Parse Step Continue > Single Step
Parse to Stop at Free Running Next

V

N SUBJ —+++++ 1

L DET —++—+4-1 the <>
L ADJ -++--+ 1 big <>
ADJ doesn't match current state.

SUBJ doesn't match current state,
oBJ doesn't match current state.

cc Backtracking >> using Word state now -++--+ clause level: 1
ADJ doesn't match current state.
SUBJ doesn't match current state.
ODJ doesn't match current state.

cc Backtracking Failed >
Parse completed.
Ungrammatical input

V V V V

 A

curr
Mainl
Main≥
Main3
Word

A A

Maini
Main≥
Main3
Word

A

V

FIGURE 9.5. Failure of ADJ the second time.

By having the parser stop after ADJ is used the developer can examine the parser

state and compare it with ADJ's condition vector. Figure 9.6 shows this being done.

The developer can see that ADJ requires the ordering feature value +ADJ. By examin-

ing the definition of ADJ (see Figure 9.4), it is found that -ADJ is set by ADJ's change

vector. It is decided that +ADJ should be removed from ADJ's condition vector. The

9. EVALUATION 128

-ADJ value is left in the change vector so as to provide an indication that adjectives

were encountered. Multiple adjectives can now be processed, as shown in Figure 9.7.

RI'12eb4ggero:1'T1' 0112 M
V

The big red robot loves Martha

V

First [Learn Parse step continue sing e step

Parse to.,. Stop at... > Free Running Next
V

Initializing state to: +++---

DET doesn't match current state.

N SUBJ —+++++ 1

L DEl —++—++ 1 the.c>

L ADJ -++--+ 1 big c>

V

ADI
CLOSE
DET
NAME

Difference:

,ADJ

NOUN
OBJ
SUBJ Done
VERB

V V V V

. SUBJ:DETtheJ ADJ:big; .

LexEntry: red
categories: ADJ
Remaining: ADJ
Properties:
ClauseLevel: 1
State vector: —S +V..O —DET..ADJ +H

.

Maini
Main2
Main3
Word

V

curr
Mainl
Main2
Mains
Word

v<JJ>v<I I>

FIGURE 9.6. Comparing ADJ with the Parser State.

As a demonstration of the tools, I developed a parser that accepted simple com-

mands relating to UNIX file management (Appendix D contains the parser definition).

The parser communicated with a small application (see source code in Appendix E)

via a UNIX socket. The application accepted a command from the user (e.g. "Text

files end with txt.", "List all the text files.") and passed it to the RV parser. The

parser converted the sentence into a semantic structure and returned the structure

9. EVALUATION 129

X RVL€bggr o: 1'1P EMIR H1
V

The big red robot loves Martha

V

First Learn Parse step continue > Single Step

Parse to.. Stop at... Free Running Next

Initializing state to: +++---

N SUBJ —+++++ 1

L DET —++—++1 thec>

L ADJ —++--+ 1 big <>

L ADJ —++--+ 1 red<>

L NOUN -++--- 1 robotcsng>

L VERB --+--- 1 loves<>

N OBJ ---+++ 1
L NAME ----+- 1 Martha.c>

I CLOSE +++--- 1 c>

Successful Parse

SUBJ:DETthe ADJ:blg; ADJ:redJ NOUN:robotJ VERB:loves; OBJ:NAME:MarthaJ CLOSE:;

cc Backtracking >> using word state now ----+- clause level: 1 -

V V V V

SUBJ:DETthe;ADJ:big;ADJ:red;NOU t
LexEntr:
Categories:
Remaining:
Properties:
ClauseLeuel:1
State vector: +S,,O —DET..HEAD

.

Maini
Main2
Main3
Word

curr
Maini
Main2
Main3
Word

I> I>

FIGURE 9.7. Parsing Multiple Adjectives.

9. EVALUATION 130

to the application. The application then built a UNIX command string based on the

information in the structure. The command string was then executed.

Also, in the course of entering Blank's parsers some discrepancies were encountered.

These consisted mostly of missing ordering feature settings in condition and change

vectors. Whether these were omissions of Blanks, or symptomatic of slight differences

between my engine and his, they provided a chance to rigorously test the debugger

as well as the browsers.

9.3. Evaluating the Lexical Acquisition Mechanism

To test the lexical acquisition mechanism, I used a parser with a lexicon containing

326 words and 37 paradigms, shown in § 0.1. Six words were removed from the lexicon:

"address," "follow," "instruction," "intelligence," "process," and "program." The

parser was then used to parse the 40 sentences from Tomita's testbed drawn from

computer science texts (Tomita, 1987, Appendix G) (as distributed by Blank, see

§0.2).

The spelling and categorization of "process" was learned as correctly as possible:

two categories remained which could not be resolved by examining ending sets, the in-

correct category would eventually be removed by the aging mechanism. The spelling

of "intelligence" was left with two alternatives, and the categorization needed sig-

nificant pruning. The remaining four words were learned to varying degrees: four

extraneous categories for two of them, six for one, and thirteen for one. In all cases,

the category aging mechanism would eventually converge the categorizations to the

correct ones (i.e. the categorizations that prove useful).

9. EVALUATION 131

9.4. Implementation Status

I have implemented the development tools, RV parser engine, and lexical acquisition

mechanism described in this thesis using Objectworks\Smalltalk-80 release 4.0 on a

Sun 3/50 workstation. One reason for using Smalltalk-80 was its portability. This was

tested by running the RV development system, without modification or recompilation,

on SparcStations (the only other St-80 r4.0 platform that was available).

9.5. Limitations and Future Directions

There are several directions in which future work could progress. All of these

require a considerable amount of work, and in some cases major reworking of the

existing system. They are described in the following paragraphs.

Complete the implementation of the RV engine. The only feature of Blank's

definition of RV that is not implemented is support for discontinuous idioms (Blank

& Kasson, 1989). In the system described here, multi-word idioms must be continu-

ous. This means that the idiomatic senses of sentences (18) and (20) are recognisable

but those of sentences (19) and (21) are not. Future work should address the lack of

support for discontinuous idioms.

(18) He kicked the bucket.

(19) He kicked the proverbial bucket.

(20) I feel like throwing in the towel.

(21) Once the towel has been thrown in, there is no going back.

Extension of the acquisition mechanism. The lexical acquisition mechanism

is very simple. It needs to be extended to handle more than just suffixes and made

more robust. Another avenue would be to explore grammar acquisition.

9. EVALUATION 132

Generation capabilities. The system as described here contains only a parser.

An RV generation mechanism would make the system more useful. Morphological

generation is quite simple to add: given a lexical entry and a set of properties, it is

simply a matter of walking up the trie to the root, selecting the appropriate string from

each paradigm on the way (literal nodes are used verbatim). Syntactic generation

presents more of a problem. What would be desired is a system that could take a

semantic structure and generate a textual sentence for it. It would be preferable if the

generator could make use of the same productions' that the parser uses. Approaches

to this have not been explored to my knowledge.

Extension of the debugger's functionality. There are several deficiencies in

the design of the debugger:

• There is no way to interrupt the parser when it is operating in free-running

mode;

• There is no way to examine the backtracking stack and set the parser to any

state stored on it;

• There is no way to edit the boundary register and grammatical role that are

displayed;

• There is very little in the way of support for post-mortem debugging of a parse.

There needs to be work done on adding facilities for examining a parse after it

has completed, successfully or otherwise. At the moment all that is available

to the developer is the contents of the trace view. What is needed is a way to

browse the tree of decisions made during the parse, especially branches that

'The structure of productions will likely have to be extended to include generation related
information.

9. EVALUATION 133

led to a dead end. A useful feature would be the ability to restart the parser

at a specific point.

Better interaction in the lexical trie browsers. The capabilities of the trie

browser are very limited. Capabilities should be added allowing individual nodes to

be added, deleted, and moved. The browser should allow complete subtries to be

moved as well as deleted.

Improve the formalism. In the current definition of RV, non-lexical produc-

tions are order sensitive: When non-lexical productions are checked for applicability,

the first to pass all the tests (see §2.1.1) is used. This creates another, non-obvious

issue that parser developers must deal with: parser operation is dependent on the or-

dering of non-lexical productions. The possibility of modifying the RV formalism to

remove this should be explored. One approach to this would be to design a generality

metric for productions, and enforce an ordering based on that. This would guarantee

that more specific productions would be checked before more general ones.

Development of a runtime engine. A development system is of little use

without a delivery mechanism. To this end, future work on this system should include

the design and development of a runtime RV engine. The design of this engine would

be significantly different than that of the development engine. The runtime engine

would have to be designed with efficiency and economy of storage as the main criteria.

This redesign applies to the fundamental data structures used by the engine as well.

9.6. Summary

This chapter provided an evaluation of the RV parser engine, the development

tools, and the lexical acquisition mechanism. All design requirements were met, most

to the full extent. The system has been implemented using Smalltalk-80 on Sun 3

9. EVALUATION 134

and SparcStation platforms. This work is the first to try to develop a convenient,

interactive environment for developing RV parsers. As such, there are several areas

of future work that have been identified. Foremost among these are the need for

more extensive debugging facilities and the improvement of some facets of the RV

formalism, particularly the order sensitivity of non-lexical productions.

CHAPTER 10

Conclusions

This thesis presents the design and implementation of an RV parser and a set of

parser development tools. Traditional approaches to parser development employ an

edit—compile—test paradigm. This thesis presents a set of RV parser development

tools that provide an interactive, modeless environment for constructing and testing

RV parsers. These tools satisfied the criteria put forth in Chapter 1, specifically:

• convenient editing of parsers, through the use of structured editors;

• automatic validity checking of identifiers, and suggestion of spelling correc-

tions;

• identification of incorrect actions;

• automatic updating of all uses of an identifier when it is changed (i.e. re-

named);

• protection against removal of referenced identifiers;

• the use of shorthand notations where useful;

• the ability to view the parser from various viewpoints;

• support for freely cross referencing information;

• the ability to view the parser at various levels of granularity;

• convenient testing and debugging of parsers, which involves:

- sentence testbeds;

135

10. CONCLUSIONS 136

- single stepping;

- access to internal structures;

- provision of relevant, useful information;

- convenient alteration of the acquisition mechanism's operational param-

eters.

The first contribution of this thesis is the development of an RV parser engine in

Smalltalk-80. This is a valid contribution because the replication of scientific work is

an important endeavor.

The second contribution is the design and implementation of a set of interactive RV

development tools. Two general browsers were developed, one each for syntax and

lexicon related information. In addition to these, several more specific browsers were

developed which present more focussed information. Also developed was a debugger

which allows the user to step through a parse and examine the parser's internal struc-

tures at any point. Together, these tools provide a responsive, productive environment

for developing RV parsers. This is a significant improvement over the traditional RV

development systems, similar to the improvement of the Smalltalk programming en-

vironment over traditional programming environments (e.g. C programming using

separate editor, compiler, and debugger).

A final contribution of this thesis is the initial attempt at developing an automated

mechanism for vocabulary acquisition. The value of this line of research is that it has

the potential of removing the requirement that the parser developer create a complete

lexicon.

It was stated in Chapter 1 that natural language understanding is an important

area of research in artificial intelligence. The work described in this thesis contributes

to this area of scientific endeavor by providing a set of tools that researchers can use

10. CONCLUSIONS 137

when they are building RV parsers. The system is open-ended enough to allow easy

modification. This enables researchers to modify the tools to accommodate extensions

to the RV formalism itself. RV has the potential of being useful in relating to natural

language parsing, and RV-Tools makes it easier to work with RV.

This thesis began by briefly introducing RV, pointing out its advantages and disad-

vantages. The most important of the latter was its awkwardness for parser developers.

My approach to countering this disadvantage was described, specifically the design

and implementation of a set of development tools that make it easier and more con-

venient to develop RV parsers.

Chapter 2 presented a detailed description of the design and operation of the RV

formalism.

This was followed in Chapter 3 by a description of the two existing, documented

systems which support development of RV parsers: Blank's and Reed's. RV-Tools'

philosophical differences with these were described briefly:

• Blank's system has a traditional edit—compile—test development paradigm whereas

RV-Tools provides various views of the systems under development, is inter-

active, and allows modification of the parser at any time;

• Reed's system was designed to use RV as an efficient mechanism for imple-

menting phrase structure grammars, and does not address direct development

of RV parsers. RV-Tools, on the other hand, is targeted at the parser developer

who is working directly with the RV formalism.

Finally, related work in the area of automated lexical acquisition was briefly described.

Most of the systems examined strive to be psychologically valid, while those that are

primarily pragmatic are generally not interactive or incremental. This contrasts to

10. CONCLUSIONS 138

my system, described in Chapter 8, which is designed for interactive, incremental

operation.

Chapter 4 very briefly described object-oriented programming as it applies to

Smalltalk-80. This chapter also introduced the Model-View-Controller paradigm that

forms the basis of the implementation of the RV development environment.

The next chapter documents the extensions I have made to the RV formalism

defined in Chapter 2:

• the duff: vector operation and the '' element value;

• a lexical acquisition mechanism and support for it, both the parser's handling

of unknown words and the addition of a new type of node for the lexical trie;

and

• an extension of the production selection algorithm to use information about

which lexical productions are associated with each semi-lexical production,

in order to reduce the number of impossible production sequences that are

considered.

This is followed by a chapter describing my implementation of the RV parser engine,

including the lexical and semantic components.

Chapter 7 began by presenting the design requirements for a set of RV development

tools. Put concisely, these requirements are:

• The tools should allow and encourage interactive and incremental develop-

ment;

• Editing should be convenient for the developer, minimizing the sources of

operator error (e.g. spelling errors);

• The system under development should be able to be viewed from various or-

ganizational standpoints and at various levels of granularity;

10. CONCLUSIONS 139

• Adequate information should be provided (in controllable detail) to the devel-

oper during parser testing.

The remainder of the chapter described the design of a set tools that meet the stip-

ulated requirements. The core of the system consists of the, syntax browser, lexicon

browser, and debugger. In addition to these core tools are several specialized browsers,

including:

• browse a single production;

• browse all production which refer to a specified boundary;

• browse all lexical entries which are categorized by a specified production.

Chapter 8 described a method for acquiring vocabulary on-the-fly in RV systems.

The learner incorporates new words into the lexicon and trie, and assigns an initial set

of categories. As more forms of the word are encountered, a paradigm will eventually

be selected to account for the set of suffixes seen, and a more precise categorization

will be assigned as useful categories are repeatedly seen. The learning system runs

together with the parser, so that vocabulary learning does not require extra effort

from the user.

Chapter 9 provided an evaluation of the RV parser engine, the development tools,

and the lexical acquisition mechanism. All design requirements were met, most to

the full extent. The system has been implemented using Smalltalk-80 on Sun 3

and SparcStation platforms. This work is the first to try to develop a convenient,

interactive environment for developing RV parsers. As such, there are several areas

of future work that have been identified. Foremost among these are the need for

more extensive debugging facilities and the improvement of some facets of the RV

formalism, particularly the order sensitivity of non-lexical productions.

10. CONCLUSIONS 140

In conclusion, RV has proven to be a powerful, efficient processing formalism. Its

main problem lies in its low level of abstraction. The work described in this thesis is an

attempt to make it easier to develop RV parsers by providing a set of interactive tools.

These tools allow non-linear browsing/editing of parsers, immediate error feedback,

as well as interactive debugging. These tools do make it easier to create RV parsers

in that they provide low-level support for working with productions, lexical entries,

and other components of a parser. What is still missing is a tool to aid with the

interrelationships between productions, i.e. something to aid with constructing the

big picture of a parser. Even so, the tools described herein go a long way to making

the development of]EtV parsers faster and easier.

References

Aho, A., Sethi, R., & Ullman, J. (1986). Compilers. Principles, Techniques and Tools.

Addison-Wesley.

Astels, D. R. (1991). An object-oriented implementation of a register vector parser.

Honours thesis, Acadia University.

Astels, D. R. & MacDonald, B. A. (1993). Learning vocabulary for a register vector

parser. In Proc. of the 1St Conference of the Pacific Association for Computational

Linguistics, pages 92-101, Vancouver. PACLING, Simon Fraser University.

Bar, A. & Feigenbaum, E. A. (1981). The Handbook of Artificial Intelligence, vol-

ume 1. Los Altos, CA: Morgan Kaufmann.

Blank, G. D. (1985). A new kind of finite-state automaton: Register vector gram-

mar. In Proceedings of The Ninth International Joint Conference on Artificial

Intelligence, pages 749-755.

Blank, G. D. (1989a). A finite and real-time processor for natural language. Com-

munications of the ACM, 32(10), 1174-1189.

Blank, G. D. (1989b). Register Vector Grammar Version 3.2.1 Tutorial and User

Manual. CSEE Dept., Packard Lab 19, Lehigh University.

Blank, G. D. (1991a). Register Vector Grammar Version 3.9.1 Tutorial and User

Manual. CSIEE Dept., Packard Lab 19, Lehigh University.

141

REFERENCES 142

Blank, G. D. (1991b). Semantic interpretation and agreement in linear time. In Proc.

of the 4' University of New Brunsick Symposium in Artificial Intelligence.

Blank, G. D. et al. (1992). Rvg source code. Objective-C Source code for RVG.

Blank, G. D. & Kasson, M. S. (1989). Inflections and idioms: Lexical access using

tries. This paper is a synopsis of an earlier Master's Thesis by Mr. Kasson.

Blank, G. D. & Labuda, E. J. (1991). Agreement and directionality. This paper is a

synopsis of an earlier Master's Thesis by Mr. Labuda.

Blank, G. D. & Owens, C. J. (1990). Sub categorization in register vector grammar.

In SPIE Applications of Artificial Intelligence, VIII, Orlando, FL. This paper is

a synopsis of an earlier Master's Thesis by Ms. Owens.

Carrithers, C. & Bever, T. (1984). Eye-fixation patterns during reading confirm

theories of language comprehension. Cog. Sci., 8(2), 157-172.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Church, K. (1982). On memory limitations in natural language processing. IU Lin-

guistics Club, Bloomington, Ind.

Garrett, M. & Bever, T. (1970). The perceptual segmentation of sentences. In

Bever, T. & Weksel, W. (Eds.), The Structure and Psychology of Language. Holt,

Rinehart & Winston.

Goldberg, A. (1990). Information models, views, and controllers. Dr. Dobb 's Journal.

Reprinted by ParcPlace.

Harris, L. R. (1977). A system for primative natural language acquisition. Intl Jnl

of Man-machine Studies, 9, 153-206.

Hastings, P. M., Lytinen, S. L., & Lindsay, R. K. (1991). Learning words from context.

In Birnbaum, L. A. & Collins, G. C. (Eds.), Machine Learning, Proc. of the 8'

Int. Workshop, pages 55-59. Morgan Kaufmann.

REFERENCES 143

Kazman, R. (1991). Babel: A psychologically plausible cross-linguistic model of lexi-

cal and syntactic acquisition. In Birnbaum, L. A. & Collins, G. C. (Eds.), Machine

Learning, Proc. of the 8h1 mt. Workshop, pages 75-79. Morgan Kaufmann.

Kogut, P. (1992). Acquiring lexical semantics from wordnet and text corpora. Draft

of a paper.

LaLonde, W. & Pugh, J. R. (1990a). Inside Smalitalk, volume 1. Prentice-Hall, Inc.

LaLonde, W. & Pugh, J. R. (1990b). Inside Smalitalk, volume 2. Prentice-Hall, Inc.

Miller, G. & Chomsky, N. (1963). Finitary models of language users. In et al., R. L.

(Ed.), Handbook of Mathematical Psychology. New York: Wiley.

Reed, J. H. (1987). An efficient contex-free parsing algorithm based on register vector

grammars. In Proceedings of The Third Annual Expert Systems in Government

Conference, pages 34-40.

Reed, J. H. (1989). Compiling phrase structure grammar rules into register vector

grammar. In Proceedings of The Fifth Annual Al Systems in Government Con-

ference, pages 244-249.

Systems, P. (1990). Objectworks\Smalltalk Release 4 User's Guide. Sunnyvale, CA.

Tomita, M. (1987). Efficient Parsing for Natural Language. Norwell, Mass.: Kluwer

Academic Publishers.

Wolczko, M. (1992). grapher. Manchester Smalltalk Goodies Archive. Graph layout

and display classes.

Woods, W. A. (1970). Transition network grammars for natural language analysis.

Communications of the ACM, 13(10), 591-606.

APPENDIX A

Comparison with Finite State Machines

RV is an improvement on finite state machines because it is functionally more pow-

erful. In a simple finite state machine, match is symbol identity and change does

a complete state replacement. In RV, however, an operation is allowed to involve

several items at once. This allows RV to be more compact than an equivalent finite

state machine. Figures A.1 and A.2 and Tables A.1 and A.2 constitute an example

for parsing simple Subject-Verb-Object languages used by Blank (Blank, 1989). The

advantage of RV can be seen. When just one constraint is relaxed (the requirement

that the subject precede the verb) the size and complexity of the finite state ma-

chine increases by two nodes (a 40% increase) and four transitions' (an 80% increase),

while the size of the RV parser remains constant. The only change is that of the first

element in the condition vector of the VERB production from - to .

'Noted by heavier lines in Figure A.2.

cat condition change
SUBJ +7? —7?

VERB -+? 7-?

OBJ ?-+ ??-

CLOSE --?

TABLE A.1. The RV Productions for Subject-Verb-Object Language

144

A. COMPARISON WITH FINITE STATE MACHINES 145

FIGURE A. 1. The Finite State Machine Transition Diagram for the
Subject-Verb-Object Language

FIGURE A.2. The Finite State Machine Transition Diagram for Par-
tially Free-Order Language

cat condition change

SUBJ +?? -??

VERB 7+? 7-?

OBJ ?-+ ??-

CLOSE --? +++

TABLE A.2. The RV Productions for Partially Free-Order Language

A. COMPARISON WITH FINITE STATE MACHINES 146

In both the finite state machine and the RV implementations, all resources are

preallocated and do not grow during the operation of the machine. This is due to

the fact that RV has only one production per category. The effect of this property

becomes more significant as the grammar size increases. The result of this is that an

RV implementation will be more efficient than the equivalent finite state machine in

terms of both space and recognition time.

The overall efficiency of RV is a result of two characteristics that are not present

in functionally more primitive mechanisms such as finite state machines: multiplicity

and masking.

Multiplicity refers to the capability of one operation to test multiple constraints

simultaneously or have multiple effects. This capability is inherent in the ternary

feature vectors that are the central component of RV. In the above example OBJ will

only fire when the second feature is - and the third is +. The change vector of the

CLOSE production gives an example of the multiplicity of effect. When CLOSE fires, it

will set all features to +.

Masking (allowing constraints to be unaffected or ignored by an operation) is made

possible by the third allowable element value in ternary vectors: ?. This value matches

anything and changes nothing, thus it can be used to let constraints pass from state

to state. An example of this is present in the SUBJ production. This production will

fire when the first feature is +. It ignores all other features. When it fires, it changes

only the first feature, leaving the others as they were.

APPENDIX B

Test Parsers

This appendix contains the parsers that the RV development environment has been

used to implement. These parsers appear in various works by Blank.

B.1. Subject-Verb-Object

Ordering Features: S V 0
Productions:
CLOSE I cond -S..V change +S..O
OBJ L cond -v +0 change -O
SUBJ L cond +5 change -S
VERB L cond -S +V change -V
Lexicon:
• cat CLOSE morph '.'
George cat SUBJ OBJ morph 'george'
loves cat VERB morph 'loves'
Martha cat SUBJ OBJ morph 'martha'

(22) George loves Martha.

Initializing state to: +++

LSTJBJ -++ 1 George <>
LVERB --+ I loves <>
LOBJ --- 1 Martha <>
I CLOSE ++-i- 1.
Successful Parse
SUBJ: George; VERB:loves; OBJ:Martha; CLOSE:.;

<< Backtracking >> using Word state now clause level: 1

<< Backtracking Failed >>
Parse completed.

(23) Martha loves.

147

B. TEST PARSERS 148

Initializing state to: +++

LSUBJ --H- 1 Martha <>
LVERB ---i- 1 loves <>
I CLOSE -i-++ 1 .
Successful Parse
SUBJ:Martha; VERB: loves; CLOSE:.;

<< Backtracking >> using Word state now --+ clause level: 1

<< Backtracking Failed >>
Parse completed.

(24) * George Martha.

Initializing state to: +++

LSUBJ -+4- 1 George <>

<< Backtracking >> using Word state now -i--I-

<<Backtracking Failed >>
Parse completed.
Ungrammatical Input

clause level: 1

B.2. Noun Phrases

Ordering Features: S V 0 DET ADJ HEAD
Properties: p1 sng

Productions:
clausal
CLOSE
OBJ
SUBJ
VERB

phrasal
ADJ
DET
NAME
NOUN

I
N
N
L

cond -S..V -HEAD
cond -V +0-HEAD
cond +S -HEAD
cond -S +V -HEAD

L cond +ADJ. .HEAD
L cond +DET. .ADJ
L cond +DET +HEAD
L cond +HEAD

Non-lexical Ordering: SUBJ OBJ

Paradigms:
BED s <p1>

$ <sng>
Lexicon:

change +S..0 -DET..HEAD
change -O +DET. .HEAD
change -S +DET. .HEAD
change -V

change -DET. .ADJ
change -DET
change -DET -HEAD
change -DET -HEAD

B. TEST PARSERS 149

cat CLOSE morph '.'
a cat DET morph 'a'
big cat ADJ morph 'big'
George cat NAME morph 'george'
loves cat VERB morph 'loves'
Martha cat NAME morph 'martha'
red cat ADJ morph 'red'
robot cat NOUN morph 'robot-BED-'
the cat DET morph 'the'

(25) George loves Martha.

Initializing state to: -H-+---

NSUBJ -+++++ 1
LNAME -++-+- 1 George <>
LVERB --+-+- 1 loves <>
NOW ---+++ 1
LNAME ----+- 1 Martha <>
I CLOSE 1.
Successful Parse
SUB J:NA ME: George; VERB: loves; OBJ:NAME:Martha; CLOSE:.;

<< Backtracking >> using Word state now ----+- clause level: 1

<< Backtracking Failed >>
Parse completed.

(26) George loves the red robot.

Initializing state to: +++---

NSUBJ -+++++ 1
LNAME -++-+- 1 George <>
LVERB --+-+- 1 loves <>
NOW ---+++ 1
LDET ----++ 1 the <>
LAW + 1 red <>
LNOUN 1 robot <sng>
I CLOSE +++ 1.
Successful Parse
SUBJ:NAME: George; VERB:loves; OBJ:DET:the; ADJ:red; NOUN:robot; CLOSE:.;

<< Backtracking >> using Word state now clause level: 1

<< Backtracking Failed >>
Parse completed.

(27) A robot loves Martha.

Initializing state to: +++---

NSUBJ -+.+++ 1

B. TEST PARSERS 150

LDET --i-+-++ 1 a<>
LNOUN -++-+- 1 robot <sng>
LVERB ---i--+- 1 loves <>
NOW •---+++ 1
LNAME ----+- 1 Martha <>
I CLOSE +----- 1.
Successful Parse
SUBJ:DET: a; NOUN: robot; VERB:loves; OBJ:NAME:Martha; CLOSE:.;

<< Backtracking >> using Word state now ----+-- clause level: 1

<< Backtracking Failed >>
Parse completed.

B.3. WH Questions

Ordering Features: S V 0 AUX GAP DET HEAD

Productions:
clausal
CLOSE I
OBJ N
SUBJ N
VERB L

phrasal
DET
NAME
NOUN

wh
NGAP
QUES
WH

cond -S..V -GAP -HEAD
cond -V +0-HEAD
cond +S -HEAD
cond -S +V -HEAD

L cond +DET
L cond +DET. .HEAD
L cond +HEAD

change +S. .AUX -GAP. .HEAD
change -O +DET. .HEAD
change -S +DET. .HEAD
change -V -AUX

change -DET
change -DET. .HEAD
change -DET. .HEAD

N cond +GAP. .HEAD change -GAP. .HEAD
L cond +5 +AUX -HEAD change -AUX
L cond +S -GAP -HEAD change +GAP

Non-lexical Ordering: SUBJ OBJ NGAP

Lexicon
names
George cat NAME
Martha cat NAME
Pam cat NAME
Pamela cat NAME

nouns
men cat NOUN
quiche cat NOUN
robot cat NOUN

determiners
a cat DET
the cat DET

morph 'george'
morph 'martha'
morph 'pam'
morph 'pamela'

morph 'men'
morph 'quiche'
morph 'robot'

morph 'a'
morph 'the'

B. TEST PARSERS 151

verbs
love cat VERB morph 'love'
loves cat VERB morph 'loves'
sighed cat VERB morph 'sighed'

wh words
does cat QUES morph 'does'
who cat WH morph 'who'

punctuation
cat CLOSE morph '.'

? cat CLOSE morph '?'

(28) Who loves Pamela?

Initializing state to: ++++---

LWH +++++-- 1 who <>
NSUBJ -++++++ 1
NNGAP -+.+---- 1
LVERB --+---- 1 loves <>
NOBJ
LNAME 1 Pamela <>
I CLOSE ++++ 1? <>
Successful Parse
WH:who; SUBJ:NGAP:VER]3:loves; OBJ:NAME:Pamela; CLOSE:?;

<< Backtracking >> using Word state now clause level: 1

<< Backtracking Failed >>
Parse completed.

(29) Who does Pamela love?

Initializing state to: ++++---

LWH +++++-- 1 who <>
LQUES -i--'-+-+-- 1 does <>
NSUBJ -++-+++ 1
LNAME -++-+-- 1 Pamela <>
LVERB --+-+-- 1 love <>
NOBJ ----+++ 1
NNGAP 1
I CLOSE ++++ 1? <>
Successful Parse

WH:who; QUES: does; SUBJ:NAME:Pamela; VERB:love; OBJ:NGAP:CLOSE:?;

<< Backtracking >> using Word state now --+-+-- clause level: 1

<< Backtracking Failed >>
Parse completed.

(30) * Who does George love Pamela?

Initializing state to: ++++--.

B. TEST PARSERS 152

LWH +++++-- 1 who <>
LQUES 1 does <>
NSUBJ -++-+++ 1
LNAME -++--i--- 1 George <>
LVERB --+-+-- 1 love <>
NOW -.---+++ 1
LNAME ----+-- 1 Pamela <>

<< Backtracking >> using Word state now ----+--- clause level: 1

<< Backtracking Failed >>
Parse completed.
Ungrammatical Input

B.4. Relative Clauses

Ordering Features: S V 0 AUX GAP DET HEAD NTERM REL
Properties: genpl gensng inf past pastpart p1 pres pres3 prespart sng

Productions:
terminators
NPEND N cond -DET..HEAD +NTERM change -NTERM
RELEND N cond -S..V -AUX -DET..NTERM +REL change -NTERM..REL

returnup

NP post-modifiers

RELC L cond +V -DET..HEAD +NTERM change +S. . GAP -DET..HEAD +REL
shiftdown

RELR L cond -v -DET..HEAD +NTERM change +S..GAP -DET..HEAD
phrasal
ART L cond +DET. .NTERM change -DET
NAME L cond +DET. .NTERM change -DET. .NTERM
NGAP N cond +GAP. .NTERM change -GAP. .NTERM
NOUN L cond +HEAD. .NTERM change -DET..HEAD
general
CLOSE I cond -S..V -GAP. .NTERM change +S. .AUX -GAP..REL

CTHAT L cond -V +0 -DET. .NTERM change +S. .AUX +DET. .NTERM
OBJ N cond -V +0 -DET. .NTERM change -O +DET. .NTERM
QUES L cond +S +AUX -DET. .NTERM change -AUX -REL
SUBJ N cond +S -DET. .NTERM change -S +DET. .NTERM
VERB L cond -S +V -DET. .NTERM change -V -AUX
WH L cond +S -GAP. .NTERM change +GAP

Non-lexical Ordering: SUBJ OBJ NGAP NPEND RELEND

Paradigms:

BED s' <genpi>
's <gensng>
S <pl>
$ <sng>

B. TEST PARSERS 153

dO o <inf pastpart pres pres3 prespart>
i <past>

Do ing <prespart>
es <pres3>
ne <pastpart>
d <past>
$ <inf pres>

EAt en <pastpart>
S <pres3>
$ <inf pres>

eAT ate <past>
eat <inf pastpart pres pres3 prespart>

LOVE ing <prespart>
es <p1 pres3>
ed <past pastpart>
e <inf pres sng>

MaN a <gensng sng>
e <genpi pi>

MAn s' <genpi>
is <gensng>
$ <p1 sng>

PULL ing <prespart>
ed <past pastpart>
s <p1 pres3>
$ <inf pres sng>

Lexicon:
articles
a cat ART morph 'a'
that cat RELR RELC CTHAT ART morph 'that'
the cat ART morph 'the'
close

cat CLOSE morph '.'
? cat CLOSE morph '?'
nouns
man cat NOUN morph 'mMaN.nMAnJ
pizza cat NOUN morph 'pizz&BED_'
quiche cat NOUN morph 'quicheJ3ED_'
wh words
what cat WH morph 'what'
who cat WH RELR RELC morph 'who'

B. TEST PARSERS 154

verbs
do cat VERB QUES morph 'd..dO._Do_'
eat cat VERB morph '..eATEAtJ
hate cat VERB morph 'haLLOVE_'
love cat VERB morph 'lov..LOVE_'
think cat VERB morph 'thinkYlJLL_'
names
george cat NAME morph 'georg&BED_'
martha cat NAME morph 'martha...BED...'
pamela cat NAME morph 'pame1aJ3ED_'

(31) Men who hate men that eat quiche love pizza.

Initializing state to: ++++

N SUBJ .-.+++-+++- 1
L NOUN -+++---+- 1 man <p1>
L RELC +++++--++ 2 who <>
N NPEND -H-+++---+ 2
N SUBJ -+++++++. 2
N NGAP -+++----+ 2
L VERB --+ + 2 hate <inf pres eng>
N OBJ ++++ 2
L NOUN ++ 2 man <p1>
L RELR +++++ ++ 2 that <>
N NPEND 2
N SUBJ -++++++++ 2
N NGAP -+++----+ 2
L VERB --+ + 2 eat <inf pres>
N OBJ ++++ 2
L NOUN ++ 2 quiche <sng>
NNPEND + 2
N RELENJJ -+++ 1
L VERB --+ 1 love <inf pres sng>
N OBJ +++- 1
L NOUN +- 1 pizza <sng>
NNPEND 1
I CLOSE ++++ 1.
Successful Parse
SUBJ:NOUN: man; RELC:who; NPEND:SUBJ:NGAP:VERB:hate; OBJ:NOUN:man;
RELR: that; NPEND:SUBJ:NGAP:VERB : eat; OBJ:NOUN: quiche; NPEND:RELEND:
VERB:love; OBJ:NOUN:pizza; NPEND :CLOSE:.;

<< Backtracking >> using Word state now +- clause level: 1

<< Backtracking Failed >>
Parse completed.

(32) Who do the men think that Pamela loves?

Initializing state to: ++++

L WH +++++---- 1 who <>

B. TEST PARSERS 155

L QUES +++-+---- 1 do <inf pres>
N SUBJ -.++-++++- 1
L ART --'-+-+-++- 1 the <>
L NOUN -++-+--+- 1 man <p1>
N NPEND ----+----- 1
L VERB --+-+----- 1 think <inf pres sng>
L CTHAT ++++++++- 1 that <>
L NAME +++++---- 1 pamela <sng>
N SUBJ 1
N NGAP -+++ 1
L VERB --+ 1 love <p1 pres3>
I CLOSE ++++ 1? <>
Successful Parse

WH:who; QUES: do; SUBJ:ART:the; NOUN:man; NPEND:VERB: think; CTHAT: that;
NAME:pamela; SUBJ:NGAP :VERB :love; CLOSE:?;

<< Backtracking >> using Word state now --+ clause level: 1
N OBJ +++- 1

<< Backtracking Failed >>
Parse completed.

B.5. Sub categorization

Boundaries: Obj Pred
Ordering Features: S TR V 0 DET HEAD XO THAT INF BE
Properties: genpi gensng inf past pastpart p1 pres pres3 prespart sng

Productions
phrasal

ADJ L cond -V. .0 +BE change -S. .HEAD -BE
ART L cond +DET. .HEAD change -DET
NAME L cond +DET. .HEAD change -DET. .HEAD
NOUN L cond +HEAD change -DET. .HEAD

B. TEST PARSERS 156

general
BE L
CLOSE I
CTHAT N
INF L
INF S VERB
INTRANS S VERB

OBJ N

SUBJ N
THAT L
THAT S VERB
TRANS S VERB

VERB L
xO S VERB
XOBJ N

cond +V -HEAD
cond -S. .HEAD
cond -V -HEAD +THAT
cond -V -HEAD +INF
cond -TR -HEAD
cond -S +TR -HEAD
save Pred
cond -V +0-HEAD
save Obj
cond +S -HEAD
cond -V -HEAD +THAT
cond -TR -HEAD -INF
cond -S +TR -HEAD
save Pred
cond -TR +V -HEAD
cond -TR +0-HEAD
cond -V +0-HEAD +XO

Non-lexical Ordering: SUBJ OBJ XOBJ CTHAT

Paradigms

BE were <past p1>
are <pres>
was <past sng>
am <pres>
is <pres3>

BED s' <genpi>
'S <gensng>
S <pi>
$ <sng>

dO o <ml pastpart pres pres3 prespart>
i <past>

Do ing <prespait>
es <pres3>
ne <pastpart>
d <past>
$ <infpres>

eAT ate <past>
eat <jul pastpart pres pres3 prespart>

EAt en <pastpart>
s <pres3>
$ <ml pres>

change -V..0 +BE
change +S. . 0 -DET. .BE
change +S. . 0 -DET. .INF
change -S +TR. .0 -DET. .INF
change +INF
change -TR -0

change -0 +DET. .HEAD

change -S +DET. .HEAD
change +S..0 -DET..INF
change +THAT
change -TR

change -V
change +X0
change -0 -XO

B. TEST PARSERS 157

GiVE i <inf pastpart pres pres3 prespart>
a <past>

GIVen ing <prespart>
yes <pres3>
en <pastpart>
e <inf past pres>

IforY i <past pastpart p1 pres3>
y <inf pres prespart sng>

lEAVE av <inf p1 pres pres3 prespart sng>
ft <past pastpart>

LEAVe ing <prespart>
es <p1 pres3>
e <inf pres sng>
$ <past pastpart>

LOVE ing <prespart>
es <p1 pres3>
ed <past pastpart>
e <inf pres sng>

MAn s' <genpi>
'S <gensng>
$ <p1 sng>

MaN a <gensng sng>
e <genpi p1>

PP p <past pastpart prespart>
$ <inf pres pres3>

PULL ing <prespart>
ed <past pastpart>
s <p1 pres3>
$ <inf pres sng>

TRy ying <prespart>
ies <p1 pres3>
ied <past pastpart>
y <inf pres sng>

Lexicon
punctuation

cat CLOSE morph '.'

B. TEST PARSERS 158

articles
a cat ART morph 'a'
the cat ART morph 'the'
nouns
robot cat NOUN
adjectives
cold cat ADJ
good cat ADJ
names
george
john
martha
mary
torn
misc
that cat THAT morph 'that'
to cat INF morph 'to'
verbs
be cat BE
believe cat THAT1 XO TRANS VERB
eat cat TRANS INTRANS VERB
give cat TRANS VERB
giveaway cat TRANS VERB
hope cat INTRANS THAT1 INFi VERB
hurry cat TRANS INTRANS VERB
hurryup cat INTRANS TRANS VERB
leave cat INTRANS VERB
love cat TRANS VERB

(33) George hopes to leave.

Initializing state to: ++++

morph 'robotBED_'

morph 'cold'
morph 'good'

cat NAME
cat NAME
cat NAME
cat NAME
cat NAME

morph 'george-BED..'
morph John-BED..'
morph 'marthaBED...'
morph 'mary_BED -'
morph 'tomBEDJ

N SUBJ -+++++---- 1
L NAME -+++ 1 george <sng>
S INTRANS --+ 1
SINF1
L VERB 4-- 1 hope <p1 pres3>
LINF -+++ 1
S INTRANS --+ 1
LVERB 1
I CLOSE +..+ 1.
Successful Parse

to <>

morph '..BE..'
morph 'believ_LOVE_'
morph '..eAT.._EAt..'
morph 'gGiVE_v_GIVen_'
morph 'g..GiVE_v_GIVen_+away'
morph 'hop-LOVE.'
morph 'hurr..TRy_'
morph 'hurr..TRy up'
morph 'leiEAVELEAVeJ
morph 'lov..LOVE_'

leave <inf pres sng>

SUBJ:NAME:george; INTRANS:INF1 :VERB:hope; INF:to; INTRANS:VERB:leave; CLOSE:.;

<< Backtracking >> using Word state now

<< Backtracking >> using Predl state now -+++

<< Backtracking Failed >>
Parse completed.

clause level: 1

clause level: 1

B. TEST PARSERS 159

(34) George hopes that Martha left.

Initializing state to: ++++

NSUBJ -+++++---- 1
L NAME -+++ 1 george <sng>
S INTRANS --+ 1
S THAT1 --+--.--+ 1
S INFi --+----++- 1
L VERB ++- 1 hope <p1 pres3>

L THAT ++++ 1 that <>
NSUBJ -+++++ 1
L NAME -+++ 1 martha <sng>
S INTRANS --+ 1

L VERB 1 leave <past pastpart>
I CLOSE ++++ 1.
Successful Parse
SUBJ :NAME:george; INTRANS :THAT1 :INF1 :VERB :hope; THAT: that;

SLJBJ :NAME: martha; INTBANS :VERB :leave; CLOSE:.;

<< Backtracking >> using Word state now clause level: 1

<< Backtracking >> using Predi state now -+++ clause level: 1

<< Backtracking Failed >>
Parse completed.

(35) George believes Martha.

Initializing state to: ++++

NSUBJ -+++++---- 1
L NAME -+++ 1 george <sng>
S TRANS --++ 1
S THAT1 .-.-++---+ 1
SxO —.-++--++ 1
L VERB ---+--++ 1 believe <p1 pres3>
N OBJ ----++++ 1
L NAME ++-- 1 martha <sng>
I CLOSE ++++ 1.
Successful Parse

SUBJ:NAME:george; TRANS:THAT1 :XO:VERB:believe; OBJ:NAME: martha; CLOSE:.;

<< Backtracking >> using Word state now
N CTHAT ++++ 1
NSUBJ -+++++ 1

++-- clause level: 1

<< Backtracking >> using Objl state now ---+--++-- clause level: 1
NXOBJ +-- 1
N CTHAT ++++ 1
NSUBJ -++.++.- 1

B. TEST PARSERS 160

L NAME -+++ 1 martha <sng>

<< Backtracking >> using Word state now -+++ clause level: 1

<< Backtracking >> using Predi state now -+++ clause level: 1

<< Backtracking Failed >>
Parse completed.

(36) George believes that Martha left.

Initializing state to: ++++

NSUBJ -+++++---- 1
L NAME -+++ 1 george <sng>
S TRANS ---++ 1
S THAT1 --++---+ 1
S XO --++--++ 1
L VERB ---+--+ 1 believe <p1 pres3>
L THAT ++++ 1 that <>
N SUBJ -++++.-.- 1
L NAME -+++ 1 martha <sng>
S INTRANS --+ 1
L VERB 1 leave <past pastpart>
I CLOSE ++++ 1.
Successful Parse

StJBJ:NAME:george; TRANS :THAT1 :XO :VEBB: believe; THAT: that;
SUBJ:NAME: martha; INTRANS :VERB : leave; CLOSE:.;

<< Backtracking >> using Word state now clause level: 1

<< Backtracking >> using Predi state now -+++ clause level: 1

<< Backtracking Failed >>
Parse completed.

(37) George believes.

Initializing state to: ++++

N SUBJ -+++++---- 1
L NAME -+++ 1 george <sng>
S TRANS --++ 1
S THAT1 ---++---+ 1
S XO .--++--++ 1
L VERB ---+--++ 1 believe <p1 pres3>
N OBJ .-.-.--++++ 1

<< Backtracking >> using Objl state now ---+--++-- clause level: 1
NXOBJ +-- 1
I CLOSE ++++ 1.
Successful Parse
SUBJ:NAME:george; TRANS:THAT1 :XO:VERB: believe; XOBJ:CLOSE:.;

B. TEST PARSERS 161

<< Backtracking >> using Word state now ---+--++-- clause level: 1
NCTHAT ++++ 1
NSUBJ -+++++ 1

<< Backtracking >> using Predi state now -+++ clause level: 1

<< Backtracking Failed >>
Parse completed.

(38) George hopes.

Initializing state to: ++++

NSUBJ 1
L NAME -+++ 1 george <sng>
S INTRANS
S THAT1 1
SINF1 1
L VERB ++- 1 hope <p1 pres3>
I CLOSE ++++ 1.
Successful Parse
SIJBJ :NAME:george; INTRANS :THAT1 :INF1 :VERB :hope; CLOSE:.;

<< Backtracking >> using Word state now
NCTHAT ++++ 1
N SUBJ -+++++ 1

++- clause level: 1

<< Backtracking >> using Predi state now -+i-+ clause level: 1

<< Backtracking Failed >>
Parse completed.

(39) * George believes to leave.

Initializing state to: ++++

N SUBJ -+++++.---- 1
L NAME -+++ 1 george <sng>
S TRANS --++ 1
S THAT1 --++---+ 1
S XO 1
L VERB ----+--++ 1 believe <p1 pres3>
N OBJ --.-.-+++ 1

<< Backtracking >> using Obji state now ---+---++-- clause level: 1
NXOBJ +-- 1
NCTHAT ++++ 1
NSUBJ -+++++ 1

<< Backtracking >> using Word state now ---+--++-- clause level: 1

<< Backtracking >> using Predi state now -+++ clause level: 1

B. TEST PARSERS 162

<< Backtracking Failed >>
Parse completed.
Ungrammatical Input

(40) * George hopes believes.

Initializing state to: ++++

N SUBJ -+++++---- 1
L NAME -+++ 1 george <sng>
S INTRANS --+ 1
S THAT1 --+ 1
S INFi --+----++- 1
L VERB ++- 1 hope <p1 pres3>
NCTHAT ++++ 1
NSUBJ -+++++ 1

<< Backtracking >> using Word state now *1--- clause level: 1

<< Backtracking >> using Predi state now -+++ clause level: 1

<< Backtracking Failed >>
Parse completed.
Ungrammatical Input

(41) * George hopes Martha.

Initializing state to: ++++

NSUBJ -+++++-.--- 1
L NAME -+++ 1 george <sng>
S INTRANS --+ 1
S THAT1 -----.--+ 1
S INFi --+----.++- 1
L VERB ++- 1 hope <p1 pres3>
N CTHAT ++++ 1
NSUBJ -+++++ 1
L NAME -+++ 1 martha <sng>

<< Backtracking >> using Word state now -+++ clause level: 1

<< Backtracking >> using Predl state now -+++ clause level: 1

<< Backtracking Failed >>
Parse completed.
Ungrammatical Input

B. TEST PARSERS 163

B.6. MorphoSyntactic Properties

Ordering Features: S V 0 GAP DET ADJ HEAD NTERM REL COMP AF BE TENS PAS-
SIVE

Default cond: -DET..NTERM

Properties: <first second third> <p1 sg> <past pres> inf nom pastpart prespart

Productions
verb categories
CADJ L
VCOMP L
VINTRANS L
VTRANS L

terminators
NPEND N
RELEND N

cond -S +V -BE
cond -S +V +AF
cond -S +V +AF
cond -S +V +AF

change -V. .0
change -V..O +COMP -AF
change -V..0 -AF..BE
change -v -AF. .BE

cond +NTERM change -NTERM
cond -S..V -GAP +REL -BE change -NTERM
returnup

relative pronouns

RELC L cond +V +NTERM change +S. .GAP -DET..NTERM +REL
shiftdown

RELR L cond -V +NTERM change +S. .GAP -DET..NTERM
phrasal
ADJ L cond ?DET +ADJ. .NTER,M
DET L cond +DET. .NTERM
NAME L cond +DET. .NTERM
NGAP N cond +GAP. .NTERM
NOUN L cond ?DET..ADJ +HEAD. .NTERM

lexprop <nom>
misc
BE
CLOSE
CTHAT
OBJ
PASSIVE

L
I
L
N
N

PASSIVEBY L
PROG N

QTJES N

SUBJ N
TENSE N

WH L

Non-lexical Ordering: SUBJ TENSE QUES PROG PASSIVE OBJ NGAP NPEND RELEND

Paradigms:

AM $ <sg:pres:first>

change -DET
change -DET
change -DET..NTERM -AF
change -GAP. .NTERM
change -DET. .HEAD -AF

change -AF. .BE
change +S..O -GAP..COMP +AF..TENS -PASSIVE
change +S..GAP -DET..COMP +AF..BE
change -0 +DET..NTERM
change -0 +AF +PASSIVE

change +DET. .NTERM

change +AF -TENS

change -S +DET. .NTERM
change +AF -TENS

cond +AF..BE
cond -S..GAP -COMP
cond +COMP
cond -V +0
cond -BE -PASSIVE
lexprop <pastpart>
cond -V +PASSIVE
cond -AF. .BE -PASSIVE change +AF..BE
lexprop <prespart>
cond +S +TENS
lexprop <past pres>
cond +S
cond -S +TENS
lexprop <past pres>
cond +S -GAP change +GAP

B. TEST PARSERS 164

ARE $ <pres:pl pres:second>

BE ing <prespart>
en <pastpart>
$ <inf>

BED s <nom third:pl>
$ <nom sg:third>

BOX es <ibm third:pl>
$ <nom sg:third>

Do oing <prespart>
oes <sg:third:pres>
id <past pastpart>
o <inf pres:first pres:pl pres:second>

FiND ou <past pastpart>
i <inf pres prespart>

FINDing ing <prespart>
$ <sg:third:pres>
$ <first inf past pastpart p1 second>

HAve ving <prespart>
ye <inf pres:first pres:pl pres:second>
s <sg:third:pres>
d <past pastpart>

IS $ <sg:third:pres>

LOVE ing <prespart>
ed <past pastpart>
es <sg:third:pres>
e <inf pres:first pres:pl pres:second>

PULL ing <prespart>
ed <past pastpart>
s <sg:third:pres>
$ <inf pres:first pres:pl pres:second>

SHEEP $ <nom third>

SiNG i <inf pres prespart>
a <past>
U <pastpart>

B. TEST PARSERS 165

WAS ere <past:pl second:past>
as <sg:past:flrst sg:third:past>

Lexicon:
misc
by cat PASSIVEBY morph 'by'
wh words
what cat WH RELC RELR morph 'what'
who cat WH RELC RELR morph 'who'
aux
be cat BE morph 'are.AREJ

M isJSJ
m 'wWASJ
m 'am.AM_'
m 'be..BE..'

verbs
find cat NOUN VTRANS morph 'LFiNDnd..FINDingJ

m 'find..BED..'
kick cat NOUN VTRANS morph 'kick_PULL_'

M 'kickBED_'
sing cat NOUN VINTRANS morph '&SiNG.ngJINDing..'
squeak cat NOUN VINTRANS morph 'squeak-PULL.'

m 'squealLBEDJ
nouns
barn cat NOUN morph 'barnBED..'
bird cat NOUN morph 'bircLBED_'
block cat NOUN morph 'blocicBED_'
bucket cat NOUN morph 'bucket..BED_'
fox cat NOUN morph 'fox-BOX..'
horse cat NOUN morph 'horse_BED_'
robot cat NOUN morph 'robot..BED_'
adjectives
large cat ADJ CADJ morph 'large'
red cat ADJ CADJ morph 'red'
silly cat ADJ CADJ morph 'silly'
articles
a cat DET morph 'a'
the cat DET morph 'the'
names
George cat NAME morph 'georgeJ3ED_'
Martha cat NAME morph 'martha.BED_'
punctuation

cat CLOSE morph '.'
? cat CLOSE morph 'T

(42) The robot is being kicked.

Initializing state to: +++ +++-

NSUBJ
L DET

-++-++++--+++- 1
-++.---+++--+++- 1 the <>

B. TEST PARSERS 166

L NOUN -+±-----+---++- 1 robot <nom sg:third>
N NPEND -++ ++- 1
N TENSE -++ ++-- 1
L BE -++ 1 be <sg:third:pres>
N PROG -++ ++-- 1
L BE -++ 1 be <past pres prespart>
N PASSIVE -+ +---+ 1
L VTRANS + 1 kick <past pastpart>
I CLOSE +++ +++- 1.
Successful Parse
SUBJ:DET:the; NOUN:robot; NPEND:TENSE:BE:be; PROG:BE:be; PASSIVE:
VTRANS:kick; CLOSE:.;

<< Backtracking >> using Word state now + clause level: 1

<< Backtracking Failed >>
Parse completed.

(43) George was kicked by Martha.

Initializing state to: +++

NSUBJ
L NAME
N TENSE
L BE
N PASSIVE
L VTRANS
L PASSIVEBY ----++++
L NAME
I CLOSE
Successful Parse
STJBJ:NAME: George; TENSE:BE: be; PASSIVE:VTRANS :kick; PASSIVEBY: by;
NAME:Martha; CLOSE:.;

-++-++++--+++- 1

+++

 ++- 1 George <nom sg:third>
++-- 1

 1 be <sg:past:first sg:third:past>
+--+ 1
 + 1 kick <past pastpart>
 + 1 by <>
 + 1 Martha <nom sg:third>
+++- 1.

<< Backtracking >> using Word state now + clause level: 1

<< Backtracking Failed >>
Parse completed.

(44) George is being silly.

Initializing state to: +++

N SUBJ -++-++++--+++- 1

L NAME -++ ++- 1 George <ibm sg:third>
N TENSE -++ ++-- 1

L BE -++ 1 be <sg:third:pres>
NPROG -++ ++-- 1

L BE -++ 1 be <past pres prespart>
L CADJ 1 silly <>
I CLOSE +++ +++- 1.
Successful Parse

B. TEST PARSERS 167

StJBJ:NAME: George; TENSE:BE:be; PROG:BE:be; CADJ:silly; CLOSE:.;

<< Backtracking >> using Word state now clause level: 1

<< Backtracking Failed >>
Parse completed.

(45) The red robot squeaked.

Initializing state to: +++

N SUBJ -++-++++--+++- 1
L DET -++-.-+++--+++-- 1 the <>
L ADJ -++--+++--+.+- 1 red <>
L NOUN -++----+---++- 1 robot <ibm sg:third>
N NPEND -++ ++- 1
N TENSE -++ ++-- 1
L VINTRANS 1 squeak <past pastpart>
I CLOSE +++- 1.
Successful Parse

SUBJ:DET: the; ADJ:red; NOUN:robot; NPEND:TENSE:VINTRANS:squeak; CLOSE:.;

<< Backtracking >> using Word state now clause level: 1

<< Backtracking Failed >>
Parse completed.

B.7. Boundary Registers

Boundaries: NP NPmod Obj Pred Prep Subj Tense Topic
Ordering Features: S TENS BE AF V 0 PASS THAT VSUB NP DET HEAD NEND REL
ROLE PREP GAP RELEND

Default cond: -DET,.HEAD
Properties: <first second third> <p1 sg> <past pres> inf nom pastpart prespart

Productions:

B. TEST PARSERS 168

clausal
BE L cond +BE -AF
CLOSE I cond -S. . 0 -ROLE -GAP..RELEND
IMP N cond +TENS -REL -GAP

lexprop <past pres>
N cond -S -BE +AF..V

lexprop <pastpart>
N cond -S -BE +AF..V -PASS

lexprop <prespart>
N cond +TENS -REL. .ROLE

lexprop <past pres>
N cond +S -TENS +ROLE

save Subj
TENS N cond +TENS -NEND +ROLE

lexprop <past pres>

verb subcategories
INTRAN S V cond -S -PASS
THAT S V cond -S
TRANS S V cond -S

verbs and predicates
CADJ L
PP S PREP

PASS

FROG

QUES

SUBJ

change -BE +AF +NP

change +S..0 -PASS..VSUB +NP -DET..RELEND
change -S..AF
save Tense
change -AF -0 +PASS -NP

change -AF +NP

change -TENS -AF -NP
save Tense
change -S -DET. .ROLE

change -TENS. .AF
save Tense

change -O +VSUB
change +THAT. .VSUB
change +VSUB..NP

cond -S -BE +AF..V
cond -S..BE +AF..V
save Prep

V L cond -S -AF +V +VSUB
save Pred

verb compliments
CTHAT L cond -v +THAT

OBJ N cond -v +0 +ROLE
save Obj

PASSEY L cond -V. .0 +PASS
PPEND N cond +ROLE..PREP

save NPmod
PREP L cond +PREP
VREL1 S PREP cond -V. .0-PREP

save Prep

change -AF. .0 -NP
change -AF. .0-NP +PFtEP

change -BE -v -VSTJB

change +S..0 -PASS. .VSUB +NP -DET. .PREP
-RELEND

change -0 -DET. .ROLE

change +NP..HEAD +PREP
change -DET. .PREP

change +DET. .READ
change -THAT +PREP

B. TEST PARSERS 169

noun phrase productions
DET L cond +DET..READ
NAME L cond +DET. .READ
NOUN L cond ?DET +READ

lexprop <nom>
NP N cond -VSUB +NP -PREP

save NP
NPEND N cond +NEND -PREP

save NPmod
REDREL N cond +S..O +REL +GAP
RELCO N cond +0 +NEND -RELEND

change -DET
change -DET. .HEAD +NEND. .ROLE
change -DET..READ +NEND. .ROLE

change -NP +DET. .HEAD

change -DET. .NEND +ROLE

change -S..BE -NP -REL +ROLE -GAP
change +S..O -PASS..VSUB +NP

-DET. .NEND +REL -ROLE. .PREP
+GAP. .RELEND

shutdown
RELEND N cond -S. .0-ROLE -GAP +RELEND change -DET. .REL

returnup
RELRO N cond -S. .0 +NEND -GAP change +S..O -PASS. .VSUB +NP

-DET. .NEND +REL -ROLE. .PREP
+GAP

questions
NGAP N cond +NP ?DET. .HEAD -REL +GAP change -NP. .REL +ROLE -GAP
WH L cond +S -GAP change -NP +GAP

save Topic

Non-lexical Ordering: SUBJ QUES TENS IMP PROG PASS PPEND 0]3J NP NPEND
RELRO RELCO REDREL RELEND NGAP

Paradigms:

AM $ <sg:pres:first>

ARE $ <pres:pl pres:second>

BE ing <prespart>
en <pastpart>
$ <inf>

BED s <nom third:pl>
$ <nom third:sg>

BODY ies <nom third:pl>
y <ibm third:sg>

BOX es <ibm third:pl>
$ <nom third:sg>

BUILT ding <prespart>
ds <pres:third:sg>
d <inf pres:first pres:pl pres:second>
t <past pastpart>

B. TEST PARSERS 170

Do oing <prespart>
oes <pres:third:sg>
id <past pastpart>
o <inf pres:first pres:pl pres:second>

FaLL a <inf pres prespart>
e <past pastpart>

FALLen ing <prespart>
en <pastpart>
s <pres:third:sg>
$ <first inf past p1 second>

FiND on <past pastpart>
i <inf pres prespart>

FINDing ing <prespart>
s <pres:third:sg>
$ <first inf past pastpart p1 second>

FLy ying <prespart>
ies <pres:third:sg>
own <pastpart>
ew <past>
y <inf pres:first pres:pl pres:second>

GiVen lying <prespart>
ives <pres:third:sg>
iven <pastpart>
ive <inf pres:first pres:pl pres:second>
ave <past>

IS $ <pres:third:sg>

LOVE ing <prespart>
ed <past pastpart>
es <pres:third:sg>
e <jul pres:first pres:pl pres:second>

PULL ing <prespart>
ed <past pastpart>
s <pres:third:sg>
$ <inf pres:first pres:pl pres:second>

SHEEP $ <nom third>

SiT i <inf pres prespart>
a <past>

TT t <prespart>
$ <inf pastpart prespart>

WAS ere <past:pl second:past>
s <sg:past:first third:past:sg>

Lexicon:
prepositions
by
from
in
on
past

B. TEST PARSERS

cat VREL1 PP PREP PASSBY
cat VREL1 PP PREP
cat VREL1 PP PREP
cat VREL1 PP PREP
cat VREL1 PP PREP

morph 'by'
morph 'from'
morph 'in'
morph 'on'
morph 'past'

common nouns
arrow cat NOUN morph 'arrowJ3ED_'
barn cat NOUN morph 'barn-BED..'
block cat NOUN morph 'blockBED_'
box cat NOUN morph 'boxJ3OXJ
Rower cat NOUN morph 'flower..BEDJ
horse cat NOUN morph 'horse_BED_'
sheep cat NOUN morph 'sheepSHEEP_'
table cat NOUN morph 'table.LBED_'
noun/verbs
fly cat NOUN INTRAN TRANS V

like

love

race

time

verbs
be

cat VREL1 PP PREP NOUN TRANS V

cat NOUN TRANS V

cat TRANS INTRAN V NOUN

cat TRANS INTRAN V NOUN

borrow
fall
find
open
receive
sit
think

cat BE

cat TRANS V
cat INTRAN V
cat TRANS V
cat TRANS INTRAN V
cat TRANS V
cat INTRAN V
cat THAT.. TRANS V

morph 'fLFLy_'
m 'fLBODYJ
morph 'like...BED_'
m 'lik..LOVE..'
morph 'loveBED_'
m 'IovLOVEJ
morph 'race_BED_'
m 'rae_LOVE..'
morph 'tim.LOVE'
m 'time-BED'

morph 'wWAS_'
m 'be ..BE'
M 'isJS_'
m 'am_AM_'
m 'areARE_'
morph 'borrowPULL'
morph 'LFaLLJLFALLenJ
morph 'fYiND_ndFINDing_'
morph 'openPULL'
morph 'receivLOVE'
morph 's.SiTtTT_FINDing'
morph 'think_PULL_'

171

B. TEST PARSERS 172

wh words
what cat WH morph 'what'
who cat WH morph 'who'
punctuation

cat CLOSE morph '.'

? cat CLOSE morph'?'
adjectives
fat cat CADJ morph 'fat'
heavy cat CADJ morph 'heavy'
red cat CADJ morph 'red'

names
George cat NAME morph 'george_BED_'
Martha cat NAME morph 'marth&BED_'
Mary cat NAME morph 'mary.BED..'
determiners

a cat DET morph 'a'
an cat DET morph 'an'
that cat DET CTHAT morph 'that'
the cat DET morph 'the'

(46) *The horse raced past the barn fell.

Initializing state to:

N NP 1
L DET ++++++ + 1 the <>
L NOUN ++++++ +++--- 1 horse <nom sg:third>
N NPEND ++++++
N TENS +---++
NSUBJ -----++ 1
S TRANS ----++--++ 1
S INTItAN ----+---++ 1
L V + 1 race <past pastpart>
S VREL1 + +-- 1
L PREP +++----+-- 1 past <>
L DET +-+---+-- 1 the <>
L NOUN +--++-i-+-- 1 barn <nom sg:third>
S INTRAN 1

<< Backtracking >> using Word state now
NPPEND + 1

NNP ++ 1

<< Backtracking >> using NP1 state now

<< Backtracking >> using NPmodl state now
N RELRO ------------------ 1
N NP 1

+--++++-- clause level: 1

+ clause level: 1

--------- clause level: 1

<< Backtracking >> using NP1 state now -i-+++++---+---+--+- clause level: 1
N REDREL ---+++ -'---- 1

B. TEST PARSERS 173

<< Backtracking >> using Prepl state now +

NNP ++ 1

<< Backtracking >>

<< Backtracking >>

<< Backtracking >>

<< Backtracking >>

clause level: 1

using NP1 state now + clause level: 1

using Predi state now ----+---++ clause level: 1

using Subji state now +----i-+ ++--- clause level: 1

using Tensel state now ++++++ ++--- clause level: 1

<< Backtracking Failed >>
Parse completed.
Ungrammatical Input

(47) Is the block on the table red?

Initializing state to:

N QUES +-+-++ 1
L BE +--++i----+ 1 be <sg:third:pres>
N NP +--+++----++ 1
L DET +--+++ + 1 the <>
L NOUN +--+++ +++--- 1 block <nom sg:third>
N SUBJ
SPP
L PREP ++---+-- 1 on <>
LDET

L NOUN 1 table <nom sg:third>
NPPEND 1

<< Backtracking >> using NPmodl state now
N RELRO ++++++---+---+-..+- 1
N NP 1

++++-- clause level: 1

<< Backtracking >> using NP1 state now -i-+++++----+---+---I-- clause level: 1
N REDREL ---+++ +--- 1
L CADJ -I----- 1 red <>

<< Backtracking >> using Word state now

<< Backtracking >> using Prepl state now ------

<< Backtracking >> using Subji state now ------
N NPEND +--+++ ++--- 1

<< Backtracking >> using NPmodl state now +--+++

N RELCO 2
N NP 2

 +---. clause level: 1

 clause level: 1

-H+ clause level: 1

+++--- clause level: 1

B. TEST PARSERS 174

<< Backtracking >> using NP2 state now clause level: 2
N REDREL .--.-+++ +--+ 2
S PP
L PREP 2 on <>
L DET +--++-+ 2 the <>
L NOUN ++++-+ 2 table <nom sg:third>
NPPEND +2
N RELEND +---+++ i---- 1
N SUBJ ----+++ 1
L CADJ 1 red <>
I CLOSE ++++++---+ 1? <>
Successful Parse

QUES:BE:be; NP:DET:the; NOUN:block; RELCO:REDREL:PP:PREP:on; DET:the;
NOUN:table; PPEND:RELEND:SUBJ:CADJ:red; CLOSE:?;

<< Backtracking >> using Word state now clause level: I

<< Backtracking >> using Subji state now +--+++ +--- clause level: 1

<< Backtracking >> using NPmod2 state now
N RELRO ++++++---+---+--++ 2
N NP ++++++----++-+--++ 2

++++-+ clause level: 2

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2
N REDREL ---+++ +--+ 2
L CADJ +--+ 2 red <>

<< Backtracking >> using Word state now

<< Backtracking >> using Prep2 state now ---+++

<< Backtracking >> using Tensel state now ++++++---+
NIMP ----++---+ 1
N NP ------------

<< Backtracking >> using NP1 state now ----------

+--+ clause level: 2

 +--+ clause level: 2

 clause level: 1

<< Backtracking >> using Tensel state now ++++++----+
N NP ++++++----++ 1

<< Backtracking >> using NP1 state now ++++++---+

<< Backtracking Failed >>
Parse completed.

(48) Is the block on the table?

clause level: 1

 clause level: 1

clause level: 1

B. TEST PARSERS 175

Initializing state to: ++++++•---+

N QUES +-+-++ 1
L BE 1 be <sg:third:pres>
N NP 1
L DET +--+++ + 1 the <>
L NOUN +++--- 1 block <nom sg:third>
N SUBJ ---+++ 1
SPP
L PREP ++---+-- 1 on <>

L DET +---+-- 1 the <>
L NOUN ++++-- 1 table <nom sg:third>
NPPEND 1
I CLOSE ++++++---+ 1? <>
Successful Parse
QTJES:BE:be; NP:DET:the; NOUN:block; SUBJ:PP:PREP:on; DET:the; NOUN:table;
PPEND:CLOSE:?;

<< Backtracking >> using NPmodl state now
N RELRO 1
N NP ++++++----++-+--+- 1

++++-- clause level: 1

<< Backtracking >> using NP1 state now ++++++---+---+--+- clause level: 1
N REDREL ---+++ +--- 1

<< Backtracking >> using Word state now -i-+++--- clause level: 1

<< Backtracking >> using Prepl state now ----+++ clause level: 1

<< Backtracking >> using Subjl state now +--+++ +++--- clause level: 1
N NPEND +--+++ ++--- 1

<< Backtracking >> using NPmodl state now +--+++
N RELCO ++++++---+---+--++ 2
N NP 2

+++--- clause level: 1

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2
N REDREL ----i-++ +--+ 2
SPP
L PREP ++--++--i- 2 on <>

L DET +--++-+ 2 the <>
L NOUN ++-'-+-+ 2 table <nom sg:third>
NPPEND +2
N RELEND +---++ +--- 1
N SUBJ ---+++ 1

<< Backtracking >> using Subji state now +--+++ +--- clause level: 1

<< Backtracking >> using NPmod2 state now ++++-+ clause level: 2
N RELRO ++++++---+---+--++ 2

B. TEST PARSERS 176

N NP 2

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2
N REDREL ---+++ +--+ 2

<< Backtracking >> using Word state now ++++-+ clause level: 2

<< Backtracking >> using Prep2 state now ---+++ +--+ clause level: 2

<< Backtracking >> using Tensel state now ++++++---+
N IMP 1
N NP ------------

<< Backtracking >> using NFl state now ----------

<< Backtracking >> using Tensel state now
N NP 1

<< Backtracking >> using NFl state now ++++++---+

<< Backtracking Failed >>
Parse completed.

(49) Time flies like an arrow.

Initializing state to: ++++++---+

N QUES +-+.-++ 1

<< Backtracking >> using Tensel state now ++++++---+
NIMP ----++---+ 1
S TRANS ----++--++ 1
S INTRAN -----+---++ 1
L V + 1 time <nom sg:third>
S INTRAN ++ 1
S TRANS ++ 1

clause level: 1

clause level: 1

 clause level: 1

clause level: 1

clause level: 1

<< Backtracking >> using Word state now + clause level: 1
NNP ++ 1
L NOUN +++--- 1 fly <nom third:pl>
S VREL1 ++++-- 1
L PREP ++++++-- 1 like <ibm sg:third>
L DET +++++-- 1 an <>
L NOUN ++++-- 1 arrow <ibm sg:third>
NPPEND 1
I CLOSE 1.
Successful Parse
IMP:TRANS:INTRAN:V: time; NP:NOUN:fly; VREL1:PREP:like; DET: an; NOUN: arrow;
PPEND:CLOSE:.;

B. TEST PARSERS 177

<< Backtracking >> using NPmodl state now
N RELRO ++++++---+-.--+--+- 1
N NP ++++++----++-+--+- 1

...... clause level: 1

<< Backtracking >> using NP1 state now ++++++---+---+---+- clause level: 1
N REDREL ----+++ +--- 1

<< Backtracking >> using Word state now

<< Backtracking >> using Prepi state now
S TRANS ++--+++--- 1

++++-- clause level: 1

<< Backtracking >> using Predi state now ----------

+++--- clause level: 1

<< Backtracking >> using Tensel state now ++++++---+
N NP 1
L NOUN ++++++ +++--- 1 time <nom sg:third>
N NPEND +++++.
N TENS +---++

NSUBJ ----++ 1
S INTRAN ----+---- 1
S TRANS ----------

L V +

S VREL1 +

L PREP
LDET
L NOUN
N PPEND

 1 fly <nom third:pl>
+ 1

+++'---+ 1 like <nom sg:third>
+-+---+ 1 an <>
+--++++ 1 arrow <nom sg:third>
+ 1

clause level: 1

clause level: 1

I CLOSE ++++++---+ 1.
Successful Parse
NP:NOTJN:time; NPEND:TENS:SUBJ:INTRAN:TRANS:V:fly; VREL1:PREP:like; DET:czn;

NOUN:ctrrow; PPEND:CLOSE:.;

<< Backtracking >> using NPmodl state now
N RELRO 1
N NP 1

--------- clause level: 1

<< Backtracking >> using NP1 state now ++++++---+----i----i-- clause level: 1
N REDREL ---+++ +--- 1

<< Backtracking >> using Word state now +--+-'--'--i--- clause level: 1

<< Backtracking >> using Prepi state now + clause level: 1
S TRANS ++ 1

<< Backtracking >> using Predi state now ----------

<< Backtracking >> using Subji state now ------

<< Backtracking >> using Tensel state now ++++++

clause level: 1

++--- clause level: 1

++--- clause level: 1

B. TEST PARSERS 178

<< Backtracking Failed >>
Parse completed.

(50) Borrow flies like an arrow.

Initializing state to: 4-+++++---+

N QUES +-+-++ 1

<< Backtracking >> using Tensel state now ++++++---+ clause level: 1
N IMP ----++-..---+ 1
S TRANS ---.--++--++ 1
L V 1 borrow <inf pres:flrst pres:pl pres:second>
S INTRAN ++ 1
S TRANS ++ 1

<< Backtracking >> using Word state now clause level: 1
N NP 1
L NOUN + +++--- 1 fly <nom third:pl>
S TRANS ------------- 1

<< Backtracking >> using Word state now + +++--- clause level: 1
NOBJ 1
S VREL1

L PREP ++----+-- 1 like <nom sg:third>
L DET +---+-- 1 an <>
L NOUN ++++-- 1 arrow <nom sg:third>
NPPEND 1
I CLOSE 1.

Successful Parse
IMP:TRANS:V:borrow; NP:NOUN:fiy; OBJ:VREL1:PREP:like; DET: an; NOUN: arrow;
PPEND:CLOSE:.;

<< Backtracking >> using NPmodl state now
N RELRO ++++++---+---+--+- 1
N NP 1

++++-- clause level: 1

<< Backtracking >> using NP1 state now ++++++---+---+---+- clause level: 1
N REDREL ---+++ +--- 1

<< Backtracking >> using Word state now ++++-- clause level: 1

<< Backtracking >> using Prepl state now clause level: 1

<< Backtracking >> using Objl state now + +++--- clause level: 1
N NPEND + ++--- 1

<< Backtracking >> using NPmodl state now + +++--- clause level: 1
N RELCO ++++++---+---+--++ 2

B. TEST PARSERS 179

N NP ++++++----++-+--++ 2
L NOUN ++++++ +++--++ 2 like <nom sg:third>
N NPEND +++++. ++-++ 2
N REDREL --.-.+++ +--+ 2

<< Backtracking >> using NPmod2 state now ++++++ +++-++ clause level: 2
N REDREL ----+++ +-+--+ 2

<< Backtracking >> using Word state now ++++++ +++-++ clause level: 2

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2
N REDREL ----+++ +--+ 2
S PP
L PREP ++--++-+ 2 like <nom sg:third>
L DET +--++-+ 2 an <>
L NOUN ++++-+ 2 arrow <nom sg:third>
NPPEND +2
N RELEND + i---- 1
NOBJ 1
I CLOSE ++++++---+ 1.
Successful Parse
IMP:TRANS:V:borrow; NP:NOTJN:fly; RELCO:REDREL:PP:PREP:like; DET:an;

NOtJN:arrow; PPEND:RELEND:OBJ:CLOSE:.;

<< Backtracking >> using Obji state now + +--- clause level: 1

<< Backtracking >> using NPmod2 state now
N RELRO 2
N NP 2

++++-+ clause level: 2

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2
N REDREL ---+++ +--+ 2

<< Backtracking >> using Word state now ++++-+ clause level: 2

<< Backtracking >> using Prep2 state now ---+++ +--+ clause level: 2

<< Backtracking >> using Predl state now ----++---I--l- clause level: 1

<< Backtracking >> using Tensel state now ++++++---+ clause level: 1
N NP 1

<< Backtracking >> using NP1 state now +++-H-+-- -+ clause level: 1

<< Backtracking Failed >>
Parse completed.

B. TEST PARSERS 180

Three other of Blank's parsers were implemented using my RV development envi-

ronment. However, These are too large to include. They are named agree, jul90, and

apr92, and are available from the author or Blank's FTP site (pluto.csee.lehigh.edu)

as part of the file /rvg/sun4.tar.Z.

APPENDIX C

Vocabulary Acquisition Test

This Appendix details the lexicon used to test the vocabulary acquisition mechanism

(see § 9.3).

C.I. Test Lexicon

Paradigms:
BED $ <sg>

S <pl>

FOXES $ <sg>
es <p1>

SHEEP $ <sg p1>

NOPLUR $ <sg>

PULL s <pres3 p1>
ed <past pastpart>
ing <prespart>
$ <inf pres sg>

LOVE e <inf pres sg>
ed <past pastpart>
ing <prespart>
es <pres3 p1>

BUILD d <inf pres pres3 prespart>
t <past pastpart>

CAST s <pres3 p1>
ed <past>
ing <prespart>
$ <inf pres sg pastpart>

181

C. VOCABULARY ACQUISITION TEST 182

Do o <pres inf>
id <past pastpart>
oing <prespart>
oes <pres3>

DRESS $ <inf pres sg>
es <pres3 p1>
ed <past pastpart>
ing <prespart>

GiVE i <sg p1 inf pres pres3 prespart pastpart>
a <past>

GIVen e <mi pres past>
es <pres3>
en <pastpart>
ing <prespart>

FaLL a <sg p1 ml pres pres3 prespart>
e <past pastpart>

FALLen $ <pres3>
en <pastpart>
ing <prespart>
$ <ml pres past>

FIND i <sg p1 ml pres pres3 prespart>
ou <past pastpart>

FINDIng s <pres3 p1>
ing <prespart>
$ <ml pres past pastpart sg>

FLy y <ml pres prespart sg>
ie <pres3 p1>
ew <past>
own <pastpart>

HAve ye <pres inf>
s <pres3>
d <past pastpart>
ving <prespart>

KNeW o <ml pres pres3 pastpart prespart>
e <past>

C. VOCABULARY ACQUISITION TEST 183

KNOWn s <pres3>
n <pastpart>
ing <prespart>
$ <inf pres past>

MAdE ke <inf pres>
kes <pres3>
de <past pastpart>
king <prespart>

SiNG i <inf pres pres3 prespart>
a <past>
0 <sg p1>
u <pastpart>

SiT i <inf pres pres3 prespart>
a <past>

SLeeP ee <pres3 ml pres sg p1>
e <past>

SLEPt t <past>
$ <pres3 p1>
ing <prespart>
$ <inf pres sg>

MoD an <sg p1 ml pres pres3 prespart>
oo <past pastpart>

TaKE a <sg p1 ml pres pres3 prespart pastpart>
oo <past>

TAKe e <sg ml pres>
<past>

ing <prespart>
en <pastpart>
es <pres3>

TRy y <inf pres sg>
ies <pres3 p1>
ied <past pastpart>
ying <prespart>

WRoTE i <inf pres pres3 prespart pastpart>
o <past>

NN n <pastpart prespart>
$ <pres3 ml pres past pastpart prespart sg p1>

C. VOCABULARY ACQUISITION TEST 184

TT t <pastpart prespart>
$ <pres3 inf pres past pastpart prespart sg p1>

IforY i <pres3 past pastpart p1>

y

be be
are
is
was
were
been
being

<inf pres prespart sg>

<inf>
<pres>
<pres3>
<past>
<past>
<pastpart>
<prespart>

LOG $ <bc>

Modal $ <past>

Gen s <sg>
$ <pi>

Lexicon:
Common NOUNs
activity cat NOUN
area
arrow
assembler
assembly
barn
bibliography
bird
book
body
boy
box
block
bucket
candy
chapter
chess
command
concept
communication
completeness
computer
context
cpu
data

cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN
cat NOUN

morph activitlforY_FOXES_
morph area-
BED-morph arrow-

BED-morph assembler-BED-

morph assemblJforY.SOXES..
morph barn-

BED-morph bibliographlforY._FOXES_

morph bird-
BED-morph book-

BED-morph bodlforY..JOXES.
morph boyJ3ED.
morph box-
FOXES-morph block-
BED-morph bucket-

BED-morph candJforYFOXES.

morph chapter-
BED-morph chess-
FOXES-morph command-

BED-morph concept-
BED-morph communication-

BED-morph completeness.NOPLUR.
morph computer-
BED-morph contexLBED_

morph cpuJ3ED...
morph data-SHEEP-

C. VOCABULARY ACQUISITION TEST 185

destination cat NOUN morph destination—
BED-detail cat NOUN morph detail—
BED-direction cat NOUN morph direction—
BED-directive cat NOUN morph directive—

BED-entry cat NOUN morph entrJforY_FOXES_

ethernet cat NOUN morph ethernet—
BED-exercise cat NOUN morph exercise—

BED-field cat NOUN morph field—
BED-forest cat NOUN morph forest—

BED-form cat NOUN morph form—
BED-fox cat NOUN morph fox—

FOXES-ghost cat NOUN morph ghost—
BED-grammar cat NOUN morph grammar—

BED-guide cat NOUN morph ghost—
BED-history cat NOUN morph historJforY....FOXES

horse cat NOUN morph horse..BED.
howto cat NOUN morph howtoJ3ED..
insight cat NOUN morph insight—
BED-instruction cat NOUN morph instruction—

BED-intelligence cat NOUN morph intelligence—

BED-knowledge cat NOUN morph knowledge..NOPLUEL
language cat NOUN morph language—
BED-linguistics cat NOUN morph linguistics..NOPLUR.

literature cat NOUN morph literature—
BED-load cat NOUN morph load—
BED-location cat NOUN morph location—
BED-manipulation cat NOUN morph manipulation—

BED-material cat NOUN morph materiaLBED_

mechanism cat NOUN morph mechanism—
BED-machine cat NOUN morph machine—

BED-memory cat NOUN morph memorJforYYOXES...

mind cat NOUN morph mind—
BED-mouse cat NOUN morph mouse—
BED-name cat NOUN morph name—
BED-network cat NOUN morph network-BED-

newcomer cat NOUN morph newcomer—
BED-operand cat NOUN morph operand—

BED-packet cat NOUN morph packet—
BED-performance cat NOUN morph performance—

BED-pen cat NOUN morph pen—
BED-people cat NOUN morph people—
BED-person cat NOUN morph person—
BED-perspective cat NOUN morph perspective—
BED-plane cat NOUN morph plane—
BED-pointer cat NOUN morph pointer . BED_
purpose cat NOUN morph purpose_BED_
pseudoop cat NOUN morph pseudoop_BED_
question cat NOUN morph question—

BED-reading cat NOUN morph readingBED.

C. VOCABULARY ACQUISITION TEST 186

recognition c
reference c
robot c
room c
science c
source c
sequence c
statement c
station c
step c
storage c
student c
suggestion c
symbol c
system c
table c
task c
technique c
text c
thought c
transport c
tree c
variety c
year c

Nouns/ Verbs
access
address
allow
apply
approach
assign
attempt
base
begin
believe
broadcast
build
building
call
carry
chase
code
communicate
concern
deal
decide
describe
develop

at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN
at NOUN

morph recognition—
BED-morph reference—

BED-morph robot—
BED-morph room—
BED-morph science—
BED-morph source—
BED-morph sequence—

BED-morph statement—
BED-morph station—
BED-morph step—
BED-morph storage—
BED-morph student—

BED-morph suggestion—
BED-morph symbol—

BED-morph system—
BED-morph table—
BED-morph task—
BED-morph technique—

BED-morph text—
BED-morph thought—

BED-morph transport—
BED-morph tree—

BED-morph variet1forYYOXES_

morph year— BED-

cat NOUN #trans
cat NOUN #trans
cat #trans
cat #trans
cat NOUN #trans
cat #bitrans #trans
cat INF. V
cat #trans
cat #trans
cat TRANS THAT... V
cat #trans NOUN
cat #trans
cat NOUN
cat #bitrans V
cat #trans
cat #trans NOUN
cat NOUN #trans
cat INTRANS V
cat #trans
cat INTRANS V
cat INTRANS INF THAT... V NOUN
cat #trans
cat #trans

morph
morph
morph
morph
morph
morph
morph
morph bas—
LOVE-morph begSiNG..nJ'TN.FINDing.

morph believLOVE.
morph broadcast—
CAST-morph buiLBUILDYINDing..

morph building—
.BED-morph call—

PULL-morph carr_TRy_

morph chas.LOVE..
morph cod—
LOVE-morph communicaLLOVE.

morph concern—
PULL-morph deal-PULL-

morph decid..LOVK.
morph describ_LOV&.
morph develop..PULL.

access_DRESS_
address.DRESS_
allowPULL..
appl_TRy_
approach_DRESS_
assignPULL..
attempt.PULL.

C. VOCABULARY ACQUISITION TEST 187

design
desire
draw
distribute
estimate
execute
fall
find
fly
focus
follow
gain
go
graduate
guide
hate
help
identify
include
introduce
involve
issue
kick
know
label
limit
like
like
line
love
master
mean
model
motivate
move
obtain
organize
outline
perform
point
process
program
provide
produce
put
race
read
represent

cat #trans
cat #trans NOUN
cat INTRANS V
cat #trans
cat #trans
cat TRANS INTRANS V
cat INTRANS V
cat #trans
cat INTRANS #trans NOUN
cat NOUN #trans
cat #trans
cat #trans
cat INTRANS V
cat NOUN #trans
cat NOUN #trans
cat #trans
cat TRANS INF V NOUN
cat &trans
cat #trans
cat #trans
cat #trans
cat NOUN #trans
cat TRANS V
cat TRANS INTRANS THAT INK. V
cat NOUN #trans
cat NOUN #trans
cat #prep
cat #trans
cat NOUN #trans
cat #trans
cat NOUN #trans
cat NOUN #trans
cat NOUN #trans
cat #trans
cat NOUN TRANS INTRANS V
cat #trans
cat #trans
cat NOUN #trans
cat #trans
cat NOUN #trans
cat NOUN TRANS INTRANS V
cat NOUN #trans
cat #trans
cat #trans
cat #trans
cat INTRANS #trans
cat #trans
cat #trans

morph design-
PULL-morph desir.LOVE_

morph draw-
PULL-morph distribut_LOVK.

morph estimaLLOVE_
morph execuLLOVE.
morph LFaLLJLFALLen..
morph fFiNDnd..FINDing
morph LFLy.FINDing..
morph focus-

PULL-morph follow-
PULL-morph gain-
PULL-morph go-PULL-

morph graduat_LOVE_
morph guid.LOVEL
morph hat-

LOVE-morph help-

PULL-morph identif_TRy_

morph includ..LOVE..
morph introduc...LOV&.
morph involv..LOVE..
morph issu..LOVE.
morph kick-
PULL-morph knJCNeWwJ(NOWn

morph label-
PULL-morph limit-

PULL-morph like..LOC_

morph likl,OVE_
morph lin.1,OVE..
morph lov.LOVE..
morph master-
PULL-morph mean-
PULL-morph model-

PULL-morph motivaLLOVE_

morph mov.LOVE
morph obtain-

PULL-morph organiz.IOVE.

morph outlin..LOV&.
morph perform-

PULL-morph point-
PULL-morph process-

DRESS-morph program-

PULL-morph providJOVE.

morph produc.LOVE_
morph puLTThFINDing...
morph rac_LOV&.
morph read-
PULL-morph represent-PULL-

can
may
do
be
will
would
haveAux
have

prepositions
about
among
as
for
from
in
into

cat #prep
cat #prep
cat #prep
cat #prep
cat #prep
cat #prep
cat #prep

C. VOCABULARY ACQUISITION TEST 188

require
say
set
speak
squeak
sigh
sing
sit
sleep
structure
study
supplement
switch
think
time
try
translate
understand
understanding
use
want
work
write

cat #trans
cat INTRANS TRANS THAT V
cat #trans
cat #trans
cat INTRANS V
cat INTRANS V

cat
cat
cat
cat
cat
cat
cat
cat
cat
cat
cat
cat
cat
cat
cat
cat
cat

morph requir.LOVE_
morph say-

PULL-morph set_TTFINDing...

morph speak-PULL..
morph squeak-
PULL-morph sigh-PULL-

INTRANS TRANS #bitrans V
INTRANS V
INTRANS V

trans
NOUN #trans
#trans NOUN
#bitrans V
trans

NOUN #trans
INTRANS #trans
trans
#trans
NOUN
NOUN TRANS INF V
TRANS INF V
NOUN #trans
TRANS INTRANS V

Some verbal idioms follow: "give"
give cat #bitrans XO_ XIO_ V
pull cat trans
take cat #trans
make cat #trans
auxiliary verbs
must cat MODAL
should cat MODAL

cat MODAL
cat MODAL
cat DO #trans
cat BE
cat MODAL
cat MODAL
cat HAVE
cat TRANS INK.. V

morph
morph
morph
morph
morph
morph
morph
morph
morph
morph
morph
morph
morph
morph
morph
morph
morph

and some of its idioms...
morph gGiVE..v..GIVen
morph pull-
PULL-morph t...TaK&k..TAKe...

morph maMAd&

morph must-
Modal-morph should-

Modal-morph can-
Modal-morph may-Modal-

morph d_Do_
morph . be.
morph will-
Modal-morph would-

Modal-morph ha.HAve.

morph h&.HAve.

morph abouLLOC_
morph among.LOC
morph a&LOC..
morph for..LOC
morph from..LOC.
morph inJOC.
morph intoIOC..

s.SiNG.ng..FINDing.
s.SiT.LTThFINDing.
sLSLeeP.p.SLEPL
structur_LOVE_
stud.TRy.
supplemenLPULL
switchPULE.
thinkYULL
timJLOV&.
tr...TRy
translat_LOVE_
underst_STooD_d.YINDing
understanding_BED_
us...LOVE
wanLPTJLL.
work..PULL..
wrWRoTE.LTT.GI Yen..

C. VOCABULARY ACQUISITION TEST 189

on cat #prep morph onJOC_
past cat #prep morph pasLLOC.
through cat #prep morph through_LOC
under cat #prep morph under..LOC_

with cat #prep morph with_LOC_
without cat #prep morph withouLLOC_
to cat IOBJ
to cat INF LINF RINF
to cat #prep morph to.LOC_
by cat PASSIVEBY #prep morph byJOC..
of cat OFNP OFOBJ
wh-type words
what cat WH WHDET
which cat WH #rel
who cat WH #rel

negative particles
never cat NEG
not cat NEG
always cat NEG

punctuation marks
• cat CLOSE
? cat CLOSE

cat COMMAO COMMA1 COMMA2
cat GEN morph '_Gen_

adjectives
actual cat ADJ
angry cat ADJ CADJ
artificial cat ADJ CADJ
available cat ADJ CADJ
brief cat ADJ CADJ
broad cat ADJ CADJ
computing cat ADJ
computational cat ADJ CADJ
cognitive cat ADJ CADJ
different cat ADJ CADJ
digital cat ADJ CADJ
extensive cat ADJ CADJ
further cat ADJ
fat cat ADJ CADJ
heavy cat ADJ CADJ
human cat ADJ CADJ
large cat ADJ CADJ
later cat ADJ
linguistic cat ADJ CADJ
local cat ADJ CADJ
mental cat ADJ CADJ
natural cat ADJ CADJ
next cat ADJ CADJ
other cat ADJ

C. VOCABULARY ACQUISITION TEST 190

particular cat ADJ CADJ
practical cat ADJ CADJ
pragmatic cat ADJ CADJ
purple cat ADJ CADJ
proverbial cat ADJ CADJ
receiving cat ADJ
relevant cat ADJ CADJ
red cat ADJ CADJ
safe cat ADJ CADJ
same cat ADJ CADJ
small cat ADJ CADJ
smart cat ADJ CADJ
symbolic cat ADJ CADJ
subsequent cat ADJ
rulegoverned cat ADJ CADJ
useful cat ADJ CADJ
wide cat ADJ CADJ
Other categories of adjective
aware cat CADJOF
English cat NOUN ADJ
major cat NOUN ADJ
names
George cat NAME morph georgeJ3ED_
Martha cat NAME morph martha.BED..
Mary cat NAME morph mary.BED..
articles
a cat INDEF
an cat INDEF
any cat DEF
each cat DEF
the cat DEF
this cat PRON DEF
these cat PRON DEF
that cat CTHAT #rel PRON DEF
there cat THERE
how cat THERE
pronouns
I cat PRON
you cat PRON
he cat PRON
she cat PRON
it cat PRON
we cat PRON
they cat PRON
me cat PRON
him cat PRON
us cat PRON
them cat PRON
my cat GENPRON
your cat GENPRON

C. VOCABULARY ACQUISITION TEST 191

his cat GENPRON
her cat GENPRON
its cat GENPRON
our cat GENPRON
their cat GENPRON
numbers
single cat NUMBER
many cat NUMPRON NUMBER
some cat NUMPRON NUMBER
much cat NUMPRON NUMBER
several cat NUMBER
two cat NUMBER
four cat NUMBER
forty cat NUMBER
adverbs
also cat ADV
directly cat ADV
easily cat ADV
heavily cat ADV
locally cat ADV
however cat ADV
conjunctions
and cat CONJO
but cat CONJO
since cat CONJO

C.2. Sentence Testbed

What follows is a list of the test sentences from Appendix G of Efficient Parsing

for Natural Language (Tomita, 1987).

(51) The assembly language provides a means for writing a program without

having to be concerned with actual memory addresses.

(52) It allows the use of symbolic codes to represent the instructions.

(53) Labels can be assigned to a local instruction step in a source program to

identify that step as an entry point for use in subsequent instructions.

(54) Operands which follow each instruction represent storage locations.

(55) The assembly language also includes assembler directives that supplement

the machine instruction.

(56) A packet is a statement which is not translated into a machine instruction.

C. VOCABULARY ACQUISITION TEST 192

(57) A program written in assembly language is called a source program.

(58) It consists of symbolic commands called statements.

(59) Each statement is written on a single line, and it may consist of four entries.

(60) The source program is processed by the assembler to obtain a machine

language program that can be executed directly by the CPU.

(61) Ethernet is a broadcast communication system for carrying digital data

packets among computing stations which are locally distributed.

(62) The packet transport mechanism provided by Ethernet has been used to

build systems which can be local computer networks.

(63) Switching of packets to their destinations on the Ethernet is distributed

among the receiving stations using packet address recognition.

(64) A model for estimating performance under heavy tables is included for

completeness.

(65) In writing this book, I had several purposes in mind.

(66) It is a practical book for students who are following graduate work in

computer networks.

(67) It includes instructions identified to allow the student to use a network of

computers.

(68) It is a practical book for people who are building computer systems that

model with natural language.

(69) It is not assigned as a source book, but it provides the practical steps in

data, and it includes an actual outline of English language.

(70) It is a practical source with many directives into the communication of

language.

C. VOCABULARY ACQUISITION TEST 193

(71) I have tried to include a large table of locations to provide students with

digital processes on the network.

(72) Each step includes statements for symbolic processing, and there is a smart

machine.

(73) However, I have tried to limit the references to easily available material.

(74) This is a book about human language.

(75) It is motivated by two questions.

(76) What knowledge must a person have to speak language?

(77) How is the mind organized to make use of this knowledge in communicating?

(78) In looking at language as a cognitive process, we deal with issues that have

been the focus of linguistic study of many years, and this book includes

insights gained from these studies.

(79) We look at language from a different perspective.

(80) In forty years, since digital computers were developed, people have

programed them to perform many activities that we think of as requiring

some form of intelligence.

(81) Our study of the mental processes involved in language draws heavily on

concepts that have been developed in the area called artificial intelligence.

(82) It is safe to say that much of the work in computer science has been

pragmatic, based on a desire to produce computer programs that can

perform useful tasks.

(83) The same concept of program can be applied to the understanding of any

system which is executing processes that can be understood as the

rulegoverned manipulation of symbols.

C. VOCABULARY ACQUISITION TEST 194

(84) The next chapter sets the computational approach into the context of other

approaches by giving a brief history of the major directions in linguistics.

(85) In performing a mental task like deciding on a chess move, we are aware of

going through a sequence of thought process.

(86) Draw.

(87) Do it.

(88) I have a pen.

(89) I must not do that.

(90) Time flies like an arrow.

APPENDIX D

UNIX File Management Parser

Boundaries: Clause NP NPmod Obj Pred Prep Subj Tense Topic

Ordering Features: SENT S TENS BE AF V 0 PASS THAT VSUB NP DET HEAD NENJJ
REL ROLE PREP GAP RELEND

Default cond: -NP. .DET

Properties: <first second third>
<p1 sg>
<past pres>
imperative inf nom pastpart pp prespart

Semantic Roles: inh subj obj dat - rell rel2

Productions:
clausal
BE L cond +BE -AF ?NP -HEAD

change -BE +AF +NP
Tense new
Tense = lex

CLOSE I cond -S. . 0 ?NP -HEAD -ROLE -GAP. .RELEND
change +SENT..O -PASS. .VSUB +NP -DET..RELEND

IMP N cond +TENS ?NP -HEAD -REL -GAP
change -S. .AF
lexprop <inf>
save Tense
Pred agree lex
Pred addprop <imperative>

PASS N cond -S -BE +AF. .V ?NP -HEAD
change -AF -0 +PASS -NP
lexprop <pastpart>

PROG N cond -S -BE +AF. .V -PASS ?NP -HEAD
change -AF +NP
lexprop <prespart>

QUES N cond +TENS ?NP -HEAD -REL. .ROLE
change -TENS -AF -NP
lexprop <past pres>
save Tense

195

D. UNIX FILE MANAGEMENT PARSER 196

S N cond +SENT ?NP..DET
change -SENT
Pred new
Main := Pred
Clause := Main

SUBJ N cond +S -TENS ?NP -HEAD +ROLE
change -S -DET. .ROLE
save Subj
Subj NP
Subj agree Pred
NPmod := Subj

TENS N cond +TENS ?NP -HEAD..NEND +ROLE
change -TENS. .AF
lexprop <past pres>
save Tense
Pred agree lex

verb subcategories
INTRAN S V cond -S -PASS ?NP -HEAD

change -O +VSUB
THAT S V cond -S ?NP -HEAD

change +THAT. .VSUB
TRANS S V cond -S ?NP -HEAD

change +VSUB. .NP
verbs and predicates
CADJ L cond -S -BE +AF. .V ?NP -HEAD

change -AF. .0-NP
PP S PREP cond -S..BE +AF..V ?NP -HEAD

change -AF. .0-NP +PREP
save Prep
Prep = lex
NP new

V L cond -S -AF +V +VSUB ?NP -HEAD
change -BE -V -.VSUB
save Pred
Fred = lex
Subj = Pred.subj

verb compliments
CTHAT L cond -V +THAT ?NP -HEAD

change +S. .0-PASS. .VSUB +NP -DET..PREP -RELEND
OBJ N cond -V +0 ?NP -HEAD +ROLE

change -0 -DET. .ROLE
save 0bj
0bj := NP
0bj = Pred.obj
NPmod := 0bj

D. UNIX FILE MANAGEMENT PARSER 197

PASSBY L cond -V..0 +PASS ?NP -HEAD
change +NP. .HEAD +PREP

PPEND N cond ?NP -HEAD +ROLE. .PREP
change -DET. .PREP
save NPmod
NP = Prep.obj
Prep addprop <pp sg:third>
Pred -* Prep

PREP L cond ?NP -HEAD +PREP
change +DET. .HEAD

VREL1 S PREP cond -V. .0 ?NP -HEAD -PREP
change -THAT +PREP
save Prep
Prep = lex
NP new

noun phrase productions

ADJ L cond ?DET +HEAD
change
NP -+ lex

DET L cond ?NP +DET. .HEAD
change -DET

EXT L cond ?NP. .DET +HEAD
change -DET..HEAD +NEND..ROLE
save NPmod
NP = lex

NAME L cond ?NP +DET. .HEAD
change -DET..HEAD +NEND..ROLE

NOISE L cond ?NP..DET
change

NOUN L cond ?NP. .DET +HEAD
change -DET..HEAD +NEND..ROLE
lexprop <ibm>
save NPmod
NP agree lex
NP = lex

NP N cond -VSUB +NP -HEAD -PREP
change -NP +DET. .HEAD
save NP
NP new

NPEND N cond ?NP -HEAD +NEND -PREP
change -DET. .NEND +ROLE
save NPmod

D. UNIX FILE MANAGEMENT PARSER 198

REDREL N cond +S..O ?NP -HEAD +REL +GAP
change -S. .BE -NP -REL +ROLE -GAP
save NP
Subj := Topic

RELCO N cond +0 ?NP -HEAD +NEND -RELEND
change +S. .0-PASS. .VSUB +NP -DET. .NEND +REL -ROLE. .PREP +GAP..RELEND
shutdown

Topic := NP
NP := Topic
Pred new

RELEND N cond -S..O ?NP -HEAD -ROLE -GAP +RELEND
change -DET. .REL
returnup

RELRO N cond -S..O ?NP -HEAD +NEND -GAP
change +S..0 -PASS. .VSUB +NP -DET. .NEND +REL -ROLE. .PREP +GAP
save Clause
Topic := NP
Pred new

questions
NGAP N cond +NP ?DET -REL +GAP

change -NP. ,REL +ROLE -GAP
WH L cond +S ?NP -HEAD -GAP

change -NP +GAP
save Topic

Non-lexical Ordering: S SUBJ QUES TENS IMP FROG PASS PPEND OBJ NP NPEND
RELRO RELCO REDREL RELEND NGAP

Paradigms

AM $ <sg:pres:first>

ARE $ <pres:pl pres:second>

BE ing <prespart>
en <pastpart>
$ <inf>

BED s <nom third:pl>
$ <nom sg:third>

FiND ou <past pastpart>
i <inf pres prespart>

FINDing ing <prespart>
s <sg:third:pres>
$ <first inf past pastpart p1 second>

IS $ <sg:third:pres>

D. UNIX FILE MANAGEMENT PARSER 199

LOVE ing <prespart>
ed <past pastpart>
es <sg:third:pres>
e <inf pres:first pres:pl pres:second>

PULL ing <prespart>
ed <past pastpart>
s <sg:third:pres>
$ <ml pres:first pres:pl pres:second>

WAS ere <past:pl second:past>
s <sg:past:first sg:third:past>

Lexicon
preposition
by
from
in
on

cat VREL1 PP PREP PASSBY
cat VREL1 PP PREP
cat VREL1 PP PREP
cat VREL1 PP PREP

morph 'by'
morph 'from'
morph 'in'
morph 'on'

common noun
extension cat NOUN morph 'extension_BED_'
file cat NOUN morph 'file..BEDJ

noun/verb
like cat VREL1 PP PREP NOUN TRANS V morph 'lik..LOVEJ

m 'like..BED_'
verb
be cat INTRAN V BE

end
find
list
open
show

cat INTRAN V
cat TRANS V
cat TRANS V
cat TRANS INTRAN V
cat TRANS V

morph 'amAM_'
In 'beJ3EJ
M isJS...'
m 'areARE_'
m
morph 'end-PULL.'
morph 'fiND..nd.FINDingJ
morph 'lisLPULLJ
morph 'open.YIJLL.'
morph 'showYULLJ

wh word
what cat WH morph 'what'

punctuation
cat CLOSE morph '.'

? cat CLOSE morph'?'

adjective
all cat ADJ morph 'all'
my cat ADJ morph 'my'

determiner
a cat DET morph 'a'
an cat DET morph 'an'
that cat DET CTHAT morph 'that'
the cat DET morph 'the'

D. UNIX FILE MANAGEMENT PARSER 200

file type adjective
binary
C
compressed
Cplusplus
executable
image
latex
object
smalitalic
Tar
text

file extension
C

cplusplus
im
0

st
tar
tex
txt
z

cat ADJ
cat ADJ
cat ADJ
cat ADJ
cat ADJ
cat ADJ
cat ADJ
cat ADJ
cat ADJ
cat ADJ
cat ADJ

cat EXT
cat EXT
cat EXT
cat EXT
cat EXT
cat EXT
cat EXT
cat EXT
cat EXT

morph 'binary'
morph 'c'
morph 'compressed'
morph 'c++'
morph 'executable'
morph 'image'
morph 'latex'
morph 'object'
morph 'smalltalk'
morph 'tar'
morph 'text'

morph 'c'
morph 'cc'
morph 'im'
morph 'o'
morph 'st'
morph 'tar'
morph 'tex'
morph 'txt'
morph 'Z'

APPENDIX E

File Management Application

This appendix contains the C++ source code for the UNIX file management appli-

cation that uses the RV parser in Appendix D to parse commands.

E.I. Js-client.cc

// NL front end to the is command

I-
/I Dave Asteis 9—sep-92

#include <stream.h>
include <GetOpt.h>

#include "Socket . H"
#include "DirectoryLister.H"
#include "SemEntry . H"

10

mt debug - 0;

void
usage ()
{

fprintf (stderr, "usage: is-client [-d] <hostnaiue> <port>\n");
exit (2);

}

20

void
main (mt argc, char ** argv)
{

DirectoryLister lister;
String sentence;
jut numToRead;

if (argc < 3

201

E. FILE MANAGEMENT APPLICATION 202

usageQ; 30

GetOpt options (argc, argv, "d");
char opt—char;
while ((opt_char = optionsQ) EOF

switch (opt—char) {
case 'd': debug = 1; break;
case '?': usage; break;

}

Socket skt (argv[options.optind], atoi (argvoptions.optind + 1]));

if (debug)
cerr << "Made connection to RV server.\n";

while (1) {
cout << "\nls>";
String::delimiters ("\n");
cin >> sentence;
if (sentence[0] ' • ')
break;

skt.writeString (sentence);
numToRead = skt.readInteger;

if (numToRead == 0)
cout << "I don't understand thatI\n';

else {
if (debug)
cerr << "Reading " << numToRead << " characters from the server.\n";

String command = skt.readString (numToRead);
istream cs (numToRead, (char *)command);
char buffer [1023];
cs.getline (buffer, 1023); // strip off the production trace
SemEntry commandS tructure (cs);
if (debug
commandStructure.printOn (cout);

lister.process (commandStructure);

}
}

}

E.2. DirectoryLister.cc

Directory lister class
Encapsulates NL access to the 'ls' command

I-
II Accepts semantic structures output by the RV— Tools parser.

Il
/I Dave Astels 1O—sep-9

40

50

60

E. FILE MANAGEMENT APPLICATION 203

#include "Set_String.h"
#include "Dictionary. t"
#include "SemEntry . H"

DECLARE—ONCE Dictionary<Set<String>>;

class DirectoryLister {
public:

DirectoryLister (3;
void process (SemEntry & command);

10

private:
void addTypeAndExtension (String & type, String & extension); 20

Set<String> & whatls (String & fname);
void listFilesOfType (String & type);

Dictionary<Set<String>> typeToExtension;
Dictionary<Set<String>> extensionToType;

II ##

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%

extern hit debug;

DirectoryLister: :DirectoryLister (3
{
/1 typeTo.&ctension["tevt"]. add ("txt");

typeToErtension["text"]. add ("tex");

}

void
DirectoryLister: :process (SemEntry & command)

{
String & verb = command.getNameQ;
if (verb == "list" I verb == "show") {
Set<String> extensions;
Dictionary<SemEntry> & fileMods = command["obj "].getRolesQ;
for (Dictionarylterator i (fileMods); iQ; i++) {

String type = ((SemEntry *)i() - >get_value(3) —>getName(3;
if (typeToExtension.contains (type)

listFilesOfType (type);

}
}
else if (verb == "end") {

String type = (command[" subj "]) ["modi"] .getNameQ;

30

40

50

E. FILE MANAGEMENT APPLICATION 204

String ext = (command["modl"]) [" obj "].getNameQ;
addTypeAndExtension (type, ext);

60

}

void
DirectoryLister: :addTypeAndExtension (String & type, String & extension)

{
if (debug) 70

cerr << "Adding type (" << type << ") and extension (" << extension <<

if (!typeToExtension[type].contains (extension))
typeToExtension [type] .add (extension);

if (!extensionToType[extension] .contains (type))
extensionToType[extension] .add (type);

Set<String> &
DirectoryLister: :whatls (String & fname)

{
}

void
DirectoryLister: :listFilesOfType (String & type)

{

}

")\n";

80

String IsCommand = "is to; 90

for (Vectorlterator<String> vi (typeToExtension[type]); viQ; vi++) {
IsCommand + "*.";

IsCommand += *viQ;
IsCommand += " ";

}

if (debug)
cerr << IsCommand << '\n';

else
system ((char *)IsCommand);

100

E. FILE MANAGEMENT APPLICATION 205

E.3. SemEntry.cc

Class excapsulating semantic structures.

I-
/I Dave Astels 12—sep-92

#include <MyString.h>
#include "Set .t"
#include "Dictionary. t"
#include "Vectorlterator . t"

class SemEntry; 10

DECLARE—ONCE Set<String>
DECLARE _ONCE Vectorlterator<String>
DECLARE—ONCE Dictionary<SemEntry>

class SemEntry {
public:

1/ Constructors
20

SemEntry () : nameO, propertiesQ, semRoles() {}
SemEntry (SemEntry & s) : name (s.name), properties (s.properties), semRoles (s.semRoles) { }
SemEntry (istream &);

// Access

String & getName 0;
Dictionary<SemEntry> & getRoles Q;
SemEntry & operator fl (String &);

30

// Printing

void printOn (ostream &, mt = 0);

private:
String name;
Set<String> properties;
Dictionary<SemEntry> semRoles;

40

INLINE String &
SemEntry: :getName 0
{
return name;

}

E. FILE MANAGEMENT APPLICATION 206

50

INLINE Dictionary <SemEntry > &
SemEntry::getRoles 0
{
return semRoles;

}

INLINE SemEntry &
SemEntry::operator 1 (String & role)
{
return semRoles[role];

}

SemEntry: :SemEntry (istream & s)

{

60

char lookahead, dummy; 70

String: :delimiters ("\n\t\n\r
s >> lookahead;
if (lookahead \(')

s.unget (lookahead);

II".
1'

s >> name >> dummy;
s.unget (dummy);

if (lookahead \(') {
s.skip (0);
s >> lookahead;
s.skip (1);
while (lookahead != \n') { // get properties

s.unget (lookahead);
String prop (s);
prop erties.add (prop);
s.skip (0);
s >> lookahead;
s.skip (1);

s.unget (lookahead);
s >> lookahead;
while (lookahead

s.unget (lookahead);
String role (s); 7/ get a role name
SemEntry filler (s);

so

90

E. FILE MANAGEMENT APPLICATION 207

semRoles[role] = filler;
s >> lookahead; 100

}

void
SemEntry::printOn (ostream & s, mt level)
{

if (!properties.empty())
S << \(';

name.pretty_print (s);

if (!properties.empty()) {
String indent ('\t', level);
String indenti ('\t', level + 1);
s << '\n';
indent 1 .prettyprint (s);
for (Vectorlterator<String> vi (properties); viQ; vi++) {

((String *)viQ) —>pretty_print (s);
S << '

}
S

}

}
s << '\n';
for (Dictionarylterator di (semRoles); diQ; di++) {

indent 1 .pretty_print (s);
di() - >get_key() .pretty_print (s);
s << '\t';

((SemEntry *)(diQ—>get_value))_>printOn (s, level + 1);

}
indent.pretty_print (s);
S << \)';

<< '\n';

E.4. Socket.cc

/1 Socket encapsulating class
I-
/I Dave Astels 9—sep-92

include <stdio.h>
include <MyString.h>

class Socket {

110

120

130

E. FILE MANAGEMENT APPLICATION 208

public:
Socket (String & hostName, jut port);
Socket ();

String readString (mt maxLength);
jut readlnteger ();
void writeS tring (String & str);
void eoln ();

private:
jut skt; // file descriptor

II ##

INLINE
Socket::-Socket 0
{

eo1n0;
close (skt);

INLINE void
Socket::eoln 0
{

writeString ("\n");

}

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%9%%%%%%%%%%

extern "C" {
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

}

extern "C" struct hostent *gethostbyname;

#include <stream.h>

Socket::Socket (String & hostName, mt port)
{

struct sockaddr_in server;
struct hostent *hp;

skt = socket (AF_INET, SOCK—STREAM, 0);
if (skt < 0) {

10

20

30

40

50

E. FILE MANAGEMENT APPLICATION 209

perror ("opening stream socket");
exit (1); 60

}

server.sin_family = AF_INET;
hp = gethostbyname ((char *)hostName);
if (hp == 0) {

cerr << hostName << " unknown host\n";
exit (2);

}

bcopy ((char *)hp—>h_addr, (char *) &server.sin addr, hp—>h—length); 70

server.sin_port = htons (port);

if (connect (skt, (struct sockaddr *)&server, sizeof(server)) < 0) {
perror (" connecting stream socket");
exit (1);

}
}

String
Socket: :readString (mt maxLength)

char buffer [maxLength + 1];

bzero (buffer, maxLength + 1);
if (read (skt, buffer, maxLength) < 0) {

perror ("reading stream socket");
exit (1);

}

return String (buffer);

}

jut
Socket::readlnteger ()
{
unsigned char buffer [2];

if (read (skt, buffer, 2) < 0) {
perror ("reading stream socket");
exit (1);

}

return buffer[0] * 256 + buffer[1];

}

80

90

100

E. FILE MANAGEMENT APPLICATION 210

110

void
Socket::writeString (String & str)
{

if (write (skt, str, str.lengthQ) < 0 11 write (skt, " \ n " , 1) < 0) {
perror ("writing on stream socket");
exit (1);

120

APPENDIX F

User Manual

F.1. Introduction

This manual describes the operation and use of the set of RV development tools

that are part of the RV-Tools system. They are:

• Launcher

• Grammar Browser

• Lexicon Browser

• Lexical Trie Browser

• Debugger

In addition to these, RV-Tools includes a fairly full RV parser engine currently

implementing all features of Blank's system except discontinuous idioms.

RV-Tools was implemented using Smalltalk-80 release 4 on Sun workstations.

Familiarity with both RV (Astels, 1991; Blank, 1989; Blank, 1991; Blank, 1991;

Blank & Kasson, 1989; Blank & Owens, 1990) and the Objectworks\Smalltalk r.

environment (LaLonde & Pugh, 1990; LaLonde & Pugh, 1990; Systems, 1990) is

assumed.

211

F. USER MANUAL 212

RIiLzzuwhr jg

AGREE
APR92
COMPREHENSIVE—TEST
UL9O
TEST,

 V

Grammar

LeXIcon

Lex Trie

- Debug
 V

FIGURE F.1. Launcher Window

F.2. Launcher

The Launcher is the centerpiece of the tool set. It is used to organize and access

parsers, and to invoke the browsers and debugger. To start the Launcher execute

RVLauncher open. The Launcher window is shown in Figure F.1. It consists of two

areas: the parser list and the tool buttons.

F.2.1. Parser List. Parsers are stored in a global dictionary called "RVSysteius",

keyed by their names.

The parser list contains a list of the names of all parsers that are currently a

part of the system. These parsers are stored in the Smalltalk image, and as such

are saved along with the image. A parser must be selected from the list before any

operation can be performed using it. The parser list has an operate menu providing

file input/output, parser manipulation, and utility functions:

print out: generates a readable representation of the selected parser in a file whose

name is requested.

file out: saves the selected parser in a file whose name is requested (the file must

end with ". rv". The parser is saved as chunks of Smailtalk code.

load: provides the user with a list of files ending in ". rv". There is a facility for

changing the directory. Selecting a file and clicking the Load button causes the

F. USER MANUAL 213

parser saved in the selected file to be loaded into the image. Its name will be

added to the parser list in the launcher. Files ending with ". rv" are assumed to

have been written using the file out option of the launcher. Such files consist

of a parser described by chunks of Smalltalk code, which can be executed a chunk

at a time to reconstruct the parser.

add parser: prompts for the name of the new parser. It then creates an empty

parser, and adds its name to the list.

rename: prompts for a new name for the selected parser.

remove: removes a parser from the system, first verifying that it should,

copy: allows the user to make a copy of a parser. Copying a parser is useful when

experimental changes are to be tried, and the original parser should be retained.

update: brings the parser list up-to-date with the current state of the system.

This is useful if there are two launchers active, which is highly unusual and

undesirable, or if the system changes due to code being executed in a text view

such as a workspace.

F.2.2. Tool Buttons. To the right of the parser list are the three tool buttons.

These are used to invoke the browsers and debugger. Clicking on a tool button

invokes the corresponding tool with the parser whose name is selected in the parser

list. Nothing is done if no parser is selected.

F.3. Grammar Browser

The grammar browser provides access to the aspects of a parser that are directly

related to syntax. This includes:

• boundary registers

0 ordering features

F. USER MANUAL 214

• ordering feature macros

• production categories

• productions

• non-lexical production ordering

The window for a grammar browser is shown in Figure F.2. It is divided into six

major areas:

Boundary view: at the top left corner of the window

Ordering feature view: below the boundary register view

Production category view: top center

Vector format buttons: below the production category view

Production view: top right

Editing view: across the bottom

RVCrwnrxBrowserom:APR92 f, aw"201FANNOW, 12, 91

Clause
NP
NPmod
0bJ
Prod

SENT
SUM
PPL
CL
S

aullllary system
major verb categories
verb subcategories
verb complement clauses
specialized varients of PREP
noun phrase
wh questions
gerund clauses
conjunctions and commas
fragments
nit final

> labels ranges

ADJ
ADJ HEAD
ADJ PASS
ADVNP
ADVNPEND
CE
COMPAR
DATIVE
DEF
DEN P RON
DIGIT
ENDC
ENDA

Name: <COM PAR>
Comment: <>
Type: <1>
Cond: <?DET.NUM +ADJ..HEAD —N—N —REL>
Change: <—DET..NUM>
Actions: <

lexprop <compar>
Word new
Word lex
Word agree lex
NP —> Word

FIGURE F.2. Grammar Browser Window

F. USER MANUAL 215

F.3.1. Boundary View. The boundary view contains a list of alphabetically

sorted boundary names. The operate menu is very basic:

add boundary: prompts for a boundary name and adds it to the list.

rename: prompts for a new name, and replaces the selected boundary with the

one the user enters. All references to the selected boundary are updated.

remove: removes the selected boundary from the list, after first verifying that it

should be removed, and that it is not referred to by any action.

spawn production: opens a production browser on those productions that ma-

nipulate the selected boundary.

When a boundary name is selected, an associated comment can be edited in the

editing view.

F.3.2. Ordering Feature View. This view operates much like the boundary

view. It contains a list, and has a similar operate menu. The spawn production

option opens a production browser pn those productions that assigned a + or - value

to the selected feature in either the condition or change vector. The ordering of this

list is significant, as it defines labels for each position in ordering feature vectors.

Adding a feature, places it before the selected feature, or at the end if there is no

selection. Also, a comment for the selected feature is available for editing in the

editing view.

F.3.2.1. Feature macro editor. The grammar browser supports the facility of fea-

ture macros. This provides a shorthand for specifying condition and change vectors

of productions. The macro editor is a separate pop-up dialog that is invoked from

the category view's operate menu. This dialog is shown in Figure F.3. The list at

the far left contains the names of all defined ordering feature macros. The text fields

F. USER MANUAL 216

CEND
C LA US EDO NE
CLAUSEOFF
C LA US ED N
DEFAULT—CHANGE
DE FA U LI_CO ND
NPMOD
NPOFF
N PD IJ
NP POST
NROLE
NROLEOFF

Name: J'JPON

Value: FDET,.HEAD —N_N..NEND —REL

Comment enable noun phrase up to head

Done

FIGURE F.3. Ordering Feature Macro Editor

to the right of this allow the user to enter a macro name, value, and optionally a

comment. The name is automatically converted to uppercase. The value is a ternary

vector using labels and ranges, and can include any macros that have been previously

defined. The <tab> key can be used to move from field to field, or the pointer can be

clicked on a specific field. Pressing <return> causes the displayed macro to be added

to the list, possibly replacing an existing macro of the same name. When macros are

used in vectors, they are replaced with their definitions when the vector is accepted.

Changing a macro does not change vectors that were previously defined.

When a macro name is selected from the list, its definition is displayed in the text

fields. It can then be edited.

There are two special macros that must exist. They are predefined to be an empty

vector: DEFAULT_COND and DEFAULT-CHANGE. These are implicitly at the far left of

every production's condition and change vectors, respectively.

When the user has finished using the macro editor, they click the Done button.

Currently, the macro editor is a blocking dialog.

F.3.3. Production Category View. For the grammar designer's convenience

productions can be grouped into categories which can be given descriptive names. A

F. USER MANUAL 217

list of these category names are displayed in the category view. When a category

is selected, the names of any productions in that category are displayed in the pro-

duction view (see § F.3.5). Also, a production template is displayed in the editing

view.

The operate menu for this view includes category related functions, editing view

control functions, and utility functions. A description of each menu option follows:

add category: prompts for a new category name and adds it to the list. The new

category is inserted before the selected one, or at the end if none are selected.

rename: allows the name of the selected category to be changed.

remove: removes a category. If it is empty, it is quietly removed. If, however,

there are productions in the category, the user is asked if those productions

should be removed. If the user responds positively then they are removed from

the grammar, and the category is removed.

update: brings the browser up-to-date. This is useful if there is more than one

grammar browser open on the same parser: changes made in one browser do not

appear automatically in others.

definition: displays the definition of the selected production in the editing view,

or a production template if no production is selected.

category structure: displays in the editing view a list of all categories and the

productions that are in each. This list is made up of parenthesized entries. The

first element in each entry is the category name, enclosed in braces. Following

this are the productions in that category. There is an entry for each category.

non-lexicals: displays a list of all non-lexical productions, in the order in which

they are searched. This list is then edited to modify the search order.

edit feature macros: invokes the macro editor described in §F.3.2.1.

F. USER MANUAL 218

find production: prompts for the name of a production, and attempts to find

that production in the grammar. If one is found, the category and production

lists are positioned to display it and its definition is displayed in the editing view.

If no production can be found, an alert box informs the user.

F.3.4. Vector Format Buttons. The grammar browser can accept/display

ternary vectors with or without ranges. This is controlled by the vector format

buttons: labels uses plain labelled vectors where elements are displayed separately;

ranges provides a more efficient display, grouping contiguous elements with the same

value. This is done by using an ellipsis to join the first and last elements of the range.

All elements and/or ranges are prefixed by the corresponding ternary value (+, -, or

F.3.5. Production View. This view provides a list of the names of productions

in the selected category. It is empty when no category is selected. The definition of

the selected production is shown in the editing view, or a production template if no

production is selected.

The operate menu of this view has four options: move, rename, and remove. Of

these only move has not been described as of yet. It allows the user to change the

category of a production. It prompts for a new category, and moves the selected

production to it. This is a simpler way to change the category of a single production

than editing the category structure. Also present are options to spawn other browsers:

spawn entry: opens a browser on all lexical entries that include the selected pro-

duction as a category;

spawn: opens a browser on the selected production.

Production definitions consist of six labelled fields:

F. USER MANUAL 219

Name: the name/label of the production. Production names are unique within a

parser. When a production is accepted a check is made first to see if there is

an existing production with the same name but in a different category. If this is

the case, the user is asked if the existing production should be removed. If they

answer negatively, the existing production is left and the new production is not

added to the grammar. If there is an existing production with the same name in

the same category, it is simply replaced.

Comment: a comment attached to the production.

Type: the lexical type of the production. It must be one of:

N: non-lexical. These productions are not lexically constrained, they are con-

sidered whenever there is no (semi)lexical production that can be used.

Non-lexical productions are searched- in a specified order, determined as

described in § F.3.3. The search stops when a usable production is found.

When a non-lexical production is used, it does not cause the current word

to be consumed.

S: semi-lexical. These are lexically constrained, meaning that they are speci-

fied in the definition of lexical entries, but do not consume input. The type

field of semi-lexical productions can also specify the lexical productions that

they subcategorize. This is done by following the type specifier, S, by the

names of lexical productions, separated by whitespace.

L: lexical. Lexical productions are also lexically constrained, but they do

cause input to be consumed.

I: mit-final. This is a special case of lexical. mit-final productions define the

set of final states of the parser which signifies the completion of a successful

parse. The change vector of the last mit-final production to be defined is

F. USER MANUAL 220

used to set the initial state of the parser. In practice there are very few mit-

final productions in a grammar, and they should all have the same change

vector. Because of this, any of them can be used to initialize the parser

state.

Cond: the condition vector. When a production is under consideration for use, its

condition vector is matched against the current parser state. If this match fails,

the production can not be used, if it passes other tests are done to determine if

the production can be used.

Change: the change vector. This vector is used to update the parser state when-

ever the production is successfully used.

Actions: actions to be performed when a production is used. If all actions are

executed successfully, then the parse state is changed according to the change

vector of the production. If any action fails, the effects of any previous actions

for the current use of the production are undone, and the production is not used.

Backtracking will then cause another production to be selected.

Any type of whitespace can be used to separate alphabetic tokens, and separation

is not required between alphabetic and non-alphabetic tokens, although it is used

when actions are displayed.

The values of these fields are enclosed in angle brackets. This has two purposes:

(1) It allows the entire field contents to be selected by clicking just inside either

angle bracket, and

(2) it allows the accepting mechanism to easily extract the field values.

F.3.6. Editing View. The editing view is a standard ST80r4 TextView, sup-

porting all editing functions this implies (Systems, 1990).

F. USER MANUAL 221

Comments for boundaries and features are simply straight text: anything in the

editing view is taken as the comment when accept is selected from the operate menu.

The formats of the editing view text for the category structure, non-lexical modes,

and production definitions have been described previously in § F.3.3 and § F.3.5.

F.3.6.l. Editing Ternary Vectors. Ternary vectors can be edited with or without

ranges, as described in § F.3.4. Also, feature macros can be used in either mode

by using the name of the macro prefixed by W. When the production is accepted,

any macros in the vectors are expanded. Vector element are processed from left

to right, so feature values later in the vector override those appearing earlier. As

an example, say macro M is defined as +A -B. The vector #M -A results in -A -B.

This is most commonly used for overriding feature values in the default macros (see

§ F.3.2.1). When condition and change vectors are displayed, only the differences from

the corresponding default macro is used. This is done since the default macro will

be used if the production is accepted. Due to this there will sometimes be elements

with '?' as their value.

Using ranges is the most useful mode, and is recommended.

F.4. Lexicon Browser

The lexicon browser is slightly more complex that the grammar browser. It provides

access to the parts of parsers that are directly related to the lexicon:

• semantic features

• semantic feature macros

• semantic relations

• morphosyntactic properties

• morphosyntactic paradigms

F. USER MANUAL 222

• entry categories

• lexical entries

• lexical category macros

A lexicon browser window is shown in Figure F.4. It is divided into seven views:

Semantic feature view: top left

Semantic relation view: below the semantic feature view

Property view: right of the semantic feature view

Paradigm view: below the property view

Entry category view: right of the property and paradigm views

Entry format buttons: below the category view

Entry view: top right

Editing view: across the bottom

RVLoaErowserorAPR92 El

ANIMATE
HUMAN
MOBILE
ROUND
BLACK

L
lst p I
lstsg
2nd:pl
2nd:sg
3rd: p1

F

L
access

time words address
nuns/verb allow
common noun apply
number approach

I personal pronoun arrive
negative particle assign
auslillary verb base
names begin
wh—type words believe

17, belong

I adjective

AGENTFROMLOC
AGE NTTO LOC
FROM LOC
F RON P OSS
F ROM P OSS TE M P

AM
ARE
BE
BED
BIG

D display pruned

0 display age/score
borrow
broadcast

Name:
Comment:
Categories:
Word path:
Semantics:

<borrow>

<PASS TRANS ADJPASS>
<borroW_PUlL>

inh —ANIMATE,,FEELING +ACTION,. POSSESS ION
obJ —ANIMATE,HUMAN —STATE,.TRAWSFER
dat +ANIMATE..HUMAN —STATE.. LOCATION —SUPPORTED
rell $ FROMPOSSTEMP
re12 $TOPOSSTEMP
>

FIGURE F.4. Lexicon Browser Window

F. USER MANUAL 223

inh -ANIMATE. . FEELING +ACTION. . TRANSFER +LOCATION. . DEST

obj subj

dat -STATE. . TRANSFER +LOCATION

FIGURE F.5. Relation: AGENTTOLOC

F.4.1. Semantic Feature View. This view operates the same as the ordering

feature view of the grammar browser (see § F.3.2), except that it deals with semantic

features rather than ordering features. There is also a corresponding feature macro

editor which is the same as that for ordering features (see § F.3.2.l), but does not

require the DEFAULT_COND and DEFAULT-CHANGE macros.

F.4.2. Semantic Relation View. This view provides access to the list of se-

mantic relations, sorted alphabetically. It has an operate menu that is the basic

add/rename/remove menu which has been described before, with the addition of a

spawn entry option which opens a browser on all lexical entries that reference the

selected relation. When a new relation is added, a very basic template is provided in

the editing view. Selecting a relation places its definition in the editing view. The

format of relations is simple: a series of role-filler pairs. The roles must be from the

list of defined semantic roles (see § F.4.5), while the fillers can be either a binding to

a predicate role, or a semantic feature vector. Figure F.5 shows an example relation

definition, in particular AGENTTOLOC from the parser APR92.

F.4.3. Property View. The property view holds a list of all morphosyntactic

properties used in paradigms and lexprop/addprop actions. There are two types of

properties:

agreement properties: are used by the agree actions for testing agreement.

They are the cross product of several agreement sets. Example of agreement

F. USER MANUAL 224

sets include < 1st 2nd 3rd> which contains values for the person attribute. An-

other would be values for number: <sng p1>. Agreement properties are made

up of an element from each of the agreement sets, separated by a colon. For

example: lst:pl.

non-agreement properties: includes all other properties such as infinitive,

past, prespart, etc. These properties are not used in agreement checks.

Non-agreement properties are manipulated using the now familiar add/rename/re-

move options in the view's operate menu.

Agreement properties can not be edited individually. They can only be manipulated

by editing the agreement sets. This is done by selecting edit agreement sets from

the operate menu. The sets are then displayed in the editing view.

The operate menu has two browser spawning options: spawn paradigm and spawn

production. The former opens a browser on all paradigms that explicitly reference

the selected property, and the later opens a browser on all productions who have

addprop or lexprop actions that reference the selected property.

Properties are among the first things defined for a parser, thus once defined they

should not change. There is currently no mechanism in place to ripple changes to the

properties throughout the rest of the parser.

F.4.4. Paradigm View. This view contains a list of paradigms in the parser,

sorted alphabetically. The basic add/rename/remove operate menu is present in this

view, along with a spawn entry option which opens a browser on all lexical entries

that have a wordpath containing the selected paradigm.. Selecting a paradigm from

the list displays its definition in the editing view, while adding a new paradigm dis-

plays a template for one pattern—property set pair. The definition of a paradigm

F. USER MANUAL 225

<ying> : <prespart >

<les> : <3rd:sg present >

<own> : <pastpart >

<ew> : <past >

<y> : <1st 2nd inf p1 present >

FIGURE F.6. Example Paradigm Definition

consists of one or more pattern-property set pairs. The pattern is the literal sub-

string to be matched against the input stream, and the property set is the set of

morphosyntactic properties that the pattern implies.

Non-agreement properties must be listed literally, while the simplest description of

the agreement properties suffices. For example if all agreement properties containing

1st are desired, then only 1st need be specified. If only 3rd:pl is desired, then it

must be explicitly specified. Whenever properties are displayed, this simplification is

automatically performed, sometimes with surprising results due to the fact that there

is not always a single simplest description. Not specifying any agreement properties

implies that the set of agreement properties is unconstrained.

Each part of the pair is enclosed in angle brackets for reaons discussed in § F.3.5.

When a paradigm definition is generated for display, colons are placed between pat-

terns and their property sets. The purpose of this is merely to visually connect the

pairs. As an example, the definition of the paradigm FLy is shown in Figure F.6.

Note that the pairs in a paradigm are automatically sorted in descending order on

the length of the pattern.

F.4.5. Entry Category View. The purpose of lexical entry categories is similar

to that of production categories: to organize the lexicon. Like the production category

F. USER MANUAL 226

view, this view has a lengthy operate menu. The first four options serve the same

purpose, see § F.3.3 for details on these. The options are:

add category: adds a new category

rename: renames the selected category

remove: removes the selected category

update: brings the browser up-to-date

definition: displays the definition of the select entry in the editing view. If no

entry is selected but an entry category is, then an entry definition template is

displayed.

category structure: allows the user to edit the entry category organization. See

§ F.3.3 for details.

semantic roles: displays the list of semantic roles for the parser. There are two

types of roles: inner and outer. Inner roles generally relate to a syntactic entity

(subject, object, etc.), while outer roles are intended for relations. In the list a

dash is placed between the two types. Inner roles appear first, followed by the

dash, and then the outer roles.

spawn trie: opens a browser on the lexical trie. The trie browser is described in

§F.5.

edit feature macros: works the same way as the ordering feature macro editor,

with the exception of the DEFAULT macros. See § F.3.2.1 for details.

edit category macros: works like the feature macro editors, with one major dif-

ference: the macros are not defined in terms of ternary vectors, but rather ordered

sequences of production names. The macros defined here are used when specify-

ing the categories of lexical entries.

F. USER. MANUAL 227

find entry: allows a specific lexical entry to be found quickly. It operates similarly

to the find production option in the grammar browser (see § F.3.3 for details).

F.4.6. Entry Format Buttons. There are two buttons available for controlling

the format of displayed entries:

display pruned: Includes a list of any pruned categories in the entry specification.

This information is not editable.

display age/score: Includes age and score information for each active categoriza-

tion.

F.4.7. Entry View. Similar to the production view in the grammar browser

(see § F.3.5), this view presents a list of entry names in the selected category, or is

empty if no category is selected. If an entry is selected, its definition is displayed in

the editing view. Otherwise a definition template is displayed. The operate menu is

similar to that of the production view, except that instead of the spawn entry option

there is a spawn production option. This opens a browser on all productions that

are named in the selected entry's category list.

Entry definitions consist of five fields:

Name: the name of the entry. The name is used when the entry is referred to in

parser traces, debug output, or semantic structures.

Comment: a comment that is associated with the entry.

Categories: the list of lexical and semi-lexical productions that will be examined,

to see if they can be used, whenever the entry is encountered in the input stream.

The order of the list is significant, the first production that can be used will be.

Wordpath: specifies the path(s) through the trie that end in a leaf referring to

the entry. Literal characters in the path appear as literal characters, while a

F. USER MANUAL 228

inh -ANIMATE. . FEELING +ACTION. . POSSESSION

obj -ANIMATE. . HUMAN -STATE. . TRANSFER

dat +ANIMATE. . HUMAN -STATE. . LOCATION -SUPPORTED

rell $FROMPOSSTEMP

rel2 $TOPOSSTEMP

FIGURE F.7. Semantic Information for borrow

paradigm is referenced by using its name surrounded by underscore characters.

For example, wordpath for the entry "find" is f.FiNDnd.YIND±ng...

Note that the trie is slightly misnamed, as it is not a tree but rather a DAG:

several paths can lead to a single entry, and one path can lead to several entries.

It is still tree-like in that paths do not merge if they end in nodes having the

same pattern/paradigm.

Whitespace other that the space character is used to separate paths, spaces are

taken literally as part of a path so that multi-word idioms can be supported.

Semantics: This field defines the semantic properties of the entry. Entries will

often have at least some inherent properties that are used to implement selec-

tional restrictions. Values for any or all of the other defined semantic roles can

be specified. Values for inner roles can only be semantic feature vectors, while

those of outer roles must be references to semantic relations. Relations are re-

ferred to by using the relation name prefixed by '$'. As an example, the semantic

information for the entry borrow is shown in Figure F.7.

F.4.8. Editing View. This view has the same capabilities as the editing view

of the grammar browser (§ F.3.6).

F. USER MANUAL

F.5. Lexical Trie Browser

229

The lexical trie browser consists of a window containing a graphical display of the

lexical trie, and an editing pane. An example trie browser is shown in Figure F.8.

Paradigms in the trie, whether in a paradigm mode or a paradigm set node, are

displayed in boldface; lexical entry names are in italics, and literal strings are in the

default typeface.

When a node in the trie is clicked on with the select button, the definition of that

node is displayed in the editing pane. If the node is a leaf (i.e. a lexical entry) the

definition of the lexical entry is displayed, and can be edited. If the node is internal,

the node pattern is displayed. Each node has an operate button menu: currently

the only options are to open a standard inspector on the node and to remove the

node and its descendants from the trie. NOTE that this will NOT remove anything

from the lexicon... only from the trie. The operate menu for the area between nodes

contains a single option: update. This causes the trie to be redisplayed, and is useful

if a word was learned or the trie otherwise modified.

A word can be entered in the editing pane, selected, and looked up in the trie

using the operate menu of the editing pane. The path(es) from the trie root to the

appropriate leaves will be hilighted by using wider lines for the node borders and

connecting edges.

P.6. Debugger

The RV Debugger provides facilities for testing parsers through the following ca-

pabilities:

• specifying input to the parser

• controlling parser execution

F. USER MANUAL 230

N N RITLe.xica2 Trie Browser ow TEST

<I I,

Zlam: <call>

Comment: <>

categories: <VEKB NOUN

Wordpath: <

Cal P2—
call_P1_

FIGURE F.8. Lexical Trie Browser

• controlling the information displayed during parser execution

• inspecting the contents of boundary registers

• inspecting semantic structures

The debugger window is shown in Figure F.9. It consists of five main areas:

Input view: across the top

Control buttons: below the input view

Trace view: below the control buttons

Boundary register inspector: the two views in the bottom left

Grammatical Role inspector: the two views in the bottom right

F.6.1. Input View. Input to the parser is entered in this text editor view. The

text entered here should consist of one or more sentences, each terminated by a

<return>. Sentences beginning with '#' are comments and ignored.

F. USER MANUAL 231

R1TDsbueroa:APR92

George loves mar a.

First I Learn Parse II Step Continue SinqIe Step

Nest I Parse to... II Stop at.. > Free Running

Testing QUES
lesprop < past present> .,fails
Testing NP
save NP succeeds
NP new .,succeeds
Allowable nonlexicai production for reading 1 (George): NP
N NP + +++ II 1
Testing NAME
NP - les succeeds
NP agree lex succeeds
NP addprop <proper sg:3rd> succeeds
Allowable (semi)lexical productions for reading 1 (George): NAME
NAME -----++++1-++++++ ++----+----+++ 1 George <nom sg:3rd>

CIause3
Malni i
Main2 I
Main3
IsI1

NP2
NP3
NPniodl

Clausal
Ciause2
Ciause3

Maini
Main2
Main3

S:NP:NAME:George;
lexEntries: love love
Categories: NOUN ADJPASS TRANS
Remaining: NOUN ADJPASS TRANS
Properties: 3rd:pi nom
Clauselevei: 1
State vector: —SENT.CL +5.10 —PAS

;

S:NP:NAME:George;
LexEntry: George
Reference: 3
Agreement sg:3rd
Nonagreement nom proper
Structure:
inh : +ANIMATE.HUMAN —STATE..0

I,

FIGURE F.9. Debugger Window

The operate menu contains some of the standard text editing functions as well as

other special purpose functions:

load file...: presents the user with a file chooser listing filenames matching the

pattern: "sentin.". These files are expected to conform to the rules given for

the input view. Selecting a file and clicking the Load button causes the selected

file to be loaded into the input view.

start server: puts the debugger into server mode. A socket is set up for clients

to connect to. The port number of the server is displayed in the trace view.

The server then waits for a client to connect. If no client has connected in two

minutes, the socket is closed and server mode terminated. A message to this

effect is displayed.

F. USER MANUAL 232

If a client connects within the time limit, this is also indicated. This causes the

debugger to wait for a sentence from the client, which is displayed in the input

view, selected, and given to the parser to parse. Parser control and the inspectors

are still available to the user as usual. The server is terminated when the user

selects the stop server option from the input view operate menu or an empty

string is received from the client.

When the server is operating, results of sentence parses are sent to the client as

well as being displayed in the trace view.

stop server: causes the server mode to be terminated, and the socket closed.

browse semantics: When a parse has completed successfully and there are se-

mantic interpretations resulting a submenu is displayed listing the different inter-

pretations. The user can choose one of them to have a graphical browser opened

to examine it. An example of the semantic browser is shown in Figure F.1O.

No RVSemw2ti4 Browser

Cl

.esRntrp: glue

Reference: 1

Agreement p1 sg

Nonagreement past

Structure:
nh :—ANIMATE.FEEUNC +ACTIQN.P055055IQN
hi . Cenrns

FIGURE F. 10. Semantic Browser

F. USER MANUAL 233

reread input: causes the parser to read from the input stream. This is to be used

when the parser fails to recognise a lexical entry from the input stream. The

idea is that the user would then fix the problem using the lexicon browser and

ask the parser to reread it.

clear: empties the input view.

F.6.2. Control Buttons. These buttons are all located between the input and

trace views. The buttons are currently grouped into four sets, with functions as

follows:

Sentence Scanning: These two buttons provide a convenient method of moving

through the input view, sentence by sentence. This is especially useful after

loading a sentence file. Sentences beginning with '#' are skipped. The two

buttons are:

First: select the first sentence in the input view.

Next: select the next sentence. If the last sentence was selected, then no

selection will be made and the input view will flash. If Next is clicked again

the first sentence will be selected.

Learning: There is only one button in this section:

Learn: This button invokes the vocabulary learner, passing it the selected

"word".

Parser Control: There are currently five buttons that control the operation of

the parser:

Parse: Start the parser, passing it the selection in the input view. Confirms

the user's intention to restart the parser if it already running.

F. USER MANUAL 234

Parse to: Present a dialog listing all productions from which the user can

then choose one. The parser is started and will run until the chosen pro-

duction is used successfully or it terminates normally. Clicking the cancel

button aborts the Parse to operation.

Step: Have the parser execute one cycle. This means that the parser will

backtrack (usually using Curr) and try to find a usable production. If one

is found, it will be used, otherwise the parser will have to backtrack further

in the next cycle. In either case, control will be returned to the user.

Stop At: Similar to the Parse to button, but it continues the parse from the

current state rather than from the initial state. The user regains control

when the chosen production is used or the parse terminates normally.

Continue: Place the parser in free-running mode and complete the parse with-

out stopping.

To indicate that the parser is running, the cursor changes into the execute form.

When the cursor is in its normal form the user has control.

Currently there is no way to stop the parser while it is running, short of using

<Ctrl-C>. A future version of the debugger will have a Stop button.

Parser Mode: The parser can operate in one of two modes, selected by the cor-

responding buttons:

Single Step: the parser stops after each cycle and returns control to the

user.

Free Running: the parser will continue to execute until the parse has been

completed. A parse completes when the resume stack is empty (i.e. all

alternative interpretations have been explored).

F. USER MANUAL 235

F.6.3. Trace View. Most output from the debugger and parser is displayed in

the trace view. The level of detail of this information can be controlled by a series of

dialog boxes that are accessible through the view's operate menu. This menu contains

the following options:

parser...: Opens a dialog of parser related settings:

Production application: : Displays information when a production is suc-

cessfully used. This information includes:

• the type of the production

• the name of the production

• the parser state vector after the production has been used

• the embedding level (1-3) after the production has been used

• if the production was lexical, the name of the entry, and the resultant

set of morphosyntactic properties

If this switch is turned "off", the three following switches are locked "off"

as well.

Allowable productions: Displays the production that are under considera-

tion during this cycle, separated into (semi)lexical and non-lexical. If there

are any (semi)lexical productions, then non-lexical productions are com-

pletely ignored, and thus not reported.

Reasons productions disallowed: Displays the reason that each possible

production is not usable at the current time. This causes volumous output

to be generated, so it is not recommended except during serious debugging.

Actions: Each action of the production being used is displayed as it is exe-

cuted, along with it's return status (succeeds/fails).

F. USER MANUAL 236

Backtracking: Displays when the parser backtracks using boundary registers

other than Curr. If this switch is "off", the following switch is locked "off".

Backtracking with Curr: Displays when the parser backtracks using the

Curr boundary register.

Parse trace at each step: Displays the linear trace after each parser cycle.

Boundaries in trace: Includes boundary placement in the parse trace. This

involves having the boundary register name and level enclosed in square

brackets and inserted into the trace at the point at which it is saved.

Semantic structure at each step: Displays the semantic structure rooted

in Maini after each parser cycle.

Label vectors: Causes state vectors to be displayed using ordering feature

labels and ranges rather than the default, which is to use the raw +/- nota-

tion.

scanner...: Opens a dialog of scanner related settings:

Lexical lookup: Display the search through the lexical trie. This indicates

what is being looked up in which node, as well as what entry was found,

and with what properties. For paradigms, the pattern that matched is also

indicated.

Indicate unrecognisable input: Indicate when the parser can not find an

entry through the trie, and up to ten characters of input that caused the

problem.

vocab learner...: Opens a dialog of vocabulary learner related settings:

Enable integrated learning: Have the vocabulary learner invoked when-

ever there is unrecognized input.

F. USER MANUAL 237

Trace output: Output trace information regarding what the vocabulary learn-

er is doing.

Initial score: (1-100) The score that new categorizations are given.

Immortal score: (1-10000) The score at which a categorization becomes per-

sistent.

Score increment: (1—lU) The amount by which a categorization's score is

increased when it is used in a successful parse.

Death age: (1-100) The age at which a categorization's score begins to de-

crease.

Score decay: (1-10) The amount by which a categorization's score decreases,

after its age exceeds the death age.

clear: Clear the trace view.

In each of the above dialogs, the settings can be adjusted as required. When they

are satisfactory, the Done button is clicked to dismiss the dialog. Other pieces of

information that are always displayed include the initial parser state, notification

of a successful parse, and the results of the parse once it has completed. This last

item consists of the linear trace and resulting semantic structure for each possible

interpretation. If no interpretations were found, then the input was ungrammatical,

and this is also indicated.

F.6.4. Boundary Register Inspector. The boundary register inspector con-

sists of two views. The left-most displays a list of all boundary registers: Curr,

Word, and the cross product of Main along with the user defined boundaries and the

embedding levels. The list is in alphabetical order.

When a boundary register is selected from the list, its contents are displayed in the

righthand view. The information displayed includes:

F. USER MANUAL 238

• the linear parse trace

• the list of lexical entries, with the current one in boldface

• the list of (semi)lexical production names associated with the current entry

• the set of morphosyntactic properties associated with the current entry

• the embedding level

• the parser state, displayed using ordering feature labels and ranges.

F.6.4.l. Comparing productions. The operate menu of the boundary register con-

tents view currently has a single option: compare productions. Selecting it opens a

dialog which presents a list of production names and a text field labelled: Difference.

When a production is selected in the list, the difference between its condition vector

and the parser state saved in the selected boundary register is displayed in the text

field'. This difference signifies the changes that would have to be made to the state

in order for the production's condition vector to match it.

F.6.5. Grammatical Role Inspector. The grammatical role inspector oper-

ates in a similar fashion to the boundary register inspector. A grammatical role

is selected, and its contents and the contents of the associated semantic entry are

displayed. The following information is displayed:

• the current linear parser trace

• the lexical entry associated with the semantic entry

• the grammatical role's index into the reference queue

• the agreement and non-agreement properties associated with the grammatical

role

'Note that this is display only!

F. USER MANUAL 239

• the structure of the semantic entry, its semantic roles and their fillers. Role

fillers that are themselves semantic entries, only display as the associated lex-

ical entry and the reference index.

F.6.5.l. Reference Inspector. The operate menu of the grammatical role contents

view also has only one option currently: inspect references. This invokes an

inspector that is fashioned after the standard SequencableCollectionlnspector:

on the left is a list of reference indexes, and on the right is a text view that displays

the contents of the selected reference. The information displayed is much like that

displayed in the grammatical role contents view, with the exclusion of the parse trace

and reference index, and the addition of the timestamp associated with the reference.

Using the reference inspector, one can easily inspect the semantic structure being

built. Note that while the contents of boundary registers and grammatical roles

are automatically updated whenever the parser stops, the reference inspector is not

updated, but does provide access to the up-to-date reference contents, the display

must be manually refreshed.

Also note that while most popups in the system are blocking, the reference inspector

is not.

