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Abstract 

Natural language understanding is and always has been an important area of research 

and development in artificial intelligence. Natural language understanding is made up 

of several processing stages, including morphological, lexical, syntactic, semantic, and 

discourse. The stages of processing morphology, lexicon, and syntax are commonly 

combined and called parsing. For natural language understanding to be widely useful 

an efficient model of language must be used for each stage, and it must be convenient 

for a system developer to implement language processors using the model. 

The Register Vector (RV) model of language is an efficient parsing model, having 

fixed space complexity and linear time complexity. RV is a low-level formalism, which 

results in its efficiency but also makes it difficult to build RV parsers. 

The work described in this thesis is an attempt to make it easier to develop RV 

parsers by providing a set of interactive tools. These tools allow non-linear, inter-

active, incremental browsing/editing of parsers, immediate error feedback, as well as 

interactive debugging. 

The system described here has been implemented using Smalltalk-80 on Sun 3 

and SparcStation platforms. This work is the first to try to develop a convenient, 

interactive environment for developing RV parsers. 
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CHAPTER 1 

Introduction 

Natural language understanding is and always has been an important area of research 

and development in artificial intelligence. One of the goals of this area is to enable 

computers to communicate with people in a natural way. 

According to (Bar & Feigenbaum, 1981), 

"Artificial Intelligence is the part of computer science concerned with 

designing intelligent computer systems, that is, systems that exhibit 

the characteristics we associate with intelligence in human behavior - 

understanding language, learning, reasoning, solving problems, and so 

on. ,, 

Natural language understanding is the area of artificial intelligence that studies the 

use of natural language by computer. This area consist of several sub-areas of process-

ing, including morphological, lexical, syntactic, semantic, and discourse. The initial 

phases of processing (morphological, lexical, and syntactic) are commonly combined 

and referred to as parsing. 

If a language understanding system is to be used interactively, all components must 

be efficient. Given an efficient model of language parsing, and it must be convenient 

for a system developer to implement language processors using the model if it is to be 

used. Many of the systems used for work in natural language parsing, Context Free 

1 



1. INTRODUCTION 2 

Grammars and Augmented Transition Networks for example, have time complexity 

of 0(n3). This is the price paid for the great power of these system. However, the 

power of these system is not required to model natural language performance. This 

is because humans are "limited, finite devices" (Miller & Chomsky, 1963). Register 

Vector (RV) is a new model of language which models language performance, thus 

using limited, finite resources. It is efficient, having fixed space complexity, and linear 

time complexity. The subject of this thesis is the design and development of a set of 

tools for convenient implementation of RV parsers. 

The first step in the work this thesis describes was the implementation of an RV 

processor. This was done building on Blank's work as well as my own previous work. 

The resulting system conforms to the current specification of RV at the time the work 

began (early 1992), with the exclusion of discontinuous idioms (see Chapter 9). This 

system has been designed with the goal in mind of creating natural language front-

ends to end-user applications. As such it does not support the entirety of human 

language usage. For example, it can not parse more esoteric forms such as poetry. 

The target languages are subsets of a natural language such as might be used in 

information retrieval applications'. 

In addition to reimplementing the RV parser engine, I have developed textual and 

graphical browsers for manipulating the various parts of an RV parser, which are as 

follows: 

• syntactic boundaries; 

• syntactic ordering features; 

• productions; 

'Blank's later work involves building an interface to an Air Traffic Information System (ATIS) 
application. 
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• semantic features; 

• semantic relations; 

• morphosyntactic features; 

• paradigmatic morphological variation; 

• lexical entries. 

The thesis work also includes a debugger that allows single stepping, breakpointing, 

and examination of parser data structures. 

RV is a new model of language developed in the mid nineteen-eighties by Blank' 

(Blank, 1985; Blank, 1989). Since it is such a recently developed model there are 

few tools supporting the construction of RV parsers. The value of RV-Tools is that it 

provides a convenient, incremental, and interactive way of constructing and debugging 

RV parsers. RV-Tools is meant to be used by researchers that need to develop RV 

parsers. They may be using RV to provide natural language capabilities to another 

system, or working on extending RV itself. 

1.1. Motivation 

The RV formalism (Astels, 1991; Blank, 1985; Blank, 1989; Blank, 1991) is attrac-

tive for use in building natural language parsers. This is mainly due to its efficiency. 

Storage requirements are determined by the parser designer, and do not grow during 

operation. RV has a linear time complexity, i.e. 0(n) where n is the number of 

words in the sentence. The number of syntax productions does not affect the time 

complexity because only a small fraction of them are searched any time one is re-

quired. Although it uses limited resources, RV has been carefully designed to model 

the complexity of language performance by native speakers. This is done by limiting 

'Glenn Blank is the foremost researcher working on RV. 
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embedding depth and memory of alternative interpretations in a way that reflects a 

native speaker's abilities. These limitations enable the fixed space and linear time 

complexities. 

A fundamental problem with RV is that it is a more awkward formalism than 

more familiar ones (e.g., augmented transition networks (Woods, 1970) and phrase 

structure grammars (Chomsky, 1957)). Figures 1.1, 1.2, and 1.3 show three systems 

for recognizing the same simple subject-verb-object language. Subjects and objects 

have the same form: a name, or a noun optionally preceded by a determiner. 

name 

Actions: 1. subj := * 

2. pred := * 

3. obi :=* 

4. head := * 

6. art * 

7. head :=  

FIGURE 1.1. Augmented Transition Network Example 

SENT-4SUBJECT VP 
VP - VERB 
VP-+VERB OBJECT 

SUBJECT- NP 
OBJECT-+NP 

NP- NAME 
NP- NOUN 
NP-DET NOUN 

FIGURE 1.2. Phrase Structure Grammar Example 
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SUBJ +???- -??++ 

VERB -+??- ?-??? 

OBJ ?-+?- ??-++ 

CLOSE --??- +++--

DET ???+? ???-? 

NOUN ????+ 

NAME ???++ ???--

FIGURE 1.3. RV Example 

Building an RV parser can be a difficult procedure since designers find it tedious 

and awkward to specify a language using the RV model. Two approaches to making 

it easier are: a) automate the process (by using a learning mechanism), and/or b) 

provide a good development environment. This thesis presents the latter approach, 

as well as some preliminary work on automated vocabulary acquisition. 

1.2. Goals 

The goal of this work is a set of RV development tools that meet the following 

criteria: 

• convenient editing of parsers, through the use of structured editors; 

• automatic validity checking of identifiers, and suggestion of spelling correc-

tions; 

• identification of incorrect actions; 

• automatic updating of all uses of an identifier when it is changed (i.e. re-

named); 

• protection against removal of referenced identifiers; 

• the use of shorthand notations where useful; 

• the ability to view the parser from various viewpoints; 

• support for freely cross referencing information; 
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• the ability to view the parser at various levels of granularity; 

• convenient testing and debugging of parsers, which involves: 

- sentence testbeds; 

- single stepping; 

- access to internal structures; 

- provision of relevant, useful information; 

- convenient alteration of the acquisition mechanism's operational param-

eters. 

Smalltalk-80 was chosen as the implementation language for several reasons: 

• Smalltalk is a dynamic, object-oriented language; (this allows interactive de-

bugging, garbage collection, and all the advantages of object-oriented devel-

opment) 

• The Smalitalk environment includes an interactive, visual development envi-

ronment to use as an example; and 

• The implementation of Smalltalk's development environment is available to be 

used as a basis upon which to build development tools. 

1.3. Scope of the Thesis 

This thesis describes the RV model of natural language parsing and the development 

of a set of interactive development tools for building RV parsers. It does not address 

the problems and issues involved in natural language understanding, or reasoning 

about the information contained in a language act. This thesis concerns only a system 

for translating a textual surface form in a natural language into a representation that 

could be used as input to an understanding system. 



1. INTRODUCTION 

1.4. Thesis Outline 

7 

This thesis presents the Register Vector parser formalism and a set of development 

tools for building RV parsers. 

Chapter 1 described what was accomplished and the motivation. 

Chapter 2 provides a detailed definition and description of the RV formalism as 

this system implements it. 

Chapter 3 examines existing RV development systems. Basic operation is dis-

cussed and limitations /shortcomings are detailed. It also briefly discusses how RV-

Tools differs from those presented, and presents some related work in the area of 

lexicon acquisition. 

Chapter 4 describes the central concepts of object oriented programming, Smalltallc-

80, and the Model-View-Controller application framework. 

Chapter 5 describes extensions that I have made to the RV formalism defined in 

Chapter 2. 

Chapter 6 describes the implementation of the RV parser engine that is the central 

element of the development system. 

Chapter 7 describes the design and operation of the RV development tools. This 

chapter and the next present the majority of this work's original content. 

Chapter 8 describes the vocabulary learning mechanism that is part of the devel-

opment system. 

Chapter 9 evaluates the development system, RV parser engine, and vocabulary 

learning mechanism. Directions for future work are explored. 

Chapter 10 summarizes the contributions of the research presented in this thesis. 

Appendix A compares RV to non-deterministic finite automata, showing the ef-

fects on each formalism as syntactic constraints are weakened. 
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Appendix B presents several of Blank's RV parsers that were used to test the 

development tools, along with test sentences. 

Appendix C contains the lexicon and sentences used in testing the vocabulary 

acquisition mechanism (described in Chapter 8). 

Appendix F is a user manual for the development system. 

1.5. Summary 

This chapter briefly introduced RV: a new parsing formalism with favorable time 

and space complexity. However, RV is a low level formalism, and as such is awkward 

for parser developers to use. This problem is dealt with by developing a set of tools 

that make it easier and more convenient to develop RV parsers. The scope of the 

work presented in this thesis is limited to language parsing. 

N. 



CHAPTER 2 

Register Vector Processors 

This chapter defines the RV processor and describes its design. Examples of simple RV 

parsers are provided. An RV parser is a set of data structures that specify a language. 

The RV processor is an engine that uses an RV parser to translate sentences in the 

specified language into a semantic structure. An RV processor operates in 0(n) time, 

where n. is the number of words in the sentence (Blank, 1989). 

2.1. Definition 

An RV parser is defined formally as a nine-tuple: 

M = (S,I,,C,B,E,a,A,6),where: 

S = a finite set of states, where a state s 

is a binary n-vector over  
I E S = the initial state 

F C S = a set of accepting states 

C = a finite set of syntactic categories 

B = a set of syntactic boundaries 

E = the set of input symbols (i.e. the vocabulary) 

a = a set of possible actions 

= a mapping from input symbols to categories (the lexicon) 

5: S xC—S x 2 = the transition relation U 

9 



2. REGISTER VECTOR PROCESSORS 10 

States are encoded by vectors which are ordered sets of elements. Each element can 

have a value of + or -. Each element of the state vector represents some constraint 

which is called an ordering feature. Possible features include: the subject has been 

parsed, and expect an indirect object. Vector elements (i.e. ordering features) are 

named. For example, the element indicating whether the subject has been parsed 

could be called S. 

State vectors are a special case of ternary vectors. These are vectors of three-valued 

elements. Elements can have a value of? along with + and -. The? value is a don't 

care and is used to allow discontinuous constraints' to pass unaffected through one 

or more states. The ? element value is a generalized +1- value, thus state vectors are 

fully specific ternary vectors. 

There are three fundamental operations on ternary vectors (in all cases n. is the 

size of the vectors): 

match: 

A match: B=/\(a=b)V(a1=?)V(b=?) 

This operation checks if A and B match. Vectors match if each corresponding 

pair of elements match. A pair of elements match if either is ?, or both are the 

same. 

change: 

I  A change: B (Vi = 1 . . . n), b b if ai = ? 
ai otherwise 

All non-? elements of A are copied to the corresponding position of B. 

'These are constraints that are not syntacticly adjacent. 
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refine: 

1bi ifa=? 
A refine: B = (Vi = 1 . . . a j otherwise 

All? elements of A are replaced by the corresponding elements of B. 

The syntax specification of an RV parser consists primarily of a set of productions 

which have the basic form ( cat, type, condition, change, actions). The transition 

relation S is embodied in these productions as well (see below for details). 

Cat is the unique name of the production. This corresponds to a member of C 

which is the set of syntactic categories. For example, there would be a production 

named NOUN, another named VERB, and so on. 

Type indicates the type of the production. There are four possibilities. 

Non-lexical: These productions are not constrained by the input, i.e. their use is 

not dependent on the current input token. Also, they do not consume input. An 

example is SUBJECT. 

Semi-lexical: These are constrained by input but do not consume it. They are used 

to implement sub categorization'. An example is TRANSITIVE. 

Lexical: These productions are constrained by input, and they do consume input. 

An example is VERB 

Init-final: These are a special form of lexical productions. Their change vectors 

define the start state. Because of this, all mit-final productions must have the 

same change vector. Note that this means that their change vectors must not 

be generalized, i.e. contain no ? elements. The condition vectors of mit-final 

productions define the set of accepting/final states for the parser, i.e. F. 

'The capability of a syntactic entity to determine the complements that it has. 
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Condition and change are ternary vectors. Condition is compared, using match, 

to the parser state. If these two vectors match, the production can be used if all of its 

actions can be successfully executed. Change is used to modify the parser state using 

the change operation to produce the next state. Actions is a subset of a, possibly 

empty. These are operations that will be performed when a production is used, 

after the state transition is made. These actions can perform various tasks ranging 

from saving backtracking information to construction semantic representations of the 

input. However, there are a small number of possible actions and they are very simple. 

Actions are described in detail in §2.9. 

The production data structures are shown in Figure 2.1. The productions are in 

the center. On the left is the mapping from production names (cat) to productions, 

and on the right is the ordering of non-lexical productions. 

production 

mapping: 

cati 

cat2 

cat3 

cat4 

catS 

cat6 

Productions 

Type 
Condition Vector 
Change Vector 
Action... 

Non-lexical 

>1 (Semi)lexical 

  Non-lexical  

Non-lexical 

(Semi)lexical 

non-

lexicals 

FIGURE 2.1. Production organization. 
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The transition relation, 8, is a set of triples (Si, C, 52) such t'hat: 

(1) There is a production ( cat, type, condition, change, actions); 

(2) (.si, match: condition) returns true; 

(3) cat and c are the same; 

(4) After (change change: si), s is the same as 2• 

There is a subtle different between transitions and productions. Since the condition 

and change vectors of productions can be generalized, each production can specify a 

set of transitions. 

Figure 2.2 shows the organization of an RV parser. The various parts of the diagram 

will be discussed in the rest of this chapter. The diagram shows how the various data 

structures are related (the relation shown is a has—a relation). A single box denotes a 

singular instance of a structure, while two solid boxes indicates exactly two instances 

(see the ordering feature vectors, there are exactly two per production, condition and 

change), and the addition of a dashed box indicates that there can be any number of 

instances. 

2.1.1. Operation. Figure 2.3 shows the top level parse algorithm. The operation 

of the parser engine is divided into cycles. A cycle is considered to be one pass through 

the core parser algorithm, which is shown in Figure 2.4. Before every invocation 

of CYCLE the parser performs backtracking and the parser state is saved in the 

boundary register Curr after each successful pass through the algorithm. In this way, 

the current state is saved between invocations of CYCLE. 

The LOOKUP algorithm will be described later ( 2.7.4), but a brief description is 

required here. LOOKUP scans the specified input stream, trying to recognise words. 

Several words could be recognized. For example, if the input was "onto... ", both 

"on" and "onto" would be recognised. Each recognised word is encapsulated in an 
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semantic 
role 

semantic 
entry 

semantic 
feature 
vector 

PARSE 

relation 

lexical 
entry 

paradigm 
node 

literal 
node 

category 

lexical 
trie 

reference 

reference 
queue 

Parser 

FIGURE 2.2. RV parser organization. 

gramrole 

production 

boundary 
register 

ordering 
feature 
vector 

action 

interpretations is assigned LOOKTJP(input, lexical trie root, all properties) 
(see Figure 2.10) 

if interpretations is empty 

signal an unknown word 
else 

store the initial state in the WORD and CURR boundaries 
push the WORD boundary on the backtracking stack 

push the CURR boundary on the backtracking stack 
while the backtracking stack is not empty 

pop a register off the backtracking stack and update the parser state from it 
call the CYCLE algorithm (see Figure 2.4) 

FIGURE 2.3. Algorithm PARSE 
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CYCLE 

found is assigned FIND-PRODUCTION() (see Figure 2.5) 
if found is a valid production 

disable found from being used again for this interpretation 
found.change change: currentState 
if found.type E {Lexical Init-final} 

if the input is completed and found.type = mit-final 
append a copy of the grammatical role MainO to parserResults 

else 
interpretations is assigned 

LOOKUP (remaining input, lexical trie root, all properties) 
(see Figure 2.10) 

if interpretations is empty 
signal an unknown word 

else 
save the current state in Word 

save the current state in Curr 

FIGURE 2.4. Algorithm CYCLE 

interpretation. The collection of these interpretations is returned by LOOKUP. This 

interpretation collection is sorted in decreasing order on the amount of input that 

each interpretation accounts for. This ordering ensures that, for example, "onto" is 

considered before "on". Interpretations also record what productions have been used 

while the interpretation was being used. This is done to avoid loops in production 

use. 

When a production is considered for use, three tests are performed which must all 

succeed for the production to be used. 

(1) The production must not have been previously used, as recorded in the current 

interpretation. 

(2) The condition vector of the production must match the current state vector. 
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FIND-PRODUCTION 

"look for a lexically constrained production" 

while the current interpretation is valid 
let intrep be the current interpretation 
for each production prod E interp.lexical-entry.categories 

if (prod.condition match: currentState) and each of prod.actions 
can be executed in the context of interp 

return prod 
else 

advance to the next interpretation 

"look for a non-lexical production" 

for each non-lexical production, nonlex 
for each intrep E interpretations 

if (nonlex. condition match: currentState) and each of nonlex.actions 
can be executed in the context of interp 

return nonlex 
return nil 

FIGURE 2.5. Algorithm FIND-PRODUCTION 

(3) All actions associated with the production must be successfully performed. 

Lexical and semi-lexical productions are checked first. They are specified by the 

categorization of the most recent interpretations of the upcoming input characters. 

The search begins with the active interpretation, and continues through those re-

maining until one is found that specifies a usable (semi)lexical production. 

If no (semi)lexical production is found non-lexical productions are checked. When 

non-lexical productions are searched, each one is checked for each of the possible 

interpretations of the upcoming input. When a usable production is found, the in-

terpretation with which it is usable becomes the active interpretation. 

The algorithm is shown in Figure 2.5. 
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Ordering Features: S V 0 DET HEAD 

GRAMMAR LEXICON 
cat flag condition change 

SUBJ N +S -HEAD -S +DET. . HEAD 

VERB L -S +V -HEAD -V 

OBJ N -V +0 -HEAD -O +DET. . HEAD 
CLOSE I -S -V -HEAD +S. . 0 -DET. . HEAD 

ART L +DET -DET 

NOUN L +HEAD -DET. . HEAD 

NAME L +DET. . HEAD -DET. . HEAD 

word cats 

George NAME 

ate VERB 

apple NOUN 

the ART 

an ART 

CLOSE 

FIGURE 2.6. Example RV Grammar and Lexicon 

2.2. A Simple Example 

17 

To help clarify the above description a simple example is provided here. The 

following conventions will be used in this and subsequent examples. 

(1) Features will be referred to by symbolic names only (e.g. NAME). These names 

are taken from the ' Ordering Features' section of the grammar. Correspon-

dence is by position. The order of these features define the meaning of each 

vector element. 

(2) The notation +NAME will mean that the feature NAME is given the value +. 

Similarly for -NAME and ?NAME. 

(3) The notation NAME1. . NAME2 will indicate the list of features from NAME1 to 

NAME2, inclusive. A ternary value can be applied to an entire range as well as 

a single feature (see item 2). 
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production state before 
SVODH 

state after 
SVODH 

input consumed 

SUBJ -++++ 

NAME -++++ -++-- George 
VERB -++-- --+-- ate 
OBJ --+-- ---++ 

ART ---++ ----+ an 
NOUN ----+ apple 
CLOSE 

TABLE 2.1. Trace of "George ate an apple." 

The grammar and lexicon for a simple language is shown in Figure 2.6. In this 

example, the lexicon simply associates character sequences with a syntactic category. 

This example shows how the sentence "George ate an apple." is processed. 

Firstly, the current state is initialized by the change vector of the mit-final produc-

tion CLOSE: +++--. Also, the first word is read from the input: "George". The only 

lexical category associated with "George" is NAME. Since the NAME production requires 

a state matching ???++ it will not fire yet. The non lexical production SUBJ does 

match the current state [i.e. match(+++--, +???-) -+ true] and thus fires. The cur-

rent state is changed by SUBJ's change vector (-??++), becoming -++++. Now, since 

(-++++ match: ???++) is true, the NAME production can fire, consuming "George", 

reading the next word: "ate", and changing the current state to -++---. This process 

continues, resulting in the sequence of production activations shown in Table 2.1. 

2.3. Embedding 

One of the reasons cited for the claim that natural languages require highly com-

plex parsing systems is clause embedding. This occurs when a modifying clause is 

embedded in the middle of a sentence. In the sentence "Men who eat quiche hate 
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pizza", the embedded clause is "who eat quiche". The embedded clause is a sentence 

within a sentence: who is the subject, eat is the verb, and quiche is the object. 

It may seem at first that center embedding poses a problem because it seems 

to require an unlimited, recursive solution. Fortunately, there are constraints on 

clause embedding in natural languages. Most importantly, human memory limitations 

place constraints of the depth of center embedding (Blank, 1989; Miller & Chomsky, 

1963). The following example (from (Blank, 1989)) demonstrates this. One level of 

embedding is understandable, but two levels are difficult to understand without extra 

effort: 

(1) 

(2) The mouse 

The mouse  the cat chased  squeaked. 

the cat the dog bit chased squeaked. 

Because of this restriction, the allowable depth of center embedding does not have 

to be large. Blank claims that only two levels are required beyond the level of the 

sentence (Blank, 1989). To support this, the parser allows three levels of embedding, 

the main sentence (level 1) and two levels below that. The level is controlled by a 

pair of actions sh±ftdown and returnup which embed and unembed respectively3. 

This embedding mechanism is required only for center embedded clauses. Both 

left embedding (genitive phrases, see (3) below) and right embedding (complement 

phrases, see (4) below) are not limited in many natural languages. They can simply 

reuse parts of the state vector that have already been finished with, or that will not be 

used again until the embedded clause has been processed. Although this sometimes 

causes alternative interpretations to be lost, it does not degrade RV's performance to 

a level below that of a native speaker. 

3Actions are discussed in detail in §2.9. 
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My mother 's girlfriend 's husband 

(4) I saw a dog 

's car broke down. 
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that chased a cat that caught a mouse that ate some cheese. 

2.4. Backtracking 

RV copes with ambiguity by using bounded backtracking. The parser maintains a 

finite set of boundary registers. These hold information about the parser's state at 

points in the parse to which backtracking can occur. These points are generally at 

natural syntactic boundaries  such as the beginnings and ends of clauses and phrases. 

The finite bounded backtracking scheme models the limitations of human short term 

memory; when a boundary is saved any prior contents are forgotten. Church (Church, 

1982, p. 57) has noted that "in some sense, [bounded] backtracking, lookahead, and 

parallelism are all very similar". Boundary backtracking is the primary factor in 

achieving linear time complexity. 

The backtracking mechanism is central to the parser's operation in addition to 

managing ambiguity. As the algorithm in Figure 2.4 shows, boundary registers Curr 

and Word are used to store the parser's state after each cycle and input token, re-

spectively. The first step in the parse cycle is to backtrack. Since boundary registers 

are accessible in the opposite order they were saved, the first register used will be 

the Curr register. If nothing can be done in that state, backtracking will retrieve the 

next register stored on the stack. 

Part of a parser's specification is a list of boundaries which is used to generate a 

set of boundary registers. There is a boundary register for each boundary at each 

allowable embedding level. 

'See (Carrithers & Bever, 1984) and (Garrett & Bever, 1970) for evidence of syntactic boundaries. 
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2.5. Sub categorization 

Sub categorization deals with the capability of a noun, verb, or other syntactic entity 

to determine the complements that it has. For example, the verb "put" requires both 

an object and a location. Sentence (5) is correct, but neither (6) nor (7) are. 

(5) 

(6) 

(7) 

I put something somewhere. 

*1 put something. (no location) 

*1 put somewhere. (no object) 

Syntactic entities can also limit their complements. An example of this is the verb 

hope which cannot take a progressive clause (8) or a bare infinitive (9). 

(8) 

(9) 

*1 hope leaving. 

*1 hope leave. 

Sub categorization also constrains how phrases are mapped semantically. Depend-

ing on the verb, the same phrase can have different roles. The following two sentences 

demonstrate this, in ( 10) Sam is the agent, in ( 11) it is the object: 

(10) Sam is eager to please. 

(11) Sam is easy to please. 

RV treats sub categorization as constraints on the grammar that are built into the 

lexicon. This makes sub categorization easy to implement at the cost of additional 

complexity in the lexicon. By using semi-lexical productions, a lexical entry can 

enable the use of its accepted complements. 

2.6. Sub categorization Example 

The example in Figure 2.7 (from (Blank & Owens, 1990)) shows the use of semi-

lexical productions to implement sub categorization. The example parses use the 

following format: 
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productions used 

'SUBJ:NAMT George 

input consumed 

The following shows how this grammar processes some sample sentences (for now we 

ignore word form differences): 

(12) George hopes. 

SUB J: NAME:  George; INTRANS: THAT: INF: VERB: hopes; CLOSE:.; 

(13) George believes Martha. 

SUB J: NAME:  George; TRANS: XO: THAT: VERB: believes; OBJ : NAME: Martha; 

CLOSE:.; 

(14) George believes. 

SUB J:NAME: George; TRANS: XO: THAT: VERB: believes; XOBJ:CLOSE:.; 

It is of particular interest to compare (13) and (14). Of interest is the use of the 

semi-lexical production XO which enables a truncated object. The XOBJ production 

supplies the truncated object if XO has been used and there is no real object. 

2.7. The Lexicon 

Lexical analysis in an RV system is designed for time and space efficiency, and 

is based on characters rather than tokens. This allows multi-word idioms to be 

recognized. 

The lexicon consists of two things: 

(1) a collection of structures representing words that the system can recognise; 

and 

(2) a way of indexing these structures so that they can be efficiently recognised. 
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S TR V 0 DET HEAD XO THAT INF 

GRAMMAR LEXICON 

cat flag condition change 

SUBJ 

TRANS 

INTRANS 

X0 

THAT 

INF 

VERB 

OBJ 

XOBJ 

THAT 

CTHAT 

INF 

CLOSE 

ART 

NOUN 

NAME 

word catlist 

N +S 

S -S+TR 

S -S+TR 

S -TR +0 

S -TR -INF 

S -TR 

L -TR +V 

N -V +0 

N -V+O+XO 

L -V +THAT 

N -V +THAT 

L -V +INF 

I -S. . HEAD 

L +DET. . HEAD 

L +HEAD 

L +DET. . HEAD 

FIGURE 

-s +DET. . HEAD 
-TR 

-TR -O 

+XO 

+THAT 

+INF 

-V 

-O +DET. . HEAD 

-O -XO 

+S. . 0 -DET. . INF 

+S. . 0 -DEL. , INF 

-5 +TR. . 0 -DET. INF 

+S. . 0 -DET. . INF 

-DET 

-DET. . HEAD 

-DET. . HEAD 

love TRANS VERB 

believe TRANS XO THAT 

VERB 

leave INTRANS VERB 

hurry INTRANS TRANS 

VERB 

hope INTRANS THAT 

INF VERB 

to INF 

that THAT 

George NAME 

Martha NAME 

robot NOUN 

the ART 

a ART 

CLOSE 

2.7. A Grammar Implementing Subcategorization 
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The lexicon is formally a many-to-many mapping from entry identifiers (word forms) 

to entries (structures representing semantically related words). 

2.7.1. Lexical Entries. Each lexical entry has a unique identifier which is usu-

ally the word stem, although there are no constraints on it other than uniqueness. 

Each entry also contains a set of syntactic and subcategorizing categories which are 

the names of lexical and semi-lexical productions, respectively. These are considered 

when this entry is recognised in the input. 

The ordering of categories is important as it determines the order in which the 

parser considers productions. Two general rules of thumb are to place the most 

commonly used categories early in the list, and to place semi-lexical categories before 

the lexical category they subcategorize. The reason for this is that lexical categories 
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Name: love 
Categories: PASS TRANS ADJPASS NOUN 
Wordpath: IoveBED... 

lov.LOVE 
Semantics: inh -ANIMATE. .WHITE +STATE..FEELJNG -ACTION. .TRANSFER 

subj +ANIMATE -STATE. .TRANSFER 
obj -STATE. .TRANSFER 

FIGURE 2.8. Definition of "love" 

cause the input token to be consumed, and it is thus no longer available. Since semi-

lexical categories are dependent on the token they have to be processed first, while the 

token is available. Semi-lexical categories are subordinate to lexical categories in that 

a lexical category can be subcategorized by a specific set of semi-lexical categories. 

For example, transitivity related categories only subcategorize the VERB category. 

Each lexical entry also has at least one spelling associated with it. This specifies a 

path through the lexical trie (see 2.7.3). A lexical entry can be used to represent a 

single word or a collection of semanticly related words. For example, Figure 2.8 shows 

the definition of the lexical entry "love". This can either be a verb, noun, or passive 

adjective. The verb and noun forms have different sets of endings, thus requiring two 

wordpaths. 

The final item contained by a lexical entry is a semantic definition. Details on this 

are given later, in 2.8. 

2.7.2. Paradigms. A paradigm' is a collection of ordered pairs (string, proper-

ties) where properties is a set of morphosyntactic properties. The pairs are ordered 

'To be consistent, the use of the term paradigm is the same as Blank's (Blank, 1989): "a table of 
pairs, each associating an orthographic (or possibly phonological) substring with its morphosyntactic 
properties". 
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on the length of string, in descending order. This ordering is imposed to ensure that 

the most specific string is matched'. 

2.7.2.1. Morphosyntactic Properties. Morphosyntactic properties are properties 

that a word form has as a result of its morphology. For instance "called" has the 

property past due to the "- ed" affix. 

There are two types of properties defined by the RV system: agreement and non-

agreement. Agreement properties are used in performing agreement checks (e.g. 

subject—verb agreement). Agreement properties are grouped by the "feature" they 

are associated with. To illustrate this, Table 2.2 shows several agreement features 

and their associated properties. 

Feature Properties  

gender male, female 
number singular, plural 
person first, second, third 
tense present, past 

TABLE 2.2. Sample agreement properties 

Non-agreement properties are not involved in agreement checks and include prop-

erties such as past-participle, infinitive, and nominal. They are used for enforcing 

agreement within a word (see §2.3 for an example) and as a constraint on produc-

tion selection. For example, a typical production to process nouns would include the 

action lexprop <nom> to insure that a noun was being processed. All noun forms 

of words would be given the nom property by a noun specific paradigm. In fact an 

empty paradigm can be created for this purpose, containing a single pair with an 

empty string and the nom property. 

'As shown in Figure 2.10, paradigm processing is stopped once a siring is matched. 
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Word From P3 From P4 Intersection Validity 
creeping {inf pres3 prespart} {prespart} {prespart} 
creeps {inf pres3 prespart} {pres3} {pres3} 
creept {inf pres3 prespart} {past pastpart} q x 
creep {inf pres3 prespart} {inf} {inf} 
creping {past pastpart} {prespart} 0 x 
creps {past pastpart} {pres3} 0 x 
crept {past pastpart} {past pastpart} {past pastpart} 
crep {pastpastpart} - {inf} x 

ABLE 2.3. Possib l e combinations of paradigms P3 and P4 

Agreement feature names (e.g. "gender") are not currently used in the RV system, 

but the properties are grouped into feature related sets (e.g. male, female). So, for 

example, the properties in Table 2.2 would be defined as <male, female> <singular, 

plural> <first, second, third> <present, past>. These properties work in combina-

tion to constrain agreement, e.g. "we" is first person plural. To support this, the 

Cartesian product is taken over all agreement sets. The result is the set of compound 

agreement properties that are used in cheeks, e.g. male:plural:first:present. 

If there are multiple paradigms in the spelling of a word, an intersection is made of 

the property sets selected from each. If the resulting set is empty then the word does 

not have consistent morphology. Table 2.3 shows how paradigms P3 and P4 in the 

path for creep are used to eliminate invalid spellings. See Figure 2.11 and Table 2.4 

for the lexicon and paradigm definitions, respectively. 

2.7.3. Lexical Trie. The lexicon is indexed by a structure similar to a trie(Aho, 

Sethi & Ullman, 1986). This is a character based structure, and as such supports 

multi-word idioms. This is possible since space characters are allowed in the spelling 

of a word. As mentioned above, this is not a true trie in that leaves, which are 
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lexical entries, can have multiple parents'. This capability allows the direct support 

of multiple spellings for a single lexical entry. An example of this was shown in 

Figure 2.11. The entry "call" has two spellings: one corresponding to the verb form, 

and another for the noun form. In this case the different spellings are required due 

to the different (and mutually exclusive) sets of allowable endings for each form. 

Each internal trio node has a pattern that input is matched against. The pattern 

is either a literal string, or a paradigm. Each internal node also has one or more 

descendants that are either lexical entries or tries. There are two types of internal 

node, depending on the pattern in it: 

(1) literal - the pattern is a string literal that is matched against characters in 

the input stream; 

(2) paradigm - the pattern is a paradigm, as described in 2.7.2. 

The structure of the internal nodes and leaf nodes (i.e. lexical entries) is shown in 

Figure 2.9. 

Lexical Entry 
id 
category, 
word path, 
semantics 

Paradigm Pattern 
string (property, ...) 

FIGURE 2.9. Trie node structure. 

2.7.4. Word Recognition. The RV parser uses the lexicon to find the cate-

gories and properties of words in the input. The LOOKUP algorithm of Figure 2.10 

outlines how this is done. The algorithm traverses the trie to find a path from the 

7lnternal nodes can currently have only one parent. 



2. REGISTER VECTOR PROCESSORS 28 

LOOKUP (input, node, props) 

interpretations is initialized empty 
case node 

leaf 
if input is empty or the first character is non-alphabetic 

add (node, props) to interpretations 

string pattern  
if node.string matches a prefix of input 

add to interpretations: 
Uchild LOOKUP (remaining input, node.child, props) 

paradigm pattern  
for each (string, properties) of the paradigm 

if string matches a prefix of input and props fl properties 
add to interpretations: 

Uchjld LOOKUP (remaining input, node.child, props fl properties) 
return interpretations 

return interpretations 

FIGURE 2.10. Algorithm LOOKUP 

root to one or more leaves that match the input stream and has a consistent set of 

properties. LOOKUP is a recursive algorithm, and is initially called with the root 

of the lexicon trie and the set of all possible properties as its second and third argu-

ments, respectively. It returns a list of interpretations (details in § 6.3.2.1) - possible 

lexical entries plus the properties they would have - for the upcoming input. Inter-

pretations are ordered to prefer longer matches, so idioms are preferred over literal 

interpretations and more specific matches are considered first (e.g. "onto" vs. "on"). 

The properties associated with an interpretation can be used for agreement (in tense, 

number, gender, etc) and to further constrain the selection of productions. 

2.7.5. An Example Lexicon. As an example, Figure 2.11 shows the trie for a 

simple lexicon. The syntactic categories used in this example are: Verb, Noun, and 
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FIGURE 2.11. Example Lexical Trie 

Determiner. Table 2.4 lists the six required paradigms including two for "creep", one 

for the suffixes and one for the "e" / "ee" variation. 

2.8. Semantics 

A parser has two main purposes: a) to verify that an input is in the language; and 

b) to convert the input into a more useful form. In the case of an RV parser, this 

more useful form is a semantic structure that represents the meaning of the input. 

In order to maintain constant space and linear time complexities this is done simply, 

efficiently, and in a consistent manner. 

2.8.1. Semantic Entries. The representation used for meaning in RV follows 

the general design criteria of being simple, consistent, and using limited resources. 

Actions (see §2.9) are provided to build a graph corresponding to the meaning of an 

input. This meaning graph is built up of frame-like elements referred to as semantic 

entries. Being frame-like, each semantic entry consists of a collection of slots. The 
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P1 (e.g. "cat") P2 (e.g. "call") P3 (e.g. "creep") 
s' 
's 
s 
$ 

{genpl} 
{gensng} 
{pl} 
{sng} 

ing 
ed 
s 

$ 

{prespart} 
{past, pastpart} 
{pres3} 
{inf, pres} 

ee 

e 

{inf, pres3, 
prespart} 

{past, pastpart} 

P4 (e.g. "crept") P5 (e.g. "love") P6 (e.g. "make") 
ing 
s 
t 

$ 

{prespart} 
{pres3} 
{past, pastpart} 
{inf} 

ing 
es 
ed 
e 

{prespart} 
{pres3} 
{past, pastpart} 
{inf} 

king 
kes 
de 
ke 

{prespart} 
{pres3} 
{past, pastpart} 
{inf} 

'ABLE 2.4. Paradigms used by the example lexical trie. $ means an 
empty string. 

term semantic roles is used to refer to the names of these slots. Semantic roles 

are completely arbitrary and defined as part of the parser specification. Examples 

of common semantic roles are: Agent, Instrument, and Beneficiary. However, 

using such meaningful slot names can be misleading. This is because the use of slots 

depends on the context of the semantic entry (e.g. what verb does it represent?). 

Blank advocates the use of meaningless semantic roles such as argi, arg2, etc. In 

addition to the predefined semantic roles, there can be any number of modifier slots. 

These are labelled Modi, Mod2, ..., Modn. Figure 2.12 shows the organization of the 

semantic data structures, while Figures 2.13 and 2.14 show the structure constructed 

for the inputs " George gave Martha the candy." and "Is the block sitting on the table 

red?", respectively. 

Semantic entry slots can impose constraints on possible fillers. These are called 

selectional restrictions and are implemented using ternary vectors. Unlike vectors 

in productions, elements in selectional restriction vectors are labeled by semantic 

properties (e.g. ANIMATE, HUMAN, ...). The ternary match operation is used to 
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references 

Least Recently Used 

semantic entry 

grammatical 
roles 

MainO 

Most Recently Used 

MainO 

properties 
sem entry 

lexical entry 

properties 

reference 
sem-rolel   

sem-ro1e2 

FIGURE 2.12. Semantic Data Structures. 

Entry g1ve28 

Properties past 

Agent 

Object 

Beneficiary 

Entry ge0rg029 

Properties proper 

lexical entry 

properties 

reference 
sem-rolel 

sem-ro1e2 

'Entry  

Properties 

candy27 

the nom 3rd-sg , 

e 
Entry martha30 

Properties proper 3rd-sn , 

FIGURE 2.13. Structure for "George gave Martha the candy.". 

Entry s1t23 

Properties yn-quest prog 

present 3rd-sg 

Agent 

Modifier 

Modifier 

Entry b1ock25 

Properties the nom 3rd-sg 

Entry 0n26 

Properties pp 3rd-sg 

Object 
Entry tab1e27 

Properties the nom 3rd-sg 

Entry nu1133 

Properties adjunct 3rd-sg 3rd-pi 

Modifier >'(Entiy 

FIGURE 2.14. Structure for "Is the block sitting on the table red?". 

red) 
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test role fillers for appropriateness. A role has a vector pattern associated with it 

and every entity has a vector embodying its inherent properties. These two (inherent 

properties and role pattern) are matched to test whether an entity can fill a role. 

To illustrate the selectional restriction mechanism, consider the parsing of sen-

tences 15 and 16 below: 

(15) " George gave Martha the candy." 

(16) "George gave Martha today." 

In both cases, assume that "George gave Martha" has been successfully parsed, re-

sulting in the structure shown in Figure 2.15. 

MainO 

Entry give28 

Properties past 

Agent 

Beneficiary 

Object 

Entry ge0rge29 

Properties proper 

> 
Entry martha30 

•Properties proper 3rd-sg 

-animate -human -state -emotion 

-action -transfer -location -time 

FIGURE 2.15. Structure for "George gave Martha". 

In ( 15), the object is "the candy" which has the following inherent properties: 

{—ANIMATE —HUMAN +MOBILE ?ROUND —STATE —EMOTION 

—ACTION —TRANSFER —POSSESSION —LOCATION —TIME —DEST 

—INSIDE —SUPPORTED —PERM} 

This matches the selectional restriction of the object slot of give, specifically: 

{—ANIMATE —HUMAN —STATE —EMOTION 

—ACTION —TRANSFER —LOCATION —TIME} 
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Other features are not specified for the slot (i.e. they are implicitly '?') and so are 

ignored by the match. Thus "candy" matches and is used to fill the slot. Figure 2.13 

shows the resulting structure. 

The potential object of ( 16) is "today" which has the element +TIME in its inherent 

properties. Since the object slot of "give" specifies -TIME, "today" is rejected as a 

filler. The parser would then try any other possible interpretations of the sentence. 

When none are found, the sentence is rejected as being ungrammatical. 

When a filler is found for a role, the inherent properties of the filler are updated 

from those of the slot. This is done using the refine: operation. This fills in any ? 

elements in the filler's vector with corresponding values from the slot's. The filler is 

then placed in the slot, replacing the selectional restriction vector. 

2.8.2. Relations. A relation is a connection between constituent items in a sen-

tence which is implied by complex predicates. A relation is much the same as a 

semantic entry. The difference is that a slot in a relation can be filled by a slot filler 

of the predicate implying the relation. For example, Figure 2.16 shows the relations 

FROM-POSS and TO-FOSS which are used with verbs that result in a transfer of pos-

session. Figure 2.17 shows how these relations are used in the semantic structure 

corresponding to " George gave Martha the candy.". 

FROM-FOSS TO-FOSS 

Role Filler Role Filler 

Object: 
Beneficiary: 

Object 
Agent 

Object: 
Beneficiary: 

Object 
Beneficiary 

FIGURE 2.16. The FROM-POSS and TO-FOSS relations. 
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MainO 

Entry  g1ve28  

Properties 

Agent 

Object 

Beneficiary 

Relation 1 

past 

\Relation2 
Entry 

Object 

Beneficiary 

TO-POs   

--

'-Entry 

-a - 

-. 

Entry  
'I . > 

.. '.,Properties 

FROM-POSS  

Object 

Beneficiary I 

I: 

FIGURE 2.17. Usage of relations 

'Entry 

Properties 

george29  

proper 

En 

Pro .erties 

cand27 

the nom 3rd.sQ, 

martha30 

proper 3rd-sg I 

2.8.3. Grammatical Roles. As a meaning structure is being built, entries are 

accessed through grammatical roles (sometimes referred to as gramroles). These 

correspond to the set of boundary registers'. This is done since syntactic boundaries 

correspond to semantic units (e.g. subject, noun phrase, etc). 

The parser contains a dictionary that binds each grammatical role to a reference. 

A reference contains two pieces of information: a set of morphosyntactic properties 

(used for agreement) and a semantic entry. There are a fixed number of references 

in the system, which are allocated when the parser is created. Because of this, it is 

conceivable that a situation would occur in which all references have been used. When 

a new reference is required the one that has been least recently used is reused. This 

handling of reference storage is a factor in maintaining constant space complexity. 

8This is a 1-1 and onto correspondence, so the same names are used for corresponding boundaries 
and grammatical roles, SUBJ for example). 
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2.8.4. Agreement. As discussed in §2.7.2.1 there are two types of morphosyn-

tactic properties: agreement and non-agreement. This section is only concerned with 

agreement properties, since they are the ones that convey agreement information. 

When morphosyntactic agreement of a grammatical role is checked, either against 

another grammatical role or a reading, only the agreement properties are used. They 

are extracted from the property sets of both items involved and intersected. If this 

intersection is empty the check fails. If the intersection is non-empty, it is assigned as 

the agreement property set of the LJHS and the check succeeds. The non-agreement 

properties of both items remain unchanged except in one case. If agreement is be-

ing checked against the current interpretation, and it succeeds, the non-agreement 

properties of the reading are added to those of the grammatical role. This is done 

to initialize the non-agreement properties of the grammatical role, since none are 

assigned when the grammatical role is given a new reference. 

This agreement method is directional and does not suffer from the problem of non-

distinctness that recent unification-based approaches do (Blank & Labuda, 1991). 

Directionality allows one item to restrict another, possibly leaving the first neutral. 

This capability is not required so much for English, but is for other languages with a 

less impoverished agreement system such as German. 

2.8.5. An Example. For example, the actions for three productions (NAME, 

SUBJect, BITRANSitive verb) are shown in Figure 2.l8. I will use these to illustrate 

how agreement, selectional restrictions, and meaning-graph building are performed 

in parsing "George gave" in sentence 15 or 16. 

'Actions are described in detail in the next section. 
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When "George" is recognized, it enables the NAME production. When NAME is used 

its actions are executed. They assign the lexical entry "George" to the grammatical 

role NP and add properties specifying a proper noun and third person singular". 

Next, "George" is recognized as the subject of the sentence by the SUBJ production. 

The associated actions do two things: 

• Set a backtracking point in the Subj boundary register. 

• Set the Subj grammatical role to refer to the same semantic entry as NP (which 

was just loaded with the lexical entry for "George"). 

Finally, the BITRANS production is used to process "gave". The actions construct 

the semantic entry for the main predicate of the sentence: 

• Save a backtracking point in the Fred register. 

• Connect the current lexical entry ("give") to the Pred grammatical role. 

• Check agreement and selectional restrictions on the subject role, and if the 

checks succeed assign the previously constructed subject to the subject role of 

the new predicate structure. 

2.9. Actions 

This section describes the actions of RV. There are twelve actions, organized into 

five categories. Each of these categories is considered separately. 

2.9.1. Embedding. Embedding actions control the level of embedding being 

used. 

"By adding these properties with the production responsible for parsing names, it saves the work 
and storage requirements involved in specifying them for all names in the lexicon 
"Actually, the INTRANSitive and TRANSitive productions would be tried as well. The backtracking 
mechanism would eliminate those that did not match the argument structure of the sentence. 
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NAME 

NP1ex set the lexical entry for the name 

NP addprop <proper 3rd*sg> set the appropriate properties for a name 

SUBJ 
save Subj 
Subj : NP 

set a backtracking point 

the most recent noun phrase is the subject 

BITRANS 

save Fred set a backtracking point 

Pred1 ex set the lexical entry for the verb/predicate 
Subj Pred. subj check agreement and selectional restric-

tions. If these are consistent, set the sub-

ject of the predicate 

FIGURE 2.18. Actions for the NAME, SUBJ, and BITRANS Productions. 

shiftdown 

Embed one level deeper. Fails if the parser is currently embedded two levels 

below the main sentence, succeeds otherwise. 

returnup 

LJnembed one level. Fails if the parser is currently at the main sentence level, 

succeeds otherwise. 

2.9.2. Boundary Registers. Boundary related actions manage the saving and 

restoring of parser state information. Much of this work is done automatically by the 

parser engine during its normal operation, but there are situations where it useful to 

do this explicitly. 

save boundary 

Save the current parser state in the boundary register named boundary. The 



2. REGISTER VECTOR PROCESSORS 38 

parser engine saves the state in the CURR register after each production applica-

tion'2 and in the WORD register after each token is read from the input. The 

save action is used to place explicit backtracking points. Always succeeds. 

adjoin boundary 

This is used to explicitly restore the parser state from the boundary register 

named boundary. This action is rarely used. Always succeeds. 

2.9.3. Property Manipulation. There are actions to test for and modify mor-

phosyntactic properties. 

lexprop properties 

This action tests the current input token's property set. This is done by inter-

secting properties and the token's properties. This action is very useful when a 

word having certain properties is required. For example, in the sentence "I had 

to go.", the verb following "to" has to have the property infinitive. Succeeds 

if the result is non-empty, fails otherwise. 

gramrole addprop properties 

The addprop action adds the properties in properties to the property set of the 

semantic entry associated with gramrole. An example of this was shown in §2.8. 

Always succeeds. 

2.9.4. Semantics. There are several actions used for building the semantic struc-

ture from an input. 

gramrole new 

This assigns a new semantic entry to the grammatical role gramrole. Always 

succeeds. 

"This is an integral part of the engine's operation. 
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gramrole := null 

Assigns the null semantic entry to the grammatical role gramrole. This is used 

to create placeholder nodes in the semantic structure or to add nodes where 

there is no corresponding lexical entry in the input. For example, this action is 

useful when parsing adjectives. A null role is created for the expected noun. The 

adjectives then modify this null entry, which is eventually filled in by the head 

noun. Always succeeds. 

gramroleL gramroleR 

These are three variations on a single action. All three assign the contents of 

the grammatical role gramroleR to gramroleL. The first form is a simple assign-

ment. The second has gramroleR prefixed by ". In this case, the contents of 

gramroleR from the next more shallow embedding level are used. The final form 

prefixes gramroleR with "\". This form uses the contents of gramroleR from 

the next deeper embedding level. Succeeds if gramroleR has a valid value, fails 

otherwise. 

gramroleL = lex 

gramroleL = gramroleR[. role 1[. ro1e2]] 

These actions actually do the structure building. The first form matches the 

semantic contents of gramroleL with that of the current input token. If they 

are compatible, the contents of gramrole are refined by that of the input token. 

The second form operates between gramrolcs. It can optionally take the name 

of a role within gramroleR's contents. In that case the specified role is filled by 

gramroleL. The second role specifier can be present if the first identifies a relation 

role. Succeeds if the action was successfull (i.e. contents were compatible), fails 

otherwise. 
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gramroleL -> lex 

gramroleL -> gramroleR 

These are the actions that add modifiers to a semantic entry. The first form 

adds the current input token as a modifier of gramroleL'3, while the second adds 

gramroleR as a modifier. Always succeeds. 

2.9.5. Agreement. The actions in this section check agreement of morphosyn-

tactic properties. Agreement checks are performed by intersecting the agreement 

properties of the two arguments and setting those of the left argument to the result 

if it is non-empty. 

gramroleL agree lex 

gramroleL agree gramroleR 

The first form checks agreement of gramroleL with the current input token. The 

second form checks it with another grammatical role. Succeeds if the intersection 

of the two agreement property sets is non empty, fails otherwise. 

2.10. Summary 

This chapter described, in detail, the design and operation of the RV formalism. 

Several parsers were provided as examples. The chapter began with a formal definition 

of RV, then went on to describe the underlying data structures and operations on 

them. The discussion covered all areas of the parser's responsibility: syntax, lexicon, 

and semantics. 

13 The seemingly backwards arrow notation was kept to be consistent with Blank's notation. 



CHAPTER 3 

Related Work 

This chapter presents work related to that described in this thesis. First two RV 

development systems are described. The second section briefly describes some lexical 

acquisition systems that have been reported. 

3.1. Existing RV Development Systems 

This section discusses the two known existing development systems for RV parsers: 

Blank's, which provides the parser developer with tools with which to construct RV 

parsers, but conforms to the traditional edit-compile-debug approach; and Reed's 

which compiles phrase structure grammars to RV productions. Finally, the ways in. 

which RV-Tools differs will be discussed. 

3.1.1. Blank's System. Glenn Blank developed the original RV development 

system (Blank, 1989; Blank, 1991; Blank & others, 1992). This system is text based 

and command line oriented. Syntax rules and lexical entries are specified using a 

text editor (such as Emacs). Each is contained in a separate file. Sections 3.1.1.1 

and 3.1.1.2 show sample syntax and lexicon specification file, respectively. 

This system is typical of the traditional compiled language paradigm: a source file 

is edited, compiled and then tested. If problems are detected the sequence is repeated. 

Figure 3.1 shows the organization of Blank's system. 

41 
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Input 
Sentences 

(Text - 
Editor 

Syntax 
Specification 

Lexicon 
Specification 

Syntax 
Assembler 

Lexicon 
Assembler 

Syntax 
Implementation 

Lexicon 
Implementation 

Parser 
Engine 

V 
Lexical/Syntactic/ 
Semantic Structure 

FIGURE 3.1. Data flow in Blank's Development System 

I,-
  Debugger 

Once the syntax and lexicon specification files have been prepared they are pro-

cessed to create syntax and lexicon implementation files which are used by the parser. 

Operation of the parser is controlled by a set of command menus. The appropriate 

menu is printed at any time, and a selection is made by means of a keystroke. Sec-

tion 3.1.1.3 shows part of a typical session, while Section 3.1.1.4 shows part of a 

debugging session. 

3.1.1.1. Example RV parser specification. 

{A fragment demonstrating affix agreement as described in agree9l.ps} 

morpho syntact ic...propert ies 

<first second third> <sg p1> pres past pastpart prespart inf nom 

ordering-:features 

OPEN S TOP TENS MODAL AUX HAVE BE NEG V 10 0 THAT XO XIO BARE INF 

PPR PASS MAINC 

NP DET NUM ADJ HEAD DENOM NEND NROLE REL 

INFL PREP PNP GAP XS RELEND 

macros features 

##NPon 

##NPoff 

##NPmod 

##NPend 

##NRo1e 

+DET. 

—DET. 

—DET. 

—DET. 

—DET. 

.HEAD -DENOM. . NEND {enable/require noun phrase up to head} 

.REL {disable or require noun phrase off} 

.HEAD +DENOM. . NROLE {Past head of NP} 

.HEAD +NEND +REL {Before end of NP} 

.HEAD +NROLE {condition for SUBJ, OBJ, etc.} 

{ClauseOn initializes requirements for most clauses--note embedded #NPoff} 

##ClauseOn +S. . 0 -THAT. . PASS +PPR +NP -AUX -INFL. . RELEND #NPoff 

##ClauseOff -OPEN. . 0 -DET. . GAP {disable/require constituents off} 
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default cond #NPoff ?DENOM ?NROLE ?REL {in clause, not phrase} -OPEN 

boundaries Topic Tense Subj Pred Obj Clause NP NPmod 

productions 

p TENSE N morph pres past {TENSE must observe a tensed morphological form} 

cond -I-TENS -I-NROLE -XS -PREP change -TENS +INFL -NP +PNP 

action save Tense 

p TENSV N morph pres past -CTENSV fires for tensed main verbs (not auxiliary)} 

cond +TENS +NROLE -PREP change -TENS. . BE -I-INFL +AUX -I-NP 

p BE L cond +INFL -I-BE -TOP change -MODAL -HAVE -BE -INFL 

{Verb subcategories: INTRANS for no object, TRANS for one, BITRANS for two)-

p INTRANS S cond -S +0 +INFL -1-AUX change -MODAL. . NEG -NP -O -10 

action save Pred -CINTRANS rules out OBJ or IOBJ} 

p TRANS S cond -S +10 +INFL +AUX change -MODAL. . NEG -Ia action save Fred 

p V L cond -S +V -AUX. . NEG +INFL change -V -INFL -REL -PNP 

p CADJ L conI -BE' -S +V change #ClauseOff -NP 

action save Fred 

-(The following productions follow NPEND (and assign grammatical roles))-- 

p SUBJ N cond #NRole ?NEND +S -TENS +V change -S #NPoff -TOP 

action save Subj 

p OB.J N cond #NRolo ?NEND -V +0 

action save Obj 

change -O -NP -DEMON -NROLE 

{NP introduces a noun phrase ( skipped by PREP and other prep productions))-- 

p NP N cond -I-NP #NPoff ?REL -INFL -AUX -PREP -PNP change #NPon +NROLE 

-(save at opening of phrase)-

{Noun phrase 

pDET L 

pNOUN L 

cond #NPon ?DET. . ADJ 

p NAME L cond #NPon 

p PRON L cond #NPon 

action save NPmod 

p NPEND N cond -HEAD +NEND 

action save NPmod 

action save NP 

productions)-- 

cond #NPon change -DET -(determiner)-

morph nom -(Must be a nominal, not a verb affix)-

change #NPmod -1-REL 

change #NPmod -(George, etc J-
change #NPoff +NROLE -PREP -AUX 

-(Pronouns have no post-modifiers)-

change #NPoff -AUX ?NROLE -PREP 

-(Relative clauses come in several varieties, which cross-categorize: 

They may open with explicit relative pronouns: RELR or RELC are Lexicals, 

or not: RELRO or RELCO are Non-lexicals rivalling RELR and RELC 

They may right embed--RELR or RELRO--if clause is "on the table": -S. . 0 -GAP 

or center-embed--RELC or RELCO--if clause not yet seen S,V,O or GAP 

Next, they may be full relative clauses--REL----enabling SUBJ, AUX, GAP 

or reduced relative clauses--REDREL-disabling SUBJ, AUX, GAP 

} 

43 
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p RELR L cond #NPend -S. . 0 -GAP {" clause on the table": -S. . 0 -GAP) 

change #ClauseOn +OPEN -TOP -MAINC ?RELEND {thru from RELC} +GAP 

action save Clause {right-embed, but allow resumption of adjuncts) 

p RELC L cond #NPend +0 -RELEND {clause not yet on table: +0 -RELEND} -PNP 

change #ClauseOn +OPEN -TOP -MAINC +RELEND 

action shiftdown {center-embed--next clause level) 

p RELRO N cond #NPend -S. . 0 -GAP {" clause on the table": -S. . 0 -GAP) ?NP 

change #ClauseOn +OPEN -TOP -MAINC ?NP {thru to REL} ?RELEND +REL 

action save Clause {right-embed, but allow resumption of adjuncts) 
p RELCO N cond #NPend +0 -RELEND {clause not yet on table +0 -RELEND} -PNP 

change #ClauseOn +OPEN -TOP -MAINC +RELEND +REL {+RELno Subj Gap) 

action shiftdown {center-embed--next clause level) 

{REDREL--reduced relative clause (no SUBJ, AUX, NGAP), e.g. " cat sleeping.. . III 

p REDFtEL N morph pastpart prespart 

cond +OPEN -MAINC +REL 

change -OPEN. . BE -NP {Disable SUBJ, AUX} -REL 

{REL--full relative clause (with SUBJ & AUX), e.g. " cat [which] I pet") 

p REL N cond +OPEN -MAINC +NP change -OPEN +GAP {NGAP in full rel clause) 

{RELEND marks end center-embedded post-modifiers: shifts up a clause level) 

p RELEND N cond #Clause0ff +RELEND 

change -DET. . DENOM -REL {Continue noun phrase at higher level) 

action returnup {return from center-embedding) 

{WH-questions require an NGAP in place of an NP: +GAP} 

p WE L cond +OPEM +MAINC change +GAP +XS -OPEN -NP action save Topic 
{NGAP meets GAP requirement; NGAP requires an NROLE production) 

p NGAP N cond ?DET. . NEND -NROLE -REL +GAP 

change #NPoff +NROLE -GAP 

'(Main clause opening productions) 

p OPEN N cond +OPEN +MAINC change -OPEN action save Topic 

'(Clause InitFinal production) 

p CLOSE I cond #ClauseOff -RELEND ?NEND 

change +OPEN #ClauseOn +MAINC 

5 emact ions 

p DET 

p NOUN 

p NAME 

p TENSE 

p TENSV 

p SUBJ 

p  

p OBJ 

p REL 

p REDREL 

p WE 
p NGAP 

NP <= lex 

NP <= lex 

NP <= lex 

Tense <= lex 

Tense <= lex 

Subj := NP Subj <= Tense 

Pred <= lex 

Obj := NP 

Topic : NP 

Subj : NP 

Topic <= lex 

NP := Topic 
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3.1.1.2. Example RV Lexicon. 

paradigms 

m BED s <third*pl nom> 

/ <third*sg nom> 

m SHEEP / <third nolu> 

in PULL I <first second third*pl pres> 
s <third*sg pres> 

ing <prespart> 

ed <past pastpart> 

in LOVE e <first second third*pl pres> 

es <third*sg pres> 

ing <prespart> 

ed <past pastpart> 

in BE are <pres p1> is <pres third*sg> am <pres first*sg> 

was <past first*sg third*sg> were <past pl second*sg> 

be <inf> been <pastpart> being <prespart> 

m A / <third*sg> 
m THE / <third> 

entries 

e clock cat NOUN morph clock_BED_ 

e sheep cat NOUN morph sheep_SHEEP... 

e tick cat INTRANS V NOUN morph tick-PULL- in tick_BED_ 

e graze cat INTRANS V morph graz_LOVE_ 

e be cat BE morph _BE_ 

e fat cat CADJ 

e hungry cat CADJ 

e a cat DET morph a_A_ 

e the cat DET morph the_THE_ 

e that cat RELC RELR DET 

e . cat CLOSE 

3.1.1.3. Sample session. 

/.rvg 

Register Vector Grammar, Version 3 9.6 

Copyright 1990 -- G. Blank, Lehigh University 

Grammar assembled from sep92.syn 

Lexicon assembled from 5ep92.lex 

Parser,Trace,Sentence file,Graimnar,Lexicon,Words , Os,Help,eXit RVG: s 

Keyboard,From file: sentin.txt,Change file,Goto,Repeat , Help,eXit menu:f 

Reading from sentin.txt 

Parser,Trace,Sentence file,Granuuar,Lexicon,Words , Os,Help,eXit RVG:p 
#We start by honoring our first first family once more: 

1)George loves Martha. 
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Parse succeeds 

S: NP: NAME: George; NPEND: TENSV: SUBJ: TRANS: love; NP:NAME:Nartha; OBJ:CLOSE:.; 
MainO:love0 present 3rd-sg 

Lsubj:Georgel proper 3rd-sg 

Lobj:Martha2 proper 3rd-sg 

Inspect , Roles , TraceMenu,SentenceMenu,Granunar,Lexicon,Os , Help,eXit ,<space>: 

#A famous syntactically ambiguous sentence: 

2)Time flies like an arrow. 

Parse succeeds 

S:INP:TRANS:time; NP:NOUN:fly; OBJ:PPR:PREP:like; INDEF:an; NOUN:arrow; C: 

PPEND:CLOSE:.; 

MainO:time3 imperative present inf lst-sg Ist-pi 2nd-sg 2nd-pi 3rd-pl 

Lobj:f1y4 nom 3rd-pl 

mod:like5 pp 3rd-sg 

Lobj:arrow6 a nom 3rd-sg 

Inspect , Roles , TraceMenu,SentenceMenu,Granunar,Lexicon,Os ,Help,eXit ,<space>; 

3)Is the block sitting on the table red? 

Parse succeeds 

S:qUES:BE:be; NP:DEF:the; NOUN:block; SUBJ:PROG: INTRANS: sit; PPR:PFtEP:on; 

DEF;the; NOUN:table; PPEND:ADVNP:ADJ:red; ADJHEAD:C:ADVNPEND:CLOSE:?; 
Main0:sit23 yn_quest prog present 3rd-sg 

Lsubj:b10ck25 the nom 3rd-sg 

mod:on26 pp 3rd-sg 

Lobj:tab1e27 the nom 3rd-sg 

mod:nu1133 adjunct 3rd-sg 3rd-pi 

mod: red 

Inspect,Roles , TraceMenu, SentenceNenu,Grammar, , 0s , Help , eXit ,<space>: 

3.1.1.4. Sample debugging session. 

'/.rvg 

Register Vector Grammar, Version 3.9.6 

Copyright 1990 -- G. Blank, Lehigh University 

Grammar assembled from agree2.syn 

Lexicon assembled from agree2.lex 

Parser,Trace,Sentence file,Grammar,Lexicon,Words , Os,Help, eXit RVG:t 

Quick,Backtracking,Step,Changes,To breakpt , No prompt,Options,Help,eXit menu:b 

Parser,Trace,Sentence file,Graimuar,Lexicon,Words , Os,Help, eXit RVG:t 

Quick,Backtracking,Step,Cha.nges , To breakpt , No prompt,Options , Help,eXit menu: s 

Parser,Trace,Sentence file,Granunar,Lexicon,Words , Os,Help, eXit RVG:p 

Sentence: the fat sheep is hungry. 

OPEN: 

Inspect , Roles , TraceNenu,SentenceNenu,Granuuar,Lexicon,Os ,Help,eXit ,<space>: 

OPEN:NP: 

Inspect , Roles , TraceMenu,SentenceMenu,Grammar,Lexicon,Os ,Help,eXit ,<space>: 

OPEN : NP : DET : the 

Inspect , Roles , TraceMenu,SentenceMenu,Grammar,Lexicon,Os ,Help,eXit ,<space>: i 

)the fat sheep is hungry. 

OPEN : NP : DET : the 

LexEntry: *the 
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Categories: DET 

morph props:third-sg third-pi 

ContPt : none 

Syntactic state vector at ClauseLevel 0: 

-QPEN+S+TOP+TENS+MODAL--AUX+HAVE+BE+NEG+V+IO+O-THAT.-XO-XIO-BARE-INF+PPR_PASS 

+MAINC+NP-DET+NUM+ADJ+HEAD-DENON-NEND+NROLE-REL-INFL-PREP--PNP.--GAP-XS-RELEND 

Choose a production (or List,Registers,Help,<Enter> to quit):r 

1:SynState now 2:Curr 3:Prod 7:TopicO 13:NPO 

Choose a state register NUMBER (or <enter> to quit):13 

Showing NPO: 

)the fat sheep is hungry. 

OPEN: 

LexEntry: *the 

Categories: DET 

morph props:third-sg third-pi 

ContPt : none 

Syntactic state vector at ClauseLevel 0: 

-OPEN+S+TQP+TENS+MODAL-AUX+HAVE+BE+NEG+V+IO+O-THAT-XO-XIO-BARE-INF+PPR-PASS 

+}1AINC+NP-DET-NUM-ADJ-HEAD-DENOM-NEND-NROLE-REL-INFL-pREp--pNp-GAp-xS-RELEIjTJ 

Choose a production (or List,Registers,Help,<Enter> to quit) :NOUN 
NOUN's cond differs:+HEAD 

3.1.2. Reed's System. When RV was still in the process of maturing, Jonathan 

Reed developed a system that compiled phrase structure grammar rules into an RV 

representation by using a finite state automaton as an intermediate representation 

(Reed, 1987; Reed, 1989). His system used RV as an efficient engine underlying a 

phrase structure grammar specification. It was able to make use of much of RV's 

efficiency in terms of processing speed, but it generated many more syntax rules than 

would be necessary in a pure RV approach. Also, not all phrase structure grammars 

can be converted to finite state automata. Thus, the applicability of this method is 

limited. Specifically, finite state automata can not implement embedding so phrase 

structure grammars that use embedding can not be used with this method. This 

severely limits its use in natural language parsing systems. 

To illustrate the operation of the compiler, the English auxiliary system is used as 

an example (Reed, 1989). The phrase structure grammar to RV compiler first converts 
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the phrase structure grammar specification (Figure 3.2) to a finite state automaton 

(Figure 3.3) which is then reduced. 

AUX - modal 
AUX -+ modal not 
AUX - have 
AUX -+ have not 
AUX be 
AUX - be not 
AUX -+ modal have be 
AUX -+ modal not have be 
AUX modal have 
AUX -+ modal not have 
AUX -+ modal be 
AUX - modal not be 
AUX -+ have be 
AUX - have not be 

FIGURE 3.2. Phrase structure grammar for the English auxiliary system 

Using standard finite state automaton reduction, the resulting automaton would 

have the characteristic that a single state could be entered by arcs labeled with 

different symbols. This complicates the conversion to RV so a reduction is used that 

does not merge states that are entered by arcs with different labels (Figure 3.4). 

This finite state automaton is then converted into a set of RV productions (Fig-

ure 3.5). The resulting productions conform to the following rules: 

(1) Production names and input symbols are equivalent; 

(2) Vector elements correspond to productions, in the same order as productions 

are listed; 

(3) The condition vector of a production contains a + in the element corresponding 

to itself, and - in all others; 
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FIGURE 3.3. Initial finite state automaton for the auxiliary system. 

FIGURE 3.4. Reduced finite state automaton for the auxiliary system. 
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(4) The result vector of a production contains a + in all positions for which the 

finite state automaton changes state; 

(5) If a production represents a final state, the elements of the result vector cor-

responding to "close" contains +, otherwise it contains -. 

The resulting 1W parser should be hand optimized to attain maximum efficiency 

(Figure 3.6). 

Label condition 
vector 

change 
vector 

mit 
modal1 
not1 
have1 
not2 
be1 
not3 
have2 
be2 
close 

??????+?? 

++ 

++ 

+ 

FIGURE 3.5. Resulting set of RV productions. 

Label condition 
vector 

change 
vector 

mit 
modal 
not 
have1 
be1 
have2 
be2 
close 

FIGURE 3.6. Hand optimized RV productions 
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Reed's system is interesting but does not fully address the problem of developing 

RV parsers. It simply uses RV as an efficient implementation system for phrase 

structure grammars. Also, the system generates only productions useful for syntactic 

analysis: there is no support for handling agreement and semantics which must be 

added manually to the resulting productions. These productions may not be designed 

appropriately, thus requiring some redesign. Finally, the lexicon has to be built 

completely by hand. 

3.1.3. How RV-Tools Differs. RV-Tools follows the Smalltalk approach of de-

veloping in an interactive, largely modeless environment. There is no compilation 

step, and editing can be performed while the parser is being debugged, with changes 

taking effect immediately. This results in a interactive, incremental parser develop-

ment environment. The organization of RV-Tools is shown in Figure 3.7. 

( Grammar Browser Grammar Input Sentences 

>( Debugger 

Lexicon Learner ) 

FIGURE 3.7. Diagram of RV-Tools. 

3.2. Lexical Acquisition Systems 

Lexical/Syntactic/ 

Semantic Structures 

This section describes some of the notable lexical acquisition systems, and com-

ments briefly on how they relate to the one presented in this thesis. 
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Harris (Harris, 1977) developed a mechanism for acquiring vocabulary by learn-

ing associations between actions/objects and words. This is the inspiration for the 

category pruning mechanism described in Chapter 8. 

Hasting et. al. (Hastings, Lytinen & Lindsay, 1991) describe a system for learning 

word—concept associations within a fixed domain. All concepts involved are known 

ahead of time and stored in a hierarchy, along with their type and the types of any 

slot fillers. Slot filler types are used to incrementally induce the meanings of unknown 

words. This system does not learn any morphology, it just labels concepts. 

Kazman (Kazman, 1991) presents a psychologically motivated model of lexical ac-

quisition. This system has no prior knowledge of affixes. It discovers stems and affixes 

by comparison of different word forms. It then uses these affixes with other words of 

the same type. The system does use a frequency based reinforcement mechanism to 

prune out any unused combinations (such as loots and goed). 

Paul Kogut (Kogut, 1992) worked on learning lexical semantics for RV from both 

text corpora, and the lexical database "Wordnet", developed at the Princeton Cog-

nitive Science laboratory. This is a good way to learn a large, standard vocabulary 

for a new domain, but it does not provide a way to dynamically adapt to a specific 

user and domain. 

3.3. Summary 

This chapter described the two existing, documented systems which support devel-

opment of RV parsers: Blank's and Reed's. RV-Tools' philosophical differences with 

these were described briefly: 



3. RELATED WORK 53 

• Blank's system has a traditional edit—compile—test development paradigm whereas 

RV-Tools provides various views of the systems under development, is inter-

active, and allows modification of the parser at any time; 

• Reed's system was designed to use RV as an efficient mechanism for imple-

menting phrase structure grammars, and does not address direct development 

of RV parsers. RV-Tools, on the other hand, is targeted at the parser developer 

who is working directly with the RV formalism. 

Finally, related work in the area of automated lexical acquisition was briefly de-

scribed. Most of the systems presented strive to be psychologically valid, while those 

that are primarily pragmatic are generally not interactive or incremental. This con-

trasts to the vocabulary acquisition mechanism of RV-Tools, described in Chapter 8, 

which is designed for interactive, incremental operation. 



CHAPTER 4 

Brief Introduction to Smalltalk-80 

This chapter provides a brief overview of object-oriented programming concepts as 

they apply to Smalltalk-80. It also introduces the concepts involved in the Model-

View-Controller paradigm used by the Smalltalk-80 system. 

The concepts and terminology introduced here provide background for later chap-

ters which deal with RV-Tools implementation issues. 

4.1. An Introductory Example 

Before any details about Smalltalk-80 are described, I present a simple illustrative 

example. 

The example presented is that of the turtle in a turtle graphics environment, such 

as LOGO. A turtle in a graphics system has the capability of moving in a straight line 

and turning any angle, all while dragging along a pen that can either be touching the 

surface the turtle is traversing or held away from it. The turtle responds to a small 

set of commands: move forward a specified amount, turn clockwise by a specified 

number of degrees, lower the pen so that it touches the surface, and raise the pen 

away from the surface. 

Using an object-oriented approach we would describe the turtle as shown in Ta-

ble 4.1. Figure 4.1 shows how the turtle responds to a sequence of instructions. 
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Attributes Actions  

location move distance 

direction turn angle 

pen status pen up/down 
TABLE 4.1. Description of Turtle 

PEN DOWN 

MOVE 10 

TURN 90 

PEN UP 

MOVE 10 

TURN 90 

PEN DOWN 

MOVE 10 

FIGURE 4.1. Response of Turtle to Instructions 



4. BRIEF INTRODUCTION TO SMALLTALK-80 56 

The simple turtle that is described here uses several object-oriented principles. The 

main point is that the programming model of the turtle is a self-contained entity. It 

has certain attributes that are not directly accessible from outside, and it understands 

and responds to a set of commands. To illustrate other properties of object-oriented 

programming, more turtles are added to the system. One carries a selection of differ-

ent colored pens. This new turtle would behave the same as the original one with an 

additional attribute indicating the color of the pen being dragged, and another action 

for selecting a specific pen. Yet another turtle could respond to the turn instruction 

by interpreting the number as an angle measured in radians rather than degrees. 

These three turtles would be related by inheritance. Each of the new turtles would 

inherit attributes and actions from the original, while possessing additional capabili-

ties, and possibly modifications to some of the inherited actions. Such a relationship 

can be represented by an inheritance hierarchy such as in Figure 4.2. 

Turtle 
state 

pen status 

location 

direction 
behavior 

pen up 
pen down 
move 
turn 

N 
Color Turtle 

state 
pen color 

behavior 
color 

Radian Turtle 
state 

behavior 
turn 

FIGURE 4.2. Inheritance Hierarchy of Turtles 
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4.2. Object Oriented Programming with Smalltalk-80 

This section briefly describes some of the concepts central to object-oriented pro-

gramming in Smalltalk-80. To do so, I will show how the turtle in the previous section 

could be implemented. 

4.2.1. Classes. The class is the unit of encapsulation in Smalltalk. A class 

defines the state and behavior of all objects that are instantiations of that class. To 

implement the turtle example, three classes would be needed: Turtle, ColorTurtle, 

and RadianTurtle. Figure 4.3 shows the class declarations for these. 

View subclass: #Turtle 

instanceVariableNames: ' position penStatus direction 

ColorTurtle subclass: #Turtle 

instanceVariableNames: ' color 

RadianTurtle subclass: #Turtle 

instanceVariableNames: 11 

FIGURE 4.3. Turtle class declarations. 

4.2.2. Instance Variables. A class's state is defined by its instance variables. 

Each member of the class will have a private copy of these variables. Again, see 

Figure 4.3 for the definition of the turtle classes' instance variables on the lines starting 

with instanceVariableNames. 

4.2.3. Methods. A class's behavior is defined by its methods. Each method 

defines a single behavior. The behaviors of Turtle, ColorTurtle, and RadianTurtle 

are defined by the methods shown in Figures 4.4, 4.5, and 4.6, respectively. 
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move: distance 

"Move the turtle distance units" 

I newPosition I 
newPosition := position + ((distance * direction sin) 

@(distance * direction cos)). 
penStatus == #down 

ifTrue: [self graphicsContext displayLineFrom: position 

to: newPosition]. 

position := newPosition 

turn: degrees 

"Turn the turtle degrees degrees clockwise" 

direction := direction + degrees degreesToRadians 

penDown 

"Start drawing" 

penStatus := #down 

p enUp 

"Stop drawing" 

penStatus := #up 

FIGURE 4.4. Turtle class method definitions. 

color: inkColor 

"Set the drawing color" 

color := inkColor. 

self graphicsContext color: inkColor 

FIGURE 4.5. ColorTurtle method definitions. 

turn: radians 

"Turn the turtle radians radians clockwise" 

direction := direction + radians 

FIGURE 4.6. RadianTurtle method definitions. 
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4.2.4. Objects. Objects are the things that actually do most of the work in an 

object-oriented system. Objects are instances of classes, i.e. a concrete embodiment 

of the specifications defined by a class. In Smalltalk, classes are themselves objects 

(instances of the meta-class), and so classes can have state and behavior as well. 

To illustrate the use of objects, consider a group of turtles working together as 

shown in Figure 4.7. Each turtle is an independent object, an instance of the Turtle 

class. The code to produce the operation shown in Figure 4.7 is shown in Figure 4.8. 

FIGURE 4.7. Cooperating turtles. 

4.3. The Model-View-Controller Paradigm 

The application framework paradigm that Smalltalk-80 uses is called Model-View-

Controller. In this paradigm, applications are composed of three pieces: models, 

views, and controllers. Models encapsulate the data processing parts of applications, 
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I turtles I 

"set up an array 

turtles := Array 

of four turtles" 

with: Turtle new 

with: Turtle new 

with: Turtle new 

with: Turtle new. 

"set the initial orientations" 

turtles inject: 45 into: 

[:angle :t I 
t turn: angle; 

penDown. 

angle + 90]. 

"move each turtle to draw the design" 

4 timesRepeat: 

[turtles do: 

[:t I 
t move: 10; 

turn: 90]] 

FIGURE 4.8. Code for cooperating turtles. 
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views are responsible for presenting the data to the user, and controllers handle user 

interaction. This division of labor is illustrated in Figure 4.9. 

Menu 

cut 

copy 

paste 

FIGURE 4.9. Models, Views, and Controllers. 

Views and Controllers are generally paired: a specific view would visually represent 

a list and a specific controller would work in conjunction with it allow the user to 

operate on the list. A feature of this paradigm is that it allows a model to have 

several possible view—controller pairs. This is shown in Figure 4.10. In this example, 

the data in the sales history model can be represented as a bar graph, a textual list, 

or both. Different views can presents the same aspect of the model in different ways, 

or they can present different aspect of the model. 

Another facet of this paradigm is the use of dependents to propagate change. Each 

model has a list of views that represent its various aspects. This structure is shown 

in Figure 4.11. Whenever the model's data changes, the model informs its dependent 

views of the change. Views that are responsible for representing the data that has 

changed update their representation accordingly. 



4. BRIEF INTRODUCTION TO SMALLTALK-80 62 

FIGURE 4.10. A Model can have multiple Views 

Model 

Dependants 
0000 

 1 

View! 
Controller 

FIGURE 4.11. Model—View dependency structure. 
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4.4. Summary 

This chapter introduced some basic concepts of object-oriented programming as 

it applies to Smalltalk-80. This is required as background to the implementation 

sections of this thesis. An object-oriented system is made up of objects which have 

state and behavior. This state and behaviour is defined by the object's class. Classes 

can be defined to inherit from another. This allows a new class to specialize an 

existing class, without having to replicate all of the information. This chapter also 

introduced the Model-View-Controller paradigm that forms the basis of the RV de-

velopment environment. This paradigm provides the ability of separating data from 

its representation. 



CHAPTER 5 

Extensions 

I have extended RV in several ways in support of the development tools and lexical ac-

quisition mechanism, or to increase efficiency. This chapter describes these extensions 

and the reasons for them. 

5.1. The duff: Vector Operation 

A fourth element value has been added to the definition of ternary vectors. They are 

still referred to as ternary vectors, both for consistency and, because of the semantics 

of the new element value. The new value is denoted by '' and is functionally identical 

to '?' as far as the match:, change:, and refine: operations are concerned. The 

addition of the ' c' value supports a convenience feature in the editing of vectors. A 

default vector can be defined (for both condition and change vectors). When the user 

defines a vector, that definition is combined with the appropriate default. When a 

vector definition is to be displayed the user expects to see the definition that they 

previously specified, so the default must be removed. This is done by a new vector 

operation called duff:, which is defined as: 

? ifa=b 

L. bi otherwise 

The '' value in the output of duff: specifies that the element in B was '?', whereas 

'V indicates that the values of A and B were the same. This is used to allow the user 
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to override elements in the default vectors with a '?' value. For example, 

(+ + -?+) duff: (?- +?+) - (0 - +??). 

5.2. Lexical Acquisition 

An experimental lexical acquisition mechanism has been added to RV, and is fully 

described in Chapter 8. In this section, I will describe the changes to the RV definition 

that were required to support the acquisition mechanism. 

5.2.1. Handling of Unknown Words. In the original description of 1W en-

countering an unknown word is an error condition (see Figures 2.3 an:l 2.4). This has 

been changed so that encountering an unknown word invokes the acquisition mecha-

nism to try and learn the spelling and categorization of the word. The unknown word 

consist of characters from the current position in the input to the next punctuation 

or space character. The character sequence is extracted from the input and passed 

to the acquisition algorithm. This algorithm will be discussed in Chapter 8. 

5.2.2. Paradigm—Set Nodes. As described in §2.7 the lexicon originally has 

two types of internal node. A third is added to support the learner: the paradigm-set 

node. This type of node represents a set of possible paradigms, rather than a single 

one. The paradigms in the set are those that contain a string for each suffix matched 

by the node. The set of suffixes matched by the node are also maintained. Since the 

learner only uses suffixes, paradigm-set nodes are used only as immediate parents of 

leaf nodes (i.e. lexical entries). 

Paradigm—set nodes contain two pieces of information: a set of strings that the 

node has been used to account for, and a set of productions that account for those 

strings. The internal structure is shown in Figure 5.1. 
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FIGURE 5.1. Internal Structure of the new Paradigm-Set node. 

The addition of a new type of node in the lexical trie requires an extension of the 

LOOKUP algorithm of Figure 2.10. The extended algorithm is shown in Figure 8.5 

and will be discussed in §8.2 since the changes constitute part of the acquisition 

mechanism. 

5.2.3. Aging Mechanism. The lexicon acquisition mechanism tries to learn 

the categories of the lexical entry being acquired. It almost always assigns an overly 

general set of categories. To cope with this, a category aging mechanism has been 

added to the system. This mechanism keeps track of how often a category has led 

to the entry being used in a successful parse. Categories that prove to be highly 

useful (are frequently found in a successful parse) are made persistent, while those 

that prove otherwise are eventually removed. 

5.3. Production Selection 

In order to increase the efficiency of the parser, the production selection algorithm 

has been extended. The new algorithm is shown in Figure 5.2. 

In addition to the previously defined tests (see §2.1.1) there is an additional one. 

Either the previously used production was not semi-lexical, or the production being 

considered fits into the active sub categorization framework. If the current production 
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FIND-PRODUCTION 

"look for a lexically constrained production" 

while the current interpretation is valid 
let intrep be the current interpretation 
for each production prod E interp.lexical-entry.categories 

if (prod.condition match: currentState) and each of prod.actions 
can be executed in the context of interp 

return prod 
else 

advance to the next interpretation 
if the most recently used production was semi-lexical 

return nil 

"look for a non-lexical production" 

for each non-lexical production, nonlex 
for each intrep E interpretations 

if (nonlex. condition match: currentState) and each of nonlex.actions 
can be executed in the context of interp 
return nonlex 

return nil 

FIGURE 5.2. Production Selection Algorithm 
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is semi-lexical this means that the intersection between the set of productions it 

can subcategorize and the active sub categorization set is non-empty. If the current 

production is lexical, it must be a member of the active sub categorization set. Non-

lexical productions are not considered since the fact that the previous production was 

semi-lexical means that non-lexical productions won't be searched. 

When a semi-lexical production is used, the active sub categorization set is inter-

sected by that of the production. The active set is reset to include all productions 

when a lexical production is used. 

In support of this change, semi-lexical productions now store the set of lexical pro-

ductions that they can be used with. For example, the TRANSITIVE production 

can subcategorize the VERB production. 

The benefit of this change is that it limits the number of dead-end branches in the 

search for successful parsers and the use of irrelevant productions. An example of 

irrelevant productions would be using TRANSITIVE and NOUN together, which 

could occur with a word that can be either a transitive verb or a noun such as "call". 

5.4. Summary 

This chapter has described improvements and extensions to the RV formalism as 

described in Chapter 2. These include: 

• the duff: vector operation and the '' element value; 

• a lexical acquisition mechanism and support for it, both the parser's handling 

of unknown words and the addition of a new type of node for the lexical trie; 

and 

• an extension of the production selection algorithm to use information about 

which lexical productions are associated with each semi-lexical production, 
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in order to reduce the number of impossible production sequences that are 

considered. 



CHAPTER 6 

Parser and Lexicon Implementation 

This chapter details my implementation of the RV parser and lexicon that was de-

scribed in Chapter 2, including extensions to that description. The lexicon will be 

described first, as understanding the parser depends on understanding the lexicon. 

6.1. The Lexicon 

The lexicon involves only the LOOKUP algorithm detailed in Figure 2.10. The 

data structure that comprise the lexicon are those to the right of (and including) the 

lexical trie in Figure 2.2. The only complex structure is the lexical entry which is 

described next. 

6.1.1. Lexical Entries. Each set of semantically related words (for example, the 

verb and noun "call") is represented by a lexical entry, which is made up of several 

pieces of information: 

• a name - a label used to identify the entry; 

• a list of lexical and semi-lexical productions - the productions that will be 

examined when the lexical entry is recognized in the input stream; 

• a collection of wordpath(s) - nodes in the lexical trie (See §2.7.3); (These 

are the ends of paths through the trie that constitute a valid spelling for the 

entry.) 
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• an set of semantic roles - defines the semantics of the entry; (See §2.8) 

• the entry category - for subdividing the entries in the lexicon browser (See 

§7.5); 

• a comment - describes the entry; 

• a reference to an RV parser - the parser of which the entry is part. 

The last three items from the above list serve no inherently functional purpose, they 

are either for development support (category and comment) or are an implementation 

detail (associated parser). 

6.2. Agreement and Semantics 

Section 2.8 described the design of the semantic and agreement mechanisms. In 

this section we look at some of the implementation details of various aspects of this 

subsystem. 

6.2.1. Grammatical Roles. In addition to specifying boundary register names, 

the list of boundaries is used to generate a list of grammatical roles, often called 

gramroles. Grammatical Roles are used for morphosyntactic agreement and semantic 

processing. As described in §2.8.3 references are managed using a least recently used 

policy. The class Ref erenceQueue is used to implement this policy. Figure 6.1 shows 

the structure used by Ref erenceQueue to manage references. When a new reference is 

required it is taken from the least-recently-used end of the list. Whenever a reference 

is used it is moved to the most-recently-used end of the list. The use of a doubly 

linked list increases the time efficiency of reference use. 

6.2.2. Semantic Information. The atomic pieces of semantic information in 

this system are stored in semantic roles. In addition to the semantic information, a 
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roles 
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Least Recently Used 

Main 

NP 

Obi 

Most Recently Used 

FIGURE 6.1. Reference Storage Structure 

references 

semantic role contains an ordered collection to store a binding array used to support 

relations. (see §6.2.4). The information stored in a semantic role can be one of: 

Symbol: the name of a relation; 

Semantic Entry: a semantic structure; 

Lexical Entry: a reference to an entry in the lexicon (this is often the case in 

modifying roles); 

Ternary Vector: a semantic feature vector, used to implement selectional restric-

tions. 

Semantic roles are stored in dictionaries that organize the information by storing 

each semantic role under a role name. 



6. PARSER AND LEXICON IMPLEMENTATION 73 

6.2.3. Semantic Entries. Semantic entries encapsulate atomic pieces of com-

plex meaning. Their main component is a semantic role dictionary. Another im-

portant piece of information is a reference to the lexical entry associated with this 

semantic entry. The final piece of information is the index of the reference that refers 

to this semantic entry. 

As was discussed earlier, morphosyntactic properties are stored in references, which 

are dynamic in that they can be modified by backtracking. This means that the 

properties stored in the references associated with the semantic entries in the structure 

built by the parser must be retrieved whenever an interpretation is found. For this 

purpose semantic entries also contain a property set. When an interpretation is found, 

this property set is assigned the properties of the associated reference. Also at that 

time, a copy of the semantic structure rooted in the grammatical role Main 1 is made. 

The parser collects all copies of all interpretations and returns them along with the 

associated productions traces. 

6.2.4. Relations. Semantic relations are specializations of semantic entries. One 

difference is that they have no associated lexical entry. In addition, role fillers can be 

references to roles in the semantic entry that references an instance of the relation. 

These roles in the relation instance are updated to reflect the value of the associated 

role in the semantic entry. 

When the semantic information of the lexical entry is used by an agreement check, 

the contents of the reference are copied to a new semantic entry which is used in place 

of the relation to fill the associated role. 

Furthermore, the role fillers in a relation can have only two types of values: 

Symbol: a reference to a role of the enclosing predicate; 

TernaryVector: a semantic feature vector. 
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Role I Initial Contents 
inh -ANIMATE. . FEELING +ACTION. . POSSESSION 
obj -ANIMATE. . HUMAN -STATE. . TRANSFER 

dat +ANIMATE. . HUMAN -STATE. . LOCATION -SUPPORTED 

rell $FROM-POSS-TEMP 

rel2 $TO-POSS-TEMP 

FIGURE 6.2. Semantic Information of "borrow" 

FROM-FOSS-TEMP TO-FOSS-TEMP 

Role Filler Role Filler 
inh 

obj 

dat 

-ANIMATE. . FEELING +ACTION 

• . POSSESSION -DEST -PERM 
obj 

'subj 

inh -ANIMATE. . FEELING +ACTION 

• . POSSESSION +DEST -PERM 

obj obj 

dat dat 

FIGURE 6.3. Relations in "borrow" 

When a role filler of a relation is a symbol, it is taken as a role name referring 

to a role in the lexical entry (and subsequently the semantic entry) that refers to 

the relation. When the lexical entry definition is processed, an entry is added to 

the binding arrays of all roles which are referenced by any relations used by the 

lexical entry. Binding array entries are ordered pairs consisting of the role name that 

references the relation and the role within the relation. 

As an example, consider the semantic information of the verb "borrow", shown 

in Figure 6.2, and the two relations referred to, showii in Figure 6.3. The role obj 

will have two pairs in its binding array, while subj and dat each have one. The 

resulting binding arrays are shown in Figure 6.4. Semantic role values (other than 

the relations) are omitted for clarity. 

When a role with a non-empty binding array has a filler assigned, the binding array 

is traversed. Each pair in the binding array is used to bind the new filler to a role (the 
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semantic entry 

inh 

subj 

obj 

7 

7 

dat 

rell 

rel2 

inh ? 

subj ? 

obj Aobj 

dat A subj 

inh ? 

subj 

obj Aobj 

dat Adat 

} binding lists 

relations 

FIGURE 6.4. Binding Arrays 
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second element of the pair) within an outer role (the first element) of the semantic 

entry being updated. In this way the role fillers of relations are kept consistent with 

the semantic entry's roles which the relation refers to. The FILL-SLOT algorithm is 

Figure 6.5 shows how this is done. 

FILL-SLOT (entry, slot, filler) 

entry,slot.value is assigned filler 
for each binding in entry. slot. bindings 

(entry. (binding. reference).value) . (binding. role).value'is assigned filler 

FIGURE 6.5. Algorithm FILL-SLOT 

6.3. The Parser 

Having described the implementation of the lexical and the agreement /semantic 

aspects of the system, I now present the details of the parser implementation. 

The algorithms that make up the parser engine have already been shown, in Fig-

ures 2.3, 2.4, and 2.5. The main data structures have been outlined already in 

Chapter 2 (specifically, see Figure 2.2). 

6.3.1. Productions. 

6.3.1.1. Ternary Vectors. The class Ternary Vector is central to the parsing mech-

anism. Vector contents are implemented by two parallel bit vectors, called bitO and 

biti. A single element consists of one bit from each of these vectors. The two bits are 

combined to make a two bit code which corresponds to a ternary element, according 

to Table 6.1. The bit from biti is the MSB, and that from bitO is the LSB. 

This representation allows the ternary vector operations defined in § 2.1 to be effi-

ciently implemented using parallel bit vector operations: AND, OR, and XOR. 
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Code Element  

00 

01 + 

10 - 

11 

TABLE 6.1. Ternary Element Codes 

6.3.1.2. Actions. There are five general types of actions, based on the number 

of arguments each takes: none, one, two, three, or four. These action types are 

implemented as hierarchically related abstract base classes rooted by Action (actions 

taking no arguments). Each subclass adds support for an additional action: Action 

is the superclass of OneArgAction, which is the superclass of TwoArgAction, and so 

on. Most of these abstract classes have subclasses representing specific actions. For 

example, SaveAction is a subclass of OneArgAction. The action hierarchy is shown 

in Figure 6.6. 

6.3.2. Boundary Registers. The main structure involved in the backtracking 

mechanism is the boundary register. In addition to an identifying name and a reference 

to a parser, boundary registers are made up of the following: 

• A string containing the linear trace of the parse i.e. the history of production 

applications and input consumption (primarily for debugging purposes); 

• A ternary vector that is a copy of the parser state; 

• The embedding depth; 

• The production being considered; 

• The most recent production used for the current input token; 

• The set of lexical productions that are being subcategorized; (This is used by 

the production selection mechanism as described in § 2.1.1.) 
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Action 
ReturnUpAction 
ShiftDownAction 
OneArgAction 

Adj oinAction 
AssignNewAction 
AssignNuflAction 
LexAgreeAction 
LexPropAction 
ModLexAction 
MorphAgreeAction 
SaveAction 
TwoArgAction 

AddPropAction 
AssignAction 

AssignHigherAction 
AssignLowerAction 

GramAgreeAction 
ModAction 
SemAgreeAction 
ThreeArgAction 

FourArgAction 
SemRoleAgreeAction 

FIGURE 6.6. Action class hierarchy 
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• The set of production names (categories) that have already been used for this 

boundary register; (Keeping track of this prevents the reuse of productions. 

This avoids loops, both immediate and after backtracking.) 

• The list of Readings (details are presented in the next section) containing all 

the possible interpretations of the input; 

• The index, into list of readings, of the interpretation under consideration; 

• The position in the input stream; 

• A copy of the reference queue (see Figure 6.1); 

• A mapping of grammatical roles to reference indexes (see Figure 6.1). 

The parser state is saved in a boundary register, either by the parser engine itself 

for the boundaries Curr and Word, or by a save action for all other boundaries. 

When the state is saved, the current embedding level is appended to the name of the 

boundary, except in the case of the pseudo-boundaries Curr and Word. For example, 

saving in register Clause at level 2 results in the register name Clause2. This name 

is then pushed onto the resume stack. When the parser backtracks, a boundary name 

is popped from resume and the state is restored from that boundary register. 

The resume stack is a stack that does not allow duplicates. When an item is pushed 

onto it, any duplicate on the stack is first removed. The reason for this is the central 

goal of achieving linear time complexity. Boundary registers are reused, overwriting 

any previous contents when the parser state is saved in them. This invalidates any 

previous use of the register, requiring it to be removed from the resume stack. While 

this may seem to be throwing away valuable information, it models the abilities of a 

native speaker. As an example, consider the sentence: 

(17) The horse raced past the barn fell. 
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The reason that it is difficult to understand is that "raced" is used as an passive post-

modifier of horse (meaning the horse that was raced), but the initial interpretation 

is generally as a verb, thus the MAIN-PREDICATE boundary is used. When "fell" 

is later encountered the MAIN-PREDICATE boundary is reused, losing the previous 

value. Thus it is difficult for a person to backtrack in order to reinterpret "raced", 

and impossible for RV. 

6.3.2.1. Lexical Interpretations. When the lexical analyzer finds an interpretation 

for the upcoming input it creates an interpretation record, called a reading, to repre-

sent it. All such readings are stored in a collection, sorted in descending order by the 

number of input characters it accounts for. This places interpretations that consume 

more input toward the first of the collection, giving them higher priority (by virtue 

of being considered first). This gives the parser its preference for idiomatic, rather 

than literal, interpretations. 

Readings are comprised of three pieces of information: 

(1) The entry in the lexicon that accounts for the input; 

(2) The position in the input stream following that which is accounted for by the 

reading; (This is directly related to the number of characters accounted for, 

since all simultaneous readings start at the same position in the input. Thus, 

sorting is actually done on this value.) 

(3) The set of morphosyntactic properties returned by the lexical trie search. 

6.4. Summary 

This chapter described my implementation of the RV parser engine, including the 

lexical and semantic components. The implementation of a parser engine was the 

necessary first step in developing an RV development environment. 



CHAPTER 7 

Development Tool Design 

This chapter describes the design of the RV development tools. The first section 

outlines the design requirements, while the remainder of the chapter describes the 

design of the tools including how the requirements were met. 

7.1. Design Requirements 

A fundamental requirement of the development environment is that it be interactive 

and promote incremental parser development. The developer should be able to use 

any of the tools at any time, i.e. it should be a modeless environment. It follows from 

this that the editing tools must be available while a parser is being tested and changes 

made at that time should take effect immediately. This ability allows the developer to 

gradually refine a parser, without the discontinuity that a non-interactive environment 

imposes (e.g. waiting for a lengthy compile and changing tools constantly). 

An important requirement is that parsers be convenient to edit. To accomplish 

this, a variety of structured editors are required, one for each structure in the system: 

• productions; 

• relations; 

• paradigms; and 

• lexical entries. 

81 
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When one of these is to be created, a template is provided for the user to fill in. 

When a definition is to be edited, the current definition is placed in the template and 

presented to the user. As an example, Figures 7.1 and 7.2 show production creation 

and editing, respectively. 

Name: 
Comment: 
Type: 
Cond: 
Change: 
Actions: 

<production name> 
<comment text> 
<lexical type> 
<condition vector> 
<change vector> 
<actions> 

FIGURE 7.1. Production creation. 

Name: 
Comment: 
Type: 
Cond: 
Change: 
Actions: 

<COMPAR> 
<> 

<?DET..NTJM +ADJ..HEAD -NN -REL> 
<-DET..NTJM> 
< 
lexprop <compar> 
Word new 
Word = lex 
Word agree lex 
NP -> Word 

> 

FIGURE 7.2. Production editing. 

There are various identifiers that the user has to enter in the course of defining a 

structure (e.g. a production). Many of these refer to other items in the system and 

must be correctly spelled. This introduces a source of error into the development 

process. However, these critical identifiers always refer to one of the following items: 

a boundary; 
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• an ordering feature; 

• a production; 

• a semantic feature; 

• a relation; 

• a morphosyntactic property; or 

• a paradigm. 

All of these items are present in a list that is part of the parser definition. A re-

quirement of the development environment design is that it automatically check the 

validity of these identifiers when the developer uses them. If one is invalid, the system 

must present the developer with a list of reasonable alternatives. If a correction is 

selected, the system should automatically make the correction in the definition being 

edited. 

In the case of an error in the specification of an action, the system should identify 

the incorrect action and allow the developer to correct the error. 

There are several sets of identifiers that are used in various places throughout 

an RV parser, boundary names for example. The parser editing tools should auto-

matically update all uses of such an identifier when one is changed. For example, 

when a boundary is renamed, all productions that reference that boundary should 

be updated. Furthermore, when the developer asks to remove a boundary (or other 

such identifier) the system should check to see if it is being used anywhere in the 

parser. If so, the developer should not be allowed to remove it. References to it 

can be removed by using the appropriate cross-reference browsers (in this case, the 

"productions referencing a specified boundary" browser. 

Specifying an RV parser involves many low-level details, specifically feature vectors 

(both ordering and semantic) and morphosyntactic property sets. To ease the work 
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involved in this for the developer, a design requirement is that shorthand notations 

be available for doing these specifications. For feature vectors, this takes the form of 

macros, including a default condition and change vector for productions. For property 

sets, support for using simplest descriptions is required. 

Another requirement is that the developer be able to view the parser from various 

viewpoints and freely cross-reference information'. To support this, several browsers 

will be needed to allow the user to access various facets of a parser: 

• overall syntactic information; 

• productions that reference a specified boundary; 

• productions that reference a specified morphosyntactic property in lexprop 

or addprop actions; 

• productions that categorize a specified lexical entry; 

• non-lexical productions and their ordering; 

• overall lexical information; 

• lexical entries that are categorized by a specified production; 

• lexical entries that reference a specified relation; 

• lexical entries that reference a specified paradigm in their wordpath(es); and 

• paradigms that reference a specified property. 

It is sometimes useful to have the ability to examine an item in isolation. For 

example, if the developer wishes to compare two production definitions it would be 

convenient to be able to open a browser containing only a single production. This 

leads to another design requirement, specifically to provide browsers that operate at 

the following levels of granularity: 

• overall syntactic information; 

'Appendix F details how the cross-referencing operates and how the various browsers are invoked. 



7. DEVELOPMENT TOOL DESIGN 85 

• single productions; 

• overall lexical information; 

• single relation; 

• single paradigm; and 

• single lexical entry. 

Being able to conveniently specify a parser is of little value if it is awkward to test. 

Thus, another requirement is that parsers be convenient to test and debug. This 

requirement implies several more: 

• There must be a facility for testing the parser with a testbed file of sentences, 

and a way of easily stepping through it; 

• There must be a way to step through a parse, on a production by production 

basis; 

• The developer must have access to the internal structures of the parser, during 

the parse; 

• The debugger must provide useful information regarding the operations the 

parser is performing. The different types of information should be individually 

suppressible to allow the developer to concentrate on the information that is 

relevant. This information includes: 

- what productions are used, and when; 

- what productions are being considered for use each time a production is 

to be selected; 

- the reason that productions are not selected; 

- details of each action that is executed, and whether it succeeds or fails; 
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- an indication of when the parser backtracks, and what boundary register 

is involved; (There should be an option to suppress this information when 

the Curr register is being used, as this is so frequent.) 

- a report of the current linear parser trace after each production applica-

tion; (There should be an option of having backtracking points marked 

in the linear trace.) 

- a report of the semantic structure representing the input's meaning, after 

each production application; 

- a trace of the LOOKUP algorithm as it searches the lexical trie; 

- reporting of any unrecognizable input, when the acquisition mechanism 

is disabled; and 

- a trace of the lexical acquisition mechanism's operation, when it is en-

abled. 

• There should be a convenient way to set the acquisition mechanism's opera-

tional parameters (e.g. the score at which a category become persistent, see 

Figure 8.4). 

7.2. Background 

The tools are designed using the Smalltalk-80 Model-View-Controller (MVC) para-

digm (Systems, 1990; Goldberg, 1990). In this paradigm the model is responsible for 

all data storage and manipulation. The view handles the visual presentation of the 

data. Finally, the controller handles user input. Chapter 4 describes MVC in more 

detail. 
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The browser windows are subdivided into several component views, most of which 

contain lists. When a item in a list is selected, a message  is sent to the associated 

model'. Likewise whenever a view needs to update its contents, a message is sent to 

the model to retrieve the data to be presented. Both browsers have a text editing 

view. This view sends messages to retrieve its contents from the model and to signal 

when the user has accepted changes. The final type of subview is a button. Buttons 

send a message to the model indicating that they have been activated. 

7,3. Syntax Browser 

The layout of the syntax browser is shown in Figure 7.3 and consists of six areas: 

Boundary View: A list of boundary names; 

Feature View: A list of ordering features; 

Category View: A list of production categories; 

Production View: A list of production names; 

Display Buttons: Two buttons controlling how vector definitions are displayed 

in production definitions; 

Editing View: A text editor for editing production definitions. 

Some of the views in the syntax browser are dependent on others in that a change 

in one causes a change in another. These dependencies are shown by the heavy arrows 

in Figure 7.3 and described below: 

Making a selection in the boundary, feature, or production view, causes the 

corresponding boundary comment, feature comment, or production definition, 

respectively, to be displayed in the editing view 

'The message is specified by the programmer when the list view is created. 
3 A application usually has a single model but several view-controller pairs. 
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Boundary View Category View 

Production View 

Display Buttons 

FIGURE 7.3. Layout of the syntax browser. 

• Making a selection in the category view causes the names of productions in 

that category to be presented in production view; 

• Setting the display buttons determines the way ternary vectors are formated. 

The model—view structure of the syntax browser is presented in Figure 7.4. The 

central syntax browser is the model, and is connected to the list, button, and editor 

views to the left, right, and bottom. The parser is at the top and communicates with 

the browser. Connecting lines indicate messages that are sent between specific views 

and the browser model. The lines are labeled with the purpose of the message. 
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Boundary 

List 

'  Get Boundaries  

Boundary Selected 

Set Boundary  

 I 

( Get Features  

Feature Feature Selected 

List < Set Feature  

 -I 

Labels Button Labels State  

Labels Pressed 

RV Parser 

Various 

Messages 

 3 

Syntax 

Browser 

Get New Contents 

- Get Categories 

Category Selected 

Set Category 

Get Productions 

oduction Selected 

Set Production 

Ranges Pressed 

Ranges State 

Accept Contents 

[ Text Editor ] 

Category 

List 

Production 

List 

Ranges Button 

FIGURE 7.4. Syntax browser model—view structure. 
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7.4. Ternary Vector Editing 

Part of the design goal was to make the low level of detail inherent in RV convenient 

for the developer to manage. To this end, Blank's notion of vector macros (Blank, 

1989) has been designed into the browsers. These macros provide the ability for de-

veloper to define shorthands for commonly used feature configurations. For example, 

there is generally a large set of productions that are not usable while parsing noun 

phrases. In their condition vectors, they check for feature values that indicate that 

a noun phrase is not being parsed, e.g. -DET. . HEAD. Instead of the developer having 

to specify -DET. . HEAD in the condition vector for each of these productions, they can 

define a macro, called NP off for example, which has the value -DET. . HEAD. They can 

then use this macro in a vector definition, e.g. +S +AUX #NPoff. 

This macro feature is also available in the lexicon browser for use with semantic 

feature vectors. An example of its use here is in constructing a hierarchy of features. 

For example, given the features ANIMATE HUMAN PERMANENT STATE FEELING EVENT 

ACTION TRANSFER FOSS LOC DEST, some macros that could be used to construct a 

hierarchy are: (also shown are the resulting vectors) 

ANIMATE: +ANIMATE -STATE. . DEST 

+ANIMATE -STATE. .DEST 

HUMAN: #ANIMATE +HUMAN 

+ANIMATE. .HUMAN -STATE. .DEST 

STATE: -ANIMATE. . PERMANENT +STATE -ACTION.. TRANSFER 

-ANIMATE..PERMANENT +STATE -ACTION. .TRANSFER 

EMOTION: #STATE +FEELING 

-ANIMATE..PERMANENT +STATE. .FEELING -ACTION..TRANSFER 
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Notice that macros can be defined in terms of other macros. This applies to ordering 

feature macros in the syntax browser as well. 

The syntax and lexicon browsers both provide access to macros through a popup 

dialog box that allows macros to be created, edited, and deleted. 

7.5. Lexicon Browser 

The layout of the lexicon browser is shown in Figure 7.5 and consists of eight areas: 

Feature View: A list of semantic features; 

Relation View: A list of relation names; 

Property View: A list of morphosyntactic properties; 

Paradigm View: A list of paradigm names; 

Category View: A list of lexical entry categories; 

Entry View: A list of lexical entry names; 

Display Buttons: Two buttons which control the format of the entry display, 

specifically: 

(1) whether categories removed by the aging mechanism are displayed, 

(2) whether category scores are shown. 

Editing View: A text editor for editing eniiry, paradigm, and relation definitions, 

agreement sets, and feature comments. 

As with the syntax browser, some of the views in the lexicon browser are dependent 

on others. These dependencies are shown by the heavy arrows in Figure 7.5 and 

described below: 

• Making a selection in the feature, relation, paradigm, or entry view causes 

the corresponding feature comment, relation definition, paradigm definition, 

or entry definition, respectively, to be displayed in the editing view; 
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Paradigm View. Property View Category View 

Feature View 

Relation View  

Editing View 
ii I  I 

Display Buttons 

FIGURE 7.5. Layout of the lexicon browser. 

Entry View 

• Making a selection in the category view causes the names of lexical entries in 

that category to be presented in the entry view; 

• Setting the display buttons enables or disables the display of the category 

aging information. 

The model—view structure of the lexicon browser is presented in Figure 7.6. 

7.5.1. MorphoSyntactic Property Editing. To make editing of agreement 

properties more convenient for the parser developer, the browser provides a shorthand 

notation when editing paradigm definitions. 

Specific properties can be entered, e.g. first:plural:past from the example in §2.7.2.1. 

However, suppose the only thing of interest is the first-person-plural property. The 
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RV Parser 

Various 

Messages 

1 Get Sem Features.,  

Semantic Feature Sem Feature Se1ectei 

List Set Sem Feature  

Property 

List 

Get Properties 

Property Selected 

Set Property 

( Get Categories  

Category Category Selected 

List Set Category  

Scores Button )  Scores Pressed 

Scores State 

Lexicon 

Browser 

Get New Contents 

- Get Relations 

Relation Selected 

Set Relation 

Relation 

List 

Get Paradigms I 
Paradigm Selected Paradigm 

Set Paradigm List 

Get Entries 

Entry Selected 

I 

Set Entry 

Pruned Pressed 

Pruned State 

Accept Contents 

( 
Text Editor 

 •1 

Entry 

List 

Pruned Button 

FIGURE 7.6. Lexicon browser model—view structure. 
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shorthand allows the designer to specify first:plural. This denotes the subset of agree-

ment properties that contain first and plural. In this case the full set of specified 

properties is {first:plural:past, first:plural:present}. When a paradigm definition is 

displayed, the property sets are simplified as much as possible to provide the developer 

with the simplest property set description. The algorithm for doing this is detailed 

in Figure 7.7. The following example illustrates how the algorithm works. 

Assume three agreement sets4: A = {ai a2 a3}, B = {b1 b2 b3}, and C = {ci c2}. 

The cross product of these would result in eighteen agreement properties. Now sup-

pose we want to specify the set of agreement properties: S = {ai : : c2 a1 : b3: c2 a1: 

b2: c1 a1:b2:c2 a2:b2:c1 a2:b2:c2 a3:b2:c1 a3:b2:c2}. A simplest description of S is 

{ a : c2 b2}. A simplest description specifies only members of those agreement sets 

that are constrained, any sets that have no members specified imply all members of 

that set. In our example, the description means: 

fall xBx{c2}UAx{b2} x  

Referring to Figure 7.7, props is initialized to S. We go through each agreement 

set (A, B, and C) beginning with A, so aSet = A. Looking for an element of S 

containing a1 (i.e. p) we find {ai b1 c2}. This becomes the first instantiation of 

propSet. Next, we check if {a2 b1 c2} and {a3 b1 c2} are also members of S. We do 

this since rest = {b1 c2} and we are looking for all sets that are supersets of rest 

and whose elements other than rest are proper subsets of aSet, in this case A. In 

this example, this means that we are looking for sets that are made up of {b1 c2} 

and something from A. If so, mark all three and add {b1 c2} to S. Further, if all 

elements found (e.g. all three containing {b1 c2}) were already marked the element 

'An agreement set is a set of property values for an agreement feature. 
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that is added is marked as well. Note that a marked element can still be used in the 

search. We continue by searching for the next element of S containing a1. This is 

repeated until all elements of S have been examined. This results in S = {{ai b1 c2} 

{ a1 b3 c2} {ai b2 c1}* {ai b2 c2} {a2 b2 c1}* {a2 b2 c2} {a3 b2 c1}* {a3 b2 c2} {b2 c1}}. 

We repeat this for sets B and C. At the end of this process S = {{ai b1 c2}* 

{ a1 b3 c2}* {ai b2 c1}* {aj b2 c2}* {a2 b2 c1}* {a2 b2 c2}* {a3 b2 c1}* {a3 b2 c2}* 

{b2 c1 }* {b2c2}* {a1 c2} jai b2}* {a2 b2}* {a3 b2}* {b2}}. 

The minimal description of S consists of those elements that remain unmarked: 

{{ai c2}{b2}}. 

SIMPLIFY (someProps) 

props is assigned the contents of someProps 
for each agreement set (aSet) 
p is assigned the first element of aSet 

for each propSet in props containing p 

rest is assigned propSet - p 
group is assigned all ps in props such that 

rest is a subset of ps and (ps - rest) is a proper subset of aSet 
if each member of group contains a unique member of aSet 

rest is marked if all members of group are 
mark all members of group 
add rest to props 

FIGURE 7.7. Property simplification algorithm 

7.6. Restricted browsers 

In addition to the two general browsers described above, the system includes several 

more limited browsers. These allow access to the parser at various levels of granularity. 

Typically these limited browsers are opened in response to an operate menu command 

from the related pane in another browser. These browsers are described below: 
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• Browse productions that refer to a specified boundary; (Opened from the 

boundary view of the syntax browser.) 

• Browse productions that are named in the category set of a specified lexical 

entry; (Opened from the entry view of the lexicon browser.) 

• Browse a single production; (Opened from the production view of the syntax 

browser. This is of use when a production is desired for comparison with 

others. This saves keeping a full syntax browser open just for this.) 

• Browse non-lexical productions; (Opened from the category view of the syntax 

browser.) 

• Browse a single lexical entry; (This serves a similar purpose to the single 

production browser.) 

• Browse all lexical entries that name a specified production in their category 

set; (Opened from the production view of the syntax browser.) 

• Browse all paradigms that reference a specified property. (Opened from the 

property view of the lexicon browser.) 

7.'7. Graph Browsers 

The previously described browsers are textual. The development environment also 

provides two graphical browsers: one for the lexical trie, and one for semantic struc-

tures. Both browsers have identical structure and so are discussed together. They 

consist of two views, shown in Figure 7.8. The graph view presents a graphical repre-

sentation of a graph structure: the lexical trie or a semantic structure. Clicking the 

left mouse button on a node in the displayed graph causes the textual definition of 

the contents of that node to be displayed in the data view. Thus, there is a single 

inter-view dependency in these browsers, as shown by the heavy arrows in Figure 7.8. 
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Graph View  

Data View  I  
FIGURE 7.8. Layout of the graph browsers. 

The graph browsers require facilities for the construction, layout and presentation 

of simple, directed graphs with the option of labelling edges'. A easy-to-incorporate, 

public domain package was found that met these requirements. It is the Grapher 

package written by Mario Wolczko at The University of Manchester (Wolczko, 1992). I 

decided to use this package to meet the graph display requirements of the development 

tools. 

Having now discussed general issues of the graph browsers, I now discuss design 

issues particular to each. 

7.7.1. Lexical Trie Browser. Figure 7.9 shows an example trie as the browser 

would present it. 

Any node can be selected and its contents shown in the data view. This can then 

be edited and accepted. For internal nodes this value is what is displayed in the node. 

'This requirement is explained in 7.7.2. 
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FIGURE 7.9. Example trie presentation. 

For a lexical entry (i.e. the leaf nodes) the full definition of the node is presented, as 

in the lexicon browser. 

In addition to this display-and-edit capability, there is a menu associated with each 

node in the trie. This menu allows the developer to inspect the internal structure of 

the node or to remove the node and its descendants from the trie. 

A final feature of the trie browser is the ability to select text in the data view and 

have the trie perform a LOOKUP of it. If the lookup is successful (i.e. the selected 

text was recognised) the path(es) through the trie that resulted in the recognition are 

highlighted. This is done by using heavier lines for arcs and node outlines. 

7.7.2. Semantic Structure Browser. Nodes in the semantic structure are rep-

resented by displaying the name of the associated lexical entry. Relationships between 

nodes are more involved than in the trie. In the trie, the only relationship is a parent-

child one. In a semantic structure, the exact relationship is based on what semantic 
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role the child is bound to. This requires a method of denoting these relationships in 

the graphical representation of the structure. The graphing package's edge labelling 

capabilities were made use of here, enabling the name of the relationship (i.e. the 

semantic role) to be used as a label on the arcs connecting nodes. Figure 7.10 shows 

an example of a semantic structure as the browser would present it. 

give 

George 

candy 

FIGURE 7.10. Example semantic structure presentation. 

7.8. Debugger Design 

As with the browsers, the debugger window consists of several views as shown in 

Figure 7.11: 

Input View: Contains text to be parsed. 

Control Panel: Contains various buttons and switches that control the operation 

of the debugger. 

Trace View: Displays parser and debugger output. 

Boundary List: Contains the list of boundary register names. 

Boundary Display: Displays the contents of a boundary register. 

Gramrole List: Contains the list of grammatical role names. 

Gramrole Display: Displays the contents of a grammatical role. 
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Input View 

Control Panel 

Trace View 

Boundary List 

Boundary Display Gramrole List Gramrole Display 

FIGURE 7.11. Debugger layout. 

Inter-view dependencies are much simpler in the debugger than in either textual 

browser: selecting an item from the boundary or grammatical role list causes the 

corresponding display view to display the contents of the selected item. This is shown 

by the heavy arrows in Figure 7.11. 

The trace view is a transcript that the parser writes its output to. The operate 

menu for the trace view gives the user access to dialog boxes that allow them to 

determine the level of detail in the parser's output. Other than that, only a Clear 

operation is available which empties the trace view. 

The debugger operates in one of two modes: single-stepping or free-running. The 

mode is controlled by the switch at the right end of the control panel. The central part 

of the control panel contains buttons for controlling the parser. Parse and Parse 

to... are used in free-running mode, while Step, Stop at..., and Continue are 
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used in single-stepping mode. When the parser is started, it is given the selection in 

the input view as its input stream. The parser controls are described below: 

• Free running mode: 

Parse: Starts the parser in free-running mode. 

Parse to...: As Parse but stops when a specified production has fired (the 

user is given a dialog box for choosing the production). 

• Single stepping mode 

Step: Causes the parser to execute the CYCLE algorithm once (see §2.1.1). 

Stop at...: Switches to free-running mode until a specified production is 

fired. 

Continue: Switches to free-running mode and continues the parse to com-

pletion. 

To the left of the parser controls there is a button that passes the input view's 

selection to the lexical acquisition module. This is mainly useful in testing of the 

learning mechanism. 

To meet the design requirement that there be convenient access to sentence testbeds, 

the input view may contain any amount of text, each sentence terminated by a 

carriage-return character. Lines may be made comments by prepending them with a 

'' character. This provides a method of annotating testbeds. At the far left of the 

control panel are two buttons for moving through the input view. The top button 

causes the first sentence in the input view to be selected. The other button moves 

the selection to the next sentence. 

The debugger was designed to provide the parser developer access to all pertinent 

information. This is accomplished by the trace view, the boundary list and the 

grammatical role list. The trace view shows step by step operations of the parser in 
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a selectable level of detail. The boundary list allows access to all boundary registers, 

including CURR which contains the parser's state. When a boundary register is being 

displayed, the operate menu of the display view contains an option which allows the 

developer to compare the condition vector of any production to the state that is stored 

in the displayed register. The result of the comparison is a vector that could be used 

to change the state in the register to allow the selected production to match it. 

The grammatical role list provides access to the semantic structure that is be-

ing built, during the parse. When the parse has completed, the resulting semantic 

structures can be accessed using the semantic structure browser. 

7.9. Launcher 

The final component of the RV development environment is the launcher. This is 

a small tool that is used to manage parsers. It allows several parsers to be loaded 

and easily accessible. This is done by presenting the names of the parsers in a list. It 

allows parsers to be loaded from files, written to files (in both human and machine 

readable formats), renamed, copied, and removed from the system. Finally it provides 

a set of buttons that allow the browsers and debugger to be opened on the parser 

selected in the list. 

7.10. Summary 

This chapter began by presenting the design requirements for a set of RV develop-

ment tools. Put concisely, these requirements are: 

• The tools should allow and encourage interactive and incremental develop-

ment; 

• Editing should be convenient for the developer, minimizing the sources of 

operator error (e.g. spelling errors); 
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• The system under development should be able to be viewed from various or-

ganizational standpoints and at various levels of granularity; 

• Adequate information should be provided (in controllable detail) to the devel-

oper during parser testing. 

The bulk of the chapter described the design of the tools. The result of this design 

is a comprehensive set of tools allowing incremental, online browsing, editing, and 

debugging of all aspects of an RV system. 



CHAPTER 8 

Vocabulary Learner 

A broad coverage lexicon has to be large. There are two alternatives in construct-

ing a large lexicon: 1) by hand or 2) (semi-)automatically. The latter reduces the 

load on the parser developer, and also reduces the possibility of making errors while 

entering lexical information. The lexicon acquisition mechanism described here, is 

semi-automatic. The developer must create a skeletal lexicon, containing definitions 

of paradigmatic variation and representative open class words. The acquisition mech-

anism (referred to as the learner) can then acquire more open class words on the fly, 

based on information in the skeletal lexicon. 

As the learner sees different forms of a word, it tries to recognise known suffixes. 

The learner maintains associations between suffix sets (implemented by paradigms 

(see §2.7.2)) and categories (see §2.7.1). This allows it to infer the categories of 

a word from the possible sets of suffixes for the word. This results in an overly 

general categorization of the word. Unused categories are later removed by an aging 

mechanism. 

The learner makes assumptions about prior knowledge. Specificly, it assumes that 

all suffix sets are known, and that for each suffix set there is at least one word in the 

initial lexicon that uses it. The learner is intended to extend a lexicon, not generate 

104 



8. VOCABULARY LEARNER 105 

one from scratch. Also, the initial lexicon should contain all closed class words (e.g. 

prepositions and pronouns) and words that do not have a regular suffix structure. 

8.1. Learning the Lexicon 

This section explains the learning mechanism. There are two stages to the mech-

anism's operation: 1) incorporating a new word into the lexicon, and 2) refining 

the new word's categorization. The learning algorithm is shown in Figure 8.1, and 

explained below. 

8.1.1. Learning a new word. When LOOKUP can not recognise a word, the 

word is extracted from the input stream. For this purpose, a word is defined as 

being terminated by whitespace or punctuation. The learner must then create both 

a lexical entry and trie-path for the new word. Literal nodes are first added to the 

trie. The final internal node in the path (i.e. the parent of the lexical entry) is then 

processed with the goal of converting a recognised suffix or suffixes to one or more 

paradigm-set nodes. The new lexical entry is then assigned categories based on the 

paradigms contained in its immediate parent(s). 

The final step is to organize the trie for optimum efficiency. During processing of 

the node(s) containing the possible suffix, some rearrangement of that part of the trie 

may need to be undone. Once the new word has been incorporated into the lexicon, 

parsing can resume at the point where the new word was encountered. This time it 

will be recognised and parsing can proceed. 

8.1.1.1. Initial trie path creation. The LEARN algorithm creates a path in the 

trie for the new word by using only literal nodes. This can involve both the insertion 

of new nodes and the splitting of existing ones. Figure 8.2a shows the string "commu-

nication" being added to the trie of Figure 2.11. In this case a literal node is added. 
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LEARN (word) 

Add a template for word to the lexicon dictionary 
Add literal nodes to the lexical trie so that word will be matched 

(If necessary split existing literal nodes when there is a partial match) 
Add new-leaf to the end of the new word path, for the new lexical entry 
p is assigned the parent node of new-leaf 
potential-suffixes is assigned: 

the set of all known suffixes partially matching p such that 
there is a node containing a vowel between the root and new-leaf, 
excluding the suffix being considered 

if potential-suffixes is empty 
flatten the trie in the region of p (see text) 
p is again assigned the parent node of new-leaf 
potential-suffixes is again assigned: 

the set of all known suffixes partially matching p such that 
there is a node containing a vowel between the root and new-leaf, 
excluding the suffix being considered 

if potential-suffixes is not empty 
parent is assigned the parent of p 
remove p from parent 
add a subtrie to parent for each member of potential-suffixes 
group these new subries within parent 

for each parent of new-leaf 
invoke LEARN-WITH-SUFFIX (parent, new-leaf) 

refactor the trie to restore the correct trie structure 

LEARN-WITH-SUFFIX (suffix-node, leaf) 

1. Create a new paradigm-set node 
if suffix-node.string is known 

replace suffix-node with a new paradigm-set node 
that includes all paradigms with suffix-node.string as a string 

add suffix-node.string to the paradigm-set suffixes 

2. Assign categories 
Give leaf the set of all categories associated with its parents' paradigms 
if the lexical entry now has an empty category set 

(i.e. no paradigm or paradigm-set parents; the suffix is not known) 
give it all possible lexical and semi-lexical categories 

FIGURE 8.1. Algorithm LEARN 
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V N D 

FIGURE 8.2. Learning "communication" (a), "communicating" (b—f) 
and "communicate" (g). 

The word "communicating" is added in Figure 8.2b. This causes the "ommunication" 

node to be split. 

8.1.1.2. Rearranging the suffix. The goal of the learner is to recognise a suffix' in 

the parent node of the new lexical entry. It is unlikely that the node contains exactly 

a suffix. In most cases, there will be extra characters in the node, or the suffix may 

be split between two nodes. 

The first case is handled by creating all right-justified substrings from the contents 

of the node. A branch is made in the trie for each suffix found. For example, the 

string "oking" added in Figure 8.3, results in the strings: "oking", "king", " ing", 

"ng", "g". Using the paradigms in Table 2.4 we see that the strings "king" (from 

P6) and "ing" (from P2, P4, and P5) are valid suffixes. In this case the "o" is split 

'Note that for my purposes in this chapter, a suffix is defined as a string that occurs in a paradigm 
which is found in parent nodes of lexical entries. 
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a b d 

FIGURE 8.3. Learning "cooking" (a—c) and "cooked" (d). 
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off into a separate node and two branches are created: one containing "k" and " ing", 

and the other containing "king". 

There is a constraint on what suffixes can be used: they must result in a reasonable 

word stem. For English-like languages, stipulating that the stem contain a vowel 

seems valid. This means that if the suffix is removed from the last internal node on 

the new word path, at least one of the nodes on the path contains a vowel. For a 

literal node, it is simply a matter of checking for a vowel in the string. For a paradigm 

node, each substring must contain a vowel. Finally, for 'a paradigm—set node at least 

one candidate paradigm must have a vowel in all substrings. This constraint keeps the 

mechanism from missegmenting in some cases. Without this constraint, the learner 

would interpret "red", and "ring" as the stem "r" with suffixes "ed" and "ing". 

If the lexical entry's parent does not contain a suffix, the suffix may be split be-

tween that node and its parent. The trie is flattened locally (only the lexical entry's 

grandparent, parent, and parent's siblings are involved). A suffix is again searched 

for as described above. 



8. VOCABULARY LEARNER 109 

Figures 8.2b and 8.2c show "communicating" being added to the trie. The second 

"i" is placed in the stem string by the trie-building mechanism, leaving "ng" in a 

node by itself. The "ommunicati" node and its children must now be flattened. The 

string from this node is prepended to each child's string. The children are then 

added as children of their grandparent and their original parent node is removed. 

Figure 8.2c shows the result of doing this. The "ing" suffix can now be found in the 

"ommunicating" node, as shown in Figure 8.2d. 

8.1.1.3. Paradigm-set node creation. If there is now a known suffix in the lexical-

entry's parent node, it is replaced with a paradigm-set node containing all paradigms 

that cover the suffix. In Figure 8.2e the "ing" from "communicating" is replaced by 

a paradigm-set node containing paradigms P2, P4 and P5. Also, Figure 8.3c shows 

this for "ing" in P2, P4 and PS, as well as "king" in P6. 

The set of new branches containing paradigm-set nodes is remembered by their 

common parent. This is used by a later learning mechanism. For example, in Fig-

ure 8.3c the two paths leading to "cooking" are grouped together and remembered. 

8.1.1.4. Initial category assignment. The set of initial categories for a new lexical 

entry is computed by first collecting all paradigms from its paradigm-set parents. 

Each paradigm has associated with it a set of categories. The union is taken of all 

these category sets. This is the lexical entry's initial category set. 

The paradigm-+categories association is computed by taking the union of the cate-

gory sets of all lexical entries that have one or more parents containing the paradigm. 

For efficiency, this association is cached by storing the set union in the paradigm. 

If the new lexical entry has only literal parents (i.e. no suffixes were found) its 

initial category set contains all lexical and semi-lexical categories. Figure 8.2a shows 

this for " communication". 
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Paradigm 

P2 
P4 
P5 

Lexical Entries 
call 
creep 

communicating, love 
P6 make 

Categories 
V, N 
V 
V 
V 

TABLE 8.1. Paradigm - Lexical Entry correspondences 

An example of initial category assignment occurs when "cooking" is learned. Its 

parents contain P2, P4, P5, and PG between them. The category associations for these 

paradigms are shown in Table 8.1. The categories from column three of the table are 

placed in a set, resulting in {v, N} being the initial category set of "cooking". 

8.1.2. Adjustment of Categories. The initial category set assigned to a new 

lexical entry is always a superset of the correct category set. When paradigms are 

removed from a paradigm-set parent, categories that are no longer supported by the 

parents' paradigms are removed. This helps reduce the generality of the category 

sets. Only productions named in the category sets will be examined when the lexical 

entry is encountered. Because of this, it is in the best interest of efficiency to have the 

category set as small as possible. To this end, there is an aging mechanism that keeps 

track of how frequently each category is used. Frequently used categories become 

persistent and rarely used ones are removed. If the system is provided with sentences 

representative of the accepted usage of the new lexical entry, the category set should 

converge on an appropriate, stable value. 

Refer to the lexical entry "cooking" from the above examples. As it is used in 

sentences (for purposes of this example, I assume that "cook" is used predominately 

as a verb and not as a noun) the scores of the V and N categories are adjusted. As V 

is used frequently and N infrequently (if at all), V will become permanent and N will 
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UPDATE (update-info) 
for each (lex-entry, cats-used) in update-info 

for each used-cat in cats-used 
if lex-ent ry. used- cat is not persistent 

increase lex-ent ry. used- cat.score 
if lex-ent ry. used- cat.score > persistence-threshold 
make lex-entry. used- cat persistent 

assign -1 to lex-entry. used-cat .age 
for each cat in the category set of lex-entry 

increase lex-entry. used- cat. age 
if lex-ent ry. used- cat.age > the old-age threshold 

decrease lex-entry. used- cat.score 
if lex-ent ry. used- cat.score = 0 

remove used-cat from lex-entry's category list 

FIGURE 8.4. Algorithm UPDATE 

be removed. If "cooking" (i.e. "cook") is also frequently used a noun both categories 

will eventually become permanent. The aging mechanism works as shown in the 

UPDATE algorithm in Figure 8.4. The input to UPDATE is a dictionary that maps 

lexical entries to sets of categories. This mapping is constructed throughout the parse. 

UPDATE is called whenever a successful parse is found. 

8.2. Changes to the LOOKUP Algorithm 

The LOOKUP algorithm (see Figure 2.10) has to be extended to handle the new 

paradigm-set node. The new algorithm is shown in Figure 8.5. The added lines are 

marked on the left. 

When different forms of the word are seen later, their suffixes are added to the 

paradigm set. This causes the removal of paradigms that no longer cover all suffixes 

encountered. Figure 8.3d shows the result of encountering "cooked". The string "ked" 

is not included in paradigm P4, nor in P6, so when LOOKUP adds "ked" to suffixes 
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LOOKUP (input, node, props) 

interpretations is initialized empty 
case node 

leaf 
if input is empty or the first character is non-alphabetic 

add (node, props) to interpretations 

string pattern  
if node.string matches a prefix of input 

add to interpretations: 
Uchild LOOKUP (remaining input, node.child, props) 

paradigm pattern  
for each (string, properties) of the paradigm 

if string matches a prefix of input and props fl properties 54 
add to interpretations: 

Uchild LOOKUP (remaining input, node.child, props fl properties) 
return interpretations 

paradigm-set pattern  
for each (string, properties) of each paradigm in (suffixes, paradigms) 

if string matches a prefix pref of input and props fl properties 
let temp-interpretations be 

Uchild LOOKUP (remaining input, node.child, props fl properties) 
if temp-interpretations is not empty 

add to interpretations: temp-interpretations 
add pref to suffixes 
delete any member of paradigms that does not contain pref 
if paradigms is now empty 

remove the trie branch containing node 

for each group of children, cg, which contains a path to a leaf 
for each child in cg which did not lead to a leaf 

remove the subtrie rooted at child (except the leaf) form the trie 
return interpretations 

FIGURE 8.5. The revised algorithm LOOKUP with support for vocab-
ulary acquisition. 
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in the paradigm—set node that includes P6, P6 is deleted. Since the node now has no 

paradigms, that branch of the trie can be removed. Also P4 is removed from the other 

node since it does not cover "ed". Figure 8.2g shows the removal of the paradigms 

P2 and P4 from the new paradigm—set node, when "communicate" is encountered. 

Recall that when children were added by the acquisition mechanism (see Figure 8.1) 

they were grouped together. This grouping information is now used: trie branches 

are removed only if at least one other member of the group provides a path to a leaf. 

8.3. Limitations and Problems 

The vocabulary learner described in this section is the initial attempt at adding 

automated lexical acquisition to the RV parser and development system. In its current 

form it has several problems. 

Of major concern is the removal of paradigms from paradigm—set nodes. If the 

word being learned has a single set of endings, (i.e. the paradigm—set node should 

ideally reduce to a single paradigm) then there is no problem. However, if the word 

can validly take more than one set of endings there is a problem. Consider the lexical 

entry for "call" in Figure 2.11: it takes two sets of endings as described by paradigms 

P1 (" call" as a noun) and P2 (" call" as a verb). If call was being learned and both 

forms were being encountered, two things could happen: 

(1) If a common suffix is encountered first, the paradigm-set node will contain 

both paradigms (P1 and P2). The next form that does not contain one of 

the common suffixes will dominate, causing the other paradigm (and hence 

wordsense) to be removed and lost. If "call" is then used in the other sense, 

there are two possibilities: 
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(a) If a common suffix is used the word will be recognized using the existing 

paradigm and miscategorized. This will very likely cause the parse to 

fail. 

(b) If a form-specific suffix is used, a new lexical entry will be created for 

this sense of the word. 

(2) If, for example, a noun-specific suffix is first encountered the first occurrence 

of a verb-specific suffix will cause a new lexical entry to be created. 

A possible approach to correcting this deficiency of the current algorithm would 

be not to remove paradigms (and trie branches) based on what suffixes they cover 

versus what suffixes have been encountered. Rather, paradigms (and branches) would 

only be removed when a category is removed from the lexical entry by the category 

aging mechanism. Any paradigms that only supported the removed category would 

be removed. This could be done since usage of the word indicates that that category is 

inappropriate, and thus paradigms specific to that category are also not appropriate. 

Another approach that would avoid this problem to some extent is to have paradigms 

marked by the parser designer as being general or special purpose'. The learner would 

then only consider general purpose paradigms when evaluating the validity of suffixes 

and constructing paradigm-set nodes. 

8.4. Summary 

This chapter described a method for acquiring vocabulary on-the-fly in RV systems. 

The learner incorporates new words into the lexicon and trie, and assigns an initial set 

of categories. As more forms of the word are encountered, a paradigm will eventually 

be selected to account for the set of suffixes seen, and a more precise categorization 

'An example of this is P6, which is designed for use with the irregular verb "make". 
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will be assigned as useful categories are repeatedly seen. The learning system runs 

together with the parser, so that vocabulary learning does not require extra effort 

from the user. 



CHAPTER 9 

Evaluation 

This chapter evaluates the parser engine, development tools, and lexical acquisition 

mechanism. Limitations of the system and directions for future work are also dis-

cussed. 

The goal of the work described in this thesis is to design and develop a set of tools 

to be used for developing RV parsers. The criteria that these tools must meet are: 

(1) convenient editing of parsers, through the use of structured editors; 

(2) automatic validity checking of identifiers, and suggestion of spelling correc-

tions; 

(3) identification of incorrect actions; 

(4) automatic updating of all uses of an identifier when it is changed (i.e. re-

named); 

(5) protection against removal of referenced identifiers; 

(6) the use of shorthand notations where useful; 

(7) the ability to view the parser from various viewpoints; 

(8) support for freely cross referencing information; 

(9) the ability to view the parser at various levels of granularity; 

(10) convenient testing and debugging of parsers, which involves: 

. sentence testbeds; 
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• single stepping; 

• access to internal structures; 

• provision of relevant, useful information; 

• convenient alteration of the acquisition mechanism's operational param-

eters. 

These tools can be divided into three parts; 

• an RV parser engine; 

• parser definition editing tools; and 

• parser debugging tools. 

Each of these parts will be discussed and evaluated separately, followed by an evalu-

ation of the system as a whole and the integration of the three parts. 

9.1. Evaluating the Parser Engine 

The best way to evaluate the parser engine is to use it, along with an appropriate 

parser specification, to parse sentences which test various aspects of the RV design. 

This is what has been done. Appendix B lists several parsers that were developed by 

Blank for testing and illustrating various aspects the parser engine's operation. 

The development system was used to enter several parsers written by Blank. These 

performed successfully on sentences used by Blank with his implementation. The 

definition of these parsers (both syntax and lexicon) and the sentences each was tested 

with appear in Appendix B. Each of these parsers will now be discussed briefly. 

9.1.1. Subject-Verb-Object. This parser ( B.1) is meant as a illustration of 

the basic RV components. It tests the functioning of the basic parser control algo-

rithms, ternary vector operations, and lexical lookup. 
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9.1.2. Noun Phrases. This parser ( B.2) tests the ability to restrict produc-

tions to a specific type of clause, specificly noun phrases. It shows processing at the 

sentence level being suspended while the noun phrase is begin processed. This is 

accomplished by specifying the -HEAD feature in sentences level productions. 

9.1.3. WH Questions. This parser ( B.3) adds support for WET questions (the 

lexicon only contains who). This is done by adding the concept of a gap, which is 

represented by the GAP feature. When the WET-question word is encountered, a gap 

is created. The gap has to be accounted for before the sentence can be successfully 

parsed. The gap can be accounted for by being used in place of a missing noun phrase. 

This tests the ability of the parser to handle discontinuous constraints. 

9.1.4. Relative Clauses. This parser ( B.4) tests/shows the use of embedding, 

both right and center. For example, sentence (31) shows the use of both center 

embedding ("hate men that eat quiche love pizza", introduced by who) and, within 

that, right embedding (" eat quiche", introduced by that). 

9.1.5. Sub categorization. This parser ( B.5) demonstrates how subcategoriza-

tion is implemented using semi-lexical productions/categories. For example, consider 

the sub categorization of believe. Sentence (35) makes use of no semi-lexical cate-

gories, while (36) and (37) use THAT, and XO_, respectively. Sentence (39) is rejected 

because believe does not subcategorize with INF. (which enable the INF production 

that handles infinitive clauses). 

9.1.6. Morpho Syntactic Properties. This parser ( B.6) shows how morphosyn-

tactic properties can be used to constrain production use. This constraint is imple-

mented by lexprop actions (e.g. see the QUES production). 
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9.1.7. Boundary Registers. This parser ( B.7) exercises the boundary back-

tracking mechanism. Sentence (46) (" The horse raced past the barn fell." which is 

equivalent to " The horse that was raced past the barn fell.") shows what happens 

when a boundary register is reused during a parse, particularly the Pred boundary at 

embedding level one (i.e. Predi). This boundary is saved by the V production which 

is responsible for processing and consuming main predicates. In this sentence "raced" 

is initially recognised as the main predicate. Later in the parse "fell" is encountered. 

This is also recognised as the main predicate. Now there is a problem and the parser 

has to backtrack to search for an alternate interpretation that avoids this conflict. 

However, since "fell" was processed as a main predicate by the V production, the 

boundary Predi was reused. As a result the original contents of Predi. (saved when 

"raced" was processed) is no longer available and the parser can not backtrack to 

that point so as to search for alternate interpretations of "raced". 

The remaining test sentences show how the backtracking mechanism is used to find 

alternate interpretations. 

9.2. Evaluating the Development Tools 

The goal of this thesis is to design a set of interactive RV development tools which 

meet the criteria listed at the beginning of this chapter. This section will examine 

the degree of success achieved in meeting this goal. 

The browsers present the syntax and lexicon in a much more structured way than 

the linear textual representation of Blank's system. Structure is imposed by initially 

providing a template for the developer to fill in, and later placing an existing definition 

in a template. This makes editing easier since the user always knows what information 

is expected, and in what order (satisfying criteria 1). This capability is not the same 

as a full language sensitive editor, in that there is no support for automatic formatting 
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other than that done initially and there is no attempt made to keep the user from 

editing text other than that in the fields. 

To make editing more convenient when working with feature vectors and property 

sets, shorthands are provided: macros ( 7.4) and simplest descriptions ( 7.5.1), re-

spectively. This satisfies criteria 6. The macro editing facility is one way: when a 

vector is specified macros can be entered, but when an existing vector is displayed, 

there is no attempt made to replace its literal contents with macros. The simplest 

property description facility is bidirectional, however. Abbreviated descriptions can 

be entered and simplest descriptions are displayed for existing property sets. There 

is, however, no attempt made to preserve the actual property set specification: the 

system might generate a different specification than that which the user entered. 

The information is cross-referenced, satisfying criteria 8. Not all possible cross 

references are maintained, just those that promised to be useful (e.g. finding all 

properties referenced by a paradigm is not useful since properties are fixed early in 

the development process, but finding all paradigms that reference a specified property 

is useful, so the latter is supported but not the former). This means that the developer 

can immediately call for a list of, for example, all productions referencing the selected 

boundary. This, along with the graphical semantic and lexical trie browsers, provides 

various views of the parser, satisfying criteria 7. For example, the developer can view 

all the productions, those that reference a specified boundary or property, and those 

that categorize a specified lexical entry. Also, they can view all lexical entries, those 

that are categorized by a specified production, and those that reference a specified 

paradigm. Also, a browser can be opened on a single production or lexical entry, which 

goes most of the way to satisfying criteria 9. The satisfaction of criteria 7 and 9 are 

naturally limited. There are very few ways to look at the parser specification other 
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than different groupings (both in terms of the relationship between the members and 

group size) of productions, lexical entries, relations, and paradigms. 

The browsers also perform consistency checks when information is accepted. This 

is done by automatic spell-checking of categories (production names), properties, 

boundaries, features (both ordering and semantic), and paradigm names. When one 

of these items is referenced and can not be found in the system, the user is presented 

with the most likely candidates if any are close enough to the specified item. One 

of these can be selected to automatically replace the offending item. This capability 

satisfies criteria 2. The validity of production actions is also verified. Actions are very 

simple and there are few of them. This makes it quite easy for the system to validate 

action keywords (e.g. addprop, ->). Action parameters are all textual identifiers 

and are checked for validity at run-time, but each action has a fixed structure so 

the number of arguments is also checked at entry time. This functionality satisfies 

criteria 3. 

Whenever an identifier (as listed above) is changed, all references to it are updated, 

i.e. any item that references the changed identifier is updated to refer to the new one 

(criteria 4). This includes embedded identifiers like feature names. 

Finally, the user is not allowed to remove an item (property, boundary, etc.) which 

is referenced (criteria 5). The user can then use the cross referencing capabilities to 

find all references to the identifier and deal with them appropriately. 

The interactiveness and modelessness of the tools make for a responsive debugging 

environment: when an error occurs during a parse, the browsers can be used to fix 

the error immediately. The debugger limits this capability in that it, does not allow 

an operation to be restarted. The debugger almost completely satisfies criteria 10. 

Three things are missing: 
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(1) a parse cannot be stopped on demand; 

(2) a parser cannot be restarted at a specified point; 

(3) all internal structures are displayable, but boundary registers, the register 

stack (resume), and grammatical roles are not editable (all others are). 

The remainder of this section is a brief example of the operation of the development 

tools, specifically entering a production definition and subsequently debugging it. 

Figure 9.1 shows the syntax browser with a production definition template ready to 

be filled in. Figure 9.2 shows the the ADJ production being defined in the parser 

of §B.2. Note that the feature HEAD has been misspelled. Once complete, the 

definition is accepted by the developer. Since HEAD was misspelled, the system 

will notify the developer and ask if he want the system to find a correction. After 

the developer responds affirmatively, the system finds a single acceptable correction: 

HEAD. The developer is asked to confirm the correction. This is shown in Figure 9.3. 

If there were more than a single candidate, the system would provide a menu of the 

alternatives. Once the correction has been accepted, the production definition is 

redisplayed, without the omitted optional fields. Figure 9.4 shows this. 

In the traditional RV development system, production definitions are placed into 

a linear text file using a text editor. No checking is performed until the definition is 

converted into a format usable by the RV parser engine. In contrast to this, RV-Tools 

provides a skeletal production definition to be completed, and immediate feedback 

that aids in correcting common errors before they can create a problem. 

I now turn to the parser debugging and testing facilities. As an example, assume 

that the developer wishes to extend the parser to allow multiple adjectives. By 

enabling information regarding the reason productions are not used, it can be seen 
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FIGURE 9.1. Production Definition Template 
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FIGURE 9.2. Definition of the Production ADJ 
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FIGURE 9.3. Spell Checking Mechanism at Work 
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FIGURE 9.4. Final Definition of ADJ 
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that the condition vector of the ADJ production does not match the parser state 

vector once ADJ has been used once. Figure 9.5 shows this. 

RITLbzggrorz.:1'.T2' 
OR Hi 

V 

The big red robot loves Martha 

V 

First Learn Parse Step Continue > Single Step 
Parse to  Stop at Free Running Next  

V 

N SUBJ —+++++ 1 

L DET —++—+4-1 the <> 
L ADJ -++--+ 1 big <> 
ADJ doesn't match current state. 

SUBJ doesn't match current state, 
oBJ doesn't match current state. 

cc Backtracking >> using Word state now -++--+ clause level: 1 
ADJ doesn't match current state. 
SUBJ doesn't match current state. 
ODJ doesn't match current state. 

cc Backtracking Failed > 
Parse completed. 
Ungrammatical input 

V V V V 

  A 

curr 
Mainl 
Main≥ 
Main3 
Word 

A   A 

Maini 
Main≥ 
Main3 
Word 

A 

V 

FIGURE 9.5. Failure of ADJ the second time. 

By having the parser stop after ADJ is used the developer can examine the parser 

state and compare it with ADJ's condition vector. Figure 9.6 shows this being done. 

The developer can see that ADJ requires the ordering feature value +ADJ. By examin-

ing the definition of ADJ (see Figure 9.4), it is found that -ADJ is set by ADJ's change 

vector. It is decided that +ADJ should be removed from ADJ's condition vector. The 
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-ADJ value is left in the change vector so as to provide an indication that adjectives 

were encountered. Multiple adjectives can now be processed, as shown in Figure 9.7. 

RI'12eb4ggero:1'T1' 0112 M 
V 

The big red robot loves Martha 

V 

First [Learn Parse step continue sing e step 

Parse to.,.  Stop at...  > Free Running Next  
V 

Initializing state to: +++---

DET doesn't match current state. 

N SUBJ —+++++ 1 

L DEl —++—++ 1 the.c> 

L ADJ -++--+ 1 big c> 

V 

ADI 
CLOSE 
DET 
NAME 

Difference: 

,ADJ 

NOUN 
OBJ 
SUBJ Done 
VERB 

V V V V 

. SUBJ:DETtheJ ADJ:big; .   

LexEntry: red 
categories: ADJ 
Remaining: ADJ 
Properties: 
ClauseLevel: 1 
State vector: —S +V..O —DET..ADJ +H 

. 

Maini 
Main2 
Main3 
Word 

V 

curr 
Mainl 
Main2 
Mains 
Word 

v<JJ>v<I  I> 

FIGURE 9.6. Comparing ADJ with the Parser State. 

As a demonstration of the tools, I developed a parser that accepted simple com-

mands relating to UNIX file management (Appendix D contains the parser definition). 

The parser communicated with a small application (see source code in Appendix E) 

via a UNIX socket. The application accepted a command from the user (e.g. "Text 

files end with txt.", "List all the text files.") and passed it to the RV parser. The 

parser converted the sentence into a semantic structure and returned the structure 
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Main2 
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FIGURE 9.7. Parsing Multiple Adjectives. 
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to the application. The application then built a UNIX command string based on the 

information in the structure. The command string was then executed. 

Also, in the course of entering Blank's parsers some discrepancies were encountered. 

These consisted mostly of missing ordering feature settings in condition and change 

vectors. Whether these were omissions of Blanks, or symptomatic of slight differences 

between my engine and his, they provided a chance to rigorously test the debugger 

as well as the browsers. 

9.3. Evaluating the Lexical Acquisition Mechanism 

To test the lexical acquisition mechanism, I used a parser with a lexicon containing 

326 words and 37 paradigms, shown in § 0.1. Six words were removed from the lexicon: 

"address," "follow," "instruction," "intelligence," "process," and "program." The 

parser was then used to parse the 40 sentences from Tomita's testbed drawn from 

computer science texts (Tomita, 1987, Appendix G) (as distributed by Blank, see 

§0.2). 

The spelling and categorization of "process" was learned as correctly as possible: 

two categories remained which could not be resolved by examining ending sets, the in-

correct category would eventually be removed by the aging mechanism. The spelling 

of "intelligence" was left with two alternatives, and the categorization needed sig-

nificant pruning. The remaining four words were learned to varying degrees: four 

extraneous categories for two of them, six for one, and thirteen for one. In all cases, 

the category aging mechanism would eventually converge the categorizations to the 

correct ones (i.e. the categorizations that prove useful). 
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9.4. Implementation Status 

I have implemented the development tools, RV parser engine, and lexical acquisition 

mechanism described in this thesis using Objectworks\Smalltalk-80 release 4.0 on a 

Sun 3/50 workstation. One reason for using Smalltalk-80 was its portability. This was 

tested by running the RV development system, without modification or recompilation, 

on SparcStations (the only other St-80 r4.0 platform that was available). 

9.5. Limitations and Future Directions 

There are several directions in which future work could progress. All of these 

require a considerable amount of work, and in some cases major reworking of the 

existing system. They are described in the following paragraphs. 

Complete the implementation of the RV engine. The only feature of Blank's 

definition of RV that is not implemented is support for discontinuous idioms (Blank 

& Kasson, 1989). In the system described here, multi-word idioms must be continu-

ous. This means that the idiomatic senses of sentences (18) and (20) are recognisable 

but those of sentences (19) and (21) are not. Future work should address the lack of 

support for discontinuous idioms. 

(18) He kicked the bucket. 

(19) He kicked the proverbial bucket. 

(20) I feel like throwing in the towel. 

(21) Once the towel has been thrown in, there is no going back. 

Extension of the acquisition mechanism. The lexical acquisition mechanism 

is very simple. It needs to be extended to handle more than just suffixes and made 

more robust. Another avenue would be to explore grammar acquisition. 
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Generation capabilities. The system as described here contains only a parser. 

An RV generation mechanism would make the system more useful. Morphological 

generation is quite simple to add: given a lexical entry and a set of properties, it is 

simply a matter of walking up the trie to the root, selecting the appropriate string from 

each paradigm on the way (literal nodes are used verbatim). Syntactic generation 

presents more of a problem. What would be desired is a system that could take a 

semantic structure and generate a textual sentence for it. It would be preferable if the 

generator could make use of the same productions' that the parser uses. Approaches 

to this have not been explored to my knowledge. 

Extension of the debugger's functionality. There are several deficiencies in 

the design of the debugger: 

• There is no way to interrupt the parser when it is operating in free-running 

mode; 

• There is no way to examine the backtracking stack and set the parser to any 

state stored on it; 

• There is no way to edit the boundary register and grammatical role that are 

displayed; 

• There is very little in the way of support for post-mortem debugging of a parse. 

There needs to be work done on adding facilities for examining a parse after it 

has completed, successfully or otherwise. At the moment all that is available 

to the developer is the contents of the trace view. What is needed is a way to 

browse the tree of decisions made during the parse, especially branches that 

'The structure of productions will likely have to be extended to include generation related 
information. 
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led to a dead end. A useful feature would be the ability to restart the parser 

at a specific point. 

Better interaction in the lexical trie browsers. The capabilities of the trie 

browser are very limited. Capabilities should be added allowing individual nodes to 

be added, deleted, and moved. The browser should allow complete subtries to be 

moved as well as deleted. 

Improve the formalism. In the current definition of RV, non-lexical produc-

tions are order sensitive: When non-lexical productions are checked for applicability, 

the first to pass all the tests (see §2.1.1) is used. This creates another, non-obvious 

issue that parser developers must deal with: parser operation is dependent on the or-

dering of non-lexical productions. The possibility of modifying the RV formalism to 

remove this should be explored. One approach to this would be to design a generality 

metric for productions, and enforce an ordering based on that. This would guarantee 

that more specific productions would be checked before more general ones. 

Development of a runtime engine. A development system is of little use 

without a delivery mechanism. To this end, future work on this system should include 

the design and development of a runtime RV engine. The design of this engine would 

be significantly different than that of the development engine. The runtime engine 

would have to be designed with efficiency and economy of storage as the main criteria. 

This redesign applies to the fundamental data structures used by the engine as well. 

9.6. Summary 

This chapter provided an evaluation of the RV parser engine, the development 

tools, and the lexical acquisition mechanism. All design requirements were met, most 

to the full extent. The system has been implemented using Smalltalk-80 on Sun 3 
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and SparcStation platforms. This work is the first to try to develop a convenient, 

interactive environment for developing RV parsers. As such, there are several areas 

of future work that have been identified. Foremost among these are the need for 

more extensive debugging facilities and the improvement of some facets of the RV 

formalism, particularly the order sensitivity of non-lexical productions. 



CHAPTER 10 

Conclusions 

This thesis presents the design and implementation of an RV parser and a set of 

parser development tools. Traditional approaches to parser development employ an 

edit—compile—test paradigm. This thesis presents a set of RV parser development 

tools that provide an interactive, modeless environment for constructing and testing 

RV parsers. These tools satisfied the criteria put forth in Chapter 1, specifically: 

• convenient editing of parsers, through the use of structured editors; 

• automatic validity checking of identifiers, and suggestion of spelling correc-

tions; 

• identification of incorrect actions; 

• automatic updating of all uses of an identifier when it is changed (i.e. re-

named); 

• protection against removal of referenced identifiers; 

• the use of shorthand notations where useful; 

• the ability to view the parser from various viewpoints; 

• support for freely cross referencing information; 

• the ability to view the parser at various levels of granularity; 

• convenient testing and debugging of parsers, which involves: 

- sentence testbeds; 

135 
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- single stepping; 

- access to internal structures; 

- provision of relevant, useful information; 

- convenient alteration of the acquisition mechanism's operational param-

eters. 

The first contribution of this thesis is the development of an RV parser engine in 

Smalltalk-80. This is a valid contribution because the replication of scientific work is 

an important endeavor. 

The second contribution is the design and implementation of a set of interactive RV 

development tools. Two general browsers were developed, one each for syntax and 

lexicon related information. In addition to these, several more specific browsers were 

developed which present more focussed information. Also developed was a debugger 

which allows the user to step through a parse and examine the parser's internal struc-

tures at any point. Together, these tools provide a responsive, productive environment 

for developing RV parsers. This is a significant improvement over the traditional RV 

development systems, similar to the improvement of the Smalltalk programming en-

vironment over traditional programming environments (e.g. C programming using 

separate editor, compiler, and debugger). 

A final contribution of this thesis is the initial attempt at developing an automated 

mechanism for vocabulary acquisition. The value of this line of research is that it has 

the potential of removing the requirement that the parser developer create a complete 

lexicon. 

It was stated in Chapter 1 that natural language understanding is an important 

area of research in artificial intelligence. The work described in this thesis contributes 

to this area of scientific endeavor by providing a set of tools that researchers can use 
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when they are building RV parsers. The system is open-ended enough to allow easy 

modification. This enables researchers to modify the tools to accommodate extensions 

to the RV formalism itself. RV has the potential of being useful in relating to natural 

language parsing, and RV-Tools makes it easier to work with RV. 

This thesis began by briefly introducing RV, pointing out its advantages and disad-

vantages. The most important of the latter was its awkwardness for parser developers. 

My approach to countering this disadvantage was described, specifically the design 

and implementation of a set of development tools that make it easier and more con-

venient to develop RV parsers. 

Chapter 2 presented a detailed description of the design and operation of the RV 

formalism. 

This was followed in Chapter 3 by a description of the two existing, documented 

systems which support development of RV parsers: Blank's and Reed's. RV-Tools' 

philosophical differences with these were described briefly: 

• Blank's system has a traditional edit—compile—test development paradigm whereas 

RV-Tools provides various views of the systems under development, is inter-

active, and allows modification of the parser at any time; 

• Reed's system was designed to use RV as an efficient mechanism for imple-

menting phrase structure grammars, and does not address direct development 

of RV parsers. RV-Tools, on the other hand, is targeted at the parser developer 

who is working directly with the RV formalism. 

Finally, related work in the area of automated lexical acquisition was briefly described. 

Most of the systems examined strive to be psychologically valid, while those that are 

primarily pragmatic are generally not interactive or incremental. This contrasts to 
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my system, described in Chapter 8, which is designed for interactive, incremental 

operation. 

Chapter 4 very briefly described object-oriented programming as it applies to 

Smalltalk-80. This chapter also introduced the Model-View-Controller paradigm that 

forms the basis of the implementation of the RV development environment. 

The next chapter documents the extensions I have made to the RV formalism 

defined in Chapter 2: 

• the duff: vector operation and the '' element value; 

• a lexical acquisition mechanism and support for it, both the parser's handling 

of unknown words and the addition of a new type of node for the lexical trie; 

and 

• an extension of the production selection algorithm to use information about 

which lexical productions are associated with each semi-lexical production, 

in order to reduce the number of impossible production sequences that are 

considered. 

This is followed by a chapter describing my implementation of the RV parser engine, 

including the lexical and semantic components. 

Chapter 7 began by presenting the design requirements for a set of RV development 

tools. Put concisely, these requirements are: 

• The tools should allow and encourage interactive and incremental develop-

ment; 

• Editing should be convenient for the developer, minimizing the sources of 

operator error (e.g. spelling errors); 

• The system under development should be able to be viewed from various or-

ganizational standpoints and at various levels of granularity; 
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• Adequate information should be provided (in controllable detail) to the devel-

oper during parser testing. 

The remainder of the chapter described the design of a set tools that meet the stip-

ulated requirements. The core of the system consists of the, syntax browser, lexicon 

browser, and debugger. In addition to these core tools are several specialized browsers, 

including: 

• browse a single production; 

• browse all production which refer to a specified boundary; 

• browse all lexical entries which are categorized by a specified production. 

Chapter 8 described a method for acquiring vocabulary on-the-fly in RV systems. 

The learner incorporates new words into the lexicon and trie, and assigns an initial set 

of categories. As more forms of the word are encountered, a paradigm will eventually 

be selected to account for the set of suffixes seen, and a more precise categorization 

will be assigned as useful categories are repeatedly seen. The learning system runs 

together with the parser, so that vocabulary learning does not require extra effort 

from the user. 

Chapter 9 provided an evaluation of the RV parser engine, the development tools, 

and the lexical acquisition mechanism. All design requirements were met, most to 

the full extent. The system has been implemented using Smalltalk-80 on Sun 3 

and SparcStation platforms. This work is the first to try to develop a convenient, 

interactive environment for developing RV parsers. As such, there are several areas 

of future work that have been identified. Foremost among these are the need for 

more extensive debugging facilities and the improvement of some facets of the RV 

formalism, particularly the order sensitivity of non-lexical productions. 
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In conclusion, RV has proven to be a powerful, efficient processing formalism. Its 

main problem lies in its low level of abstraction. The work described in this thesis is an 

attempt to make it easier to develop RV parsers by providing a set of interactive tools. 

These tools allow non-linear browsing/editing of parsers, immediate error feedback, 

as well as interactive debugging. These tools do make it easier to create RV parsers 

in that they provide low-level support for working with productions, lexical entries, 

and other components of a parser. What is still missing is a tool to aid with the 

interrelationships between productions, i.e. something to aid with constructing the 

big picture of a parser. Even so, the tools described herein go a long way to making 

the development of ]EtV parsers faster and easier. 
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APPENDIX A 

Comparison with Finite State Machines 

RV is an improvement on finite state machines because it is functionally more pow-

erful. In a simple finite state machine, match is symbol identity and change does 

a complete state replacement. In RV, however, an operation is allowed to involve 

several items at once. This allows RV to be more compact than an equivalent finite 

state machine. Figures A.1 and A.2 and Tables A.1 and A.2 constitute an example 

for parsing simple Subject-Verb-Object languages used by Blank (Blank, 1989). The 

advantage of RV can be seen. When just one constraint is relaxed (the requirement 

that the subject precede the verb) the size and complexity of the finite state ma-

chine increases by two nodes (a 40% increase) and four transitions' (an 80% increase), 

while the size of the RV parser remains constant. The only change is that of the first 

element in the condition vector of the VERB production from - to . 

'Noted by heavier lines in Figure A.2. 

cat condition change  
SUBJ +7? —7? 

VERB -+? 7-? 

OBJ ?-+ ??-

CLOSE --? 

TABLE A.1. The RV Productions for Subject-Verb-Object Language 
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FIGURE A. 1. The Finite State Machine Transition Diagram for the 
Subject-Verb-Object Language 

FIGURE A.2. The Finite State Machine Transition Diagram for Par-
tially Free-Order Language 

cat condition change  

SUBJ +?? -?? 

VERB 7+? 7-? 

OBJ ?-+ ??-

CLOSE --? +++ 

TABLE A.2. The RV Productions for Partially Free-Order Language 
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In both the finite state machine and the RV implementations, all resources are 

preallocated and do not grow during the operation of the machine. This is due to 

the fact that RV has only one production per category. The effect of this property 

becomes more significant as the grammar size increases. The result of this is that an 

RV implementation will be more efficient than the equivalent finite state machine in 

terms of both space and recognition time. 

The overall efficiency of RV is a result of two characteristics that are not present 

in functionally more primitive mechanisms such as finite state machines: multiplicity 

and masking. 

Multiplicity refers to the capability of one operation to test multiple constraints 

simultaneously or have multiple effects. This capability is inherent in the ternary 

feature vectors that are the central component of RV. In the above example OBJ will 

only fire when the second feature is - and the third is +. The change vector of the 

CLOSE production gives an example of the multiplicity of effect. When CLOSE fires, it 

will set all features to +. 

Masking (allowing constraints to be unaffected or ignored by an operation) is made 

possible by the third allowable element value in ternary vectors: ?. This value matches 

anything and changes nothing, thus it can be used to let constraints pass from state 

to state. An example of this is present in the SUBJ production. This production will 

fire when the first feature is +. It ignores all other features. When it fires, it changes 

only the first feature, leaving the others as they were. 



APPENDIX B 

Test Parsers 

This appendix contains the parsers that the RV development environment has been 

used to implement. These parsers appear in various works by Blank. 

B.1. Subject-Verb-Object 

Ordering Features: S V 0 
Productions: 
CLOSE I cond -S..V change +S..O 
OBJ L cond -v +0 change -O 
SUBJ L cond +5 change -S 
VERB L cond -S +V change -V 
Lexicon: 
• cat CLOSE morph '.' 
George cat SUBJ OBJ morph 'george' 
loves cat VERB morph 'loves' 
Martha cat SUBJ OBJ morph 'martha' 

(22) George loves Martha. 

Initializing state to: +++ 

LSTJBJ -++ 1 George <> 
LVERB --+ I loves <> 
LOBJ --- 1 Martha <> 
I CLOSE ++-i- 1. 
Successful Parse 
SUBJ: George; VERB:loves; OBJ:Martha; CLOSE:.; 

<< Backtracking >> using Word state now clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(23) Martha loves. 
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Initializing state to: +++ 

LSUBJ --H- 1 Martha <> 
LVERB ---i- 1 loves <> 
I CLOSE -i-++ 1 . 
Successful Parse 
SUBJ:Martha; VERB: loves; CLOSE:.; 

<< Backtracking >> using Word state now --+ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(24) * George Martha. 

Initializing state to: +++ 

LSUBJ -+4- 1 George <> 

<< Backtracking >> using Word state now -i--I-

<<Backtracking Failed >> 
Parse completed. 
Ungrammatical Input 

clause level: 1 

B.2. Noun Phrases 

Ordering Features: S V 0 DET ADJ HEAD 
Properties: p1 sng 

Productions: 
clausal 
CLOSE 
OBJ 
SUBJ 
VERB 

phrasal 
ADJ 
DET 
NAME 
NOUN 

I 
N 
N 
L 

cond -S..V -HEAD 
cond -V +0-HEAD 
cond +S -HEAD 
cond -S +V -HEAD 

L cond +ADJ. .HEAD 
L cond +DET. .ADJ 
L cond +DET +HEAD 
L cond +HEAD 

Non-lexical Ordering: SUBJ OBJ 

Paradigms: 
BED s <p1> 

$ <sng> 
Lexicon: 

change +S..0 -DET..HEAD 
change -O +DET. .HEAD 
change -S +DET. .HEAD 
change -V 

change -DET. .ADJ 
change -DET 
change -DET -HEAD 
change -DET -HEAD 
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cat CLOSE morph '.' 
a cat DET morph 'a' 
big cat ADJ morph 'big' 
George cat NAME morph 'george' 
loves cat VERB morph 'loves' 
Martha cat NAME morph 'martha' 
red cat ADJ morph 'red' 
robot cat NOUN morph 'robot-BED-' 
the cat DET morph 'the' 

(25) George loves Martha. 

Initializing state to: -H-+---

NSUBJ -+++++ 1 
LNAME -++-+- 1 George <> 
LVERB --+-+- 1 loves <> 
NOW ---+++ 1 
LNAME ----+- 1 Martha <> 
I CLOSE ...... 1. 
Successful Parse 
SUB J:NA ME: George; VERB: loves; OBJ:NAME:Martha; CLOSE:.; 

<< Backtracking >> using Word state now ----+- clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(26) George loves the red robot. 

Initializing state to: +++---

NSUBJ -+++++ 1 
LNAME -++-+- 1 George <> 
LVERB --+-+- 1 loves <> 
NOW ---+++ 1 
LDET ----++ 1 the <> 
LAW  + 1 red <> 
LNOUN  1 robot <sng> 
I CLOSE +++ 1. 
Successful Parse 
SUBJ:NAME: George; VERB:loves; OBJ:DET:the; ADJ:red; NOUN:robot; CLOSE:.; 

<< Backtracking >> using Word state now clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(27) A robot loves Martha. 

Initializing state to: +++---

NSUBJ -+.+++ 1 
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LDET --i-+-++ 1 a<> 
LNOUN -++-+- 1 robot <sng> 
LVERB ---i--+- 1 loves <> 
NOW •---+++ 1 
LNAME ----+- 1 Martha <> 
I CLOSE +----- 1. 
Successful Parse 
SUBJ:DET: a; NOUN: robot; VERB:loves; OBJ:NAME:Martha; CLOSE:.; 

<< Backtracking >> using Word state now ----+-- clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

B.3. WH Questions 

Ordering Features: S V 0 AUX GAP DET HEAD 

Productions: 
clausal 
CLOSE I 
OBJ N 
SUBJ N 
VERB L 

phrasal 
DET 
NAME 
NOUN 

wh 
NGAP 
QUES 
WH 

cond -S..V -GAP -HEAD 
cond -V +0-HEAD 
cond +S -HEAD 
cond -S +V -HEAD 

L cond +DET 
L cond +DET. .HEAD 
L cond +HEAD 

change +S. .AUX -GAP. .HEAD 
change -O +DET. .HEAD 
change -S +DET. .HEAD 
change -V -AUX 

change -DET 
change -DET. .HEAD 
change -DET. .HEAD 

N cond +GAP. .HEAD change -GAP. .HEAD 
L cond +5 +AUX -HEAD change -AUX 
L cond +S -GAP -HEAD change +GAP 

Non-lexical Ordering: SUBJ OBJ NGAP 

Lexicon 
names 
George cat NAME 
Martha cat NAME 
Pam cat NAME 
Pamela cat NAME 

nouns 
men cat NOUN 
quiche cat NOUN 
robot cat NOUN 

determiners 
a cat DET 
the cat DET 

morph 'george' 
morph 'martha' 
morph 'pam' 
morph 'pamela' 

morph 'men' 
morph 'quiche' 
morph 'robot' 

morph 'a' 
morph 'the' 
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verbs 
love cat VERB morph 'love' 
loves cat VERB morph 'loves' 
sighed cat VERB morph 'sighed' 

wh words 
does cat QUES morph 'does' 
who cat WH morph 'who' 

punctuation 
cat CLOSE morph '.' 

? cat CLOSE morph '?' 

(28) Who loves Pamela? 

Initializing state to: ++++---

LWH +++++-- 1 who <> 
NSUBJ -++++++ 1 
NNGAP -+.+---- 1 
LVERB --+---- 1 loves <> 
NOBJ   
LNAME  1 Pamela <> 
I CLOSE ++++ 1? <> 
Successful Parse 
WH:who; SUBJ:NGAP:VER]3:loves; OBJ:NAME:Pamela; CLOSE:?; 

<< Backtracking >> using Word state now clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(29) Who does Pamela love? 

Initializing state to: ++++---

LWH +++++-- 1 who <> 
LQUES -i--'-+-+-- 1 does <> 
NSUBJ -++-+++ 1 
LNAME -++-+-- 1 Pamela <> 
LVERB --+-+-- 1 love <> 
NOBJ ----+++ 1 
NNGAP  1 
I CLOSE ++++ 1? <> 
Successful Parse 

WH:who; QUES: does; SUBJ:NAME:Pamela; VERB:love; OBJ:NGAP:CLOSE:?; 

<< Backtracking >> using Word state now --+-+-- clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(30) * Who does George love Pamela? 

Initializing state to: ++++--. 
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LWH +++++-- 1 who <> 
LQUES ....... 1 does <> 
NSUBJ -++-+++ 1 
LNAME -++--i--- 1 George <> 
LVERB --+-+-- 1 love <> 
NOW -.---+++ 1 
LNAME ----+-- 1 Pamela <> 

<< Backtracking >> using Word state now ----+--- clause level: 1 

<< Backtracking Failed >> 
Parse completed. 
Ungrammatical Input 

B.4. Relative Clauses 

Ordering Features: S V 0 AUX GAP DET HEAD NTERM REL 
Properties: genpl gensng inf past pastpart p1 pres pres3 prespart sng 

Productions: 
terminators 
NPEND N cond -DET..HEAD +NTERM change -NTERM 
RELEND N cond -S..V -AUX -DET..NTERM +REL change -NTERM..REL 

returnup 

NP post-modifiers 

RELC L cond +V -DET..HEAD +NTERM change +S. . GAP -DET..HEAD +REL 
shiftdown 

RELR L cond -v -DET..HEAD +NTERM change +S..GAP -DET..HEAD 
phrasal 
ART L cond +DET. .NTERM change -DET 
NAME L cond +DET. .NTERM change -DET. .NTERM 
NGAP N cond +GAP. .NTERM change -GAP. .NTERM 
NOUN L cond +HEAD. .NTERM change -DET..HEAD 
general 
CLOSE I cond -S..V -GAP. .NTERM change +S. .AUX -GAP..REL 

CTHAT L cond -V +0 -DET. .NTERM change +S. .AUX +DET. .NTERM 
OBJ N cond -V +0 -DET. .NTERM change -O +DET. .NTERM 
QUES L cond +S +AUX -DET. .NTERM change -AUX -REL 
SUBJ N cond +S -DET. .NTERM change -S +DET. .NTERM 
VERB L cond -S +V -DET. .NTERM change -V -AUX 
WH L cond +S -GAP. .NTERM change +GAP 

Non-lexical Ordering: SUBJ OBJ NGAP NPEND RELEND 

Paradigms: 

BED s' <genpi> 
's <gensng> 
S <pl> 
$ <sng> 
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dO o <inf pastpart pres pres3 prespart> 
i <past> 

Do ing <prespart> 
es <pres3> 
ne <pastpart> 
d <past> 
$ <inf pres> 

EAt en <pastpart> 
S <pres3> 
$ <inf pres> 

eAT ate <past> 
eat <inf pastpart pres pres3 prespart> 

LOVE ing <prespart> 
es <p1 pres3> 
ed <past pastpart> 
e <inf pres sng> 

MaN a <gensng sng> 
e <genpi pi> 

MAn s' <genpi> 
is <gensng> 
$ <p1 sng> 

PULL ing <prespart> 
ed <past pastpart> 
s <p1 pres3> 
$ <inf pres sng> 

Lexicon: 
articles 
a cat ART morph 'a' 
that cat RELR RELC CTHAT ART morph 'that' 
the cat ART morph 'the' 
close 

cat CLOSE morph '.' 
? cat CLOSE morph '?' 
nouns 
man cat NOUN morph 'mMaN.nMAnJ 
pizza cat NOUN morph 'pizz&BED_' 
quiche cat NOUN morph 'quicheJ3ED_' 
wh words 
what cat WH morph 'what' 
who cat WH RELR RELC morph 'who' 
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verbs 
do cat VERB QUES morph 'd..dO._Do_' 
eat cat VERB morph '..eATEAtJ 
hate cat VERB morph 'haLLOVE_' 
love cat VERB morph 'lov..LOVE_' 
think cat VERB morph 'thinkYlJLL_' 
names 
george cat NAME morph 'georg&BED_' 
martha cat NAME morph 'martha...BED...' 
pamela cat NAME morph 'pame1aJ3ED_' 

(31) Men who hate men that eat quiche love pizza. 

Initializing state to: ++++  

N SUBJ .-.+++-+++- 1 
L NOUN -+++---+- 1 man <p1> 
L RELC +++++--++ 2 who <> 
N NPEND -H-+++---+ 2 
N SUBJ -+++++++. 2 
N NGAP -+++----+ 2 
L VERB --+ + 2 hate <inf pres eng> 
N OBJ  ++++ 2 
L NOUN  ++ 2 man <p1> 
L RELR +++++ ++ 2 that <> 
N NPEND ......... 2 
N SUBJ -++++++++ 2 
N NGAP -+++----+ 2 
L VERB --+ + 2 eat <inf pres> 
N OBJ  ++++ 2 
L NOUN  ++ 2 quiche <sng> 
NNPEND  + 2 
N RELENJJ -+++ 1 
L VERB --+ 1 love <inf pres sng> 
N OBJ  +++- 1 
L NOUN  +- 1 pizza <sng> 
NNPEND  1 
I CLOSE ++++ 1. 
Successful Parse 
SUBJ:NOUN: man; RELC:who; NPEND:SUBJ:NGAP:VERB:hate; OBJ:NOUN:man; 
RELR: that; NPEND:SUBJ:NGAP:VERB : eat; OBJ:NOUN: quiche; NPEND:RELEND: 
VERB:love; OBJ:NOUN:pizza; NPEND :CLOSE:.; 

<< Backtracking >> using Word state now +- clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(32) Who do the men think that Pamela loves? 

Initializing state to: ++++  

L WH +++++---- 1 who <> 
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L QUES +++-+---- 1 do <inf pres> 
N SUBJ -.++-++++- 1 
L ART --'-+-+-++- 1 the <> 
L NOUN -++-+--+- 1 man <p1> 
N NPEND ----+----- 1 
L VERB --+-+----- 1 think <inf pres sng> 
L CTHAT ++++++++- 1 that <> 
L NAME +++++---- 1 pamela <sng> 
N SUBJ ......... 1 
N NGAP -+++ 1 
L VERB --+ 1 love <p1 pres3> 
I CLOSE ++++ 1? <> 
Successful Parse 

WH:who; QUES: do; SUBJ:ART:the; NOUN:man; NPEND:VERB: think; CTHAT: that; 
NAME:pamela; SUBJ:NGAP :VERB :love; CLOSE:?; 

<< Backtracking >> using Word state now --+ clause level: 1 
N OBJ  +++- 1 

<< Backtracking Failed >> 
Parse completed. 

B.5. Sub categorization 

Boundaries: Obj Pred 
Ordering Features: S TR V 0 DET HEAD XO THAT INF BE 
Properties: genpi gensng inf past pastpart p1 pres pres3 prespart sng 

Productions 
phrasal 

ADJ L cond -V. .0 +BE change -S. .HEAD -BE 
ART L cond +DET. .HEAD change -DET 
NAME L cond +DET. .HEAD change -DET. .HEAD 
NOUN L cond +HEAD change -DET. .HEAD 
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general 
BE L 
CLOSE I 
CTHAT N 
INF L 
INF S VERB 
INTRANS S VERB 

OBJ N 

SUBJ N 
THAT L 
THAT S VERB 
TRANS S VERB 

VERB L 
xO S VERB 
XOBJ N 

cond +V -HEAD 
cond -S. .HEAD 
cond -V -HEAD +THAT 
cond -V -HEAD +INF 
cond -TR -HEAD 
cond -S +TR -HEAD 
save Pred 
cond -V +0-HEAD 
save Obj 
cond +S -HEAD 
cond -V -HEAD +THAT 
cond -TR -HEAD -INF 
cond -S +TR -HEAD 
save Pred 
cond -TR +V -HEAD 
cond -TR +0-HEAD 
cond -V +0-HEAD +XO 

Non-lexical Ordering: SUBJ OBJ XOBJ CTHAT 

Paradigms 

BE were <past p1> 
are <pres> 
was <past sng> 
am <pres> 
is <pres3> 

BED s' <genpi> 
'S <gensng> 
S <pi> 
$ <sng> 

dO o <ml pastpart pres pres3 prespart> 
i <past> 

Do ing <prespait> 
es <pres3> 
ne <pastpart> 
d <past> 
$ <infpres> 

eAT ate <past> 
eat <jul pastpart pres pres3 prespart> 

EAt en <pastpart> 
s <pres3> 
$ <ml pres> 

change -V..0 +BE 
change +S. . 0 -DET. .BE 
change +S. . 0 -DET. .INF 
change -S +TR. .0 -DET. .INF 
change +INF 
change -TR -0 

change -0 +DET. .HEAD 

change -S +DET. .HEAD 
change +S..0 -DET..INF 
change +THAT 
change -TR 

change -V 
change +X0 
change -0 -XO 
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GiVE i <inf pastpart pres pres3 prespart> 
a <past> 

GIVen ing <prespart> 
yes <pres3> 
en <pastpart> 
e <inf past pres> 

IforY i <past pastpart p1 pres3> 
y <inf pres prespart sng> 

lEAVE av <inf p1 pres pres3 prespart sng> 
ft <past pastpart> 

LEAVe ing <prespart> 
es <p1 pres3> 
e <inf pres sng> 
$ <past pastpart> 

LOVE ing <prespart> 
es <p1 pres3> 
ed <past pastpart> 
e <inf pres sng> 

MAn s' <genpi> 
'S <gensng> 
$ <p1 sng> 

MaN a <gensng sng> 
e <genpi p1> 

PP p <past pastpart prespart> 
$ <inf pres pres3> 

PULL ing <prespart> 
ed <past pastpart> 
s <p1 pres3> 
$ <inf pres sng> 

TRy ying <prespart> 
ies <p1 pres3> 
ied <past pastpart> 
y <inf pres sng> 

Lexicon 
punctuation 

cat CLOSE morph '.' 
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articles 
a cat ART morph 'a' 
the cat ART morph 'the' 
nouns 
robot cat NOUN 
adjectives 
cold cat ADJ 
good cat ADJ 
names 
george 
john 
martha 
mary 
torn 
misc 
that cat THAT morph 'that' 
to cat INF morph 'to' 
verbs 
be cat BE 
believe cat THAT1 XO TRANS VERB 
eat cat TRANS INTRANS VERB 
give cat TRANS VERB 
giveaway cat TRANS VERB 
hope cat INTRANS THAT1 INFi VERB 
hurry cat TRANS INTRANS VERB 
hurryup cat INTRANS TRANS VERB 
leave cat INTRANS VERB 
love cat TRANS VERB 

(33) George hopes to leave. 

Initializing state to: ++++  

morph 'robotBED_' 

morph 'cold' 
morph 'good' 

cat NAME 
cat NAME 
cat NAME 
cat NAME 
cat NAME 

morph 'george-BED..' 
morph John-BED..' 
morph 'marthaBED...' 
morph 'mary_BED -' 
morph 'tomBEDJ 

N SUBJ -+++++---- 1 
L NAME -+++ 1 george <sng> 
S INTRANS --+ 1 
SINF1 
L VERB  4-- 1 hope <p1 pres3> 
LINF -+++ 1 
S INTRANS --+ 1 
LVERB  1 
I CLOSE +..+ 1. 
Successful Parse 

to <> 

morph '..BE..' 
morph 'believ_LOVE_' 
morph '..eAT.._EAt..' 
morph 'gGiVE_v_GIVen_' 
morph 'g..GiVE_v_GIVen_+away' 
morph 'hop-LOVE.' 
morph 'hurr..TRy_' 
morph 'hurr..TRy up' 
morph 'leiEAVELEAVeJ 
morph 'lov..LOVE_' 

leave <inf pres sng> 

SUBJ:NAME:george; INTRANS:INF1 :VERB:hope; INF:to; INTRANS:VERB:leave; CLOSE:.; 

<< Backtracking >> using Word state now 

<< Backtracking >> using Predl state now -+++ 

<< Backtracking Failed >> 
Parse completed. 

clause level: 1 

clause level: 1 
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(34) George hopes that Martha left. 

Initializing state to: ++++  

NSUBJ -+++++---- 1 
L NAME -+++ 1 george <sng> 
S INTRANS --+ 1 
S THAT1 --+--.--+ 1 
S INFi --+----++- 1 
L VERB  ++- 1 hope <p1 pres3> 

L THAT ++++ 1 that <> 
NSUBJ -+++++ 1 
L NAME -+++ 1 martha <sng> 
S INTRANS --+ 1 

L VERB  1 leave <past pastpart> 
I CLOSE ++++ 1. 
Successful Parse 
SUBJ :NAME:george; INTRANS :THAT1 :INF1 :VERB :hope; THAT: that; 

SLJBJ :NAME: martha; INTBANS :VERB :leave; CLOSE:.; 

<< Backtracking >> using Word state now clause level: 1 

<< Backtracking >> using Predi state now -+++ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(35) George believes Martha. 

Initializing state to: ++++ 

NSUBJ -+++++---- 1 
L NAME -+++ 1 george <sng> 
S TRANS --++ 1 
S THAT1 .-.-++---+ 1 
SxO —.-++--++ 1 
L VERB ---+--++ 1 believe <p1 pres3> 
N OBJ ----++++ 1 
L NAME  ++-- 1 martha <sng> 
I CLOSE ++++ 1. 
Successful Parse 

SUBJ:NAME:george; TRANS:THAT1 :XO:VERB:believe; OBJ:NAME: martha; CLOSE:.; 

<< Backtracking >> using Word state now 
N CTHAT ++++ 1 
NSUBJ -+++++ 1 

++-- clause level: 1 

<< Backtracking >> using Objl state now ---+--++-- clause level: 1 
NXOBJ  +-- 1 
N CTHAT ++++ 1 
NSUBJ -++.++.- 1 
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L NAME -+++ 1 martha <sng> 

<< Backtracking >> using Word state now -+++ clause level: 1 

<< Backtracking >> using Predi state now -+++ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(36) George believes that Martha left. 

Initializing state to: ++++  

NSUBJ -+++++---- 1 
L NAME -+++ 1 george <sng> 
S TRANS ---++  1 
S THAT1 --++---+  1 
S XO --++--++  1 
L VERB ---+--+  1 believe <p1 pres3> 
L THAT ++++ 1 that <> 
N SUBJ -++++.-.-  1 
L NAME -+++ 1 martha <sng> 
S INTRANS --+ 1 
L VERB  1 leave <past pastpart> 
I CLOSE ++++ 1. 
Successful Parse 

StJBJ:NAME:george; TRANS :THAT1 :XO :VEBB: believe; THAT: that; 
SUBJ:NAME: martha; INTRANS :VERB : leave; CLOSE:.; 

<< Backtracking >> using Word state now clause level: 1 

<< Backtracking >> using Predi state now -+++ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(37) George believes. 

Initializing state to: ++++  

N SUBJ -+++++---- 1 
L NAME -+++ 1 george <sng> 
S TRANS --++ 1 
S THAT1 ---++---+ 1 
S XO .--++--++ 1 
L VERB ---+--++ 1 believe <p1 pres3> 
N OBJ .-.-.--++++ 1 

<< Backtracking >> using Objl state now ---+--++-- clause level: 1 
NXOBJ  +-- 1 
I CLOSE ++++ 1. 
Successful Parse 
SUBJ:NAME:george; TRANS:THAT1 :XO:VERB: believe; XOBJ:CLOSE:.; 
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<< Backtracking >> using Word state now ---+--++-- clause level: 1 
NCTHAT ++++ 1 
NSUBJ -+++++ 1 

<< Backtracking >> using Predi state now -+++ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(38) George hopes. 

Initializing state to: ++++  

NSUBJ .......... 1 
L NAME -+++ 1 george <sng> 
S INTRANS   
S THAT1 1 
SINF1 1 
L VERB  ++- 1 hope <p1 pres3> 
I CLOSE ++++ 1. 
Successful Parse 
SIJBJ :NAME:george; INTRANS :THAT1 :INF1 :VERB :hope; CLOSE:.; 

<< Backtracking >> using Word state now 
NCTHAT ++++ 1 
N SUBJ -+++++ 1 

++- clause level: 1 

<< Backtracking >> using Predi state now -+i-+ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(39) * George believes to leave. 

Initializing state to: ++++  

N SUBJ -+++++.---- 1 
L NAME -+++ 1 george <sng> 
S TRANS --++ 1 
S THAT1 --++---+ 1 
S XO  1 
L VERB ----+--++ 1 believe <p1 pres3> 
N OBJ --.-.-+++ 1 

<< Backtracking >> using Obji state now ---+---++-- clause level: 1 
NXOBJ  +-- 1 
NCTHAT ++++ 1 
NSUBJ -+++++ 1 

<< Backtracking >> using Word state now ---+--++-- clause level: 1 

<< Backtracking >> using Predi state now -+++ clause level: 1 
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<< Backtracking Failed >> 
Parse completed. 
Ungrammatical Input 

(40) * George hopes believes. 

Initializing state to: ++++  

N SUBJ -+++++---- 1 
L NAME -+++ 1 george <sng> 
S INTRANS --+ 1 
S THAT1 --+ 1 
S INFi --+----++- 1 
L VERB  ++- 1 hope <p1 pres3> 
NCTHAT ++++ 1 
NSUBJ -+++++ 1 

<< Backtracking >> using Word state now  *1--- clause level: 1 

<< Backtracking >> using Predi state now -+++ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 
Ungrammatical Input 

(41) * George hopes Martha. 

Initializing state to: ++++  

NSUBJ -+++++-.--- 1 
L NAME -+++ 1 george <sng> 
S INTRANS --+ 1 
S THAT1 -----.--+ 1 
S INFi --+----.++- 1 
L VERB  ++- 1 hope <p1 pres3> 
N CTHAT ++++ 1 
NSUBJ -+++++ 1 
L NAME -+++ 1 martha <sng> 

<< Backtracking >> using Word state now -+++ clause level: 1 

<< Backtracking >> using Predl state now -+++ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 
Ungrammatical Input 
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B.6. MorphoSyntactic Properties 

Ordering Features: S V 0 GAP DET ADJ HEAD NTERM REL COMP AF BE TENS PAS-
SIVE 

Default cond: -DET..NTERM 

Properties: <first second third> <p1 sg> <past pres> inf nom pastpart prespart 

Productions 
verb categories 
CADJ L 
VCOMP L 
VINTRANS L 
VTRANS L 

terminators 
NPEND N 
RELEND N 

cond -S +V -BE 
cond -S +V +AF 
cond -S +V +AF 
cond -S +V +AF 

change -V. .0 
change -V..O +COMP -AF 
change -V..0 -AF..BE 
change -v -AF. .BE 

cond +NTERM change -NTERM 
cond -S..V -GAP +REL -BE change -NTERM 
returnup 

relative pronouns 

RELC L cond +V +NTERM change +S. .GAP -DET..NTERM +REL 
shiftdown 

RELR L cond -V +NTERM change +S. .GAP -DET..NTERM 
phrasal 
ADJ L cond ?DET +ADJ. .NTER,M 
DET L cond +DET. .NTERM 
NAME L cond +DET. .NTERM 
NGAP N cond +GAP. .NTERM 
NOUN L cond ?DET..ADJ +HEAD. .NTERM 

lexprop <nom> 
misc 
BE 
CLOSE 
CTHAT 
OBJ 
PASSIVE 

L 
I 
L 
N 
N 

PASSIVEBY L 
PROG N 

QTJES N 

SUBJ N 
TENSE N 

WH L 

Non-lexical Ordering: SUBJ TENSE QUES PROG PASSIVE OBJ NGAP NPEND RELEND 

Paradigms: 

AM $ <sg:pres:first> 

change -DET 
change -DET 
change -DET..NTERM -AF 
change -GAP. .NTERM 
change -DET. .HEAD -AF 

change -AF. .BE 
change +S..O -GAP..COMP +AF..TENS -PASSIVE 
change +S..GAP -DET..COMP +AF..BE 
change -0 +DET..NTERM 
change -0 +AF +PASSIVE 

change +DET. .NTERM 

change +AF -TENS 

change -S +DET. .NTERM 
change +AF -TENS 

cond +AF..BE 
cond -S..GAP -COMP 
cond +COMP 
cond -V +0 
cond -BE -PASSIVE 
lexprop <pastpart> 
cond -V +PASSIVE 
cond -AF. .BE -PASSIVE change +AF..BE 
lexprop <prespart> 
cond +S +TENS 
lexprop <past pres> 
cond +S 
cond -S +TENS 
lexprop <past pres> 
cond +S -GAP change +GAP 
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ARE $ <pres:pl pres:second> 

BE ing <prespart> 
en <pastpart> 
$ <inf> 

BED s <nom third:pl> 
$ <nom sg:third> 

BOX es <ibm third:pl> 
$ <nom sg:third> 

Do oing <prespart> 
oes <sg:third:pres> 
id <past pastpart> 
o <inf pres:first pres:pl pres:second> 

FiND ou <past pastpart> 
i <inf pres prespart> 

FINDing ing <prespart> 
$ <sg:third:pres> 
$ <first inf past pastpart p1 second> 

HAve ving <prespart> 
ye <inf pres:first pres:pl pres:second> 
s <sg:third:pres> 
d <past pastpart> 

IS $ <sg:third:pres> 

LOVE ing <prespart> 
ed <past pastpart> 
es <sg:third:pres> 
e <inf pres:first pres:pl pres:second> 

PULL ing <prespart> 
ed <past pastpart> 
s <sg:third:pres> 
$ <inf pres:first pres:pl pres:second> 

SHEEP $ <nom third> 

SiNG i <inf pres prespart> 
a <past> 
U <pastpart> 
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WAS ere <past:pl second:past> 
as <sg:past:flrst sg:third:past> 

Lexicon: 
misc 
by cat PASSIVEBY morph 'by' 
wh words 
what cat WH RELC RELR morph 'what' 
who cat WH RELC RELR morph 'who' 
aux 
be cat BE morph 'are.AREJ 

M isJSJ 
m 'wWASJ 
m 'am.AM_' 
m 'be..BE..' 

verbs 
find cat NOUN VTRANS morph 'LFiNDnd..FINDingJ 

m 'find..BED..' 
kick cat NOUN VTRANS morph 'kick_PULL_' 

M 'kickBED_' 
sing cat NOUN VINTRANS morph '&SiNG.ngJINDing..' 
squeak cat NOUN VINTRANS morph 'squeak-PULL.' 

m 'squealLBEDJ 
nouns 
barn cat NOUN morph 'barnBED..' 
bird cat NOUN morph 'bircLBED_' 
block cat NOUN morph 'blocicBED_' 
bucket cat NOUN morph 'bucket..BED_' 
fox cat NOUN morph 'fox-BOX..' 
horse cat NOUN morph 'horse_BED_' 
robot cat NOUN morph 'robot..BED_' 
adjectives 
large cat ADJ CADJ morph 'large' 
red cat ADJ CADJ morph 'red' 
silly cat ADJ CADJ morph 'silly' 
articles 
a cat DET morph 'a' 
the cat DET morph 'the' 
names 
George cat NAME morph 'georgeJ3ED_' 
Martha cat NAME morph 'martha.BED_' 
punctuation 

cat CLOSE morph '.' 
? cat CLOSE morph 'T 

(42) The robot is being kicked. 

Initializing state to: +++ +++-

NSUBJ 
L DET 

-++-++++--+++- 1 
-++.---+++--+++- 1 the <> 



B. TEST PARSERS 166 

L NOUN -+±-----+---++- 1 robot <nom sg:third> 
N NPEND -++ ++- 1 
N TENSE -++ ++-- 1 
L BE -++ 1 be <sg:third:pres> 
N PROG -++ ++-- 1 
L BE -++ 1 be <past pres prespart> 
N PASSIVE -+ +---+ 1 
L VTRANS  + 1 kick <past pastpart> 
I CLOSE +++ +++- 1. 
Successful Parse 
SUBJ:DET:the; NOUN:robot; NPEND:TENSE:BE:be; PROG:BE:be; PASSIVE: 
VTRANS:kick; CLOSE:.; 

<< Backtracking >> using Word state now + clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(43) George was kicked by Martha. 

Initializing state to: +++  

NSUBJ 
L NAME 
N TENSE 
L BE 
N PASSIVE 
L VTRANS 
L PASSIVEBY ----++++ 
L NAME 
I CLOSE 
Successful Parse 
STJBJ:NAME: George; TENSE:BE: be; PASSIVE:VTRANS :kick; PASSIVEBY: by; 
NAME:Martha; CLOSE:.; 

-++-++++--+++- 1 

+++ 

 ++- 1 George <nom sg:third> 
++-- 1 

 1 be <sg:past:first sg:third:past> 
+--+ 1 
 + 1 kick <past pastpart> 
 + 1 by <> 
 + 1 Martha <nom sg:third> 
+++- 1. 

<< Backtracking >> using Word state now + clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(44) George is being silly. 

Initializing state to: +++  

N SUBJ -++-++++--+++- 1 

L NAME -++ ++- 1 George <ibm sg:third> 
N TENSE -++ ++-- 1 

L BE -++ 1 be <sg:third:pres> 
NPROG -++ ++-- 1 

L BE -++ 1 be <past pres prespart> 
L CADJ  1 silly <> 
I CLOSE +++ +++- 1. 
Successful Parse 
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StJBJ:NAME: George; TENSE:BE:be; PROG:BE:be; CADJ:silly; CLOSE:.; 

<< Backtracking >> using Word state now clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

(45) The red robot squeaked. 

Initializing state to: +++  

N SUBJ -++-++++--+++- 1 
L DET -++-.-+++--+++-- 1 the <> 
L ADJ -++--+++--+.+- 1 red <> 
L NOUN -++----+---++- 1 robot <ibm sg:third> 
N NPEND -++ ++- 1 
N TENSE -++ ++-- 1 
L VINTRANS  1 squeak <past pastpart> 
I CLOSE  +++- 1. 
Successful Parse 

SUBJ:DET: the; ADJ:red; NOUN:robot; NPEND:TENSE:VINTRANS:squeak; CLOSE:.; 

<< Backtracking >> using Word state now clause level: 1 

<< Backtracking Failed >> 
Parse completed. 

B.7. Boundary Registers 

Boundaries: NP NPmod Obj Pred Prep Subj Tense Topic 
Ordering Features: S TENS BE AF V 0 PASS THAT VSUB NP DET HEAD NEND REL 
ROLE PREP GAP RELEND 

Default cond: -DET,.HEAD 
Properties: <first second third> <p1 sg> <past pres> inf nom pastpart prespart 

Productions: 



B. TEST PARSERS 168 

clausal 
BE L cond +BE -AF 
CLOSE I cond -S. . 0 -ROLE -GAP..RELEND 
IMP N cond +TENS -REL -GAP 

lexprop <past pres> 
N cond -S -BE +AF..V 

lexprop <pastpart> 
N cond -S -BE +AF..V -PASS 

lexprop <prespart> 
N cond +TENS -REL. .ROLE 

lexprop <past pres> 
N cond +S -TENS +ROLE 

save Subj 
TENS N cond +TENS -NEND +ROLE 

lexprop <past pres> 

verb subcategories 
INTRAN S V cond -S -PASS 
THAT S V cond -S 
TRANS S V cond -S 

verbs and predicates 
CADJ L 
PP S PREP 

PASS 

FROG 

QUES 

SUBJ 

change -BE +AF +NP 

change +S..0 -PASS..VSUB +NP -DET..RELEND 
change -S..AF 
save Tense 
change -AF -0 +PASS -NP 

change -AF +NP 

change -TENS -AF -NP 
save Tense 
change -S -DET. .ROLE 

change -TENS. .AF 
save Tense 

change -O +VSUB 
change +THAT. .VSUB 
change +VSUB..NP 

cond -S -BE +AF..V 
cond -S..BE +AF..V 
save Prep 

V L cond -S -AF +V +VSUB 
save Pred 

verb compliments 
CTHAT L cond -v +THAT 

OBJ N cond -v +0 +ROLE 
save Obj 

PASSEY L cond -V. .0 +PASS 
PPEND N cond +ROLE..PREP 

save NPmod 
PREP L cond +PREP 
VREL1 S PREP cond -V. .0-PREP 

save Prep 

change -AF. .0 -NP 
change -AF. .0-NP +PFtEP 

change -BE -v -VSTJB 

change +S..0 -PASS. .VSUB +NP -DET. .PREP 
-RELEND 

change -0 -DET. .ROLE 

change +NP..HEAD +PREP 
change -DET. .PREP 

change +DET. .READ 
change -THAT +PREP 
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noun phrase productions 
DET L cond +DET..READ 
NAME L cond +DET. .READ 
NOUN L cond ?DET +READ 

lexprop <nom> 
NP N cond -VSUB +NP -PREP 

save NP 
NPEND N cond +NEND -PREP 

save NPmod 
REDREL N cond +S..O +REL +GAP 
RELCO N cond +0 +NEND -RELEND 

change -DET 
change -DET. .HEAD +NEND. .ROLE 
change -DET..READ +NEND. .ROLE 

change -NP +DET. .HEAD 

change -DET. .NEND +ROLE 

change -S..BE -NP -REL +ROLE -GAP 
change +S..O -PASS..VSUB +NP 

-DET. .NEND +REL -ROLE. .PREP 
+GAP. .RELEND 

shutdown 
RELEND N cond -S. .0-ROLE -GAP +RELEND change -DET. .REL 

returnup 
RELRO N cond -S. .0 +NEND -GAP change +S..O -PASS. .VSUB +NP 

-DET. .NEND +REL -ROLE. .PREP 
+GAP 

questions 
NGAP N cond +NP ?DET. .HEAD -REL +GAP change -NP. .REL +ROLE -GAP 
WH L cond +S -GAP change -NP +GAP 

save Topic 

Non-lexical Ordering: SUBJ QUES TENS IMP PROG PASS PPEND 0]3J NP NPEND 
RELRO RELCO REDREL RELEND NGAP 

Paradigms: 

AM $ <sg:pres:first> 

ARE $ <pres:pl pres:second> 

BE ing <prespart> 
en <pastpart> 
$ <inf> 

BED s <nom third:pl> 
$ <nom third:sg> 

BODY ies <nom third:pl> 
y <ibm third:sg> 

BOX es <ibm third:pl> 
$ <nom third:sg> 

BUILT ding <prespart> 
ds <pres:third:sg> 
d <inf pres:first pres:pl pres:second> 
t <past pastpart> 
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Do oing <prespart> 
oes <pres:third:sg> 
id <past pastpart> 
o <inf pres:first pres:pl pres:second> 

FaLL a <inf pres prespart> 
e <past pastpart> 

FALLen ing <prespart> 
en <pastpart> 
s <pres:third:sg> 
$ <first inf past p1 second> 

FiND on <past pastpart> 
i <inf pres prespart> 

FINDing ing <prespart> 
s <pres:third:sg> 
$ <first inf past pastpart p1 second> 

FLy ying <prespart> 
ies <pres:third:sg> 
own <pastpart> 
ew <past> 
y <inf pres:first pres:pl pres:second> 

GiVen lying <prespart> 
ives <pres:third:sg> 
iven <pastpart> 
ive <inf pres:first pres:pl pres:second> 
ave <past> 

IS $ <pres:third:sg> 

LOVE ing <prespart> 
ed <past pastpart> 
es <pres:third:sg> 
e <jul pres:first pres:pl pres:second> 

PULL ing <prespart> 
ed <past pastpart> 
s <pres:third:sg> 
$ <inf pres:first pres:pl pres:second> 

SHEEP $ <nom third> 



SiT i <inf pres prespart> 
a <past> 

TT t <prespart> 
$ <inf pastpart prespart> 

WAS ere <past:pl second:past> 
s <sg:past:first third:past:sg> 

Lexicon: 
prepositions 
by 
from 
in 
on 
past 
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cat VREL1 PP PREP PASSBY 
cat VREL1 PP PREP 
cat VREL1 PP PREP 
cat VREL1 PP PREP 
cat VREL1 PP PREP 

morph 'by' 
morph 'from' 
morph 'in' 
morph 'on' 
morph 'past' 

common nouns 
arrow cat NOUN morph 'arrowJ3ED_' 
barn cat NOUN morph 'barn-BED..' 
block cat NOUN morph 'blockBED_' 
box cat NOUN morph 'boxJ3OXJ 
Rower cat NOUN morph 'flower..BEDJ 
horse cat NOUN morph 'horse_BED_' 
sheep cat NOUN morph 'sheepSHEEP_' 
table cat NOUN morph 'table.LBED_' 
noun/verbs 
fly cat NOUN INTRAN TRANS V 

like 

love 

race 

time 

verbs 
be 

cat VREL1 PP PREP NOUN TRANS V 

cat NOUN TRANS V 

cat TRANS INTRAN V NOUN 

cat TRANS INTRAN V NOUN 

borrow 
fall 
find 
open 
receive 
sit 
think 

cat BE 

cat TRANS V 
cat INTRAN V 
cat TRANS V 
cat TRANS INTRAN V 
cat TRANS V 
cat INTRAN V 
cat THAT.. TRANS V 

morph 'fLFLy_' 
m 'fLBODYJ 
morph 'like...BED_' 
m 'lik..LOVE..' 
morph 'loveBED_' 
m 'IovLOVEJ 
morph 'race_BED_' 
m 'rae_LOVE..' 
morph 'tim.LOVE' 
m 'time-BED' 

morph 'wWAS_' 
m 'be ..BE' 
M 'isJS_' 
m 'am_AM_' 
m 'areARE_' 
morph 'borrowPULL' 
morph 'LFaLLJLFALLenJ 
morph 'fYiND_ndFINDing_' 
morph 'openPULL' 
morph 'receivLOVE' 
morph 's.SiTtTT_FINDing' 
morph 'think_PULL_' 

171 
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wh words 
what cat WH morph 'what' 
who cat WH morph 'who' 
punctuation 

cat CLOSE morph '.' 

? cat CLOSE morph'?' 
adjectives 
fat cat CADJ morph 'fat' 
heavy cat CADJ morph 'heavy' 
red cat CADJ morph 'red' 

names 
George cat NAME morph 'george_BED_' 
Martha cat NAME morph 'marth&BED_' 
Mary cat NAME morph 'mary.BED..' 
determiners 

a cat DET morph 'a' 
an cat DET morph 'an' 
that cat DET CTHAT morph 'that' 
the cat DET morph 'the' 

(46) *The horse raced past the barn fell. 

Initializing state to: ..........  

N NP  1 
L DET ++++++ + 1 the <> 
L NOUN ++++++ +++--- 1 horse <nom sg:third> 
N NPEND ++++++  
N TENS +---++  
NSUBJ -----++  1 
S TRANS ----++--++ 1 
S INTItAN ----+---++ 1 
L V  + 1 race <past pastpart> 
S VREL1  + +-- 1 
L PREP  +++----+-- 1 past <> 
L DET  +-+---+-- 1 the <> 
L NOUN  +--++-i-+-- 1 barn <nom sg:third> 
S INTRAN .......... 1 

<< Backtracking >> using Word state now 
NPPEND  + 1 

NNP  ++ 1 

<< Backtracking >> using NP1 state now 

<< Backtracking >> using NPmodl state now 
N RELRO ------------------ 1 
N NP .................. 1 

+--++++-- clause level: 1 

+ clause level: 1 

--------- clause level: 1 

<< Backtracking >> using NP1 state now -i-+++++---+---+--+- clause level: 1 
N REDREL ---+++ -'---- 1 
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<< Backtracking >> using Prepl state now + 

NNP  ++ 1 

<< Backtracking >> 

<< Backtracking >> 

<< Backtracking >> 

<< Backtracking >> 

clause level: 1 

using NP1 state now + clause level: 1 

using Predi state now ----+---++ clause level: 1 

using Subji state now +----i-+ ++--- clause level: 1 

using Tensel state now ++++++ ++--- clause level: 1 

<< Backtracking Failed >> 
Parse completed. 
Ungrammatical Input 

(47) Is the block on the table red? 

Initializing state to: .......... 

N QUES +-+-++ 1 
L BE +--++i----+  1 be <sg:third:pres> 
N NP +--+++----++ 1 
L DET +--+++ + 1 the <> 
L NOUN +--+++ +++--- 1 block <nom sg:third> 
N SUBJ 
SPP 
L PREP  ++---+-- 1 on <> 
LDET   

L NOUN  ...... 1 table <nom sg:third> 
NPPEND  1 

<< Backtracking >> using NPmodl state now 
N RELRO ++++++---+---+-..+- 1 
N NP .................. 1 

++++-- clause level: 1 

<< Backtracking >> using NP1 state now -i-+++++----+---+---I-- clause level: 1 
N REDREL ---+++ +--- 1 
L CADJ  -I----- 1 red <> 

<< Backtracking >> using Word state now 

<< Backtracking >> using Prepl state now ------

<< Backtracking >> using Subji state now ------
N NPEND +--+++ ++--- 1 

<< Backtracking >> using NPmodl state now +--+++ 

N RELCO .................. 2 
N NP .................. 2 

 +---. clause level: 1 

 clause level: 1 

-H+ clause level: 1 

+++--- clause level: 1 
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<< Backtracking >> using NP2 state now .......... ........ clause level: 2 
N REDREL .--.-+++ +--+ 2 
S PP 
L PREP  ........ 2 on <> 
L DET  +--++-+ 2 the <> 
L NOUN  ++++-+ 2 table <nom sg:third> 
NPPEND  +2 
N RELEND +---+++ i---- 1 
N SUBJ ----+++  1 
L CADJ  1 red <> 
I CLOSE ++++++---+ 1? <> 
Successful Parse 

QUES:BE:be; NP:DET:the; NOUN:block; RELCO:REDREL:PP:PREP:on; DET:the; 
NOUN:table; PPEND:RELEND:SUBJ:CADJ:red; CLOSE:?; 

<< Backtracking >> using Word state now clause level: I 

<< Backtracking >> using Subji state now +--+++ +--- clause level: 1 

<< Backtracking >> using NPmod2 state now 
N RELRO ++++++---+---+--++ 2 
N NP ++++++----++-+--++ 2 

++++-+ clause level: 2 

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2 
N REDREL ---+++ +--+ 2 
L CADJ  +--+ 2 red <> 

<< Backtracking >> using Word state now 

<< Backtracking >> using Prep2 state now ---+++ 

<< Backtracking >> using Tensel state now ++++++---+ 
NIMP ----++---+ 1 
N NP ------------

<< Backtracking >> using NP1 state now ----------

+--+ clause level: 2 

 +--+ clause level: 2 

 clause level: 1 

<< Backtracking >> using Tensel state now ++++++----+ 
N NP ++++++----++ 1 

<< Backtracking >> using NP1 state now ++++++---+ 

<< Backtracking Failed >> 
Parse completed. 

(48) Is the block on the table? 

clause level: 1 

  clause level: 1 

clause level: 1 
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Initializing state to: ++++++•---+ 

N QUES +-+-++ 1 
L BE  1 be <sg:third:pres> 
N NP  1 
L DET +--+++ + 1 the <> 
L NOUN ...... +++--- 1 block <nom sg:third> 
N SUBJ ---+++ 1 
SPP 
L PREP  ++---+-- 1 on <> 

L DET  +---+-- 1 the <> 
L NOUN  ++++-- 1 table <nom sg:third> 
NPPEND  1 
I CLOSE ++++++---+ 1? <> 
Successful Parse 
QTJES:BE:be; NP:DET:the; NOUN:block; SUBJ:PP:PREP:on; DET:the; NOUN:table; 
PPEND:CLOSE:?; 

<< Backtracking >> using NPmodl state now 
N RELRO .................. 1 
N NP ++++++----++-+--+- 1 

++++-- clause level: 1 

<< Backtracking >> using NP1 state now ++++++---+---+--+- clause level: 1 
N REDREL ---+++ +--- 1 

<< Backtracking >> using Word state now  -i-+++--- clause level: 1 

<< Backtracking >> using Prepl state now ----+++ clause level: 1 

<< Backtracking >> using Subjl state now +--+++ +++--- clause level: 1 
N NPEND +--+++ ++--- 1 

<< Backtracking >> using NPmodl state now +--+++ 
N RELCO ++++++---+---+--++ 2 
N NP .................. 2 

+++--- clause level: 1 

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2 
N REDREL ----i-++ +--+ 2 
SPP 
L PREP  ++--++--i- 2 on <> 

L DET  +--++-+ 2 the <> 
L NOUN  ++-'-+-+ 2 table <nom sg:third> 
NPPEND  +2 
N RELEND +---++ +--- 1 
N SUBJ ---+++ 1 

<< Backtracking >> using Subji state now +--+++ +--- clause level: 1 

<< Backtracking >> using NPmod2 state now ++++-+ clause level: 2 
N RELRO ++++++---+---+--++ 2 
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N NP .................. 2 

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2 
N REDREL ---+++ +--+ 2 

<< Backtracking >> using Word state now ++++-+ clause level: 2 

<< Backtracking >> using Prep2 state now ---+++ +--+ clause level: 2 

<< Backtracking >> using Tensel state now ++++++---+ 
N IMP  1 
N NP ------------

<< Backtracking >> using NFl state now ----------

<< Backtracking >> using Tensel state now .......... 
N NP  1 

<< Backtracking >> using NFl state now ++++++---+ 

<< Backtracking Failed >> 
Parse completed. 

(49) Time flies like an arrow. 

Initializing state to: ++++++---+ 

N QUES +-+.-++  1 

<< Backtracking >> using Tensel state now ++++++---+ 
NIMP ----++---+ 1 
S TRANS ----++--++ 1 
S INTRAN -----+---++ 1 
L V  + 1 time <nom sg:third> 
S INTRAN ++ 1 
S TRANS  ++ 1 

clause level: 1 

clause level: 1 

  clause level: 1 

clause level: 1 

clause level: 1 

<< Backtracking >> using Word state now + clause level: 1 
NNP  ++ 1 
L NOUN  +++--- 1 fly <nom third:pl> 
S VREL1  ++++-- 1 
L PREP  ++++++-- 1 like <ibm sg:third> 
L DET  +++++-- 1 an <> 
L NOUN  ++++-- 1 arrow <ibm sg:third> 
NPPEND  1 
I CLOSE .......... 1. 
Successful Parse 
IMP:TRANS:INTRAN:V: time; NP:NOUN:fly; VREL1:PREP:like; DET: an; NOUN: arrow; 
PPEND:CLOSE:.; 
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<< Backtracking >> using NPmodl state now 
N RELRO ++++++---+-.--+--+- 1 
N NP ++++++----++-+--+- 1 

...... clause level: 1 

<< Backtracking >> using NP1 state now ++++++---+---+---+- clause level: 1 
N REDREL ----+++ +--- 1 

<< Backtracking >> using Word state now 

<< Backtracking >> using Prepi state now 
S TRANS  ++--+++--- 1 

++++-- clause level: 1 

<< Backtracking >> using Predi state now ----------

+++--- clause level: 1 

<< Backtracking >> using Tensel state now ++++++---+ 
N NP  1 
L NOUN ++++++ +++--- 1 time <nom sg:third> 
N NPEND +++++.  
N TENS +---++  

NSUBJ ----++ 1 
S INTRAN ----+---- 1 
S TRANS ----------

L V  + 

S VREL1  + 

L PREP 
LDET 
L NOUN 
N PPEND 

 1 fly <nom third:pl> 
+ 1 

+++'---+ 1 like <nom sg:third> 
+-+---+ 1 an <> 
+--++++ 1 arrow <nom sg:third> 
+ 1 

clause level: 1 

clause level: 1 

I CLOSE ++++++---+ 1. 
Successful Parse 
NP:NOTJN:time; NPEND:TENS:SUBJ:INTRAN:TRANS:V:fly; VREL1:PREP:like; DET:czn; 

NOUN:ctrrow; PPEND:CLOSE:.; 

<< Backtracking >> using NPmodl state now 
N RELRO .................. 1 
N NP .................. 1 

--------- clause level: 1 

<< Backtracking >> using NP1 state now ++++++---+----i----i-- clause level: 1 
N REDREL ---+++ +--- 1 

<< Backtracking >> using Word state now +--+-'--'--i--- clause level: 1 

<< Backtracking >> using Prepi state now  + clause level: 1 
S TRANS  ++ 1 

<< Backtracking >> using Predi state now ----------

<< Backtracking >> using Subji state now ------

<< Backtracking >> using Tensel state now ++++++  

clause level: 1 

++--- clause level: 1 

++--- clause level: 1 
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<< Backtracking Failed >> 
Parse completed. 

(50) Borrow flies like an arrow. 

Initializing state to: 4-+++++---+ 

N QUES +-+-++ 1 

<< Backtracking >> using Tensel state now ++++++---+ clause level: 1 
N IMP ----++-..---+  1 
S TRANS ---.--++--++ 1 
L V  1 borrow <inf pres:flrst pres:pl pres:second> 
S INTRAN  ++ 1 
S TRANS  ++ 1 

<< Backtracking >> using Word state now   clause level: 1 
N NP  1 
L NOUN  + +++--- 1 fly <nom third:pl> 
S TRANS  ------------- 1 

<< Backtracking >> using Word state now + +++--- clause level: 1 
NOBJ  1 
S VREL1   

L PREP  ++----+-- 1 like <nom sg:third> 
L DET  +---+-- 1 an <> 
L NOUN  ++++-- 1 arrow <nom sg:third> 
NPPEND  1 
I CLOSE .......... 1. 

Successful Parse 
IMP:TRANS:V:borrow; NP:NOUN:fiy; OBJ:VREL1:PREP:like; DET: an; NOUN: arrow; 
PPEND:CLOSE:.; 

<< Backtracking >> using NPmodl state now 
N RELRO ++++++---+---+--+- 1 
N NP .................. 1 

++++-- clause level: 1 

<< Backtracking >> using NP1 state now ++++++---+---+---+- clause level: 1 
N REDREL ---+++ +--- 1 

<< Backtracking >> using Word state now ++++-- clause level: 1 

<< Backtracking >> using Prepl state now clause level: 1 

<< Backtracking >> using Objl state now + +++--- clause level: 1 
N NPEND  + ++--- 1 

<< Backtracking >> using NPmodl state now + +++--- clause level: 1 
N RELCO ++++++---+---+--++ 2 



B. TEST PARSERS 179 

N NP ++++++----++-+--++ 2 
L NOUN ++++++ +++--++ 2 like <nom sg:third> 
N NPEND +++++. ++-++ 2 
N REDREL --.-.+++ +--+ 2 

<< Backtracking >> using NPmod2 state now ++++++ +++-++ clause level: 2 
N REDREL ----+++ +-+--+ 2 

<< Backtracking >> using Word state now ++++++ +++-++ clause level: 2 

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2 
N REDREL ----+++ +--+ 2 
S PP 
L PREP  ++--++-+ 2 like <nom sg:third> 
L DET  +--++-+ 2 an <> 
L NOUN  ++++-+ 2 arrow <nom sg:third> 
NPPEND  +2 
N RELEND + i---- 1 
NOBJ  1 
I CLOSE ++++++---+ 1. 
Successful Parse 
IMP:TRANS:V:borrow; NP:NOTJN:fly; RELCO:REDREL:PP:PREP:like; DET:an; 

NOtJN:arrow; PPEND:RELEND:OBJ:CLOSE:.; 

<< Backtracking >> using Obji state now + +--- clause level: 1 

<< Backtracking >> using NPmod2 state now 
N RELRO .................. 2 
N NP .................. 2 

++++-+ clause level: 2 

<< Backtracking >> using NP2 state now ++++++---+---+--++ clause level: 2 
N REDREL ---+++ +--+ 2 

<< Backtracking >> using Word state now ++++-+ clause level: 2 

<< Backtracking >> using Prep2 state now ---+++ +--+ clause level: 2 

<< Backtracking >> using Predl state now ----++---I--l-  clause level: 1 

<< Backtracking >> using Tensel state now ++++++---+ clause level: 1 
N NP ............ 1 

<< Backtracking >> using NP1 state now +++-H-+-- -+ clause level: 1 

<< Backtracking Failed >> 
Parse completed. 
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Three other of Blank's parsers were implemented using my RV development envi-

ronment. However, These are too large to include. They are named agree, jul90, and 

apr92, and are available from the author or Blank's FTP site (pluto.csee.lehigh.edu) 

as part of the file /rvg/sun4.tar.Z. 



APPENDIX C 

Vocabulary Acquisition Test 

This Appendix details the lexicon used to test the vocabulary acquisition mechanism 

(see § 9.3). 

C.I. Test Lexicon 

Paradigms: 
BED $ <sg> 

S <pl> 

FOXES $ <sg> 
es <p1> 

SHEEP $ <sg p1> 

NOPLUR $ <sg> 

PULL s <pres3 p1> 
ed <past pastpart> 
ing <prespart> 
$ <inf pres sg> 

LOVE e <inf pres sg> 
ed <past pastpart> 
ing <prespart> 
es <pres3 p1> 

BUILD d <inf pres pres3 prespart> 
t <past pastpart> 

CAST s <pres3 p1> 
ed <past> 
ing <prespart> 
$ <inf pres sg pastpart> 

181 
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Do o <pres inf> 
id <past pastpart> 
oing <prespart> 
oes <pres3> 

DRESS $ <inf pres sg> 
es <pres3 p1> 
ed <past pastpart> 
ing <prespart> 

GiVE i <sg p1 inf pres pres3 prespart pastpart> 
a <past> 

GIVen e <mi pres past> 
es <pres3> 
en <pastpart> 
ing <prespart> 

FaLL a <sg p1 ml pres pres3 prespart> 
e <past pastpart> 

FALLen $ <pres3> 
en <pastpart> 
ing <prespart> 
$ <ml pres past> 

FIND i <sg p1 ml pres pres3 prespart> 
ou <past pastpart> 

FINDIng s <pres3 p1> 
ing <prespart> 
$ <ml pres past pastpart sg> 

FLy y <ml pres prespart sg> 
ie <pres3 p1> 
ew <past> 
own <pastpart> 

HAve ye <pres inf> 
s <pres3> 
d <past pastpart> 
ving <prespart> 

KNeW o <ml pres pres3 pastpart prespart> 
e <past> 
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KNOWn s <pres3> 
n <pastpart> 
ing <prespart> 
$ <inf pres past> 

MAdE ke <inf pres> 
kes <pres3> 
de <past pastpart> 
king <prespart> 

SiNG i <inf pres pres3 prespart> 
a <past> 
0 <sg p1> 
u <pastpart> 

SiT i <inf pres pres3 prespart> 
a <past> 

SLeeP ee <pres3 ml pres sg p1> 
e <past> 

SLEPt t <past> 
$ <pres3 p1> 
ing <prespart> 
$ <inf pres sg> 

MoD an <sg p1 ml pres pres3 prespart> 
oo <past pastpart> 

TaKE a <sg p1 ml pres pres3 prespart pastpart> 
oo <past> 

TAKe e <sg ml pres> 
<past> 

ing <prespart> 
en <pastpart> 
es <pres3> 

TRy y <inf pres sg> 
ies <pres3 p1> 
ied <past pastpart> 
ying <prespart> 

WRoTE i <inf pres pres3 prespart pastpart> 
o <past> 

NN n <pastpart prespart> 
$ <pres3 ml pres past pastpart prespart sg p1> 



C. VOCABULARY ACQUISITION TEST 184 

TT t <pastpart prespart> 
$ <pres3 inf pres past pastpart prespart sg p1> 

IforY i <pres3 past pastpart p1> 

y 

be be 
are 
is 
was 
were 
been 
being 

<inf pres prespart sg> 

<inf> 
<pres> 
<pres3> 
<past> 
<past> 
<pastpart> 
<prespart> 

LOG $ <bc> 

Modal $ <past> 

Gen s <sg> 
$ <pi> 

Lexicon: 
Common NOUNs 
activity cat NOUN 
area 
arrow 
assembler 
assembly 
barn 
bibliography 
bird 
book 
body 
boy 
box 
block 
bucket 
candy 
chapter 
chess 
command 
concept 
communication 
completeness 
computer 
context 
cpu 
data 

cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 
cat NOUN 

morph activitlforY_FOXES_ 
morph area-
BED-morph arrow-

BED-morph assembler-BED-

morph assemblJforY.SOXES.. 
morph barn-

BED-morph bibliographlforY._FOXES_ 

morph bird-
BED-morph book-

BED-morph bodlforY..JOXES. 
morph boyJ3ED. 
morph box-
FOXES-morph block-
BED-morph bucket-

BED-morph candJforYFOXES. 

morph chapter-
BED-morph chess-
FOXES-morph command-

BED-morph concept-
BED-morph communication-

BED-morph completeness.NOPLUR. 
morph computer-
BED-morph contexLBED_ 

morph cpuJ3ED... 
morph data-SHEEP- 
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destination cat NOUN morph destination— 
BED-detail cat NOUN morph detail— 
BED-direction cat NOUN morph direction— 
BED-directive cat NOUN morph directive— 

BED-entry cat NOUN morph entrJforY_FOXES_ 

ethernet cat NOUN morph ethernet— 
BED-exercise cat NOUN morph exercise— 

BED-field cat NOUN morph field— 
BED-forest cat NOUN morph forest— 

BED-form cat NOUN morph form— 
BED-fox cat NOUN morph fox— 

FOXES-ghost cat NOUN morph ghost— 
BED-grammar cat NOUN morph grammar— 

BED-guide cat NOUN morph ghost— 
BED-history cat NOUN morph historJforY....FOXES 

horse cat NOUN morph horse..BED. 
howto cat NOUN morph howtoJ3ED.. 
insight cat NOUN morph insight— 
BED-instruction cat NOUN morph instruction— 

BED-intelligence cat NOUN morph intelligence— 

BED-knowledge cat NOUN morph knowledge..NOPLUEL 
language cat NOUN morph language— 
BED-linguistics cat NOUN morph linguistics..NOPLUR. 

literature cat NOUN morph literature— 
BED-load cat NOUN morph load— 
BED-location cat NOUN morph location— 
BED-manipulation cat NOUN morph manipulation— 

BED-material cat NOUN morph materiaLBED_ 

mechanism cat NOUN morph mechanism— 
BED-machine cat NOUN morph machine— 

BED-memory cat NOUN morph memorJforYYOXES... 

mind cat NOUN morph mind— 
BED-mouse cat NOUN morph mouse— 
BED-name cat NOUN morph name— 
BED-network cat NOUN morph network-BED-

newcomer cat NOUN morph newcomer— 
BED-operand cat NOUN morph operand— 

BED-packet cat NOUN morph packet— 
BED-performance cat NOUN morph performance— 

BED-pen cat NOUN morph pen— 
BED-people cat NOUN morph people— 
BED-person cat NOUN morph person— 
BED-perspective cat NOUN morph perspective— 
BED-plane cat NOUN morph plane— 
BED-pointer cat NOUN morph pointer . BED_ 
purpose cat NOUN morph purpose_BED_ 
pseudoop cat NOUN morph pseudoop_BED_ 
question cat NOUN morph question— 

BED-reading cat NOUN morph readingBED. 
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recognition c 
reference c 
robot c 
room c 
science c 
source c 
sequence c 
statement c 
station c 
step c 
storage c 
student c 
suggestion c 
symbol c 
system c 
table c 
task c 
technique c 
text c 
thought c 
transport c 
tree c 
variety c 
year c 

Nouns/ Verbs 
access 
address 
allow 
apply 
approach 
assign 
attempt 
base 
begin 
believe 
broadcast 
build 
building 
call 
carry 
chase 
code 
communicate 
concern 
deal 
decide 
describe 
develop 

at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 
at NOUN 

morph recognition— 
BED-morph reference— 

BED-morph robot— 
BED-morph room— 
BED-morph science— 
BED-morph source— 
BED-morph sequence— 

BED-morph statement— 
BED-morph station— 
BED-morph step— 
BED-morph storage— 
BED-morph student— 

BED-morph suggestion— 
BED-morph symbol— 

BED-morph system— 
BED-morph table— 
BED-morph task— 
BED-morph technique— 

BED-morph text— 
BED-morph thought— 

BED-morph transport— 
BED-morph tree— 

BED-morph variet1forYYOXES_ 

morph year— BED-

cat NOUN #trans 
cat NOUN #trans 
cat #trans 
cat #trans 
cat NOUN #trans 
cat #bitrans #trans 
cat INF. V 
cat #trans 
cat #trans 
cat TRANS THAT... V 
cat #trans NOUN 
cat #trans 
cat NOUN 
cat #bitrans V 
cat #trans 
cat #trans NOUN 
cat NOUN #trans 
cat INTRANS V 
cat #trans 
cat INTRANS V 
cat INTRANS INF THAT... V NOUN 
cat #trans 
cat #trans 

morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph bas— 
LOVE-morph begSiNG..nJ'TN.FINDing. 

morph believLOVE. 
morph broadcast— 
CAST-morph buiLBUILDYINDing.. 

morph building— 
.BED-morph call— 

PULL-morph carr_TRy_ 

morph chas.LOVE.. 
morph cod— 
LOVE-morph communicaLLOVE. 

morph concern— 
PULL-morph deal-PULL-

morph decid..LOVK. 
morph describ_LOV&. 
morph develop..PULL. 

access_DRESS_ 
address.DRESS_ 
allowPULL.. 
appl_TRy_ 
approach_DRESS_ 
assignPULL.. 
attempt.PULL. 
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design 
desire 
draw 
distribute 
estimate 
execute 
fall 
find 
fly 
focus 
follow 
gain 
go 
graduate 
guide 
hate 
help 
identify 
include 
introduce 
involve 
issue 
kick 
know 
label 
limit 
like 
like 
line 
love 
master 
mean 
model 
motivate 
move 
obtain 
organize 
outline 
perform 
point 
process 
program 
provide 
produce 
put 
race 
read 
represent 

cat #trans 
cat #trans NOUN 
cat INTRANS V 
cat #trans 
cat #trans 
cat TRANS INTRANS V 
cat INTRANS V 
cat #trans 
cat INTRANS #trans NOUN 
cat NOUN #trans 
cat #trans 
cat #trans 
cat INTRANS V 
cat NOUN #trans 
cat NOUN #trans 
cat #trans 
cat TRANS INF V NOUN 
cat &trans 
cat #trans 
cat #trans 
cat #trans 
cat NOUN #trans 
cat TRANS V 
cat TRANS INTRANS THAT INK. V 
cat NOUN #trans 
cat NOUN #trans 
cat #prep 
cat #trans 
cat NOUN #trans 
cat #trans 
cat NOUN #trans 
cat NOUN #trans 
cat NOUN #trans 
cat #trans 
cat NOUN TRANS INTRANS V 
cat #trans 
cat #trans 
cat NOUN #trans 
cat #trans 
cat NOUN #trans 
cat NOUN TRANS INTRANS V 
cat NOUN #trans 
cat #trans 
cat #trans 
cat #trans 
cat INTRANS #trans 
cat #trans 
cat #trans 

morph design-
PULL-morph desir.LOVE_ 

morph draw-
PULL-morph distribut_LOVK. 

morph estimaLLOVE_ 
morph execuLLOVE. 
morph LFaLLJLFALLen.. 
morph fFiNDnd..FINDing 
morph LFLy.FINDing.. 
morph focus-

PULL-morph follow-
PULL-morph gain-
PULL-morph go-PULL-

morph graduat_LOVE_ 
morph guid.LOVEL 
morph hat-

LOVE-morph help-

PULL-morph identif_TRy_ 

morph includ..LOVE.. 
morph introduc...LOV&. 
morph involv..LOVE.. 
morph issu..LOVE. 
morph kick-
PULL-morph knJCNeWwJ(NOWn 

morph label-
PULL-morph limit-

PULL-morph like..LOC_ 

morph likl,OVE_ 
morph lin.1,OVE.. 
morph lov.LOVE.. 
morph master-
PULL-morph mean-
PULL-morph model-

PULL-morph motivaLLOVE_ 

morph mov.LOVE 
morph obtain-

PULL-morph organiz.IOVE. 

morph outlin..LOV&. 
morph perform-

PULL-morph point-
PULL-morph process-

DRESS-morph program-

PULL-morph providJOVE. 

morph produc.LOVE_ 
morph puLTThFINDing... 
morph rac_LOV&. 
morph read-
PULL-morph represent-PULL- 



can 
may 
do 
be 
will 
would 
haveAux 
have 

prepositions 
about 
among 
as 
for 
from 
in 
into 

cat #prep 
cat #prep 
cat #prep 
cat #prep 
cat #prep 
cat #prep 
cat #prep 
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require 
say 
set 
speak 
squeak 
sigh 
sing 
sit 
sleep 
structure 
study 
supplement 
switch 
think 
time 
try 
translate 
understand 
understanding 
use 
want 
work 
write 

cat #trans 
cat INTRANS TRANS THAT V 
cat #trans 
cat #trans 
cat INTRANS V 
cat INTRANS V 

cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 
cat 

morph requir.LOVE_ 
morph say-

PULL-morph set_TTFINDing... 

morph speak-PULL.. 
morph squeak-
PULL-morph sigh-PULL-

INTRANS TRANS #bitrans V 
INTRANS V 
INTRANS V 

trans 
NOUN #trans 
#trans NOUN 
#bitrans V 
trans 

NOUN #trans 
INTRANS #trans 
# trans 
#trans 
NOUN 
NOUN TRANS INF V 
TRANS INF V 
NOUN #trans 
TRANS INTRANS V 

Some verbal idioms follow: "give" 
give cat #bitrans XO_ XIO_ V 
pull cat trans 
take cat #trans 
make cat #trans 
auxiliary verbs 
must cat MODAL 
should cat MODAL 

cat MODAL 
cat MODAL 
cat DO #trans 
cat BE 
cat MODAL 
cat MODAL 
cat HAVE 
cat TRANS INK.. V 

morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 
morph 

and some of its idioms... 
morph gGiVE..v..GIVen 
morph pull-
PULL-morph t...TaK&k..TAKe... 

morph maMAd& 

morph must-
Modal-morph should-

Modal-morph can-
Modal-morph may-Modal-

morph d_Do_ 
morph . be. 
morph will-
Modal-morph would-

Modal-morph ha.HAve. 

morph h&.HAve. 

morph abouLLOC_ 
morph among.LOC 
morph a&LOC.. 
morph for..LOC 
morph from..LOC. 
morph inJOC. 
morph intoIOC.. 

s.SiNG.ng..FINDing. 
s.SiT.LTThFINDing. 
sLSLeeP.p.SLEPL 
structur_LOVE_ 
stud.TRy. 
supplemenLPULL 
switchPULE. 
thinkYULL 
timJLOV&. 
tr...TRy 
translat_LOVE_ 
underst_STooD_d.YINDing 
understanding_BED_ 
us...LOVE 
wanLPTJLL. 
work..PULL.. 
wrWRoTE.LTT.GI Yen.. 
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on cat #prep morph onJOC_ 
past cat #prep morph pasLLOC. 
through cat #prep morph through_LOC 
under cat #prep morph under..LOC_ 

with cat #prep morph with_LOC_ 
without cat #prep morph withouLLOC_ 
to cat IOBJ 
to cat INF LINF RINF 
to cat #prep morph to.LOC_ 
by cat PASSIVEBY #prep morph byJOC.. 
of cat OFNP OFOBJ 
wh-type words 
what cat WH WHDET 
which cat WH #rel 
who cat WH #rel 

negative particles 
never cat NEG 
not cat NEG 
always cat NEG 

punctuation marks 
• cat CLOSE 
? cat CLOSE 

cat COMMAO COMMA1 COMMA2 
cat GEN morph '_Gen_ 

adjectives 
actual cat ADJ 
angry cat ADJ CADJ 
artificial cat ADJ CADJ 
available cat ADJ CADJ 
brief cat ADJ CADJ 
broad cat ADJ CADJ 
computing cat ADJ 
computational cat ADJ CADJ 
cognitive cat ADJ CADJ 
different cat ADJ CADJ 
digital cat ADJ CADJ 
extensive cat ADJ CADJ 
further cat ADJ 
fat cat ADJ CADJ 
heavy cat ADJ CADJ 
human cat ADJ CADJ 
large cat ADJ CADJ 
later cat ADJ 
linguistic cat ADJ CADJ 
local cat ADJ CADJ 
mental cat ADJ CADJ 
natural cat ADJ CADJ 
next cat ADJ CADJ 
other cat ADJ 
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particular cat ADJ CADJ 
practical cat ADJ CADJ 
pragmatic cat ADJ CADJ 
purple cat ADJ CADJ 
proverbial cat ADJ CADJ 
receiving cat ADJ 
relevant cat ADJ CADJ 
red cat ADJ CADJ 
safe cat ADJ CADJ 
same cat ADJ CADJ 
small cat ADJ CADJ 
smart cat ADJ CADJ 
symbolic cat ADJ CADJ 
subsequent cat ADJ 
rulegoverned cat ADJ CADJ 
useful cat ADJ CADJ 
wide cat ADJ CADJ 
Other categories of adjective 
aware cat CADJOF 
English cat NOUN ADJ 
major cat NOUN ADJ 
names 
George cat NAME morph georgeJ3ED_ 
Martha cat NAME morph martha.BED.. 
Mary cat NAME morph mary.BED.. 
articles 
a cat INDEF 
an cat INDEF 
any cat DEF 
each cat DEF 
the cat DEF 
this cat PRON DEF 
these cat PRON DEF 
that cat CTHAT #rel PRON DEF 
there cat THERE 
how cat THERE 
pronouns 
I cat PRON 
you cat PRON 
he cat PRON 
she cat PRON 
it cat PRON 
we cat PRON 
they cat PRON 
me cat PRON 
him cat PRON 
us cat PRON 
them cat PRON 
my cat GENPRON 
your cat GENPRON 
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his cat GENPRON 
her cat GENPRON 
its cat GENPRON 
our cat GENPRON 
their cat GENPRON 
numbers 
single cat NUMBER 
many cat NUMPRON NUMBER 
some cat NUMPRON NUMBER 
much cat NUMPRON NUMBER 
several cat NUMBER 
two cat NUMBER 
four cat NUMBER 
forty cat NUMBER 
adverbs 
also cat ADV 
directly cat ADV 
easily cat ADV 
heavily cat ADV 
locally cat ADV 
however cat ADV 
conjunctions 
and cat CONJO 
but cat CONJO 
since cat CONJO 

C.2. Sentence Testbed 

What follows is a list of the test sentences from Appendix G of Efficient Parsing 

for Natural Language (Tomita, 1987). 

(51) The assembly language provides a means for writing a program without 

having to be concerned with actual memory addresses. 

(52) It allows the use of symbolic codes to represent the instructions. 

(53) Labels can be assigned to a local instruction step in a source program to 

identify that step as an entry point for use in subsequent instructions. 

(54) Operands which follow each instruction represent storage locations. 

(55) The assembly language also includes assembler directives that supplement 

the machine instruction. 

(56) A packet is a statement which is not translated into a machine instruction. 
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(57) A program written in assembly language is called a source program. 

(58) It consists of symbolic commands called statements. 

(59) Each statement is written on a single line, and it may consist of four entries. 

(60) The source program is processed by the assembler to obtain a machine 

language program that can be executed directly by the CPU. 

(61) Ethernet is a broadcast communication system for carrying digital data 

packets among computing stations which are locally distributed. 

(62) The packet transport mechanism provided by Ethernet has been used to 

build systems which can be local computer networks. 

(63) Switching of packets to their destinations on the Ethernet is distributed 

among the receiving stations using packet address recognition. 

(64) A model for estimating performance under heavy tables is included for 

completeness. 

(65) In writing this book, I had several purposes in mind. 

(66) It is a practical book for students who are following graduate work in 

computer networks. 

(67) It includes instructions identified to allow the student to use a network of 

computers. 

(68) It is a practical book for people who are building computer systems that 

model with natural language. 

(69) It is not assigned as a source book, but it provides the practical steps in 

data, and it includes an actual outline of English language. 

(70) It is a practical source with many directives into the communication of 

language. 
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(71) I have tried to include a large table of locations to provide students with 

digital processes on the network. 

(72) Each step includes statements for symbolic processing, and there is a smart 

machine. 

(73) However, I have tried to limit the references to easily available material. 

(74) This is a book about human language. 

(75) It is motivated by two questions. 

(76) What knowledge must a person have to speak language? 

(77) How is the mind organized to make use of this knowledge in communicating? 

(78) In looking at language as a cognitive process, we deal with issues that have 

been the focus of linguistic study of many years, and this book includes 

insights gained from these studies. 

(79) We look at language from a different perspective. 

(80) In forty years, since digital computers were developed, people have 

programed them to perform many activities that we think of as requiring 

some form of intelligence. 

(81) Our study of the mental processes involved in language draws heavily on 

concepts that have been developed in the area called artificial intelligence. 

(82) It is safe to say that much of the work in computer science has been 

pragmatic, based on a desire to produce computer programs that can 

perform useful tasks. 

(83) The same concept of program can be applied to the understanding of any 

system which is executing processes that can be understood as the 

rulegoverned manipulation of symbols. 
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(84) The next chapter sets the computational approach into the context of other 

approaches by giving a brief history of the major directions in linguistics. 

(85) In performing a mental task like deciding on a chess move, we are aware of 

going through a sequence of thought process. 

(86) Draw. 

(87) Do it. 

(88) I have a pen. 

(89) I must not do that. 

(90) Time flies like an arrow. 



APPENDIX D 

UNIX File Management Parser 

Boundaries: Clause NP NPmod Obj Pred Prep Subj Tense Topic 

Ordering Features: SENT S TENS BE AF V 0 PASS THAT VSUB NP DET HEAD NENJJ 
REL ROLE PREP GAP RELEND 

Default cond: -NP. .DET 

Properties: <first second third> 
<p1 sg> 
<past pres> 
imperative inf nom pastpart pp prespart 

Semantic Roles: inh subj obj dat - rell rel2 

Productions: 
clausal 
BE L cond +BE -AF ?NP -HEAD 

change -BE +AF +NP 
Tense new 
Tense = lex 

CLOSE I cond -S. . 0 ?NP -HEAD -ROLE -GAP. .RELEND 
change +SENT..O -PASS. .VSUB +NP -DET..RELEND 

IMP N cond +TENS ?NP -HEAD -REL -GAP 
change -S. .AF 
lexprop <inf> 
save Tense 
Pred agree lex 
Pred addprop <imperative> 

PASS N cond -S -BE +AF. .V ?NP -HEAD 
change -AF -0 +PASS -NP 
lexprop <pastpart> 

PROG N cond -S -BE +AF. .V -PASS ?NP -HEAD 
change -AF +NP 
lexprop <prespart> 

QUES N cond +TENS ?NP -HEAD -REL. .ROLE 
change -TENS -AF -NP 
lexprop <past pres> 
save Tense 

195 
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S N cond +SENT ?NP..DET 
change -SENT 
Pred new 
Main := Pred 
Clause := Main 

SUBJ N cond +S -TENS ?NP -HEAD +ROLE 
change -S -DET. .ROLE 
save Subj 
Subj NP 
Subj agree Pred 
NPmod := Subj 

TENS N cond +TENS ?NP -HEAD..NEND +ROLE 
change -TENS. .AF 
lexprop <past pres> 
save Tense 
Pred agree lex 

verb subcategories 
INTRAN S V cond -S -PASS ?NP -HEAD 

change -O +VSUB 
THAT S V cond -S ?NP -HEAD 

change +THAT. .VSUB 
TRANS S V cond -S ?NP -HEAD 

change +VSUB. .NP 
verbs and predicates 
CADJ L cond -S -BE +AF. .V ?NP -HEAD 

change -AF. .0-NP 
PP S PREP cond -S..BE +AF..V ?NP -HEAD 

change -AF. .0-NP +PREP 
save Prep 
Prep = lex 
NP new 

V L cond -S -AF +V +VSUB ?NP -HEAD 
change -BE -V -.VSUB 
save Pred 
Fred = lex 
Subj = Pred.subj 

verb compliments 
CTHAT L cond -V +THAT ?NP -HEAD 

change +S. .0-PASS. .VSUB +NP -DET..PREP -RELEND 
OBJ N cond -V +0 ?NP -HEAD +ROLE 

change -0 -DET. .ROLE 
save 0bj 
0bj := NP 
0bj = Pred.obj 
NPmod := 0bj 
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PASSBY L cond -V..0 +PASS ?NP -HEAD 
change +NP. .HEAD +PREP 

PPEND N cond ?NP -HEAD +ROLE. .PREP 
change -DET. .PREP 
save NPmod 
NP = Prep.obj 
Prep addprop <pp sg:third> 
Pred -* Prep 

PREP L cond ?NP -HEAD +PREP 
change +DET. .HEAD 

VREL1 S PREP cond -V. .0 ?NP -HEAD -PREP 
change -THAT +PREP 
save Prep 
Prep = lex 
NP new 

noun phrase productions 

ADJ L cond ?DET +HEAD 
change 
NP -+ lex 

DET L cond ?NP +DET. .HEAD 
change -DET 

EXT L cond ?NP. .DET +HEAD 
change -DET..HEAD +NEND..ROLE 
save NPmod 
NP = lex 

NAME L cond ?NP +DET. .HEAD 
change -DET..HEAD +NEND..ROLE 

NOISE L cond ?NP..DET 
change 

NOUN L cond ?NP. .DET +HEAD 
change -DET..HEAD +NEND..ROLE 
lexprop <ibm> 
save NPmod 
NP agree lex 
NP = lex 

NP N cond -VSUB +NP -HEAD -PREP 
change -NP +DET. .HEAD 
save NP 
NP new 

NPEND N cond ?NP -HEAD +NEND -PREP 
change -DET. .NEND +ROLE 
save NPmod 
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REDREL N cond +S..O ?NP -HEAD +REL +GAP 
change -S. .BE -NP -REL +ROLE -GAP 
save NP 
Subj := Topic 

RELCO N cond +0 ?NP -HEAD +NEND -RELEND 
change +S. .0-PASS. .VSUB +NP -DET. .NEND +REL -ROLE. .PREP +GAP..RELEND 
shutdown 

Topic := NP 
NP := Topic 
Pred new 

RELEND N cond -S..O ?NP -HEAD -ROLE -GAP +RELEND 
change -DET. .REL 
returnup 

RELRO N cond -S..O ?NP -HEAD +NEND -GAP 
change +S..0 -PASS. .VSUB +NP -DET. .NEND +REL -ROLE. .PREP +GAP 
save Clause 
Topic := NP 
Pred new 

questions 
NGAP N cond +NP ?DET -REL +GAP 

change -NP. ,REL +ROLE -GAP 
WH L cond +S ?NP -HEAD -GAP 

change -NP +GAP 
save Topic 

Non-lexical Ordering: S SUBJ QUES TENS IMP FROG PASS PPEND OBJ NP NPEND 
RELRO RELCO REDREL RELEND NGAP 

Paradigms 

AM $ <sg:pres:first> 

ARE $ <pres:pl pres:second> 

BE ing <prespart> 
en <pastpart> 
$ <inf> 

BED s <nom third:pl> 
$ <nom sg:third> 

FiND ou <past pastpart> 
i <inf pres prespart> 

FINDing ing <prespart> 
s <sg:third:pres> 
$ <first inf past pastpart p1 second> 

IS $ <sg:third:pres> 
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LOVE ing <prespart> 
ed <past pastpart> 
es <sg:third:pres> 
e <inf pres:first pres:pl pres:second> 

PULL ing <prespart> 
ed <past pastpart> 
s <sg:third:pres> 
$ <ml pres:first pres:pl pres:second> 

WAS ere <past:pl second:past> 
s <sg:past:first sg:third:past> 

Lexicon 
preposition 
by 
from 
in 
on 

cat VREL1 PP PREP PASSBY 
cat VREL1 PP PREP 
cat VREL1 PP PREP 
cat VREL1 PP PREP 

morph 'by' 
morph 'from' 
morph 'in' 
morph 'on' 

common noun 
extension cat NOUN morph 'extension_BED_' 
file cat NOUN morph 'file..BEDJ 

noun/verb 
like cat VREL1 PP PREP NOUN TRANS V morph 'lik..LOVEJ 

m 'like..BED_' 
verb 
be cat INTRAN V BE 

end 
find 
list 
open 
show 

cat INTRAN V 
cat TRANS V 
cat TRANS V 
cat TRANS INTRAN V 
cat TRANS V 

morph 'amAM_' 
In 'beJ3EJ 
M isJS...' 
m 'areARE_' 
m 
morph 'end-PULL.' 
morph 'fiND..nd.FINDingJ 
morph 'lisLPULLJ 
morph 'open.YIJLL.' 
morph 'showYULLJ 

wh word 
what cat WH morph 'what' 

punctuation 
cat CLOSE morph '.' 

? cat CLOSE morph'?' 

adjective 
all cat ADJ morph 'all' 
my cat ADJ morph 'my' 

determiner 
a cat DET morph 'a' 
an cat DET morph 'an' 
that cat DET CTHAT morph 'that' 
the cat DET morph 'the' 



D. UNIX FILE MANAGEMENT PARSER 200 

file type adjective 
binary 
C 
compressed 
Cplusplus 
executable 
image 
latex 
object 
smalitalic 
Tar 
text 

file extension 
C 

cplusplus 
im 
0 

st 
tar 
tex 
txt 
z 

cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 
cat ADJ 

cat EXT 
cat EXT 
cat EXT 
cat EXT 
cat EXT 
cat EXT 
cat EXT 
cat EXT 
cat EXT 

morph 'binary' 
morph 'c' 
morph 'compressed' 
morph 'c++' 
morph 'executable' 
morph 'image' 
morph 'latex' 
morph 'object' 
morph 'smalltalk' 
morph 'tar' 
morph 'text' 

morph 'c' 
morph 'cc' 
morph 'im' 
morph 'o' 
morph 'st' 
morph 'tar' 
morph 'tex' 
morph 'txt' 
morph 'Z' 



APPENDIX E 

File Management Application 

This appendix contains the C++ source code for the UNIX file management appli-

cation that uses the RV parser in Appendix D to parse commands. 

E.I. Js-client.cc 

// NL front end to the is command 

I-
/I Dave Asteis 9—sep-92 

#include <stream.h> 
include <GetOpt.h> 

#include "Socket . H" 
#include "DirectoryLister.H" 
#include "SemEntry . H" 

10 

mt debug - 0; 

void 
usage () 
{ 

fprintf (stderr, "usage: is-client [-d] <hostnaiue> <port>\n"); 
exit (2); 

} 

20 

void 
main (mt argc, char ** argv) 
{ 

DirectoryLister lister; 
String sentence; 
jut numToRead; 

if ( argc < 3 

201 



E. FILE MANAGEMENT APPLICATION 202 

usageQ; 30 

GetOpt options (argc, argv, "d"); 
char opt—char; 
while ((opt_char = optionsQ) EOF 

switch ( opt—char ) { 
case 'd': debug = 1; break; 
case '?': usage; break; 

} 

Socket skt (argv[options.optind], atoi (argvoptions.optind + 1])); 

if ( debug ) 
cerr << "Made connection to RV server.\n"; 

while (1) { 
cout << "\nls>"; 
String::delimiters ("\n"); 
cin >> sentence; 
if ( sentence[0] ' • ' ) 
break; 

skt.writeString (sentence); 
numToRead = skt.readInteger; 

if ( numToRead == 0 ) 
cout << "I don't understand thatI\n'; 

else { 
if ( debug ) 
cerr << "Reading " << numToRead << " characters from the server.\n"; 

String command = skt.readString (numToRead); 
istream cs (numToRead, (char *)command); 
char buffer [1023]; 
cs.getline (buffer, 1023); // strip off the production trace 
SemEntry commandS tructure (cs); 
if ( debug 
commandStructure.printOn (cout); 

lister.process (commandStructure); 

} 
} 

} 

E.2. DirectoryLister.cc 

Directory lister class 
Encapsulates NL access to the 'ls' command 

I-
II Accepts semantic structures output by the RV— Tools parser. 

Il 
/I Dave Astels 1O—sep-9 

40 

50 

60 
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#include "Set_String.h" 
#include "Dictionary. t" 
#include "SemEntry . H" 

DECLARE—ONCE Dictionary<Set<String>>; 

class DirectoryLister { 
public: 

DirectoryLister (3; 
void process (SemEntry & command); 

10 

private: 
void addTypeAndExtension (String & type, String & extension); 20 

Set<String> & whatls (String & fname); 
void listFilesOfType (String & type); 

Dictionary<Set<String>> typeToExtension; 
Dictionary<Set<String>> extensionToType; 

II ######################################## 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5% 

extern hit debug; 

DirectoryLister: :DirectoryLister (3 
{ 
/1 typeTo.&ctension["tevt"]. add ("txt"); 

typeToErtension["text"]. add ("tex"); 

} 

void 
DirectoryLister: :process (SemEntry & command) 

{ 
String & verb = command.getNameQ; 
if ( verb == "list" I verb == "show" ) { 
Set<String> extensions; 
Dictionary<SemEntry> & fileMods = command["obj "].getRolesQ; 
for ( Dictionarylterator i (fileMods); iQ; i++ ) { 

String type = ((SemEntry *)i() - >get_value(3) —>getName(3; 
if ( typeToExtension.contains (type) 

listFilesOfType (type); 

} 
} 
else if ( verb == "end" ) { 

String type = (command[" subj "]) ["modi"] .getNameQ; 

30 

40 

50 
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String ext = (command["modl"]) [" obj "].getNameQ; 
addTypeAndExtension (type, ext); 

60 

} 

void 
DirectoryLister: :addTypeAndExtension (String & type, String & extension) 

{ 
if ( debug ) 70 

cerr << "Adding type (" << type << ") and extension (" << extension << 

if ( !typeToExtension[type].contains (extension) ) 
typeToExtension [type] .add (extension); 

if ( !extensionToType[extension] .contains (type) ) 
extensionToType[extension] .add (type); 

Set<String> & 
DirectoryLister: :whatls (String & fname) 

{ 
} 

void 
DirectoryLister: :listFilesOfType (String & type) 

{ 

} 

")\n"; 

80 

String IsCommand = "is to; 90 

for ( Vectorlterator<String> vi (typeToExtension[type]); viQ; vi++ ) { 
IsCommand + "*."; 

IsCommand += *viQ; 
IsCommand += " "; 

} 

if ( debug ) 
cerr << IsCommand << '\n'; 

else 
system ((char *)IsCommand); 

100 
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E.3. SemEntry.cc 

Class excapsulating semantic structures. 

I-
/I Dave Astels 12—sep-92 

#include <MyString.h> 
#include "Set .t" 
#include "Dictionary. t" 
#include "Vectorlterator . t" 

class SemEntry; 10 

DECLARE—ONCE Set<String> 
DECLARE _ONCE Vectorlterator<String> 
DECLARE—ONCE Dictionary<SemEntry> 

class SemEntry { 
public: 

1/ Constructors 
20 

SemEntry () : nameO, propertiesQ, semRoles() {} 
SemEntry (SemEntry & s) : name (s.name), properties (s.properties), semRoles (s.semRoles) { } 
SemEntry (istream &); 

// Access 

String & getName 0; 
Dictionary<SemEntry> & getRoles Q; 
SemEntry & operator fl (String &); 

30 

// Printing 

void printOn (ostream &, mt = 0); 

private: 
String name; 
Set<String> properties; 
Dictionary<SemEntry> semRoles; 

40 

INLINE String & 
SemEntry: :getName 0 
{ 
return name; 

} 
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50 

INLINE Dictionary <SemEntry > & 
SemEntry::getRoles 0 
{ 
return semRoles; 

} 

INLINE SemEntry & 
SemEntry::operator 1 (String & role) 
{ 
return semRoles[role]; 

} 

SemEntry: :SemEntry (istream & s) 

{ 

60 

char lookahead, dummy; 70 

String: :delimiters ("\n\t\n\r 
s >> lookahead; 
if ( lookahead  \(' ) 

s.unget (lookahead); 

II". 
1' 

s >> name >> dummy; 
s.unget (dummy); 

if ( lookahead \(' ) { 
s.skip (0); 
s >> lookahead; 
s.skip (1); 
while ( lookahead != \n' ) { // get properties 

s.unget (lookahead); 
String prop (s); 
prop erties.add (prop); 
s.skip (0); 
s >> lookahead; 
s.skip ( 1); 

s.unget (lookahead); 
s >> lookahead; 
while ( lookahead  

s.unget (lookahead); 
String role (s); 7/ get a role name 
SemEntry filler (s); 

so 

90 
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semRoles[role] = filler; 
s >> lookahead; 100 

} 

void 
SemEntry::printOn (ostream & s, mt level) 
{ 

if ( !properties.empty() ) 
S << \('; 

name.pretty_print (s); 

if ( !properties.empty() ) { 
String indent ('\t', level); 
String indenti ('\t', level + 1); 
s << '\n'; 
indent 1 .prettyprint (s); 
for ( Vectorlterator<String> vi (properties); viQ; vi++ ) { 

((String *)viQ) —>pretty_print (s); 
S << ' 

} 
S 

} 

} 
s << '\n'; 
for ( Dictionarylterator di (semRoles); diQ; di++ ) { 

indent 1 .pretty_print (s); 
di() - >get_key() .pretty_print (s); 
s << '\t'; 

((SemEntry *)(diQ—>get_value))_>printOn (s, level + 1); 

} 
indent.pretty_print (s); 
S << \)'; 

<< '\n'; 

E.4. Socket.cc 

/1 Socket encapsulating class 
I-
/I Dave Astels 9—sep-92 

include <stdio.h> 
include <MyString.h> 

class Socket { 

110 

120 

130 
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public: 
Socket (String & hostName, jut port); 
Socket (); 

String readString (mt maxLength); 
jut readlnteger (); 
void writeS tring (String & str); 
void eoln (); 

private: 
jut skt; // file descriptor 

II ######################################## 

INLINE 
Socket::-Socket 0 
{ 

eo1n0; 
close (skt); 

INLINE void 
Socket::eoln 0 
{ 

writeString ("\n"); 

} 

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%9%%%%%%%%%% 

extern "C" { 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 

} 

extern "C" struct hostent *gethostbyname; 

#include <stream.h> 

Socket::Socket (String & hostName, mt port) 
{ 

struct sockaddr_in server; 
struct hostent *hp; 

skt = socket (AF_INET, SOCK—STREAM, 0); 
if ( skt < 0 ) { 

10 

20 

30 

40 

50 
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perror ("opening stream socket"); 
exit ( 1); 60 

} 

server.sin_family = AF_INET; 
hp = gethostbyname ((char *)hostName); 
if ( hp == 0 ) { 

cerr << hostName << " unknown host\n"; 
exit (2); 

} 

bcopy ((char *)hp—>h_addr, (char *) &server.sin addr, hp—>h—length); 70 

server.sin_port = htons (port); 

if ( connect (skt, (struct sockaddr *)&server, sizeof(server)) < 0 ) { 
perror (" connecting stream socket"); 
exit ( 1); 

} 
} 

String 
Socket: :readString (mt maxLength) 

char buffer [maxLength + 1]; 

bzero (buffer, maxLength + 1); 
if ( read (skt, buffer, maxLength) < 0 ) { 

perror ("reading stream socket"); 
exit (1); 

} 

return String (buffer); 

} 

jut 
Socket::readlnteger () 
{ 
unsigned char buffer [2]; 

if ( read (skt, buffer, 2) < 0 ) { 
perror ("reading stream socket"); 
exit ( 1); 

} 

return buffer[0] * 256 + buffer[1]; 

} 

80 

90 

100 
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110 

void 
Socket::writeString (String & str) 
{ 

if ( write (skt, str, str.lengthQ) < 0 11 write (skt, " \ n " , 1) < 0 ) { 
perror ("writing on stream socket"); 
exit ( 1); 

120 



APPENDIX F 

User Manual 

F.1. Introduction 

This manual describes the operation and use of the set of RV development tools 

that are part of the RV-Tools system. They are: 

• Launcher 

• Grammar Browser 

• Lexicon Browser 

• Lexical Trie Browser 

• Debugger 

In addition to these, RV-Tools includes a fairly full RV parser engine currently 

implementing all features of Blank's system except discontinuous idioms. 

RV-Tools was implemented using Smalltalk-80 release 4 on Sun workstations. 

Familiarity with both RV (Astels, 1991; Blank, 1989; Blank, 1991; Blank, 1991; 

Blank & Kasson, 1989; Blank & Owens, 1990) and the Objectworks\Smalltalk r. 

environment (LaLonde & Pugh, 1990; LaLonde & Pugh, 1990; Systems, 1990) is 

assumed. 

211 
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FIGURE F.1. Launcher Window 

F.2. Launcher 

The Launcher is the centerpiece of the tool set. It is used to organize and access 

parsers, and to invoke the browsers and debugger. To start the Launcher execute 

RVLauncher open. The Launcher window is shown in Figure F.1. It consists of two 

areas: the parser list and the tool buttons. 

F.2.1. Parser List. Parsers are stored in a global dictionary called "RVSysteius", 

keyed by their names. 

The parser list contains a list of the names of all parsers that are currently a 

part of the system. These parsers are stored in the Smalltalk image, and as such 

are saved along with the image. A parser must be selected from the list before any 

operation can be performed using it. The parser list has an operate menu providing 

file input/output, parser manipulation, and utility functions: 

print out: generates a readable representation of the selected parser in a file whose 

name is requested. 

file out: saves the selected parser in a file whose name is requested (the file must 

end with ". rv". The parser is saved as chunks of Smailtalk code. 

load: provides the user with a list of files ending in ". rv". There is a facility for 

changing the directory. Selecting a file and clicking the Load button causes the 
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parser saved in the selected file to be loaded into the image. Its name will be 

added to the parser list in the launcher. Files ending with ". rv" are assumed to 

have been written using the file out option of the launcher. Such files consist 

of a parser described by chunks of Smalltalk code, which can be executed a chunk 

at a time to reconstruct the parser. 

add parser: prompts for the name of the new parser. It then creates an empty 

parser, and adds its name to the list. 

rename: prompts for a new name for the selected parser. 

remove: removes a parser from the system, first verifying that it should, 

copy: allows the user to make a copy of a parser. Copying a parser is useful when 

experimental changes are to be tried, and the original parser should be retained. 

update: brings the parser list up-to-date with the current state of the system. 

This is useful if there are two launchers active, which is highly unusual and 

undesirable, or if the system changes due to code being executed in a text view 

such as a workspace. 

F.2.2. Tool Buttons. To the right of the parser list are the three tool buttons. 

These are used to invoke the browsers and debugger. Clicking on a tool button 

invokes the corresponding tool with the parser whose name is selected in the parser 

list. Nothing is done if no parser is selected. 

F.3. Grammar Browser 

The grammar browser provides access to the aspects of a parser that are directly 

related to syntax. This includes: 

• boundary registers 

0 ordering features 
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• ordering feature macros 

• production categories 

• productions 

• non-lexical production ordering 

The window for a grammar browser is shown in Figure F.2. It is divided into six 

major areas: 

Boundary view: at the top left corner of the window 

Ordering feature view: below the boundary register view 

Production category view: top center 

Vector format buttons: below the production category view 

Production view: top right 

Editing view: across the bottom 

RVCrwnrxBrowserom:APR92 f, aw"201FANNOW, 12, 91 

Clause 
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Name: <COM PAR> 
Comment: <> 
Type: <1> 
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Actions: < 

lexprop <compar> 
Word new 
Word lex 
Word agree lex 
NP —> Word 

FIGURE F.2. Grammar Browser Window 
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F.3.1. Boundary View. The boundary view contains a list of alphabetically 

sorted boundary names. The operate menu is very basic: 

add boundary: prompts for a boundary name and adds it to the list. 

rename: prompts for a new name, and replaces the selected boundary with the 

one the user enters. All references to the selected boundary are updated. 

remove: removes the selected boundary from the list, after first verifying that it 

should be removed, and that it is not referred to by any action. 

spawn production: opens a production browser on those productions that ma-

nipulate the selected boundary. 

When a boundary name is selected, an associated comment can be edited in the 

editing view. 

F.3.2. Ordering Feature View. This view operates much like the boundary 

view. It contains a list, and has a similar operate menu. The spawn production 

option opens a production browser pn those productions that assigned a + or - value 

to the selected feature in either the condition or change vector. The ordering of this 

list is significant, as it defines labels for each position in ordering feature vectors. 

Adding a feature, places it before the selected feature, or at the end if there is no 

selection. Also, a comment for the selected feature is available for editing in the 

editing view. 

F.3.2.1. Feature macro editor. The grammar browser supports the facility of fea-

ture macros. This provides a shorthand for specifying condition and change vectors 

of productions. The macro editor is a separate pop-up dialog that is invoked from 

the category view's operate menu. This dialog is shown in Figure F.3. The list at 

the far left contains the names of all defined ordering feature macros. The text fields 
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CEND 
C LA US EDO NE 
CLAUSEOFF 
C LA US ED N 
DEFAULT—CHANGE 
DE FA U LI_CO ND 
NPMOD 
NPOFF 
N PD IJ 
NP POST 
NROLE 
NROLEOFF 

Name:  J'JPON 

Value:  FDET,.HEAD —N_N..NEND —REL 

Comment enable noun phrase up to head 

Done 

FIGURE F.3. Ordering Feature Macro Editor 

to the right of this allow the user to enter a macro name, value, and optionally a 

comment. The name is automatically converted to uppercase. The value is a ternary 

vector using labels and ranges, and can include any macros that have been previously 

defined. The <tab> key can be used to move from field to field, or the pointer can be 

clicked on a specific field. Pressing <return> causes the displayed macro to be added 

to the list, possibly replacing an existing macro of the same name. When macros are 

used in vectors, they are replaced with their definitions when the vector is accepted. 

Changing a macro does not change vectors that were previously defined. 

When a macro name is selected from the list, its definition is displayed in the text 

fields. It can then be edited. 

There are two special macros that must exist. They are predefined to be an empty 

vector: DEFAULT_COND and DEFAULT-CHANGE. These are implicitly at the far left of 

every production's condition and change vectors, respectively. 

When the user has finished using the macro editor, they click the Done button. 

Currently, the macro editor is a blocking dialog. 

F.3.3. Production Category View. For the grammar designer's convenience 

productions can be grouped into categories which can be given descriptive names. A 
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list of these category names are displayed in the category view. When a category 

is selected, the names of any productions in that category are displayed in the pro-

duction view (see § F.3.5). Also, a production template is displayed in the editing 

view. 

The operate menu for this view includes category related functions, editing view 

control functions, and utility functions. A description of each menu option follows: 

add category: prompts for a new category name and adds it to the list. The new 

category is inserted before the selected one, or at the end if none are selected. 

rename: allows the name of the selected category to be changed. 

remove: removes a category. If it is empty, it is quietly removed. If, however, 

there are productions in the category, the user is asked if those productions 

should be removed. If the user responds positively then they are removed from 

the grammar, and the category is removed. 

update: brings the browser up-to-date. This is useful if there is more than one 

grammar browser open on the same parser: changes made in one browser do not 

appear automatically in others. 

definition: displays the definition of the selected production in the editing view, 

or a production template if no production is selected. 

category structure: displays in the editing view a list of all categories and the 

productions that are in each. This list is made up of parenthesized entries. The 

first element in each entry is the category name, enclosed in braces. Following 

this are the productions in that category. There is an entry for each category. 

non-lexicals: displays a list of all non-lexical productions, in the order in which 

they are searched. This list is then edited to modify the search order. 

edit feature macros: invokes the macro editor described in §F.3.2.1. 
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find production: prompts for the name of a production, and attempts to find 

that production in the grammar. If one is found, the category and production 

lists are positioned to display it and its definition is displayed in the editing view. 

If no production can be found, an alert box informs the user. 

F.3.4. Vector Format Buttons. The grammar browser can accept/display 

ternary vectors with or without ranges. This is controlled by the vector format 

buttons: labels uses plain labelled vectors where elements are displayed separately; 

ranges provides a more efficient display, grouping contiguous elements with the same 

value. This is done by using an ellipsis to join the first and last elements of the range. 

All elements and/or ranges are prefixed by the corresponding ternary value (+, -, or 

F.3.5. Production View. This view provides a list of the names of productions 

in the selected category. It is empty when no category is selected. The definition of 

the selected production is shown in the editing view, or a production template if no 

production is selected. 

The operate menu of this view has four options: move, rename, and remove. Of 

these only move has not been described as of yet. It allows the user to change the 

category of a production. It prompts for a new category, and moves the selected 

production to it. This is a simpler way to change the category of a single production 

than editing the category structure. Also present are options to spawn other browsers: 

spawn entry: opens a browser on all lexical entries that include the selected pro-

duction as a category; 

spawn: opens a browser on the selected production. 

Production definitions consist of six labelled fields: 
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Name: the name/label of the production. Production names are unique within a 

parser. When a production is accepted a check is made first to see if there is 

an existing production with the same name but in a different category. If this is 

the case, the user is asked if the existing production should be removed. If they 

answer negatively, the existing production is left and the new production is not 

added to the grammar. If there is an existing production with the same name in 

the same category, it is simply replaced. 

Comment: a comment attached to the production. 

Type: the lexical type of the production. It must be one of: 

N: non-lexical. These productions are not lexically constrained, they are con-

sidered whenever there is no (semi)lexical production that can be used. 

Non-lexical productions are searched- in a specified order, determined as 

described in § F.3.3. The search stops when a usable production is found. 

When a non-lexical production is used, it does not cause the current word 

to be consumed. 

S: semi-lexical. These are lexically constrained, meaning that they are speci-

fied in the definition of lexical entries, but do not consume input. The type 

field of semi-lexical productions can also specify the lexical productions that 

they subcategorize. This is done by following the type specifier, S, by the 

names of lexical productions, separated by whitespace. 

L: lexical. Lexical productions are also lexically constrained, but they do 

cause input to be consumed. 

I: mit-final. This is a special case of lexical. mit-final productions define the 

set of final states of the parser which signifies the completion of a successful 

parse. The change vector of the last mit-final production to be defined is 
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used to set the initial state of the parser. In practice there are very few mit-

final productions in a grammar, and they should all have the same change 

vector. Because of this, any of them can be used to initialize the parser 

state. 

Cond: the condition vector. When a production is under consideration for use, its 

condition vector is matched against the current parser state. If this match fails, 

the production can not be used, if it passes other tests are done to determine if 

the production can be used. 

Change: the change vector. This vector is used to update the parser state when-

ever the production is successfully used. 

Actions: actions to be performed when a production is used. If all actions are 

executed successfully, then the parse state is changed according to the change 

vector of the production. If any action fails, the effects of any previous actions 

for the current use of the production are undone, and the production is not used. 

Backtracking will then cause another production to be selected. 

Any type of whitespace can be used to separate alphabetic tokens, and separation 

is not required between alphabetic and non-alphabetic tokens, although it is used 

when actions are displayed. 

The values of these fields are enclosed in angle brackets. This has two purposes: 

(1) It allows the entire field contents to be selected by clicking just inside either 

angle bracket, and 

(2) it allows the accepting mechanism to easily extract the field values. 

F.3.6. Editing View. The editing view is a standard ST80r4 TextView, sup-

porting all editing functions this implies (Systems, 1990). 
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Comments for boundaries and features are simply straight text: anything in the 

editing view is taken as the comment when accept is selected from the operate menu. 

The formats of the editing view text for the category structure, non-lexical modes, 

and production definitions have been described previously in § F.3.3 and § F.3.5. 

F.3.6.l. Editing Ternary Vectors. Ternary vectors can be edited with or without 

ranges, as described in § F.3.4. Also, feature macros can be used in either mode 

by using the name of the macro prefixed by W. When the production is accepted, 

any macros in the vectors are expanded. Vector element are processed from left 

to right, so feature values later in the vector override those appearing earlier. As 

an example, say macro M is defined as +A -B. The vector #M -A results in -A -B. 

This is most commonly used for overriding feature values in the default macros (see 

§ F.3.2.1). When condition and change vectors are displayed, only the differences from 

the corresponding default macro is used. This is done since the default macro will 

be used if the production is accepted. Due to this there will sometimes be elements 

with '?' as their value. 

Using ranges is the most useful mode, and is recommended. 

F.4. Lexicon Browser 

The lexicon browser is slightly more complex that the grammar browser. It provides 

access to the parts of parsers that are directly related to the lexicon: 

• semantic features 

• semantic feature macros 

• semantic relations 

• morphosyntactic properties 

• morphosyntactic paradigms 
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• entry categories 

• lexical entries 

• lexical category macros 

A lexicon browser window is shown in Figure F.4. It is divided into seven views: 

Semantic feature view: top left 

Semantic relation view: below the semantic feature view 

Property view: right of the semantic feature view 

Paradigm view: below the property view 

Entry category view: right of the property and paradigm views 

Entry format buttons: below the category view 

Entry view: top right 

Editing view: across the bottom 

RVLoaErowserorAPR92 El 

ANIMATE 
HUMAN 
MOBILE 
ROUND 
BLACK 

L 
lst p I 
lstsg 
2nd:pl 
2nd:sg 
3rd: p1 

F  

L 
access 

time words address 
nuns/verb allow 
common noun apply 
number approach 

I  personal pronoun arrive 
negative particle assign 
auslillary verb base 
names begin 
wh—type words believe 

17, belong 

I adjective 

AGENTFROMLOC 
AGE NTTO LOC 
FROM LOC 
F RON P OSS 
F ROM P OSS TE M P 

AM 
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BE 
BED 
BIG 

D display pruned 

0 display age/score 
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Name: 
Comment: 
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obJ —ANIMATE,HUMAN —STATE,.TRAWSFER 
dat +ANIMATE..HUMAN —STATE.. LOCATION —SUPPORTED 
rell $ FROMPOSSTEMP 
re12 $TOPOSSTEMP 
> 

FIGURE F.4. Lexicon Browser Window 
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inh -ANIMATE. . FEELING +ACTION. . TRANSFER +LOCATION. . DEST 

obj subj 

dat -STATE. . TRANSFER +LOCATION 

FIGURE F.5. Relation: AGENTTOLOC 

F.4.1. Semantic Feature View. This view operates the same as the ordering 

feature view of the grammar browser (see § F.3.2), except that it deals with semantic 

features rather than ordering features. There is also a corresponding feature macro 

editor which is the same as that for ordering features (see § F.3.2.l), but does not 

require the DEFAULT_COND and DEFAULT-CHANGE macros. 

F.4.2. Semantic Relation View. This view provides access to the list of se-

mantic relations, sorted alphabetically. It has an operate menu that is the basic 

add/rename/remove menu which has been described before, with the addition of a 

spawn entry option which opens a browser on all lexical entries that reference the 

selected relation. When a new relation is added, a very basic template is provided in 

the editing view. Selecting a relation places its definition in the editing view. The 

format of relations is simple: a series of role-filler pairs. The roles must be from the 

list of defined semantic roles (see § F.4.5), while the fillers can be either a binding to 

a predicate role, or a semantic feature vector. Figure F.5 shows an example relation 

definition, in particular AGENTTOLOC from the parser APR92. 

F.4.3. Property View. The property view holds a list of all morphosyntactic 

properties used in paradigms and lexprop/addprop actions. There are two types of 

properties: 

agreement properties: are used by the agree actions for testing agreement. 

They are the cross product of several agreement sets. Example of agreement 
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sets include < 1st 2nd 3rd> which contains values for the person attribute. An-

other would be values for number: <sng p1>. Agreement properties are made 

up of an element from each of the agreement sets, separated by a colon. For 

example: lst:pl. 

non-agreement properties: includes all other properties such as infinitive, 

past, prespart, etc. These properties are not used in agreement checks. 

Non-agreement properties are manipulated using the now familiar add/rename/re-

move options in the view's operate menu. 

Agreement properties can not be edited individually. They can only be manipulated 

by editing the agreement sets. This is done by selecting edit agreement sets from 

the operate menu. The sets are then displayed in the editing view. 

The operate menu has two browser spawning options: spawn paradigm and spawn 

production. The former opens a browser on all paradigms that explicitly reference 

the selected property, and the later opens a browser on all productions who have 

addprop or lexprop actions that reference the selected property. 

Properties are among the first things defined for a parser, thus once defined they 

should not change. There is currently no mechanism in place to ripple changes to the 

properties throughout the rest of the parser. 

F.4.4. Paradigm View. This view contains a list of paradigms in the parser, 

sorted alphabetically. The basic add/rename/remove operate menu is present in this 

view, along with a spawn entry option which opens a browser on all lexical entries 

that have a wordpath containing the selected paradigm.. Selecting a paradigm from 

the list displays its definition in the editing view, while adding a new paradigm dis-

plays a template for one pattern—property set pair. The definition of a paradigm 
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<ying> : <prespart > 

<les> : <3rd:sg present > 

<own> : <pastpart > 

<ew> : <past > 

<y> : <1st 2nd inf p1 present > 

FIGURE F.6. Example Paradigm Definition 

consists of one or more pattern-property set pairs. The pattern is the literal sub-

string to be matched against the input stream, and the property set is the set of 

morphosyntactic properties that the pattern implies. 

Non-agreement properties must be listed literally, while the simplest description of 

the agreement properties suffices. For example if all agreement properties containing 

1st are desired, then only 1st need be specified. If only 3rd:pl is desired, then it 

must be explicitly specified. Whenever properties are displayed, this simplification is 

automatically performed, sometimes with surprising results due to the fact that there 

is not always a single simplest description. Not specifying any agreement properties 

implies that the set of agreement properties is unconstrained. 

Each part of the pair is enclosed in angle brackets for reaons discussed in § F.3.5. 

When a paradigm definition is generated for display, colons are placed between pat-

terns and their property sets. The purpose of this is merely to visually connect the 

pairs. As an example, the definition of the paradigm FLy is shown in Figure F.6. 

Note that the pairs in a paradigm are automatically sorted in descending order on 

the length of the pattern. 

F.4.5. Entry Category View. The purpose of lexical entry categories is similar 

to that of production categories: to organize the lexicon. Like the production category 
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view, this view has a lengthy operate menu. The first four options serve the same 

purpose, see § F.3.3 for details on these. The options are: 

add category: adds a new category 

rename: renames the selected category 

remove: removes the selected category 

update: brings the browser up-to-date 

definition: displays the definition of the select entry in the editing view. If no 

entry is selected but an entry category is, then an entry definition template is 

displayed. 

category structure: allows the user to edit the entry category organization. See 

§ F.3.3 for details. 

semantic roles: displays the list of semantic roles for the parser. There are two 

types of roles: inner and outer. Inner roles generally relate to a syntactic entity 

(subject, object, etc.), while outer roles are intended for relations. In the list a 

dash is placed between the two types. Inner roles appear first, followed by the 

dash, and then the outer roles. 

spawn trie: opens a browser on the lexical trie. The trie browser is described in 

§F.5. 

edit feature macros: works the same way as the ordering feature macro editor, 

with the exception of the DEFAULT macros. See § F.3.2.1 for details. 

edit category macros: works like the feature macro editors, with one major dif-

ference: the macros are not defined in terms of ternary vectors, but rather ordered 

sequences of production names. The macros defined here are used when specify-

ing the categories of lexical entries. 
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find entry: allows a specific lexical entry to be found quickly. It operates similarly 

to the find production option in the grammar browser (see § F.3.3 for details). 

F.4.6. Entry Format Buttons. There are two buttons available for controlling 

the format of displayed entries: 

display pruned: Includes a list of any pruned categories in the entry specification. 

This information is not editable. 

display age/score: Includes age and score information for each active categoriza-

tion. 

F.4.7. Entry View. Similar to the production view in the grammar browser 

(see § F.3.5), this view presents a list of entry names in the selected category, or is 

empty if no category is selected. If an entry is selected, its definition is displayed in 

the editing view. Otherwise a definition template is displayed. The operate menu is 

similar to that of the production view, except that instead of the spawn entry option 

there is a spawn production option. This opens a browser on all productions that 

are named in the selected entry's category list. 

Entry definitions consist of five fields: 

Name: the name of the entry. The name is used when the entry is referred to in 

parser traces, debug output, or semantic structures. 

Comment: a comment that is associated with the entry. 

Categories: the list of lexical and semi-lexical productions that will be examined, 

to see if they can be used, whenever the entry is encountered in the input stream. 

The order of the list is significant, the first production that can be used will be. 

Wordpath: specifies the path(s) through the trie that end in a leaf referring to 

the entry. Literal characters in the path appear as literal characters, while a 
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inh -ANIMATE. . FEELING +ACTION. . POSSESSION 

obj -ANIMATE. . HUMAN -STATE. . TRANSFER 

dat +ANIMATE. . HUMAN -STATE. . LOCATION -SUPPORTED 

rell $FROMPOSSTEMP 

rel2 $TOPOSSTEMP 

FIGURE F.7. Semantic Information for borrow 

paradigm is referenced by using its name surrounded by underscore characters. 

For example, wordpath for the entry "find" is f.FiNDnd.YIND±ng... 

Note that the trie is slightly misnamed, as it is not a tree but rather a DAG: 

several paths can lead to a single entry, and one path can lead to several entries. 

It is still tree-like in that paths do not merge if they end in nodes having the 

same pattern/paradigm. 

Whitespace other that the space character is used to separate paths, spaces are 

taken literally as part of a path so that multi-word idioms can be supported. 

Semantics: This field defines the semantic properties of the entry. Entries will 

often have at least some inherent properties that are used to implement selec-

tional restrictions. Values for any or all of the other defined semantic roles can 

be specified. Values for inner roles can only be semantic feature vectors, while 

those of outer roles must be references to semantic relations. Relations are re-

ferred to by using the relation name prefixed by '$'. As an example, the semantic 

information for the entry borrow is shown in Figure F.7. 

F.4.8. Editing View. This view has the same capabilities as the editing view 

of the grammar browser (§ F.3.6). 



F. USER MANUAL 

F.5. Lexical Trie Browser 

229 

The lexical trie browser consists of a window containing a graphical display of the 

lexical trie, and an editing pane. An example trie browser is shown in Figure F.8. 

Paradigms in the trie, whether in a paradigm mode or a paradigm set node, are 

displayed in boldface; lexical entry names are in italics, and literal strings are in the 

default typeface. 

When a node in the trie is clicked on with the select button, the definition of that 

node is displayed in the editing pane. If the node is a leaf (i.e. a lexical entry) the 

definition of the lexical entry is displayed, and can be edited. If the node is internal, 

the node pattern is displayed. Each node has an operate button menu: currently 

the only options are to open a standard inspector on the node and to remove the 

node and its descendants from the trie. NOTE that this will NOT remove anything 

from the lexicon... only from the trie. The operate menu for the area between nodes 

contains a single option: update. This causes the trie to be redisplayed, and is useful 

if a word was learned or the trie otherwise modified. 

A word can be entered in the editing pane, selected, and looked up in the trie 

using the operate menu of the editing pane. The path(es) from the trie root to the 

appropriate leaves will be hilighted by using wider lines for the node borders and 

connecting edges. 

P.6. Debugger 

The RV Debugger provides facilities for testing parsers through the following ca-

pabilities: 

• specifying input to the parser 

• controlling parser execution 
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FIGURE F.8. Lexical Trie Browser 

• controlling the information displayed during parser execution 

• inspecting the contents of boundary registers 

• inspecting semantic structures 

The debugger window is shown in Figure F.9. It consists of five main areas: 

Input view: across the top 

Control buttons: below the input view 

Trace view: below the control buttons 

Boundary register inspector: the two views in the bottom left 

Grammatical Role inspector: the two views in the bottom right 

F.6.1. Input View. Input to the parser is entered in this text editor view. The 

text entered here should consist of one or more sentences, each terminated by a 

<return>. Sentences beginning with '#' are comments and ignored. 
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R1TDsbueroa:APR92 
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FIGURE F.9. Debugger Window 

The operate menu contains some of the standard text editing functions as well as 

other special purpose functions: 

load file...: presents the user with a file chooser listing filenames matching the 

pattern: "sentin.". These files are expected to conform to the rules given for 

the input view. Selecting a file and clicking the Load button causes the selected 

file to be loaded into the input view. 

start server: puts the debugger into server mode. A socket is set up for clients 

to connect to. The port number of the server is displayed in the trace view. 

The server then waits for a client to connect. If no client has connected in two 

minutes, the socket is closed and server mode terminated. A message to this 

effect is displayed. 
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If a client connects within the time limit, this is also indicated. This causes the 

debugger to wait for a sentence from the client, which is displayed in the input 

view, selected, and given to the parser to parse. Parser control and the inspectors 

are still available to the user as usual. The server is terminated when the user 

selects the stop server option from the input view operate menu or an empty 

string is received from the client. 

When the server is operating, results of sentence parses are sent to the client as 

well as being displayed in the trace view. 

stop server: causes the server mode to be terminated, and the socket closed. 

browse semantics: When a parse has completed successfully and there are se-

mantic interpretations resulting a submenu is displayed listing the different inter-

pretations. The user can choose one of them to have a graphical browser opened 

to examine it. An example of the semantic browser is shown in Figure F.1O. 

No RVSemw2ti4 Browser 

Cl 

.esRntrp: glue 

Reference: 1 

Agreement p1 sg 

Nonagreement past 

Structure: 
nh :—ANIMATE.FEEUNC +ACTIQN.P055055IQN 
hi . Cenrns  

FIGURE F. 10. Semantic Browser 
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reread input: causes the parser to read from the input stream. This is to be used 

when the parser fails to recognise a lexical entry from the input stream. The 

idea is that the user would then fix the problem using the lexicon browser and 

ask the parser to reread it. 

clear: empties the input view. 

F.6.2. Control Buttons. These buttons are all located between the input and 

trace views. The buttons are currently grouped into four sets, with functions as 

follows: 

Sentence Scanning: These two buttons provide a convenient method of moving 

through the input view, sentence by sentence. This is especially useful after 

loading a sentence file. Sentences beginning with '#' are skipped. The two 

buttons are: 

First: select the first sentence in the input view. 

Next: select the next sentence. If the last sentence was selected, then no 

selection will be made and the input view will flash. If Next is clicked again 

the first sentence will be selected. 

Learning: There is only one button in this section: 

Learn: This button invokes the vocabulary learner, passing it the selected 

"word". 

Parser Control: There are currently five buttons that control the operation of 

the parser: 

Parse: Start the parser, passing it the selection in the input view. Confirms 

the user's intention to restart the parser if it already running. 
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Parse to: Present a dialog listing all productions from which the user can 

then choose one. The parser is started and will run until the chosen pro-

duction is used successfully or it terminates normally. Clicking the cancel 

button aborts the Parse to operation. 

Step: Have the parser execute one cycle. This means that the parser will 

backtrack (usually using Curr) and try to find a usable production. If one 

is found, it will be used, otherwise the parser will have to backtrack further 

in the next cycle. In either case, control will be returned to the user. 

Stop At: Similar to the Parse to button, but it continues the parse from the 

current state rather than from the initial state. The user regains control 

when the chosen production is used or the parse terminates normally. 

Continue: Place the parser in free-running mode and complete the parse with-

out stopping. 

To indicate that the parser is running, the cursor changes into the execute form. 

When the cursor is in its normal form the user has control. 

Currently there is no way to stop the parser while it is running, short of using 

<Ctrl-C>. A future version of the debugger will have a Stop button. 

Parser Mode: The parser can operate in one of two modes, selected by the cor-

responding buttons: 

Single Step: the parser stops after each cycle and returns control to the 

user. 

Free Running: the parser will continue to execute until the parse has been 

completed. A parse completes when the resume stack is empty (i.e. all 

alternative interpretations have been explored). 
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F.6.3. Trace View. Most output from the debugger and parser is displayed in 

the trace view. The level of detail of this information can be controlled by a series of 

dialog boxes that are accessible through the view's operate menu. This menu contains 

the following options: 

parser...: Opens a dialog of parser related settings: 

Production application: : Displays information when a production is suc-

cessfully used. This information includes: 

• the type of the production 

• the name of the production 

• the parser state vector after the production has been used 

• the embedding level ( 1-3) after the production has been used 

• if the production was lexical, the name of the entry, and the resultant 

set of morphosyntactic properties 

If this switch is turned "off", the three following switches are locked "off" 

as well. 

Allowable productions: Displays the production that are under considera-

tion during this cycle, separated into (semi)lexical and non-lexical. If there 

are any (semi)lexical productions, then non-lexical productions are com-

pletely ignored, and thus not reported. 

Reasons productions disallowed: Displays the reason that each possible 

production is not usable at the current time. This causes volumous output 

to be generated, so it is not recommended except during serious debugging. 

Actions: Each action of the production being used is displayed as it is exe-

cuted, along with it's return status (succeeds/fails). 
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Backtracking: Displays when the parser backtracks using boundary registers 

other than Curr. If this switch is "off", the following switch is locked "off". 

Backtracking with Curr: Displays when the parser backtracks using the 

Curr boundary register. 

Parse trace at each step: Displays the linear trace after each parser cycle. 

Boundaries in trace: Includes boundary placement in the parse trace. This 

involves having the boundary register name and level enclosed in square 

brackets and inserted into the trace at the point at which it is saved. 

Semantic structure at each step: Displays the semantic structure rooted 

in Maini after each parser cycle. 

Label vectors: Causes state vectors to be displayed using ordering feature 

labels and ranges rather than the default, which is to use the raw +/- nota-

tion. 

scanner...: Opens a dialog of scanner related settings: 

Lexical lookup: Display the search through the lexical trie. This indicates 

what is being looked up in which node, as well as what entry was found, 

and with what properties. For paradigms, the pattern that matched is also 

indicated. 

Indicate unrecognisable input: Indicate when the parser can not find an 

entry through the trie, and up to ten characters of input that caused the 

problem. 

vocab learner...: Opens a dialog of vocabulary learner related settings: 

Enable integrated learning: Have the vocabulary learner invoked when-

ever there is unrecognized input. 
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Trace output: Output trace information regarding what the vocabulary learn-

er is doing. 

Initial score: (1-100) The score that new categorizations are given. 

Immortal score: (1-10000) The score at which a categorization becomes per-

sistent. 

Score increment: (1—lU) The amount by which a categorization's score is 

increased when it is used in a successful parse. 

Death age: (1-100) The age at which a categorization's score begins to de-

crease. 

Score decay: (1-10) The amount by which a categorization's score decreases, 

after its age exceeds the death age. 

clear: Clear the trace view. 

In each of the above dialogs, the settings can be adjusted as required. When they 

are satisfactory, the Done button is clicked to dismiss the dialog. Other pieces of 

information that are always displayed include the initial parser state, notification 

of a successful parse, and the results of the parse once it has completed. This last 

item consists of the linear trace and resulting semantic structure for each possible 

interpretation. If no interpretations were found, then the input was ungrammatical, 

and this is also indicated. 

F.6.4. Boundary Register Inspector. The boundary register inspector con-

sists of two views. The left-most displays a list of all boundary registers: Curr, 

Word, and the cross product of Main along with the user defined boundaries and the 

embedding levels. The list is in alphabetical order. 

When a boundary register is selected from the list, its contents are displayed in the 

righthand view. The information displayed includes: 
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• the linear parse trace 

• the list of lexical entries, with the current one in boldface 

• the list of (semi)lexical production names associated with the current entry 

• the set of morphosyntactic properties associated with the current entry 

• the embedding level 

• the parser state, displayed using ordering feature labels and ranges. 

F.6.4.l. Comparing productions. The operate menu of the boundary register con-

tents view currently has a single option: compare productions. Selecting it opens a 

dialog which presents a list of production names and a text field labelled: Difference. 

When a production is selected in the list, the difference between its condition vector 

and the parser state saved in the selected boundary register is displayed in the text 

field'. This difference signifies the changes that would have to be made to the state 

in order for the production's condition vector to match it. 

F.6.5. Grammatical Role Inspector. The grammatical role inspector oper-

ates in a similar fashion to the boundary register inspector. A grammatical role 

is selected, and its contents and the contents of the associated semantic entry are 

displayed. The following information is displayed: 

• the current linear parser trace 

• the lexical entry associated with the semantic entry 

• the grammatical role's index into the reference queue 

• the agreement and non-agreement properties associated with the grammatical 

role 

'Note that this is display only! 
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• the structure of the semantic entry, its semantic roles and their fillers. Role 

fillers that are themselves semantic entries, only display as the associated lex-

ical entry and the reference index. 

F.6.5.l. Reference Inspector. The operate menu of the grammatical role contents 

view also has only one option currently: inspect references. This invokes an 

inspector that is fashioned after the standard SequencableCollectionlnspector: 

on the left is a list of reference indexes, and on the right is a text view that displays 

the contents of the selected reference. The information displayed is much like that 

displayed in the grammatical role contents view, with the exclusion of the parse trace 

and reference index, and the addition of the timestamp associated with the reference. 

Using the reference inspector, one can easily inspect the semantic structure being 

built. Note that while the contents of boundary registers and grammatical roles 

are automatically updated whenever the parser stops, the reference inspector is not 

updated, but does provide access to the up-to-date reference contents, the display 

must be manually refreshed. 

Also note that while most popups in the system are blocking, the reference inspector 

is not. 


