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ABSTRACT 

This thesis investigates the utility of a digital Fourier analyser 

in improving the performance of electron paramagnetic resonance (EPR) 

spectrometers. 

A brief introduction to the concepts of experiment performance and 

EPR spectroscopy is given, followed by four major sections.: 

1. A general, introduction to EPR and a descriptioli of the basic 

configuration of EPR spectrometers. 

2. An introduction to random data analysis and the discrete 

finite Fourier transform (DFT). 

3. A systematic analysis of optimum configurations for reducing 

the system noise and improving its sensitivity. This analysis is 

supported by experimental data concerning noise spectral measurements 

in reflection-cavity EPR spectrometers obtained using a digital Fourier 

analyser. A new' method for an in determination of microwave detector 

performance is described. 

4. A description of ERR signal processing techniques and their 

DFT implementation using a digital Fourier analyser. 
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CHAPTER I 

INTRODUCTION 

All experiments are performed under non-ideal conditions. The 

results are not exact since the measurements provide information only 

in a finite probabilistic sense. Instrumentation can be improved until 

inherent microscopic fluctuations in the system are the limiting factor. 

The sensitivity is a measure of the capability of an experiment or 

apparatus to extract information about a phenomenon in the presence of 

sources of error, i.e. noise. This definition of sensitivity encompasses 

two parameters describing the information extraction process in a res-

trictive sense. One of these parameters, which is also called sensitivity, 

is a measure of the minimum phenomenon "intensity" for which information 

can be extracted with a non-zero probability. The other is the resolu-

tion, which is a measure of the ability to distinguish "adjacent" phen-

omena. There are situations when the sensitivity in the limited sense 

can be improved only at the expense of the resolution and vice versa. 

The economic ãost of extracting information is another very important 

parameter characterizing an experiment. Usually, a compromise must be 

made between sensitivity and cost. The history of any experimental 

technique is a record of the continuous struggle to improve the sensit-

ivity while minimizing the cost. This thesis reports an investigation 

of the application of digital Fourier analysers to improve the perfor-

mance of electron paramagnetic resonance (EPR) experiments. 

EPR is one branch of magnetic resonance spectroscopy. It studies 

transitions between electronic energy levels whose energy separation is 

a function of an external magnetic field. Substances containing permanent 
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electronic magnetic moments are called paramagnetic. The microscopic 

electronic magnetic dipoles are oriented randomly due to thermal motion 

and no net magnetic moment is detectable on a macroscopic scale in the 

absence of an external magnetic field. Such a field produces a macro-

scopic magnetic moment proportional to its intensity. Chapter II is a 

succint review of those theories which describe resonance phenomena in 

paramagnetic substances immersed in electromagnetic fields. EPR spectro-

scopy has developed enormously since its "discovery" by Zavoiski in 191,5. 

It has been applied to an ever widening range of problems of both a fun-

damental and an applied nature. EPR is a highly selective' technique 

since it is relevant only for unpaired electrons. At the same time, 

EPR is very sensitive to phenomena originating in the environment of the 

paramagnetic dipole because it deals with low-energy transitions. 

EPR, in common with other types of spectroscopy, provides informat-

ion about the location, amplitude and shape of the absorption bands. 

The photon energies involved are 1027 - 10-21 J. The frequency depends 

on the value of the external magnetic field. Experimentally, ERR uses 

frequencies in the microwave region. The intensity of..the resonance 

phenomenon is a measure of the number of magnetic dipoles in the sample. 

The minimum number of spins that an EPR spectrometer can 'detect is .io 11 . 

The line shape and the fine, hyperfine and superhyperfine structure 

components give information concerning the environment of the electronic 

dipole. The number of structure components may vary from one in a simple 

environment to hundreds in some organic radicals. The commonest line-

shapes are described mathematically by Lorentzianor Gaussian functions 

although intermediate shapes also occur. The wealth of information 

that can be extracted using EPR explains the extensive use of this 
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technique as a research tool in many areas of investigation (Alger, 1968; 

Ursu, 1971). 

EPR is an extremely valuable tool in the study of well-ordered 

systems such as'single crystals of metals, dielectrics and semiconduc-

tors. Special attention has been extended to trapped electrons or defect 

centers which are responsible for some important processes occurring in 

solids. Great advances have been made in investigating the colour, lum-

inescence, charge carrier mobility, etc. using EPR. EPR studies of para-

magnetic ions of transition elements in a variety of host crystals played 

and continue to play an important role in developing lasers and masers. 

EPR studies have been instrumental in understanding free radicals. 

Organic free radicals are especially important in polymer chemistry, 

pyrolysis, radiochemistry, photochemistry, electrochemistry, etc. Ions, 

triplet state molecules and solvated electrons can be also, studied. Many 

reactions can be studied dynamically without interference using EPR. Con-

sequently, EPR is used in closed-loop controls of various chemical pro-

cesses. EPR studies have led to the development of many new catalysts. 

Recently, EPR studies have been extended to biological research since 

the radicals can be monitored in various biological processes. Magnetic 

resonance studies have been performed even on animals in vivo. 

An EPR experiment involves three basic units: I) the system to be 

investigated; 2) the electromagnetic excitation and 3) the detection 

system. These elements are common to all forms of electromagnetic spec-

troscopy. A block diagram of an EPR experiment is given' in Fig. 1.1. 

The investigated system is usually complex. The electronic magnetic 

dipoles whose behaviour in an electromagnetic field is studied by EPR 

are embedded in a lattice which influences their response to excitation. 



In addition, themagnetic dipole system may-not be homogeneous or it may 

interact with other quantum mechanical systems so that secondary pertur-

bations occur. The magnetic resonance condition implies that a relation-

ship exists between a steady magnetic field and the frequency of the 

electromagnetic radiation field. These fields are provided by the 

excitation system. The resonance phenomenon may be influenced by secon-

dary perturbations acting upon either the lattice or other quantum 

mechanical systems interacting with the magnetic dipoles to be studied. 

These secondary perturbations may introduce experimental difficulties 

but they may also be used to enhance the information extracted. The 

detection system consists of a detector for the resonance phenomenon, 

an information processor and a time base. The latter is used to obtain 

information dynamically and display its time dependence graphically, 

but it is not an essential part of the detection system. The time base 

usually controls the amplitude of the steady magnetic field in EPR 

experiments. The complexity of EPR experiments can be seen by consider-

ing the ranges of the parameters usually involved: steady magnetic field 

0-3T; electromagnetic radiation frequency 106-lO 11 Hz; 'electromagnetic 

excitation field power 10-12_ lOW; temperature 1-1000K; pressure 0-105 

atm; magnetic field modulation frequency lO-lO6Hz. The',sarnples studied 

range from metals, semiconductors, dielectrics, gases, liquids and solids 

to complex biologic compounds. 

It is a formidable task to determine the experimental configuration 

yielding maximum of information with maximum probability. An analytical 

expression containing all the parameters that can be optim-ized cannot 

be derived. The sensitivity is a function of the signal strength and 

the noise level.' The experimental sensitivity can be enhanced by 
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a) increasing the signal strength, b) decreasing the noise level and 

c) separating the signal from the noise. The signal strength can be 

increased by increasing the static or transverse magnetization or by 

improving the instrumentation. The static magnetization can be increased 

by using a large sample, a high magnetic field, double resonance decoup-

ling, indirect detection of resonance or by cooling the lattice or the 

spin system. The transverse magnetization can be increased by shortening 

the longitudinal relaxation time, using flowing sample and fast passage 

techniques. Alternatively, multichannel, pulse or Fourier transform 

spectroscopic techniques can be employed. The noise level can be decreased 

by optimizing the detector input' circuit, the excitation source and the 

experiment environment. The signal can be separated from noise by using 

field and time sharing modulation, time averaging methods and spectrum 

processing. It is usually necessary to use some combination of these 

methods. 

This 'thesis is concerned with a critical study of methods for redu-

cing the noise and separating the signal from the nois The use of a 

digital Fourier analyser in connection with these methods is investigated 

as a practical application. Chapter III reviews several basic concepts 

of noise theory, namely the mathematical description of random processes 

and their properties under various linear transformations. Chapter IV 

describes the basic configuration of an EPR experiment wi.th particular 

reference to the "noise properties" of the radiation source, the sample 

cell and the microwave detector. A brief analysis of the influence of 

their operating parameters on the signal strength and hence on the sen-

sitivity is given. Methods for decreasing the noise level arediscussed 

in Chapter V, where the most important noise sources are identified and 
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the possibilities of improving their "noise performance" are then reviewed. 

An analysis of noise propagation in an EPR spectrometer is .- presented in 

order to draw conclusions regarding the optimum configuration design. 

Magnetic field modulation techniques, although identified as methods to 

separate the signal from noise, are: discussed in this chapter to give a 

unified picture of the technical problems encountered inthedesign of 

an EPR spectrometer.. The other methods used to separate the signal from 

noise are discussed in Chapter VI. Time sharing modulation techniques 

which apply primarily to pulsed experiments are not discussed in this 

thesis. Special attention is given to spectrum processingtechniques. 

They can be used to improve either the sensitivity or the resolution and 

occasionally both The last section of this chapter reviews the digital 

implementation of these techniques. 

The remainder of this thesis is concerned with the implementation 

of sensitivity enhancement methods using a digital Fourier analyzer. 

A digital Fourier analyzer is a twofold valuable tool since on one hand 

it enables the measurement of noise spectra in the low frequency region 

and, on the other hand, it can simulate linear systems. Chapter VII 

presents the fundamentals of the Discrete Fourier transform and its 

implementation on digital computers using the Fast Fourier Transform 

algorithm. The use of the digital Fourier analyser as a noise measure-

ment device in an .EPR spectrometer is described in Chapter VIII. Such 

measurements provide a necessary basis for a comprehensive discussion of 

methods for decreasing the noise level since an in situ assesnient of the 

relative importance of noise sources in different frequency regions is 

possible. Conclusions regarding an optimum design of an EPR spectrometer 

are given. In addition, methods of noise measurement in microwave devices 



7 

are discussed critically and constructively. A new method of measuring 

the performance of a microwave detector is described in Sec. 8.6. 

Chapter IX analyses the use of a digital Fourier analyser in processing 

EPR spctra for both sensitivity and resolution enhancement. Section 

9.3 discusses the implementation of the Hubert transform and its use 

in calculating the Kramers-Kronig relation. 

A digital Fourier analyser is also an indispensable .copiponent of 

random and/or Fourier transform spectrometers. The application of random 

and Fourier transform spectroscopy in NMR has been described by Ernst 

(1971) and Ernst and Anderson (1966) respectively. They have not been 

applied in electron paramagnetic resonance spectroscopy and consequently 

will not be discussed in this thesis although they are expected to play 

a role in the future. 
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FIGURE 2.1 Diagram illustrating the precession of a 

magnetic dipole p with angular momentum J 

around an applied magnetic field B. 
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CHAPTER Ii 

ELEMENTARY THEORY OF EPR 

2.1 The Resonance Phenomenon ., 

Permanent magnetic dipoles exist in atoms and molecules whenever 

• 
there is a resultant angular momentum J. The angular momentum and the 

magnetic moment V are related by 

+ .L.? 
1.1 = (2.1.1) 

where ,fi is Planck's constant divided by 27r and -y is the. gyromagnetic 

ratio. These magnetic dipoles are oriented randomly in the absence 

of an external magnetic field. The equation of motion of a magnetic 

dipole in an external magnetic field is 

4. 

= 

(2.1.2) 

where i is the magnetic flux density. 

The solution of Eq. 2.1.1 shows that the angular momentum 

precesses around the direction of the magnetic field w!th an angular 

velocity 

4. 

= '-1 (2.1.3) 

Figure 2.1 is a diagram of this effect. The sense of the precession 

is governed by the sign of -y. This sign is rarely of interest in EPR; 

however Koepp (1969) has designed a spectrometer with which this sign 

determination can be made. . . 

The Zeeman energy W, the energy of a magnetic dipole in an 

external magnetic field, is a constant of the motion since the component 
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B 

FIGURE 2.2 Diagram showing the effective fields. in the 

rotating coordinate system. 

Facing Page 9 
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of the angular momentum parallel to the direction of the magnetic field has 

constant magnitude. 

W = -y1,IIIicosa 

The oscillatory motion of the x- and y-components of the angular momentum 

permits them to interact with a rotating magnetic field which is not 

parallel to the cbnstant external magnetic field . 

The equations of motion are easier to solve in a coordinate system 

+ which rotates around B with the same angular velocity w as the rotating 

magnetic field The time derivative of p vector in the rotating system 

is 

SA A 
6  dt 

Substituting Eq. 2.1.5 into Eq. 2.1.2 yields 

(2.1.6) 

where is the effective external magnetic field in the rotating system. 

The angular momentum I and the magnetic dipole moment precess about 

with an angular velocity W where 

4. • 4. * W. =  = (1.1 (2.1.7) 

When a rotating field is also applied, the effective ,rngnetic field 

becomes 

'eff = + 
(2.1.8) 

and the precession occurs around the direction of  eff, , This situation is 

illustrated in Fig.2.2. 
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The angle c. in Eq.2.li. is of interest. If a = 0 at time t = 0, 

then 

Cosa = 1 - 2s1n20 sin ((1/2)r(wL)2 + (rBi)2J1/2t) (2.1.9) 

Resonance occurs when w=w because O=ff/2 and i() precesses around in 

a plane normal to its direction. i() is alternatively parallel and anti-

parallel to the external magnetic field . This implies that the energy 

of the magnetic dipole alternates in sign. This resonance phenomenon can 

be observed in various ways. This thesis will be concerned mainly with 

the steady-state methods, in which a net absorption of energy from the 

rotating field is detected. 

The discussion has been based on purely clasica1 argümets, however 

Pake (1962) has shown that a quantum mechanical approach leads to identical 

conclusions.. Quantum mechanics allows only integral'Qr half integral 

values of J and limits the projections ofi on the direction of the external 

magnetic field to discrete values 

cosc = M, M-1, ..., -M . (2.1.10) 

where N is the ma'gntic quantum number (M = Rabi (1937) has shown 

for J = 1/2 that the, probability of finding the system in,thestate-'l/2> 

at time t if it was in the state J+l/2> at t = 0 is 

P{J-1/2} - 2+ (Zjh/2 sin' ((1/2)t+ + (YB1)2]112t) 
{(yB+) YB 1)  

(2.1.11) 

The similarity of Eq.2.l.11 with Eq.2.l.9 is evident. This probability 

will be significant only if (yB+) approximates to zero,which implies 

that wwL. In this case the atom will alternate between the two states even 
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B increasing 

= 

W = -(1/2)yliB 

FIGURE 2.3 Energy levels diagram for J ='1/2 ih.an applied 

field B, showing Zeeman transitions. 
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if the field is very small. The magnitude of determines the rate of 

change between the two states. This transition corresponds to the selection 

rule LM=±l. The resonance condition 

= W  WM_i = y1B (2.1.12) 

corresponds to the resonance condition obtained using theclassica1 approach. 

It can be shown that the classical equation of motpn itself is 

quantum mechanically valid. The time derivative of an operator is 

proportional to the commutator of the same operator with the system 

Hamiltonian 

(2.1.13) 

For the system under discussion 

H .=. 

It can be shown that Eq.2.l.13 reduces to Eq.2.1.2 if account is 

taken of relations between the components of 1. The subsequent discussion 

will employ the classical approach since it is more intuitive. 

The previous discussion has assumedthat the system consists of 

a single, free particle. Aggregate systems consisting of a number of 

particles have complex Hamiltonians and the classical approach breaks 

down. There are cases when this approach remains approximately valid. 

The analysis of such systems focuses on iI, the magnetic moment •of the system, 

which is thç vectorial sum of the individual magnticmoments. The 

equation of motion is 

+ 
dt4 + 

= yM x 
(2.1.15) 
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if the particles' have identical values of y. The analysis is then similar 

to that for a single particle. 

The resonance phenomenon involves an alternate absorption and 

emission of energy. The particles jump between energy levels emitting 

or absorbing quanta of energy. The populations of the two levels will 

become equal and there will be no further interaction with the external 

field unless the .population of the upper energy level decreases due 

to nonradiative processes. These processes are discussed in Sec. 2.2. 

2.2 The Relaxation Phenomena  

There are three types of transition involving the interaction 

of electromagnetic radiation with an atomic system. Stimulated absorption 

and emission are coherent (in phase and frequency) interactions with the 

radiation field in which the number of transitions is proportional to the 

energy density of this field at the transition frequency. The third 

process is spontaneous emission in which the 'emission of photons by 

the system is independent of the radiation field. This process can be 

neglected since the Einstein coefficient for spontaneous emission is 

negligible compared with that for stimulated emissinat the frequencies. 

involved in magnetic resonance. The coefficints forstirnulated emission 

and absorption are then effectively equal. Consequently, absorption 

or emission of energy can be detected 'in magnetic resonance only if the 

populations of the two energy levels are unequal. 

Boltzmann statistics are valid for states of thermodynamical 

equilibrium so that 

N IN = exp(-'hwlkT) 
ba (2.2.1 
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where Na and N  are the populations of the lower and upper levels,4 

is the difference in energy, k is the Boltzmann's constant and T=T 

is the ambient temperature. The power absorbed by the spin system 

immersed in a radiation field is 

d = w 01w) (n -n ) (2.2.2) 
t e a b 

where w is the atomic rate at which transitions are induced and n and 
e a 

nb are the instantaneous populations of the lower and upper. energy 

states. The two instantaneous populations tend to equalize if no other 

process is involved. A spin temperature T5 may be defined by assuming 

that Eq.2.2.l. is also valid for nonequilibrium conditions. 

= /k),,/n (n/nb) (2.2.3) 

This temperature becomes infinite if na=nb. Then it is necessary to 

infer the existence of other nonradiative processes which tend to restore 

the population difference. These processes describe the interaction 

between the spin system and the thermal fluctuations of the lattice in 

which the spin system is embedded. It is appropriate -to describe such 

a tendency toward equilibrium by a relaxatiQn equation 

• a(r nb) 
(1/T 1 )[(N -Ndt L) a 

where T is the time constant or 

- (n a  n b))(2.2.4) 

relaxation time of the process. In 

the presence of the radiation field, Eq.2.2.4. becomes 

d (n-nb) 

d  
= (1/ti) (N Nb) - (2w+I/rl)(n_nb) 

which has the steady-state solution 

(2.2.5) 

(na_nb)/(Na_Nb) = (l+2wT1Y1 . • (2.2.6) 
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The power absorbed from the electromagnetic radiation field is 

dW = wØw) (W*Nb)/(l+2WT 1). (2.2.7) 

Eqs.2.2.6 and 2.2.7 describe the power saturation phenomenon. The 

power absorbed in a strong electromagnetic field has a maximum value which 

is a function of t1. The power absorbed from the field balances the 

power absorbed by the thermal heat-sink via the spin-lattic,e relaxation 

mechanism. 

Waller (1932) made the first analysis of the mechanisms involved 

in this interaction. Many quantitative formqlations have been proposed 

to describe the temperature dependance of the relaxation time. The 

most notable is due to Orbach (1961). The concept of a'phonon radiation 

bath" describing the lattice vibrations is fundamental to all these 

mechanisms. A general formula for the tempelature dependance of T which in-

cludes the effects of these different spin-lattice interaction processes is 

l/t 1 = A coth(1iiil2kT0) + BT + CIecp(I/kT0)-1]. (2.2.8) 

The first term in Eq.2.2.8 describes the direct process which requires 

the interaction with coherent phonons, i.e. phonons of the same energy 

as the magnetic resonance quantumrw, It is important only in the low 

temperature region (<li°K), since otherwise the number of phonons at 

resonance with the magnetic system is very small. Thesecond term 

in Eq.2.2.8 describes Raman 'processes, in which a phonon is scattered 

inelastically. This is equivalent to a two-phonon process; their 

energy difference is the quantum necessary for the "magnetic" transition. 

Such processes are strongly temperature dependent. They play a major 

role in the high temperature region since all phonons can participate 
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FIGURE 2.4.. Diagram illustrating the various spinlattice 

relaxation processes. 
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although they are second-ordr processes because of the weak coupling 

between the phonons and the spin system. The third term in, Eq.2.2.8 

describes the effect of the Orbach process, which is also a direct 

process but involves a third, higher energy level as well as the ground 

state doublet. The Orbach process is also strongly temperature dependent 

since it requires phonons of energy A in order to excite the atom to 

the upper level. Fi-g.2. 1 is an energy diagrm describing these three 

processes. This represents a simplified picture of the actual process. 

Mention should be made of the important mechanism of transmitting the 

thermal energy from the resonant phonon system to the rest of the phonons 

and the thermal bath. This involves such phenomena as the "phonon 

bottle-neck" and/or the "phonon avalanche". 

The spin-spih interaction is another nonradiativeprocess involved 

in the magnetic resonance phenomenon. It describes the nondissipative 

interaction between neighbouring paramagnetic ions. There arevarious 

ways in which such an interaction can occur and influence the response 

of the system to an electromagnetic field. For example, the total 

magnetic field, which is a vectorial composition of the• external fields 

with the local field due to the neighbouring magneticmoments depends 

on the lattice. The components of the local field parallel to the 

external field may introduce a variation of the total field value and 

hence a variation of the resonant frequency frçm siteto.site. Random 

resonant field values have an effect similar to that du'to an inhomo-

geneous external magnetic, field and both lead to an "inhomogeneous 

broadening" of the resonance line. - 

The precessing magnetic moments also create an oscillating field 

at the site of, the neighbouring ions enhancing the probability of magnetic 
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resonance transitions. This effect shortens the lifetime of an atom in 

the respective quantum states and leads, through the uncertainty principle, 

to a broadening of the energy levels. This phenomenon is characterized 

by a spin-spin relaxation time T2 , which determines the iinewidth of a 

"spin-packet", a group of spins having the same precessional frequency. 

Other forms of interaction can occur due to the overlap of 

electronic charge clouds when the separation between neighbour ions is 

less than 'i.' 0.5 nm. This "exchange interaction"! leads to a narrowing of 

the linewidth. The phenomenon resembles the narrowing caued by the 

rapid fluctuations of the atoms in a fluid. This.rpid change in the 

orientations of the magnetic dipoles produces an oscillating local 

field which is less effective in broadening the resonance line. 

2.3 Bloch Formalism  

Bloch (1946) derived a set of equations describing the behaviour 

of the system magnetization A in which account was taken of both the 

spin-lattice and the spin-spin relaxation phenomena. The component of 

+ + 

M parallel to the -external magnetic field B is influencedlonly by the 

spin-lattice interaction since this is the mechanism causing the energy 

dissipation, The Zeeman energy W is 

W = = -M z B, (2.3.1) 

M is directly proportional to the population difference of the ground 

doublet and tendsto an equilibrium value M0. 

dM 

- 

(i1-M0) It 1 (2.3.2) 

where 'r 1, the spin-lattice relaxation time, is also called the longitudinal 

relaxation time. 
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The spin-spin interaction enables the transverse oscillating fields 

due to the precessing magnetic moments to induce transitions. This 

affects only the x- and y-components of the magnetization M. Block 

had the insight to assume that the same mathematical relationship was 

valid for these transverse components 

M = -M/t2 (2.3.3a) 

= _M /ly T .. (2.3.3b) 

The equilibrium values for these components are zero. 'r'is known as 

the transverse relaxation time and can be related to the. spin-spin 

relaxation time. These equations lead to an exponential free induction 

decay whose Fourier, transform is the magnetic resonance line of Lorentzian 

lineshape. The fact that magnetic resonance lines have sometimes non-

Lorentzian shppes indicate that Eqs,2.2.3 are not universally valid. 

The Bloch formalism is 

t:i x = y(ix). H IT x x2 

my = y(ix) - M /T 
y y2 

= y(iix) Z. - (M-M0)/Ti 

(2. 3. La) 

(2.3.4b) 

(2.3.4c) 

The external magnetic field is a combination of thesteady magnetic 

field parallel to-the z-direction and the magnetic field, l precessing 

in the xy-plane with an angular velocity w. The magnetic field can be 

described in thexy-plane either by the Cartesian components 

B = B cps (wt) 
x 1 

By = B1 sin(wt) 

(2.3.5a) 

(2.3.5b) 
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or by a complex quantity 

B+ x = B + jBy = B exp(ju)t). (2.3,5c) 

Pake (1962) was the first to obtain a steady statèso1ution of 

Eqs.2.3.4 ; however, the solution outlined by Abragam an.d Bleaney (1972) 

will be followed since it is simpler. If 

M = M ± jM 
± x y (2.3.6) 

then Eqs.2.3.4. become 

+ jyBM+ M+/t2 =iyMBi exp(jwt) (2.3.7a) 

M - jyBM + H_/t2 = -jyMB 1 xp(-jt) (2.3.7b) 

+ = jy[M•exp(-jwt) - M exp(Jwt)]B 1/ + M/r 1. (2.3.7c) 

The experimental system discussed ih this thesi.s employs slow 

passage signal processing which means that steady-state condtjors always 

prevail. This is equivalent to locking for solutions of Eqs.2.3.7 when 

M=O. The advantages of using this form, of Bloch equations are now 

evident since the solutions are obtained easily, 

M 1+ (w-1) 2 t 2 
z 

/ 22 22 
M 1+w-wj T +yBTT 
0 L 2 II 

± j] yBt2 exp(ijwt) 
- ,• .22 22 
M 1 (OwL) T2 + y B1 T1T2 

(2.3.8a) 

(2.3.8b) 

This solution corresponds to the magnetization vector precessing at 

an angle 0 around with an angular velocity wwhere 



tan e =  114+1 z - YB1T2 { 2 2-1/2 - 1 + 2j 
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(2.3.9) 

The equatorial component M± of the magnetization leads the rotati'ng field 

B1 by an angle e where 

tan € = l/T2(UrUiL). (2.3.10) 

These solutions are similar to those obtained to describe the 

forced resonance phenomenon in the theory of electromagnetic networks. 

An "impedancç" concept, the complex susceptibility x can be introduced. 

+ 
14 = (2.3.'Ila) 

= XB 1 exp(jt) S (2.3.11b) 

X -rBT2[(w-uL)TZ + ii 
22 22 

X 0 1 + WO L) T2 + y BIT1'r2 

(2.3.1 lc) 

Equation 2-3-11a .is the most general definition of the susceptibility as a 

tensor. X is considered a scalar in Eqs.2.3.11b •an 2.3J1c and 

is the value corresponding to the equilibrium magnetizat.lpn H• 

Experimentally, there is interest in detecting either the real or the 

imainary part of X. 

(2.3. 12a) 

- . :. (2,3.12b) 

- -  ' 22 22 
X 1 + U)wL) T 2 + y B1T112 

2 2 2 2 
I + (wL) T2 + .y B1T1T2 

O LT2 ' S (2.3.12c) 

A discussion of5the lineshapes described by x' (dispersion) and ' 

(absorption) is presented in the next section. . 
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The spin system absorbs energy from the rotating field at a rate 

dW 2 
dt - x x y y B M + B M = WX"B (2.3.13) 

The phenomenon of dynamic power saturation occurs if B 2. >>l/y2t1t2. The 

energy absorbed at resonance is then independent of B1.and t2 since 

- 

1 22 
dW (MB\ (  y B1T112 

dt 22 ) - \ Ti / i + B 

2.4 Magnetic Resonance Line Shapes  

IMB M'M 

T i 
MO , ) 

(2-3. 14) 

The ultimate minimum width of a magnetic resonance line is set by 

Heisenberg 4s uncertainty principle 

ôEôt > •t . 5v > l/2ir6t (2.4.1) 

where (SE, 'St and 5v are the uncertainties in -the energy level, in the 

time spent on that level and in the resonant frequency. 'St is associated 

with the relaxation time concept discussed previously. This width is 

never observed since other interactions broaden the line by shortening 

the relaxation time. Homogeneous broadening is due to finite lifetimes 

of the states involved. Inhomogeneous broadening arises when the line 

is the envelope of a multitude of lines due to paramagnets precessing 

at different Larmor frequencies. Portis (1953) was the first to treat 

systematically these broadening phenomena. 

Homogeneous broadening can be caused by 

-dipole-dipole interactions between like spins 

-spin-lattice relaxation 
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-interactions of spins with the radiation field 

-motion of unpaired spins in the electromagnetic field 

-motionally narrowed fluctuations in the local field 

while inhomogeneous broadening can be caused by: 

-hyperfine interactions 

-anisotropic splitting of the spin levels 

-dipolar interactions between spins with different Larnior frequencies 

(cross-relaxation). 

The homogeneous broadening produces a Lorentzian linehape, while the inhomo-

geneous broadening produces a Gaussian lineshape. In practice, some 

complicated combination of these broadening mechanisms occurs (Poole 

and Farach, 1971). 

In addition, the experimental system also broadens the line. 

Spatial inhomogeneity of the external magnetic field over the sample 

as well as temporal instability in the frequency of th radiation field 

produce inhomogeneous broadening. High frequency magnetic field modulation 

employed to increase the detection sensitivity can also cause broadening. 

The radiation field strength is limited by the phenomenonof saturation 

which does not affect the lineshape uniformly, This effect may be used 

to discriminate between homogeneous and inhomogeneous broadening (Alger, 

1968). 

According to Bloch's simplified approach, the magnetic resonance 

lineshape is Lorentzian in the absence of saturation. Theslowly varying 

parameter is the magnitude of the steady external magnetic field and 

not the frequency  since it is very difficult to vary the resonant 

frequency of the sample cavity in unison with the radiation field frequen-

cy. Equation 2.3,12 can be expressed in terms of B rather than w. 



FIGURE 2.5 Diagram showing the shape of the first Fourier coefficients 
of the absprption and dispersion components of the magnetic 
susceptibility X. 
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1 + [2(B-B 0 1 )/B /2] 
2 

1 + [2(B-B)/B 112j 
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(2.'.2a) 

(2. 1.2b) 

where B is equal to w/y, Wo is the radiation field frequency and AB 1/2 

is the linewidth at half-height, related to t2 by 

4B 1/2 = 2/t2. (2.4.3) 

Equations 2.4.2 differ from Eqs.2.3.12 by a factor of two since, exper-

imentally, an oscillating rather than a rotating transVere field B1 is 

used. This transverse field is equivalent to two fields of amplitude B1/2 

rotating in opposite directions. Only one of these fields is effective 

in producing magnetic resonances. The output of a magntic resonance 

spectrometer is usually the Fourier coefficient a1(d 1), which is propor-

tional to the first derivative of the absorption (dispersion) component 

described in Eqs.2. 1.2 (Buckmaster, 1971). These derivatives are 

d[.. '(B)] 2x0 B0. 1 - [2(B-B)/B 112]2 

dB - (AB  [1 + 

2(B-B )/LB 
° 1/2 d["(B)] - yB0 

dB (AB 112)2 

They are shown inFig.2.5. 

2 

[1 + [2(B-B )/B 
0 1/2 

There is an intrinsic relationship between 
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 and x'', 

(2.4.4a) 

(2.4.4 b) 

the real and 

imaginary parts of the complex susceptibility X. When the external 

fields are sufficiently weak the magnetic system is linear and its 

magnetization canbe described by a convolution integral (lichter, 1963). 



M(t) = f m(t-t' )B( )dt' 

00 

where m(t) is the response of the system to a 6-pulse and 

m(t) f  m(t-t')6 (t')dt'. 

- CO 

(2.4.6) 

Another useful definition of m(t) uses the response M5 (:t) of, the system 

to a magnetic field step function, 

m(t) j. [MS t)J. (2. 4-7) 

m(t) is called the "free Induction decay" in magnetiçres'onance. The 

physical realizability of the magnetic system requires m(t). to satisfy 

the causality lw, i.e. m(t)=O for t<O, while the stability, condition 

requires that f jm(t) I dt is finite. 

- 

Bloch's assumptions (Eqs.2.3.2 and 2.3.3) lead to an:exponeritial 

form for m(t). The sample magnetization after a unit magnetic field is 

applied in the z-direction is 

M(t) M[1 - exp(-t/t 1)] =115 (t) (2.4.8) 

so that 

M(t) = (M 0 It ) exp(-t/'r ). (2.4.9) 1 1 

If a transverse rotating field B1 is applied, then 

M+ (t) f'rn(t_')B 1 exp(-jwt')d' 

CO 

Co 

= B1exp(jwt) f o m (t") exp (-j wt' 1) dt' l 1. (2.4. 10) 
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By comparison, it is seen that the complex x defined through Eq.2.3.11b 

is the Fourier transform of the function m(t), 

CO 

x(w) =f m(t) exp(-'jwt)dt =3m(t)} (2.4.11 a) 

+00 

m(t) = (2) 1 f X(w) exp(jwt)d (2..11 b) 

-00 

In fact these relations were implied in the definition.qf x as the 

"impedance" or frequency transfer function of the magnetic system. 

Knowledge of either x(w) or m(t) completely determines the other. The 

following reltions.are valid for the absorption and dispersion components 

00 

x'() fm(t) cos(wt) dt (2.k.12a) 

x"() =fm(t) sin(wt) dt 

(2 .4. 12b) 

The real and imaginary parts of the frequency transfer funion of any 

linear system are Hubert transforms of each pther •(Gui1lemn,'l963). 

It follows that 

+00 

x'(0 X! () (l/) 

x1' (w) -(l/r) 

  d' 
(' -) 

f+00 ' (w')-x'() dw' = .(l/rw). •*'*' 
o (&-) 

(2.4.13a) 

(2.4.13) 

where the symbol stands for taking the principal part -of the integral 

and the symbpI "i" is used throughout this thesis to denote a convolution 

integral. Equaticins 2.4.13, which are known 65 the Krarners-Kronig 
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relations, demonstrate that the knowledge of one comp6nent of x complefely 

determines the other. 

This theory is valid only if the paramagnetic system behaves 

linearly. Poole and Farach (1971) have surveyed theories applying to 

more general, nonlinear situations. 
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CHAPTER III 

RANDOM PROCESSES AND LINEAR SYSTEMS - A REVIEW 

3.1 Physical Data: Classification and Description  

Mathematically, physical data can be considered as either determi-

nistic or randail. The deterministic data can be described by explicit 

mathematical relationships. Precise prediction can be made using such 

relationships. Randomness implies that only probabilistic statements 

can be made. This distinctipn is not very profound since totally randqm 

physical data are impossible. Practically, thi distinction is made 

according to the reproducibility of the data by controlled experiments. 

Physical data are dependent on many variables, but the time dependence 

is usually of most interest in their analysis. 

Deterministic data are either periodic or nonperiodic. Periodic 

data satisfy the relationship 

x(t) = x(t+T), (3.1.1) 

where T is the period and f0 = lIT is the fundamental frequency. All 

periodic data can be expanded into Fourierseries'. In general, x(t) 

can be assumed to be a complex function, although physical data are 

real valued. The Fourier expansion is defined by 

+00 

X(t) = exp(2Jnf0t) 

where X is the nth complex Fourier coefficient 

1/2 

X = (1 /T) f x(t) exp(-Zjnf0t) dt. 

-1/2 

(3.1.2) 

(3.1.3) 
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Nonperiodic data may be either almost periodic or transient. Almost 

periodic data can be represented by a relation analogous to Eq. 3.1.2; 

however, the ratio of the discrete frequencies involved, is' 'not always a 

rational number 

+00 

X Z Xexp(2jft) (3.1.4) 

For transient data, the frequency spectrum is continuous and a Fourier 

integral representation is adequate. 

x(t) = J X(f) exp(2jft) df '' (3.l.5a) 

_CO 

X(f) = f x(t) exp(-2trjft) dt (3.1.5b) 

-00 

Measuernents of phenomena which may be considered random on a 

macroscopic scale will output collections of random data. These collec-

tions can be obtained either a's the output in time of only one experiment 

(such a single tithe history is called a sample function-) or as the output 

at a definite time of a large ensemble of "identical" experiments. Such 

a complex collection of data is called a random or stochastic process. 

The statistical functions used to describe random processes can be defined 

either in time, over a sample function, or over the ensemble of possible 

outputs. The behaviour in the amplitude domain is described by roba-

bility density functions, while information regarding th'ebehaviour in the 

time and frequency 'domains is provided by correlation and spectral density 

functions respectively. These classes of functions are defined and analy-

sed in the next section. 
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Stochastic processes are classified according to the time and. 

ensemble dependence of these statistical functions. Random processes are 

either stationary or nonstationary depending on whether the correlation 

functions defined over the ensemble qf outputs are independent of the time 

when they are calculated. The stationary processes having.'correlation 

functions independent of their definition either in time or over the 

ensemble of outputs are s'atd tQbe ergoclic. 

3.2 Stationary Random Processes Theory Fundamentals  

3.2.1 Random Variables and Probability Functions  

All the possible outcomes of an experiment form' 'po int set called a 

sample space. A random variable is a set function (fa). cIfined over the 

sample space pp'ints k. Probability functions may be assigned to various 

events which are groups of points in the sample space, The probability 

distribution function P(x) 

P(x) = Prob[x(la) <x] (3.2.1) 

satisfies 

P(a) < P(b), if a < b (3.2.2a) 

= 0 (3.2.2b) 

and p(+oo) = 1. 

The first-order' probability density function is 

P(x) = d[p.(x)] 

where p(x) > 0 

+co 

and J p(x) 

(3.2.2c), 

(3,2.3) 

(3 .2.4a) 

(3.2.4b) 
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Joint probability functions may be defined in association with 

subsets bf points k in the sample space which satisfy simultaneously more 

than one type of events. For random variables x(k) and y(k) the joint 

probability distribution function is 

P(x,y) = Prob[x(!a) <xand y((a) <y] 

The joint probability density fwiçtionis defined by 

p(x,y) = gay [P(x,y)] 

where p(x,y) > 0, 

+90 

Jp(,y) dx dy = 1 

-00 

+00 

and p(x) = J p(x,y) dy 

p(y) = 7 p(x,y) 

Two random variables are statistically independent if 

(3.2.5) 

(3.2.6) 

(3.Z.7c) 

(3.2.7d) 

p(x,y) = p(x)p(y). (3.2.8) 

The expected.value of any real single-valued-continuous function 

g(x,y) of the two random variables (k) and-y(k) is defined by 

E[g(x,y)] 7 +00 
-c 

Jg(x,y) p(x,y) dxdy (3.2.9) 

Similar definitions are valid for functions of one ormôre random variables. 
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The mean (average) value 

the mean square value 2 = E[x 2 W 

2 
and the variance ax = ENx(fa) - 

(3.2. lOa) 

,(3 .2 .1 Ob) 

11 (3.2.lOc) 

are some of the important expected values. The joint expected values 

relating two random variables are 

the correlation R = EE(k).y(k)] 
xy 

and the covariance C = E[(x((a) ii).(y(f) - 

The correlation coefficient is defined by 

P C /aY (p <1) 
y xy xy' xy— 

(3.2.11a) 

(3.2.11 b) 

Independent random variables are uncorrelated = 0), but the reverse 

is not necessarily valid. 

The Gaussian (normal) di stribution 

P  = (l/crirV' ) exp(x )2 / zo] (3.2.13) 

plays a special role in physical problems as a consequence of the Central 

Limit theorem. This theorem states that under fairly general conditions 

the vector sum of alarge number of mutually independent N-dimensional 

random variables approaches an N-dimensional normal distribution. 

3.2.2 Stationary Random Processes  

A stochastic proces {x(t)} is an emsemble of sample functions, 

which can be characterized by its probability structure,. —A sample space 

of index (a which may be denumerable is a representation of the ensemble. 

The values of these functions at times t. forma domain o. random variables 

x(a (t 1). The various momenta defined according to Eq. 3.2.9 are then func-

tions of time: 



Mean value = E[x(t)], 

autocorrelation function R(t,) = E[x(t).x(t+T)l, 
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(3. 2. 14a) 

(3.2.14b) 

autocovriance function C(t,ç) = E[(x(t) - (t)).(x(t) - 

(3. 2. 14c) 

crosscorrelationfunction R(t) xy E{x(t).y(t+)]. (3.2.14d) 

crosscovariance function 

= E.[(x(t) - p(t))'(y(t+) - (3.2.14e) 

The random processes {x(t)} and {y(t)} are said tobe weakly stationary 

or stationary in the wide sense if the functions defined by Eqs. 3.2.14 

are independent of the time t. They are tr9ng1y stationary i.f all higher-

order momenta are also time independent. The Gaussiap random process is 

a notable exception since weak stationarity aio impli es 'strong stationa-

rity. Weak stationary processes satisfy 

R(_T) 

xy R(-t) =• 

and IRxy ()IL < Rx(Q)Ry(0)• 

(3.2.15a) 

(3.2.15b) 

(3.2.15c) 

The normalized cr&sscovariance function or the correlation function coef-

ficient 

Q) = c ()[c (0) -'C (0) 112 , I (r)< 
xy xy y xy -r 

(3.2.16) 

measures the degree of linear dependence between the random processes 

displaqed in time by . 
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The behaviour of random processes in the frequency domain is des-

cribed by spectral density functions defined as Fourier transforms of the 

correlation functions. A knowledge of the "frequency behaviour" may be 

of greater value than that of the "time behaviour," although it does not 

provide any additional information. Power and cross-spectral density 

functions canbedèfined in correspondence to auto- and-cross-correlation 

functions using 

+00 W xx (f) R() f R) exp(-i2ft) d (3.2.17a) 

and W xy (f) R xy (3.2.17b) 

It follows from the symmetrical properties in Eqs. 3.2.15 that 

Re[w xx (-f)] Re[W,(f)] 10 

Im[W xx (-f)]= .I MEW (f)] = 0 

and W (-f) = W (f) = W (f). 
xy xy yx 

(3.2.18a) 

(3.2.18b) 

(3. 2. 1 8c) 

If the frequency variable f is restricted to non-negative values, then 

one-sided spectral density functions G(f) and G,çy (f) are defined by 

and G xy xy (f)=C (f) - 

f>0 

f=0 

f<0 

(2W xy(f) 
I  

= c W (f) xy 

1.0 

f>0 

f=0 

f<0 

(3.2.19a) 

(3. 2. 19b) 

where C xy (f) is the cospectrum or coincidental spectrum density function 
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and XY is the quad-spectrum or the quadrature spectral density func-

tion. An inequality similar to Eq. 3.2.15c holds for spectral density 

functions. 

JW (fJ2' < W (f) w (f) 
xy —xx yy (3.2.20) 

3.2.3 Ergodic Random Processes  

In practice, only a sample function of the stochastic process is 

known and even this function is known for only a finite time interval. 

These processes can be characterized by time averages although the correct 

approach uses ensemble averages. The general definition, similar to 

Eq. 3.2.9, is 

+1 

[g(x,y)] = urn (T/2T) f g(x(a(t),y (a (t)) dt 

-T 

(3.2.21) 

where g(x,t) is a random variable over the sample space (a. Then 

= [x(t)], (3.2.22a) 

= if [4(t)], (3.2.22b) 

= [(X , (t) - )) 2] = () - (a), (3,2.22c) 

= [x (a (t) y(a (t+)] (3.222d) 

and ,(a) = [(x (a (t) - ( )'(y(a(t+) - Py ((a))]. (3.2.22e) 

The parameters defined by Eqs. 3.2.22 are random variables. A 

random process is ergodic when all time averages are constants, independent 

of the sample function on which they are performed. A random process is 

weakly ergodic when this condition applies only to mean values and first-

order correlation functions. A sufficient condition for a randpm process 
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to be weakly ergodic is that it is weakly stationary and that the time 

averages ii,(() and C(,k.) are the same for all sample .function. 

An intuitive physical representation can be associated with the 

functions described above for random processes. The data may be con-

sidered as a coiYibination of a static or time invariant and a dynamic or 

time variant component. The former is described by the mean value 

and the latter by the variance or by the standard deviation The 

autocorrelation function is important since it describes the dependence 

of the data values at one time on the values at another time. The cross-

correlation function analyses this dependence for two different types 

of data. The one-sided power spectral density function G,(f) may be 

related to the variance of the data in a frequency interval (f, f+M) 

G (f) = urn [4f !1If1Lf1 = 
M'+O 

lini (1/Af) 
f+O 

I +T/2 

urn (lIT) J x2 (t,f,Lf) dt 
LT0 -T/2 

(3.2. 23) 

3.2.4 Linear Traflorrnations of Random Processes  

Another random process {y(Q)} is obtained if an operator A is 

applied to a random process {x(P)}. 

{y(Q)} = A[{x(P)}.] (3.2.24) 

where P is a point in a general space (space-time) and Q may be either a 

point in the same or another space. The operator is linear if 

Ia i X (P i )] E A[ x(P.)] (3.225) 

where the a i are arbitrary constants. Equation 3.2.25 expresses both 
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the additivity and the homogeneity of the linear operation. The-operator 

A commutes with the expected value operator 

E[{y(Q)}] = E[A({x(P)})] = A[E({x(P)})]. (3.2.26) 

A time invariant operator A will transform any weak, or strongly, stat-

ionary random process into another weakly, or strongly, stationary random 

process. The gaussian character of a random process is 'also conserved 

by linear transformations. 

3.3 Linear Systems  

3.3.1 Time and Frequency Characteristics  

In the context of this chapter, a system is a davipe which transforms 

physical data. This transformation is described by Eq. ).2.2} where ,c(P) 

and y(Q) are the input and output data. A system is said to be linear if 

the corresponding operator is linear and is said to have constant parameters 

if the operator is time invariant. Such systems are described by convolu-

tion integral type transformations, (Bremermarin, 1.965). 

y(t) h(t) x(t) = f h (0 x(t-) d . (3.3.1) 

-00 

where the impulse response h(t) is the output 'of the system when the 

excitation is a delta pulse 

h(t) = h(t) * (t). (3.3.2) 

A system is physically realizable if it respects the causality 

principle, i.e., it responds onlyto past inputs. This implies that 

h(t) 0 for t < 0. (3.3.3) 
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The system is stable if a bounded input function produces abounded out-

put function. A sufficient condition requires the impulse response 

function to be absolutely integrable. 

f (3.3.4) 

The same information regarding a linear system is provided by 

either the impulse response or the frequency response function 

H(f) =f{ht} . (.3.5) 

The input-output relationship, is obtained by applying the Fourier trans-

form operator to Eq. 3.3.1. The mathematical complexity is reduced in 

the frequency domain. 

Y(f) = H(f)eX(f) (3,3.6) 

Occasionally it is convenient to express the frequency transfer function 

in polar coordinates 

H(f) = IH(f)I exp[-j(f)] (3.3.7) 

where H(f)l is the gain of the system and (f) is the phase factor of 

the system. Physical realizability implies that 

H(-f) = H'(f). (3.3.8) 

The overall transfer function of cascaded linear systems is 

H(f) =.T fH 1(f). (3.3.9) 
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3.3.2 Random Processes and Linear Systems  

The random excitation of a linear system produces a random output. 

This transformation is also described by Eqs. 3.3.1 and 3.3.6. It was 

shown in Sec. 3.2 that any linear operator commutes with the expected 

value operator. Consequently the mean of the output is equal to the out-

put of the mean. it follows from the commutation relation that 

XY Q) = h() cR xx () 

and Ryy (t) = h() h*(_)*Rxx (). 

(3.3. 10a) 

(3.3. lob) 

The Fourier transforms of Eqs. 3.3,10 describe the "propagation" of 

spectral density functions 

w  xy (f) = H(f) 

and W (F) m IH(f)I2 W(f), yy xx 

These relationships are also valid for one-sided spectral density func-

tions. 

The linearity of a system can be verified easily by analysing the 

coherence function beween the input and the output. 

2 (f) = Jw (f)1 2 /w (f) w (f) = 
xy xy xx yy 

= IG (f)J 2 1G (f) G (f) 
xy. xx yy (3.3,12) 

where W xx (f) and Wyy (f) are non-delta functions and nonzero. This 

coherence function is unity over the entire domain for linear systems. 

In practice this function may be less than unity due to the existence of 

more than one input or due to noisy measurements. Bendat and Piersol 

(1971) have treated the problem of multiple-input linear systems. 
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CHAPTER IV 

BASIC EPR INSTRUMENTATION 

4.1 Basic Design Concepts for EPR Spectrometers  

EPR spectrometers, in common with all other spectrometers, consist 

of four basic elements: 1) source of electromagnetic radiation, 2) sample 

irradiation cell, 3) dispersive component and 4) radiation detector. 

These elements determine the various characteristics of the, system and 

EPR spectrometers are classified according to their basic, features. 

Experimentally, it is customary to use a highly monochromatic 

source of radiation. The dispersive function is accomplished by immersing 

the sample in a pseudosteady magnetic field. The detector extracts the 

information concerning the response of the sample to the combined effect 

of the excitingradiation field and the dispersing magnetic'field. The 

irradiation cell should be designed to enhance the interaction of the 

radiation field with the sample. This is achieved by making the cell a 

resonant circuit whose parameters are functions of the sample properties. 

A resonant sample cell is not essential but non-resonant cells are rarely 

if ever used (Alger, 1968; Wilmshurst, 1967). 

An electrical network having an equivalent resonant behaviour is 

the RLC series circuit which can be completely described by its impedance 

Z(u), 

Z(w) = R +j(L w 1/C co) 
0 0 Q 

resonant frequency w 
0 

0 = (L 0 ' C 0)h/2 

(4.'I.la) 

(4.1.lb) 
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and its quality factor 

Q0 = L 0w 0 0 /R 0 0 0 11w C R . (4.l.lc) 

The subscript 'lo ll indicates an intrinsic parameter. The values of these 

parameters depend on the physical properties of the sample within the 

volume enclosed by the resonant cell. It is usual to neglect the effect 

of the sample on R and C. Its effect on the inductance L is described by 

L = L(1 + rix) 1 (4.1.2) 

where x = - ix" and n, the filling factor, is a measure, of the 

efficiency with which the sample interacts with the radiation field. 

Sbstituting Eq. 4.1.2 into Eqs. 4.1.1 gives 

Z(w) = (R 0 + L 0 wnx") + j[wL(l + nx') - 1/C 0 w 0] 

WC 0 0 = [L C (1 + nx')Y 112 = w 0 (1 + 

= [w C (R + L w 
co •oc 

(4.1.3a) 

(4.1.3b) 

(4.1..3c) 

It can be shown that the variation of these parameters is proportional 

to the susceptibility components. 

(dwc/wc)= -(112)rix' 

d(lIQ) 

(4.1.4a) 

(4.l.4b) 

Most EPR spectrometers are designed to measure the absorption com-

ponent x" by detecting the variation in the quality factor, Q of the reso-

nant sample cell. They are called "absorption" spectrometers, while 

"dispersion" spectrometers detect x'by measuring the variation in the 

resonance frequency of the sample cell. It is preferable to design an 
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EPR spectrometer so that it can perform both measurements. 

4.2 Spectrometer Sensitivity and the Choice of Operating Parameters  

The sensitivity was defined in Chapter I as a measure of the cap-

ability of an experimental system to extract information about a phenomenon 

in the presence of sources of error. These error sources diminish the 

reliability of the information. The sensitivity is determined by the 

minimum "intensity" of the studied phenomenon for which information •can 

be extracted with a non-zero probability. The resolution is another 

parameter characterizing this information extraction process. The 

resolution measures the capability of the experiment or apparatus to 

distinguish different "adjacent" events occuring in the phenomenon 

studied. The resolution can be incorporated in the broad, general, deft-

nition of sensitivity. Another very important parameter characterizing 

an experiment (system) is the economic cost of extracting the information. 

A compromise must be made between sensitivity, resolution and cost and 

this affects the choice of an EPR spectrometer's operating parameters. 

The sensitivity is usually described by the minimum detectable 

susceptibility X in magnetic resonance experiments. A theoretical mini-

mum is deternined by the condition that the power carrying the infor-

mation (Eq. 2.3.13) should be at least equal to the thermal noise power 

in = wX".B = kThf = th.noie 

The implications of this condition have been analysed extensively 

for all possible sample cells. These analyses have been summarized by 

Poole (1967) and Wilmshurst (1967) amongst others. A resonant cell 

enhances the effective value of the rotating field B1. It can be shown 

that the minimum detectable susceptibility is given by 
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Xmin.= (C/nQ)•(kThf/P.) 112 (4.2.2) 

where Q0 'is the intrinsic quality factor of the resonant call, P. 

is the power of the electromagnetic radiation incident on the sample 

cell, n is the sample filling factor-of the cell and C is a numerical 

factor dependent on the polarization of the electromagnetic radiation 

field. The minimum detectable number of paramagnetic ions for systems 

obeying Curie's law and Bloch's equations is. 

N min = EC/nQ01 [kTdAf/PT:1 112 [3kT0I32J(J+l)] [w/] (4.2.3) 

where 0 is the Bohr magneton, Lo/u is the fractional linewidth [(LB/B) 

(&/w)], T is the sample temperature and Td is the detector temperature. 

In magnetic resonance, the resolution is defined as the smallest 

detectable variation of the dispersing element. This minimum detectable 

change. is characterized by the minimum detectable linewidth or as the 

minimum "distance" between adjacent lines which are d.iscernable. The 

resolution depends strongly on the broadening phenomena discussed in 

Chapter II. From an engineering viewpoint, it is necessary to consider 

only instrumentation broadening. 

Equation 4.2.3 and the definition of resolution 1ead to the follow-

ing requirements fora reliable information extraction: 1) low sample, and 

detector temperatures, 2) highly stable and monochromatic electromagnetic 

radiation fields of very high frequency, 3) highly stable and homogeneous 

magnetic fields of high intensity, 4) high values for the quality factor 

of the resonant cell, 5) large filling factor.and 6) large sample volume. 

Alger (1968) has shown that the sensitivity is a complicated function of 

the frequency (or the magnetic field B) since both n and Q0 are frequency 

dependent. Nevertheless, the assumption that the sensitivity is an 
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• increasing function of w or B is almost generally valid. 

These requirements are well satisfied if microwave frequencies are 

used because the necessary magnetic fields of 0(3T) are readily available 

with a good homogeneity over a volume of 0(5cm3). This space is large 

enough to permit the introduction of a low-temperature dewar enclosing 

a resonant cell (cavity) with a high quality factor. Moreover, relatively 

inexpensive, high quality microwave components are available from 1-40GHz. 

The concept of "quality" plays an important role since the noise generated 

in oscillators and detectors exceeds thermal noise and limits the sensiti-

vityof an EPR spectrometer. 

4.3 Radiation Sources  

Microwave generators have been designed using various physical 

principles. The frequency limitation of conventional vacuum tubes and 

transistors is n,5GHz at present. Magnetrons can generate high power pulses 

and are useful in pulsed experiments up to 100GHz. Backward wave oscil-

lators have the advantage of enjoying a broad bandwidth compared with other 

microwave generators. References to literature describing various EPR 

spectrometers using these devices have been given by Poole (1967). 

Most EPR spectrometers use reflex klystron oscillators which 

can be both mechanically and electrically tuned in frequency. This is 

very important since a control system can then stabilize the oscillation 

frequency. The klystrons used in EPR spectroscopy generate 0(100mW) with 

relatively low noise power. This noise is extremely important since it 

has been shown (Buckmaster and D.ering, 1966; Strandberg, 1972) that it 

ultimately limits the sensitivity of ERR spectrometers, This noise can 

be analysed in various ways. Dering (1967) summarized the classical 

approach while Wilmshurst (1967) and Gray (1972) used a phasor description 
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because they considered it to be more intuitive. Strandberg (1972) prov-

ided a mathematical treatment of the oscillator noise effect which will 

be followed in this thesis. 

A general expression for the wave generated by an oscillator is 

e(t) = EEl +a(t)3 cos[wt - t)] (4.3.1) 

where w is the oscillator frequency and a(t) and 4(t) are random 

processes which describe the amplitude and phase modulation noise, If 

a(t) and •(t) are small perturbations, then Eq. 4.3.1 becomes 

e(t) = E0 cos(w0t) + Ea(t) cos(w0t) + E04(t.) sin(w0t) (4.3.2) 

which is the familiar form in communication theory. The random processes 

a(t) and 4(t) can be characterized in the real time domain by their auto-

and cross-correlation functions or, in the frequency domain, by their 

power- and cross-spectral density functions W AM (f), WPM(f) and WpM(f). 

These definitions follow from the theory presented in, Chapter III. The 

response of an ERR spectrometer to a noisy excitation, can be analyzed 

using the outline in Sec. 3.3.2. This analysis will be discussed in 

Sec. 5.2.1 and experimental results will be given to substantiate it. 

The experimental' procedures involved in the measurement' Of W(f) and 
AM 

%M 'are discussed in Sec. 8.6.2. The frequency and not thephase is 

the most important parameter in magnetic resonance so it'His customary to 

analyse WFM(f) the power spectral density function of the frequency modu-

lation noise - instead of WPM. The relation between he two is 

WFM(f) = (2irf)2 WPM(f) (4.3.3) 

since 
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Typically, WAM(f) is O(-l2OdB/Hz) compared to the carrier, while WFM(f) 

is 0(-l50dB/Hz) .at "1MHz from a 10GHz carrier. Although these values 

appear extremely small, they limit the sensitivity of an EPR spectrometer 

when the power input to the resonant cell is 0(100mW). 

Recently, solid-state Gunn and avalanche diode microwave generators 

have been used in EPR spectrometers (Walsh et a]., 1970). A theoretical 

and experimental analysis of their noise properties has been made by 

0htomo (1972). Figure 4.1 summarizes some of his experimental results. 

However, the use of a 2K25 reflex klystron for comparison is unfair since 

it is an obsolete design noted for its noisy behaviour. Although noisier 

than the contemporary klystrons, these solid-state microwave generators 

are preferable for use in EPR spectrometers where convenience and cost 

and not sensitivity is of primary importance since they -have smaller size, 

simpler power supply requirements, easier electronic tuning and lower over-

all cost. -: 

The maser oscillator is the ideal microwave generator as far as the 

noise problem is concerned. It is a virtually noise-free generator, par-

ticularly when operated at liquid helium temperatures, enabling EPR spec-

trometers incorporating them to have near theoretical sensitivity (Mollier, 

1972). Unfortunately, the power generated by these maser oscillators 

are 0(10 12w) so that the effective sensitivity is rather-poor. They are 

useful only for samples which saturate at very low power levels. In 

general, the cost of these oscillators is prohibitively high and this 

outweighs their advantages. Buckmaster and Skirrow (1972) have discussed 

the sensitivity of EPR spectrometers using maser and parametric preamp-

lifiers. 
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4.4 Resonant Sample Cells  

The microwave analog of a tuned circuit is the resonant cavity (Har-

vey, 1963) which is -an enclosure consisting of high conductivity walls of 

dimensions comparable to the resonant wavelength. Resonance occurs when 

a standing wave interference pattern is formed within the :cavity so that 

the energy stored is, enhanced by the multiple reflections between the 

cavity walls. These standing waves patterns area function of the dimen-

sions and shape of the cavity. A cavity is described by its 1) resonant 

frequency, 2) quality factor, 3) mode and 4) methods of coupling and 

tuning. 

The most general definition of the quality factor ,of a resonator 

is 

(energy stored)  
Q = 2rr (energy dissipated per cycle) (4.4.1) 

This definition leads to Eq. 4.1.3c when the resonator •cotisists of lumped-

parameter circuit elements. Other "partial" quality factors can be 

defined corresponding to specific ways of energy dissipation. The resul-

tant quality factor is 

(l/Q) = + (1/Q) + (1/Q) = (l/Q0) •+ (1/Q) (4.4.2) 

where Q, the unloaded Q-factor, accounts for the ohmic losses in the 

cavity walls, Q accounts for the dielectric losses inside the cavity, 

c accounts for the losses due to coupling the cavity to external circuits 

and (1/Q) = (1IQ) -f (11%). The design of microwaveèavities is dis-

cussed extensively, by Slater (1950) amongst others. 

The transfer function of a microwave resonator isa very important 

factor in sensitivity studies. It depends on the way in which the cavity 
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is connected to the external circuit. From this point of view, resonant 

cavities are classified as transmission, reflection and absorption cavi-

ties and, consequently, microwave spectrometers are classified accor-

ding to the type of sample cell employed. Figure 4.2 shows diagrams of 

these spectrometers and their equivalent lumped parameter circuits. A 

circulator or magic-I must be used with a reflection cavity in order to 

decouple the oscil.lator from the cavity, the cavity from the detector 

and the detector from the oscillator. The bimodal cavity is a special 

type of transmission cavity in which the input and output ports are 

excited by orthogonal modes and thus they are ideally Ocoupled. Coup-

ling occurs only when the orthogonality of the two modes is disturbed 

as when a magnetic resonance occurs. Both the reflection cavity - 

circulator system and the bimodal cavity are band rejection circuits. 

The former is a narrow band filter while the latter is broad band by 

definition. 

The choice of the suitable cavity is determined by the performance 

desired from the spectrometer. This performance is described by the 

sensitivity, resolution and cost parameters. Wilmshurst (1967) has 

shown that the sensitivity is independent of the type of cavity chosen 

if the generator and cavity are perfectly stable and noiseless. A more 

detailedanalys.is is necessary because such an ideal is not realizable. 

The following discussion concerns reflection cavities since they are 

used commonly. 

The transfer function of a cavity can be obtained using the lumped 

parameter equivalent circuit, but this approach is of limited value since 

it is only a first-order approximation. Microwave circuit theory (Slater 

1950) provides a more precise method of-analysis. The voltage transfer 
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function r(f) of a reflection cavity is 

• r(f) = (z r z.)/(z+ z ) 
0 0 

(4.4.3) 

where Z0 is the characteristic impedance of the waveguide mode and Z is 

the impedance of the cavity. Z and Z0 are related to the cavity parame-

ters by 

ZIZ0 = ' + f•/f)] (4.4.4) 

where 1r is the cavity resonant frequency. Using Eq. 4.4.4;. Eq. 4.4.3 be-

comes 

r(f) = 

If f=f r' then 

1"- 11Q0) - j(f/f 

(l/Q+' 11Q0)+ - 
(4.4.5) 

(j)Z - [2Q or r 4Qo r ( )/f r  

(1+) 2 + [2Q(f-.f)/f] 13")' + [2$% '( f-f r /f r] 2 

(4.4.6) 

where (QIQ) .is. called the coupling factor. The term 

= - = (1 2 Ml + )2 (4.4.7) 

is the reflection coefficient at resonance The cavity is matched 

when Q = Q so that B=l and r =0. 
0 C 0 

The correct method of analysing an EPR spectrometer. involves time-

varying linear systems since the magnetic resonance phenomenon is detec-

ted through the variation of r(f). The change in (l/Q0Yis proportional 

to x" while the change in fr is proportional to x' as was hown in Sec. 

4.1. It is more straightforward to use an equivalent generator to 
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represent the resonance phenomenon since a "temporal" analysis is too 

complicated. The sensitivity is optimized when 

2r(f) 
Df 2 
r 

=0 a2r(f)  - 0 
lIQ) 2 

These conditions require that the cavity should be operated at the 

magnetic resonahcè frequency osc = r' critically coupled ( = 1) 

and have the highest possible Q. These are the conditions for maximum 

signal; the condi-tions for minimum noise propagation will bediscussed 

in Chapter V. 

4.5 Radiation DetectOrs  

The magnetic resonance phenomenon causes a variation, in the resonant 

cell parameters. This is equivalent to modulating the wave emitted by the 

microwave generator'. The power variation is proportional to :the absorption 

component x" while the phase variation is proportional to the dispersion 

component x'. Since x" and x' are related by the Kramers-Kränig relations, 

the cavity output wave consists of an in-phase amplitudemodulated compo-

nent due to the absortion x" and a quadrature-phase amplitude modulated 

component due to the dispersion x'. The role of the receiver is to detect 

these modulation envelopes and to transform them in a convenient form 

for interpretation. '• 

The simplest demodulator is a bolometer, whose temperature is pro-

portional to the 'incident power. Theoretically, bolometers could be ideal 

detectors since the only noise present is the inherent thermal (Johnson) 

noise. In practice they are not ideal since account must be taken of 

their thermal capacity C and' time constant T. Schmidt and.Solomon (1966) 
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have shown that the effective noise power is 

P = (4kT2Cf/T) 112 n 0 
(4.5.1) 

where Af is the bandwidth considered. The noise power decreases rapidly 

at low temperatures so that the device is sensitive to powers O(5pW) in 

a 1Hz bandwidth. This leads to a theoretical ERR sensitivity of about 

10 spins at 4K in the absence of oscillator noise. In addition to the 

liquid helium restriction the bolometer has two major disadvantages which 

limit its use in EPR spectrometers. The value of T must be chosen so 

as, to be a compromise between low P,, and fast response andit can detect 

only the absorption mode. U 

The solid-state diode is the commonest type of demodulator used in 

ERR spectrometers. The point-contact diode was the earliest version but 

backward or Schottky-barrier diodes have,been developed recently. These 

diodes have two distinct operating regions. The diode operates as a 

quadratic (square law) demodulator when the incident power is less than 

liiW, 

v v i 2 ' in' out n n' (4.5.2) 

and as a linear demodulator when the, incident power exceeds lOiW, 

v ' v. 
out in in 

The demodulator is incapable of distinguishing between absorption and 

dispersion in either mode of operation. The demodulation process is 

phase sensitive only when the diodes are operated as mixers. Mixing 

occurs when two different waves are incident on the diode, one of which 

has an amplitude which drives the diode into the linear region. In a 
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first approximation the mixer operates like a multiplier. The signal 

from the cavity is 

s i n a (t) = s (t) Cos (u o t) + sd(t)sin(Wt) (4.5.4) 

where sa(t) and sd(t) are the slow-varying envelopes proportional to the 

absorption and dispersion components respectively and w0 is the microwave 

frequency. When this signal is mixed with a wave of amplFtude v0 and 

frequency w the output voltage of the mixer is 

s out (t) ' in s (t)v(t) = [s a (t)cos(w o t) + sd(t)sin(w o t)]vcos(w1t-I-q) 

(11.5.5) 

where is the relative phase between s1 (t) and v(t). The low frequeicy 

components are 

S (t) " v s (t)cos[(w -w)t - ] + v s (t)sin[(w.-w .od ol out o  0 1  

(4.5.6) 

The demodulation is synchronous (homodyne or synchrodyne) when W 
= 

The absorption 4 = 0) or dispersion 4 = lr/2) can be detected by varying 

the value of 4. Heterodyne demodulation occurs Lf The signals 

5a(t) and sd(t) are shifted in the frequency domain to the intermediate 

frequency w i. f = Iu - I* sa(t) and sd(t) must be detected by a 

further demodulation at the intermediate frequency. Buckmaster and Dering 

(1967) showed that it is preferable to use synchrodyne demodulation at 

all signal processing frequencies. 

Solid-state diodes have three major types of noise since they are 

multi-electrode (multi-layered) devices. These are 1) the inherent thermal 

noise which is frequency independent at microwave frequencies, 2) the shot 

noise, which is caused by the random arrival of independent charge carriers 
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and 3) the so-called (I/f) noise. The shot noise is proportional to the 

d.c. diode current and so to the incident microwave power. Thermal noise 

and shot noise cannot be distinguished since they are basically white, but 

their powers can be controlled through the temperature or d.c. current 

respectively. (1/f) noise nature is not understood completely, however 

its frequency dependence is given by 

P ', J/fn (4.5.7) 

where n ".' 1 (Buckmaster and Rathie, 1971-Il). The frequency where the 

(1/f) and white noise powers are approximately equal is called the "knee" 

of noise power as a function of frequency. Considerable effort has been 

expended to decrease the (1/f) noise power and hence to decrease the "knee" 

frequency. Backward and Schottky-barrier diodes are preferable to clas-

sical point-contact diodes since they have lower "knee" frequencies. 

Figure 4.3 (Buckmaster and Rathie, 1971-11) compare the noise power fre-

quency distribution of these three types of diodes. 

4.6 Dispersive Elements; Additional Nôise Sources  

The steady external magnetic field B plays the role of dispersive 

element in EPR spectrometers. This role could be played by the frequency 

of the microwave generator, however it is very difficult to vary the 

resonant frequency of the sample resonant cell over a wide frequency 

range and to synchronize this frequency with the frequency of the micro-

wave generator. 

Magnetic fields suitable for EPR experiments can be generated by 

air-core solenoids, iron-core magnets and superconducting solenoids. The 

air-core solenoids are the cheapest and lightest and the magnetic field 

is proportional to the winding current. Unfortunately, the fields thus 
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obtained are limited to 1O.5T. Iron-core magnets are used extensively. 

They can generate magnetic fields up to '-'3.5T so that g '\'2 resonances 

can be studied up to "100GHz. However, the working volume is very res-

tricted above'.'2T and water cooling is required. Superconducting solenoids 

are used to generate magnetic fields in excess of "'31. They use very little 

power and give fields having a very high stability over long periods of 

time, but consume appreciable quantities of liquid helium and additional 

coils are required to sweep and modulate the magnetic field. 

The inhomogeneity and instability or noise of the magnetic field 

do not limit the EPR spectrometer sensitivity directly but drastically 

restrict its resolution. Ideally, the magnetic field and the microwave 

frequency should be stabilized to the same degree 

Other noise sources which may limit the EPR spectrometer sensitivity 

are microphonics and mechanical vibrations. They degrade the sensitivity 

if their frequency components appear within the detector bandwidth. They 

are due to mechanical resonances, cooling fans, vacuum pumps or the bub-

bling of cyrogenic fluids and have audio-frequency components. Mechanical 

and thermal instabilities are inevitable in adjustable components such 

as cavity matching and tuning devices, bridge matching, microwave oscil-

lator synchronizer, magnetic field stabilizer, etc. They appear at the 

output as a very low frequency noise and cause drift and baseline insta-

bility. The sensitivity may also be degraded by spurious electrical tran-

sients. 
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CHAPTER V 

NOISE MINIMIZATION IN AN EPR SPECTROMETER 

This chapter discusses methods of minimizing the noise level 

to increase thesensitivity. This objective can be achi.eved by 

improving each component to reduce its "noise production" and by 

minimizing the effect of this noise on the final signal. The latter 

objective is usually achieved by shifting the signal .to, less noisy 

frequency regions. Since several noise sources are present in an EPR 

spectrometer, a careful assessment of the relative importance of each 

of them is necessary to distinguish clearly the "roots of evil". 

It is useless to spend any effort to improve a component whose noise 

contribution plays no important role in limiting the sensitivity. An 

experimental assessment of the noise situation in an,EPR spectrometer 

is reported in Chapter VIII, but some of the conclusions 'drawn there are 

given in this chapter in order to present an unitary picture of the 

problems involved in an optimum design of an EPR spectrometer. 

5.1 Reduction of Detector Noise  

Solid-state diodes operated as microwave mixers are the detectors 

commonly used in ERR spectrometers. The signal appears i,n the low 

frequency region where (1/f) noise predominates if the basic configuration 

discussed in Chapter IV is employed. This problem can be avoided by 

arranging that the output signal from the fist demodulator is not in 

the noisy regionof the detector diode. The various methods of achieving 

this objective will be discussed briefly. 
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5.1.1 Synchrodyne (Homodyne) Configuration  

The synchrodyne configuration is used widely to minimize the effect 

of the (1/f) diode noise. The nonlinear relationship between the 

static magnetic field and the resonance signal permits "signal com-

ponents" to appear at the harmonics of the modulation frequency 

when the magnetic field is modulated. The relationship between these 

components and the signal which would appear in the absence of the 

field modulation is a very complicated function of the many parameters 

affecting the modulation process. Buckmaster andDering (1968) have 

shown that the nth "harmonics" (an, d n ) are proportional to the 

product of the n-th derivative of the original lineshape function and 

the modulation amplitude B 

n, ( d n 

" W IX 
U) 

x'L (5.1.1) 

when (B U)/B)<<1 and B is the half width at half maximum amplitude. 

Figure 5.1 is a diagram of a typical synchrodyne configuration. 

Unfortunately, this approach requires the modulation of the static 

magnetic field at the sample, which may be troublesome at higher 

frequencies. It can be shown that the signal to noise ratio at the 

output is proportional to the modulation frequency up to the "knee" 

frequency provided that diode noise is the limiting sensitivity factor. 

It is very difficult to produce a magnetic field of sufficient amplitude 

at frequencies above " 1 Hz inside a microwave cavity because Foucault 

currents are induced in the walls. An internal modulation loop, 

extremely thin conducting walls have been used to solve this problem, 
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(Alger, 1968), however the system is much more complicated and less 

reliable at low temperatures due to increased microphony. The 

resolution of the system may be limited if the magnetic field modulation 

frequency exceeds the linewidth of the resonance but this is rarely 

a problem. The synchrodyrie configuration enjoys the advantages of 

relative simplicity and lack of severe stability problems in comparison 

with other configurations explaining its almost universal adoption. 

5.1.2 Superheterodyne and Pseudosuperheterodyne Configurations  

The superheterodyne tonfiguration employs two separate microwave 

oscillators so that the signal at the output of the microwave diode 

mixer appears at the difference frequency of the two oscillators. 

Detection at the intermediate frequency shifts the signal to zero 

center frequency. Figure 5.2 is a diagram of the superheterodyne 

configuration. , This design suffers from its complexity 'because 

the signal oscillator frequency should be stabilized relative to the 

cavity resonant frequency and the intermediate frequency must be also 

stabilized to prevent baseline drift. 

The superheterodyne configuration is useful when a)—the absorption 

or dispersion " must be measured, b) the linewidth is less than 

lOpT or exceeds lOmT, c) very high sensitivity is required, and 

d) in ENDOR experiments. The advantages of the superheterodyne con-

figuration can'be achieved with a minimum of its disadvantages by 

using a single oscillator in a pseudoheterodyne configuration. This 

oscillator generates both the "signal oscillator" and the "local 

oscillator" waves. The 'frequency of one of these waves must be 

shifted by a modulation process. 
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The frequency shift of the local oscillator wave can be achieved 

in various ways. Ruban (1963) and Buckmaster and Dering (1967) used 

a single sideband generator (two ferrite modulators operating in anti-

phase) to obtain a frequency shift up to 150kHz More recently, 

Buckmaster and Gray (1971) have ,used a phase modulator 'which is. more 

efficient. 

The other approach requires the modulation of the wave in the 

signal arm. The frequency, phase or amplitude of this wave should 

not be modulated before entering the resonant cell because of the fil-

tering action of the cell. Methods of amplitude modulating the power' 

output of the resonant cell have been, described by many,.authprs. 

Praddaude (1967) used a Faraday rotation modulator to achieve 100kHz 

sidebands; Faulkner and Whippey (1966) used a microwave point-contact 

diode modulator driven with a 160kHz square wave and, more recently, 

Clerjaud and Lambert (1971) made use of a PIN-diode modulator. This 

latter modulator" has the best characteristics. The system described 

by Clerjaud and Lambert is very simple and easy to build but it is , 

doubtful that it can achieve a very high performance since nothing is 

done to prevent the effect of the klystron noise as do the systems 

devised by Buckmaster et al or Praddaude. 

These amplitude modulation techniques have the disadvantage of 

introducing at least a 3dB loss in signal power'. This pauses a signif-

icant loss of sensitivity when the usable stgra1.wave power is limited. 

Nevertheless,' it is possible to overcome this effect in a system suggested 

by Wilmshurst (1967). The use of a PIN diode instead of a point-contact 

diode in the configuration described by Faulkner ,and Whippey produces 

a square wave phase modulation since a PIN diode is equivalent 
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to a short circuit when forward biased and to an open circuit when 

reverse biased. 

It should not be forgotten that all these modulation techniques 

require the use of devices which introduce nonlinearities and additional 

noise. Special devices and techniques must be used to minimize these. 

effects. This increases the complexity of the system which the pseudo-

heterodyne configuration was supposed to avoid. 

5.1.3 Low Noise Preamplifiers  

Lownoisè microwave preamplifiers can be used to increase the 

signal and its additive noise prior to the receiver with the object of 

improving the overall noise figure of the detection system. To be 

useful, these preamplifiers should have a much lower (equivalent) 

noise temperature than the detector. The applications in EPR of either 

parametric preamplifiers (t z 100-20K) or maser preamplifiers 

(t z 10-1K) have been described by Poole (1967) and Wiimshurst (1967) 

amongst others. The maser is more interesting since its'use would 

appear to produce the ultimate sensitivity. Buckmaster and Ski rrow 

(1972) have analysed this problem thoroughly. They showed that the 

advantage of using a maser preamplifier is superfluous in EPR studies 

of samples which 'saturate at signal power levels in excess of 0(li.IW), 

but that they are useful for samples that saturate below 0(0.lpW) 

since this is also the saturation threshold of the preamplifier. 

Experimental proof of this assertion is given by Hardin and Uebersfeld 

(1971). 
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Low noise preamplifiers are not useful unless the: receiver noise 

is dominant and its influence can be reduced by using such a preamplifier 

with sufficient gain. In general this is not the situation since the 

sensitivity is ultimately limited by the oscillator noise. 

5.2 Reduction of Microwave Oscillator Noise  

The analysis of oscillator noise effects is very complex compared 

to receiver noise effects. Various techniques have been used to describe 

oscillator noise and, in particular, its frequency instability. An 

intuitive approach using concepts such as background noise, noise 

pedestal, mean and rms frequency fluctuation has been followed by 

Bosch and Gambling (1961-1962) amongst others. Wilmshurst (1967) 

used phasor techniques in his analysis of the influence of different 

noise components on the sensitivity of EPR spectrometers. Teaney et al 

(1961) notedand Buckmaster and Dering (1967) proved experimentally that 

oscillator noise is the factor that limits the sensitivity of an EPR 

spectrometer at high cavity power levels. These investigations were 

quite simplistic in their disregard of the unique and complex nature of 

the oscillator noise. A more correct analytical approach which recog-

nizes noise as a random process affecting both the amplitude and the 

phase of the microwave was used by Strandberg (1972). 

5.2.1 Oscillator Noise Propagation in the Signal Arm  

The propagation of oscillator noise in the signal arm can be 

studied correctly by analysing the output of the reflection cavity, 

whose frequency transfer function is given by Eq.4. 1i.6, when the input 

is a wave described by Eq.4.3.2. The effect of various mixers and 
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synchronous demodulators can be accounted for by introducing a new 

transfer function cascaded with a band-pass filter centered around the 

frequency f=kfm of the detected harmonic of the magnetic field modu-

lation frequency fm. A synchronous detector makes the bandwidth of this 

filter equal to the very narrow bandwidth of the low-pass filter located 

after the final stage of detection. If the a.m. and p.m.' noise are 

uncorrelated, then the noise power spectral density at the input to 

the final detector is 

= G(f)j2P0 [1ZAM (f) 12W AM (f + jzpM(f)I2wpM(f)] 

where P0 is the oscillator power and G(f), the transfer function of the 

other circuit components, is frequency independent in the bandwidth of 

interest. If the reflection cavity is nearly matched -W ' I and r0 o) 

and at resonance (f ".' f >> f ) then 
osc— r m 

= Q2S2 sin 24 + r + Qf2/f 2 cos 4 

IzpM(f)I = (r2 + Q2f2/f2)sin2 + Q2S2cos 2 

(5.2. 2a) 

(5.2.2b) 

where S=(fo_fr)/fó is a factor measuring the relative stability carrier 

frequency-resonant cavity frequency and 4, represents an overall phase 

angle between the signal and the reference wave. The absorption component 

is detected when 4,=O while the dispersion component is detected when 

4,='irlZ. Eqs.5.2.l and 5.2.2 describe all the ways in which the signal 

oscillator noise can limit the spectrometer sensitivity and indicate 

the importance and frequency dependence of the various parameters 

governing the oscillator noise propagation. 
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It is instructive to rearrange these equations to show how the ab-

sorption and dispersion components are affected by oscillator noise. 

abs IG(f)I [(r2 + 02f2/f2) + Qs2.] WAM(f) + 
0 0 '0 0 

+ P I(f)I. [Q2S2 + 2 (r2 + Q2f2/f2)].WPM (f) 
0 01 0 

(5.2.3a) 

W'= w'2 p IG(f)I'2 {(r2 + Q2F2/f2)(ir/2-) 2 +Q2s2] WAM(f) + 
-0 0 0 0 

+ P JG(f)I 2 [(r/2-Q2S2 + (r2 +Q2f2/f2)] WPM(f) 

(5.2.3b) 

It should be noted that several contradictions with the general consen-

sus of requirements for higher sensitivity appear in these equations. 

While the signalis proportional to Q in the absence of saturation, the 

noise due to the signal oscillator is also an increasing function of 

Q so that a compromise must be achieved. This compromise depends on 

many factors including the oscillator noise level, the receiver noise 

level, the final detection frequency and the saturation power level. 

The f2 dependence-of some of the terms of Iz(f)I2 contradicts the 

experimental folklore that the system sensitivity is proportional to 

the magnetic field modulation frequency. This belief takes into account 

thefact that the noise power of the receiver decreases with increasing 

sideband frequency but overlooks the fact that this is valid only 

up to the "knee" frequency and disregards the role of oscillator 

noise and its frequency dependence. Again, a frequency compromise is 



61 

required according to each experimental situation. 

Equations 5.2.2 and 5.2.3 stress the importance of critically 

matching the resonant cavity to make the noise terms depending on 

r0 negligible. This shows that configurations in which the cavity is 

not matched or the sample cell bride is unbalanced in order to provide 

the microwave reference for the diode detector are not optimum and 

should not be used. 

5.2.2 Frequency Stabilization  

Equations 5.2.2. and 5.2.3 indicate that there are two different 

problems involved in the concept of frequency stabilization. Absolute 

stabilization reduces the f.m. noise, and hence W while relative 
PM 

stabilization is necessary to maintain the difference between the 

oscillator frequency and the resonant cavity frequency as small as 

possible. 

The absolute stabilization can be achieved either by phase or 

frequency discrimination relative to a standard frequency. This reference 

frequency is determined by either a very stable high-Q resonant cavity 

(Pound, 1946) or a high stability monochromatic quartz. crystal oscillator 

(Pascaru, 1964). Buckmaster and Dering (1966) and Dering (1967) have 

discussed the various schemes in detail. They also discussed the 

problem of relative stabilization using the sample cavity as a reference 

cavity in a Pound stabilizer. The stabilization should be: independent 

of the microwave power into the sample cavity or, at least, it should 

be effective when the power exceeds a certain minimum value. The 

optimum approach is to combine absolute stabilization using a high 

stability, monochromatic quartz crystal reference oscillator and 
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relative stabilization using the sample. resonant cavity as the reference. 

Such systems have been described by Buckniaster and Dering (1966) and 

Buckmaster and Gray (1971). 

Frequency stabilization is a profound and complex problem because 

- it affects the performance of EPR spectrometers in various ways. 

The stability of the resonant frequency of the sample cell also needs 

consideration. Strandberg (1972) proposed the use of a wide bandwidth 

relative stabilization system instead of the usual narrow bandwidth 

absolute and/or relative stabilization systems. Thus it is possible 

to reduce the factor S to zero and to decrease the relative f.m. 

noise power so that the sensitivity of the EPR spectrometer will 

increase. Unfortunately, this proposal overlooks the fundamental 

role played by the frequency of the electromagnetic wave in magnetic 

resonance phenomena.- This frequency must not drift with the cavity 

resonant frequency or follow its rapid fluctuations since this would 

affect the system resolution and degrade its sensitivity. Care must 

be taken to ensure that a satisfactory compromise is achieved. 

It would be interesting to invert the procedure by stabilizing 

the resonant frequency of the sample cell to a high stability, 

monochromatic signal oscillator because the frequency at which the EPR 

transitions are measured should be constant. This procedure is 

feasible since. high-Q varactor and PIN diodes have become available 

and should be evaluated both theoretically and experimentally. 

5.2.3 Phase Stabilization  

An analysis of Eqs.5.2.3 shows the importance of the operating 

phase angle 4 (0 or ¶12). The correct interpretation of the information 
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carried by theoutput signal depends on this angle as does the 

reduction of oscillator noise effects. The problem of distinguishing 

between absorption and dispersion spectra will be treated in Chapter IX. 

The effect of phase instability has not been granted much attention, 

except by Praddaude (1967), since it is not a first-order effect and the 

phase stability of the waveguide components is usual ly quite good. A 

stabilization loop using a phase modulator can be introduced when 

required. The frequency response functions given in Eqs.5.2.2 are 

sensitive to the phase when the input wave is either amplitude or pulse 

modulated. This is the basic idea of Praddaude's system., but a simpler 

system using only one phase modulator for both the frequency and the 

phase stabilization can be devised. 

5.2.4 Bimodal Cavity  

Teaney, Klein and Portis (1961) showed experimentally that 

oscillator noise could be reduced by using a bimodal cavity as a resonant 

cell. The following discussion assumes that the resonant cell has two 

orthogonal modes; This orthogonality ensures a high degree of isolation 

between the modes, and thus attenuates the amount of oscillator .noise 

reaching the detector. Very interesting designs have been described 

by Nishina and Danielson (1961), Hyde and Freed (1968) and Franconi 

(1969, 1970) amongst others. 

Abimodl cavity is a reciprocal two-port resonant cell. The 

ports are activated by two orthogonal modes having the same resonant 

frequency. In theory, the modes and thus the ports should -be perfectly 

isolated unless disturbed by a magnetic resonance phenomenon, a Faraday 

rotation or some other perturbing phenomena. Off-diagonal components of 
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the susceptibility tensor permit a transfer of power from the input 

to the output mode. Attempts to derive a frequency transfer function 

for a bimodal cavity' have been made by Teaney et al (196)) and Liu, 

Wishina and Good (1961). The former derivation assumed that a lumped 

parameter equivalent circuit could be used, while the latt er is 

pertinent only to that particular geometrical configuratiqn, although 

quite general in principle. 

These transfer functions cannot be easily measured experimentally. 

A clearer and deeper understanding of the function of this type of cavity 

is required. It can be considered as a transmission cavity with isolated 

input and output ports so that it is a band-reject filter.. The advantage 

of this filter is its wide bandwidth due to the frequency independence 

of the orthogonality between modes. The combination of a reflection 

cavity with a magic bridge or a circulator is also a band-reject filter 

but has a very narrow bandwidth. Then, an equation similar to Eq.4.4.6 

is a valid expression for the frequency response function of a bimodal 

cavity. 

T (f) 
(1- f f) - j[2effQeff(1r)/1rI 

=   

bm (1+ ff) + J[2effQeff(ff r )'f r (5.2.4) 

where 1r is the resonant frequency of both modes,.$ is the effective 
eff 

coupling coefficient and °eff is the effective quality factor. These 

three parameters can be easily measured experimentally. For the 

narrow bandwidth filter Qff Q and a conflict arises between the 

high signal requirement that Q is as large as possible for maximum 

signal and the requirement that °eff is -as small as possible to reject 

oscillator noise. This conflict does not appear for the-bimodal cavity 
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since Q0, the quality factor for an individual mode, and 0'eff which 

describes the bandwidth of the orthogonality are different. They can 

be optimized separately and no compromise is necessary. Such an ideal 

filter for which 0eff = 0 and eff = 1 will reject all the 

oscillator noise. 

Unfortunately, ideal bimodal cavities cannot be realized. 

Moreover, the introduction of the sample distorts the necessary ortho-

gonality and various tuning and matching devices are necessary since the 

distortion changes from sample to sample and the tuning devices usually 

affect both modes. This, along with its bulkiness, are the main dis-

advantages of the bimodal cavity. The bulkiness arises because the 

two orthogonal oscillating magnetic fields must be also orthogonal 

to the static magnetic field. The problems of achieving a small volume 

and an effective."match" are treated extensively in the literature 

but no mention has been made regarding the bandwidth of the cavity. 

The assumption that the modes are othogonal at all frequencies is not 

valid in practice. Noise coupling via the resonance phenomenon has never 

been mentioned also. This mechanism has not been observed because the 

sensitivity is determined incorrectly as the ratio of the signal ampli-

tude. to the noise r.m.s. amplitude measured far from the signal. 

The advantages of a bimodal cavity are uncontestable in principle, 

but a more complete study of its practicality remains to be done. The 

use of bimodal cavity in pulse experiments is another field of interest. 
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5.2.5 Local oscillator Noise—Balanced Mixer  

The previous sections have discussed the propagation and reduction 

of oscillator noise in the signal channel. Additional noise arrives 

at the' receiver through the reference, or "local oscillator" channel. 

The quotation marks indicate that the role of local oscillator is 

played de facto by the signal oscillator in single oscillator systems. 

F.m. oscillator noise plays no influence in the reference channel 

besides introducing a second-order phase uncertainty since no frequency 

dependent device is used. A.m. noise is a first-order effect and 

its influence should be reduced. A magic-I balanced mixer, is the simplest 

and best technique since the a.m. local oscillator noise components 

appear in antiphase and, hence, they cancel. The degree of cancellation 

'depends on the diode match to the waveguide, the mechanical symmetry of 

the bridge arms and an identity of diode characteristics (Poole, 

1967). It is necessary to use some form of mechanical tuning and amplitude 

attenuation to satisfy these conditions, but such an involved design of 

a good balanced mixer is justified by the advantages it provides. 

The cancellation of a.m. noise is, in a first-order approximation, 

valid over a relatively large bandwidth contrary to the statement of 

Wilmshurst (1968). Wilmshurst's (1967) statement that a balanced 

mixer reduces f.m. noise is also not justified either theoretically 

or experimentally. 

5.3 Reduction of Mechanical, Thermal and Electrical Transients Effects 

The mechanical, thermal and electrical transients form a special 

class of noise sources. They are difficult to identify and locate in 
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either space or frequency and, moreover, they are not always repeatable. 

These effects usually produce noise components which are negligible 

compared to those due to the receiver or oscillator. They become in-

creasingly important only when the latter components are decreased. 

A good mechanical and electrical environment is required. Various noise 

sources must be identified and located both in space and in frequency 

before a systematic attempt is made to minimize their effect. The 

procedure depends on the nature of the noise sources (Alger, 1968). 

Frequently, the solution consists of shifting the'- detection 

bandwidth to noise-free frequency regions when eliminalion is impossible. 

The long-term thermal instability and drift lead to loss of resolu-

tion and baseline instability. This effect can be reduced by employing 

magnetic field modulation techniques and both relative and absolute 

stabilization of the oscillator frequehcy. 

5.4 Conclusions  

The noise sources affecting the performance of an EPR spectro-

meter have been analyzed. It is concluded that a compromise is usually 

necessary to optimize 

the many experimental 

analysis of the noise 

the system. The optimum situation depends on 

parameters and their variation. A complete 

is necessary to distinguish the ñiost 

important noise sources before their influence can be minimized in 

a systematic approach. 
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CHAPTER VI 

EPR SPECTROMETER PERFORMANCE IMPROVEMENT BY SIGNAL PROCESSING 

It was shown in Chapter I that the detection system of an EPR 

spectrometer consists of a detector for the resonance phenomenon, an 

information processor and a time base. The radiation detector was analy-

sed with the microwave system because it is technically a part of this 

system although logically it is a part of the information processor. 

The information processor consists of transformation, measurement and 

interpretation processors. This chapter analyses only the transformation 

processor since the other functions are still performed by the human 

operator. 

The transformation processor brings the data into a form which is 

optimum for the subsequent analysis. It is, usual to assume that the 

transformations are performed by linear time-irivariant.processors. This 

assumption is made for the sake of mathematical simplicity rather than 

because linear systems have necessarily a superior performance to non-

linear systems. It was shown in Sec. 3.3 that time-invariant linear 

systems are characterized by a convolution integral equation 

y  = fh(t-T) x() dT (6.0.1) 

where I is an interval on the time (real variable) axis. If a system 

yielding a functional z(t) of the input data x(t) is desired, it is 

necessary to solve Eq. 6.0.1 for h(t) where y(t) = z(t).. The solution 

can be obtained easily using Fourier transform operators if the input 

data x(t) are deterministic and the interval T is unbounded. 
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H (f) (6.0.2) 

For stochastic' input data, Eq. 6.0.2 is invalid and the output data y(t) 

can only approximate the function z(t). It is then necessary to define 

adequate criteria according to which this approximation is. optimum (Heistrom, 

1968). 

6.1 Least Mean Square Estimation (Wiener-Ki1mogoroff Theory) 

The criterion on which the Wiener-Kolmogoroff theory is based 

requires the mean square error between the actual outputi(t) of the 

linear system and the desired signal z(t) to be minimized'. 

e = E[Jz(t). - y(t)I2] (6.1.1) 

The advantage of using this criterion is the significant simplification 

of the mathematical analysis involved although it may not lead to improv-

ed performance. According to the .orthogonality principle (Papoul is, .1965), 

Eq. 6.1.1 is equivalent to the condition that the simple error defined 

as the difference between the desired value z(t 1) and the estimated value 

y(t 1) is orthogonal to the input data x(t). 

E[(z(t 1) - Y(td) x(t)] = 0 ; tET (6.1.2) 

Three different problems can be distinguished depending on the position 

of t1 relative to the interval T: 

- t1 belongs to T - the smoothing problem in which an estimate of 

the past is improved on the basis of knowledge of both past and future 

relative to t1 values; 

- t1 equals the upper bound of T - the filtering problem in which 

the present value is' estimated on the basis of knowledge of past values; 
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- t1 exceeds the upper bound of I - the prediction problem in 

which an estimate of a future value is attempted. 

Unfortunately, the solution for the system h(t) can be expressed 

only as an integral equation. If Eqs. 6.0.1 and 6.1.2 aretcombi ned and 

random process theory is applied, then 

R zx (t - t ) = fh(t1,T) xx ,R (t - T) dT . (6.1.3) 

T 

This Wiener-Hopf type equation can be solved easily only when the inter-

val I covers the entire time domain. The optimum system is time invariant 

if the random processes involved are stationary. The'-so - luti,on of "Eq. 

6.1.3 becomes 

• w 
H(f) zx (f) 

= w (f) exp(J27rft1) 
xx 

while the minimum error is 

e = R (0)-
ZZ 

+00 

00 
+00 

R Zx . (T)h('r)d'r = f ZZ W (f00  [1 

(6.l.4a) 

Iw (f)I2 '1 
Zx  

df. 
W ( 
ZZ f 

(6.1.4b) 

The determination of a functional z(t) of the signal, s(t) when 

this signal is mixed with noise n(t) is an interesting common problem. If 

the signal and the noise are uncorrelated, then 

x(t) = s(t) + n(t) 

and Eqs. 6.1.4 became 

,w (f) 
H(f) -  Z5  

W (f)+w (fj 
ss nn 

and 

W Sn (f) =w Zn (f.) =0 (6.1.5) 

(6.1.6a) 
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e= 
+00 J w zz (f)w nn (f) 

df 
W (f) +W (f) 

-00 ss nn (f) 

The realization of this filter H(f) depends on the signal shape. 

An implementation of such filters on digital computers is discussed in 

Chapter IX. It is interesting to mention that the least mean square 

criterion is never used for optimum filter design in EPR instrumentation 

and that the signal to noise ratio (S/N) maximization criterion is used 

exclusively. 

6.2 Filtering for Enhancement of Sensitivity in the S/N Sense  

The S/N maximization criterion is appropriate only in problems 

where the decision concerns only the presence or absence of a signa1 

which may be buried in noise and no information is required concerning 

its shape or time of occurrence. The least mean square estimation or 

other criteria must be used if this latter information is required or 

additional constraints must be imposed on the S/N maximization criterion. 

•6.2.l S/N Definitions  

Communication theory usually employs a S/N definition involving powers 

S/N(P) - Signal Power  
Noise Power - [S/N(A)]2 

where the signal power P[x(t)] is defined by 

P[x(t)] = urn f x(t)J 2 dt 
T+co -T 

which is finite and measurable. 

- fr.m.s. signal amplitude }2 
Vm noise amplitude j 

(6.2.1) 

(6.2.2) 
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EPR experiments produce signals of the finite energy type since 

their power, as defined by Eq. 6.2.2, is zero while their, energy is 
+00 

E[x(t)] = f I x(t)J 2 dt. 

A more appropriate S/N definition is 

S/N(E) Esignal  
P[no i se 

(6.2.3) 

(6.2.4) 

It is difficult to measure signal energies or noise powers in 

EPR spectroscopy because they are usually concentrated in a very narrow 

low-frequency range. Consequently, the S/N is defined in terms of amp-

litudes instead of either of these two definitions. 

= (peak amplitude of signal) 
(6.2.5) 

S/N(A) (r.m.s. amplitude of noise) 

where the subscript 'lull denotes a unipolar signal. As mentioned in 

Sec. 2.4, magnetic resonance spectroscopy lineshapes are Gaussian, 

Lorentzian or some combination. Ernst (1966) has described some convenient 

methods of measuring S/N(A) in which the noise power or its r.m.s. ampli-

tude is usually measured in magnetic field or microwave frequency regions 

far from resonance. This is erroneous for EPR spectrometers in which 

oscillator noise predominates because the output noise power is higher 

when the resonance condition is satisfied since then the resonant cavity 

is less effective in rejecting oscillator noise. The S/N(A) definition 

given in Eq. 6.2.5 may be considered as equivalent to the S/N(E) definition. 

Most EPR spectrometers employ magnetic field modulation and detect 

the first Fourier coefficient of the lineshape a1 or d1. a1 has a bipolar 

shape with two extrema of opposite polarity. The appropriate S/N(A) 



(a) Lorentzian a0 lineshape; S/N(A) = 2 

(b) Lorentzian a1 lineshape; S/N(A)b = 2 

FIGURE 6.1 Diagram showing the superposition of lineshape function 

and noise. 

Facing Page 73 
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definition is 

(positive siqnal peak amplitude - neqative siqnal peak amplitude) 
S/N(A) (r.m.s. value of difference of noise amplitudes at extrema) 

(6.2.6) 

where the subscript "ba" denotes a bipolar signal. When the noise is 

white this definition simplifies to 

S/N(A) _(positive signal peak amplitude -  negative signal peak amplitude) 

b / (r.m.s. amplitude of noise) 

(6.2.7) 

Figure 6.1 illustrates Lorentzian a0 and a1 noisy signals having SIN(A) of 2. 

ERR signals consisting of many spectral lines present a more complex 

problem. If the lines are assumed to have the same liñeshape f(t) but 

different amplitudes and locations, then 

x  = A k,j f(t-t k,j ) + n(t) g(t) + n(t) (6.2.8) 

k,j j 

where Ak . are the amplitude weighting factors, n(t) is the noise amplitude 

and g.(t)= Z A.f(t-t.). The SR should be defined according to the 

information desired. The S/N must be defined in terms of the energy 

carried by a single' line if each individual line is to be detected, 

S/N (E) - E[f(t)]  
PLn(t)J (6.2.9) 

whereas if a combination g.(t) of lines is to be detected then the proper 

S/N definition is 

E[g.(t)] 

S/N(E) P[n(t)] (6.2.10) 
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A hypothetical speech transmission problem is a useful analogy to 

appreciate the distinction between S/N(E),. and S/N(E). A filter to 

detect single letters in the presence of, noise is necessary if all the 

letters are of interest, whereas a filter designed to detect certain 

letter patterns is' required if only certain words or phrases are of interest. 

It might be advantageous to use filters which enhance the word energy 

rather than the letter energy since S/N(E) > S/N(E). Single lines 

and groups of lines are the magnetic resonance analogy of letters and 

words. 

Optimum filtering of complex patterns discards all the information 

carried individually by the pattern components. This method is not very 

economic since a special filter must be built for each pattern and' the 

filtering is nat l000/ effective if the pattern is disturbed by the experi-

mental condition. S/N(E)E filters could be useful to detect the 

presence of specific paramagnetic ions since each ion has a character-

istic spectral pattern. The processing complexity is justified only 

if the pattern is relatively complicated since the advantage of using 

the filter to enhance SIN(E) is proporti-onal to the number of spectral 

lines forming the pattern. 

6.2.2 The Matched Filter  

The optimum' SIN, maximization filter is derived in communication 

theory texts. 

J-

S (f) 
H ('F) = c m (f) exp(-j2rfto) (6.2.11) 

nn 

where 5*(f) is the complex conjugate of the Fourier 'transform of the. 

signal s(t), c 'is a constant and the filter lag time t is the instant 
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at which maximum S/N occurs. It is called the matched filter because its 

pulse response h(t) is a time reversed replica of the signal if the 

noise is white. 

h m 0- (t) = c.s(t t) (6.2. i 2) 

The filter function 1-1(f) and the achievable S/N are different if 

the signal s(t) is considered to be f(t) or g.(t) =EAk .ttk 
k 

The S/N is obviously greater in the latter case. 

The matched filter distorts the signal shape. One of its effects 

is to broaden the signal. The broadening is symmetric for symmetric 

lines and no relative peak-shifting occurs. The formulae describing 

this process for Lorentzian or Gaussian lineshapes are discussed in 

Sec. 9.2. The shape distortion is more dramatic for lineshapes which 

can be considered to, be derivatives of an original line because a S/N(E) 

matched filter introduces a further differentiation. Thi distortion 

causes problems for experimentalists accustomed to interpreting only 

a1 spectra. A method of avoiding this distortion is discussed in-Sec. 

9.2. 

The matched filter is realizable only for signals which can be 

completed by a time to. Unfortunately, magnetic resonance signals do 

not satisfy this condition. 

6.2.3 The RC Filter Approximation of the Matched Filter  

It is noteasy to realize a good approximation of an optimum filter 

because it requires the calculation of a realizable transfer function and 

the synthesis of the corresponding filter as an electrical network. Con-

sequently, it is not surprising that the simple RC low-pass filter is the 

commonest filter employed in magnetic resonance. It has been analysed 
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completely by Ernst (1966) who showed that the achievable S/N for a Lor-

entzian line is almost what can be theoretically achieved using a matched 

filter. Unfortunately, the RC filter has asymmetric broadening effects 

and shifts the peak location. These asymmetric lineshape distortions are 

the major disadvantages of the RC filter. Nevertheless, ithas the advan-

tage of being an easily and cheaply realizable On-Line filter. 

6.2.4 S/N Filters with Additional Constraints  

Constraints additional to SIN maximization must be imposed to 

minimize the distortion introduced by "normal" filters. A parameter 

must be defined to measure the specific distortion so that an adequate 

criterion for acceptable distortion can be formulated. 

Ernst (1966) used a relative error c defined in the mean square 

sense by 

00 d  

fIsi (t)12 dt 
00 

where s.(t) and 50 (t) are the input and output signals. He used 

(6.2.13) 

the 

Lagrange multiplier technique to obtain the optimum filter for a symm-

etrical unipolar lineshape. 

H pS(f) +qS.(f) 

pS(f) + W (f) 
nn 

(6.2.14) 

where W nn (f) is the noise power spectral density and p and q are the 

multipliers. This filter produces minimum lineshape distortion for a 

fixed SIN value'. The filtering effectiveness depends on the values of 

p and q. It should be noted that the filters given by' Eqs. 6.1.6 and 
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6.2.14 are not identical, unless p = 1 and q = 0, because the filter 

6.2.14 is specifically designed according to the S/N criterion. This 

filter transforms into a matched filter if p = 0 while its effectiveness 

is nullified if p --

The kth moment of the line is another lineshape parameter whose 

distortion may be restricted in a S/N enhancement filtering. 

-i tk51(t dt 

s .(t) dt 

(j) k S (k) (0) 

The moment of the signal at the output from a filter h(t) is 

Mk 
= (,j)Ic./_ 

()k H 00 (0) S(k)(0 

FI(0) s1(o) 

and it follows that the first (k-l) moments are conservedif 

I  h(t) = d g  
dt 

(6.2.15) 

(6.2.16) 

H(f) = (2'irjf) 1<G(f) (6.2.17) 

where g(t) should be chosen so that SiN is also enhanced. 

6.3 Filtering for Resolution Improvement  

Good resolution is required to locate lines accurately. This measure-

ment is limited b• a) noise which blurs the peaks (for unipolar lines) 

or zero-crossings (for bipolar lines) and b) overlapping of adjacent 

lines of finite width. The first effect can be minimized by using the 

procedures outlined in Sec. 6.1 and 6.2. For unipolar lines, it is pref-

erable to cascade a noise minimization filter with a differentiating 
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filter because zero-crossings can be located with greater precision than 

extrema. RC filters are not satisfactory for this purpose because they 

shift the peaks of the lines. This section analyzes the effect of over-

lapping lines and the methods used for its minimization. 

6.3.1 Definition of Resolution Parameters  

The general definition of resolution has been given in Chapter I. 

This section attempts to define a quantitative parameter which can be 

associated with the concept of resolution. This parameter is usually 

related in magnetic resonance spectroscopy to the shape of the narrowest 

line detectable. The most practical and common measure is the full 

width of the line at half its height (Wfh) or the half width at half 

height (Whh). The main advantage of these measures is the ease of deter-

mination, but they are deficient in the sense that they concern only 

two points on the entire line. 

A resolution parameter can be defined as an integral of a functional 

of the I ineshape function. The variance is a possible such definition. 

= M2 (s.) - M2 (s 

Unfortunately, this measure diverges for Lorentzian and certain other 

I ineshapes. 

Two other common integral measures refer to the width of a rectan-

gular 1 ineshape whose properties are related to those of the actual line-

shape. The equivalent width 

w = 
a 

+00 

-00 

(t) dt]. I  s 1  1 (6.3.2) 

is the width of a rectangle having the same height and area as the magnetic 
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resonance line. The energy width 

fIs (t) j2dt I I s. (f) J2df 
w 
e 

Is (0)1 2 1s1(f) df 
-00 

(6.3.3) 

is the width of a rectangle having the same height and energy as the mag-

netic resonance line. 

6.3.2 The Ideal Filter  

Generally, the resolution distortion can be represented by a 

Fredhoim integral equation of the first kind 

+co 

f q(x') r(x,x') dx' (6.3.4) 

where r(x,x') represents the resolution function and q(x) is the desired 

undistorted original spectrum. Equation 6.3.4 transforms into a convol-

ution integral equation if the distorting system is linear and x-invariant 

+co 

s  = f q(xl) r(x-x') dx' 

-•00 

(6.3.5) 

The solution of Eq. 6.3.5 can be obtained by using Fourier transform 

operators. 

q(x) = Y -I[1{s(x)1j 
.{r (x) 1 (6.3.6) 

This isequivalert to afiltering process whose frequency transfer 

function is 
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Hr(f) = l/R(f) = l/[7r(x)}] . (6.3.7) 

For spectra consisting of overlapping lines, the ideal original 

spectrum q(x) and the experimental spectrum s(x) can be represented by 

sums of delta and, lineshape functions respectively 

q(x) = ZA k6 (x-x k) (6.3.Ba) 

s (x) = Akr(x-xk) (6.3.8b) 

where it is assumed that the resolution distortion function r(x) is 

identical for all lines. The ideal filter given by Eq. 6.3.7 will output 

q (x) as a spectrum of delta lines if s(x) is the input data. 

Like other ideal filters, the resolution filter cannot be realized 

as a synthesis of electrical network elements. Section 6.3.4 discusses 

practical approaches to its approximation while Sec. 9.3 discusses its 

simulation by a digital Fourier analyzer. 

6.3.3 Limitations of Ideal Resolution Improvement Procedures  

For overlapping line spectra, the term "ideal resolution improve-

ment" refers to attempts to reduce the spectrum into a sequence of delta 

lines. A comparison of the matched filter for the white noise case 

(Eq. 6.2.11) and the ideal resolution filter (Eq. 6.3.7) shows that these 

filters are an inverse pair. Consequently, any ideal resolution improve-

ment process leads to a drastic reduction of the S/N due to the favourable 

weighting of high frequency noise components. A compromise must be estab-

lished between resolution and sensitivity. 

Cohn-Sfetcu et al (1970) have shown that the resolution of magnetic 
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resonance spectra can be improved by transforming a line into a narrower, 

one of the' same type because Lorentzian and Gaussian lines are self-con-

volving functions. For Lorentzian lineshapes 

and 

= -2Tra  

I Jtj (a2+x2)}  
I ( 2+ 2)} 

(6.3.9a) 

= (a- )/1r[(ct- )2+x2] (6.3.9b) 

where a and are the values for Whh for the spectrum line and resolution 

distortion function, respectively. For Gaussian lineshapes 

and 

-x 2/a  = 

27 
(liczv) e 2 /a 2 2) -l/2 -x2!(c*2- 2) 

2 2) e i = [7r (a - 

(6.3. lOa) 

(6-3. lob) 

where a and are the half widths at (lie) of maximum height. Such proce-

ssirigs are meaningless if a for the narrowest line in the spectrum. 

Filters can be designed to transform a broad line into a narrower 

line of different nature if the conservation of the Lorentzian or Gaus- - 

sian character is not important. A transformation broad Lorentzian into 

a narrower Gaussian line can be used because the Fourier transform of a 

Gaussian tends faster to zero than the transform of a Lorentzian line and 

the filter transfer function 

H(f) = G(f)/L(f) "u exp(-ir2y2f2 + 2-rrJfJ), 

where a and y are the widths of the Lorentzian and Gaussian lines 

(6.3.11) 
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respectively, tends to zero at high frequencies. 

Cohn-Sfetcu et al. (1971) have analyzed the passage of bandwidth 

limited white noise through Lorentz - -Lorentz and Lorentz —Gauss filters. 

They showed that the ratio of output and input noise powers is proportional 

to 

4irS2 
P ii' (I/)(e- - 1) no ni 

for the Lorentz —Lorentz filter and 

P /p e2 2h12 . erf[ 
no ni 

(6.3.12) 

(6.2.13) 

for Lorentz - Gauss filter, where 0 and y are the widths of the Lorentzian 

and Gaussian references lines respectively and 2 is the noise bandwidth. 

Using a different approach, Ernst (1966) derived an optimum filter 

which maximizes the -S/N subject to a reduction of the energy width of 

the line 

I-10 (f) = I- (l+p) R(f) 

PR 2(f) + W(f) 
(6.3.11k) 

where p is a parameter determined by the chosen compromise, between 

resolution and S/N. If R(f) is the lineshape function S,(f), then the 

ideal resolution improvement filter requires p = while the matched 

filter requires p = 0. 

The least mean square error criterion enables the resolution and 

sensitivity enhancement problems to be approached simultaneously. Franks 

(1969) has shown that the transfer function of the optimum filter is 

given by 

H(f) - 

W (f) R(f) 

W xx (f)IR(f)! 2 + w nn (f) .  

(6.3.15) 
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when the resolution distortion mechanism can be idealized as a linear time-, 

invariant system affecting the signal data x(t) prior to its association 

with zero mean stationary noise. This filter introduces, attenuation in 

the frequency regions where the noise density exceeds the signal density 

and tends to behave like an ideal resolution filter in the regions where 

the noise density is -negligible. 

6.3.4 Analogue Filters for Resolution Improvement  

The analogue methods used commonly in magnetic resonance spectro-

scopy to increase the resolution are based on the "derivative approach." 

One method uses the fact that the apparent line widths of the 

higher derivatives of a line are smaller than the original line width. 

The Fourier coefficients a  (dK), K 0 0, can be detected using synchron-

ous demodulators at the kth harmonic of the magnetic field modulation 

frequency. The S/N also decreases since the amplitude -6f aK is smaller 

than the amplitude.of aK...l. Halpern and Phillips (1970) claimed that 

both the resolution and the S/N can be improved if a double magnetic 

field modulation technique with a cascaded double synchronous demodulation 

is used. Their claim can be shown to be ihvalid and no improvement is 

achieved by the addition of the expensive extra instrumentation. 

Another derivative method is based on the theory of Allen et al. 

(1964). They expanded the filter transfer function defined by Eq. 6.3.7 

into a Taylor series 

Co 

H(f) = a k f k (6.3.16a) 

k=0 

where 

ak = (Tf 

k 

H(f)]f0 (6.3.16b) 
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so that 
00 

h(t) = E I 

( .)k 6 (k) () 

The output lineshape is then 

00" 

r(t) E a k (d)k 
(-jj  

k=O 

(6.3-16c) 

(6.3.17) 

The coefficients a  can be found by solving Eq. 6.3.14a for a particular 

lineshape. For a Lorentzian lineshape, Eq. 6.3.15 becomes 

00 

= 

)k I J 2kld 12k [e(t).] 

(2k) a Tf)  (6.3.18) 

where £(t) is the Lorentzian lineshape and a is the sweep rate. 

This method is more complex than the previous one since it yields 

a weighted mixture of the original line and several of its even derivatives. 

As expected, the SIN is drastically reduced by this procedure so that a 

compromise must be made. The method can be implemented directly by mixing 

the outputs of several differentiating circuits and passing the combined 

signal through a low-pass filter. Glarum (1965) had the interesting idea 

of modulating the magnetic field at three different frequencies f m' 

and and synchronously detecting the spectrometer signal at a fre-

quency fm = 100kHz. Alternatively, one modulation frequency can be used 

with three parallel synchronous demodulators at fm' 3 m and 5m' if the 

lineshape is bipolar. Even harmonics or subharmonics must be used for 

unipolar lineshapes. 

6.4 Special Digital Processings  

The field of digital processings for either sensitivity or resolution 
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improvement is vast and prolific. This section discusses only some of 

these procedures. ' They can be implemented on general purpose digital 

computers or special digital processors can be used. The latest trend 

is to build specialized digital computers such as the Hewlett-Packard 

Fourier Analyzer whose application in EPR spectroscopy is described 

in this thesis. The use of a digital Fourier analyser as a signal 

processor is discussed separately in Chapter IX. 

An analog-to-digital (AID) conversion of the data is a necessary 

preprocessing operation because EPR spectrometers output only analogue 

signals. Care must be exercised to perform this conversion correctly. 

The necessary precautions are discussed in Sec. 8.1.. 

6.4.1 Digital On-LineFilters  

A simple type of discrete-time linear filter consists of a relatively 

small number of single and multiple input amplifiers and fixed delay units. 

They can be realized ON-LINE by either analogue or digital systems. Non-

recursive digital filters approximate Eq. 6.0.1 by a weighted sum of a 

finite number of past and present input values. 

y(n) = • hkx(n-k) (6.4.la) 

They can be analysed elegantly using the z-transform (Gold-and Rader, 1969) 

Once the transfer function of the system can be expressed as 

H(z) = h -k (6.4.lb) 

where z = exp(j2irft) and At is the unit time delay. Unfortunately, non-

recursive filters are very sensitive to truncation errors and require a 



y(n). 

FIGURE 6.2 B1ock diagram'representat;on of the canonic form for a discrete-time 

linear filter. 
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great number of weights (i.e., amplifiers and delay units). 

Recursive filters use the feedback principle in summing both input 

and past output values. 

y(n) = - aky(nk) + bkx(n_k) 

H(z) - 

(6.4. 2a) 

(6.4.2b) 

Figure 6.2 shows the canonic form of a recursive filter. A recursive 

filter using only the present input value and the preceding. output value, 

y(n) = (l-a).x(n) + ay(nl), (6.4.3) 

is the equivalent of an RC low-pass filter provided a = exp(-LtJRC), 

Lt<<RC and f<<l/t. 

6.4.2 Time Averaging  

Time averaging is the term used to describe the technique of per-

forming an ensemble averaging over N output signals obtained by succesive 

fast scans of either the magnetic field or the microwavefrequency. Time-

averaging separates the signal from noise because of their different auto-

correlations properties over multiples of. the repetition period T, rather 

than because of their different frequency locations. The signal adds 

coherently to give Ns i (t) while the noise adds as AW n (t) provided it is 

uncorrelated over multiples of T. The distinction signal - -noise is thus 

made even if their frequency spectra overlap. Successful use of time 

averaging requires a good correlation of the scans to prevent resolution 
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degradation. It is also necessary to use a sufficiently large number of 

channels to comply with Nyquist's theorem (Eq. 7.2.5) and avoid distortion 

of the lineshape and loss of resolution. 

Bonnet (1965) gave a complete theory of time-averaging procedures. 

He showed that they can be conveniently cascaded with a low-pass prefil-

tering realized by the computer by obtaining each sample point for the 

averaging process through another averaging over M adjacent samples. 

Ernst (1965), amongst others, has summarized all problems related to 

magnetic resonance experiments and their optimum timing which may involve 

passage effects. 

Time averaging procedures are advantageous since they, unlike fil-

tering procedures, do not increase the sensitivity (S/N) at the expense 

of the resolution. Time averaging procedures are not limited, to digital 

techniques. Various analogue storage devices are capable of performing 

this processing thus eliminating the A/D conversion problems. 

6.4.3 Least Square Approximation Techniques  

The least square approximation is a curve fitting technique. The 

goodness-of-fit criterion is implied in the name and it has been discussed 

in Sec. 6.1. This procedure is based on the selection of a suitable trial 

function with a sufficiently large number of parameters which are to be 

optimized in a least square fit. 

Two distinct applications can be envisaged in connection with mag-

netic re'sonance spectroscopy. Least square smoothing can be used to 

increase the sensitivity. The trial function g(t) is usually a sum of 

orthogonal functions Pk(t) whose coefficients are to be optimized 

g  = a  Pk (t) (6.4.3). 
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CHAPTER VII 

FOURIER ANALYSIS VIA THE FFT ALGORITHM 

7.1 The Discrete Finite Fourier Transform (DFT)  

The Discrete finite Fourier transform (DFT) is a linear operator 

relating two sequences of N complex numbers (Cooley et al, 1969): 

X(n) = F[x(k = (1/N) x(k)Wk (nO,1, ... ,N 

where W = exp(j2ir/N) and 

N-i ri=m (modulo N) 
-nkj-mk =1 (7.1.2) 

The inverse DFT is 

x(k) f 1[X(n)] = X(n)W (k=O,1,...,N-l) (7.1.3) 

The sequences X(n) and x(k) are periodic with the same period N as 

W. 

X(n)= X(IN+n) 

x(k) = x(iN+k) 

As a corollary, 

X (±n) —+x* (k) 

(i=O,±l,±2,...) 

(i=O,±l,±2, . . 

(7.1.5) 

where the double headed arrow indicates a Fourier pair relationship. 
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The behaviour of the Fourier transform to "time" or "frequency" 

shifts is an important characteristic. 

- 
x(i_ ink)ww X(n) 

mk 
WN x(k)<-X(nm) 

o(k), the DEl equivalent of a (S-pulse, is defined by 

tc 

k0 (modulo N) 

(k) k0 

so that 

(7.1.7) 

The DFT of a product of sequences is called a cyclical -con-

volution because it is periodic and not linear like the convolution 

defined through the "normal" (continuous, infinite). Fourier transform: 

x1 (k)x(k) ( ) X1((m))X2 ((n-m)) 

2 E-  = X1((n-m))X2 ((m)) 

= X1((n))*X2 ((n)) 

(1/N) x1((k)) X2 ((k)) )X 1(n) X2 (n) 

where ((n)) means the index is .modulo N. 
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7;2 The Relationship Between the Fourier Transform and the DFT  

The relationship between the Fourier transform defined in Eqs.3.l.5 

and the DFT defined in Eqs.7.1.l - 7.1.3 is determined by the fundamental 

differences between the domains on which the functions and their 

transforms are defined. This domain is the continuous, infinite group 

of complex numbers for the Fourier transform and the discrete and 

finite (N) set of integers for the DFT. 

In practice, the collection of physical data is limited to 

finite time intervals. The finite Fourier transform is defined'by 

+T12 

x(f;T) x(t) exp(-j2ft) dt. (7.2.1) 

-T/2 H 

As T-co, the finite Fourier transform X(f,T) approaches the Fourier 

transform X(f). Care must be taken since 

x(f,T) = L v(t) x(t) exp(-j2irft) dt = V(f) X(f) (7.2.2) 

where the rectartgular data window v(t) is unity in the interval 

Itl <1/2 and zero otherwise. Rectangular data windows lead to 

"leakage" through the sidelobes of their Fourier transform. This 

undesirable phenomenon cannot be always neglected. The usual approach 

(Bergland, 1969) is to taper the physical data x(t) using a more convenient 

window. Finite time spectral density functions definedthrough the 

finite Fourier transform of sample functions are used 10 analyse 

stationary randomprocesses. 
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(7.2.3) 

The properties of an infinite discrete Fourier transform can be 

best established using the shah function /11(t). An infinite sequence 

of equidistant data may be considered as the product of the original 

continuous data function and the shah function. 

+00 

X(t) ///(t) x(t) 

00 

(t-kt) = 

+00 

x(kt)ô(t-kt) (7.2.4) 

The relationship between the Fourier transform of the sequence .x(kit) 

and X(f) is given by 

k=+oo +00 

x(kt) <) F Z  X(f-mF5) (7.2.) 

where F5 = l/t is the sampling frequency. Eq.7.2.5 is referred to as 

the sampling-in-time-domain theorem. It immediately léáds to the 

famous Nyquist theorem which states that a continuous function x(t) 

is determined uniquely by the sequence 7x(kLit) provided Pits Fourier 

transform is nonzeroonly on the region JI < F5/2. A siniilar sampling 

theorem exists in the frequency domain 

+00 

X(nif) 

+00 

i00 

t-il) (7.2.6) 

where T=I/if is the repetition time interval. 

The finite discrete Fourier transform can be defined by combining 

Eqs.7.2.5 and 7.2.6 and taking only the principal terms. 

N-i 

X(nf) = 

N-i 

At x(kt) exp(-j2irkn/N) -. tf X(nf) exp(j2irkn/N)= 

(7.2.7) 

=x(kt) 
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whee T=Nt and F=Nf. These relations are similar to the definition 

of DFT by Eqs.7..l.l - 7.1.3 except that a factor 1/1 is missing in 

the expression for X(n). This difference is unimportant mathematically 

but it is important physically since it changes the dimensionality. 

An illustration of the problems involved in this relationship 

is given in Fig-7-1. 

7.3 Estimates via DFT  

7.3.1 Spectral Density Functions Estimates  

The theory presented previously shows that 

W xx (nf) = TIX(n)I2 (7.3.1) 

an estimate of the powr spectral density of a stationary erg -odic 

random process. 

If the process is Gaussian, then the normalized standard error of this 

estimate (Bendatand Piersol, 1971) is 

C xx r W(:). =v'Th (7.3. 2) 

where m represents the degrees of freedom of the estimate. For the 

simple estimate of Eq.7.3.l m=2 and e =1 which is unacceptable. This 

can be corrected by performing the average operation involved in the 

definition of a spectral density function. Frequency smoothing can 

be achieved by averaging p neighbour points. 

W xx (nf) (lip) 

P-1 

i =0 

W xx ((n-i-i)f) (7.3.3) 
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so that m=2p. Ensemble averaging takes the mean value of the estimate 

of q separate sample sequences. 

q-1 

W (nsf) = (llq) I w (nf) 
XX L XX,i 

i=O 

so that m=2q. If both averages are performed, then 

m=2pq and 6=/I/Pci 

(7.3.4) 

(7.3.5) 

which results in an appreciable improvement in the estimateof a 

spectral density function. This theory also applies forcross-spectral 

density functions. 

The problemof reducing the leakage due to the finite nature 

of the transform still remains. As mentioned above, a possible solution 

is to use a suitable nonrectangular data window. The Origin Hanning 

(110) data window is commonly used but other data windows (Parzen, 

Tukey, cosine-bell, etc.) have been also proposed (Bergland 1969; 

Bendat and Piersol, 1971). The Hø data window is 

[1+ cos(k/N)] /2 

0 k>N 
DHO (1<.t) 

This data window is equivalent to frequency smoàthing since 

i XX (ni.f) =0.25 W XX (( 

(7.3.6) 

-1)f) +'0.5 W X)(nf).+ 0.25 Wxx ((n+1)f) 

(7.3.7) 

7.3.2 Linear System Identification  

Spectral density functions estimated via the DFT can be used with 

Eqs.3.3.11 and 3.3.12 to identify linear systems. 
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H(nf) = W xy xx (ntf)/ Q (nf) (7.3.8) 

2 (nif) = Jw (nf)I2/ xy xy [W^ xx yy J (nf)W (nf)l (7.3.9) 

Smoothed estimates of the spectral density functions should be used. 

It can be shown that.the random error in the frequency response function 

estimates tends to zero as both m-'-°° and y 2 M -* ]. 
xy 

7.3..3 Linear Systm Simulation (Filtering) 

As shown in Sec.3.3 a linear time invariant system is represented 

b' a convolution integral operator in the time domain. In the frequency 

domain, the operation is equivalent to the multiplicationof the input 

by the frequency response function of the system. 

y(t) = h(t) x(t) 

y(f) = H(f)•X(f) 

The simplicity of the input-qutput relationship in the frequency domain 

is a strong argument for using the DEl representation to simulate a 

linear system. This is particularly advantageous when even a crude 

physical approximation of an optimum filter is not available. 

A discrete simulation like 

Y(n) = H(n)-X(n) (7.3.11) 

is easily synthesized on a digital computer but care must, be taken 

because of the special nature of the DEl and the periodical character 

of the cyclical convolution. This frequency-sampling realization of 
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the filter I1(f) is equivalent to a finite impulse response filter of 

duration N samples, which is a combination of a cascade of a comb filter 

and a parallel bank of N complex pole resonators. A more de,tailed 

analysis of this filter simulation is presented in Chapter IX. 

7.4 The Fast Fourier Transform (FFT) Algorithm  

The classical algorithm for the DFT requires approximately N2 

real multiply-add operations making it prohibitive to implement on 

•a large scale. The development of the FFT algorithm (Cooley and Tukey, 

1965) has made extensive use of the DFT techniques possible, The many 

variations of FFT algorithms stress either the economy of time or 

memory (Rabiner et al, 1972). They are all based on the principle of 

performing Fourier transforms whose dimensions are the composite factors 

of N. 

P 

If N = // 
1=1 

r1 then only 4N ri operations are required. 

i=l 

It is advisable to choose N=2P for binary digital computers so that 

a direct implementation of the FFT is immediately possible. The 

processing time is decreased by a factor NI8p. The same procedure applies 

for the inverse transform. The computation time of the FFT of two 

real-valued record can be shortened by a factor of two if they are 

considered as the real and imaginary parts of a complex record. 

z(k) = x(k) +jy(k) , (7.4.la) 

X(n) = [Z(n) t Z'(N-n)]/2 ' (7.4.lb) 

Y(n) = -j[Z(n) - Z(N-n)1/2 ., (7..lc) 
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Computation errors associated with the FF1 algorithm have 

been studied by Welch (1969), Weinstein (1969) and Weichel and Guinn 

(1970) amongst others. The finite length of the words in. a digital 

computer is the general source of these errors. Various systems 

are used to represent the numbers in a digital computer. In fixed 

point representations, the position of the decimal (or binary) 

point is assumed fixed. In floating point representation' the number 

is formed by two fixed point numbers, the mantissa and the exponent, 

while the exponential base is  constant of the representation. The 

block floating point representation is a mixture of the previous 

two representations in the sense that only one exponent is associated 

with all the numbers in the array. Roundoff error or truncation error 

is caused by rounding or truncating the products or sums -formed 

within the digital computer. In many cases these errors are well 

modeled as random processes. Overflows are very rude errors caused 

by the impossibility of the computer to represent a computational 

result which istoo large for the arithmetic (representation) used. 

This is a more stringent problem when fixed point arithmetic is used, 

as is the case with the majority of hardware implementations of the 

FF1 algorithm. 

Welch (1969) has analysed the fixed point- accuracy of the power of 

two FF1 algorithm. For N=2p there are p stages of computations involv-

ing one or two arrays of N numbers. There are three ways-of -keeping 

these arrays properly scaled so that no overflow can occur. An automat-

ic scaling (rightshifting one bit) at each iteration is the simplest 

but the least accurate method. The most accurate method tests each oper-

ation for overflow and consequently scales the entire array prior to 
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each overflow occurence. This leads to an appreciable speed reduction. 

An intermediate method controls the array..at every stage and scales 

it only when an overflow might occur. Welch has shown thatan upper 

bound for the ratio .of the r.m.s. of the error to the rm.s. of the 

answer increases as IN when the FF1 algorithm is implemented in fixed 

point arithmetic. The lower bound of this ratio increases as log 2N, 

which is the rate of increase when floating point arithmetic is used 

(Weinstein, 1969). Weinstein has found experimentally that for non-

random rounding of "half-way" numbers the error has a greater than 

linear increase with log 2t4, while for truncation the increase rate 

is close to (log 2N) 2 rather than to log2N. Welchel and Guinn (1970) 

have analyzed the error propagation for high-radix (4 and 16) FFT 

algorithms, showing that such high-radix transforms may be advan 

tageous due to the smaller number ofmultiplications. Figure 7.2 

summarizes some of their results. - 
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CHAPTER VIII 

NOISE MEASUREMENTS IN ERR SYSTEMS 

The principles of optimum EPR spectrometer design were reviewed 

in Chapter V, where the propagation of noise in an ERR spectrometer was 

analysed theoretically. This chapter gives the experimental evidence to 

substantiate this theory. A digital method of measuring the noise power 

spectral density, which was first described by Haslett et al. (1971) is 

employed. This method was discussed theoretically in Chapters IV and 

VII. This thesis gives the first data which compares directly the limit-

ing effect on an EPR spectrometer sensitivity of the microwave oscillator 

and microwave diode detector noise in the low frequency region as a func-

tion of various parameters. The influence of the oscillator noise is 

studied for the both absorption and dispersion phases. 

It is fortuituous that contemporary instrumentation for a.m. and 

f.m. microwave oscillator noise measurements (Ondria, 1967; Ashley et al., 

1968) is idefltical with a reflection cavity, synchrodyne,. ERR spectrometer 

using a balanced microwave detector. The measurements described in this 

chapter were performed to obtain a realistic assessment of microwave 

oscillator and diode detector noise influence in EPR spectrometers 

(Buckmaster and Cohn-Sfetcu, 1972-I). Nevertheless, it was possible to 

draw conclusions regarding specific methods of microwave device noise 

measurements because the microwave instrumentation is identical. A new, 

faster method of determining the in situ figure of merit of a microwave 

detector is described in Sec. 8.6.1. Section 8.6.2 analyses the recent 

literature concerning microwave oscillator noise measurements. It is 

concluded that the complexity involved in such measurements is not fully 

appreciated. 
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8.1 Instrumentation Employed  

Care must be taken to correctly digitize the data since a digital 

method is employed to measure the noise power spectral density. Sampling 

and quantization are the two separate and distinct operations involved in 

an analogue-to-digital (A/D) conversion. 

Sampling, which is the process of defining the times at which the 

data are to be observed has been discussed in Sec. 7.2. Equation 7.2.5. 

requires that thefo1ding frequency satisfies 

f = F /2 = 1/(2t) > F 
f s - max.data 

(8.1.1,) 

where At is the sampling interval. This condition can be satisfied by 

choosing At sufficiently small. The limit to At is set by technical 

problems in the design of, A/D converters. A filter should be used before 

the sampling device to eliminate data components at frequencies above the 

Nyquist limit. Anantialiasing filter consisting of a 8-pole Butter-

worth low-pass filter (Rockland 1042F-ol) with a cut-off frequency of 

about o9F has been employed in processing the data reported in this 

thesis. 

Quantization is the conversion of data values into digital form. 

The quantization error (noise) in an ideal conversion with a uniform 

probability distribution has an r.m.s. amplitude of ''0.29Ax, where Lx is 

the quantizing increment (Bendat and Piersol , 1971). This noise is 

negligible when an A/D-converter with ,a sufficient number of bits is used 

at full dynamic range. For example, the signal-to-noise ratio would be 

67dB for a 10 bit A/D. Other error sources in an A/D conversion are 

jitter, inherent nonlinearities and finite quantization time. 

The AID conversion in the system used was performed by the 10 bit 
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A/D converter incorporated in the digital Fourier analyser (HP5l50A). 

Figure 8.1 is a block diagram of the instrumentation used for most 

of the measurements described in this chapter. The microwave system is 

a 9GHz synchrodyne EPR microwave configuration described by Buckmaster 

and Dering (1965). A transformer provides the impedance match between 

the microwave detector and the preamplifier (PAR-CR',). The detector 

is balanced by separate stub tuners and microwave attenuators. An ampli-

tude modulator is incorporated in the reference channel connected to the 

H-arm of the balanced detector to simplify the method of obtaining an 

a.c. detector balance. The importance of this balance has been ignored 

by most experimentalists although it was emphasized by Buçkmaster and 

Dering (1967). The a.c. balance should be obtained at the EPR spectro-

meter intermediate frequency. A tape recorder was required since the 

EPR spectrometer and the Fourier analyzer were located in separate 

buildings. 

Unless otherwise stated, the number of samples in a record, N, was 

256, while the number of ensemble averages, q, was 100. The spectrum 

analysed was limited to 0.1 - 20kHz by the bandwidth of the impedance-

matching transformer. Origin Hanning frequency smoothing was used. The 

computing procedure calculates Eqs. 7.1.1, and 7.3.1 q times and then uses 

the result to calculate Eqs. 7.3.4 and 7.3.7. 

8.2 Measurements of Diode Noise Effects in EPR Spectrometers  

The power spectral density of the noise in an EPR spectrometer 

relative to the, input of the preamplifier has been measured under various 

conditions. Initially, the system noise was measured with zero microwave 

power incident on the detector diodes. This noise will be referred to as 

post-detectorsystem noise in the following discussion and is the back-
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ground noise to which the microwave oscillator and diode noise are added. 

The background noise should be lower than that produced by the microwave 

noise sources if a good post-detector system is used. Curve (a) of 

Fig. 8.2 is the power spectral density of the background noise in the. 

instrumentation described in Sec. 8.1. 

The noise spectra for backward diodes (Philco L'l54) and silicon 

point-contact diodes (lN23WE) are given in Fig. 8.2b and Fig. 8.2d res-

pectively. Itwas, necessary to use different impedance matching trans-

formers for each type of diode. The (1/f) character of the noise due 

to these diodes when microwave power was incident on the reference arm 

of the mixer is easily verified. The "knee" for backward diodes is 

0(1kHz) when the incident microwave power is "p0.2mW. The "kneel' fre-

quency for silicon point-contact diodes is above the upper frequency 

limit of the measurements reported in this thesis. 

8.3 Measurements of Microwave Oscillator Noise Effects in EPR Spectro-

meters. 

8.3.1 Local Oscillator Effects  

The effect of local oscillator noise has been discussed in Sec. 5.2.5. 

It was shown that its effect can be minimized by employing a balanced micro-

wave mixer detector. Experimental data has been obtained to substantiate 

this statement. Curves (b), (c) and (d) in Fig. 8.2 compare the power 

spectral density of the noise using balanced and unbalanced mixers. Local 

oscillator noise is dominant when backward diodes are employed with an 

unbalanced mixer. A balanced mixer is not essential when using silicon 

point-contact diodes and the sideband frequency is lower than the "knee" 

frequency since the diode (1/f) noise exceeds that of the local oscillator. 
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The response of balanced and unbalanced mixer detectors to pseudo-

white noise amplitude modulation of the reference microwave power has 

been measured to test experimentally Wilmshurst's assertion (1968). 

Figure 8.2e indicates that this artificially introduced noise is the 

dominant noise component when an unbalanced mixer is used although. the 

modulation depth was only about -50dB. The effect of this artificial 

noise could not be detected when a balanced mixer detector was used 

which clearly demonstrates the advantage of a balanced detector. 

8.3.2 Signal Oscillator Noise Effects 

The analysis of the signal oscillator noise propagation in an EPR 

spectrometer was presented in Sec. 5.2.1. The objective of a first series 

of measurements was to verify experimentally the validity of Eqs. 5.2.3. 

The most important conclusions of Strandberg's theoretical analysis were 

that the overall noise increases at higher frequencies as f2 and the 

oscillator noise is magnified by Q2. 

Figure 8.3 shows the noise power spectral density function of the 

EPR system noise for the absorption phase. A pair of backward diodes 

and three cavities with different Q factors were used to obtain curves 

(b), (c) and (e). Curve (d) gives this function when silicon point con-

tact diodes and a cavity with Q2000 are used. The power incident on the 

microwave bridge was 50mW. The contribution of oscillator noise is not 

significant below 20kHz when silicon point-contact diodes are used. 

This noise is the dominant component with backward diodes. The f2 shape 

and the influence of the cavity Q are noticeable. The lowest Q cavity 

is typical of that used in EPR spectrometers designed in this laboratory. 

A number of discrete peaks due to harmonics of the power line frequency 

were observed in the low frequency portion of the noise spectra. 
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The noise power spectral density functions measured for dispersion 

phase using the same microwave configurations are presented in Fig. 8.4. 

In addition, curve (f) presents the noise power spectral density obtained 

with the microwave oscillator synchronizer loop open under the same con-

ditions as for curve (b). The effect of using this type of synchronizer 

(Microwave System MOS-1/f) is most pronounced below ''2kHz. It has no 

effect above this frequency since its internal 3dB bandwidth is "1kHz. 

A comparison of the theoretical predictions (Eqs. 5.2.3) with these 

experimental measurements shows that Kurokawa's conclusions (1968) con-

cerning the noise of phase locked injection-current oscillators also 

apply to klystron oscillators. He showed that phase locking a microwave 

oscillator to a MHz.crystal oscillator enhances the frequency stability 

and reduces f.m. noise but increases the p.m. noise. 

The measurements made do not confirm the general assumption of 

pseudo-white a.m. sideband noise near the carrier. On the contrary, the 

noise increases with decreasing frequency from 10 1 - 1O3 Hz. This may 

explain the decrease in S/N with increasing power observed in superhetero-

dyne EPR spectrometers using magnetic field modulation frequency in 

this range (Buckmaster and Gray, 1971). 

8.4 Spurious Mechanical and Electrical Oscillations and Transients  

Measurements of noise in an EPR spectrometer also permit the détec-

tion of spurious mechanical and e1ecti1ca1 oscillations. A mechanical 

resonance was detected at 3.125kHz during the measurements reported in 

Sec. 8.3. It appeared in the long waveguide connecting the cavity to 

the magic-I and was easily suppressed after it was located. 

Transients are more difficult to detect because they occur randomly. 

However, they are less troublesome than other noise sources and do not 
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play a significant role in limiting the sensitivity unless their fre.-

queny of occurrence is very high. 

8.5 The 0ptimumDesign of EPR Spectrometers  

Conclusions regarding the optimum design for EPR spectrometers 

have been discussed in Chapter V and summarized by Buckmaster and Cohn-

Sfetcu (1972- Il). 

A digital Fourier analyser enables fast, accurate and reliable 

absolute noise measurements to be performed from 0 - 10 Hz. This is 

the frequency range of importance in the design of EPR spectrometers. 

The method reported in this chapter permits the in situ evaluation of 

the noise in EPR spectrometers enabl,ing the microwave configuration and 

operating parameters such as the microwave reference power, magnetic 

field modulation frequency, cavity.Q factor, etc. to be optimized. 

Conversely, the sensitivity of various EPR systems can be assessed 

objectively and absolutely independent of such variables as filling 

factor, sample, magnetic field modulation amplitude, type and cut-off 

frequency of the output filter which are under the control of the experi— 

mentalist. 

8.6 Analysis of Microwave Device Noise Measurement Methods  

8.6.1 A New Method of Determining the Quality of a Microwave Diode 

Detector  

Buckmaster and Dering (1965) demonstrated that EPR spectrometer 

sensitivity measurements could be used to determine the figure-of-

merit of microwave silicon point-contact diodes and that such measure-

ments were in good agreement with direct determinations of the power 

conversion gain and noise factor of these diodes. These studies 

were extended by Buckmaster and Rathie (1971) to include backward 
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diodes and Schottky barrier diodes. 

The figure bf merit (t/G) is the parameter most commonly used to 

characterize the performance of a microwave detector diode. The noise 

temperature ratio,t, is the ratio of theexcess diode noise power to 

the thermal noise power in the same bandwidth. The frequency dependence 

of t is given by 

t = 1 + ALP f/F (8.6.1) 

where 'rf is the incident microwave power and AL is a constant if the 

diode is operated in the linear region. The power conversion gain 

G =.P if /(m 2 P rf) (8.6.2) 

is a measure of the efficiency with which the diode transforms the micro-

wave signal power 1'rf into power at the sideband (intermediate).frequency 

P. f and m is the voltage modulation index at the sidebaid, frequency. 

The figure of merit (t/G) is an important parameter 'in the noise 

factor F which measures the overall noise performance of microwave systems 

(Van der Ziel, 1954). 

F= (Gs -i -t+F amp - 1)/G (8.6.3) 

where s is the excess noise temperature ratio of the microwave oscillator 

and F amp is the noise factor of the intermediate frequency amplifier. 

It is conventional to measure t and Gin separate test apparata. 

The conventional method of measuring t uses a calibrated reference micro-

wave noise source. The disadvantage of this procedure is that the system 

noise factor is not optimized directly as an in situ part -of the instrum-

entation system employing the microwave diode. The accepted measurement 
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procedures are tedious since they are usually of the point-by-point type. 

Typically, the spot frequency determination made does not cover completely 

the frequency range of interest. 

The digital "Fourier analyser as a computer of power- and cross-

spectral density functions for random processes is an extremely valuable 

tool for the rapid determination of the figure of merit over the low 

frequency region of'sideband frequencies. This region extends from d.c. 

to the maximum frequency permitted by the A/D converter used. 

The in situ determination of the figure-of-merit of microwave diode 

detectors is made possible by inserting a PIN diode a.m. modulator 

driven' by a white noise generator before the detector. Figure 8.5 is 

a block diagram of the simplest measurement system. The PIN diode 

modulator is preferable since its modulation index is essentially fre-

quency independent. It. is recommended that the microwave ports of the 

modulator be buffered with isolators to minimize extraneous interactions 

with the remainder of the system due to the imperfect match of the 

modulator. 

The noise temperature ratio t(f,P f) is 

t(f,Pf) = ;, (8.6.4) 

where W n r (f,P ) is' the noise power spectral density of the detector at 

the sideband frequency f when a microwave power Rrf is incident on the 

detector. The power , conversion gain G(fPrf) is 

,am(f) 

G(f,P f) - P fm/R 
0 

(8.6.5) 

where R is the input impedance of the microwave detectoran 'd Wm(f,Prf,m) 
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is the system noise power spectral density when the a.m. modulator is 

driven by the white noise generator. The microwave power can be measured 

by conventional means. R0 is the characteristic impedanceof the wave-

guide if the detector is matched. The figure-of-merit is computed from 

these two in' situ measurements. 

It was shown in Sec. 4.5 that it is preferable to use the microwave 

diode as a mixer. The local oscillator or reference wave has a constant 

amplitude sufficiènt to drive the mixer diode into its linear region. The 

so 
microwave power arriving at the mixer via the signal arm; P rf , is small and 

variable compared to the local oscillator power. In EPR, it depends on 

the strength of the magnetic resonance phenomenon and on the microwave 

sample cavity balance. The local oscillator power, P 10 , should be adjusted 
rf 

independently to optimize the performance of the mixer. 

The optimum performance of a microwave diode mixer can be determined 

by measuring (t/G) over the frequency range of interest for different 

local oscillator power levels while the signal Qscillator power is main-

tained at a constant low level. 

Care must be, taken to account for the effect of a.m.' microwave oscil -

lator noise particularly when the noise performance of backward or 

Schottky barrier diodes is studied since oscillator noise can exceed the 

diode noise due to 'these diodes. The measurements of (t/G) for microwave 

diodes in unbalanced mixer detectors shOuld be viewed with suspicion 

unless it is demonstrated that the oscillator noise is negligible. Local 

oscillator noise can be minimized by using a balanced mixer. The composite 

figure-of-merit "of the two diodes in the mixer is then measured, but it is 

this composite parameter which appears in the system noisefactor and must 

be optimized. 
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A block diagram of the instrumentation employed is given in Fig. 

8.6. The role of the impedance-match transformer has been explained in 

Sec. 8.1. It may be considered as an integral part of the balanced 

detector, or account must be taken of its frequency dependent gain since 

then 

H (f) 12 w' 
n tr fl 

(tIG) 1 = (f)I2 (tIG)0 

(8.6.6) 

(8.6.7) 

where (tIG) and (t/G). are the figures of merit for the diode mixer 

with and without the transformer respectively. Htr(f) can be determined 

accurately in situ using the linear system identification procedure 

outlined in Secs. 3.3 and 7.3.2. Unfortunately, this would have decreased 

the available measurement bandwidth by a factor of two, when the AID con-

verter incorporated in the HP550A Fourier Analyser was used. The 

procedure was simplified by assuming, with good theoretical and experi 

mental reasons, that the background'system noise is white, i.e., 

W(f,0) W = const. Then (t/G). can be measured as 

P so m2/R W ( 

(tIG)1 = w Wm(f ,p1 ,P5 ,m) 
0 rf 

(8.6.8) 

Figure 8.7 presents (tIG). curves measured as a function of the sideband 

frequency for different levels of, local oscillator power when two Philco 

LLfl54 backward diodes were employed in a balanced mixer. The signal 

oscillator power was maintained at 11iW. The impedance matching trans-

former had been designed on the basis of previous measurements reported 

by Buckmaster and Rathie (1971-Il). The graphs are calculated in two 
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overlapping segments each consisting of 128 points. The points are sep-

arated by "'200Hz in the high frequency section, while the resolution in 

the lower frequency section is "20Hz. The curves in Fig.. 8.7 represent 

a smooth version of the actual data. The noise power spectral density 

functions were obtained by using an ensemble averaging over q = 200 

sample records. 

8.6.2 Discussion of Microwave Oscillator Noise Measurement Methods  

The microwave configurations used in EPR spectroscopy and in micro-

wave oscillator noise measurements are identical. Ashleyet al. (1968) 

and Ondria (1968) outlined the principle of using a synchrodyne config-

uration to measure oscillator noise. One channel contains 'a carrier 

supressiori filter which is usually a reflection cavity —circulator con-

figuration. The carrier suppressor filter is bypassed for a.m. oscillator 

noise measurements to prevent the conversion of f.m. noise into a.m. noise 

(Eq. 5.2.3a). Nevertheless, Ondria considers that the filter is advantag-

eous even for a.m.' noise measurements. Both papers emphasize the impor-

tance of using a balanced mixer detector. More recently, a.m. and f.m. 

•noise measurement techniques have also been discussed by0htomo (1972) 

and Fickart et a]. (1972). 

Generally, these analyses assume that the circuit elements are ideal. 

Thus the resulting noise propagation equations are not very complicated, 

but not very profound either. Strandberg (1972) gave the first detailed 

analysis of the noise propagation in which account was taken of the non-

ideal characteristics of the reflection cavity — circulator' or magic-I 

combination. The conclusions of this analysis were presented in Chapter 

V. The a.m. and f.m. noise components are shown to'become mixed if 4 0 

or 'ff12 or if the mi-crowave cavity is not, perfectly matched, and stable. 
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Fickart et al. (1972) attempted a critical assessment of the limita -

tions of the synchrodyne configuration but their final noise propagation 

equation is also valid only for an ideal configuration 

W(w) = WFM ('w)/(w2 + w2/Q) (8.6.9a) 

for dispersion (4 = ¶12) and 

W(w) = WA(th) (wQ 0 0 1w )2/ [1 + (Q0 0 
1w )2] (8.6.9b) 

for absorption ( = 0). These formulae differ from those of Strandberg. 

Fickart et al. (1972) draw attention to the limitations set by real 

cavities and balanced detectors and present graphs showing the ideal 

frequency dependence of Wn(w) from Eqs. 8.6.9 as well as deviations from 

these ideal dependences, but no theoretical evidence is given to show how 

these latter curves were obtained. They conclude that Ondria's suggested 

use of the carrier suppressor filter for a.m. noise measurènénts is not 

practical in the frequency region between the cavity 3dB points even under 

ideal conditions. It. is interesting to note that they consider a balanced 

mixer as a linear detector which performs an addition of. the input voltages 

and not as a multiplier. 

In general, only d.c. methods of balancing the. mixr are discussed 

in the literature (Obtomo, 1972). It has been found in the study reported 

in this thesis that it is not sufficient to assume that ad.c. balance 

implies an a.c. balance and that care must be exerted to achieve the latter 

condition. 
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CHAPTER IX 

THE DIGITAL FOURIER ANALYSER AS AN EPR INFORMATION PROCESSOR 

This chapter discusses the simulation of linear systems by a digital 

computer using the FFT algorithm. Linear systems which enhance the sen-

sitivity and/or the resolution of EPR spectra have been analysed theore-

tically in Chapter VI, while the discrete Fourier transform OFT) and 

the FFT algorithm have been discussed in Chapter VII. 

Fundamentally, frequency sampling (DEl) simulation of a linear 

system is an OFF-LINE processing because the entire signal (sequence) 

must be known before the actual computation is commenced. It has the 

advantage of being a higher fidelity simulator of ideal systems than 

ON-LINE processors since physical realizability is not a limitation. 

But this OFF-LINE character makes it difficult to use OFT filters in 

closed-loop systems where feedback decisions are required immediately. 

Nevertheless, the advent of the FFT algorithm has shortened the compu-

tation time to such an extent that, for practical purposes, a Fourier 

transform processor may be considered as a pseudo ON-LINE processor. 

It has been successfully included in a large variety of closed-loop 

systems. An application in NMR was reported by Ernst (1969) and will be 

discussed in Sec. 9.4. 

9.1 DFT Simulation of Linear Systems - Limitations  

Section 7.3.3 mentioned the possibility of using the DEl to 

compute the convolution integral describing a time-invariant linear 

system, 

y  = h(t) x(t) = J h(t-t) x(r) dT 
—Co 

(9.l.la) 



Y(f) = H(f)-X(f) 

The discrete time equivalent of Eq. 9.l.la is 

y(iAt) = At Z h((i-k),&t)-x(kAt) 

k=-K 

while the DFT equivalent of Eq. 9.l.lb is 

(9.1 .2a) 

Y(nf) = N H(nf) X(nLf) , n=O,... ,N-1. (9.1.2b) 

The finite length of the sequences in Eqs. 9.1.2 permits the discrete 

simulation of only finite impulse response systems, i.e., systems whose 

impulse response is zero outside some finite limits. 

An important distinction between Eqs. 9.1.1 and 9.1.2 arises 

because of the periodic character of the DFT. Section 7.2 showed that 

if x(t) and X(f) are a Fourier transform pair, 

x(t) 0 )X(f), (9.l.3a) 

then the DFT relates finite sequences of the al iased versions of x(t) 

and X(f), 

where 

T Xa (kt) < Xa (n,f) , (9.1.3b) 

X(t) = x(t+pT), (9.1.4a) 

X(f) = X(f+rF5), (9.l.4b) 

T=NLt and F = l/t = NM. Cooley et al. (1967) have analysed the errors 

due to aliasing effects in a DFT simulation of a convolution integral. 
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They defined an aliasing error 

= X(f) - x(f) 

and showed that 

e y (f) = X(f)eh (f) + H(f)e (f) 

(9.1.5) 

(9.1.6) 

which is small provided that ch(f) and CX(f) are small and X(f) and H(f) 

are bounded. This condition can be satisfied by choosing F5 sufficiently 

large (i.e., it sufficiently small) so that 

for f > F5/2 (9.1.7) 

Section 8.1 analysed the conditions necessary for a proper A/D conversion 

of the input signal x(t). 

The cyclic character of the discrete convolution (Eqs. 7.1.9) is 

another error source in a DFT computation of a convolution integral. 

Rewriting Eq. 9.l.2b as 

N (n).X(n)h((i-k)).x((k)) = h((i-k)).x((k)) + h((i-k)).x((k)) 

k=O k=O k=i+l 

(9.1.8) 

shows that the second summation is generally undesirable and represents 

an error. Thiá "wrap-around" error may be eliminated enabling a portion 

of the sequence y(i) to be obtained from an acyclic convolution if both 

sequences x(i),nd h(i) are augmented with zeros so that they have the 

same length N, which is at least as great as one less than the sum of 

the lengths of the two sequences. Usually, the input data is much longer 

than the filter sequence; therefore sectioning techniques are used to 
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reduce the required computation time and memory. The longer sequence is 

sectioned into pieces whose discrete convolutions can be computed sepa-

rately. Helms (1967) has described the "overlap-add" and "select-save" 

methods of recombining the results of these convolutions. 

Finite word length effects are another class of errors associated 

with a DEl simulation of a linear system. Section 7.4 analysed scaling 

and rounding or truncating errors related to 

errors affecting the signal X(n) appear as a 

usually white. The filter transform H(n) is 

quantization error which may lead to drastic 

data. These finite word length effects will 

each type of EPR signal processing. 

the FF1 algorithm. The 

noise component which is 

affected by a parameter 

alterations of the output 

be analysed separately for 

9.2 DFT Processing for Sensitivity Improvement  

The theory of sensitivity improvement procedures was analysed 

in Secs. 6,1 and 6.2. The maximization of the S/N and the minimization 

of the mean square error were the two criteria used to -derive analytical 

expressions for the frequency transfer functions of the optimum filters 

(Eqs. 6.1.8; 6.2.5; 6.2.9 and 6.2.11b). Since these transfer functions 

tend to zero at high frequencies the conditions of Eq. 9.1.7 are easily 

satisfied and the aliasing errors can be made negligible provided that 

the correct procedure for the filter simulation mentioned in Sec. 9.1 is 

followed. The scaling and rounding errors-are also negligible since the 

noise introduced by them is negligible compared to the noise accompanying 

the signal if the number of word bits is sufficiently high and N is not 

too large. Sensitivity enhancement filters can be simulated without 

difficulty even if block floating point arithmetic is used, while the 

precautions described by Oppenheim and Weinstein (1969) must be followed 
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FIGURE 9.1 Examples of the effect of various optimum .$/N filters on a 
unipolar lineshape spectrum: (a) hypothetical -spectrum of 
Gaussian lines composed of 3-, 4- and ]-line patterns; 
(b) same spectrum with added white noise so that SAW l 
for the smallest line; (c) output of the S/N(E) matched 
filter; (d) output of the S/N(E)E matched filter for the 
4-line pattern and (e) output of the Bryson's filter (cross-
correlator). The processing was performed on HP5450 Fourier 
analyser with N=512. 
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to prevent an overflow, if fixed-point arithmetic is used. The remainder 

of this section analyses some particular problems related to filters for 

EPR signals. 

Section 6.2 showed the importance of distingiiishi'ngclear1y between 

different S/N definitions. A hypothetical spectrum formed of 8 Gaussian 

lines having the same width but different amplitudes has been synthesized 

and then filtered to illustrate this point. Figure 9.1 shows the results 

of different S/N processings performed by the HP5450A Fourier Analyser. 

Curve (a) is the original spectrum composed of 3-, 4- and l-line patterns. 

Curve (b) pictures the same spectrum with added white noise whose r.m.s. 

amplitude is such that the smallest line in the spectrum has a S/N(A)u,-l. 

Curve (c) is the output of the S/N(E) matched filter. Th S/N is maxi-

mized while each line broadens but the patterns are not modified. The 

filter output signal changes completely when S/N(E) Y, filters are used. 

Curve (d) is the output of the filter designed to "search" for the 4-line 

pattern while curve (e) Is the output of the filter suggested by Bryson 

(1971), i.e., a cross-correlator of two noisy signal records. As mentioned 

in Sec. 6.2, such pattern filters disregard all the information unrelated 

to the presence of the desired pattern. Accordingly, Bryson's filter is 

capable of delivering information concerning only the presence of a signal 

but nothing about the lineshape, amplitude or time of occurrence of that 

signal. Bryson's claim that no a priori  knowledge and no comparison is 

needed to determine the concentration of the paramagnetic sample from the 

peak of the cross-correlation is incorrect because this peak is propor-

tional to the energy of the signal while the number of spins is proportional 

to the area under the absorption curve. 

The line broadening is an undesirable effect inherent in matched 

filtering. Caprini et a]. (1970) showed that this effect can be reduced 



FIGURE 9.2 Illustrations of the broadening effect of a matched filter; 

(a) the two Lorentzian lines (whh=20) composing the spectrum; 

(b) the noisy signal; the output signals from matched filters 

for Lorentzian lines with (c) Whh=2; (d) whh5; (e) whh=lO; 

Whh=15, (g) Whh_20. The processing was performed on 

HP5450A with N=512. 
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by using filters matched for narrower lines of the same type. Accordingly, 

the S/N will not be maximized but the resolution will not be degraded a 

much either. This filtering is equivalent to a cross-correlation with 

lines narrower than those in the spectrum. The equation describing this 

procedure for Lorentzian lines is 

{n(t)+s(t)]*h(t) = [n (t)+Ak  

k 

= n(t)*h(t) + 

I 
A   

k k 

while' for Gaussian lines the equation is 

(9.2. la) 

[n(t)+s(t)]*h(t) = [n (t) + A  e a ttk)/ 2k e t2/ 2 
k j* 

= n(t)h(t) + Z /__  exp - (ttk) 2 
2 2 

k 

(9.2.lb) 

If the noise imput is white and limited to a bandwidth Q, then the ratio 

of the output and input noise powers is 

(1' no ni /P )nu (l/c){l-exp(-4irc)} 

for Lorentzian lines and 

(P no ni IT' ) ' (l/c) erf(12irl3Q) 

(9.2.2a) 

(9.2. 2b) 

for Gaussian lines. Figure 9.2 shows the results of filtering two noisy 

Lorentzian li!,es separated by three half line widths in filters matched 

for lines narrower than the signal line. ' 
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FIGURE 9.3 Illustrations of the effects of various optimym filters on 
a1 spectra: (a') hypothetical spectrum of derivatives of 
Lorentzian lines grouped in 3-, 4- and 1-line patterns; 
(b) same spectrum with added noise so that S/N(A)b=1 for the 
smallest line; (c) output of the SIN(E) matched filter; 
(d) output of the matched filter for the undiferentiated line; 
(e) outputäf the linear mean square estimator. The proc-
essing was performed on HP5450A with N-512. 
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Caprini et al. (1970) have shown that the output of filters matched 

for a1 lineshapes is proportional to a, 1 lineshapes if the signal is 

Gaussian or Lorentzian. More generally, if a line can be considered as 

a derivative of an original line, then the matched filter will "double" 

the differentiation. For example, if the input signal is the kth der i-

vative of a Lorentzian line of width c, 

+d t)k (dt ) k 
+ t2)], (9.2.3a) 

S.(f) = (J2f)kJ(t)} (.f)k exp( -2aJfI.) (9.2.3b) 

then the matched filter has a transfer function 

H m (f) " 
:c 

and the filter output signal is 

(9.2.3c) 

S o m (f) = S.(f) H (f) t' (.2f) 2k exp(-4rrcIfI) S (9.2.3d) 

s (t) £(2 (t) (9.2.3e) 
o 2c 

Since this additional differentiation may introduce difficulties in 

interpreting complicated spectra, Caprini et al. proposed using filters 

matched for theoniginal , undifferentiated line instead -of the actual 

signal line. The broadening effect for Gaussian or Lorentzian lines is 

described by Eqs. 9.2.1 and the same solutions mentioned above can be 

used to minimize this effect. The possible alternative processings are 

illustrated in Fig. 9.3, where the spectrum has the same pattern as that 

in Fig. 9.1 but has an a1 shape. 

Figure 9.3(e) is the output of the linear mean square. estimator 

(Eq. 6.1.8). It is noted that no broadening or shape changing occurs 
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since this filter preserves information concerning the lirieshape and 

hence it may be preferable to S/N filters when studying lineshapes. 

Moreover, it was also shown in Sec. 6.3 that a linear mean square 

estimator is a filter capable of increasing both sensitivity and reso-

lution. 

9.3 DFT Processing for Resolution Improvement 

The theory of resolution enhancement procedures has been analysed 

in Sec. 6.3. where it was shown that these procedures are equivalent to 

solving a convolution integral equation (Eq. 6.3.5) 

SW q(T) r(tT) dc . ,.. (9.3.1) 

-00 

Fourier transform techniquei provide an immediate solution to Eq. 9.3.1, 

Q(f) = s(f)fr(f), (9.3.2) 

so that a DFT realization of resolution filters looks very promising. 

Unfortunately, a DFT approach to this problem is limited to cases 

where aliasi.ng errors and finite word length effects can be neglected. 

This is not possible for EPR ideal resolution improvement filters. 

Cooley et al. (19'67) have analysed the effect of al lasing errors associ-

ated with DFT deconvolutions and showed that 

S(f)c (f) + R(f)E: (f) 
r 5  

q R a (f) 
(9.3.3) 

The aliasing error Cq (f) is unacceptable if R(f) tends to zero as for 

EPR 1 ineshapes. 

Alternatively, the solution given by Eq. 9.3.2 can be considered as 

a convolution problem, i.e., a linear filtering with a filter frequency 
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transfer function 11(f) = l/R(f). Viewed as a filtering problem, a 

correct DEl simulation requires 11(f) to tend to zero (Eq. 9.1.7) which 

is impossible if R(f) tends to zero as it happens for EPR lineshapes. 

Moreover, the rounding and scaling errors are enhanced significantly 

in a convolution process where 11(t) is an increasing function of f as 

in EPR. This effect can be minimized by using relatively short sequences 

(i.e. small values of N) and operating in floating point double precision 

arithmetic. These quantization' errors lead to a contradiction inherent 

in a DEl solution of a resolution enhancement problem because At should 

be chosen sufficiently small and N sufficiently large to prevent distor-

tion of the signal shape and loss of resolution while N should be kept 

small to minimize the finite word length effects. 

Ernst (1966) predicted that oscillations (wiggles) would appear on 

the output of a resolution enhancement filter due to the particular way 

in which a 6 function is approached in a Fourier transform-

6 . (x) = urn f exp(j2irfx) df 1 1im sin(px) (j) 

+°9 p Tr p+oo 

It is interesting to mention that Cohn-Sfetcu et al. (1970), who first 

used the FFT algorithm to enhance the resolution of magnetic resonance 

signals, incorrectly attributed the output oscillatory-like noise to 

this effect. This was incorrect because Ernst's theory applies only for 

truncated continuous Fourier transforms, whereas the delta function is 

defined without a "limiting" operation (Eqs. 7.1.7 and 7.1.8) in relation 

to the DFT. The output oscillatory-like noise should be attributed to 

the enhancement of scaling and rounding errors. 

The solutions mentioned in Sec. 6.3 which compromise between reso-

lution enhancement and S/N degradation are capable of reducing the 
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FIGURE 9.4a Illustrations of deconvolution processing on HP5450 with 
N=128: (a) Lorentzian line with whh=c=5; (b) resultof 
processing described by Eq. 6.3.9b when =2; (c) result 
of same processing with 3; (d) result of same processing 
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=4 and i=l; (f) output of same type of filter when i3='.75 
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FIGURE 9.4b Illustration of resolution enhancement processing on HP5450A 
with N=128: (a) superposition of 2 Lorentzian lines of whh=c=8 
represented by a distance equal to whh=8; (b) signal formed by 
the sum of the two Lorentzian lines; (c) result of processing 

- described by Eq. 6.3.9b when =2; (d) result of same processing 
when =3; (e) output of filter given by Eq. 6.3.11 when a=5 and 
Y=2; (f) output of same filter when =7 and y=2. - 
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computational errors associated with the DEl implementation of a resol-

ution enhancement filter. Figure 9.4 illustrates the results of using 

the HP5450A to enhance the resolution of Lorentzian line spectra. 

Unfortunately, the HP5450A Fourier analyser is not recommended for reso-

lution enhancement processings because it operates in block-floating 

point arithmetic which leads to significant scaling and rounding errors. 

The results are even less encouraging when the resolution enhancement 

of noisy signals is attempted. 

9.4 Special DFT Processings - Hilbert Transform 

In Sec. 2.4 it was shown that the absorption and dispersion compo-

nents of the magnetic susceptibility x(w) are a Hubert transform pair as 

are the real and imaginary parts of any frequency transfer function of 

a linear system. 

H'(f) = _(l,f)Hr(f) (9.4.la) 

Hr(f) = +(1/irf)*H'(f) (9.4.lb) 

where H'(f) and H' (f) are the real and imaginary parts of the transfer 

function. 

Many EPR spectrometers can detect only one of these components, 

although the other may also be of interest. Some spectrometers detect 

a combination ofthe two components although accurate measurements and 

interpretation can be made only on "pure" components. It is then neces-

sary to calculate the Hubert transform of the detected signal. Ernst 

(1969) has analysed the use of numerical Hilbert transforms to realize 

an automatic phase correction system for an NMR spectrometer. 

The numerical convolution of Eqs. 9.4.1 can be performed rapidly 
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using a DFT approach and the FF1 algorithm. The Fourier transforms 

Eqs. 9.4.1 are 

h (x) = jsgri(x).h r (x) (9.4.2a) 

hr(X) = -jsgn(x).h'(x) (9.4.2b) 

where h'(x) and hr(X) are the Fourier transforms of H'(f) and Hr(f) 

These operations can be implemented easily on a digital Fourier analyser. 

Figure 9.5 illustrates this DFT implementation on the HP5450A Fourier 

analyser. The processing is in principle noiseless since the Hubert 

transform is equivalent to phase shifting all transform components by 

irl2. The computation errors associated with a DFT implementation of a 

convolution integral are negligible in this case. Aliasing errors do 

not count because 'At and N can be suitably chosen to ensure that the 

DFT of x' or tends to zero at high frequencies. The scaling and 

rounding errors appearing in a FFT computation are not enlanced by the 

multiplying functions in Eqs. 9.4.2 and thus they are negligible if a 

sufficiently large number of word bits and a not too large value of N 

are used. 

Signal phase shifting can be achieved by forming the appropriate 

linear combination of the original signal and its Hubert transform. 

The effectiveness of an automatic phase correction system depends more 

on the determination of the necessary phase correction than on the actual 

implementation of the Hubert transform. Ernst (1969) has indicated two 

possible criteria for determining the "phase purity" of a magnetic reso-

nance spectrum. Nevertheless, the use of an On-Line digital computer 

in an automatic.phase correction system seems a little bit extravagant 

unless the computer is already incorporated in the spectrometer as happens 
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for Fourier transform spectrometers or time averaging experiments. Cheaper 

analogue systems can be designed to achieve the same-ON-LINE performance 

but the discrete Hilbert transform approach is indispensable for. correct-

ing the phase of spectra already recorded. 
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CHAPTER X 

SUMMARY"AND SUGGESTIONS FOR FUTURE WORK 

The purpose of. the study reported in this thesis was to investigate 

systematically the utility of a digital Fourier analyser in improving the 

performance of EPR spectrometers. Chapter I defined the sensitivity, the 

resolution and the cost as the parameters characterizing the performance 

of an EPR spectrometer. It was shown that the sensitivity can be improved 

by increasing the signal, reducing the noise and separating the signal 

from noise. This thesis analyses the use of a digital Fourier analyser 

to implement the latter two approaches as well as to process EPR signals 

for resolution enhancement. 

The wide range of possible applications of a digital Fourier 

analyser in EPR spectroscopy leads to a conflict between 'the number of 

topics covered and the detail achieved in each topic. '  The compromise 

solution attempted presents investigations of large areas of interest, 

but they are. less rigorous than initially intended. The thesis deals 

with topics from rather different disciplines, and consequently it was 

considered necessary to present the fundamentals of these disciplines, 

even at the expense of some lack of rigour in other areas, Chapter II 

is an introduction to the theory of EPR spectroscopy, Chapter III reviews 

the basic concepts of random data analysis while Chapter VII presents 

the fundamental properties of the discrete finite Fourier' transform and 

the problems related to its implementation using the FFT algorithm. The 

basic EPR instrumentation is analysed systematically in Chapter IV; the 

principle system components were identified and their performance and 

influence on the signal strength is analysed with particular attention 
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to these elementsas noise sources. 

Chapter V analysed the role of these noise sources in limiting the 

sensitivity of EPR spectrometers. The detector noise level can be redu-

ced by employing backward or Schottky barrier diodes or by using very 

low noise microwave preamplifiers. The effect of (1/f) diode noise can 

be reduced by shifting the signal center frequency to a frequency above 

the "knee" of the diode noise by employing magnetic field modulation 

techniques or a superheterodyne configuration. The literature describ-

ing various pseudosuperheterodyne configurations is reviewed critically and 

constructively. The propagation of oscillator noise in the signal arm 

was studied to obtain analytical expressions for the spectrometer "noise" 

transfer functions. These expressions were used to deal with the problem 

of reducing the sensitivity limiting effect of microwave oscillator noise 

in a comprehensive and systematic manner. Thus it was possible to appraise 

the importance of absolute and relative frequency stabilization. It is 

suggested that the resonant frequency of the sample cell be stabilized 

to the microwave oscillator frequency and not vice versa because the 

electromagnetic field frequency is more fundamental. The stabilization 

of phase is also discussed although phase instabilities play a secondary 

role in limiting the sensitivity of EPR spectrometers. Particular atten-

tion is paid to the oscillator noise rejection properties of bimodal 

cavities. A general transfer function describing this role was derived 

to permit a more realistic assesment of the usefulness of bimodal cavities. 

After analysing the effect of the other noise sources, it is concluded 

that the complexity of EPR instrumentation makes it imperative that an 

in situ assessment of the relative influence of these noise sources be 

made before a systematic approach to minimize these sensitivity limiting 

factors should be attempted. 
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Chapter VIII demonstrates that such an in situ noise assessment 

can be performed conveniently by using a digital Fourier analyser. A 

Hewlett-Packard HP5l5OA Fourier analyser was used to determine experi-

mentally the effect of both microwave detector and oscillator noise. 

These are the first comprehensive measurements at sideband frequencies 

up to 20kHz from the microwave carrier frequency. The theoretical asser-

tions made in Chapter V concerning the influence of resonant cavity 

quality factor and magnetic field modulation frequency on the role 

played by oscillator noise in limiting the sensitibity could be verified 

experimentally. The advantage of using balanced mixerdetêctors was 

demonstrated convincingly. It is proposed that the noise'power spectral 

density be used to measure the spectrometer sensitivity since it avoids 

introducing factors which are •under the control of experimentalists. 

In addition, it is shown that a digital Fourier analyser can be 

successfully used.-to determine the performance of microwave detec-

tors. It is suggested that a PIN diode modulator be incorporated in an 

EPR spectrometer so that an in situ determination of the figure-of-merit 

of microwave detectors can be made rapidly and accurately. Attention is 

drawn to the necessity of using balanced mixers to reduce the noise 

introduced by the microwave oscillator.' The experimental performance of 

backward diodes was evaluated using the HP5450A Fourier analyser. This 

performance agrees with that obtained using conventional measurement 

techniques. The literature describing methods to measure microwave 

oscillator noise is discussed critically and constructively. It is 

pointed out that conventional methods are based on noise propagation 

equations which lack in profoundness because the elements of the measuring 

system are considered as being ideal. ' 



128 

Chapter VI analyses theoretically both methods to separate the 

signal from noise as well as methods to increase the resolution. For 

the first time, a mean square estimator is considered as a processor 

of EPR signals and, it is proven that it may be preferable to other 

filters because it preserves the information carried by the lineshape. 

It is surprising that the S/N maximization criterion is used exclusively 

in EPR although it disregards lineshape information which is not very 

important for other types of signals but is essential in EPR spectroscopy. 

Consequently, it was necessary to analyse carefully the definition of 

S/N and its influence on the shape of the filter output signal. A clear 

distinction is made between energy and amplitude SIN definitions as well 

as between single line and line pattern SIN definitions. The matched 

filter which is the optimum S/N filter was discussed to' show how it 

affects the resolution. Filters which, compromise betwèen 'sensitivity 

enhancement and resolution degradation are also described. The second 

part of Chapter VI analyses signal processings for resolution enhancement. 

The ideal filter to increase the resolution is derived and discussed 

after various parameters used to measure the resolution were enumerated. 

It is shown that the resolution filter is the inverse of the matched 

filter and that, again, a compromise must be achieved between resolution 

enhancement and sensitivity degradation. Various filters which realize 

this compromise are described critically. The analogue, methods of improv-

ing the resolution are analysed as variants of the "derivative" approach. 

The third part of this chapter describes some digital methods of increas-

ing the sensitivity or the resolution of EPR spectrometers. These methods 

include discrete time filters, time averaging and least square approxi-

mation techniques..' 
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The DFT implementation of optimum filters is analysed in Chapter IX. 

This analysis brings into evidence the requirements for reducing aliasing 

errors inherent in a DFT approach as well as the limitations imposed by 

the computation errors related to the FFT algorithm. Examples processed 

on the HP5i5OAare introduced to illustrate the theoretical analysis of 

Chapter VI. It is shown that pattern filters do not preserve information 

unrelated to the presence of the respective pattern and it is shown that 

some of the claims made by Bryson (1971) are incorrect. It is shown that 

Lorentzian and Gaussian functions are self-convolving and hence EPR 

spectra described by these functions can be processed in optimum filters 

which conserve the nature of the spectral line. Special attention is 

paid to processing lineshapes which can be considered as derivatives of 

an original line since matched filters "double" the order of differen-

tiation. To avoid this effect, it is suggested that filters matched for 

the original line be used. It is shown that DFT and FF1 computation 

errors do not play a significant role in sensitivity improvement proces-

sings, but that they definitely limit the applicability, of a DFT approach 

to resolution enhancement. It is concluded that such processings must 

be performed in floating point arithmetic. A DFT approachto implementing 

the Hilbert transform (Kramers-Kronig relations) and correcting the 

phase of EPR spectra is reviewed in the last part of Chapter IX. 

In conclusion, a digital Fourier analyser proves to be a very 

useful too] -both in the design of EPR spectrometers when it is instrumen-

tal in deciding, upon the optimum configuration, and to process EPR 

spectra for resolution and/or sensitivity enhancement. In addition, it 

can be used as part of a measurement system to determine the in situ 

performance of microwave devices. 
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Due to the vast area investigated, it was inevitable that this 

thesis would indicate many interesting subjects for future.work. It 

would be interesting to study experimentally the use of bimodal cavities 

in rejecting oscillator noise as well as the role played by the resonance 

phenomenon in transmitting this noise to the detector system. Bimodal 

cavities appear verypromising for use in EPR pulse spectrometers since 

they represent an elegant solution to the problem of isolating the detec-

tor from the generator during the high power microwave pulse. The 

idea of stabilizing the resonant frequency of the sample cell to that of 

the microwave oscillator needs amore thorough theoretical and experimental 

analysis. 

Measurements of microwave detector performance should be extended 

to various other types of detectors as well as to higher frequencies, now 

that faster A/D converters are available. It is suggested that the methods 

of measuring microwave oscillator noise be studied in depth and measure-

ments be performed using a digital Fourier analyser. 

The implementation of deconvolutions using the DFT. should be studied 

further to provide a more quantitative analysis of the limitations set 

by the computation errors. It would be also interesting to study the 

applicability of the Walsh transform to EPR spectra processing. 

The use of random or Fourier transform spectroscopy In EPR was not 

possible because of technical limitations in the instrumentation avail-

able, namely microwave a.m. pulse modulators and AID converters are not 

sufficiently fastto be used in EPR. It is proposed that these techniques 

be studied and analysed with emphasis on possible application in EPR. 
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