Contonts

oot gl
EoBome Wacdawmre Clcalin tn €0]
N I ENTTT I IO fn

A o eey MEner Topd 1
Y v b o o Moadal 1o I

S Dt ol Modal Topds I

o el e ol i Modad Logis bt

CE Al b Rdad o I

Cb el Ml et v
Yl W it s Foviconmenl @

EE e Mo Lopld "

U N VAN ALY | T RN N POTY "

L beaad By Dedac thon Bl il

U I Y ET TR TR R} POTY ik

L T T W Y1 I ST ‘1

LRI BTN "
LN LI [P Y Y I IRTPY PN RO I A it

L ERNTITH A 1
PHOM L C b o atban Hhooroma 1

2 CONTENTS
3 Modal p-calculus 41
3.1 Motivation L 41
3.2 Fixpointsinthe Model 43
3.2.1 Non Uniqueness of Fixpoints 43

3.2.2 Example of a Non Fixpoint 46

3.2.3 Unions of Fixpoints and the Maximum Fixpoint . . 47

3.2.4 Intersections of Fixpoints and the Minimum Fixpoint 48

3.2.5 SomelIntuition 50

3.2.6 Duality of Maximum and Minimum Fixpoints 51

3.27 Conclusions L Lo 52

328 AnExercise 52

3.3 Logical Description of Fixpoint 54
3.3.1 Minimum Fixpoint 54

3.3.2 Maximum Fixpoint 55

333 Conclusions L 55

3.4 Notation for Fixpoints in Modal Mu 57
3.4.1 Notation on the Workbench 58

3.42 Some CommonFacts. 58

3.5 Useof Fixpoints 59

3.5.1 Exercise for the Reader 64

Preface

This document is intended to be a practical guide to the arts and crafts of
specifying and verifying asynchronous systems in CCS. We assume that you
are familiar with the CCS notation (either through Walker’s introductory
paper [Wal87] or Milner’s teaching text [Mil89]) and that you have used
CWB — the Concurrency Workbench [Mol91] — a little.

What we want to put across is what you don’t learn from these docu-
ments: how to test specifications and gain confidence in their correctness
— if you like, the methodology behind CCS.

Proving the equivalence of processes is a hard business. It is important
to realise that the methodology is not to just specifying a design, provide an
implementation and then using the workbench to prove their equivalence.
Getting a specification “correct” is very hard in its own right and that’s
where the bulk of the effort should be put. The proper way to proceed is
to use CWB to test the consequences of a specification thoroughly before
attempting an implementation. The right tools, namely Hennessy-Milner
Logic (HML) and the modal-p calculus, are built into the CWB but there
is a dearth of introductory material suitable for beginners. For further
reading, we suggest [Win91, SW91).

It is the purpose of these notes to give you the background to these
logics, their intuition, and how to use them. All of the examples are taken
from asynchronous hardware design. Asynchronous circuits do very little
else other than communicate and thus they form very concentrated objects
for study. In addition, since CCS is not especially tailored to hardware, the
style we teach transfers immediately to network protocols and real time
software.

In chapter 1 we introduce you to some basic asynchronous circuits. In
chapter 2 we introduce Hennessy-Milner Logic and how to apply it. We
cover modal logics, HML, and some modal characterisation theorems. In

3

4 CONTENTS

chapter 3 we introduce, motivate, and give the intuition behind recursive
equations and minimum and maximum fix points. We then introduce the
syntax and semantics of the modal-u calculus. How can we use it? we
explain the concepts of safety and liveness, show how to write “property”
macros in the modal-y calculus, and wind up with a host of illustrative
examples.

Chapter 1

Some Hardware Circuits in

CCS

In this chapter we specify a number of simple asynchronous circuits in CCS.
The syntax and semantics of CCS are summarized as an appendix. For a
more detailed exposition see [Mil89]. We observe the following naming con-
ventions: each internal and external wire in the design is given a unique
name. When we use that name in a process description, it will be inter-
preted as an event (a stimulus or a signal transition) on that line. External
wires are connected to the environment. Each external wire may either
receive signals from the environment or send signals to the environment
but not both. We interpret an action var as an input event on line var,
and an action ’var as an output event on line var. Internal lines lead from
one device to another. If they are named ’var at the output end they are
named var at the input end. Circuits take unpredictable and arbitrary
times to fire; signals take unpredictable and arbitrary times to travel along
wires.

1. WIRE = a.’b.WIRE
a ‘b

WIRE

A wire transmits a signal (one at a time) from one end to the other
with an unpredictable delay. More formally, it receives an input on
a, and later fires an output on ’b before evolving into a wire again.

5

6.

CONTENTS

It may not receive another event on a until after it has output on
’b.
IWIRE = ’b.a.IWIRE

An iwire fires its output then behaves like a wire. Iwires are useful
fixes for ensuring that specific lines “go first”.

FORK = a.(’b.’c.FORK + ’c.’b.FORK)

The fork first receives an input on a then “copies” it on b and on
¢ but in random (unpredictable) order. It evolves back into a fork
after both copies have been sent. Forks are used to duplicate signals.

MERGE2 = a.’z.MERGE2 + b.’z.MERGE2

MERGE
The merge2 has two inputs and a single output. The output fires
after a signal on either input.
C2 = a.b.’z.C2 + b.a.’z.C2

The two-input Muller C-element acts as a rendezvous. It fires when
its both its inputs have fired. Once an input has fired it must remain
stable until the output has fired.

It is easy to describe a “wobbly-input” C-element which may accept
and then cancel and input.

€2’ = a.(b.’z.C2’ + a.C2’) + b.(a.’z.C2’ + b.C2’)

Whether you actually want a device that behaves like this is another
point.

TOGGLE = a.’y.a.’z.TOGGLE

CONTENTS 7

TOGGLE

The toggle fires its outputs alternately after receiving an input. It
outputs on y after receiving odd numbered input stimuli; and on z
after receiving even numbered input stimuli.

7. SEM = ’g.p.SEM
U1 INITIAL1.g.USE1.’p.FINAL1
U2 = INITIAL2.g.USE2.’p.FINAL2

Here we have a description of a semaphore and two users. The
semaphore is not a hardware device, but understanding how it works
and how it should be used is crucial to our definitions of the join and
the arbiter below.

A semaphore is used to protect a resource from multiple users. It
contains a token which is granted to a single user before he uses the
resource, kept whilst he uses it, and then put back when his use of
the resource is completed. The semaphore sees to it that only one
user at a time may have the token. Each user is honour bound to
follow the protocol.

It is instructive to see what can happen if malicious users enter the
fray, for example

Wi = g.Nil
w2 = ’p.Nil
W3 = ’p.g.Nil

8. JOIN2 = (A1 | A2 | N) \{g, p}

where
Al = al.g.’bl.’p.Al
A2 = a2.g.’b2.'p.A2
N=n.g.p.N

The JOIN2 circuit has two inputs and two outputs. On receiving
an al it will eventually output a b1. On receiving an a2 it will
eventually output a b2. But it can only attend to one of these
requests at a time, hence the semaphore. The device is ready for
action when it receives stimulus on n.

CONTENTS

Notice the style of definition: we have written a protocol for each
line (A1 and A2), added a semaphore to ensure one user at a time,
and then composed them in parallel hiding the semaphore accesses.
The style generalises to joins of any size.

ARBITER = (A1 | A2 | ¥) \{g, p}
where
Al =rl.g.’gl.dl.p.’al.Al
A2 = 1r2.g.’g2.d42.p.’a2.A2
N="'g ' pXN

The arbiter is slightly more complicated than the join. Users are
competing for a resource which permits only one user at a time.
The resource is guarded by an arbiter. A user initiates things by
sending a request. When accepted by the arbiter, it sends out a
grant. When the user is finished he sends a done signal, which is
acknowledged by the arbiter. The typical user sequence is thus:

Ul = INITIAL.r1.g1.USE.f1.a1.FINAL
The arbiter may free the semaphore before sending an acknowledge-

ment. It may then start serving another user whilst the first is
awaiting the acknowledgement.

CONTENTS

Example

Here is the specification of a modulo-3 counter and Jo Ebergen’s one-hot
implementation. The IWIRE makes sure that a1 fires first.

¥) \{g, p}

ai/b 1\

ri/a2, r2/a3] \
11/b, ri/c 1\
12/v, r2/c¢ 1\
q/b, r3/c 1\
12/v, p/z 1\

JOIN3 = (A1 | A2 | a3 |
where
Al = al.g.’bl.’p.Al
A2 = a2.g.’b2.’p.A2
A3 = a3.g.’b3.’p.A3
N =n.'g.p.X
M3_spec = a.’p.a.’p.a.’q.M3_spec
M3_imp = (IWIRE [r3/a,
| JOIN3 [a/nm,
| FORK [bi/a,
| FORK [b2/a,
| FORK [b3/a,
| MERGE2 [11/a,
) \{ a1, b1, b2,

b3, 11, 12, ri, r2, r3}

a1 N

b1

o D

[
|

b3

- T

TN T N

Mod-3 Counter

10 CONTENTS

1.1 Equivalence

Now that we have specified some basic circuits in CCS, we will want to see
if our implementation meets the specification. We will use the Concurrency
Workbench and the notion of equivalence in CCS for this purpose.

The Concurrency Workbench is an automatic tool for semantic analysis
of CCS specifications.

CCS has three main notions of equivalence: strong equivalence (strong
bisimulation), observation equivalence (weak bisimulation or, simply, bisim-
ulation) and observation congruence (equality). Roughly, strong bisimula-
tion treats the silent action 7 (communication) as any other action; bisim-
ulation ignores 7; equality ignores 7 only under certain conditions. Please
refer to [Mil89] for further details.

We will be using the workbench command “eq” (observation equivalence
or bisimulation) for checking equivalence of circuit behaviour.

Let us see if two wires composed in parallel will behave as a single wire.

*Print the definition of a wire.
Command: pi
Identifier: WIRE

WIRE = a.’b.WIRE

*Two wires in parallel, restricting the c-action which is internal.
Command: bi

Identifier: WIRE_2

Agent: (WIRE[c/b] IWIRE[c/al)\{c}

*Are they bisimilar?
Command: eq

Agent: WIRE
Agent: WIRE_2
false

They are not bisimilar because of the fact that the two-wire model acts

as a buffer: it is possible for the two-wire system to accept another “a”

1.1. EQUIVALENCE 11

input before the “b” output has occured. The following workbench session
will illustrate this.

* Visible (excluding internal tau actions) sequences of length 4.
Command: vs

Number: 4
Agent: WIRE
=== a 'b a ’b ===

Command: vs
Number: 4

Agent: WIRE 2

=== a a ’'b a ===
=== a3 a ’b b ===>
=== a 'b a a ===
=== 3 ’b a b ===>

Command: min
Agent: WIRE_2
Save result in identifier: WIRE_2’

WIRE_2’ has 3 states.

Command: pi
Identifier: WIRE_2’

WIRE_2’ = WIRE_2’0 \
where WIRE_2°0 = a.WIRE_2’2 \

and WIRE_2’2 = a.WIRE_2’3 + 'b.WIRE_2’0 \
and WIRE_2’3 = *b.WIRE_2’2 \
end

Therefore we have to enforce a condition on the two-wire system (and on
most circuits, in fact) that when it is placed in an appropriate environment
the behaviour will be as required. In this case, the environment is such
that it will not supply an “a” input before it has seen a “’b”.

This translates to the following with the appropriate renamings:

Command: bi

12 CONTENTS

Identifier: ENV
Agent: x.’a.b.’y.ENV

Command: bi
Identifier: WSYS
Agent: (WIRE[c/b]l|[WIRE[c/allENV)\{a,b,c}

Command: min
Agent: WSYS
Save result in identifier: WSYS’

WSYS’ has 2 states.

Command: pi
Identifier: WSYS’

WSYS® = WSYS’0 \
where WSYS’0 = x.WSYS’4 \
and WSYS’4 = ’y.WSYS’0 \
end

Command: eq

Agent: WSYS’
Agent: (WIRE|ENV)\{a,b}
true

The above shows that the two-wire system and the single wire have
the same behaviour (in the sense of bisimulation) if they are placed in an
appropriate environment.

We have shown the appropriate environments for specific circuit be-
haviours for various simple asynchronous circuits.

Let us look at the Modulo-3 counter. We can just construct an en-
vironment (like in the previous example) by taking the “inverse” of the
specification.

bi
ENV

1.1. EQUIVALENCE 13
x.’a.p.’y.x.’a.p.’y.x.’a.q.’2z.ENV

Command: eq

Agent: (M3_spec|ENV)\{a,p,q}
Agent: (M3_imp|ENV)\{a,p,q}
true

Command: min

Agent: (M3_imp|ENV)\{a,p,q}
Save result in identifier: M3’

M3’ has 6 states.

Command: pi
Identifier: M3’

M3’ = M3'0 \
where M3’0 = x.M3’69 \
and M3°57 = x.M3’58 \
and M3’°58 = ’z.M3’0 \

and M3'69 = ’y.M3’70 \

and M3’70 = x.M3’71 \

and M3’'71 = ’y.M3’57 \
end

We can also construct a more generous environment which requires just
that the environment wait for an output (of “p” or “q”) before it sends an
input.

Command: bi
Identifier: ENV’
Agent: x.’a.(p.’y.ENV’ + q.’z.ENV’)

Command: eq

Agent: (M3_spec|ENV’)\{a,p,q}
Agent: (M3_imp|ENV’)\{a,p,q}
true

Command: min

14 CONTENTS

Agent: (M3_imp|ENV’)\{a,p,q}
Save result in identifier: M3’’

M3’’ has 6 states.

Command: pi
Tdentifier: M3’’

M37’ = M37°0 \

where M3’’0 = x.M3%’69 \
and M3’’57 = x.M3’’58 \
and M3'’68 = ’z.M3770 \
and M3’'69 = ’y.M3’’70 \
and M3'’70 = x.M3°°71 \
and M3’°71 = ’y.M37°B7 \

end

The above environment may not work in general and may allow addi-
tional behaviours that may not be desirable.

Chapter 2

Hennessy-Milner Logic

2.1 An Introduction to Modal Logic

While CCS has different notions of equivalence of two agents, there is no
notion of why two agents differ. Modal Logic is a powerful method for
describing properties of agents, together with a definition of what each
property means. Some examples of properties which we would like to prove
of a system, might be:

o There is at most one user of an Arbiter at a time;

e It is not possible to input another value to a WIRE until after the
WIRE has output;

o If a WIRE has an output, i.e. the environment must be willing to
accept the output, the environment can not demand that the WIRE
“buffer” the value.

o If a FORK has a value in it, the only reason that the value can not be

output is because the environment is not ready.

CCS can only express equivalence of states; two states are equivalent if all
of their properties are equivalent. If they differ, Modal Logic can tell us
which properties are the same, in a given state, and which properties are
different. The next sections will show:

¢ Modal Logic can provide a syntax to state these properties formally;

15

16 CONTENTS

e Modal Logic has a semantics which gives meaning to these proper-
ties;

o examples to illustrate the points being made.

Following this, Hennessy-Milner Logic is introduced as a special type of a
Modal Logic.

2.1.1 Definition of a Modal Logic
A modal logic, like all other logics, comprises:

o a set of formulae;

e a model over which the formulae are interpreted.
however, a modal logic is distinguished from other logics by two operators
call possibily and necessity. Although some purely syntactic proofs may

be performed over a logic, it is necessary to introduce a model to give a
semantics or meaning to the logic.

2.1.2 Formulae of a Modal Logic

This section describes “formulae” of modal logic and describes the grammar
which the logic obeys. It does not describe the “meaning” of these formulae;
that is done in the next section.

The set of formulae of a modal logic are inductively defined as:
Az=Q|~A|ANA | OA | (4)
where:

¢ A is a formulae of modal logic;
e Q is one of a denumerable set of atomic propositions;
e — is the negation of a formula;

e A is the conjunction of two formulae;

2.1. AN INTRODUCTION TO MODAL LOGIC 17

e O is a modal operator called “possibility”;

o () are parenthesis which give precedence to operations inside them.

The atomic formula T, or “true” is always a member of Q, and in Hennessy-
Milner Logic is the only member of Q. These formulae are usually extended
with the definition of the following derived operators:

e The atomic formula F is defined as —T.
o AVB is defined as ~(~AA-B)

e DA is defined as =O—A, and is called “necessity”;
Informal examples of atomic propositions for the agent Wire, might be:

e Hot; this is true if the wire has a value which it could output.

o Cold; this is true if the wire is ready to input a value.
Some examples of formulae made up of atomic propositions might be:

e Hot
o -Cold
o HotA~Coldv-HotACold
These formulae are treated as formulae in the predicate calculus, and the

operators have the same binding, in order of precedence the operators are
=, A, V.

The use of the modal operator < is used to refer to what may “possibly”
be true. Some examples of modal formulae might be:

e OHolt, which is read as “Possibly Hot”;

e —~0OCold, which is read as “Not Necessarily Cold”;

o (OHotA-Cold)V(O-HotACold), which is read as “Possibly Hot And
Not Cold, Or Possibly Not Hot And Cold”

We will adopt the convention that the modal operators & and O have the
same precedence and bind more strongly than A, or V. Thus,

18 CONTENTS

(O HotA-Cold)V(O-HotA Cold)
= ((OHot) (AN(=Cold)))V((C(=Hot)A Cold))

This has a different meaning than,
(O(HotA~Cold))V(O(—HotACold))

which would make more sense.

The next section discusses precisely what we mean by something being
“possibly” true or “necessarily” true.

2.1.3 Models for a Modal Logic

The previous section described formulae for a modal logic, but it didn’t
give valuations or interpretations for them. The formula “Hot” is merely a
symbol; conjunctions and negations of these symbols are merely expressions
unless it is possible to assign values to these symbols, and deduction rules for
computing values from expressions. Formulae are either “true” or “false”
within a model. Models are useful because they have associated with them
a valuation function, which maps from a formula to the set of all states
where the formula is true. Thus, we can say a formula is true in some
state if and only if that state is a member of the set to which the valuation
function maps.

The Model for a modal logic which we shall use consists of:

e a set of states P;

e a relation between the states R, where R C P x P; we call R the
“next state” relation. It is possible for there to be more than one
“next state”.

e a mapping from atomic propositions Q, to subsets of states in P
where for each Q; €Q, the mapping is described as ||Q;||. We say that
an atomic proposition Q;, is “true” in all states which are members
of the set {|Q;|| and false otherwise.

This defines the valuation function for atomic propositions. The valua-
tion function can be defined for the basic logic:

2.1. AN INTRODUCTION TO MODAL LOGIC 19

* |IT|| = P;

o ||AAB]| = [|A[l N [[B]};

o [|=All =P~ [jA]]

o {[OA|] = {x | (x,a) €R where a €||A[| }

Thus,

o [|T] is the set of all states;
o ||AAB]| is the set of states where both A and B are true;
o ||-A|| is the set of states where A is not true;

o [|OA]| is the set of states which have a “next state” where A is true.

It is possible to extend the the valuation function to the derived oper-
ations. The reader should check that the valuation is consistent with the
definition of these derived operations.

e ||F|| is the empty set;
o [JAVB]|| = ||A[jU [|B]|;

o {|OA]| is the set of states where A is true in all the immediate suc-
cessor states. It is vacuously true when the state has no successors.

In this interpretation the necessity or possibility of a proposition being
true refers to the “next states” but not the current state. Other interpre-
tations are possible (where the current state is included) but these will not
be discussed. We write “proposition P is true at state S in Model M” as
}::P. Thus,]:’;'P, iff S €||P||. It is possible to drop the index “M” if there
is no ambiguity about the model.

As an example, we can derive the following facts from these definitions:

o [Fl =[=T| =P~ [Tl =P -P =0
Therefore, False corresponds to the empty set.

o ITAA] = |IT)I N Al = P 0 [JA]l = [IA]]
Since True corresponds to P, the set of all states, the set of states
where the proposition (TrueAA) is true is precisely the states where
the proposition “A” is true.

20

CONTENTS

o [|BF[| = [|-O-F|| = ||-OT]|

=P - [T

=P - {x| (x,a) €R where a €||T|| }

=P - {x] (x,a) €R where a €P }

= P - {x | x has a “next state” }

= {y | y does not have a “next state” }

Therefore “Necessarily False” corresponds to the set of all states
which do not have successor states.

[|OT|| = {x | (x,a) ER where a €||T|| }

= {x | (x,a) ER where a €P }

= {x | x has a “next state” }

Therefore “Possibly True” corresponds to the set of all states which
have successor states. Necessity was defined as the dual of Possibility
(OA = -0-A), and as a consequence of this, the current example
is the dual of the previous example.

[|OF|| = {x | (x,a) €R where a €||F|| }

= {x | (x,a) €R where a €||7T|| }

= {x | (x,a) €R where a €(P - [|T|]) }
{x| (x,a) €R where a €(P - P) }
{x | (x,a) €R where a €(0)) }
0

= [IF||

Therefore, “Possibly False” corresponds to the set of states which
has a successor state which is in the empty set (as False corresponds
to the empty set). Since there is no such state, it corresponds to the
empty set, which corresponds to the predicate False.

]

IoT|| = =0T
= P - [o~T]

=P - {x]| (x,a) €R where a €||-T|| }

=P - {x] (x,a) €R where a €(P - ||T}|) }

=P - {x] (x,a) €R where a (P - P) }

= P - {x] (x,a) €R where a €(0) }

=P-0

=P

~ I

Therefore, “Necessarily True” corresponds to the set of states which
has all successor states which are in the set of all states (as True
corresponds to the set of all states, P). Since this is true of all states,
even those which have no successor states, it is the set of all states,
P, which corresponds to the predicate True.

2.1. AN INTRODUCTION TO MODAL LOGIC 21

Again, this example and the previous example may be considered as
duals of each other, as a consequence of the duality of the definition
of Necessity and Possibility.

In summary,
¢ the model for a modal logic associates a set of states with each modal

predicate;

e a predicate is true at a state if and only if the state is a member of
this set of states associated with the predicate;

e Predicates are true in a model; it does not make sense to discuss
truth without reference to a model.

e a predicate is “possibly” true in a state, if there is a “next state”
where the predicate is true;

e a predicate is “necessarily” true in a state if the predicate is true in
all next states. If there are no “next states”, then the predicate is
vacuously true.

22 CONTENTS

2.2 Examples of Modal Predicates

Let us examine some simple modal predicates, and use as an example the
Wire which is defined as:

bi Wire
Cold

bi Cold
in.Hot

bi Hot
’out.Cold

This CCS agent defines two states, Hot and Cold, and the relations between
the two states. We arbitrarily define two predicates which corresponds to
each state. Thus, a modal logic which corresponds to this system comprises:

e two states, Cold and Hot;

o a relation with two elements, {(Cold,Hot), (Hot,Cold)};

¢ two predicates, Cold and Hot where || Cold]] = {Cold}, and ||Hot|| =

{Hot}.
Note the different font used to distinguish the predicates Cold and Hot

from the states Cold and Hot.

In this system, we examine the statements |=¢oaOHot and =g, D Hot

Example: EcoqOHot

This statement says that in the state Cold, the predicate possibly Hot is
true. Remember that this means possibly hot in the next state.

o [|[OHot|] is the set of states which have a successor state which is a
member of ||Hot||.

e But, ||Hot|| is equal to {Hot}, and the set of states which have a
successor state to {Hot} is {Cold}.

o EcaaOHot iff Cold €{Cold}.

e Thus, EcadQ Hot, or the state Cold satisfies the modal proposition
O Hot, and therefore the proposition [EceaOHot is true.

2.2. EXAMPLES OF MODAL PREDICATES 23
Example: |Eg,0Hot

This statement says that in the state Hot, it is necessary that the predicate
Hot be true in all next states. The predicate says nothing about the current
state.

e EHotOHot is true iff Hot €||0Hoy|.

e But, ||OHof| is equal to the set of states which have all successor
states a member of Hot.

o This is equal to the set {Cold}.

e Since Hot ¢ {Cold}, the state Hot does not satisfy OHot and the
proposition =g, O0Hot is False.

2.2.1 Wire with an Environment
Let us define an environment for this wire,
bi ENV

’in.E1 + a.Thinking

Thinking
’b.ERV

bi E1
out .ENV

bi System
(Wire | ENV) \{in,out}

The CCS agent System is a more complex agent than Wire as it has more
states and more relations. We arbitrarily define predicates corresponding
to this agent as well. Thus, a modal logic which corresponds to this system
comprises:

e three states which come from the | composition,
— (Cold|ENV);

— (Cold{Thinking);
— (Hot|E1).

24 CONTENTS

These states are really (Cold|ENV) \{in, out}, etc. but for brevity,
the restrictions of {in, out} will be assumed.

e a relation with four elements,

~ ((Cold|[ENV), (Cold|Thinking));
~ ((Cold|Thinking), (Cold[ENV));
— ((Cold|ENV), (Hot|E1))
~ ((Hot|E1), (Cold[ENV))

e two predicates,

— Cold where || Cold|| = {(Cold|*)} or {(Cold|ENV), (Cold|Thinking)};
— Hot, where ||Hot|| = {(Hot|E1)}

In this system, we examine the following predicates:

* Fcota|pny)@Hot and

o Esror|) Cold.

Example:]:(Cold|ENV) OHot

¢ ||OHot|| is the set of states which have a successor state which is a
member of || Hot||.

o But, in this system, || Hot|| is equal to {(Hot [E1)}.

o The set of states which have a successor state to {(Hot [E1)} is
{(Cold |[ENV)}.

. |:(CO,dIENV) O Hot iff (Cold|ENV) €{(Cold|ENV)}.

o Thus, i:(CoIdlENV) OHot, or the state (Cold|ENV) satisfies the

modal proposition O Hot.

2.2. EXAMPLES OF MODAL PREDICATES 25

Example: & Cold

‘:(HotIEl)
o The set of states where O Cold is true is {|O Coldl].

o This is equal to the set of states which have a successor state where
Cold is true.

o Since ||Cold| is equal to {(Cold|ENV), (Cold|Thinking)}, we find
that [|OCold|| is equal to {(Cold|ENV), (Cold|Thinking), (Hot|E1)}
which is equal to ||T|].

e Since (Hot|E1) is a member of this set, we conclude that (Hot|E1)

satisfies O Cold and the predicate }:(Hot|El)<>Cold is true.

26 CONTENTS

2.3 Hennessy-Milner Logic

The previous section on Modal Logic took no account of labels on rela-
tions between states. Hennessy-Milner Logic is a modal logic which uses
labelled transition systems as a model. Recommended reading for this sec-
tion and the next chapter includes [Sti91]. HML differs from the modal
logic introduced in the earlier section in the following areas:

o HML has only one predefined atomic formula, T;

o HML uses labels on transitions to index the modal operators Box
and Diamond;

e HML has some additional notation to deal with sets of labels on
transitions;

¢ HML has a notion called “weak necessity” and “weak possibility”
for dealing with composed relations;

¢ A notion of “fixpoint” has been borrowed from the Modal u-calculus.

Only the first two points will be dealt with in this section leaving the other
points for future sections.

Labeled Modalities

Although HML may seem to be fatally weakened by having “T” as the only
atomic predicate, the use of labels on modalities regains most of the lost
power.

The indexing, written as (b) where “b” is a label and [|(b)A|| is defined
as: {x |(x,a) ER where a €||A|| and (x,a) bears label b }.
Thus, ||{a)B|| is the set of states which are related to a state in ||B|| by an

[73e 1)

a” transition.

Likewise, [a]B is defined as —(a)-B. Similarly, ||[a]B|] is the set of states

which do not have an “a” transition to a state which is not a member of

IIBl-

Some examples of this logic are:

o Wirel=(in)T;
Agent “Wire” has the ability to perform an “in” action.

2.3. HENNESSY-MILNER LOGIC 27

o (Cold|[ENV)k(in) TA[out]F;
Agent “(Cold|[ENV)” has the ability to perform an “in” action and
can not perform an “out” action.

o (Cold|Thinking)}=[in]F;
Agent “(Cold|Thinking)” does not have the ability to perform an

(e

in” action.

2.3.1 HML Satisfaction

In the previous section we gave a semantics for Modal Logic based on a
model for Modal Logic and gave a denotation for “T”, “A” and “~”. HML
inductively defines a “satisfaction” relation which is entirely consistent with
the model in the previous section. It should be noted that the “satisfaction
relation” defines a set of “rules of deduction”, yet they use the “Model”
symbol [instead of the “Deduction” symbol . We state these rules of
deduction, and omit the proof that these rules are sound with respect to
the model.

o AET;
o AE=-Piff A |£ P
o AEPIAP2iff AEP] and AEP2;

o Al=(x)P iff for some A’, A < A’ and A’}=P.

It is possible to prove that these deduction rules are sound, and con-
sistent with respect to the semantics of the model defined in the previous
section. Instead of giving a proof, the next example will be worked with
both the deduction rules and the model.

Example 1. Given that:

X = a.(b.mil+ cnil) (a)
Y = abuil+ acnil (b)
E = {(a) (h)T & {c)T)

show that X |= E and Y [£ E where E expresses the condition that after an
a-action it is possible to do a b-action and it is possible to do a c-action.

28 CONTENTS
Proof by Model

Show that |=x E. We know that this is true if X €||E||. We must find ||E|}.
First, define the model.

o Let the set of states be {X, X1, X2, X3}.
o Let the relations R be {(X, a, X1), (X1, b, X2), (X1, ¢, X3)}.
o The only predicate is the constant T where ||T]| = {X, X1, X2, X3}.

We show that |Ex E as follows:
o [[Ell = [[(2)((b)TA()T);
o [[@)((D)TA() T = {X [(X,3,Y) €R and Y €]|({(b)TA{c)T)|| };

(
o [IBTAEITI = (BTN T);
o ||((b)T]| = {y |(Y,b,Y1) and Y1 €T }; but this equals {X1};

°

({)D)|] = {y |(Z,c,Z1) and Z1 €T }; but this equals {X1};
therefore, ||({b)T{N[|(c)T)|| = {X1} N {X1} = {X1};
therefore, [|({(b)TA{c)T)|| = {X1};

therefore {X |(X,a,Y) €R and Y €[|((b)TA{c)T)|| }
= {X|(X,a,Y) €ERand Y €{X1} } = {X}.

Since X €{X} we conclude that =x E.

Disproof by Model

Show that £y E. We know that this is true if Y¢||E||. We must find ||E|.
First, define the model.

o Let the set of states be {Y, Y1, Y2,Y3, Y4 }.

e Let the relations R be
{(Y, a, Y1), (Y1, b, Y2), (Y, a, Y3),
(Y3, ¢, Y4)}.

e The only predicate is the constant T where
IT)l = {Y, Y1, Y2, Y3, Y4}.

2.3. HENNESSY-MILNER LOGIC 29
We show that f=, E as follows:

o [IEll = {a)({(b) TA{e) T)I;

o @) ((BYTA{) Tl = {X [(X,a,Y) €R and Y €[[((b)TA(c)T)|| };
o [IKLYTAL)TI = KBTI TII;

o [I((b)T] = {y [(Y,b,Y1) and Y1 €T }; but this equals {Y1};

{e))| = {y |(Z,¢,21) and Z1€T }; but this equals {Y3};
o therefore, [[(BYTIANIDI| = (Y1} {Y3) = {} = 0
o therefore, ||((b)TA()T)|| = {} = ¢;

o therefore {X |(X,a,Y) €R and Y €]|({b)TA(c)T)|| }
={X|(X,a,Y) ERand Y €0 } = 0.

o Since X ¢ @ we conclude that f=x E.

Next, we do the same proof using the deduction rules rather than the
model. These examples with a little thought should convince the reader that
the model and the deduction rules will always produce the same result.

2.3.2 Proof by Deduction Rules

Example 1. Given that

X = a(b.nil+ cnil) (a)
Y = abnil+4acnl (b)
E = (a)({b)T & (c)T)

show that X = E and Y |£ E where E expresses the condition that after an
a-action it is possible to do a b-action and it is possible to do a c-action.

30 CONTENTS

Xk (a) ()T & ()T)
I X -2 b.nil + c.nil
b.nil + c.nil = (b)T & (c)T

and
b.nil + c.nil | (b)T b.nil + c.nil = {c)T
bnil 4+ c.nil 5 nil bonil 4 c.nil 5 nil
nil T © nil T Q

Figure 2.1 Proof of X = (a) ((b)T & (c)T)

Y | (a) (B)T & (o)T)

Y = b»rlil/\Y—a' c.nil
or

bnil k= ((b)T & (c)T) cil | ((b)T & (c)T)
b.nil = nil mb-““ A cail A and cnil <5 nil
nil =T Q » *» nil T ©

Figure 2.2 Proof of Y}~ (a)((b)T&(c)T)

Example 3. Given that

X = a.(b.nil + c.nil) (a)
Y = abmnil+ acnil (b)
E = (a) ()T & (¢)T)

Find a formula G not containing ¢ such that X | G and Y }£ G.

The condition we seek to express is “after an a it is always possible to
get a b” which comes out as G = [a](b)T.

2.3. HENNESSY-MILNER LOGIC
XE[a]({®)T

X = b.nil + c.nil
b.nil 4+ c.nil = (b) T

b.nil -5 nil

nil T O

Figure 2.3 Proof of X = [a] (b) T

YiE[a]()T
Y =% b.nil Y £ cnil
m
b.il = (b)T cnil = (b)T &

nil =T Q

Figure 24 Proof of Y [[a] (b) T

31

32 CONTENTS

2.4 Multiple actions

It is convenient to add some more notation dealing with “sets” of actions
as it makes predicates and proofs more concise. For example, if we wished
to state that actions a;,as, ...a,, were possible after which predicate “A”
held, using the current notation we would write:

(a1)AV{az)AV..(a,) A
A more convenient notation for the same predicate would be:
(ay,as...a,) A
The set notation is extended as follows:

o Rather than explicitly spell out the set of actions each time they are
referenced, it is possible to define a set and use the set reference.
For example, if the set K is defined as {a1, a1, ...a,} then (K) would
mean (aj, as...ap).

o Rather than define sets explicitly each time they are used, it is pos-
sible to use “set arithmetic” to define sets. For example, the set
X — K is the set of elements of X which are not in the set K. If X
is the set {by, b3, a1, a2}, and K is the set {ay, as, ...a,}, then the set
expression X' - K is equal to the set {b1, b,}. Similarly, the predicate
(X = K)A is equal to (b, b2)A which is equal to (b1)AV(bs)A.

o Rather than explicitly state the complement of a set, it is possible to
omit the set of all actions. For example, if A is the set of all actions,
and K is as before, then -K is equal to A - K. If the set of all actions,
Ais {ay, az, ...an, b1, by, ...bn} then -K is the set {by, ba, ...b,}.

e Rather than explicitly stating the set of all actions, it is possible to

use “-”. For example, to the predicate (-)T says that some action is
possible, and [-]F says that no action is possible.

We have defined set operations for the possibility operator but have
not yet done so for the necessity operator. Recall that when dealing with
unlabelled relations, possibility and necessity were defined as duals, where
DA is defined as ~O=A. This notion of duality was extended to labelled
relations where [a]A is defined as —({a)—-A. Since we wish to retain this
notion of duality for sets of actions, we define [K]A is defined as -(K)-A.

2.4. MULTIPLE ACTIONS
o but ~(K)-A is equal to ={ay, as,...an)-A
o which equals —({a;)~AV(az)-A ... V{a,)=A)
o which equals ~{a;)=AA-{as)=A ... A={a,)-A
o which equals [a1] AAJa] A ... Ala,] A
o Hence, [K]A = [a1,as,...an]A = [a1]AA[a2]A ... Ala,]A
2.4.1 Useful Facts
Here are some common formulae and their interpretations:
PE[a]T always true
PE[a]F P cannot do an a action
PE=(a)T it is possible for P to do an a action
PE=(a)F always false
PE[a]A is true for any A if P cannot perform an a action
PE[-]F if P cannot do any action

Pl=(-)TA[-a]F P can do an a action and nothing else

33

34 CONTENTS

2.5 Examples

In this section, some useful properties of the C-Element are checked using
HML on the CWB.

The Workbench has a model checker for the purpose of checking propo-
sitions about a particular CCS agent. The command is “cp” (check propo-
sition). The reader is reminded that the workbench uses the set notation
defined earlier, and also writes A as “&” and V as “+”.

* Print the definition of CEL.
Command: pi
Identifier: CEL

CEL = a.b.’c.CEL + b.a.’c.CEL

* It is possible to do an "a" action.
Command: cp

Agent: CEL
Proposition: <a>T
true

* It is possible to do an "a" or a "b".
Command: cp

Agent: CEL
Proposition: <a,b>T
true

* After an "a" action it is not possible to do another "a" but
* it is possible to do a "b".
Command: cp

Agent: CEL
Proposition: [al([a]F & T)
true

* It is not possible to do two "b"’s in a row.
Command: cp

Agent: CEL

Proposition: T

false

* An "a" may not be possible after "[a,b]".
* "[a,b}<a>T" expands to “[a]<a>T & [b]<a>T"
Command: cp

Agent: CEL

Proposition: [a,bl<a>T

false

* After a "b" some action is possible and this action cannot
* be anything other than an "a".

Command: cp

Agent: CEL

2.5. EXAMPLES 35

Proposition: [b](<->T & [-alF)
true

* The third action must be a "’c".

Command: cp

Agent: CEL

Proposition: <->T & [-](<->T & [-](<->T & [-’c]F))
true

The truth values of expressions with multiple actions are not always
intuitively obvious.

36 CONTENTS

2.6 Two Modal Logics for CCS

There are two modal logics for CCS associated with two transitions defined
in conjunction with the two bisimulation equivalences (weak and strong). If
T is observable, the associated transition relation is — and the modalities
are as mentioned before. If 7 is not observable, then the transition relation
is = and the associated modalities are expressed as {[K]] and ((K)}).

The 7 action can occur only with strong modalities and the correspond-
ing transition associated with weak bisimulation is == and the modalities
are [[¢]] and ((¢)) where the ¢ denotes zero or more 7 transitions.

A small example will serve to illustrate the fact that one has to remem-
ber the definition of ¢ when it is used in conjunction with sets in weak
modalities on the workbench.

Command: pi
Identifier: WIRE

WIRE = a.’b.WIRE

* Is it possible to do something other than an "a"?
Command: cp

Agent: WIRE
Proposition: <-a>T
false

* With weak modalities.
Command: cp

Agent: WIRE
Proposition: <<-a>>T
true

* The previous proposition was true because it is possible to do
* an epsilon transition which is zero or more tau actions.
Command: cp

Agent: WIRE

Proposition: <<-a,eps>>T

false

38 CONTENTS

WIRE_2’ has 3 states.

* Print the minimized agent WIRE_2’.
Command: pi
Identifier: WIRE_2’

WIRE_2’ = WIRE_2’0 \
where WIRE_2’0 = a.WIRE_2’2 \
and WIRE_2’2 = a WIRE_2’3 + ’b.WIRE_2’0 \
and WIRE_2’3 = ’b.WIRE_2’2 \
end

* Strong modalities can be used now since the tau’s are gone.
Command: cp

Agent: WIRE_2’

Proposition: [a]l(<’b>T)

true

2.8. MODAL CHARACTERIZATION THEOREMS 39

2.8 Modal Characterization Theorems

We know that if two agents are bi-similar they are denotatively congruent;
one may be substituted for another in any context. It follows that since
there is no test which can be performed to distinguish the two, that all of
the modal properties must likewise be equivalent. For, if there were some
modal predicate which could distinguish them it would not be difficult to
build a context in which the agents differed. Similarly, if all of the modal
properties of two agents are identical, the two agents are bi-similar.

We state without proof, that two agents are strongly bi-similar if and
only if there is no modal proposition which distinguishes them using the
strong Hennessy-Milner Logic.

Similarly, two agents are weakly bi-similar if and only if there is no
modal proposition which distinguishes them using the weak Hennessy-
Milner Logic.

40

CONTENTS

Chapter 3

Modal p-calculus

3.1 Motivation

In CCS it is possible to define “recursive” agents such as Wire.

bi Wire
a.’b.Wire

This agent can satisfy the HML modal predicate (a){’b)T. It can also satisfy
the predicates (a}(’b)(a)}(’b)T and (a}(’b){a)(’b){a){’b){a}{’b)...

Since CCS has a method to express recursive agents, it is desirable to
have a method of expressing recursive properties properties in Modal Logic.
We could express the equation that wire satisfies as:

Y = (a)(’b)Y
To see that this works as advertised, read the equation as “Y is the modal
“»

property that it is possible to do an “a” action, then possible to do a “’b”
action and arrive in a state where property Y holds”.

We call such equations which refer to themselves in their definition fiz-
point equations. Their general form is Y = F(Y) where F is some function
or relation. Solutions to fixpoints equations need not be unique nor even
exist. For example, the equation X = —-X does not have a solution. How-
ever, if the function F has the special property that

if X C Y, then F(X) C F(Y)

41

42 CONTENTS

we call F monotonic, and solutions to the fixpoint equations are guaranteed
to exist. Syntactically, this corresponds the restriction that there must be
an even number of negations prefixing the reference to the variable Y in
the function F. This is not the case in the equation Y = =Y.

The rest of this chapter discusses these fixpoint equations and their
solutions.

3.2. FIXPOINTS IN THE MODEL 43

3.2 Fixpoints in the Model

It is possible to describe a fixpoint in terms of the deduction rules or in
terms of the model. This section describes the fixpoint’s characteristics in
terms of the model.

3.2.1 Non Uniqueness of Fixpoints

Solutions to fixpoint equations need not be unique. This is illustrated in
this section by finding several solutions to a fixpoint equation for a given
system.

As an example, consider the following contrived system:

bi A1l
x.A2

bi A2
a.A3 + b.A4

bi A3
c.A3

bi A4

d.A4

The following diagram represents the same agent.

®
° b

a

c d

The modal logic which corresponds to this is:

o States = {Al, A2, A3, Ad};

“ CONTENTS
o Relations R = {(Al, x, A2), (A2, a, A3), (A2, b, Ad), (A3, ¢, A3),
(A4, d, A4)};
o Predicates
— |IT|| = {A1, A2, A3, A4};
= [IFll = {}

- 1A = {A1};
- [142l] = {A2};
- (1431 = {A3};
= [144]l = {A4}.

For convenience, four predicates corresponding to the four states have been
defined. As in the previous chapter, the predicate Af has a different font
than the state “A1”.

Example: Al is a fixpoint

To go along with the contrived system, a contrived fixpoint equation is in-
troduced:

Y = ([]YVv{x)T)

It would be helpful if there were some intuitive meaning which could be
associated with this, but as will be shown in future sections there is more
than one meaning associated with this equation and this system. It suffices
that it is a fixpoint equation; this section checks whether ||Y|| = {Al} is a
solution. This is done by using the methods of the previous chapter, and
showing that ||[-FJA1V(x)T|| is equal to ||AI}| where A1 is the proposition
which is true only of state “A1”. As was done in the previous chapter:

o (AT = (A VL) T

o [[HAIll = X |(X,-, Al) eR} = {} = 0

o [[{x)T|| = {Y |(Y, x, Z) €R for any Z} = {A1}
o therefore, [|[-]A1]|U}|(x)T|] = OU{A1} = {A1}

o therefore it is true that Y = {A1} is a solution to the fixpoint equa-
tion Y = ([-]YV(x)T).

3.2. FIXPOINTS IN THE MODEL 45
Example: {A1,A3} is a fixpoint

Using the methods of the previous chapter, check whether {A1,A3} is a
solution to the fixpoint equation Y = ([-]YV(x)T). For brevity, we will
refer to the proposition which corresponds to the set {A1,A3} as S2 in this
example.
o [(EIS2vE)T)I = NIE-IS2)) U [IK=)T|
o [(x)T] = {A1}
o IFS2)]] = {X |(X, -, R) implies R €S2 where S2 = {A1,A3} }
= {A3} Please note that A2 is not included; it has a derivative (A4)
which is not in the set {Al, A3}
o IIES2V ()] = {AJULAL} = {AL,A3)

and therefore $2, where {|S2|| = {A1,A3} is also a solution to the fixpoint
equation.

List of Fixpoints

A list of other solutions follows, and it is suggested that the reader check
that they do satisfy the equation.

o S1 = {Al}
o S2 = {A1,A3}
o S3 = {A1,A4}

S4 = {A1,A2,A3,A4}

It will be shown that the following diagram forms a lattice. Since lattices
correspond to a partial order, we note that elements which are greater in
the lattice are supersets.

46 CONTENTS

s
\/

3.2.2 Example of a Non Fixpoeint

It will be shown that the set Z = {A1, A3, A4} is not a fixed point of the
equation F(Y) = ([-]YV(x)T) with the system in the previous section.

o [I(FZvEDI = IE2) U I T
o [[()T]) = {A1}

o |IFZ2))l = {X (X, -, R) implies R €Z where Z = {A1,A3,A4} } =
[A2,A3,A4)

o [I(FZV()T)|| = {A2,A3,A4} U {A1} = {A1,A2,A3 A4}

and therefore solution ||Z]| = {A1,A3,A4} is not a solution to the equation.
When we assumed that F(Y) = ([-JYV(x)T) is true at states {A1, A3, A4},
a logical consequence is that it is also true at A2. This is reasonable, as
states are included if all of their derivatives are included, and if we assume
that A3 and A4 are included, then A2 must also be included.

Fixpoint as Deductive Closure

A solution to a fixed point equation can be thought of as a truth assignment
to a set of states which is deductively closed under the formula. Thus, if we
assume that the fixed point formula F(y) is true for every y in fixed point
set X, then testing this assumption by applying F(y) to each member of X
will not only confirm the assumption by asserting that F(y) is true, but it

3.2. FIXPOINTS IN THE MODEL 47
will also assert that it is not possible to show that it is true for any state
except those in X.

In this sense X is a “consistent set of beliefs” given F(y) as a deduction
rule.

3.2.3 Unions of Fixpoints and the Maximum Fixpoint

In the previous section three examples were worked with the same fixpoint
equation, and it was shown that:

e {Al, A3} is a fixpoint;
o {Al, A4} is a fixpoint;

o {Al, A3, A4} is not a fixpoint;

Thus, it is not necessarily true that the union of any two solutions to a
fixpoint equation is a solution to a fixpoint equation. However, it is true
that the union of any two solutions may be extended to a solution. Further,
for fixed points A and B, there is a unique solution X which has the following
properties;

e X is a super set of A, and X is a super set of B;

e for any Y which is a solution to the fixpoint equation, such that Y
is a super set of A and B, either X = Y or X is a subset of Y.

This can be seen from the example cited above; {A1, A2, A3, A4} is a super
set of {A1, A3} and of {Al, A4} and it is the least such super set that is
also a solution to the fixpoint equation. This solution X may be the union
of A and B, however if it is not, X is the deductive closure of the union of
A and B. We say that Y is a prefixed point of F if F(Y) C Y.

To see that this is the case, consider:

o If F is monotonic, then [|[F(AUB)|| D ||F(A)|| and ||F(AUB)|| 2
IF(B)I

o Therefore, ||[F(AUB)|| D [|F(A)||JU||F(B)}} but since A and B are fix-
points, |[F(A)[|V||IF(B)|} = AUB;

48 CONTENTS

o but by monotonicity, ||F(F((AUB))|| 2 ||F(AUB)]|;
o and therefore by induction, |[F"*1(AUB)|| 2 ||F"(AUB)|| 2 AUB;
o this process must come to an end since, P O F?(AUB)
e and therefore, there is a unique fixpoint which contains AUB
It has been shown that if there are solutions to the fixpoint equation,
then there is a greatest solution, since:
e the union of all prefixed points can be extended to a solution;
e it is greater than any other solution;
e it is unique.
The maximum fixpoint corresponds to the deductive closure of the union

of all fixpoints. It includes everything except that which can not possibly
be a member of the fixpoint.

3.2.4 Intersections of Fixpoints and the Minimum Fix-
point

To show that the intersection of two solutions is not always a solution
consider the previous system with the following contrived fixpoint equation:

Y = ((-)YV{x)T)
It has the following solutions:
e S1 = {Al}
o 52 = {A1,A2,A3}
o S3 = {Al,A2,A4}

o S4 = {A1,A2,A3 A4}

The solutions are not closed under intersection. To see that solutions
are not closed under intersection, consider S2 N S3 which is {A1, A2}. This
is not a solution as for ||2]| = {A1l, A2} :

3.2. FIXPOINTS IN THE MODEL 49

o [(OZvEDI = 1D U 1K) Tl
o [[()T] = {A1}
o |)D)] = {X (X, -, R) where R €Z where Z = {A1,A2} } = {A1}
o [((Zv(x)DIl = {Al} U {A1} = {A1}
and therefore ||Z|| = {A1,A2} is not a solution to the equation. This is
reasonable, as A2 does not have any derivatives which are a member of the

set {A1l, A2}. Thus, the greatest solution set which is a subset of {A1, A2}
is {Al}.

Dual to the case of unions, the intersection of any two solutions is a
superset of a unique solution. We say that Y is a postfixed point of F if Y
C F(Y).

To see that this is the case, consider:

o If F is monotonic, then {|[F(ANB)|| C [|F(A)|| and ||[F(ANB){| C
IE@B)II

o Therefore, ||[F(ANB)|| C ||F(A)||N||F(B)|] but since A and B are fix-
points, [[F(A)(IN[IF(B)|| = ANB;

e but by monotonicity, ||[F(F((ANB))|| C ||F(ANB)|;

o and therefore by induction, ||F**1(ANB)|| C {|F*(ANB)|| € ANB;
o this process must come to an end since, § C F*(ANB)

e and therefore, there is a unique largest fixpoint which is contained

in ANB

It has been shown that if there are solutions to the fixpoint equation,
then there is a least solution, since:
o the intersection of all postfixed points contain a solution;
e it is less than any other solution;
e it is unique.
This solution is called the minimum fixed point. Frequently, the minimum

fixed point is (. None of the contrived fixpoint equations have allowed for
this possibility, as an empty set as a solution may be confusing.

50 CONTENTS

3.2.5 Some Intuition

In the example with the unions of fixpoints, the deductive closure kept
getting bigger, while in the example with the intersection of fixpoints the
deductive closure kept getting smaller. In the example with the unions, we
could consider {A3,A4} as being facts, while {A2} is a consequence of these
facts. In the example with the intersections, {A2} is a consequence of one
of the facts {A3} or {A4}. After the intersection, the facts were eliminated
but the conclusion remained. After iterating a few times the consequences
of the facts were eliminated. Similarly, when the union of two fixpoints was
taken, facts were added to the system and by taking the deductive closure
consequences were added.

We can give an interpretation to the fixpoint equation,
Y = () TVEY)

which we introduced earlier. Under the minimum interpretation, this cor-
responds to the property that it is possible to perform an x action, or every
action will inevitably lead to the possibility of an x action. This can be seen
by expanding the equation by substituting the right side of the equation
for Y:

(x)TVE((x)TVE]Y)

Expanding twice yields:
(X)TVE((x) TVE((x)TVE]Y))

Similarly, under the minimal interpretation, the equation:
Y = (0TV()Y)

corresponds to the property that it is possible to perform an x action, or
there is a derivative (or derivative of a derivative) which can perform an
x action. Under the maximal interpretation, the first fixpoint equation
denotes the the set of all agents. The second denotes the set of agents
which can eventually perform an x action, or which can perform some
infinite sequence of actions.

3.2. FIXPOINTS IN THE MODEL 51
3.2.6 Duality of Maximum and Minimum Fixpoints

There is a simple way in which the maximum and minimum fixpoints are
duals of each other.

The maximum includes everything except that which can not
possibly be true, while the minimum includes only that which
must necessarily be true.

This can be expressed in the following famous theorem:

If Y is the minimum fixpoint of the equation F(y),
and Z is the maximum fixpoint of the equation ~F(-y),
then ||Y|| = P-||Z||, where P is the set of all states.

This will be demonstrated by means of an example. Consider the fixpoint
equation of the previous section:

Y = ()YV(x)T
We have already calculated the minimum fixpoint for this equation, it is
{A1}.
To show the duality between the maximum and minimum fixpoints, we

must find the maximum fixpoint of the dual equation, i.e. find -F(-y).

o The dual of (-)YV(x)T is ~({(-}(-Y)V{x)T;

o which equals, ={-)(=Y)A~{x)T;

o which by duality of & and O equals, [-]YA=({x)T;

o The maximum fixpoint of this equation is the set {A2, A3, A4};
(The proof is left as an exercise for the reader)

o P - {A2, A3, A1} = {Al}

e Hence, since {Al} is also the minimum fixpoint of {-)YV(x)T, we
conclude that for this example, the maximal and minimal fixpoints
are related by the duality equation.

It should be noted that the maximum fixpoint is usually defined as the
dual of the minimum, and a theorem is used to show that:

52

[4

CONTENTS

if Y is the minimum fixpoint of F(y) then Y = Nn{S [F(S)CS}
if Z is the maximum fixpoint of F(y) then Z = U{S [SCF(S)}

This presentation has motivated the notion of maximal fixpoint being a
super set of all other fixpoints, and minimal fixpoint being a subset of all
other fixpoints.

3.2.7 Conclusions

This section gave a brief introduction to fixpoints in models of modal logic:

a fixpoint equation is of the form y = F(y);

a fixpoint equation will have a solution set if there are an even num-
ber of negations preceding each reference to y in the equation F(y).

the solutions need not be unique;

solutions may be thought of as being “consistent beliefs”; if we as-
sume that y is a solution and everything outside y isn’t we have a
consistent system.

since the intersection and union of solutions are subsets and super-
sets of solutions, there is a greatest and least solution called the
maximum and minimum fixpoints.

the maximum fixpoint corresponds to everything except that which
can not possibly be a part of the solution; the minimum fixpoint
corresponds to only that which must be a a part of the solution;
other solutions correspond to consistent beliefs; that which must be
part of the solution plus that which might be part of the solution.

3.2.8 An Exercise

In the introduction to this chapter, a definition of a monotonic function
was given. In this chapter, the fixpoint equations were of the form Y =
F(Y), where F is a function over a set of states. Show that this is true of
each of the functions used in this chapter:

1Y = ()Yvx)T]|

3.2. FIXPOINTS IN THE MODEL 53
o 1Y = [YV{)T]|

It was stated that provided there were an even number of negations prefix-
ing the reference to the variable Y. Check whether the following function
is monotonic, and see if there are any solutions to the fixpoint equation.

o [IYI] = ll-)=YVEx)T|

o 1Yl = lI=EYV{x)T]|

54 CONTENTS

3.3 Logical Description of Fixpoint

In the previous section we described the model for a fixpoint as being a
set of states which satisfy a fixpoint equation. It is also possible to give a
characterization of the maximum and minimum fixpoints under the rules of
deduction called “satisfies” which were introduced in the previous section.

3.3.1 Minimum Fixpoint

The minimum fixed point of an equation may be calculated as follows:

o assume that the fixpoint equation is false for all states;
o calculate the result of the fixpoint function based on this assumption;

o if the result is different from the assumption, repeat the process
using the new values.

As an example, consider the system from the previous section and the
fixpoint function Y = (d)T V{(-)Y. The minimum fixpoint of this function
includes all states which can perform a “d” action or any state which can
by some sequence of actions eventually reach such a state.

Calculating the fixpoint using the method above we find:

e Assuming Yo = F, the set of states for which the equation (d)TV(-}Y
is true is ||Y3}| = {A4}.

o Assuming ||Y1|| = {A4} and substituting in the equation, we find
that (d)TV(-}(A4) is true for Y, = {A4, A2}.

o Assuming ||Y2|| = {A4,A2} and substituting in the equation, we find
that (d)TV(-)(A4VA2) is true for Y3 = {A4, A2, A1}

e Assuming ||Y3|| = {A4,A2,A1} and substituting in the equation, we
find that (d)T V(-)(A4VA2VA1) is true for Y4 = {A4, A2, Al}.

There is no point in continuing the iteration, as we have reached the mini-
mum fixed point and further iterations will only yield the same answer.

3.3. LOGICAL DESCRIPTION OF FIXPOINT 55

3.3.2 Maximum Fixpoint
The maximum fixpoint may be calculated as follows:

¢ assume that the fixpoint equation is true for all states;
o calculate the result of the fixpoint function based on this assumption;

o if the result is different from the assumption, repeat the process
using the new values.

As an example, consider the system from the previous section and the
fixpoint function Z = [d]FA[-]Z. The maximum fixpoint of this function
includes all states which can not perform a “d” action and any state which
can not eventually reach a state where a “d” action is possible.

Calculating the fixpoint using the method above we find:

o Assuming Zy = T, the set of states for which the equation [d]FA[-]Z
is true is [|Z;]| = {A1,A2,A3}.

e Assuming }|Z]| = {A1,A2,A3} and substituting in the equation, we
find that [d]FA[-]Z) is true for Z; = {Al, A3}.

o Assuming ||Zs|| = {Al, A3} and substituting in the equation, we
find that [d]FA[-]Z is true for Z3 = {A3}.

o Assuming ||Zs|| = {A3} and substituting in the equation, we find
that [d]FA[-]Z is true for Z4 = {A3}.

There is no point in continuing the iteration, as we have reached the fixed
point and further iterations will only yield the same answer.

3.3.3 Conclusions

In general, minimum fixpoints express “liveness” properties which state that
some desired property is possible or will eventually happen. Maximum
fixpoints are used to express “safety” properties which state that some
undesired property is not possible or will not happen. Due to the duality
of the maximum and minimum fixpoints, we can express either safety or
liveness in terms of either fixpoint, but if we restrict ourselves to fixpoints
without negations, then least fixpoints will, in general express liveness.
Some examples are:

56 CONTENTS

e Property P holds everywhere is expressed as a maximal fixpoint:
121l = IPA[-)Z]}

o Property P eventually holds (i.e. it holds in this state, or if the state
has at least one derivative and the property holds in every derivative
is a minimal fixpoint: ||Z|| = {|PV[-]ZA{-iT||

3.4. NOTATION FOR FIXPOINTS IN MODAL MU 57

3.4 Notation for Fixpoints in Modal Mu

We have already given the semantics for what it means to the maximum or
minimum fixpoint to be true of some state. It means the state is a member
of the set of states which make up that fixpoint. This section defines the
syntax which is used to discuss fixpoints.

In the previous section a fixpoint equation was written as “Y = (d)T
V(-)Y”. This implicitly defines a function together with arguments for it.
The syntax for this logic uses the expressions uX.formula and vX.formula
to represent the minimal and maximal fixpoints and to bind the variable X
which is free in the formula. Thus, the minimal and maximal fixpoints of
this equation would be written as

o Y ()T V()Y
o VY.(d)T V()Y

It is now possible to describe the syntax of HML, with labelled modal-
ities, sets of events, and fixpoints, and it is worth while to do so.

Au=T|-A|ANA | (K)A(A) | Z | nZ.A
where:

¢ A is a formula of Hennessy-Milner Logic;

e T, or “true” is the predefined proposition whose valuation includes
every state;

e —is the negation of a formula;
e Ais the conjunction of two formulae;

¢ (K) is a modal operator called “possibility” which operates on either
a single action or a set of actions;

e () are parenthesis which give precedence to operations inside them.

e Zis a free propositional variable used as an argument to the fixpoint
operator,

e pZ.A is the minimal fixpoint of the formula “A”.

58 CONTENTS

As earlier, these formulae are usually extended with the definition of the
following derived operators:

o The atomic formula F is defined as =T.
o AVB is defined as ~(-~AA-B)
o [K]A is defined as =(K)—A, and is called “necessity”;

o vZ.A is defined as ~pu(—Z).A, and is called the maximal fixpoint of
A.

3.4.1 Notation on the Workbench

The workbench uses the following notation for maximum and minimum
fixpoints:

max(Z.<a>T & [-12)
min(Y.<a>T + [-]Y)

3.4.2 Some Common Facts

Some common formulae and their interpretations:

pZ (K)Z always false for any K
vZ.[K]Z always true for any K
vZ (1)Z divergence

It is again easy to see why puZ.(K)Z is always false. This is the minimal
solution to the equation Z = (K)Z. Since we are trying to find the minimal
fixpoint, we assume that @ is a solution to the equation in which case we can
replace (K)}Z by (K)F which is always false (see Chapter 3). Since (K)F is
always false irrespective of the agents @) is the only solution to the equation
which represents “always false”. Similarly, when solving for vZ.[K]Z we
start will the set of all states. If a member of K is not a possible action in
that state, the proposition is vacuously true. If a member of K is a possible
action, then all that the propostion says is that after this action we end up
in some state that is a member of the set of all states. For the proposition,
vZ (t)Z we start with the set of all states. The proposition reads, “the
property 7 is the ability to do a tau action and end up in a state with
the property Z”. Thus, the states which belong the this fixpoint have the
ability to do an infinite number of tau transitions.

3.5. USE OF FIXPOINTS 59

3.5 Use of Fixpoints

This section uses a simple hardware device called a sequencer to demon-
strate some of the concepts of minimum and maximum fixpoints, and to
familiarize the reader with the CWB. First, define the sequencer.

Command: bi
Identifier: A
Agent: a.x1.’p.x2.A

Command: bi
Identifier: B
Agent: b.x1.’q.x2.B

Command: bi
Identifier: N
Agent: n.’x1.’x2.¥

Command: bi
Identifier: SEQ
Agent: (A | B | M) \{x1, x2}

We want the sequencer to output a ’p after receiving an a, or output a ’q
after receiving a b, but both of these outputs are gated by the input n. To
show the behavior of this device we print out the visible sequences vs of
length 4.

Command: vs
Number: 4
Agent:

===

w
=1
=]

n
n

)

)

)
b
b
n
n
a

b
ab
an
an
an
an
an
ba
b a
bn
bn
bn
bn
bn
na
na
na
na
na
nb
nb

3.5. USE OF FIXPOINTS 61

Two such macros have been defined; one using the strong and one the weak
modalities. In the strong modality, tau actions count as a transition. In
the weak modality, tau actions are considered to be part of a single atomic
action.

The strong macro may be read as:

in state X , an action is possible, and an enabling action
is not possible, and this will continue to be the case no matter
what happens as long as it isn’t an action. Further, if an
action does happen, the agent must go to state Y, where an
action is not possible, and all non enabling action actions,
will take us back to this state, and if an enabling action
happens the agent must go to state X,

Below, the workbench checks the agent SEQ for the property that:

An input a is possible, and output ’p is not possible, and
this will continue to hold until the input a happens. Once
this input occurs, the input may not re-occur despite any
non ’p actions. If the output ’p occurs input a is possible
again.

This is done for both the weak and strong versions using the cp (check
proposition) command.

Command: cp

Agent: SEQ

Proposition: CYCstrong a ’p
false

Command: cp

Agent: SEQ

Proposition: CYCweak a ’p

[Major collection... 39% used (840824/2109360), 490 msec]
[Major collection... 39% used (824752/2098516), 460 msec]
[Major collection... 39% used (822020/2095356), 440 msec]
[Major collection... 38% used (800740/2097640), 440 msec]

true

The proposition CYCstrong a ’p failed on agent SEQ because after doing
a ’p action it is not possible to do an a action. It is necessary to do the

62 CONTENTS

x2 action first. CYCweak a ’p succeeds on agent SEQ because all of the tau
actions have been ignored. The rational is that an action like ’p followed
by a tau is really one atomic action, and the description of this as being
a ’p followed by tau is an aid to understanding. It should be noted that
checking for the strong modality took a few seconds and checking for the
weak modality took about a minute.

CYCweak has all actions as weak modalities; many of these could be
changed to strong modalities. It is left as an exercise for the reader to figure
out which.

In order to speed matters up, the agent SEQ is minimized with the

command min. To show that the agent is truly smaller, the size command
shows the number of states.

Command: min
Agent: SEQ
Save result in identifier: SEQ’

SEQ’ has 12 states.
Command: size SEQ
SEQ has 16 states.
Command: size SEQ’

SEQ’ has 12 states.

The proposition CYCstrong a ’p is computed on the minimized agent
SEQ’. This agent has the transitory tau transitions removed, and the strong
proposition succeeds on this agent even though it fails on the non minimized
agent. If strong proposition succeeds on minimized agents which have the
transitory states removed, the weak proposition will succeed on non mini-
mized agents; but, it will do so much faster. If there are tau transitions at
the beginning of a choice, the strong proposition may fail though the weak
succeeds.

Command: cp SEQ’
Proposition: CYCstrong a ’p
true

Note that above the command cp and its first argument SEQ’ were put on
the same line. More experienced users of the workbench may find it more
convenient to anticipate the prompts. Later in this example, this is also
done with the the bi command.

Is it justified to use weak modalities instead of strong ones? That de-
pends on whether the x2 action is just an operator on two states or whether

3.5. USE OF FIXPOINTS 63

there is real processing going on. If there is real processing going on, (and
hence real delay) then the environment may not present another a to the
sequencer until after this processing has finished; but the environment can
not know when the processing has finished, as the only signal which it re-
ceived was ’p which was output before the processing started. Hence, if
there is real processing this is not a delay insensitive agent. Let us suppose
that there is real processing going on. Below the agent A is changed to
make it a delay insensitive agent Adi.

Command: bi Adi
Agent: a.Adil

Command: bi Adii
Agent: x1.°p.(x2.Adi + a.x2.Adi1)

Command: bi Bdi
Agent: b.Bdil

Command: bi Bdiil
Agent: x1.’q.(x2.Bdi + b.x2.Bdi1)

Command: bi SEQdi
Agent: (Adi | Bdi | ¥) \{x1, x2}

Here, the agent is willing to accept an a after outputting a ’p. Below, this
is checked on the workbench and the similar property for b and ’p.

Command: cp SEQdi
Proposition: CYCstrong a ’p

[Major collection... 36% used (764596/2094184), 360 msec]
true

Command: cp SEQdi

Proposition: CYCstrong b ’q

true

After analysing the actions a, b, ’p and ’q for delay insensitivity, we
next examine n. %Vhat are the necessary conditions for n being possible?
We would expect that input n should be allowed after a ’p, or a ’q action.
The macros which we introduced previously only allowed single actions.
In this example, sets of operations are used. Sets are denoted with an
uppercase letter to the bmi command, and are defined by the bsi (bind set

identifier) command.

Command: bmi CYCset_weak

Enter parameters, separated by commas or spaces.
-- Proposition and action set parameters begin with an uppercase letter,

64 CONTENTS

-~ action parameters otherwise.

Parameters: action ENABLING_ACTIONS
Body: max(X.<<action>>T & [[EWABLING_ACTIONS]IF & [[-action]]X & [[action]](\
max(Y.[[action]]F & [[ENABLING_ACTIONS]IX & [[-ENABLING_ACTIONS]]Y)))

Command: bmi CYCset_strong

Enter parameters, separated by commas or spaces.
== Proposition and action set parameters begin with an uppercase letter,
-~ action parameters otherwise.

Parameters: action ENABLING_ACTIONS

Body: max(X.<action>T & [ENABLING_ACTIONS]F & [-action]X & [action](\
max (Y. [action]F & [ENABLING_ACTIONS]X & [-ENABLING_ACTIONS]Y)))

Command: bsi

Identifier: PQ

Enter action list: ’p ’q

Below, the agent SEQdi is checked to see whether it can accept another
n after outputting a 'p or a ’q.

Command: cp SEQdi

Proposition: CYCset_strong n PQ
false

Command: cp SEQ

Proposition: CYCset_weak n PQ
true

Command: cp SEQ’

Proposition: CYCset_strong n PQ
true

Unsurprisingly, it exhibits the same problems as the original sequencer.
If the action x2 represents real processing, then the agent is not delay
insensitive. We will not continue along these lines, as making the semaphore
delay insensitive will complicate matters without providing more insight.
This point of the last exercise was to demonstrate the set capabilities of
the workbench.

3.5.1 Exercise for the Reader

All of the macros used the maximal fixpoint rather than the minimal fix-
point.

e Check that an agent which input an a and halted (a.nil) would
satisfy the proposition CYCstrong a ’p.

3.5. USE OF FIXPOINTS 65

¢ Determine what should be done to guarantee that output will even-
tually be generated. HINT: what does

max(X.<action>T & [enabling_action]F & [-action]X & [action](\
max(Y.[action]F & [enabling_action]X & [-enabling_action]Y)))

describe?

66

CONTENTS

Bibliography

[Mil89]
[Mol91]

[Sti91)

[SW91]

[Wal87]

[Win91]

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

F. G. Moller. The Edinburgh Concurrency Workbench, Version
6.0. Tech Report, Computer Science Department, University of
Edinburgh, 1991.

C. Stirling. An Introduction to Modal and Temporal Logics for
CCS. In Proceedings of the 1989 Joint UK/Japan Workshop on
Concurrency, pages 2-20, New York, 1991. Lecture Notes in Com-
puter Science 491, Springer Verlag.

C. Stirling and D. Walker. Local model checking in the modal
p-calculus. Theoretical Computer Science, 89:161-177, 1991.

D. Walker. Introduction to a Calculus of Communicating Systems.
Technical Report ECS-LFCS-87-22, Laboratory for the Founda-
tions of Computer Science, University of Edinburgh, 1987.

G. Winskel. A note on model checking the modal v-calculus. The-
oretical Computer Science, 83:157-167, 1991.

67

