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Abstract

This dissertation includes three essays on distance functions and inefficiency measurement.

The main focus of the three essays is the measurement and determinants of technical ineffi-

ciency theoretically and empirically.

Essay 1 provides an up-to-date review that focuses on research methods, including differ-

ent approaches to measuring technical inefficiency using distance functions, the development

of modeling technical inefficiency, and the most common econometric estimation techniques.

It also provides a useful guide on when these methods can be used and how to implement

them. Regarding estimation issues, I address the important issues that should be managed in

future applications while estimating technical inefficiency, including violation of theoretical

and econometric regularity, the inaccurate choice of functional form, ignoring the possibility

of heterogeneity and heteroskedasticity, and suffering from the endogeneity problem. I also

discuss different approaches to deal with these issues, as well as potentially productive areas

for future research.

Essay 2 derives the interactive effect between input and output technical inefficiencies

theoretically using directional distance functions. This derivation solves the arbitrary de-

composition of overall technical inefficiency into input and output components in previous

studies. I argue that overall technical inefficiency equals the sum of input and output techni-

cal inefficiencies plus an interactive effect component which captures the interactions between

them. I prove the results theoretically using exogenous and endogenous directional vectors.

Essay 3 investigates the relationships among input, output, and overall technical ineffi-

ciencies empirically using US banking data set. Using Bayesian estimation with the mono-

tonicity conditions imposed at each observation, I estimate these inefficiencies separately

using directional input, output, and technology distance functions. I model the overall tech-

nical inefficiency as a linear function of input and output technical inefficiencies, and a term
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capturing the interactions between them. These determinants of overall technical inefficiency

are estimated simultaneously with the variables that determine the frontier. I find significant

evidence of the interactive effect between input and output technical inefficiencies which has

a negative effect on the overall technical inefficiency. This result is robust to alternative

directional vectors and model specifications, suggesting that the adjustability of both inputs

and outputs is required for the improvement of efficiency.
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I would like to thank Prof. Rolf Färe who read an earlier version of part of this dissertation

and provided his feedback. His insightful comments and suggestions significantly improved

this dissertation. My special thanks also go to Dr. Guohua Feng and Dr. Ali Jadidzadeh

for their support and encouragement. My particular appreciation goes to Dr. Salwa Ahmed.

Her generous support during this process was outstanding.

Financial support granted from the Libyan Ministry of Higher Education and Scientific

Research, the Faculty of Graduate Studies, and the Department of Economics at the Uni-

versity of Calgary are also gratefully acknowledged.

Most importantly, I would like to thank my supportive family, my husband and my three

wonderful children for supporting me spiritually throughout the writing of this dissertation

and my life in general.

iv



In memory of my father

who has contributed the most to make me the scholar I am today

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Distance Functions and the Measurement of Technical Inefficiency: A Review 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Distance Functions and Technical Inefficiency . . . . . . . . . . . . . . . . . 4

1.2.1 The Radial Measure of Technical Inefficiency . . . . . . . . . . . . . . 5
1.2.2 The Hyperbolic Measure of Technical Inefficiency . . . . . . . . . . . 10
1.2.3 The Directional Measure of Technical Inefficiency . . . . . . . . . . . 12
1.2.4 Technical Inefficiency Measures with Prices . . . . . . . . . . . . . . . 18

1.3 Modeling Technical Inefficiency . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.1 Time-Invariant Inefficiency Models . . . . . . . . . . . . . . . . . . . 27
1.3.2 Time-Variant Inefficiency Models . . . . . . . . . . . . . . . . . . . . 31
1.3.3 Time-Invariant and Time-Variant Inefficiency Models . . . . . . . . . 35
1.3.4 Four Random Components Inefficiency Models . . . . . . . . . . . . . 36
1.3.5 Dynamic Inefficiency Models . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.6 Threshold Inefficiency Models . . . . . . . . . . . . . . . . . . . . . . 39
1.3.7 Zero Inefficiency Models . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.8 Heterogeneous Inefficiency Models . . . . . . . . . . . . . . . . . . . . 41

1.4 Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.4.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.2 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.4.3 Theoretical Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.4.4 Econometric Regularity . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.5 Estimation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.5.1 Functional Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.5.2 Heterogeneity Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.5.3 Heteroscedasticity Issue . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.5.4 Endogeneity Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2 Interactive Effects between Input and Output Technical Inefficiencies . . . . 81
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.2.1 The Input Distance Function . . . . . . . . . . . . . . . . . . . . . . 84
2.2.2 The Output Distance Function . . . . . . . . . . . . . . . . . . . . . 85
2.2.3 The Directional Technology Distance Function . . . . . . . . . . . . . 87
2.2.4 Duality Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.3 Exogenous Directional Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vi



2.4 Endogenous Directional Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.5 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3 Interactive Effects between Input and Output Technical Inefficiencies in US

Commercial Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2 The Directional Technology Distance Function . . . . . . . . . . . . . . . . . 118

3.2.1 The Directional Input Distance Function . . . . . . . . . . . . . . . . 119
3.2.2 The Directional Output Distance Function . . . . . . . . . . . . . . . 120

3.3 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3.1 The Quadratic Functional Form . . . . . . . . . . . . . . . . . . . . . 121
3.3.2 Imposing the Restrictions . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.3 Modeling the Interactive Effects . . . . . . . . . . . . . . . . . . . . . 125
3.3.4 Specifying the Directional Vector . . . . . . . . . . . . . . . . . . . . 125

3.4 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.4.1 Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.4.2 Full Conditional Posterior Distributions . . . . . . . . . . . . . . . . 138
3.4.3 Estimating the Interactive Effects . . . . . . . . . . . . . . . . . . . . 140

3.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.6.1 Imposing the Theoretical Regularity Conditions . . . . . . . . . . . . 144
3.6.2 Technical Inefficiency Measures . . . . . . . . . . . . . . . . . . . . . 146
3.6.3 Results on the Interactive Effects . . . . . . . . . . . . . . . . . . . . 147

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.0.1 Proof of the Parameter Restrictions that Impose the Translation Prop-
erty on the Directional Distance Functions . . . . . . . . . . . . . . . 199

vii



List of Tables

1.1 A Summary of the Important Properties of Alternative Distance Functions . 78
1.2 A Summary of the Main Characteristics of Technical Inefficiency Models . . 79

2.1 Results for the Numerical Example . . . . . . . . . . . . . . . . . . . . . . . 112

3.1 Data Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.2 Average Technical Inefficiency over Time Based on the Unit Value Directional

Regularity-Constrained Models . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.3 Average Technical Inefficiency over Time Based on the Observed Input-Output

Directional Regularity-Constrained Models . . . . . . . . . . . . . . . . . . . 154
3.4 Average Technical Inefficiency over Time Based on the Optimal Directional

Regularity-Constrained Models . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.5 Parameter Estimates for the Regularity-Constrained UDTDF Model . . . . . 156
3.6 Parameter Estimates for the Regularity-Constrained VDTDF Model . . . . . 157
3.7 Parameter Estimates for the Regularity-Constrained ODTDF Model . . . . . 158
3.8 Estimates of Optimal Directional Parameters . . . . . . . . . . . . . . . . . . 159

viii



List of Figures and Illustrations

1.1 The Debreu-Farrell Input-Oriented Measure of Technical Efficiency . . . . . 7
1.2 The Debreu-Farrell Output-Oriented Measure of Technical Efficiency . . . . 9
1.3 The Hyperbolic Measures of Technical Efficiency . . . . . . . . . . . . . . . . 12
1.4 The Directional Measure of Technical Inefficiency . . . . . . . . . . . . . . . 14
1.5 Cost and Input Technical Inefficiency . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Revenue and Output Technical Inefficiency . . . . . . . . . . . . . . . . . . . 22
1.7 Profit and Overall Technical Inefficiency . . . . . . . . . . . . . . . . . . . . 24
1.8 Radial, Hyperbolic, and Directional Measures of Technical Inefficiency . . . . 25
1.9 Violation of Monotonicity and Curvature Conditions . . . . . . . . . . . . . 57
1.10 Heterogeneous Technologies and Technical Inefficiency . . . . . . . . . . . . . 70

2.1 The Input Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.2 The Output Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.3 Directional Distance Functions with Different Directional Vectors . . . . . . 89
2.4 Inefficiency Measures with the Observed Input-Output Directional Vector . . 93
2.5 Interactive Effects Based on the Observed Input-Output Directional Vector . 96
2.6 Inefficiency Measures with the Unit Value Directional Vector . . . . . . . . . 98
2.7 Interactive Effects Based on the Unit Value Directional Vector . . . . . . . . 101
2.8 Interactive Effects with Endogenous Directional Vectors . . . . . . . . . . . . 105
2.9 Endogenous Directional Vectors Projecting to the Profit-Maximizing Bundle 106
2.10 Endogenous Directional Vectors Projecting to the Cost-Minimizing or Revenue-

Maximizing Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.11 Graphical Representation of the Numerical Example Given in Table 2.1 . . . 109

3.1 Technical Inefficiency Measures Based on the Unit Value Directional Vector
in 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.2 Technical Inefficiency Measures Based on the Unit Value Directional Vector
in 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3.3 Technical Inefficiency Measures Based on the Unit Value Directional Vector
in 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.4 Technical Inefficiency Measures Based on the Unit Value Directional Vector
in 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

3.5 Technical Inefficiency Measures Based on the Observed Input-Output Direc-
tional Vector in 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.6 Technical Inefficiency Measures Based on the Observed Input-Output Direc-
tional Vector in 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.7 Technical Inefficiency Measures Based on the Observed Input-Output Direc-
tional Vector in 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

3.8 Technical Inefficiency Measures Based on the Observed Input-Output Direc-
tional Vector in 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.9 Technical Inefficiency Measures Based on the Optimal Directional Vector in
2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

ix



3.10 Technical Inefficiency Measures Based on the Optimal Directional Vector in
2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

3.11 Technical Inefficiency Measures Based on the Optimal Directional Vector in
2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

3.12 Technical Inefficiency Measures Based on the Optimal Directional Vector in
2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

x



Overview

This dissertation includes three essays on distance functions and inefficiency measurement.

The main focus of the three essays is the measurement and determinants of technical in-

efficiency theoretically and empirically. The importance of the measurement of technical

inefficiency can be summarized by a notable quote by the physicist William Thomson; “If

you cannot measure it, you cannot improve it”. Measurement of technical inefficiency in-

volves a comparison with the most efficient frontier. This comparison involves comparing

observed input to minimum potential input required to produce the output or comparing

observed output to maximum potential output obtainable from the input, or some combina-

tion of the two. The optimal is defined in terms of production frontiers, and inefficiency is

technical.

Essays 1 and 2 deal with the measurement of technical inefficiency theoretically. More

precisely, essay 1 is an up-to-date review of distance functions and the measurement of

technical inefficiency that focuses on research methods. It also provides a useful guide on

when these methods can be used and how to implement them. Essay 2 presents theoretical

and illustrative methods to derive the interactive effect between input and output technical

inefficiencies using directional distance functions. Essay 3 examines the relationships among

input, output, and overall technical inefficiencies empirically.

In essay 1, I review and evaluate recent developments in several related areas, including

different approaches to measuring technical inefficiency using distance functions, the devel-

opment of modeling technical inefficiency in the stochastic frontier framework, and recent

advances on the most common estimation techniques. In particular, I discuss and evaluate

the radial measure of technical inefficiency given by the standard distance functions, the

hyperbolic measure given by the hyperbolic distance function, and the directional measure

given by the directional distance functions. I argue that the directional measure is preferable

xi



to the radial and the hyperbolic measure. The development of modeling technical inefficiency

regarding its temporal behavior, its classification, and its determinants are also discussed.

With the aim of using the appropriate estimation techniques, I review recent advances on

the most common estimation techniques, including maximum likelihood and Bayesian esti-

mations. This essay also addresses the importance of attaining theoretical regularity applied

by neoclassical microeconomic theory when violated, as well as econometric regularity when

variables are non-stationary. Without regularity, technical inefficiency results are extremely

misleading.

Regarding estimation issues, I address the important issues that should be managed in

future applications while estimating technical inefficiency, including the inaccurate choice of

functional form, ignoring the possibility of heterogeneity and heteroskedasticity, and suffering

from the endogeneity problem. This essay also discusses different approaches to deal with

these issues, as well as potentially productive areas for future research.

Most empirical studies that examine the technical inefficiency of production processes

employ either an input or an output-oriented measurement technique. In terms of the former,

researchers assume that outputs are exogenous and inputs endogenous and producers are

fully capable of reallocating resources when improving efficiency. Similarly, by adopting

an output-oriented measurement technique, it is assumed that inputs are exogenous and

outputs endogenous and producers are fully capable of mixing production when improving

efficiency. However, adopting an input (output) oriented measurement technique ignores the

opposite output (input) orientation and this restriction may substantially bias the measures

of producer inefficiency.

An efficiency survey by Berger, Hunter, and Timme (1993) suggests comparing these in-

put and output approaches with a complete approach to investigate the relationships between

input and output inefficiencies. However, few studies examine total technical inefficiency and

decompose it into input and output components either by using a profit function or a direc-



tional technology distance function. Even though these studies disaggregate and quantify

the impact of input and output on inefficiency, the arbitrary decomposition of total technical

inefficiency into input and output inefficiency components results in concluding that total

technical inefficiency equals the sum of input and output technical inefficiencies and shows

no interactive effects between them.

Essay 2 differs from these studies by following Berger, Hunter, and Timme (1993) sug-

gestion and comparing these input and output approaches with a complete approach using

directional input, output, and technology distance functions. I derive the interactive ef-

fect between input and output technical inefficiencies theoretically using directional distance

functions. This derivation solves the arbitrary decomposition of overall technical inefficiency

into input and output components. I argue that overall technical inefficiency does not equal

the sum of input and output technical inefficiencies as previous studies claim. It equals the

sum of input and output technical inefficiencies plus an interactive effect component which

captures the interactions between them. I prove the results theoretically using exogenous

and endogenous directional vectors. I also use a numerical illustration to confirm my results.

The results indicate that ignoring the interactive effect between input and output tech-

nical inefficiencies results in a decomposition of overall technical inefficiency into input and

output components that are significantly different from the ones that incorporate it. To the

best of my knowledge, this essay is the first in the literature that derives the interactive

effect between input and output technical inefficiencies theoretically.

Essay 3 builds on the theory presented in essay 2 and examines the relationships among

input, output, and overall technical inefficiencies empirically. In doing so, I use annual data

for US commercial banks over the period from 2001 to 2015, obtained from the Reports

of Income and Condition (Call Reports). The market-average prices faced and determined

exogenously rather than the actual prices paid or received by the bank are used, following

Berger and Mester (2003). These market-average prices are more likely to be exogenous to



the bank than the bank-specific prices. The asset approach proposed by Sealey and Lindley

(1977) is used to identify bank inputs and outputs.

I estimate input, output, and overall technical inefficiencies separately using the direc-

tional input distance function (DIDF), the directional output distance function (DODF) and

the directional technology distance function (DTDF), respectively. I estimate these ineffi-

ciencies using Bayesian methods with the three commonly used directional vectors; the unit

value, the observed input-output, and the optimal directional vectors. Given the observed

estimation issues discussed in essay 1, the latter addresses the endogeneity of inputs and

outputs by using systems of equations, consisting of DIDF (DODF, or DTDF) with the cost

(revenue, or profit) minimizing (maximizing) first-order conditions, respectively. The latter

also accounts for heterogeneity across banks by allowing the directional vectors to be endoge-

nous and vary across banks. Regarding regularity violations, I find that the monotonicity

conditions with respect to labor and all outputs are violated for all models at most obser-

vations. Therefore, all models are re-estimated with the monotonicity conditions imposed

at each observation, by following the Bayesian procedure discussed in O’Donnell and Coelli

(2005).

To investigate the relationships among input, output, and overall technical inefficiencies,

I model the overall technical inefficiency as a linear function of input and output technical

inefficiencies, and a term capturing the interactions between them, following Battese and

Coelli (1995). These determinants of overall technical inefficiency are estimated simultane-

ously with the variables that determine the frontier.

Essay 3 contributes to the literature in many ways. First, to the best of my knowledge, it

is the first in the literature that uses a complete approach to examine the relationships among

input, output, and overall technical inefficiencies empirically using the same data set and the

directional input, output, and technology distance functions with the three commonly used

directional vectors; the unit value, the observed input-output, and the optimal directional



vectors. Second, the optimal directional vectors are allowed to be endogenous and vary

across banks to account for heterogeneity across banks. Third, it pays explicit attention

to the theoretical regularity conditions in order to produce inference that is consistent with

neoclassical microeconomic theory.

In line with essay 2, the results show that overall technical inefficiency does not equal

the sum of input and output technical inefficiencies, as previous studies claim. It equals

the sum of input and output technical inefficiencies plus an interactive effect component

which captures the interactions between them, where the increase in the output technical

inefficiency reflects on a reduction on the input technical inefficiency and vice versa.

The results also show that both input and output technical inefficiencies have significant

positive effects on the overall technical inefficiency. However, the interactive effect between

input and output technical inefficiencies has a significant negative effect on the overall tech-

nical inefficiency. This result is robust to alternative directional vectors and model specifica-

tions. It is also consistent with the theoretical result obtained in essay 2. Banks with larger

values of the interactive effect tend to have a lower level of overall technical inefficiency which

indicates that they are more efficient.

The results also indicate that the value of the interactive effect between input and output

technical inefficiencies depends on the choice of the directional vector in which the data are

projected on the frontier and whether quantities and prices are taken into consideration.

These results are quite significant, since these inefficiency components have different impli-

cations for bank performance, suggesting that the adjustability of both inputs and outputs

is required for the improvement of bank efficiency.
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Chapter 1

Distance Functions and the Measurement of Technical

Inefficiency: A Review

1.1 Introduction

Measurement of technical inefficiency involves a comparison with the most efficient frontier.

This comparison involves comparing observed input to minimum potential input required to

produce the output or comparing observed output to maximum potential output obtainable

from the input, or some combination of the two. The optimal is defined in terms of production

frontiers, and inefficiency is technical.

Most of the literature reviews in this field focus on research outcomes and empirical ap-

plications. Battese (1992) provides a survey on production frontiers and technical efficiency

that focuses on econometric models and empirical applications in agricultural economics.

Greene (1993) provides a comprehensive review of the econometric approach to both tech-

nical and allocative inefficiency. More recently, Darku, Malla, and Tran (2013) provide a

comprehensive and historical review that focuses on reviewing various agricultural efficiency

studies and evaluating their methodologies and significant results. Parmeter and Kumbhakar

(2014) review the econometric literature on the parametric and nonparametric estimation of

technical efficiency.

This review paper contributes to the literature by providing an up-to-date review that

focuses on research methods, including different approaches to measuring technical ineffi-

ciency using distance functions, the development of modeling technical inefficiency in the

stochastic frontier framework, and the most common econometric estimation techniques. It

also provides a useful guide on when these methods can be used and how to implement them.

1



In particular, I discuss and evaluate the radial measure of technical inefficiency given by

the standard distance functions, the hyperbolic measure given by the hyperbolic distance

function, and the directional measure given by the directional distance functions. Distance

functions have the primary advantage of requiring only quantity information on inputs and

outputs and serving as a direct measure of technical inefficiency. I argue that the directional

measure is preferable to the radial and the hyperbolic measure. Measuring technical ineffi-

ciency with prices is also discussed. It can accommodate the joint estimation of both technical

and allocative inefficiency, where allocative inefficiency is due to the failure of choosing the

optimal input-output vector given relative input and output market prices. However, it de-

pends on the availability of price information, and the satisfaction of the required behavioral

assumptions; cost-minimizing (revenue or profit-maximizing) behavior.

The development of modeling technical inefficiency regarding its temporal behavior, its

classification, and its determinants are also discussed. Regarding its temporal behavior,

technical inefficiency in the stochastic frontier models is viewed first as time-invariant in

cross-section and panel data models. This assumption is relaxed with the development of

the time-variant technical inefficiency models. These models allow technical inefficiency to

vary over time and across individual producers. Time-invariant and time-variant inefficiency

models are developed to take both inefficiency components into account. More recently,

four random components inefficiency models are proposed to account for both inefficiencies

and heterogeneous technology since time-invariant and time-variant inefficiency models fail to

explicitly account for unobserved heterogeneity or separate it from time-invariant inefficiency.

The dynamic inefficiency models are proposed to capture the fact that the temporal behavior

of inefficiency may be dynamic, where inefficiency evolves via an autoregressive process where

past values of inefficiency determine the current value of inefficiency.

In contrast to the models that allow for the existence of extremely inefficient producers

who cannot survive in highly competitive markets, the threshold inefficiency models truncate
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the distribution of inefficiency by placing a threshold parameter of the minimum efficiency

for survival on inefficiency. Thus, these models specify an upper bound to the distribution

of inefficiency in addition to the zero lower bound.

While the threshold inefficiency models focus on the possibility of inefficient producers

being out of the markets, recent studies develop the zero inefficiency models which focus

on the possibility of producers being fully efficient. The zero inefficiency models can ac-

commodate the presence of both fully efficient and inefficient producers in a probabilistic

framework.

Heterogeneous inefficiencies models are proposed to capture heterogeneity in the inef-

ficiency component by either including producer-specific characteristics in the inefficiency

component or the mean, variance or both parameters of the inefficiency distribution.

With the aim of using the appropriate estimation techniques, I review the recent advances

on the most common estimation techniques, including maximum likelihood and Bayesian es-

timations. This paper also addresses the importance of attaining the theoretical regularity

applied by neoclassical microeconomic theory when violated, as well as the econometric

regularity when variables are non-stationary. Without regularity, inefficiency results are ex-

tremely misleading. This paper also discusses techniques for imposing theoretical regularity

and integration and cointegration techniques that can be used to manage the non-stationarity

of the residuals.

Regarding estimation issues, I address the important issues that should be managed in

future applications while estimating technical inefficiency, including the inaccurate choice of

functional form, ignoring the possibility of heterogeneity and heteroskedasticity, and suffering

from the endogeneity problem. This paper also discusses different approaches to deal with

these issues, as well as potentially productive areas for future research.

The estimates of technical inefficiency can be distorted by the inaccurate choice of func-

tional form for the production technology. This paper discusses several selection criteria
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for choosing a particular functional form for the production technology based on theoretical

properties such as its shape of the isoquants, its separability, its flexibility and its regular

regions, and application properties such as homogeneity and translation properties. This

paper also addresses empirical techniques that can be used to assess the ability of different

functional forms to approximate the unknown underlying function.

The appropriate choice of functional form is not sufficient without accommodating het-

erogeneous technologies that may exist among producers or heterogeneity in the inefficiency

term. Ignoring heterogeneity can lead to wrong conclusions concerning inefficiency measures

since heterogeneity which is not captured by producer-specific characteristics is wrongly

attributed to inefficiency. This paper addresses the importance of accommodating hetero-

geneity and discusses different approaches to account for both heterogeneous technologies

and heterogeneity in the inefficiency term while estimating technical inefficiency.

Another potential issue when estimating technical inefficiency using distance functions

is that inputs and outputs may be endogenous leading to biased and inconsistent estimates

of the parameters of the production technology and the associated measures of inefficiency.

This paper discusses different approaches to deal with this issue.

The rest of the paper is organized as follows. The next section presents theoretical back-

grounds on the radial, the hyperbolic, and the directional measures of technical inefficiency

using distance functions. Section 3 reviews the development of modeling technical ineffi-

ciency in the stochastic frontier framework. Section 4 gives a brief review of the recent

advances on the most common estimation techniques. Section 5 discusses the estimation

issues, and the last section summarizes and concludes the paper.

1.2 Distance Functions and Technical Inefficiency

There are several ways to measure technical inefficiency using distance functions. It can be

measured radially using standard distance functions, hyperbolically using hyperbolic distance
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function, or directionally using directional distance functions. It can also be measured by

exploiting the duality between distance functions and cost, revenue and profit functions. The

choice can be based on several selection criteria; the objective of the producers, exogeneity

assumptions, data availability, and the complexity of the estimation procedures.

To briefly review some of the literature on the radial, hyperbolic, and directional measures

of technical inefficiency using distance functions, consider a producer employing a vector of

n inputs x = (x1, ..., xn) ∈ Rn
+ available at fixed prices w = (w1, ..., wn) ∈ Rn

++ to produce a

vector of m outputs y = (y1, ..., ym) ∈ Rm
+ that can be sold at fixed prices p = (p1, ..., pm) ∈

Rm
++. Let L (y) be the set of all input vectors x which can produce the output vector y

L (y) =
{
x = (x1, ..., xn) ∈ RN

+ : x can produce y
}

and let P (x) be the feasible set of outputs y that can be produced from the input vector x

P (x) =
{
y = (y1, ..., ym) ∈ Rm

+ : y is producible from x
}

The production technology T for a producer is defined as the set of all feasible input-output

vectors

T =
{

(x, y) : x ∈ Rn
+, y ∈ Rm

+ , x can produce y
}

Note that (x, y) ∈ T ⇔ x ∈ L (y)⇔ y ∈ P (x).

1.2.1 The Radial Measure of Technical Inefficiency

The radial measure of technical inefficiency is given by the standard distance functions.

Distance functions are initially defined on the input or output production possibility sets

by Debreu (1951) and Shephard (1953, 1970). While the input distance function considers

the proportional contraction of inputs holding the outputs constant, the output distance

function considers the proportional expansion of outputs holding the inputs constant. They

are independent of the unit of measurement.
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Input (output) distance functions ignore the opposite output (input) orientation, and this

restriction may be unacceptable if the adjustability of both inputs and outputs is required.

Thus, the choice of input versus output distance function as an alternative representation of

production technology should be based on the objective of the producers and the exogeneity

assumption of inputs and outputs. If the objective of the producers is to minimize cost which

involves choosing the optimal quantities of inputs to produce a given output vector, the input

distance function can be adopted to estimate technical inefficiency in the cost minimization

problem. If the objective of the producers is to maximize revenues which involve producing

the optimal quantities of outputs from a given input vector, the output distance function

can be adopted to estimate technical inefficiency in the revenue maximization problem.

The Input Distance Function

Following Shephard (1953), the input distance function (IDF) can be defined relative to the

input set L (y) or the production technology T as follows

DI (y, x) = max
ϑI

{
ϑI :

x

ϑI
∈ L (y)

}
= max

ϑI

{
ϑI :

(
x

ϑI
, y

)
∈ T

}
where 1/ϑI represents the proportional contraction of inputs that is required to reach the

inner boundary of the input set or the production frontier, holding the outputs constant.

DI (y, x) is given by the ratio of the observed input to the minimum input required to produce

the given output. Thus, for any x, x/DI (y, x) is the minimum input vector on the ray from

the origin through x that can produce y, as can be seen in Figure 1.1. Efficient producers,

who produce on the boundary of the input set or the production frontier, have DI (y, x) = 1.

Inefficiency is indicated by DI (y, x) > 1.

The Debreu-Farrell input-oriented measure of technical efficiency is defined as

TEI (y, x) = min
ϑFI

{ϑFI : ϑFIx ∈ L (y)} = min
ϑFI

{ϑFI : (ϑFIx, y) ∈ T}

Note that the Debreu-Farrell input-oriented measure of technical efficiency is the reciprocal

of the IDF, TEI (y, x) = [DI (y, x)]−1. TEI (y, x) ≤ 1 represents a radial reduction of inputs
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Figure 1.1: The Debreu-Farrell Input-Oriented Measure of Technical Efficiency

that is required to be considered as being efficient. Technical inefficiency is defined as

TII (y, x) = 1− TEI (y, x) = 1− 1

DI (y, x)

where 0 ≤ TII (y, x) ≤ 1. The IDF has the following properties [see Färe and Primont

(1995), and Färe and Grosskopf (2004) for more details]

i) representation, DI (y, x) ≥ 1 iff x ∈ L (y) or (x, y) ∈ T

ii) non-increasing and quasi-concave in outputs, and

iii) non-decreasing, concave, and linearly homogeneous in inputs,

DI (y, λx) = λDI (y, x), λ > 0.

The IDF is also used to accommodate undesirable outputs. This is modeled by holding

desirable outputs y constant and treating undesirable outputs b as inputs x; DI (y, x, b) =

maxϑI

{
ϑI : ( x

ϑI
, b
ϑI

) ∈ L (y)
}

= maxϑI

{
ϑI :

(
x
ϑI
, b
ϑI
, y
)
∈ T

}
. See, for example, Atkinson

and Dorfman (2005). This credits the producer for reducing both inputs and undesirable

outputs proportionally to reach the production frontier. However, if inputs are freely dispos-

able so are undesirable outputs. Such a treatment of undesirable outputs is criticized due
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to the implied strong disposability of undesirable outputs by Färe et al. (2005). Similarly,

treating undesirable outputs as inputs allows substitutability or complementarity among

them. Furthermore, these studies ignore the fact that the production of undesirable outputs

is affected by the production of desirable outputs b = f(y) not the opposite y = f(b). Thus,

treating undesirable outputs as inputs is inappropriate because it imposes incorrect theoret-

ical restrictions on the production technology. Therefore, IDF can be used only to decrease

inputs, holding both outputs constant. Assaf et al. (2013) use IDF and treat undesirable

output as a technology shifter.

The Output Distance Function

Instead of looking at the proportional contraction of inputs holding the outputs constant,

the output distance function (ODF) considers the proportional expansion of outputs holding

the inputs constant. Following Shephard (1970), it is defined on the output set P (x) or the

production technology T as

DO (x, y) = min
ϑO

{
ϑO :

y

ϑO
∈ P (x)

}
= min

ϑO

{
ϑO :

(
x,

y

ϑO

)
∈ T

}
where 1/ϑO represents the proportional expansion of outputs that is required to reach the up-

per boundary of the output set or the production frontier, holding the inputs fixed. DO (x, y)

is given by the ratio of the observed output to maximum potential output obtainable from

the given input. Thus, for any y, y/DO (x, y) is the largest output vector on the ray from

the origin through y that can be produced by x, as can be seen in Figure 1.2. If y is on

the boundary of the output set or the production frontier, DO (x, y) = 1, implying that the

producer is operating at full technical efficiency. If y is within the boundary of the output

set or the production frontier, DO (x, y) < 1, indicating that the producer is operating with

technical inefficiency.

The Debreu-Farrell output-oriented measure of technical efficiency is defined as

TEO (x, y) = max
ϑFO

{ϑFO : ϑFOy ∈ P (x)} = max
ϑFO

{ϑFO : (x, ϑFOy) ∈ T}
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Figure 1.2: The Debreu-Farrell Output-Oriented Measure of Technical Efficiency

Note that the Debreu-Farrell output-oriented measure of technical efficiency is the reciprocal

of the ODF, TEO (x, y) = [DO (x, y)]−1. TEO (x, y) ≥ 1 represents a radial expansion of

outputs that is required to achieve efficiency and the higher this measure, the lower the

efficiency. Technical inefficiency is defined as

TIO (x, y) = TEO (x, y)− 1 =
1

DO (x, y)
− 1

where TIO (x, y) ≥ 0. The ODF has the following properties [see Färe and Grosskopf (1994)

for more details]

i) representation, DO (x, y) ≤ 1 iff y ∈ P (x) or (x, y) ∈ T

ii) non-increasing and quasi-convex in inputs, and

iii) non-decreasing, convex and linearly homogeneous in outputs,

DO (x, λy) = λDO (x, y), λ > 0.

The ODF is also used to accommodate undesirable outputs. This is modeled by holding

inputs x constant and treating undesirable outputs b as desirable outputs y; DO (x, y) =

min
ϑO

{
ϑO :

(
y
ϑO
, b
ϑO

)
∈ P (x)

}
= min

ϑO

{
ϑO :

(
x, y

ϑO
, b
ϑO

)
∈ T

}
. See, for example, Färe et al.
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(1993). Färe et al. (1989) show how to adjust inefficiency measures in the presence of un-

desirable outputs. This credits the producer for expanding both desirable and undesirable

outputs proportionally to reach the production frontier. However, this can only be applied

if the adjustability of both desirable and undesirable outputs is required. Producers have no

control on reducing undesirable outputs without reducing desirable outputs and producing

more desirable outputs require producing more undesirable outputs such as generating pol-

luting as by-products of producing desirable outputs. That is, the undesirable outputs are

inevitably produced unless the entire production process is terminated.

The standard input and output distance functions adjust the desirable and undesirable

outputs proportionally at the same rate, which may not be aimed by producers who attempt

to reduce undesirable outputs and increase desirable outputs simultaneously. Furthermore,

these standard distance functions treat technical inefficiency as environmental inefficiency.

Future studies comparing these inefficiencies and separating them would help to further

understanding of how these inefficiencies differ.

1.2.2 The Hyperbolic Measure of Technical Inefficiency

The hyperbolic measure of technical inefficiency is given by the hyperbolic distance function.

Following Färe et al. (1985), the hyperbolic distance function (HDF) can be defined relative

to the production technology T as follows

DH (x, y) = min
ϑH

{
ϑH :

(
ϑHx,

y

ϑH

)
∈ T

}
where 1 ≥ ϑH > 0 represents the proportional contraction of inputs and expansion of

outputs that is required to reach the production frontier. Note that reducing ϑH implies

expanding 1/ϑH . This is illustrated in figure 1.3 where the hyperbolic curve intersects

with the production frontier at point H =
(
ϑHx,

y
ϑH

)
. Efficient producers who produce on

the boundary of the production frontier, have DH (x, y) = 1. Inefficiency is indicated by

DH (x, y) < 1. The hyperbolic measure of technical efficiency proposed by Färe et al. (1985)
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is defined as

TEH (x, y) = max
ϑFH

{
ϑFH :

(
x

ϑFH
, ϑFHy

)
∈ T

}
Note that the hyperbolic measure of technical efficiency is the reciprocal of the HDF,

TEH (x, y) = [DH (x, y)]−1. For technology frontiers with variable returns to scale, Nahm

and Vu (2013) show that the hyperbolic measure of technical efficiency is the square of the

HDF, TEH (x, y) = [DH (x, y)]2. TEH (x, y) ≥ 1 under the assumption of weak disposability

of inputs and outputs. Technical inefficiency is defined as

TIH (x, y) = TEH (x, y)− 1 =
1

DH (x, y)
− 1

where TIH (x, y) ≥ 0. Färe et al. (2002) show that under constant returns to scale, the HDF

is related to the standard input and output distance functions asDH (x, y) = [DI (y, x)]−1/2 =

[DO (x, y)]1/2. Another type of relationship is developed by Simar and Vanhems (2012) and

Daraio and Simar (2014) between the HDF and the directional technology distance function

as lnDH (x∗, y∗) = ~DT (x, y; gx, gy) where x∗ = exp (x./gx) and y∗ = exp (y./gy). The HDF

has the following properties [see Färe et al. (1985, 1994) for more details]

i) representation, DH (x, y) ≤ 1 iff (x, y) ∈ T

ii) non-increasing in inputs and non-decreasing in outputs

iii) homogeneity, DH (λ−1x, λy) = λDH (x, y), λ > 0

iv) homogeneous of degree zero in inputs and outputs under constant returns to

scale, and

v) almost homogeneous of degrees k1, k2 and k3 ifDH

(
λk1x, λk2y

)
= λk3DH (x, y) .

In contrast to the standard distance functions, the HDF simultaneously contracts inputs

and expands outputs proportionally without restricting either inputs or outputs to be con-

stant. Moreover, it can be used for simultaneous contraction of inputs x and undesirable out-
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Figure 1.3: The Hyperbolic Measures of Technical Efficiency

puts b, and expansion of desirable outputs y; DH (x, y, b) = min
ϑH

{
ϑH :

(
ϑHx,

y
ϑH
, ϑHb

)
∈ T

}
.

See, for example, Cuesta et al. (2009) and Fang and Yang (2014).

The choice of the hyperbolic distance function can be adopted to estimate technical

inefficiency assuming that producers can adjust both inputs and outputs when improving

efficiency. Färe et al.(2002) show that the HDF is dual to the return-to-dollar function

first proposed by Georgescu-Roegen (1951); [DH (x, y)]−2 ≥ py/wx. However, the HDF is

occasionally used in the literature to measure technical inefficiency because of the non-linear

optimization involved – see, for example, Cuesta and Zofio (2005) who introduce a method

to estimate technical inefficiency for Spanish savings banks using the HDF.

1.2.3 The Directional Measure of Technical Inefficiency

Unlike the standard or hyperbolic distance functions, the directional distance functions

(DDF) constitute an additive not proportional or multiplicative measure of technical in-

efficiency in a given direction g, therefore they are not scale-invariant. The additive nature

of DDF allows for the treatment of non-positive inputs or outputs.
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The Directional Technology Distance Function

The directional technology distance function (DTDF) generalizes the standard input and

output distance functions, providing a tool to address efficiency issues in an integrated ap-

proach. It is introduced by Chambers et al. (1998) as a variant of the Luenberger (1995)

shortage function. It allows for simultaneous contraction of inputs and expansion of outputs

in terms of an explicit direction vector g = (gx, gy), where gx ∈ RN
+ and gy ∈ RM

+ such that

it contracts inputs in the direction gx and expands outputs in the direction gy. In particular,

the DTDF is defined as

~DT (x, y; gx, gy) = max
θT
{θT : (x− θTgx, y + θTgy) ∈ T} (1.1)

Efficient producers who produce on the frontier of T have ~DT (x, y; gx, gy) = 0, im-

plying that there is no further contraction of inputs and expansion of outputs that is

feasible. Inefficiency is indicated by ~DT (x, y; gx, gy) > 0, with higher values indicating

greater inefficiency when producers operate beneath the frontier of T . Eliminating tech-

nical inefficiency for producers who operate at point A would take the producers to point

B =
(
xT , yT

)
= (x− θTgx, y + θTgy) on the frontier of T , as can be seen in Figure 1.4. The

DTDF serves as a technology-oriented measure of technical inefficiency

TIT = ~DT (x, y; gx, gy)

As noted by Chambers et al. (1998), the DTDF has the following properties:

i) representation, ~DT (x, y; gx, gy) ≥ 0 iff (x, y) ∈ T

ii) translation, ~DT (x− αgx, y + αgy; gx, gy) = ~DT (x, y; gx, gy)− α, for α ∈ R

iii) non-decreasing in x and non-increasing in y if inputs and outputs are freely

disposable

iv) concave in (x, y)
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Figure 1.4: The Directional Measure of Technical Inefficiency

v) homogeneous of degree −1 in g, That is,

~DT (x, y;λgx, λgy) = λ−1 ~DT (x, y; gx, gy), for λ > 0, and

vi) homogeneous of degree +1 in x and y if the technology exhibits constant

returns to scale, ~DT (λx, λy; gx, gy) = λ~DT (x, y; gx, gy), for λ > 0.

The advantage of DTDF over the IDF, ODF, and HDF is that it can accommodate

desirable and undesirable outputs by allowing for non-radial or hyperbolic expansion of the

desirable outputs and contraction of the undesirable outputs.

The Directional Input Distance Function

The inefficiency measures derived from the directional distance function depend on the choice

of the directional vector, g = (gx, gy). By setting gy = 0, the directional vector becomes g

= (gx, 0) and allows only for input contraction holding outputs fixed — see Figure 1.4. In

this case, equation (1.1) becomes the directional input distance function (DIDF) that allows

for only input contraction, ~DT (x, y; gx, 0) = ~DI (y, x; gx)

~DI (y, x; gx) = max
θI
{θI : (x− θIgx) ∈ L (y)} = max

θI
{θI : (x− θIgx, y) ∈ T}
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Moreover, according to Chambers et al. (1996, 1998) and Fare and Grosskopf (2000), if the

directional input vector, gx, equals the observed input vector, x, (that is, gx = −x), then

~DI (y, x; gx) = ~DI (y, x;−x) = 1− 1

DI (y, x)

and in this case there is a relationship between the directional input distance function,

~DI (y, x;−x), and the standard input distance function, DI (y, x). As can be seen in Figure

1.4, producers who operate at point A can hold output constant and contract input in the

direction gx = −x to point I. The DIDF serves as an input-oriented measure of technical

inefficiency

TII = ~DI (y, x; gx)

The DIDF satisfies the following properties [see Chambers et al. (1996)]:

i) representation, ~DI (y, x; gx) ≥ 0 iff x ∈ L (y) or (x, y) ∈ T

ii) translation, ~DI (y, x− αgx; gx) = ~DI (y, x; gx)− α, for α ∈ R

iii) concavity in inputs

iv) positive monotonicity in inputs. That is, x′ > x implies

~DI (y, x′; gx) ≥ ~DI (y, x; gx)

v) negative monotonicity in outputs. That is, y′ > y implies

~DI (y′, x; gx) ≤ ~DI (g, x; gx), and

vi) homogeneity of degree −1 in gx. That is,

~DI (y, x;λgx) = λ−1 ~DI (y, x; gx), for λ > 0.

The Directional Output Distance Function

By setting gx = 0, the directional vector becomes g = (0, gy) and allows only for output

expansion holding inputs fixed — see Figure 1.4. In this case, equation (1.1) reduces to
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the directional output distance function (DODF) that allows for only output expansion,

~DT (x, y; 0, gy) = ~DO (x, y; gy)

~DO (x, y; gy) = max
θo
{θO : (y + θOgy) ∈ P (x)} = max

θo
{θO : (x, y + θOgy) ∈ T}

Moreover, as noted by Chambers et al. (1998) and Färe and Grosskopf (2000), if the direc-

tional output vector, gy, equals the observed output vector, y (that is, gy = y), then

~DO (x, y; gy) = ~DO (x, y; y) =
1

DO (x, y)
− 1

and in this case there is a relationship between the directional output distance function,

~DO (x, y; y), and the standard output distance function, DO (x, y). As can be seen in Figure

1.4, producers who operate at point A can hold input constant and expand output in the

direction gy = y to point O. The DODF serves as an output-oriented measure of technical

inefficiency

TIO = ~DO (x, y; gy)

The DODF satisfies the following properties [see Färe et al. (2005)]:

i) representation, ~DO (x, y; gy) ≥ 0 iff y ∈ P (x) or (x, y) ∈ T

ii) translation, ~DO (x, y + αgy; gy) = ~DO (x, y; gy)− α, for α ∈ R

iii) concavity in outputs

iv) positive monotonicity in inputs. That is, x′ > x implies

~DO (x′, y; gy) ≥ ~DO (x, y; gy)

v) negative monotonicity in outputs. That is, y′ > y implies

~DO (x, y′; gy) ≤ ~DO (x, y; gy), and

vi) homogeneity of degree −1 in gy. That is,

~DO (x, y;λgy) = λ−1 ~DO (x, y; gy), for λ > 0.
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The Directional Vector

The measures of technical inefficiency derived from the directional distance functions depend

on the choice of the directional vector g in which the data are projected on the frontier of

T . Technical inefficiency can be measured by choosing an exogenous or an endogenous

directional vector. The former is a pre-specified directional vector, and the latter determines

the direction through a specific endogenous behavior.

Exogenous Directional Vector

For an exogenous or a pre-specified directional vector, two widely used directions are

the unit value direction g = (−1, 1) and the observed input-output direction g = (−x, y).

The unit value direction g = (−1, 1) implies that the amount by which a producer could

decrease inputs and increase outputs will be ~DT (x, y;−1, 1)× 1 units of x and y — see, for

example, Färe et al. (2005). The advantage of choosing this directional vector is relied on

its simplicity, its allowance for aggregation to the industry level, normalizing nature, and

convenience in explaining the results of measurement. Specifically, an inefficiency measure

based on the unit value directional vector indicates, regardless of the units of measurement,

the number of units of each input (output) that should be contracted (expanded) to reach

the production frontier. As noted by Färe and Grosskopf (2004), the inefficiency of the

industry equals the sum of the directional distance functions for all producers when choosing

a common directional vector for all producers.

Another widely used pre-specified direction is the observed input-output direction g =

(−x, y). This type of directional vector measures the simultaneous maximum proportional

expansion of outputs and contraction of inputs that is feasible given the technology. It

assumes that an inefficient producer can decrease inefficiency while decreasing inputs and

increasing outputs in proportion to the initial combination of the actual inputs and outputs

— see, for example, Färe, Grosskopf, and Weber (2004).

The pre-specified directional vector is extended in several directions. Koutsomanoli-
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Filippaki et al. (2012) use the observed input-output averages direction g = (x, y). How-

ever, these producer-specific directional vectors cannot be aggregated to the industry level.

Tzeremes (2015) uses a range directional vector g = (gx, gy) = (R, 0) where the range of pos-

sible input reduction of a specific producer is defined as the input minus the minimum inputs

observed; Rik′ = xik′ −min
k
{xik} given a set of producers k = {1, . . . K}. Färe et al. (2013)

and Hampf and Kruger (2015) use a directional vector based on exogenous normalization

constraints.

The main issue with the pre-specified directional vector is that the parameter estimates

of the production technology and associated measures of technical inefficiency depend on the

choice of the directional vector — see, for example, Atkinson and Tsionas (2016).

Endogenous Directional Vector

Alternatively, an endogenous directional vector such that it projects any inefficient pro-

ducer to the cost (revenue or profit) minimizing (maximizing) benchmark can be chosen.

See, for example, Malikov et al. (2016) for an endogenous direction vector projecting to the

cost-minimizing benchmark, Feng et al. (2018) for an endogenous direction vector projecting

to the profit-maximizing benchmark, and Atkinson and Tsionas (2016) for a set of directions

that is consistent with cost minimization and profit maximization. However, further research

is needed comparing the different choices of the directional vector and providing a framework

to determine an optimal set of directions.

1.2.4 Technical Inefficiency Measures with Prices

Measuring technical inefficiency with prices can accommodate the joint estimation of both

technical and allocative inefficiencies, where allocative inefficiency is due to the failure of

choosing the optimal input-output vector given relative input and output market prices.

However, it depends on the availability of price information, and the satisfaction of the

required behavioral assumptions; cost-minimizing (revenue or profit-maximizing) behavior.
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The Cost and Input Technical Inefficiency

The duality between cost and distance functions is introduced by Luenberger (1992), Färe

and Primont (1995), and Chambers et al. (1996). They show that under weak input dis-

posability, the cost function can be derived from the IDF or the DIDF by minimizing with

respect to inputs and using either unconstrained or conditional optimization.

C (y, w) = min
x
{wx/DI (y, x)} = min

x
{wx : DI (y, x) ≥ 0}

C (y, w) = min
x

{
wx− ~DI (y, x; gx)× wgx

}
= min

x

{
wx : ~DI (y, x; gx) ≥ 0

}
Following Luenberger (1992), Chambers et al. (1996) show that under weak input dispos-

ability, DIDF can be derived from the cost function by minimizing with respect to input

prices and using either unconstrained or conditional optimization.

~DI (y, x; gx) = min
w
{wx− C (y, w) /wgx} = min

w
{wx− C (y, w) : wgx = 1}

The relationships between the IDF, the DIDF and the cost function can be represented as

[see Chambers et al. (1998), and Färe and Grosskopf (2000)]

1

DI (y, x)
≥ C (y, w)

wx
and ~DI (y, x; gx) ≤

wx− C (y, w)

wgx

The inequality can be turned into equality by including a residual multiplicative term to the

IDF and an additive term to the DIDF to capture allocative inefficiency, where allocative

inefficiency is due to the failure of choosing the cost-minimizing input vector given relative

input market prices.

Ignoring the price information, technical inefficiency can be measured by the amounts by

which a producer lies above its input isoquant. The Debreu-Farrell input-oriented measure

of technical efficiency represents the radial reduction of inputs that is required to reach the

inner boundary of the input set, holding the outputs constant. It is defined as the ratio of

the minimum input required to produce the given output to the observed input. As can be

seen in Figure 1.5, technical efficiency of producer D is TEI (y, x) = OE/OD, where E is

the minimum input vector on the ray from the origin through D that can produce y.
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Figure 1.5: Cost and Input Technical Inefficiency

Cost efficiency is measured by the ratio of minimum or frontier cost over observed cost,

CE(x, y, w) = C(y, w)/wx = (wxC)/wx ≤ 1, where xC is the solution to the cost mini-

mization problem, C (y, w) = min
x
{wx : f(x) ≥ y, x ≥ 0, (x, y) ∈ T} where the isocost line

is tangent to the input isoquant; point C as can be seen in Figure 1.5. Cost efficiency

of producer D is CE(x, y, w) = 0F/0D. Allocative efficiency is measured by the ratio of

minimum cost over frontier cost; AEI(x, y, w) = wxC/wxI . Allocative efficiency of pro-

ducer D is AEI(x, y, w) = 0F/0E. Since CE = AEI × TEI , then TEI = CE/AEI =

(0F/0D) / (0F/0E) = 0E/0D.

Using the directional vector g =
(
gCx1 , g

C
x2

)
, the directional measures of input technical

inefficiency is measured by projecting any inefficient producer to the cost-minimizing bundle

C where producers are both technically and allocatively efficient. All cost inefficiency for

producers operate above the input isoquant can be regarded as measures of input technical

inefficiency; points D and A in figure 1.5.
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The Revenue and Output Technical Inefficiency

The duality between revenue and distance functions is introduced by Färe et al. (1993) and

Färe and Grosskopf (2000). They show that the revenue function can be derived from the

standard output distance function by maximizing with respect to outputs and using either

unconstrained or conditional optimization.

R (x, p) = max
y
{py/DO (x, y)} = max

y
{py : DO (x, y) ≤ 1}

R (x, p) = max
y

{
py + ~DO (x, y; gy)× pgy

}
= max

y

{
py : ~DO (x, y; gy) ≥ 0

}
The Luenberger (1992) and Chambers et al. (1998) duality theorem can also be expressed

using DODF by maximizing with respect to output prices and using either unconstrained or

conditional optimization1.

~DO (x, y; gy) = max
p
{(R (x, p)− py) /pgy} = max

p
{R (x, p)− py : pgy = 1}

The relationships between the ODF, the DODF and the revenue function can be represented

as [see Färe and Grosskopf (2000)]

1

DO (x, y)
≤ R (x, p)

py
and ~DO (x, y;gy) ≤

R (x, p)− py
pgy

The inequality can be turned into equality by including a residual multiplicative term to the

ODF and an additive term to the DODF to capture allocative inefficiency, where allocative

inefficiency is due to the failure of choosing the revenue-maximizing output vector given

relative output market prices.

Ignoring the price information, the Debreu-Farrell output-oriented measure of technical

efficiency represents the radial expansion of outputs that is required to be considered as being

technically efficient. It is defined as the ratio of the maximum potential output obtainable

from the given input to the observed output. As can be seen in Figure 1.6, technical efficiency

of producer D is TEO (x, y) = 0E/0D, where E is the maximum output vector on the ray

from the origin through D that can be produced by x.

1The proof of this duality can be deduced from Luenberger (1992).
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Figure 1.6: Revenue and Output Technical Inefficiency

Revenue efficiency is measured by the ratio of maximum or frontier revenue over ob-

served revenue, RE(y, x, p) = R(x, p)/py = pyR/py ≥ 1, where yR is the solution to the

revenue maximization problem, R (x, p) = max
y
{py : f(x) ≥ y, y ≥ 0, (x, y) ∈ T} where the

iso-revenue line is tangent to the output production curve; point R as can be seen in Fig-

ure 1.6. Revenue efficiency of producer D is RE(y, x, p) = 0F/0D. Allocative efficiency is

measured by the ratio of maximum revenue over frontier revenue; AEO(y, x, p) = pyR/pyO.

Allocative efficiency of producer D is AEO(y, x, p) = 0F/0E. Since RE = AEO×TEO, then

TEO = RE/AEO = (0F/0D)/(0F/0E) = 0E/0D.

Using the directional vector g =
(
gRy1 , g

R
y2

)
, the directional measures of output technical

inefficiency is measured by projecting any inefficient producer to the revenue-maximizing

bundle R where producers are both technically and allocatively efficient. All revenue in-

efficiency for producers operate beneath the output production curve can be regarded as

measures of output technical inefficiency; points D and A in figure 1.6.
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The Profit and Overall Technical Inefficiency

The duality between profit and DTDF is introduced by Chambers et al. (1998). They show

that the profit function can be derived from the DTDF by maximizing with respect to inputs

and outputs and using either unconstrained or conditional optimization.

π (p, w) = max
x,y

{
(py − wx) + ~DT (x, y; gx, gy) (pgy + wgx)

}
= max

x,y

{
(py − wx) : ~DT (x, y; gx, gy) ≥ 0

}
Chambers et al. (1998) show that the DTDF can be derived from the profit function by

minimizing with respect to input and output prices using unconstrained optimization. This

duality theorem can also be expressed using conditional optimization.

~DT (x, y; gx, gy) = min
p,w

{
π (p, w)− (py − wx)

pgy + wgx

}
= min

p,w
{π (p, w)− (py − wx) : pgy + wgx = 1}

The relationship between the DTDF and the profit function can be represented as [see Färe

and Grosskopf (2000)]

~DT (x, y; gx, gy) ≤
π (p, w)− (py − wx)

pgy + wgx

The inequality can be turned into equality by adding a residual term that captures alloca-

tive inefficiency, where allocative inefficiency is due to the failure of choosing the profit-

maximizing input-output vector given relative input and output market prices.

The hyperbolic and directional measures of technical inefficiency are appealing in the

context of profit efficiency since they involve the adjustments of both inputs and outputs.

Ignoring the price information, the directional measure of overall technical inefficiency is

measured by projecting any inefficient producer to the frontier of T where producers are

technically efficient using the directional vector g = (gx, gy), such that inputs are contracted

in the direction gx and outputs are expanded in the direction gy. Eliminating technical

inefficiency for producers who operate at point D would take the producers to point E =
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Figure 1.7: Profit and Overall Technical Inefficiency

(
xE, yE

)
= (x− θTgx, y + θTgy) on the frontier of T . In the context of the hyperbolic measure

of technical inefficiency, eliminating technical inefficiency for producers who operate at point

D would take the producers to point H =
(
xH , yH

)
=
(
ϑHx,

y
ϑH

)
on the frontier of T.

Profit of producers who operate at point D is less than maximum or frontier profit at

point P, where the iso-profit line is tangent to the production frontier, as can be seen in

Figure 1.7. In the context of the directional measure of inefficiency, profit inefficiency is

measured by the ratio of the difference between maximum and observed profit normalized

by the value of the directional vector; PI(y, x, p, w) = (π (p, w)− (py − wx)) / (pgy + wgx).

π (p, w) = pyπ − wxπ, where (xπ, yπ) is the solution to the profit maximization prob-

lem, π (p, w) = maxx,y {(py − wx) : f(x) ≥ y, x ≥ 0, y ≥ 0, (x, y) ∈ T}. Profit inefficiency

of producer D is PI =
(
π∗ − πD

)
/ (pgy + wgx). The technical inefficiency of producer D is

TIT = ~DT (x, y; gx, gy) = ‖DE‖/‖0g‖ . Since PI = TIT + AIT , then the residual following

the path from point E to point F is the allocative inefficiency AIT = PI −TIT , where max-

imum profit π∗ at point F equals that at point P . In the context of the hyperbolic measure

of inefficiency, profit inefficiency PI represents the amount by which inputs and outputs
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Figure 1.8: Radial, Hyperbolic, and Directional Measures of Technical Inefficiency

are projected hyperbolically to the maximum profit boundary through the hyperbolic path

from point D to point J . Since PI = TIH × AIH , then the residual AIH = PI/TIH is the

allocative efficiency.

Using the directional vector g =
(
gπx , g

π
y

)
, the directional measure of overall technical in-

efficiency is measured by projecting any inefficient producer to the profit-maximizing bundle

P where producers are both technically and allocatively efficient. All profit inefficiency for

producers operate beneath the production frontier can be regarded as measures of overall

technical inefficiency — see Zofio et al. (2013).

To summarize, Figure 1.8 illustrates the projections of the observed input-output vec-

tor at point A by different types of distance functions. The standard distance function

projects A proportionally onto R. The radial measure of technical efficiency is given by

TER (x, y) = maxϑ {ϑ : (ϑx, ϑy) ∈ T}. However, the radial measure given by the standard

distance function may produce high inefficiency measures even when the observed input-

output vector is very close to the frontier — see Hudgins and Primont (2007). The HDF

projects A hyperbolically onto H, where the intersection between the hyperbolic curve and

the frontier of T is point H = (ϑFHx, y/ϑFH). The hyperbolic measure of technical efficiency
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is given by TEH (x, y) = maxϑFH
{ϑFH : (x/ϑFH , ϑFHy) ∈ T}. However, the hyperbolic mea-

sure given by the hyperbolic distance function is not always easy to implement due to the

non-linear optimization involved. The DTDF provides greater flexibility by contracting in-

puts and expanding outputs simultaneously to project A onto D using the directional vector

g. The directional measure of technical inefficiency is technology-oriented and given by

~DT (x, y; gx, gy) = maxθT {θT : (x− θTgx, y + θTgy) ∈ T}. The important properties of the

alternative distance functions that can be used for the measurement of technical inefficiency

and the relationships among them can be summarized as in Table 1.1.

1.3 Modeling Technical Inefficiency

Unlike the deterministic frontier approach which assumes that all deviations from the efficient

frontier are under the control of producers and considered as being technical inefficiency,

the stochastic frontier approach introduces a random error term that captures exogenous

stochastic factors beyond the control of producers into the specification of the frontier model

in addition to the technical inefficiency term. The main advantage of the stochastic frontier

approach is that it disentangles error term from inefficiency, thus providing more accurate

measures of technical inefficiency.

This section discusses the development of modeling technical inefficiency regarding its

temporal behavior, its classification, and its determinants in the stochastic frontier frame-

work. Regarding its temporal behavior, technical inefficiency is viewed first as time-invariant

in cross-section and panel data models. This assumption is relaxed with the development

of the time-variant technical inefficacy models. These models allow technical inefficiency to

vary over time and across individual producers. Time-invariant and time-variant inefficiency

models are developed to take both inefficiency components into account. More recently,

four random components inefficiency models are proposed to account for both inefficiencies

and heterogeneous technology since time-invariant and time-variant inefficiency models fail
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to explicitly account for unobserved heterogeneity or separate it from time-invariant ineffi-

ciency. The dynamic inefficiency models are proposed to capture the fact that the temporal

behavior of inefficiency may be dynamic, where inefficiency evolves via an autoregressive pro-

cess where past values of inefficiency determine the current value of inefficiency. While the

threshold inefficiency models focus on the possibility of inefficient producers being out of the

markets, recent studies develop the zero inefficiency models which focus on the possibility of

producers being fully efficient. The zero inefficiency models can accommodate the presence

of both fully efficient and inefficient producers in a probabilistic framework. Heterogeneous

inefficiencies models are proposed to capture heterogeneity in the inefficiency component by

either including producer-specific characteristics in the inefficiency component or the mean,

variance or both parameters of the inefficiency distribution.

1.3.1 Time-Invariant Inefficiency Models

Time-invariant inefficiency models treat inefficiency as time-invariant. It is sometimes re-

ferred to as long-term or persistent inefficiency in the literature. It can be modeled using

cross-section or panel data.

The Cross-Section Models

The early literature on the stochastic frontier framework uses cross-section models where

specific distributions on inefficiency and error terms are assumed in order to estimate the

production frontier. The distribution assumptions are also necessary to separate inefficiency

from error term. The stochastic production frontier is first proposed independently by Aigner

et al. (1977), and Meeusen and Van den Broeck (1977), while the first application is intro-

duced by Battese and Cora (1977). It can be presented as

Yi = α + f(Xi; β) + νi − ui

where inputs, outputs, stochastic factors, and technical inefficiency vary only across pro-

ducers. (νi − ui) is a composed error term; ui ≥ 0 represents technical inefficiency and νi
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represents random errors which is associated with random factors that can affect positively or

negatively production. To separate the composed error term εi = νi−ui , several techniques

are proposed in the literature — see section 1.4 for more details on estimation techniques.

The main issue with the cross-section model is that it relies on the strong assumption

that inefficiency is independent of the regressors, the violation of which leads to inconsistent

estimates of the model parameters as well as the measures of technical inefficiency.

The Panel Data Models

The use of panel data overcomes the limitations of cross-section models and has several

advantages over them in time-invariant inefficiency models. It provides consistent estimates

of inefficiency by adding more temporal observations for the same producer as long as the time

series is sufficiently large. In addition, specific distribution assumption regarding technical

inefficiency is no longer required, and all parameters of the model can be estimated using the

traditional estimation procedures for panel data; fixed and random-effects. The stochastic

production frontier can be presented as

Yit = α + f(Xit; β) + νit − ui

where inputs, outputs, and stochastic factors vary across time and producers but technical

inefficiency varies only across producers. Even though this assumption is unrealistic, it

may be the case if the time dimension of the panel is particularly short or if inefficiency

is associated with management and there is no change in management during that period.

However, if the time dimension is large, it seems unrealistic assuming constant inefficiency

over time or for the inefficient producers to survive in the market.

The Fixed Effects Models

If technical inefficiency is considered as systematic and therefore ui is treated as producer-

specific constant or an unknown fixed parameter to be estimated, a fixed effect model can be

implemented. No distribution assumption is required for ui which is assumed to be correlated
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with the regressors Xit or the random errors νit. Schmidt and Sickles (1984) define a fixed

effects model of technical inefficiency as

Yit = αi + f(Xit; β) + νit

Since ui is treated as fixed, it becomes producer-specific intercept αi = α − ui. They are

regarded as fixed numbers that can be estimated as parameters, or eliminated by suitable

transformation if the number of producers is too large. Schmidt and Sickles (1984) consider

different procedures to estimate the fixed effects model; the within estimator, the generalized

least square (GLS) estimator, and the maximum likelihood estimator. While the within

estimator assumes no independence assumption between ui and the regressors, the GLS

estimator assumes that ui are uncorrelated with the regressors. The maximum likelihood

estimator assumes both distribution and independence assumptions. Sickles (2005) presents

a wide variety of the identification of producer-specific technical inefficiency using panel

estimators. Koop et al. (1997) describe procedures for Bayesian estimation of fixed effects

models for technical inefficiency.

Using the within estimator, the fixed effects estimate β̂ , also called the within esti-

mate, can be estimated either by regressing Ỹit = (yit − yi) on X̃it = (xit − xi), where

yi =
∑T

i=1yit/T and xi =
∑T

i=1xit/T , thus eliminating αi or equivalently by regressing yit on

xit and a set of specific dummy variables for producers using ordinary least squares (OLS). As

a result, α̂i are obtained by averaging its residuals over time as α̂i = yi−xiβ̂ or equivalently

α̂i are the estimated coefficients of the dummy variables. Technical inefficiency is estimated

by comparing the estimated intercept of each producer to the maximum estimated value.

ûi = maxj {α̂j} − α̂i

Producer-specific technical efficiency can be obtained from TEi = exp (−ûi). However, this

makes the producer with the highest intercept is regarded as fully efficient and thus ineffi-

ciency for other producers is relative to that producer. Feng and Horrace (2012) estimate

29



inefficiency relative to the least efficient producer instead of the highest efficient producer

by comparing the estimated intercept of each producer to the minimum estimated value.

They argue that these inefficiency estimates have smaller bias than those with the maxi-

mum estimated value when there are many producers operate close to the efficient frontier.

However, in both cases, inefficiency is estimated as relative rather than absolute inefficiency.

Furthermore, the intercept α̂i captures all time-invariant unobserved heterogeneity not only

those related to inefficiency. In addition, as pointed out by Kim and Schmidt (2000), Wang

and Schmidt (2009) and Satchachai and Schmidt (2010), estimation of technical inefficiency

based on the fixed effects estimator can be upward biased when the number of time series

is small, and the number of cross-section observations is large. The max operator induces

upward bias in α̂ = maxj {α̂j} which induces an upward bias in the inefficiency estimates ûi.

Wikstrom (2016) proposes a modified fixed effects estimator that does not suffer from

bias in large cross-section observations using the second central moment of the inefficiency

distribution to correct the intercept value obtained from the fixed effects estimator. He

proposes a consistent estimator of α assuming half normal distribution and exponential

distribution for ui as α̂ = µ̂α + µ̂u where µ̂α =
∑N

i=1α̂i/N , µ̂u = σ̂2
α (2/π − 2)1/2 assuming

half-normal distribution for ui and µ̂u = (σ̂2
α)

1/2
assuming exponential distribution for ui,

σ̂2
α =

(∑N
i=1 (α̂i − µ̂α)2 /N

)
− (σ̂2

v/T ). The modified fixed effects estimator of ui is defined

by

ûi = α̂− α̂i

Fixed effects estimator has the advantage of not requiring a distribution assumption on

inefficiency and allowing inefficiency to be correlated with any other variables. However, the

time-invariance assumption of inefficiency is very restrictive and unreasonable for relatively

long panels. Also, fixed effect time-invariant models are based on the assumption that

all the time-invariant effects are parts of inefficiency and therefore inefficiency measures

include any other source of time-invariant unobserved heterogeneity not only those related

30



to inefficiency, and it is not possible to identify unobserved heterogeneity from inefficiency—

see, for example, Greene (2004). In addition, time-invariant regressors cannot be used in

the specification of the model which lead to perfect multicollinearity between αi and the

time-invariant regressors.

The Random Effects Models

When the assumption of no correlation between the regressors and inefficiency is cor-

rect, then random effects models provide more efficient estimates than fixed effects models.

Random effects time-invariant inefficiency models are introduced by Pitt and Lee (1981),

Kumbhakar (1987), and Battese and Coelli (1988) in which inefficiency is treated as time-

invariant. Inefficiency measures can be estimated by E(ui | εit), where εit = νit − ui using

maximum likelihood estimation or the posterior mean E(ui | Y ) using Bayesian estimation

— see section 1.4 for more details on estimation techniques.

While fixed effect models allow for correlation between inefficiency and regressors, random

effect models requires independence among them and do not allow for endogenous regressors

in the model. This assumption is violated if inefficiency is related to the usage and quality of

inputs and the production and quality of outputs. In addition, random effect time-invariant

models are based on the assumption that all the time-invariant effects are parts of inefficiency.

An advantage of the random effects models is that time-invariant regressors can be included

in the model without leading to collinearity problem.

1.3.2 Time-Variant Inefficiency Models

Time-variant inefficiency is sometimes referred to as short-term or transient inefficiency in

the literature. Estimates of technical inefficiency in the time-variant technical inefficiency

models depend on model specifications, distribution assumptions, and the temporal behav-

ior of inefficiency. The advantage of time-variant inefficiency model is that it allows the

simultaneous specification of time-variant technical inefficiency, producer effects to account
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for heterogeneous technologies, and technical change.

The Fixed Effects Models

The assumption of time-invariant inefficiency in Schmidt and Sickles (1984) model is relaxed

by Cornwell et al. (1990) by replacing αi with a quadratic function of time which allows

technical inefficiency to vary over time and across individual producers. The model can be

represented as

Yit = αit + f(Xit; β) + vit

where αit = θ0i + θ1it + θ2it
2. The model can be estimated by regressing the residuals for

each producer
(
ε̂it = Yit −X

′
itβ̂
)

on a constant, time, and time-squared. The fitted values

from this regression provide an estimate of αit. Inefficiency measures are computed relative

to the highest efficient producer over all time periods or the highest efficient producer in a

given year. The latter modification allows the highest efficient producer to change from year

to year.

ûit = maxj {α̂jt} − α̂it

The advantages of this model are its independence of distribution assumptions on inefficiency

and its allowance of inefficiency to vary across producers and time. However, it is quite

restrictive in describing the temporal behavior of technical inefficiency which is assumed to

be deterministic. Furthermore, this model cannot separate inefficiency from technical change

since time appears in the inefficiency function.

Lee and Schmidt (1993) define technical inefficiency as the product of individual producer

inefficiency and time effects; αit = θtαi, where θt =
∑

tδt with δt being a dummy variable

for each period t and ûit = maxj

{
θ̂tα̂i

}
− θ̂tα̂i. This specification differs from the time-

invariant fixed effect model by allowing the inefficiency to vary over time. However, the

temporal behavior of inefficiency is assumed to be the same for all producers.

The main issue with these fixed effects time-variant technical inefficiency models is that

both models require many parameters to be estimated that can be limited to very short
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panels. Moreover, inefficiency varies over time in both models by using time dummies or a

time trend which prevents controlling for technical change. Greene (2005a, b) proposes what

he calls true fixed effects model as

Yit = αi + f(Xit; β) + vit − uit

Where αi is unobserved time-invariant heterogeneity and is treated as a random variable that

is correlated with Xit but does not capture inefficiency and can be estimated as parameters.

True fixed effects model can be estimated by adding producer dummy variables to the model.

However, the disadvantage of this model is that it introduces the incidental parameters (the

number of fixed-effect parameters) problem which results in inconsistency for a finite number

of producers and a fixed time due to the number of unknown parameters to be estimated

increases with the number of producers — see, for example, Neyman and Scott (1948).

Recent studies consider eliminating the problem of incidental parameters in the true fixed

effects model by using within transformation to eliminate the producer effects for unobserved

heterogenoty2 — see, for example, Wang and Ho (2010) and Chen, Schmidt, and Wang

(2014).

The Random Effects Models

In these models, time-variant inefficiency can be either identically and independently dis-

tributed (iid) across producers over time or modeled as a product of a deterministic function

of time, g(t; γ), and a non-negative time-invariant random variable ui; (uit = g(t; γ)ui) where

γ is a parameter to be estimated. Thus g(t; γ) allows the data to determine the temporal

behavior of inefficiency instead of imposing it a priori. Technical inefficiency is then esti-

mated from ûit = ĝ(t; γ)E(ui | εi) or alternatively ûi = E(ui | εit) — see Kumbhakar and

Lovell (2000).

2Performing the within transformation on Greene (2005a) true fixed effects model yields Ỹit = X̃itβ+ṽit−
ũit where Ỹit = yit−yi are the deviations from the producer means, yi =

∑
tyit/T . Similarly for X̃it, ṽit, and

ũit. The transformation from Yit to Ỹit is called the within transformation. Note that this transformation
removes time-invariant heterogeneity αi since α̃i = 0. See Hsiao (2003) for a detailed discussion regarding
the advantages of using within transformation.
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Kumbhakar (1990) assumes that uit = ui (1 + exp (γ1t+ γ2t
2))
−1

. His specification allows

technical inefficiency to increase or decrease over time monotonically, depending on the signs

and magnitudes of γ1 and γ2. Battese and Coelli (1992) and Battese and Tessema (1993)

assume that uit = exp (−γ (t− T ))ui. Their specification implies that the temporal behavior

of technical inefficiency is monotonic that allows inefficiency to increase or decrease over

time exponentially, depending on the sign of γ. Technical inefficiency either increases at

a decreasing rate when γ is positive or decreases at an increasing rate when γ is negative.

Time-invariant model is obtained when γ is equal to zero. Kumbhakar and Wang (2005)

assume that uit = exp (−γ (t− t))ui. Technical inefficiency evolves over time according to

exp (−γ (t− t)) where t denotes the initial period and thus uit = ui at time t.

Lee and Schmidt (1993) assume that uit = γtui where γt are the parameters associated

with the time dummy variables that need to be estimated. While Battese and Coelli (1992)

and Battese and Tessema (1993) assume an unrealistic restriction that the temporal behavior

of technical inefficiency is the same for all producers, Cuesta (2000) extends Battese and

Coelli (1992) model to allow for greater flexibility for technical inefficiency to change over

time by assuming uit = exp (−γi (t− T ))ui, uit = exp (gi (t, T, zit))ui. His specification

allows technical inefficiency to evolve over time at a different rate among producers; thus

each producer has its own time path of technical inefficiency.

Cuesta and Orea (2002) and Feng and Serletis (2009) extend Battese and Coelli (1992)

model by assuming uit = exp
(
−γ1 (t− T )− γ2 (t− T )2)ui. Their specification relaxes the

monotonicity of the time path of inefficiency using two parameters specification. There-

fore, their model allows inefficiency to be convex or concave and increasing some years and

decreasing in others.

The main advantage of random effects over fixed effects time-variant technical inefficiency

models is its allowance for the inclusion of time-invariant regressors in the model. However,

random effect models require independence between inefficiency and regressors in the model
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while this condition is not required in the fixed effects models.

Hausman and Taylor (1981) model is a mixture of fixed and random effects models that

allows inefficiency to be uncorrelated with some but not all regressors and also allows for the

inclusion of time-invariant regressors in the model. In that case, producer inefficiency can

be consistently estimated and separated from the producer effects or the intercept as long

as cross-section and temporal observations are large enough.

To separate producer heterogeneity or producer effects from inefficiency, where ineffi-

ciency is time-variant that can either be iid or a function of exogenous variables, Greene

(2005a, b) adds a time-invariant random effect for unobserved heterogeneity and proposes

what he calls true random effects model.

Yit = (α + wi) + f(Xit; β) + vit − uit

where αi = α + wi is unobserved time-invariant heterogeneity and is treated as a random

variable that is uncorrelated with Xit. Note that Kumbhakar and Wang (2005) also introduce

these producer-specific intercepts αi to account for heterogeneous technologies. If αi is

treated as a random variable that is correlated with Xit but does not capture inefficiency,

then the model turns to the true fixed effects model.

1.3.3 Time-Invariant and Time-Variant Inefficiency Models

Previous models for panel data focus either on time-invariant inefficiency or time-variant

inefficiency. None of these models takes both inefficiencies into account. Mundlak (1961)

notes that time-invariant inefficiency reflects the effects of inputs such as management; thus

it is important to estimate it particularly in short panels. However, for large panels or

if there are changes in management, time-variant inefficiency is also important to be esti-

mated. Colombi et al. (2014) argue that time-variant inefficiency arises due to the failure

of allocating resources appropriately in the short run. Tsionas and Kumbhakar (2014) note

that estimating a model with only one inefficiency component with or without controlling
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for producer effects for unobserved heterogeneity gives incorrect estimates of inefficiency.

Kumbhakar and Heshmati (1995) propose a model in which technical inefficiency is assumed

to have time-invariant and time-variant components.

Yit = α + f(Xit; β) + vit − ui0 − uit

where ui0 represents time-invariant inefficiency, uit represent time-variant inefficiency, and

ui0 + uit is total technical inefficiency. The error component is assumed to be independent

of each other and also independent of Xit. The model can be estimated using several esti-

mation techniques, including maximum likelihood estimation, Bayesian estimation, or three

step procedure as follow: First, using a standard random effect model for panel data gives

consistent estimates of the model parameters and predicted values of ui0 and uit. Second,

the time-invariant technical inefficiency can be estimated as ûi0 = maxj {ûj0}− ûi0. Finally,

the time-variant technical inefficiency can be estimated by maximizing the log-likelihood

function for pooled data [rit = α + vit − uit] where rit = Yit − f(Xit; β) + ui0. Estimates

of uit conditional on the estimated (εit = νit − uit) is obtained from ûit = E(uit | εit) fol-

lowing Jondrow et al. (1982). Then, total technical efficiency is defined as the product of

time-invariant and time-variant technical efficiencies.

Total efficiencyit = exp [−ûi0]× exp [−ûit] (1.2)

1.3.4 Four Random Components Inefficiency Models

Since time-invariant and time-variant inefficiency models fail to explicitly account for unob-

served heterogeneity or separate it from time-invariant inefficiency, Kumbhakar et al. (2014),

Colombi et al. (2014), Tsionas and Kumbhakar (2014) and Fillipini and Greene (2016) gener-

alize the true random effects model proposed by Greene (2005a, b) by adding a time-invariant

inefficiency and introduce four random components inefficiency models to account for both

inefficiencies and heterogeneity. They decompose the time-invariant producer effect as a
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producer effect and a time-invariant inefficiency effect.

Yit = α + f(Xit; β) + ωi + vit − ui0 − uit

where the error term has four random components; ωi are random producer effects for

unobserved heterogeneity, ui0 are time-invariant inefficiency, uit time-variant inefficiency,

and vit are random errors. Kumbhakar et al. (2014) estimate the model in three steps

procedure. First, the model can be rearranged as Yit = α + f(Xit; β) + ξi + εit where

ξi = ωi − ui0 and εit = νit − uit and ξi can be viewed as the producer specific component.

Using a standard random effects model for panel data gives consistent estimates of the model

parameters and predicted values of ξ̂i and ε̂it. Second, estimates of uit conditional on the

estimated (εit = νit − uit) is obtained from ûit = E(uit | εit) following Jondrow et al. (1982).

Third, a similar procedure as in step two can be used to estimate time-invariant inefficiency

component ui0. Then total technical efficiency is defined as the product of time-invariant

and time-variant technical efficiencies as in equation (1.2).

Note that Kumbhakar et al. (2014) use the procedure of Jondrow et al. (1982) which im-

plicitly assumes that the marginal distribution of inefficiency given the observations is trun-

cated normal. However, as shown by Cartinhour (1990) and Horrace (2005), the marginal

distribution of a multivariate truncated normal distribution is not a truncated normal dis-

tribution.

Instead of the three steps procedure used in Kumbhakar et al. (2014), Colombi et al.

(2014) consider a single step and use maximum likelihood estimation using results from the

closed skew normal distribution. The maximum likelihood is asymptotically more efficient

than the three steps procedure used in Kumbhakar et al. (2014) since it estimates all pa-

rameters simultaneously. However, Tsionas and Kumbhakar (2014) note that the maximum

likelihood estimation used in Colombi et al. (2014) is computationally prohibitive when T

is large because the likelihood function depends on a (T + 1) dimensional integral of the

normal distribution.
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While Tsionas and Kumbhakar (2014) use Bayesian estimation to estimate the model

using a large panel of US banks, Fillipini and Greene (2016) use simulated maximum likeli-

hood estimation proposed by Greene (2005a, b) to estimate the parameters and the different

random components of the model. Based on the moment generating function for the closed

skew normal distribution proposed by Colombi et al. (2014), they estimate the values of

technical efficiency. Total technical efficiency is defined as the product of time-invariant and

time-variant technical efficiencies as in equation (1.2).

1.3.5 Dynamic Inefficiency Models

The temporal behavior of inefficiency in dynamic inefficiency models is dynamic where inef-

ficiency evolves via an autoregressive process where past values of inefficiency determine the

current value of inefficiency. However, few studies use these models to measure inefficiency

— see, for example, Ahn and Sickles (2000), Tsionas (2006) and Emvalomatis (2012).

Ahn and Sickles (2000) assume that inefficiency follows the first order autoregressive

process AR(1), where the current inefficiency uit depends on two components; the unadjusted

portion of the past period inefficiency (1− ρi)ui,t−1, where 0 < ρi ≤ 1 is the adjustment

speed and the new unexpected inefficiency eit.

uit = (1− ρi)ui,t−1 + eit

Tsionas (2006) applies Bayesian estimation to a panel of large US commercial banks and

assumes that inefficiency evolves over time log-linearly and as a function of explanatory vari-

ables that reflect producer-specific characteristics to account for heterogeneity in inefficiency.

Specific assumptions are also made for the initial value ui1.

lnuit = zitδ + ρ lnui,t−1 + eit for t = 2, ..., T

lnui1 = zi1δ/ (1− ρ) + ei1 for t = 1

where eit ∼ N(0, σ2
e), ei1 ∼ N(0, σ2

e/ (1− ρ2)). Note that the specification of log-normality

of inefficiency is used by Deprins and Simar (1989). However, the assumption of a log-normal
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distribution for inefficiency cannot accommodate a situation where most producers are fully

efficient. For lnuit process to be stationary, |ρ| should be less than one. Tsionas (2006) finds

the posterior mean ρ = 0.91 which implies that the autoregressive process is almost static.

Emvalomatis (2012) extends Tsionas (2006) model by separating unobserved heterogeneity

from inefficiency where inefficiency evolves over time in a dynamic context.

1.3.6 Threshold Inefficiency Models

In contrast to the models that allow for the existence of extremely inefficient producers who

cannot survive in highly competitive markets, the threshold inefficiency models truncate the

distribution of inefficiency by placing a threshold parameter of the minimum efficiency for

survival on inefficiency. Thus, these models specify an upper bound to the distribution of

inefficiency in addition to the zero lower bound.

While Lee (1996) introduces a tail truncated half normal distribution with a threshold

parameter θ; ui ∼ N+(0, σ2
u), 0 ≤ ui ≤ θ, Lee and Lee (2014) assume a uniform distribution,

ui ∼ U(0, θ). Almanidis, Qian, and Sickles (2014) extend Lee (1996) model to panel data

model and assume that uit is drawn from a time-variant distribution with upper bound

θt which is assumed to be the sum of weighted polynomials, θt =
∑N

i=0 bi (t/T )i, where

t = 1, ..., T and bi are constants. The threshold inefficiency models are useful for empirical

studies focusing on estimating the inefficiency threshold.

1.3.7 Zero Inefficiency Models

While the threshold inefficiency models focus on the possibility of inefficient producers being

out of the markets, recent studies develop the zero inefficiency models which focus on the

possibility of producers being fully efficient.

Wheat et al. (2014) note that the probability of inefficiency being zero for any producer

is zero in models that do not allow for the presence of fully efficient producers. However,

Bos, Economidou, and Koetter (2010), and Bos et al. (2010) use latent class models and find
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small groups of producers that are fully efficient. Kumbhakar, Parmeter, and Tsionas (2013)

note that if the data represent a mixture of both fully efficient and inefficient producers,

then models that impose inefficient behavior on all producers result in biased estimates of

inefficiency. They introduce the zero inefficiency model which can accommodate the presence

of both fully efficient and inefficient producers in a probabilistic framework.

Assuming that some producers are fully efficient where ui = 0 for some i while others are

inefficient where ui > 0, the zero inefficiency model can be represented as

Yi =
f(Xi; β) + vi with probability p

f(Xi; β) + vi − ui with probability (1− p)

where p is the probability of a producer being fully efficient or the proportion of producers

that are fully efficient and (1− p) is the proportion of producers that are inefficient. Kumb-

hakar, Parmeter, and Tsionas (2013) define the estimates of inefficiency as ũi = (1− p̃i) ûi,

where ûi is the zero inefficiency estimator of inefficiency with p = 0 and p̃i is the estimate of

the probability of being fully efficient.

Kumbhakar, Parmeter, and Tsionas (2013) and Rho and Schmidt (2015) propose the

probability or the proportion of producers being fully efficient as a parametric function of a

set of explanatory variables which determine full efficiency via a logit or a probit function.

However, Tran and Tsionas (2016b) argue that misspecification of the parametric functional

form of the probability of producers being fully efficient has implication for which producers

are fully efficient as well as the estimates of technical inefficiency. They use a non-parametric

formulation for the probability of producers being fully efficient via an unknown smooth

function of explanatory variables which influence the likelihood that a producer is fully

efficient.

Since zero inefficiency model deals a priori with two classes; fully efficient and inefficient

producers, it does not face the problem of identifying the number of classes as in latent

class models. However, Rho and Schmidt (2015) discuss the presence of the wrong skewness

problem of Waldman (1982) as well as identification issues within the zero inefficiency models.

40



They argue that when all producers are fully efficient, it is not clear whether efficiency is due

to p being close to 1, or σ2
u being close to zero which has important implications for conducting

inference. Another concern with the zero inefficiency models is that the consistency of the

estimates depends on the exogeneity of the regressors. Tran and Tsionas (2016a) investigate

the endogeneity issues in the zero inefficiency models by using simultaneous equations setting

allowing for one or more regressors to be endogenous.

1.3.8 Heterogeneous Inefficiency Models

Heterogeneous inefficiency models are proposed to capture heterogeneity in inefficiency by

either including producer-specific characteristics Z in the inefficiency component or the mean,

variance or both parameters of the inefficiency distribution. These models are also useful for

understanding the relationships between inefficiency and its exogenous determinants.

Heterogeneous inefficiency models can be estimated either by using the two steps pro-

cedure by which inefficiency and explanatory variables Z are estimated sequentially or the

one-step procedure by which the explanatory variables are estimated simultaneously with

the other model parameters. However, the two steps procedure is criticized regarding its

misspecification of the first step model, suffering from omitted variables bias if X and Z are

correlated, and its bias from ignoring the impact of Z on inefficiency — see, for example,

Caudill and Ford (1993), Battese and Coelli (1995), and Wang and Schmidt (2002).

Determinants of Inefficiency Models

In these models, inefficiency is modeled as a function of explanatory variables Z that reflect

producer-specific characteristics and explain the differences in inefficiency across producers

— see, for example, Deprins and Simar (1989), Kumbhakar et al. (1991), and Huang and

Liu (1994) who add interaction terms between Z and the regressors, zixi.

ui = g (zi, zixi; δ) + ei
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where δ are unknown parameters to be estimated and ei is a random variable defined by

the truncation of a normal distribution. If there are no interaction terms zixi, the model

reduces to the Deprins and Simar (1989) and Kumbhakar et al. (1991) models. Tsionas

(2006) extends Kumbhakar et al. (1991) model to panel data model that allows for dynamic

technical inefficiency; lnuit = zitδ + ρ lnui,t−1 + eit. Srairi (2010) extends Kumbhakar et al.

(1991) model to panel data where uit = g (zit; δ)+eit to examine bank-specific variables that

may explain the sources and differences of inefficiency across producers.

Determinants of inefficiency models encounter the issue of obtaining the non-negative

inefficiency. The solution of Kumbhakar et al. (1991) to deal with this issue is ui =

|N (ziδ, σ
2
u)|. Reifschneider and Stevenson (1991) assume that ui = u∗i + exp (ziδ) where

both u∗i ∼ N+(0, σ2
u) and exp (ziδ) are positive. However, it is not necessary for both of

them to be positive in order to obtain a positive ui. Huang and Liu (1994) extend Reif-

schneider and Stevenson (1991) assumption by assuming only u∗i ≥ − exp (ziδ).

Determinants of Inefficiency Distribution Models

In these models, producer-specific characteristics can be included in the mean, variance or

both parameters of the inefficiency distribution. Battese and Coelli (1995) and Wang and

Ho (2010) assume that the mean of the inefficiency distribution can be modeled as a function

of explanatory variables that reflect producer-specific characteristics.

uit = g (zit; δ)ui, uit ∼ N+(µit, σ
2
u), µit = zitδm

Including producer-specific characteristics in the variance of the inefficiency distribution

is first motivated by the possible presence of heteroscedasticity in inefficiency. Reifschneider

and Stevenson (1991), Caudill and Ford (1993) and Caudill et al. (1995) assume that u are

heteroskedastic and include the standard deviation in exponential form to ensure a positive

estimate of the variance parameter for all Z and γu.

σui = exp (zuiγu) , σvi = exp (γv)
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It is also possible to assume that both u and v are heteroskedastic which referred to

as the doubly heteroskedastic model in the literature. The variance parameters of u and v

distributions are modeled as a function of explanatory variables zui and zvi which may or

may not be equivalent — see, for example, Hadri (1999) and Hadri et al. (2003).

σui = exp (zuiγu) , σvi = exp (zviγv)

Including producer specific characteristics in both the mean and the variance of the

inefficiency distribution allows for non-monotonic inefficiency across producers — see, for

example, Wang (2002) and Wang and Schmidt (2002).

uit ∼ N+(µit, σ
2
uit), µit = zitδm, σ2

uit = exp (zitγu)

Kumbhakar and Wang (2005) assume that the variance parameter of v distribution can

also be modeled as a function of explanatory variables zvi besides the mean and the variance

of the inefficiency distribution.

ui ∼ N+(µi, σ
2
ui), µi = ziδm, σ2

ui = exp (zuiγu) , vit ∼ N(0, σ2
vi), σ

2
vi = exp (zviγv)

A critical question that needs to be considered regarding heterogeneous inefficiencies

is whether heterogeneity in the inefficiency exists, or whether producer-specific inefficiency

depends on a set of exogenous determinants. As suggested by Kim and Schmidt (2008), the

presence of the determinants of inefficiency can be tested by regressing Y on X and Z and

test the significance of the parameters of the determinants of inefficiency using F -test.

A summary of the main characteristics of technical inefficiency models that are widely

used in the literature is presented in Table 1.2.

1.4 Estimation Techniques

Several econometric estimation techniques with recent developments are proposed in the

literature to estimate technical inefficiency in the stochastic frontier framework. Fixed and
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random effects estimators are briefly discussed in the previous section. Sickles (2005) sum-

marizes different panel frontier estimators of technical inefficiency that are used in the lit-

erature. For the developments in the econometric estimation techniques, see, for example,

Bauer (1990), Greene (1993) and Parmeter and Kumbhakar (2014). Since this literature is

very extensive, this section gives a brief review of the most common estimation techniques,

including maximum likelihood and Bayesian estimations.

1.4.1 Maximum Likelihood

Technical inefficiency in the stochastic frontier approach can be estimated using maximum

likelihood estimation which requires a distribution assumption for the technical inefficiency

as well as the random error in order to disentangle one from the other. Several distribu-

tions are assumed in the literature for technical inefficiency. The most frequently used being

the half normal, exponential, gamma, truncated normal, and the skew normal distributions.

Greene (1993) uses different distribution assumptions and shows that inefficiency measures

are similar across different distributions. Berger and DeYoung (1997) find that assuming a

truncated normal distribution for inefficiency gives similar but statistically significant esti-

mates compared with the half normal assumption. However, Baccouche and Kouki (2003)

find that estimates of technical inefficiency depend heavily on the distribution assumption.

Since there is no consensus on whether technical inefficiency depends on the distribution

assumption or not, further research is needed investigating this issue.

Maximum likelihood estimation (MLE) is based on the specification of the model through

the joint probability density function (PDF), f(Y, θ). Assuming independence, the joint

density of Y is the product of the densities of the individual observations fi(Yi, θ).

f(Y, θ) =
∏N

i=1fi(Yi, θ)

Since the product is very large or very small number, it is more convenient to work with the
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log-likelihood function.

L(Y, θ) = log f(Y, θ) =
∑N

i=1 log fi(Yi, θ) =
∑N

i=1 log li(Yi, θ)

where L(Y, θ) represents the likelihood of the parameters θ given the observed data Y . Note

that L(Y, θ) gives the same parameter estimates since it is a monotonic transformation of

f(Y, θ). The MLE of the parameters of the model can be obtained by maximizing the

likelihood function with respect to the parameters. The estimated parameters are then used

to obtain the estimate of technical inefficiency by using one of the inefficiency estimators.

Normal-Half Normal Models

The likelihood function for the normal–half normal cross-section models is derived by Aigner

et al. (1977). Under the assumption that inefficiency has half normal distribution ui ∼

N+(0, σ2
u) ; f(u) =

(
σu
√

2π
)−1

exp (−u2/2σ2
u), the random errors have normal distribution

vi ∼ N(0, σ2
v), and ui and vi are assumed to be identically and independently distributed, the

likelihood function can be defined as the product of the densities of the composed error term∏N
i=1fε(εi), where fε(εi) is the density of the composed error term εi = νi − ui. Technical

inefficiency can be estimated using Jondrow et al. (1982) estimator for the half normally

distributed inefficiency for cross-section models

ûi = E(ui | εi) = σS

[
φ (ψi)

1− Φ (ψi)
− ψi

]
(1.3)

where φ (.) is the density of the standard normal distribution, Φ (.) is the cumulative density

function, σS = σλ/ (1 + λ2) = (σ2
uσ

2
v/σ

2)
1/2

= σuσv/σ, σ = (σ2
u + σ2

v)
1/2

, ψi = λεi/σ,

and λ = σu/σv. The inefficiency estimator can be implemented by evaluating it at the

estimated parameters
(
α̂, β̂, σ̂2

u, σ̂
2
v

)
and the implied values of λ̂, σ̂2, and ε̂i = Yi − α̂−X

′
i β̂.

However, Wang and Schmidt (2009) show that the distribution of Ê(ui | εi) differs from the

distribution of ui unless σv → 0 and converges to E(ui) as σ2
v increases which means that εi

is no longer useful in predicting inefficiency through the conditional mean of Jondrow et al.
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(1982) estimator as σ2
v increases. Battese and Coelli (1988) propose an alternative efficiency

estimator given by

E(TEi | εi) = E (exp(−ui) | εi) =
1− Φ (σS − ψi)

1− Φ (ψi)
exp

(
σSψi +

(
(σS)2 /2

))
Fried et al. (2008) note that the efficiency estimator of Battese and Coelli (1988) is

preferable to 1− E(ui | εi) used in Jondrow et al. (1982) estimator because Jondrow et al.

(1982) estimator is no more than the first order approximation to the more general infinite

power series approximation, exp(− (ui | εi)) = 1 − ui + u2
i /2 − u3

i /3... However, Fried et al.

(2008) and Kumbhakar et al. (2014) note that Jondrow et al. (1982) and Battesse and Coelli

(1988) estimators are not consistent in cross-section models. Although they are unbiased,

they are not consistent estimates of technical efficiency, since p limE(ui | εi) − ui 6= 0 or

E(ui | εi) never approach ui as the number of producers approaches infinity.

Greene (1990) notes that the half normal assumption for the distribution of inefficiency

is relatively not flexible and implicitly assumes that most producers are nearly fully efficient.

Furthermore, the distribution of the composed error term εi is no longer normal — see,

for example, Horrace (2005). More precisely, it may be incorrectly skewed in the positive

direction which leads to full efficiency measures for all producers3. Waldman (1982) finds

that if εi are positively skewed in the wrong direction, the maximum likelihood estimates is

equivalent to OLS estimates for (α, β, σ2
u, σ

2
v) and zero for λ. The wrong skewness direction of

εi, and consequently a zero maximum likelihood estimate of σ2
u results from the dependence

of the maximum likelihood estimator for σ2
u on the skewness of εi in the normal-half normal

model4. Feng, Horrace, and Wu (2013) suggest using constrained optimization methods to

impose the restriction that σ2
u > 0 in the normal-half normal model. Hafner, Manner, and

Simar (2018) generalize the inefficiency distribution that allows for the existence of the wrong

3Azzalini (1985) defines a continuous random variable ε to have a skew-normal distribution if it has
density function f(ε) = 2φ(ε)Φ(aε), where a is a fixed arbitrary number. The distribution is right-skewed if
a > 0 and is left-skewed if a < 0.

4Proper specification testing can be undertaken to check the sign of the skewness of the OLS residuals.
See, for example, Kuosmanen and Fosgerau (2009).
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skewness direction of εi while obtaining well-defined inefficiency measures.

Pitt and Lee (1981), Kumbhakar (1987), and Battese and Coelli (1988) extend the

normal-half normal model proposed by Aigner et al. (1977) to the panel data time in-

variant inefficiency model. Technical inefficiency can be estimated using the extension of

Jondrow et al. (1982) estimator to the panel data model

ûi = E(ui | εit) = ϕNi + σP

[
φ
(
ϕNi /σP

)
1− Φ (ϕNi /σP )

]
(1.4)

where ϕNi =
(
−σ2

u

∑T
t=1εit

)
/ (σ2

v + Tσ2
u), and σP = (σ2

vσ
2
u) / (σ2

v + Tσ2
u). Kumbhakar (1987)

points out that these estimates are asymptotically consistent. Lee (1996) introduces a tail

truncated half normal distribution to incorporate a bound for inefficiency since the least

efficient producers cannot survive in highly competitive markets. He introduces the threshold

parameter of the minimum efficiency for survival θ as ui ∼ N+(0, σ2
u), 0 ≤ ui ≤ θ. Thus, the

variance of inefficiency depends on two parameters, σ2
u and θ.

Normal-Exponential Models

Aigneret al. (1977) and Meeusen and van den Broeck (1977) propose a likelihood function

under the assumption that ui have an exponential distribution; f(u) = θ exp (−θu), θ > 0

where θ = σ−1
u , and vi ∼ N(0, σ2

v). Technical inefficiency can be estimated using Jondrow et

al. (1982) estimator for exponentially distributed inefficiency for cross-section models

ûi = E(ui | εi) = σv

[
φ
(
ϕEi
)

Φ (ϕEi )
+ ϕEi

]
(1.5)

where ϕEi = (εiσu − σ2
v) / (σuσv). Kim and Schmidt (2000) extend the normal-exponential

model proposed by Aigner et al. (1977) to the panel data time-invariant inefficiency model.

Technical inefficiency can be estimated using the extension of Jondrow et al. (1982) estimator

to the panel data model by replacing εi by εi and σ2
v by σ2

v/T in equation (1.5). A recent

simulation study by Horrace and Parmeter (2018) argue that assuming Laplace distribution

for vi and truncated Laplace distribution for ui results in a Laplace model that performs

relatively well compared to the normal exponential model when vi is misspecified.
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Normal-Gamma Models

Greene (1980a, b), Stevenson (1980, 1990), and Greene (1990) assume a gamma distribution

for the inefficiency term where f(u) =
[
θP/Γ(P )

]
exp (−θu)uP−1, P > 0, θ = σ−1

u , Γ(P ) =∫∞
0
tP−1e−tdt, and vi ∼ N(0, σ2

v). Stevenson (1980) only considers the Erlang form (integer

values of P ; 1.0 and 2.0) which produces a tractable formulation for fε(εi) but greatly

restricts the model. Beckers and Hammond (1987) derive the log-likelihood function for

fε(εi) without restricting P to be an integer, but the resulting functional form is intractable.

When P = 1, the normal-gamma model returns to the normal-exponential model. The

inefficiency estimator for the gamma model is

ûi = E(uit | εit) =
q (P, εit)

q (P − 1, εit)

The normal-gamma distribution provides a more flexible parameterization of the distribu-

tion. However, the computational complexity of the maximum likelihood estimator restricts

using this model in empirical studies. Several attempts are developed in the literature by

Ritter and Simar (1997) and Greene (2003) among others to simplify the computation by

using simulation methods.

Normal-Truncated Normal Models

Stevenson (1980) argues that the zero mean assumed in the Aigner et al. (1977) model is an

unnecessary restriction and assumes that inefficiency follows the non-negative truncation dis-

tribution ui ∼ N(µ, σ2
u); f(u) =

(
Φ (µ/σu)σu

√
2π
)−1

exp
(
− (u− µ)2 /2σ2

u

)
. Greene (1993)

shows that the conditional expectation of technical inefficiency for the truncated normal

distribution where µ is allowed to differ from zero in either direction is obtained by replacing

ψi with ψTi = λεi/σ + µ/λσ in equation (1.3).

Pitt and Lee (1981) extend the normal-truncated normal model to the panel data time-

invariant inefficiency model. Battese and Coelli (1988) and Battese et al. (1989) provide the
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extension of Jondrow et al. (1982) estimator to the panel data model

ûi = E(ui | εit) = ϕTi + σP

[
φ
(
ϕTi /σP

)
1− Φ (ϕTi /σP )

]

where ϕTi =
(
µσ2

v − σ2
u

∑T
t=1εit

)
/ (σ2

v + Tσ2
u). By restricting µ to equal to zero µ = 0, it

returns to the estimator for the normal-half normal model in equation (1.4). Battese and

Coelli (1988, 1992) derive the panel data extension to E (exp(−ui) | εi) as

E (exp(−ui) | εit) =

[
Φ
[(
ϕTi /σP

)
− σP

]
Φ (ϕTi /σP )

]
exp

(
−ϕTi + (σP/2)

)
More recently, Almanidis, Qian, and Sickles (2014) specify inefficiency as a doubly trun-

cated normal distribution. In addition to the zero lower bound, they specify an upper bound

for inefficiency to exclude extremely inefficient producers. Their specification provides a

closed form solution for fε(εi) and the log-likelihood. Moreover, their specification results in

non zero estimates of σ2
u in the presence of wrong skewness of the composed error term.

The truncated normal distribution can be used if producers are assumed to be inefficient

since it has a mode at zero only when µ ≤ 0. Furthermore, it provides a way of introduc-

ing heterogeneity into the distribution of inefficiency by either including producer-specific

characteristics in the mean, variance or both parameters of the inefficiency distribution.

Skew-Normal Models

Instead of focussing on the distribution of inefficiency, recent studies focus on the distribution

of the composed error term, fε(εi). For four random components models, the four random

components (ωi + νit − ui0 − uit) can be treated as two terms since they can be written as

the sum of the time-invariant terms (ξi = ωi − ui0) and time-variant terms (εit = νit − uit).

Time-invariant terms group together the producer-specific effects for unobserved heterogene-

ity ωi and time-invariant inefficiency ui0 while time-variant terms group together the random

errors νit and time-variant inefficiency uit. These two terms are assumed to be given by the

difference of a normal random variable and an independent left truncated at zero normal
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random variable. Thus, each of the two terms has its own skew normal distribution rather

than normal distribution5.

The full unconditional log-likelihood function for this model based on the joint distribu-

tion of (εit, ξi) is derived by Colombi et al. (2014). They estimate the four random compo-

nents as E (exp(ωi) | yi), and E
(
exp(t

′
ui) | yi

)
where the first element of E

(
exp(t

′
ui) | yi

)
is

the conditional expected value of the time-invariant inefficiency ui0 for producer i. However,

the computational complexity of the maximum likelihood estimator results from the (T + 1)

dimensional multivariate normal integrals6. Tsionas and Kumbhakar (2014) note that the

maximum likelihood estimator of Colombi et al. (2014) is computationally prohibitive when

T is large. However, for time-invariant inefficiency models, the integral is one dimensional.

For time-variant inefficiency models without a producer-specific component that accounts for

heterogeneous technologies, it is a product of T one dimensional integral. Thus, the compu-

tational problem of the maximum likelihood estimator arises when estimating time-variant

inefficiency with a producer-specific component that accounts for heterogeneous technolo-

gies or time-variant inefficiency along with time-invariant inefficiency. More recently, Fillipini

and Greene (2016) exploit Butler and Moffitt (1982) formulation and propose a simplified

density of yi conditional on ui0 and ωi that is the product over time of T univariate closed

skew-normal densities.

For the importance of the distribution assumptions, if the interest is estimating producer-

specific inefficiency, then distribution assumption on inefficiency is important. If the inter-

est instead in comparing the ranking of producers, then using models with no distribution

assumptions or following a recommendation by Ritter and Simar (1997) of using simple

one-parameter distribution for inefficiency may be sufficient.

5See Gonzalez-Farias, Dominguez-Molina, and Gupta (2004), and Arellano-Valle and Azzalini (2006) for
probability density function of the skew-normal distribution.

6See Genz and Bretz (2009) for a detailed review on computation methods of multi-normal integrals.
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Confidence Intervals on Inefficiency

Since distributions imposed on v and u create distributions for (u | ε) and (exp(−u) | ε)

which can be used to construct confidence intervals on inefficiency, many studies show that

it is possible to get confidence intervals for any of the technical inefficiency estimators.

Hjalmarsson, Kumbhakar, and Heshmati (1996) develop confidence intervals for the Jondrow

et al. (1982) estimator, and Bera and Sharma (1999) for the Battesse and Coelli (1988)

estimator. Horrace and Schmidt (1996) derive upper and lower bounds on (exp(−u) | ε)

based on lower and upper bounds of (u | ε). However, Wheat et al. (2014) argue that the

form of confidence intervals derived by Horrace and Schmidt (1996) is not minimum width

since f (u | ε) is truncated normal at zero and thus asymmetric. They propose a minimum

width prediction interval for u given ε. Parmeter and Kumbhakar (2014) note that the

narrower interval of Wheat et al. (2014) is preferable relative to Horrace and Schmidt

(1996) intervals if the interest is to predict producer-specific inefficiency accurately.

1.4.2 Bayesian Estimation

Bayesian estimation of technical inefficiency is first introduced in the literature to the cross-

section models by Van den Broeck et al. (1994) and Koop et al. (1994, 1995). Koop et al.

(1997), Fernandez et al. (1997), and Osiewalski and Steel (1998) extend the use of Bayesian

estimation to the panel data models. Koop et al. (1997) describe procedures for Bayesian

estimation of both fixed and random effects models. Fernandez et al. (2000, 2002) extend the

use of Bayesian estimation to the case where some of the outputs produced are undesirable

to distinguish between technical and environmental inefficiency.

Bayesian approach treats the parameters of the model as random and conditional on

the data instead of treating them as known or fixed and estimating them based on only

information contained in the data. Instead of using the distribution of u conditional on ε;

E(u | ε), inference on technical inefficiency can be obtained using the conditional posterior

distribution, p(u | θ−u, Y ) based on its marginal posterior, where θ−u denotes all parameters
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except the u. Bayesian inference, including point and interval estimation, evaluation of

hypotheses, and prediction can be obtained from the posterior distribution.

The Prior Distribution

Initial beliefs and information that is not contained in the data through the likelihood func-

tion can be represented by the prior distributions of the parameters to be estimated including

technical inefficiency. The prior distribution is presented in the form of a probability dis-

tribution, p (θ). It is classified as uninformative prior based on no prior knowledge that

can be used for estimation or informative prior based on previous findings and theoretical

predictions.

Specifying a uniform or flat prior distribution makes prior playing a small role in the

estimation of the posterior distribution by relying on the data through the likelihood function.

This is equivalent to specifying a prior distribution with a large variance that makes the prior

distribution of the parameter values nearly flat. However, uninformative prior distribution

is often improper. Fernandez et al. (1997) show that choosing an uninformative prior to the

scale parameter leads to an improper prior.

Informative priors convey information and summarize existing knowledge about the pa-

rameters. Since normal distribution allows for negative numbers, it is not an appropriate

prior distribution for technical inefficiency or scale parameters. Van den Broeck et al. (1994)

find that the exponential distribution is more robust to prior assumptions than other dis-

tributions. Alvarez et al. (2014) compare an inverse Wishart, scaled inverse Wishart, and

hierarchical inverse Wishart as possible priors for the scale parameter in multivariate mod-

els. They find that all priors work well except the inverse Wishart prior which is biased

toward large values when the actual variance is small relative to the prior mean. In general,

prior distribution for the scale parameter which plays an essential role in the estimation of

technical inefficiency is crucial in any multivariate models and becomes more challenging as

the dimension increases due to the quadratic growth in the number of parameters and the
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need to force the matrix to remain non-negative definite. Informative priors can be used to

impose restrictions from economic theory such as monotonicity and curvature restrictions —

see, for example, Terrell (1996), or linear restrictions among the elements of the parameters

— see, for example, Geweke (1993), or restrictions on inefficiency u ≥ 0 — see, for example,

Feng et al. (2018). Note that choosing a prior distribution that is conjugate to the likelihood

leads to a posterior that has the same form as the prior.

The Posterior Distribution

Updating the prior information of the parameters can be done by combining the prior distri-

bution p (θ) and the likelihood function L(Y, θ) in order to obtain the posterior distribution

that is the basis of Bayesian estimation and defined by the Bayes Theorem as

p(θ | Y ) ∝ L(Y, θ)p (θ)

where p(θ | Y ) is the posterior distribution and it is proportion to the likelihood function

times the prior. The posterior mean E(θ | Y ) is the optimal Bayesian estimator of θ. How-

ever, when the model involves multidimensional parameters to be estimated, the posterior

distribution is a joint posterior distribution. The marginal posterior distribution for a single

given parameter θi is defined by integrating the joint posterior density of θ with respect to all

elements of θ other than θi which may be too complicated for direct analytical integration or

may not be analytically tractable. Implementing the Bayesian approach requires the use of

an iterative Markov Chain Monte Carlo (MCMC) algorithm. Two common algorithms are

the Gibbs sampling introduced by Geman and Geman (1984), and the Metropolis-Hastings

algorithm introduced by Metropolis et al. (1953) and Hastings (1970).

When the joint posterior distribution is very complicated to work with, Gibbs sampling

that uses draws from the conditional posterior distributions can be used to approximate joint

and marginal distributions7. Thus, it is useful in cases in which the conditional posterior

7See, for example, Gelfand and Smith (1990), Casella and George (1992), Smith and Roberts (1993),
Roberts and Smith (1994), Koop (1994), McCulloch and Rossi (1994), Dorfman (1997), and Geweke (1999)
for more details on Gibbs sampling method.
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distributions have relatively simple forms than the joint distribution, so it is possible to

simulate from them. Gibbs sampling relies on the ability to partition θ as θ = (θ1, θ2, ..., θp)

where the θp may be multi-dimensional. The procedure proceeds as follows:

• Set initial values for the parameters θ0 where the superscript 0 denotes the

starting values and set S = 0.

• Generate random draws in sequence from the conditional distributions

draw θS+1
1 from p(θ1 | Y, θS2 , θS3 , ..., θSp )

draw θS+1
2 from p(θ2 | Y, θS+1

1 , θS3 , ..., θ
S
p )

...

draw θS+1
p from p(θp | Y, θS+1

1 , θS+1
2 , ..., θS+1

p−1 )

Set S = S + 1 and then iterate.

• Obtain series of draws, say
{
θ(S), s = 1, ..., S

}
, where the superscript S denotes

the S Gibbs iteration. For large enough number of iterations S, the samples

or draws from the conditional distributions θ(S) converge in distribution to the

joint and marginal distributions of the parameters p(θ | Y ) — see Casella and

George (1992) for proof of convergence. In particular,

{
θ(S), s = 1, ..., S

} D→ p(θ | Y )

• The first numbers of iterations that are required for the Gibbs sampler to

converge are referred to as burn-in iterations. The sequence of last draws gen-

erated which converges in distribution to the full posterior can be considered

as a sample from the joint posterior distribution of the parameters and used

to provide inference about the parameters. For example, a histogram or kernel

density of
{
θ(S), s = 1, ..., S

}
would provide the marginal posterior of θ. The
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mean of these draws is an approximation to the posterior mean and provides

a point estimate of these parameters.

To check whether the draws from the conditional posterior distributions are

converged to the marginal posterior distribution, a test of convergence is pro-

posed by Geweke (1992). If there is insufficient evidence for convergence, the

number of draws should be increased.

While Gibbs sampling algorithm relies on conditional distributions, in some cases condi-

tional posterior distributions are not from any known family distributions or are not available

in closed form, so simulation from them is challenging. In such cases, the Metropolis-Hastings

algorithm which is more general than the Gibbs sampling is an alternative MCMC algorithm

that can be used to approximate the posterior distribution. The Metropolis-Hastings (MH)

algorithm involves specifying a proposal density q(θ∗ | θS) where random draws generation is

more comfortable than from the target density p(θ | Y ). The procedure proceeds as follows:

• Set starting values for the parameters θ0. These starting values can be OLS

or MLE parameters estimates.

• Draw a number d from the standard uniform distribution d ∼ U (0, 1) and

draw a new or a candidate value of the parameters θ∗ from the proposal density

q(θ∗ | θS)

• Compute the probability of accepting θ∗

r = min

(
p(θ∗ | Y )/q(θ∗ | θS)

p(θS | Y )/q(θS | θ∗)
, 1

)
where the numerator is the target density divided by the proposal density

both evaluated at the new draw of the parameters, and the denominator is the

same expression evaluated at the previous draw of the parameters. The most

common choice of the proposal density is the multivariate normal N(µ, σ2),
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where the ratio simplifies to p(θ∗ | Y )/p(θS | Y ) and σ2 is to be chosen — see

Chib and Greenberg (1995) for further details on choosing a proposal density

for the Metropolis-Hastings algorithm. The covariance matrix σ2 can be set

as OLS or MLE estimate of the covariance matrix of the parameters.

• If d < r then with probability r accept the proposal θ∗ and set θS+1 = θ∗;

otherwise retain the old draw and set θS+1 = θS. Thus, for this procedure to

work, the proposal density q(θ∗ | θS) should be an excellent approximation to

the target density p(θ∗ | Y ), otherwise, many candidates will be rejected.

If the acceptance rate of this proposal is not satisfactory, it can be modified

by multiplying its covariance matrix by a scaling factor h where a higher value

for h means a lower acceptance rate. Roberts et al. (1997) show that if the

proposal and target densities are normal densities, the optimal acceptance rate

which minimizes the first order autocorrelations across the sample values of

the algorithm approximately equal to 0.44 for one-dimensional models and

0.234 for higher dimensional models.

• Set S = S + 1 and repeat S times.

The first MCMC iterations are discarded as a burn-in and estimates of the

parameters can be obtained by simply averaging over the remaining iterations.

Note that the Gibbs sampler can be seen as a special case of the MH algorithm

where the candidate density q(θ∗ | θS) coincides with the target density and

the acceptance probability assigned to every draw equals 1.

1.4.3 Theoretical Regularity

As required by microeconomic theory, the production technology has to satisfy the theoret-

ical regularity conditions of monotonicity and curvature. Barnett (2002) notes that these

theoretical regularity conditions can be violated unless imposed. However, Lau (1986) proves
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Figure 1.9: Violation of Monotonicity and Curvature Conditions

that imposing these regularity conditions globally can compromise the flexibility of flexible

functional forms8. Ryan and Wales (2000) demonstrate that imposing curvature locally at

a single point can be sufficient to achieve global regularity while preserving the flexibility of

flexible functional forms. Terrell (1996) shows that imposing regularity conditions over small

regions of data can preserve the flexibility of flexible functional forms. Wolff (2016) imposes

regularity conditions locally, globally, and regionally on a flexible input demand system using

the same data set. He finds that regional estimators outperform local and global estimators

regarding the model fit to the sample data and preserving the flexibility of flexible functional

forms.

Barnett (2002) and Barnett and Pasupathy (2003) note that monotonicity conditions

are mostly disregarded in stochastic frontier estimation. However, monotonicity is partic-

ularly crucial regarding measuring technical inefficiency, where monotonicity implies that

8For example, imposing both monotonicity and curvature conditions globally on a translog functional
form turns it into the Cobb-Douglas functional form.
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additional units of inputs do not decrease outputs. Violation of monotonicity conditions

can lead to an extreme misleading result such as the identification of a producer as being

technically efficient when it is not. Consider an illustrative example of two producers A

and B with non-monotone technology frontier — see Figure 1.9. Under this non-monotone

technology frontier, producer A is efficient while producer B is inefficient since it operates

beneath the production frontier. However, producer B produces the same output (y1) as

producer A using less input (x1 < x2). As a result, technical inefficiency measures of these

two producers based on this non-monotone technology frontier reverses since in this case

producer A is inefficient relative to producer B. Imposing monotonicity conditions prevents

the production technology from exhibiting negative marginal productivities such as those

implied by downward sloping production frontier; such as point A.

Curvature conditions are mainly required by microeconomic theory for the duality theo-

rem to hold. Unless exploiting the duality theory and using the dual system specifications,

measuring technical inefficiency does not require curvature conditions but monotonicity con-

ditions to hold. In general, the regularity conditions can be checked as follows:

• Monotonicity can be checked by checking the first-order derivatives of the

estimated production technology with respect to the inputs and outputs —

see Table 1.1 for the properties of alternative distance functions.

• Concavity (convexity) can be checked using the unbordered Hessian matrix

which is required to be negative (positive) semi-definite and can be checked

by checking whether the Cholesky factors values are non-positive (negative)

— see Lau (1978b).

If regularity conditions are not attained, the model can be estimated subject to imposed

regularity conditions, thus treating these conditions as maintained hypotheses. This may

require the use of Bayesian estimation to impose the inequality restrictions required to impose

regularity conditions. Imposing regularity conditions can be either locally at one single
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point of the domain of the regressor space or globally at the entire domain or regional

on a connected subset of the domain. Regularity conditions can be imposed locally using

techniques developed by Ryan and Wales (1998) or globally using techniques developed by

Lau (1978b) and Diewert and Wales (1987) or regionally using techniques developed by

Gallant and Golub (1984), Terrell (1996), Wolff et al. (2010), and Wolff (2016).

1.4.4 Econometric Regularity

Non-stationarity of the residuals of the production technology is an essential issue in esti-

mating technical inefficiency because technical inefficiency measures are assessed from these

estimated residuals. However, non-stationarity is mostly disregarded in inefficiency studies,

mainly because standard methods for dealing with non-stationarity in linear models cannot

be used with non-stationarity in nonlinear models. Nevertheless, ignoring the possibility

of non-stationarity of the residuals can lead to misleading inefficiency results9. Barnett

(1977) shows that consistency and asymptotic efficiency require stationarity assumptions as

econometric regularity conditions.

Non-stationarity of the residuals of the production technology arises from non-stationarity

of the dependent or explanatory variables or the omission of non-stationary variables. When

all variables in the time series regression are integrated of order one; in short I(1) in the

context of Engle and Granger (1987), the production technology represents a cointegrat-

ing relationship, and the OLS estimator is super-consistent (is not only consistent, but it

converges to the real value at a reasonable rate )10. If all variables are non-stationary,

the production technology is a spurious relationship and the inefficiency measures are mis-

leading. Additional complications arise if the production technology is not balanced where

9See Stock (1994) and Watson (1994) for a review of the econometric issues associated with non-stationary
variables.

10While stationary time series is referred to as integrated of order zero and identified as I(0), non-stationary
time series that can be made stationary by taking the first difference, [4yt = yt − yt−1], is referred to as
integrated of order one, I(1). In most cases, the order of integration of a time series to make it stationary
is the lowest number of times it must be differenced.
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different variables have different orders of integration or some variables are stationary, but

other variables are non-stationary. Feng and Serletis (2008) find that input-output ratios,

budget shares, and price variables are all integrated of order one, but the residuals are

non-stationary.

Most common in the time series literature, serially correlated residuals are modeled by

assuming a first order autoregressive AR(1) process in the error terms as εt = ρεt−1+et, where

ρ is an unknown parameter and et is a non-autocorrelated random error term. The AR(1)

process is stationary when |ρ| < 1, and non-stationary random walk process when ρ = 1.

Conventional unit root tests for stationarity test whether ρ is equal to one or significantly

less than one. Alternatively, the augmented Dickey-Fuller (ADF) test proposed by Dickey

and Fuller (1981), the non-parametric test of Phillips (1987), the numerical Bayesian test by

Dorfman (1995), the test proposed by Harris and Tzavalis (1999) for dynamic panels, and

the Fisher test by Maddala and Wu (1999) can be used to test for the unit root and the

non-stationary on the residuals of the production technology.

If stationarity is not attained, cointegration techniques can be used to manage non-

stationarity of the residuals11. If all variables are non-stationary, these variables must be

cointegrated in levels given that inefficiency models are linear. Ng (1995) and Attfield (1997)

argue that standard estimation techniques are inadequate for obtaining correctly estimated

standard errors in cointegrated panels. Tsionas and Christopoulos (2001) apply panel coin-

tegration techniques to estimate inefficiency using fully modified ordinary least squares (FM-

OLS) proposed by Phillips and Hansen (1990), Phillips (1995), Phillips and Moon (1999),

and Pedroni (2001) for cointegrated panels12. They find quantitatively important differences

between their results and the results obtained by estimating inefficiency using standard es-

timation techniques. However, these cointegration techniques apply to linear models. Park

11When yt and xt are non-stationary I(1) variables, then their difference, or any linear combination of
them is I(1) as well. In this case yt and xt are said to be cointegrated.

12Another estimation technique that can be used for cointegrated panels with higher order integrated
systems is dynamic ordinary least square (DOLS) proposed by Stock and Watson (1993).
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and Hahn (1999) consider the models linearized in the non-stationary variables. Lewbel and

Ng (2005) propose a reformulation of the translog model that can be modified in a linear

form to manage non-stationarity.

If finding cointegration between the I(1) variables is failed, then a suitable solution is

to convert the non-stationary series to stationary series by taking first differences if they

are difference stationary or by de-trending or alternatively by including a trend variable in

the model if they are trend stationary. However, Serletis and Shahmoradi (2007) argue that

correction of serially correlated residuals increases the number of curvature violations and

induces spurious violations of monotonicity.

Several attempts are proposed in the literature to develop estimation techniques for non-

stationary models. Chang et al. (2001) extend earlier work by Phillips and Hansen (1990)

and develop an estimator for nonlinear non-stationary models. Their estimator is consistent

under reasonably general conditions, but the convergence rate critically depends on the type

of the functional form. Han and Phillips (2010) propose a consistent GMM estimation

method to the estimation of autoregressive roots near unity with both time series and panel

data. However, their estimator has little bias even in very small samples. Therefore, with

nonlinear non-stationary inefficiency models, further research is needed on the modification of

the linear model cointegration techniques and developing the existing nonlinear cointegration

techniques.

1.5 Estimation Issues

The estimates of technical inefficiency can be distorted by the inaccurate choice of func-

tional form for the production technology, ignoring the possibility of heterogeneity and het-

eroskedasticity, and suffering from the endogeneity problem.
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1.5.1 Functional Forms

The estimates of technical inefficiency can be distorted by the inaccurate choice of func-

tional form for the production technology. Berger and Mester (1997) argue that a close fit

of the actual data for the estimated production frontier is essential in estimating technical

inefficiency because technical inefficiency is assessed as deviations from this production fron-

tier. Giannakas, Tran, and Tzouvelekas (2003b) show that the inaccurate choice of functional

form results in biased estimates of technical inefficiency, confidence intervals, and production

elasticities, even asymptotically.

Regardless of not knowing the actual functional form, several properties of the production

technology are known from economic theory, and several empirical techniques can be used

to assess the ability of different functional forms to approximate the unknown underlying

function. A functional form may be appropriate because of the correspondence theoretical

properties, possibility and ease of application and empirical estimation, or a combination

of these criteria. However, the reasons for choosing a particular functional form for the

production technology are not explicitly stated in most studies.

Choosing a particular functional form for the production technology can be based on

theoretical properties such as its shape of the isoquants, its separability, its flexibility, and

its regular regions. Greene (1993) notes that the choice of functional form for the produc-

tion technology has significant implications concerning the shape of the isoquants. Färe

and Vardanyan (2016) compare the quadratic and translog functional forms regarding their

ability to approximate convex frontiers of the input set and find that both functional forms

provide a reliable approximation when a real frontier is assumed to be convex. Their findings

validate the findings by Färe et al. (2010) and Chambers et al. (2013) that the translog

functional form tends to yield convex frontier estimates even when the real frontier is con-

cave. Therefore, the translog functional form that can approximate convex frontiers of the

input set should behave relatively well when modeling input isoquants such as input distance
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functions. On the other hand, assuming that the real production frontier is concave, Färe et

al. (2010) and Chambers et al. (2013) simulation studies suggest that the concave frontier

of the output set is better parameterized via a quadratic than with a translog functional

form. Chambers et al. (2013) further find that the translog specification of a concave fron-

tier can yield imprecise estimates of the technology. As a result, the quadratic functional

form that can approximate concave frontiers of the output set should behave relatively well

when modeling output isoquants such as standard or directional output distance functions.

Separability properties are important for consistent aggregation. Thompson (1988) notes

that both the translog and the quadratic are separable functional forms.

Choosing a particular functional form for specific studies can be based on a choice between

functional forms that globally satisfy the theoretical regularity conditions for microeconomic

theory and those that possess the flexibility. Flexible functional forms are functional forms

that have a second order approximation property and are sufficiently flexible to ensure that

the production elasticities and substitution elasticity are not restricted by the choice of

the functional form13. However, the choice of functional forms for estimating technical

inefficiency does not require flexible but regular functional forms that are consistent with

economic theory. Greene (1980b) argues that flexible functional forms may suffer from

multicollinearity due to a large number of parameters to be estimated and single equation

estimates are likely imprecise.

Different distance functions have different application properties that influence the choice

of functional forms such as homogeneity and translation properties — see table 1.1 for the

properties of alternative distance functions. For instance, the choice of functional form

to perform standard distance functions should be based on the satisfaction of the homo-

geneity property. Griffin et al. (1987) note that popular functional forms that are not

13For different definitions of the flexibility property, see, for example, Diewert (1971), Gallant (1981), and
Barnett (1983). Diewert (1971) formalizes the notion of flexibility in functional forms by defining a second
order approximation to an arbitrary function. Gallant (1981) proposes the Sobolev norm as a measure of
global flexibility. See, for example, Griffin et al. (1987) for a comprehensive review of flexibility property.
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linearly homogenous are logarithmic and augmented Fourier. Some functional forms can

be linearly homogenous by incorporating the appropriate restrictions such as the quadratic,

Cobb-Douglas, transcendental, constant elasticity of substitution, and the translog. On the

other hand, the choice of functional form to perform directional distance functions should

be based on the satisfaction of the translation property of directional distance functions.

Chambers (1998) suggests two functional forms that satisfy the translation property; the

logarithmic transcendental and the quadratic.

The Translog Functional Form

The translog functional form is introduced by Christensen et al. (1973). It is a generalization

of the Cobb-Douglas and a locally flexible functional form providing a second order local

approximation. Caves and Christensen (1980), Guilkey and Lovell (1980), Barnett and

Lee (1985), and Barnett et al. (1985) argue that most locally flexible functional forms are

not globally regular and have very small regions where theoretical regularity conditions are

satisfied. The translog functional form can be defined over N inputs and M outputs as

ln (D (x, y)) = α0 +
N∑
n=1

αn lnxn +
M∑
m=1

βm ln ym +
1

2

N∑
n=1

N∑
n′=1

αnn′ lnxn lnxn′

+
1

2

M∑
m=1

M∑
m′=1

βmm′ ln ym ln ym′ +
N∑
n=1

M∑
m=1

γnm lnxn ln ym

Symmetry requires αnn′ = αn′n (n 6= n′), and βmm′ = βm′m (m 6= m′). The translog

functional form has many parameters to be estimated, for a total of (k2 + 3k + 2) /2 pa-

rameters including the intercept. It is linear in the parameters which can be restricted to

satisfy the homogeneity property of standard and hyperbolic distance functions but cannot

be restricted to satisfy the translation property of the directional distance functions.

The restrictions required for homogeneity of degree one in inputs are:
∑N

n=1αn = 1,∑N
n′=1αnn′ = 0, and

∑N
n=1γnm = 0. One way of imposing these restrictions on input distance

function is to normalize the function by one of the inputs by setting the parameter of the

homogeneity property λ = 1/xN and obtaining DI (y, x/xN) = DI (y, x) /xN — see, for
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example, Sturm and Williams (2008). The restrictions required for homogeneity of degree

one in outputs are:
∑M

m=1βm = 1,
∑M

m′=1βmm′ = 0, and
∑M

m=1γnm = 0 . One way of

imposing these restrictions on output distance function is to normalize the function by one

of the outputs by setting λ = 1/yM and obtaining DO (x, y/yM) = DO (x, y) /yM — see,

for example, O’Donnell and Coelli (2005). The restrictions required for almost homogeneity

of degrees −1, 1, and 1 are:
∑M

m=1βm −
∑N

n=1αn = 1,
∑M

m=1γnm −
∑N

n′=1αnn′ = 0, and∑M
m′=1βmm′ −

∑N
n=1γnm = 0. One way of imposing these restrictions on hyperbolic distance

function is to normalize the function by one of the inputs by setting λ = 1/xN and obtaining

DH (x/xN , yxN) = DH (x, y) /xN or one of the outputs by setting λ = 1/yM and obtaining

DH (xyM , y/yM) = DH (x, y) /yM — see, for example, Cuesta and Zofio (2005). The first

and second order partial derivatives can be presented as

∂ ln (D (x, y))

∂ lnxn
= αn +

N∑
n′=1

αnn′ lnxn′ +
M∑
m=1

γnm ln ym,
∂2 ln (D (x, y))

∂ lnxn lnxn′
= αnn′

∂ ln (D (x, y))

∂ ln ym
= βm +

M∑
m′=1

βmm′ ln ym′ +
N∑
n=1

γnm lnxn,
∂2 ln (D (x, y))

∂ ln ym ln ym′
= βmm′

However, the translog functional form is not monotonic or globally convex, as the Cobb-

Douglas functional form. Caves and Christensen (1980) note that the translog functional

form has satisfactory local properties when the technology is nearly homothetic, and the

substitution between factors of production is high. Guilkey et al. (1983) show that the

translog functional form is globally regular if and only if the technology is Cobb–Douglas.

Färe and Vardanyan (2016) find that the translog functional form often violates theoretical

regularity conditions and requires imposing the appropriate regularity conditions that signif-

icantly compromise its flexibility. Their results are consistent with the simulation results by

Wales (1977) and Guilkey et al. (1983) that compare the performance of various functional

forms including the translog.

65



The Quadratic Functional Form

Chambers (1998) suggests the quadratic functional form for the directional distance functions

since its parameters can be restricted to satisfy the translation property. The quadratic

functional form is introduced by Lau (1978a) and can be presented as

D (x, y) = α0 +
N∑
n=1

αnxn +
M∑
m=1

βmym +
1

2

N∑
n=1

N∑
n′=1

αnn′xnxn′

+
1

2

M∑
m=1

M∑
m′=1

βmm′ymym′ +
N∑
n=1

M∑
m=1

γnmxnym (1.6)

Symmetry requires αnn′ = αn′n (n 6= n′), and βmm′ = βm′m (m 6= m′). The quadratic

functional form has many parameters to be estimated, for a total of (k2 + 3k + 2) /2 pa-

rameters including the intercept. It is linear in the parameters which can be restricted

to satisfy the translation property of the directional distance functions. The set of linear

restrictions required for the translation property are:
∑M

m=1βmgym −
∑N

n=1αngxn = −1;∑M
m′=1βmm′gym −

∑N
n=1γnmgxn = 0; and

∑M
m=1γnmgym −

∑N
n′=1αnn′gxn = 0. One way of im-

posing these restrictions is imposing them directly in equation (1.6) and obtaining a restricted

version — see, for example, Atkinson and Tsionas (2016). Alternatively, these restrictions

can be imposed by setting the parameter of the translation property α equal to an arbi-

trarily chosen input α = xN or the negative of an arbitrarily chosen output α = −yM and

normalizing the corresponding direction vector gxN = 1 or gyM = 1. In the case of choosing

α = xN , ~DT (x̃− xN g̃x, y + xNgy; gx, gy) = ~DT (x, y; gx, gy) − xN , where x̃ = (x1, ..., xN−1)

and g̃x = (gx1 , ..., gxN−1
) and the input xN disapears from ~DT (x̃− xN g̃x, y + xNgy; gx, gy) be-

cause xN − xN(1) = 0. In the case of choosing α = −yM , ~DT (x+ yMgx, ỹ − yM g̃y; gx, gy) =

~DT (x, y; gx, gy) + yM , where ỹ = (y1, ..., yM−1) and g̃y = (gy1 , ..., gyM−1
) and the output yM

disapears from ~DT (x+ yMgx, ỹ − yM g̃y; gx, gy) because yM − yM(1) = 0 — see, for example,

Malikov et al. (2016). The first and second order partial derivatives can be presented as

∂D (x, y)

∂xn
= αn +

N∑
n′=1

αnn′xn′ +
M∑
m=1

γnmym,
∂2D (x, y)

∂xnxn′
= αnn′
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∂D (x, y)

∂ym
= βm +

M∑
m′=1

βmm′ym′ +
N∑
n=1

γnmxn,
∂2D (x, y)

∂ymym′
= βmm′

Thompson (1988) notes that the quadratic functional form is capable of satisfying global

curvature restrictions without additional constraints in estimation. This is validated by Färe

and Vardanyan (2016) results that the quadratic functional form satisfies global regularity

without curvature restrictions while preserving its flexibility. A simulation study by Cham-

bers et al. (2013) suggests that the quadratic functional form outperforms the translog in

large samples with a relatively large amount of curvature. Diewert (2008) notes that cur-

vature restrictions can be globally imposed on the quadratic functional form without losing

flexibility. However, monotonicity cannot be imposed simultaneously with curvature without

destroying the flexibility of the functional form. As noted by Barnett (2002), the imposi-

tion of global curvature on the quadratic functional form may induce spurious violations of

monotonicity.

The Logarithmic-Transcendental Functional Form

Chambers (1998) suggests the logarithmic-transcendental functional form for the directional

distance functions since it automatically satisfies the translation property. It is a flexible

functional form providing a second order approximation. The logarithmic-transcendental or

the transcendental-exponential functional form can be presented as

exp (D (x, y)) = α0 +
1

2

N∑
n=1

N∑
n′=1

αnn′ exp
(xn

2

)
exp

(xn′
2

)
+

1

2

M∑
m=1

M∑
m′=1

βmm′ exp
(
−ym

2

)
exp

(
−ym

′

2

)
+

N∑
n=1

M∑
m=1

γnm exp
(xn

2

)
exp

(
−ym

2

)
The logarithmic-transcendental functional form has fewer parameters to be estimated

than the translog and the quadratic functional forms, for a total of (k2 + k + 2) /2 parameters

including the intercept. Symmetry requires αnn′ = αn′n (n 6= n′), and βmm′ = βm′m (m 6=
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m′). The first order partial derivatives can be presented as

∂ exp (D (x, y))

∂ exp
(
xn
2

) =
N∑

n′=1

αnn′ exp
(xn′

2

)
+

M∑
m=1

γnm exp
(
−ym

2

)
∂ exp (D (x, y))

∂ exp
(
−ym

2

) =
M∑

m′=1

βmm′ exp
(
−ym

′

2

)
+

N∑
n=1

γnm exp
(xn

2

)
The second order partial derivatives can be presented as

∂2 exp (D (x, y))

∂ exp
(
xn
2

)
exp

(xn′
2

) = αnn′

∂2 exp (D (x, y))

∂ exp
(
−ym

2

)
exp

(
−ym′

2

) = βmm′

Empirical techniques can also be used to assess the ability of different functional forms to

approximate the unknown underlying function. Several techniques are proposed in the liter-

ature; Monte Carlo simulations, parametric modeling, and constructive techniques. Monte

Carlo simulations compare the approximation capabilities of different functional forms to

the underlying technology. For applications of this technique, see, for example, Guilkey and

Lovell (1980), Giannakas, Tran, and Tzouvelekas (2003b), Färe et al. (2010), Chambers et

al. (2013), and Färe and Vardanyan (2016). Parametric modeling assesses the plausibility

of different functional forms in fitting actual data. For applications of this technique, see,

for example, Griffin et al. (1987), Giannakas, Tran, and Tzouvelekas (2003a), and Feng and

Serletis (2008). The main issue with parametric modeling is that the actual functional form

for the production technology is unknown. In this case, evaluating the performance of differ-

ent functional forms in fitting actual data is beneficial if the interest is examining the data

itself, not the functional forms. As noted by Giannakas, Tran, and Tzouvelekas (2003a),

the appropriate functional form, in this case, is case-specific. The constructive technique

provides a means of determining the preferable functional forms by deriving and graphically

displaying their regular regions. For applications of this technique, see, for example, Caves

and Christensen (1980), and Barnett et al. (1985, 1987).
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1.5.2 Heterogeneity Issue

The appropriate choice of functional form for the production technology is not sufficient

without accommodating heterogeneity in the production model. Heterogeneity can be in

the technology by shifting the production frontier or in the inefficiency term by shifting the

inefficiency distribution or both.

To account for heterogeneous technologies, producer-specific characteristics can be in-

cluded directly in the functional form of the technology. Since inefficiency heterogeneity

changes the location and scale parameters of the inefficiency distribution, heterogeneous

inefficiency can be considered by including producer-specific characteristics either in the in-

efficiency term or the parameters of the inefficiency distribution. Greene (2002) argues that

producer-specific characteristics are the primary sources of heterogeneity that are largely

ignored in the inefficiency literature.

Heterogeneity in the Production Technology

Ignoring the possibility of heterogeneous technologies that may exist among producers can

lead to wrong conclusions concerning inefficiency measures — see, for example, Casu and

Molyneux (2003), and Bos and Schmiedel (2007). Brown and Glennon (2000) note that

assuming a common production technology for all producers is a very restrictive assumption.

According to Tsionas (2002), assuming a common technology for all producers may rank a

producer as inefficient although it may employ different technology than other producers

and fully utilize its own technology. Mester (1997), Greene (2005b, 2008), and Caiazza et al.

(2016) note that heterogeneity causes biased estimates obtained from the stochastic frontier

approach.

To illustrate the importance of accommodating heterogeneity in the production frontier

when estimating technical inefficiency, consider an example of two producers A and B with

production frontiers labeled with A and B, respectively — see Figure 1.10. Assuming a

common frontier C for those two producers, the directional measure of overall technical inef-
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Figure 1.10: Heterogeneous Technologies and Technical Inefficiency

ficiency is given by TIpooledT (xA, yA) =
∥∥ACT

∥∥ / ‖0g‖ for producer A and TIpooledT (xB, yB) =∥∥BCT
∥∥ / ‖0g‖ for producer B. Under this assumption, producer A is less efficient than pro-

ducer B since
∥∥ACT

∥∥ > ∥∥BCT
∥∥. However, considering each producer operating on its own

frontier, then TIownT (xA, yA) =
∥∥AAT∥∥ / ‖0g‖ and TIownT (xB, yB) =

∥∥BBT
∥∥ / ‖0g‖. Conse-

quently, the efficiency ranking of these two producers reverses since in this case producer

B is less efficient than producer A because of
∥∥BBT

∥∥ > ∥∥AAT∥∥. Similarly, the directional

measure of output technical inefficiency is given by TIpooledO (xA, yA) =
∥∥ACO

A

∥∥ for producer

A and TIpooledO (xB, yB) =
∥∥BCO

B

∥∥ for producer B assuming a common frontier C. Under this

assumption, producer A is less efficient than producer B. However, considering each producer

operating on its own frontier, then TIownO (xA, yA) =
∥∥AAO∥∥ and TIownO (xB, yB) =

∥∥BBO
∥∥.

Consequently, the efficiency ranking of these two producers reverses since in this case pro-

ducer B is less efficient than producer A because of
∥∥BBO

∥∥ >
∥∥AAO∥∥. The directional

measure of input technical inefficiency is given by TIpooledI (xA, yA) =
∥∥ACI

A

∥∥ for producer A
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and TIpooledI (xB, yB) =
∥∥BCI

B

∥∥ for producer B assuming a common frontier C. Under this as-

sumption, producer A is less efficient than producer B. However, considering each producer

operating on its own frontier, then TIownI (xA, yA) =
∥∥AAI∥∥ and TIownI (xB, yB) =

∥∥BBI
∥∥.

Consequently, the efficiency ranking of these two producers reverses since in this case pro-

ducer B is less efficient than producer A because of
∥∥BBI

∥∥ > ∥∥AAI∥∥.

There are different approaches to account for heterogeneous technologies. One approach

is to introduce a producer-specific intercept to the model — see, for example, Greene (2005a,

b). Cornwell et al. (1990) and Swamy and Tavlas (1995) assume that both the intercept and

the slope parameters are random. Akhavein et al. (1997), Tsionas (2002), and Feng et al.

(2018) assume a stochastic frontier model with random coefficients. Alternatively, varying

coefficient models in which the coefficients are allowed to vary as functions of other variables

can be used — see, for example, Hastie and Tibshirani (1993) and Tran (2014).

Another approach is to split producers exogenously into groups based on size, ownership,

organizational structure or geographic regions, and estimate a model for each group — see,

for example, Mester (1996), and Altunbas et al. (2001) among others. However, estimating

a model for each group has a shortcoming of not using the information provided by the pro-

ducers in the other groups — see, for example, Greene (1993, 2004b), Orea and Kumbhakar

(2004), and Parmeter and Kumbhakar (2014).

Alternatively, the threshold models split producers into technology groups based on the

threshold variable value, and the model of each group is estimated using the information

provided by the producers in the other groups — see, for example, Hansen (1999, 2000) and

Yélou, Larue, and Tran (2010) for a single threshold model and Almanidis (2013) for multiple

thresholds model. However, Almanidis (2013) notes that the joint estimation of the threshold

parameters requires a grid search over an enormous number of points which increases with

the number of breakpoints. The solution is to use a sequential estimation of the threshold

parameters. However, this method yields asymptotically efficient estimates only of the last
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threshold parameter in the process. Bai (1997) suggests a refinement estimation of the

threshold parameters, which amounts to re-estimating the threshold parameters backward,

each time holding the estimates of the previous thresholds fixed. The refinement estimator is

shown to be asymptotically efficient. More recently, Tsionas, Tran, and Michaelides (2017)

propose a threshold stochastic frontier model that can accommodate multiple thresholds.

Heterogeneity in the Inefficiency

Ignoring the existence of heterogeneity in the inefficiency term can lead to inaccurate mea-

sures of the inefficiency since heterogeneity which is not captured by producer-specific char-

acteristics is wrongly attributed to inefficiency. Heterogeneity in the inefficiency can be

captured by including producer-specific characteristics in the mean, variance or both param-

eters of the inefficiency distribution — see section 1.3 for more details on these models.

To summarize, exogenous factors that are not under the control of the producer and affect

the production are supposed to capture heterogeneous technologies and heterogeneity can be

specified directly in the production frontier. If the exogenous factors are under the control of

the producer, heterogeneity in the inefficiency can be captured by including producer-specific

characteristics in the mean, variance or both parameters of the inefficiency distribution.

1.5.3 Heteroscedasticity Issue

Several inefficiency models are based on the assumptions that the random errors v and the

inefficiency term u are homoscedastic or equivalently both σ2
v and σ2

u are constants. However,

the random errors v and the inefficiency term u may be heteroscedastic. Heteroskedasticity

refers to the models in which σ2
v and σ2

u are not constants but functions of explanatory

variables that reflect producer-specific characteristics.

Kumbhakar and Lovell (2000) and Wang and Schmidt (2002) conclude that ignoring the

heteroscedasticity of v results in consistent estimates of the parameters of the production

technology but biased estimates of the intercept and inefficiency while ignoring the het-
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eroscedasticity of u causes biased estimates of the parameters of the production technology

as well as the estimates of inefficiency. To account for heteroscedasticity, the scale parame-

ter of the distribution of the random error and inefficiency can be modeled as functions of

explanatory variables that reflect producer-specific characteristics — see section 1.3 for more

details on these models.

1.5.4 Endogeneity Issue

A potential issue when estimating technical inefficiency using distance functions is that inputs

and outputs may be endogenous, meaning that they are correlated with the random errors

or inefficiency or both and leading to biased and inconsistent estimates of the parameters of

the production technology and the associated measures of inefficiency — see, for example,

Atkinson and Primont (2002), Atkinson et al. (2003), and O’Donnell (2014).

The literature considers two approaches to deal with this issue; one approach relies on

using instrumental variable estimation, and the other relies on employing a system of equa-

tions approach. The use of instruments involves the selection of instrumental variables that

are uncorrelated with the composed errors term and the estimation of the stochastic fron-

tier model with exogenous and endogenous variables and the reduced form equation for the

endogenous variables which includes the exogenous variables and the instruments. Tran and

Tsionas (2013) propose a simple generalized method of moments (GMM) procedure for es-

timating stochastic frontier models in the presence of endogenous variables. In comparing

the use of instruments using GMM and Bayesian estimation, Assaf et al. (2013) find that

Bayesian estimation provides more precise estimates compared to GMM. Tran and Tsionas

(2015) consider an alternative procedure that does not involve the use of instruments and is

based on Copula function to directly model and capture the dependency of the endogenous

variables and the composed error term.

Alternatively, the endogeneity issue can be managed by using a system of equations ap-

proach. In order to meet the rank condition for the identification of the system, a total
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number of potentially endogenous variables are required in the system as independent equa-

tions including the production technology. The choice of the system can be based on the

behavioral assumptions of the producers, duality theory, and the endogeneity of inputs and

outputs. As discussed earlier, the cost function is proved to be dual to the IDF and DIDF

by Luenberger (1992), Färe and Primont (1995), and Chambers et al. (1996). While the

revenue function is proved to be dual to the ODF and DODF by Färe et al. (1993) and Färe

and Grosskopf (2000), the profit function is proved to be dual to the DTDF by Chambers

et al. (1998) — see section 1.2 for more details.

If only inputs (outputs) are endogenous, choosing the first order conditions of cost mini-

mization (revenue maximization) together with the IDF (ODF) or DIDF (DODF) is prefer-

able. See Tsionas et al. (2015) as an example of a system based on the IDF and the first-order

conditions for cost minimization. Coelli (2000) shows that OLS provides consistent estimates

of an IDF (ODF) under the assumption of cost-minimizing (revenue-maximizing) behavior

when estimating distance functions in a system of equations and indicates that the instru-

mental variables may not be required. If however both inputs and outputs are endogenous,

choosing the first order conditions of profit maximization together with the HDF or DTDF is

preferable. See Atkinson and Tsionas (2016) as an example of a system based on the DTDF

and the assumption of profit-maximizing behavior. However, Malikov et al. (2016) consider

the DTDF and the first order conditions for cost minimization leaving the endogeneity of

outputs unaddressed. Feng et al. (2018) use the DODF and the first order conditions for

profit maximization and thus treating inputs as fixed in the DODF and endogenous in the

profit maximization.

The system approach is not only considered to be a procedure to manage the endogeneity

issue but has several advantages. Berndt and Christensen (1973) argue that the use of the

system approach overcome the multicollinearity issue that single equation may suffer due

to a large number of parameters to be estimated. While evaluating different functional
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forms using a single equation and a system of equations, Guilkey et al. (1983) find that

the functional form considered in the system of equation outperforms the single equation

concerning its bias. Furthermore, the system approach includes a considerable amount of

information through the first order conditions and leads to more meaningful results.

1.6 Conclusion

This paper provides an up-to-date review that focusses on research methods, including differ-

ent approaches to measuring technical inefficiency using distance functions, the development

of modeling technical inefficiency in the stochastic frontier framework, and the most common

econometric estimation techniques. It also provides a useful guide on when these methods

can be used and how to implement them.

Regarding measuring technical inefficiency using distance functions, I discuss and eval-

uate the radial measure given by the standard distance functions, the hyperbolic measure

given by the hyperbolic distance function, and the directional measure given by the direc-

tional distance functions. While the radial measure may produce high inefficiency measures

even when the observed input-output vector is very close to the frontier, the hyperbolic

measure is not always easy to implement due to the non-linear optimization involved. The

directional measure is technology-oriented and provides greater flexibility by contracting in-

puts and expanding outputs simultaneously using an exogenous or an endogenous directional

vector to reach the efficient frontier. A recent development is treating the directional vector

as a parameter to be estimated with the other parameters of the model. However, further

research is needed comparing the alternative choices of the endogenous directional vector.

Since theoretical and econometric regularity conditions are still disregarded in most ef-

ficiency studies, the paper addresses the importance of attaining the theoretical regularity

applied by neoclassical microeconomic theory when violated, as well as the econometric

regularity when variables are non-stationary. Without regularity, inefficiency results are ex-
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tremely misleading. If regularity conditions are not attained, the model can be estimated

subject to imposed regularity conditions, which may require the use of Bayesian estima-

tion. If stationarity is not attained, cointegration techniques can be used to manage non-

stationarity of the residuals. However, with nonlinear non-stationary inefficiency models,

further research is needed on the modification of the linear model cointegration techniques

and developing the existing nonlinear cointegration techniques.

Regarding estimation issues, the estimates of technical inefficiency can be distorted by the

inaccurate choice of functional form for the production technology, ignoring the possibility

of heterogeneity and heteroskedasticity, and suffering from the endogeneity problem. It

is important in future applications to estimate technical inefficiency while managing these

issues by one of the different procedures discussed in the paper.

The inaccurate choice of functional form results in biased estimates of technical ineffi-

ciency. This paper discusses several selection criteria for choosing a particular functional

form for the production technology based on theoretical properties such as its shape of the

isoquants, its separability, its flexibility and its regular regions, and application properties

such as homogeneity and translation properties. It also addresses empirical techniques that

can be used to assess the ability of different functional forms to approximate the unknown

underlying function.

The appropriate choice of functional form is not sufficient without accommodating het-

erogeneous technologies that may exist among producers or heterogeneity in the inefficiency

term. Ignoring heterogeneity can lead to wrong conclusions concerning inefficiency measures

since heterogeneity which is not captured by producer-specific characteristics is wrongly

attributed to inefficiency. This paper addresses the importance of accommodating hetero-

geneity and discusses different approaches to account for both heterogeneous technologies

and heterogeneity in the inefficiency term while estimating technical inefficiency. In general,

exogenous factors that are not under the control of the producer and affect the produc-
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tion are supposed to capture heterogeneous technologies and heterogeneity can be specified

directly in the production frontier. If the exogenous factors are under the control of the

producer, heterogeneity in the inefficiency can be captured by including producer-specific

characteristics in the mean, variance or both parameters of the inefficiency distribution. In-

cluding producer-specific characteristics in the scale parameter of the inefficiency distribution

accounts for heteroscedasticity as well.

Another potential issue when estimating technical inefficiency using distance functions

is that inputs and outputs may be endogenous leading to biased and inconsistent estimates

of the parameters of the production technology and the associated measures of inefficiency.

This paper discusses different approaches to deal with this issue, mainly the instrumental

variable approach and the system of equations approach.
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Table 1.1: A Summary of the Important Properties of Alternative Distance Functions

Property Feasibility Monotonicity Homogeneity Inputs Outputs Technical Relationships

Function Translation Inefficiency

IDF DI (y, x)≥ 1 ∇xDI (.)≥ 0 homogeneity concave quasi- TII (y, x) under CRS;

iff (x, y) ∈ T ∇yDI (.)≤ 0 DI (y, λx) concave = 1− TEI (y, x) DI (y, x) =
DI (y, x) if (x, y)is on = λDI (y, x) = 1− 1

DI(y,x)
1/Do (x, y)

= maxϑI : the frontier λ > 0 duality;(
x
ϑI
, y
)

of T , then 1/DI (y, x)≥
∈ T DI (y, x) = 1 C(y, w)/wx

ODF Do (x, y)≤ 1 ∇xDo (.)≤ 0 homogeneity quasi- convex TIo (x, y) under CRS;

iff (x, y) ∈ T ∇yDo (.)≥ 0 Do (x, λy) convex = TEo (x, y)−1 Do (x, y) =
Do (x, y) if (x, y)is on = λDo (x, y) = 1

Do(x,y)
−1 1/DI (y, x)

= minϑo : the frontier λ > 0 duality;(
x, y

ϑO

)
of T , then 1/Do (x, y)≤

∈ T Do (x, y) = 1 R(x, p)/py

HDF DH (x, y)≤ 1 ∇xDH (.)≤ 0 almost convex convex TIH (x, y) under CRS;

iff (x, y) ∈ T ∇yDH (.)≥ 0 homogeneous = TEH (x, y)−1 DH (x, y)
DH (x, y) if (x, y)is on DH (λ−1x, λy) = 1

DH(x,y)
−1 = 1√

DI(y,x)

= minϑH : the frontier = λDH (x, y) =
√
DO (x, y)(

ϑHx,
y
ϑH

)
of T , then under CRS; duality;

∈ T DH (x, y) = 1 DH (λx, λy) [1/DH (x, y)]2

= DH (x, y) ≥ py/wx

DTDF ~DT (.)≥ 0 ∇x
~DT (.)≥ 0 translation concave concave TIT (x, y) ~DT (x, y; 0, gy)

iff (x, y) ∈ T ∇y
~DT (.)≤ 0 ~DT (x− αgx, = ~DT (.) = ~Do (x, y; gy)

~DT (.) if (x, y)is on y + αgy; g) = ~DT (x, y; gx, 0)

= maxθT : the frontier ~DT (x, y; g)−α = ~DI (y, x; gx)
(x− θTgx, of T , then homogeneity duality;

y + θTgy) ~DT (.) = 0 ~DT (x, y;λg) = ~DT (x, y; g)≤
∈ T λ−1 ~DT (x, y; g) π(p,w)−(py − wx)

pgy+wgx

DIDF ~DI (.)≥ 0 ∇x
~DI (.)≥ 0 translation concave quasi- TII (y, x) ~DI (y, x;−x) =

iff (x, y) ∈ T ∇y
~DI (.)≤ 0 ~DI (y, x− αgx) = concave = ~DI (.) ~DT (x, y;−x, 0)

~DI (y, x; gx) if (x, y)is on ~DI (y, x; gx)−α = 1− 1/DI (y, x)
= maxθI : the frontier homogeneity duality;

(y, x− θIgx) of T , then ~DI (y, x;λgx) = ~DI (y, x; gx)≤
∈ T ~DI (.) = 0 λ−1 ~DI (y, x; gx)

wx−C(y,w)
wgx

DODF ~Do (.)≥ 0 ∇x
~Do (.)≥ 0 translation quasi- concave TIo (x, y) ~Do (x, y; y)

iff (x, y) ∈ T ∇y
~Do (.)≤ 0 ~DO (x, y + αgy) = concave = ~Do (.) = ~DT (x, y; 0, y)

~Do (x, y; gy) if (x, y)is on ~DO (x, y; gy)−α = [1/Do (x, y)]−1
= maxθo: the frontier homogeneity duality;

(x, y + αgy) of T , then ~DO (x, y;λgy) = ~DO (x, y; gy)≤
∈ T ~Do (.) = 0 λ−1 ~DO (x, y; gy)

R(x,p)−py
pgy



Table 1.2: A Summary of the Main Characteristics of Technical Inefficiency Models

Inefficiency Technical Inefficiency ωi Heterogeneous Inefficiency Models are Proposed

Models ui uit u Mean µ Variance σ2 by

Time-Invariant ui NA NA NA ui∼ N+(0, σ2
u) σ2

u Aigner et al. (1977),

Cross-Section Meeusen & Van den

Broeck (1977)

Time-Invariant αi= α− ui NA NA NA No distribution No distribution Schmidt & Sickles (1984)

Fixed Effects assumption assumption

Time-Invariant ui NA NA NA ui∼ N+(0, σ2
u) σ2

u Pitt & Lee (1981),

Random Effects Battese & Coelli (1988)

Time-Variant NA αit= g(t) NA NA No distribution No distribution Cornwell et al (1990),

Fixed Effects assumption assumption Lee & Schmidt (1993)

Time-Variant NA uit= g(t)ui NA NA ui∼ N+(0, σ2
u) σ2

u Kumbhakar (1990),

Random Effects Battese & Coelli (1992)

True Fixed Effect NA uit αi NA uit∼ N+(0, σ2
u) σ2

u Greene (2005a, b)

True Random Effect NA uit ωi NA uit∼ N+(0, σ2
u) σ2

u Greene (2005a, b)

Time-Variant and ui0 uit NA NA uit∼ N+(0, σ2
u) σ2

u Kumbhakar &

Time-Invariant ui0∼ N+(0, σ2
u0

) σ2
u0

Heshmati (1995)

Four Random ui0 uit ωi NA uit∼ N+(0, σ2
u) σ2

u Colombi et al. (2014),

Components ui0∼ N+(0, σ2
u0

) σ2
u0

Kumbhakar et al. (2014)

Dynamic NA uit= h(ui,t−1) NA uit= g (z; δ) ui,t−1∼ σ2
u Ahn & Sickles (2000),

N+(µi,t−1, σ
2
u) Tsionas (2006)

Threshold ui NA NA NA ui∼ N+(0, σ2
u) σ2

u Lee (1996)

0 ≤ ui≤ θ

Zero Inefficiency ui = 0 with p NA NA NA ui∼ N+(0, σ2
u) σ2

u Kumbhakar et al. (2013),

ui > 0 with (1− p) Rho & Schmidt (2015)

Note: ωi denotes heterogeneous technologies and NA indicates that the component is not included in the inefficiency model.
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Table 1.2 (Cont′d): A Summary of the Main Characteristics of Technical Inefficiency
Models

Inefficiency Technical Inefficiency ωi Heterogeneous Inefficiency Models are Proposed

Models ui uit u Mean µ Variance σ2 by

Heterogeneous ui NA NA ui= g (z; δ) ui∼ N+(µ, σ2
u) σ2

u Deprins & Simar (1989),

Z on u Huang & Liu (1994)

Heterogeneous NA uit NA uit= g (z; δ) uit∼ N+(µit, σ
2
u) σ2

u Battese & Coelli (1995)

Z on µ µit= zitδm

Heterogeneous ui NA NA NA ui∼ N+(0, σ2
ui) σui= exp (zuiγu) Reifschneider &

Z on σu Stevenson (1991)

Heterogeneous ui NA NA NA ui∼ N+(0, σ2
ui) σui= exp (zuiγu) Hadri (1999),

Z on σu and σv σvi= exp (zviγv) Hadri et al. (2003)

Heterogeneous NA uit NA NA uit∼ N+(µit, σ
2
uit) σ2

uit= exp (zitγu) Wang (2002),

Z on µ and σu µit= zitδm Wang & Schmidt (2002)

Heterogeneous NA uit= g(t)ui αi NA ui∼ N+(µi, σ
2
ui) σ2

ui= exp (zuiγu) Kumbhakar & Wang

Z on µ, σu and σv µi= ziδm σ2
vi= exp (zviγv) (2005)

Note: Z denotes the explanatory variables that reflect producer specific characteristics and explain the differences in inefficiency across producers.
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Chapter 2

Interactive Effects between Input and Output

Technical Inefficiencies

2.1 Introduction

Inefficiency is an important performance indicator for producers, with inefficiency measures

being more accurate than other indicators because they involve a comparison with the most

efficient frontier. Inefficiency measurement involves a comparison between actual inputs with

optimal inputs located on the relevant frontier, or a comparison between actual outputs

with optimal outputs, or some combination of the two. The optimal is defined in terms

of production frontiers and value duals, such as cost, revenue, and profit frontiers, and

inefficiency is technical1.

Most empirical studies that examine the inefficiency of production processes employ either

an input or an output-oriented measurement technique. In terms of the former, researchers

assume that outputs are exogenous and inputs endogenous and producers are fully capable

of reallocating resources when improving efficiency. Inefficiency can be measured in terms of

distance functions either by using an input distance function or a directional input distance

function. Similarly, by adopting an output-oriented measurement technique, it is assumed

that inputs are exogenous and outputs endogenous and producers are fully capable of mixing

production when improving efficiency. In this case, inefficiency can be measured in terms

of distance functions either by using an output distance function or a directional output

distance function. However, adopting an input (output) oriented measurement technique

ignores the opposite output (input) orientation and this restriction may substantially bias

1I would like to thank Prof. Rolf Färe for insightful comments and suggestions that significantly improved
the paper.
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the measures of producer inefficiency.

An efficiency survey by Berger, Hunter, and Timme (1993) suggests comparing these in-

put and output approaches with a complete approach to investigate the relationships between

input and output inefficiencies. However, few studies examine total technical inefficiency and

decompose it into input and output components either by using a profit function or a direc-

tional technology distance function. Berger, Hancock, and Humphrey (1993) and Akhavein

et al. (1997) apply a distribution-free approach and show no interactive effects between

input and output technical inefficiencies by using a profit function. More recently, Barros

et al. (2012) and Fujii et al. (2014) apply a nonparametric approach and decompose total

technical inefficiency into input and output components by using a weighted directional dis-

tance function that takes into account the contribution of each input and output on total

technical inefficiency.

Even though these studies disaggregate and quantify the impact of input and output on

inefficiency, the arbitrary decomposition of total technical inefficiency into input and output

inefficiency components results in concluding that total technical inefficiency equals the sum

of input and output technical inefficiencies and shows no interactive effects between them.

In contrast to previous studies that decompose total technical inefficiency into input

and output inefficiency components, this paper begins from the observation that technical

inefficiency can arise from employing the wrong level of inputs as well as from producing

at the wrong level of outputs, and that the adjustability of both inputs and outputs is

required for the improvement of producer efficiency. I follow Berger, Hunter, and Timme

(1993) suggestion and compare these input and output approaches with a complete approach

using directional input, output, and technology distance functions. I derive the interactive

effect between input and output technical inefficiencies using exogenous and endogenous

directional vectors. I show that overall technical inefficiency does not equal the sum of input

and output technical inefficiencies, as previous studies claim. It equals the sum of input
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and output technical inefficiencies plus an interactive effect component which captures the

interactions between them. This suggests that the overuse of inputs creates input technical

inefficiency and affects output technical inefficiency. Similarly, the loss of output creates

output technical inefficiency and affects input technical inefficiency. Ignoring the interactive

effect between input and output technical inefficiency results in a decomposition of overall

technical inefficiency into input and output components that are significantly different from

the ones that incorporate it.

I prove the results using the relationships between the directional distance functions

and both the standard input and output distance functions, and their dual representations

(cost, revenue, and profit functions). I also show that the interactive effect between input

and output technical inefficiencies derived from the directional technology distance function

depends on the choice of the directional vector in which the data are projected on the

frontier and whether quantities and prices are taken into consideration. These results are

quite significant, since these inefficiency components have different implications for producer

performance, suggesting that the adjustability of both inputs and outputs is required for

the improvement of producer efficiency. To the best of my knowledge, this paper is the

first in the literature that derives the interactive effect between input and output technical

inefficiencies theoretically using the directional technology distance function.

The rest of the paper is organized as follows. The next section presents some theoret-

ical background on radial and directional measures of technical inefficiency using distance

functions. Sections 3 and 4 derive the interactive effect between input and output technical

inefficiencies using the directional technology distance function assuming exogenous and en-

dogenous directional vectors, respectively. Section 5 presents numerical illustration, and the

last section summarizes and concludes the paper.
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2.2 Theoretical Foundations

To briefly review some of the literature on radial and directional measures of technical

inefficiency using distance functions, consider a producer employing a vector of n inputs

x = (x1, ..., xn) ∈ Rn
+ available at fixed prices w = (w1, ..., wn) ∈ Rn

++ to produce a vector of

m outputs y = (y1, ..., ym) ∈ Rm
+ that can be sold at fixed prices p = (p1, ..., pm) ∈ Rm

++. Let

L (y) be the set of all input vectors x which can produce the output vector y

L (y) =
{
x = (x1, ..., xn) ∈ RN

+ : x can produce y
}

and let P (x) be the feasible set of outputs y that can be produced from the input vector x

P (x) =
{
y = (y1, ..., ym) ∈ Rm

+ : y is producible from x
}

The production technology T for a producer is defined as the set of all feasible input-output

vectors

T =
{

(x, y) : x ∈ Rn
+, y ∈ Rm

+ , x can produce y
}

Note that (x, y) ∈ T ⇔ x ∈ L (y)⇔ y ∈ P (x).

2.2.1 The Input Distance Function

Following Shephard (1953), I can define the input distance function (IDF) relative to the

input set L (y) or the production technology T as follows

DI (y, x) = max
ϑI

{
ϑI :

x

ϑI
∈ L (y)

}
= max

ϑI

{
ϑI :

(
x

ϑI
, y

)
∈ T

}
where 1/ϑI represents the proportional contraction of inputs that is required to reach the

inner boundary of the input set or the production frontier, holding the outputs constant.

DI (y, x) is given by the ratio of the observed input to the minimum input required to produce

the given output. Thus, for any x, x/DI (y, x) is the minimum input vector on the ray from

the origin through x that can produce y, as can be seen in Figure 2.1. Efficient producers,
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who produce on the boundary of the input set or the production frontier, have DI (y, x) = 1.

Inefficiency is indicated by DI (y, x) > 1.

The Debreu-Farrell input-oriented measure of technical efficiency is defined as

TEI (y, x) =
1

DI (y, x)

Note that the IDF is the reciprocal of the Debreu-Farrell input-oriented measure of technical

efficiency. TEI (y, x) ≤ 1 represents a radial reduction of inputs that is required to be

considered as being efficient. Technical inefficiency is defined as

TII (y, x) = 1− TEI (y, x) = 1− 1

DI (y, x)

where 0 ≤ TII (y, x) ≤ 1. The IDF has the following properties [see Färe and Primont

(1995), and Färe and Grosskopf (2004) for more details]:

i) representation, DI (y, x) ≥ 1 iff x ∈ L (y) or (x, y) ∈ T

ii) non-increasing and quasi-concave in outputs, and

iii) non-decreasing, concave, and linearly homogeneous in inputs,

DI (y, λx) = λDI (y, x), λ > 0.

2.2.2 The Output Distance Function

Instead of looking at the proportional contraction of inputs holding the outputs constant,

the output distance function (ODF) considers the proportional expantion of outputs holding

the inputs constant. Following Shephard (1970), it is defined on the output set P (x) or the

production technology T as

DO (x, y) = min
ϑO

{
ϑO :

y

ϑO
∈ P (x)

}
= min

ϑO

{
ϑO :

(
x,

y

ϑO

)
∈ T

}
where 1/ϑO represents the proportional expansion of outputs that is required to reach the

upper boundary of the output set or the production frontier, holding the inputs constant.
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Figure 2.1: The Input Distance Function

DO (x, y) is given by the ratio of the observed output to maximum potential output obtain-

able from the given input. Thus, for any y, y/DO (x, y) is the largest output vector on the

ray from the origin through y that can be produced by x, as can be seen in Figure 2.2. If y

is on the boundary of the output set or the production frontier, DO (x, y) = 1, implying that

the producer is operating at full technical efficiency. If y is within the boundary of the output

set or the production frontier, DO (x, y) < 1, indicating that the producer is operating with

technical inefficiency.

The Debreu-Farrell output-oriented measure of technical efficiency is defined as

TEO (x, y) =
1

DO (x, y)

Note that the ODF is the reciprocal of the Debreu-Farrell output-oriented measure of tech-

nical efficiency. TEO (x, y) ≥ 1 represents a radial expansion of outputs that is required to

achieve efficiency and the greater this measure, the smaller the efficiency. Technical ineffi-

ciency is defined as

TIO (x, y) = TEO (x, y)− 1 =
1

DO (x, y)
− 1

where TIO (x, y) ≥ 0. The ODF has the following properties [see Färe and Grosskopf (1994)

for more details]:
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Figure 2.2: The Output Distance Function

i) representation, DO (x, y) ≤ 1 iff y ∈ P (x) or (x, y) ∈ T

ii) non-increasing and quasi-convex in inputs, and

iii) non-decreasing, convex and linearly homogeneous in outputs,

DO (x, λy) = λDO (x, y), λ > 0.

2.2.3 The Directional Technology Distance Function

The directional technology distance function (DTDF) generalizes Shephard’s input and out-

put distance functions, providing a tool to address efficiency issues in an integrated approach.

It is introduced by Chambers et al. (1998) as a variant of the Luenberger (1995) shortage

function. It allows for simultaneous contraction of inputs and expansion of outputs in terms

of an explicit direction vector g = (gx, gy), where gx ∈ RN
+ and gy ∈ RM

+ such that it contracts

inputs in the direction gx and expands outputs in the direction gy. In particular, the DTDF

is defined as

~DT (x, y; gx, gy) = max
θT
{θT : (x− θTgx, y + θTgy) ∈ T}

= max
θT
{θT : (x, y) + θT (gx, gy) ∈ T} (2.1)
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Efficient producers who produce on the frontier of T have ~DT (x, y; gx, gy) = 0, implying

that there is no further contraction of inputs and expansion of outputs that is feasible. Ineffi-

ciency is indicated by ~DT (x, y; gx, gy) > 0, with higher values indicating greater inefficiency

when producers operate beneath the frontier of T . A measure of technical inefficiency is

defined as

TIT = ~DT (x, y; gx, gy)

Eliminating technical inefficiency for producers who operate at point A would take the

producers to point B =
(
xT , yT

)
= (x− θTgx, y + θTgy) on the frontier of T , as can be seen

in Figure 2.3. As noted by Chambers et al. (1998), the DTDF has the following properties:

i) the representation property; that is, ~DT (x, y; gx, gy) completely characterizes

the technology if inputs and outputs are strongly disposable,

~DT (x, y; gx, gy) ≥ 0 iff (x, y) ∈ T

ii) the translation property; that is, if (x, y) is translated into (x− αgx, y + αgy),

then the value of the directional distance function is reduced by α (for α ∈ R)

~DT (x− αgx, y + αgy; gx, gy) = ~DT (x, y; gx, gy)− α

iii) non-decreasing in x if inputs are freely disposable; that is, x′ > x implies

~DT (x′, y; gx, gy) ≥ ~DT (x, y; gx, gy)

iv) non-increasing in y if outputs are freely disposable; that is, y′ > y implies

~DT (x, y′; gx, gy) ≤ ~DT (x, y; gx, gy)

v) concave in (x, y)

vi) homogeneous of degree −1 in the directional vector, g = (gx, gy)

~DT (x, y;λgx, λgy) = λ−1 ~DT (x, y; gx, gy), for λ > 0
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Figure 2.3: Directional Distance Functions with Different Directional Vectors

vii) homogeneous of degree +1 in x and y if the technology exhibits constant

returns to scale, ~DT (λx, λy; gx, gy) = λ~DT (x, y; gx, gy), for λ > 0.

The Directional Input Distance Function

The inefficiency measures derived from the directional distance function depend on the choice

of the directional vector, g = (gx, gy). By setting gy = 0, the directional vector becomes g

= (gx, 0) and allows only for input contraction holding outputs fixed — see Figure 2.3. In

this case, equation (2.1) becomes the directional input distance function (DIDF) that allows

for only input contraction, ~DT (x, y; gx, 0) = ~DI (y, x; gx)

~DI (y, x; gx) = max
θI
{θI : (x− θIgx) ∈ L (y)} = max

θI
{θI : (x− θIgx, y) ∈ T}

Moreover, according to Chambers et al. (1996, 1998) and Fare and Grosskopf (2000), if the

directional input vector, gx, equals the observed input vector, x, (that is, gx = −x), then

~DI (y, x; gx) = ~DI (y, x;−x) = 1− 1

DI (y, x)
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and in this case there is a relationship between the directional input distance function,

~DI (y, x;−x), and the standard input distance function, DI (y, x). As can be seen in Figure

2.3, producers who operate at point A can hold output constant and contract input in the

direction gx = −x to point I, which yields a value of ~DI (y, x;−x) = θI = 1− 1/DI (y, x) =

1−0xI/0x = xIx/0x. The DIDF serves as an input-oriented measure of technical inefficiency

TII = ~DI (y, x; gx)

The DIDF satisfies the following properties [see Chambers et al. (1996)]:

i) representation, ~DI (y, x; gx) ≥ 0 iff x ∈ L (y) or (x, y) ∈ T

ii) translation, ~DI (y, x− αgx; gx) = ~DI (y, x; gx)− α, for α ∈ R

iii) concavity in inputs

iv) positive monotonicity in inputs. That is, x′ > x implies

~DI (y, x′; gx) ≥ ~DI (y, x; gx)

v) negative monotonicity in outputs. That is, y′ > y implies

~DI (y′, x; gx) ≤ ~DI (g, x; gx), and

vi) homogeneity of degree −1 in gx. That is,

~DI (y, x;λgx) = λ−1 ~DI (y, x; gx), for λ > 0.

The Directional Output Distance Function

By setting gx = 0, the directional vector becomes g = (0, gy) and allows only for output

expansion holding inputs fixed — see Figure 2.3. In this case, equation (2.1) becomes

the directional output distance function (DODF) that allows for only output expansion,

~DT (x, y; 0, gy) = ~DO (x, y; gy)

~DO (x, y; gy) = max
θo
{θO : (y + θOgy) ∈ P (x)} = max

θo
{θO : (x, y + θOgy) ∈ T}
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Moreover, as noted by Chambers et al. (1998) and Färe and Grosskopf (2000), if the direc-

tional output vector, gy, equals the observed output vector, y (that is, gy = y), then

~DO (x, y; gy) = ~DO (x, y; y) =
1

DO (x, y)
− 1

and in this case there is a relationship between the directional output distance function,

~DO (x, y; y), and the standard output distance function, DO (x, y). As can be seen in Figure

2.3, producers who operate at point A can hold input constant and expand output in the

direction gy = y to point O, which yields a value of ~DO (x, y; y) = θO = [1/DO (x, y)]− 1 =[
0yO/0y

]
− 1 = yyO/0y. The DODF serves as an output-oriented measure of technical

inefficiency

TIO = ~DO (x, y; gy)

The DODF satisfies the following properties [see Färe et al. (2005)]:

i) representation, ~DO (x, y; gy) ≥ 0 iff y ∈ P (x) or (x, y) ∈ T

ii) translation, ~DO (x, y + αgy; gy) = ~DO (x, y; gy)− α, for α ∈ R

iii) concavity in outputs

iv) positive monotonicity in inputs. That is, x′ > x implies

~DO (x′, y; gy) ≥ ~DO (x, y; gy)

v) negative monotonicity in outputs. That is, y′ > y implies

~DO (x, y′; gy) ≤ ~DO (x, y; gy), and

vi) homogeneity of degree −1 in gy. That is,

~DO (x, y;λgy) = λ−1 ~DO (x, y; gy), for λ > 0.

2.2.4 Duality Relationships

The standard and directional distance functions are primal representations of the technol-

ogy. The dual representations of the technology are given by the profit, cost, and revenue
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functions. Given input prices w ∈ Rn
++ and output prices p ∈ Rm

++, the following dual rep-

resentations (profit, cost, and revenue functions) of the technology can be defined in terms

of the directional distance functions as

π (p, w) = max
x,y

{
(py − wx) : ~DT (x, y; gx, gy) ≥ 0

}
C (y, w) = min

x

{
wx : ~DI (y, x; gx) ≥ 0

}
R (x, p) = max

y

{
py : ~DO (x, y; gy) ≥ 0

}
The relationship between the directional technology (input or output) distance function

and the profit (cost or revenue) function can be represented as [see Chambers et al. (1998),

and Färe and Grosskopf (2000)]

~DT (x, y; gx, gy) ≤
π (p, w)− (py − wx)

pgy + wgx

~DI (y, x; gx) ≤
wx− C (y, w)

wgx

~DO (x, y;gy) ≤
R (x, p)− py

pgy

The right-hand side can be interpreted as a measure of profit (cost or revenue) inefficiency

comparing observed profit (cost or revenue) to maximum profit (minimum cost or maximum

revenue) normalized by the value of the directional vector. The left-hand side captures overall

(input or output-oriented) technical inefficiency. The inequality can be turned into equality

by adding a residual term that captures allocative inefficiency, where allocative inefficiency is

due to the failure of choosing the profit-maximizing (cost-minimizing or revenue-maximizing)

input-output (input or output) vector given relative input and output market prices. Thus,

technical inefficiency is due to the overuse of inputs or the loss of production of outputs or

both, and allocative inefficiency results from employing inputs and outputs in the wrong

proportions.

Note that profit inefficiency is less than or equal to revenue inefficiency and greater than,

less than, or equal to cost inefficiency since profits are greater than, less than, or equal to
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Figure 2.4: Inefficiency Measures with the Observed Input-Output Directional Vector

costs. Furthermore, revenue inefficiency is greater than, less than, or equal to cost inefficiency

when profits are positive, negative, or zero, respectively.

2.3 Exogenous Directional Vectors

When only quantity information on input and output is available, and price information is

unavailable, distorted or inaccurate, technical inefficiency can be measured by choosing a

pre-specified directional vector such that it projects any inefficient producer to the frontier

of T . Two widely used directions are the observed input-output direction g = (−x, y) and

the unit value direction g = (−1, 1).

Suppose that the interest is to measure the simultaneous maximum proportional contrac-

tion of input and expansion of output that is feasible given the technology, the pre-specified

directional vector g = (−x, y) can be chosen. This type of directional vector assumes that an

inefficient producer can decrease inefficiency while decreasing input and increasing output

in proportion to the initial combination of the actual input and output.

Figure 2.4 illustrates how inefficiency can be measured using the pre-specified directional
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vector g = (−x, y). Producers who operate beneath the production frontier at point A are

technically inefficient. The simultaneous maximum proportional contraction of input and

expansion of output can be measured in terms of the lengths of x and y, with the use of the

Pythagorean theorem, as

~DT (x, y; gx, gy) = ~DT (x, y;−x, y) =
‖AB‖
‖Og‖

=

√
(‖x‖ − ‖xT‖)2 + (‖yT‖ − ‖y‖)2√

‖x‖2 + ‖y‖2
= θT

The maximum proportional contraction of input holding output constant can be mea-

sured using the directional vector g = (−x, 0). Technical inefficiency is considered to be

input-oriented technical inefficiency and is defined by the difference of the lengths of x and

xI divided by the length of x

~DT (x, y;−x, 0) = ~DI (y, x;−x) =
‖x‖ −

∥∥xI∥∥
‖x‖

= 1−
∥∥xI∥∥
‖x‖

= 1− 1

DI (y, x)
= θI

The maximum proportional expansion of output holding input constant can be measured

using the directional vector g = (0, y). In this case, technical inefficiency is considered to be

output-oriented technical inefficiency and is defined as

~DT (x, y; 0, y) = ~DO (x, y; y) =

∥∥yO∥∥− ‖y‖
‖y‖

=

∥∥yO∥∥
‖y‖

− 1 =
1

DO (x, y)
− 1 = θO

A critical question that needs to be considered is whether θT = θI + θO?

Proposition 1 Let ~DT (x, y;−x, 0) = ~DI (y, x;−x) = θI be input-oriented technical in-

efficiency, ~DT (x, y; 0, y) = ~DO (x, y; y) = θO be output-oriented technical inefficiency, and

~DT (x, y;−x, y) = θT be overall technical inefficiency. Then θT = θI + θO − θIO, where θIO

is the interactive effect between input and output-oriented technical inefficiencies.

Proof The sum of input and output-oriented technical inefficiencies is defined as θI+θO.

Since θI = 1 − 1/DI (y, x) and θO = [1/DO (x, y)] − 1, then θI + θO = [1/DO (x, y)] −

[1/DI (y, x)]. Since DI (y, x) ≥ 1, then 1/DI (y, x) ≤ 1 and since 1/DI (y, x) = 1− θI ≤ 1,
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then 0 ≤ θI ≤ 1 which implies that the maximum proportional contraction of input would

not exceed the initial input and the resulting input could still produce the output (that is, x ≥

x − θIx, x ≥ 0 and y (x− θIx) = y). Similarly, since DO (x, y) ≤ 1, then 1/DO (x, y) ≥ 1

and since 1/DO (x, y) = 1 + θO ≥ 1, then θO ≥ 0. Since 0 ≤ θI ≤ 1 and θO ≥ 0, then

θI + θO ≥ 0.

The overall technical inefficiency θT is 0 ≤ θT ≤ 1 to ensure that the inequality x ≥

x − θTx holds. Furthermore, the directional technology distance function contracts input

simultaneously with expanding output while the directional input distance function contracts

input holding output fixed, θT is less than θI (that is, θT < θI and y (x− θTx) > y) which

implies that more input is needed to produce the expanding output.

Now, I have 0 ≤ θT ≤ 1, 0 ≤ θI ≤ 1, θT < θI , θO ≥ 0, and θI + θO ≥ 0. As a result,

θT ≤ θI + θO. Thus, the inequality can be turned into equality by subtracting a residual term

that captures the interactive effect between input and output-oriented technical inefficiencies,

θIO, where θT = θI+θO−θIO, and the interactive effect is defined as the gap in the inequality,

namely θIO = θI + θO − θT . Q.E.D.

This derivation of the interactive effects based on the observed input-output directional

vector is illustrated in Figure 2.5.

Another widely used pre-specified direction is the unit value direction g = (−1, 1). Figure

2.6 illustrates how inefficiency can be measured using this directional vector. This type of

directional vector implies that the amount by which a producer could decrease input and

increase output will be ~DT (x, y;−1, 1)× 1 units of x and y.

Producers who operate at points O, B, and I that belong to the boundary of the pro-

duction frontier are overall, input and output technically efficient since their associated

directional technology, input, and output distance functions in the feasible directions are

zero; ~DT (x, y;−1, 1) = θ1
T = 0, ~DI (y, x;−1) = θ1

I = 0, and ~DO (x, y; 1) = θ1
O = 0. However,
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Figure 2.5: Interactive Effects Based on the Observed Input-Output Directional Vector
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producers who operate at point A that is located beneath the production frontier are overall,

input and output technically inefficient since their associated directional technology, input

and output distance functions in the feasible directions are positive. The simultaneous max-

imum contraction of input and expansion of output can be measured in terms of the lengths

of x and y, with the use of the Pythagorean theorem, as

~DT (x, y;−1, 1) =
‖AB‖
‖Og‖

=

√
(‖x‖ − ‖xT‖)2 + (‖yT‖ − ‖y‖)2

√
2

= θ1
T

The maximum contraction of input holding output constant can be measured using the

directional vector g = (−1, 0). Technical inefficiency is considered to be input-oriented

technical inefficiency and is defined as

~DI (y, x;−1) = ‖AI‖ = ‖x‖ −
∥∥xI∥∥ = θ1

I

The maximum expansion of output holding input constant can be measured using the

directional vector g = (0, 1). In this case, technical inefficiency is considered to be output-

oriented technical inefficiency and is defined as

~DO (x, y; 1) = ‖AO‖ =
∥∥yO∥∥− ‖y‖ = θ1

O

Does θ1
T = θ1

I + θ1
O?

Proposition 2 Let ~DT (x, y;−1, 0) = ~DI (y, x;−1) = θ1
I be input-oriented technical in-

efficiency, ~DT (x, y; 0, 1) = ~DO (x, y; 1) = θ1
O be output-oriented technical inefficiency, and

~DT (x, y;−1, 1) = θ1
T be overall technical inefficiency. Then θ1

T = θ1
I + θ1

O − θ1
IO, where θ1

IO

is the interactive effect between input and output-oriented technical inefficiencies.

Proof The sum of input and output-oriented technical inefficiencies is θ1
I + θ1

O. Since

θ1
I = ‖x‖−

∥∥xI∥∥, then adding and subtracting
∥∥xT∥∥ yields θ1

I =
(
‖x‖ −

∥∥xT∥∥)+(∥∥xT∥∥− ∥∥xI∥∥).
Since θ1

O =
∥∥yO∥∥ − ‖y‖, then adding and subtracting

∥∥yT∥∥ yields θ1
O =

(∥∥yO∥∥− ∥∥yT∥∥) +
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Figure 2.6: Inefficiency Measures with the Unit Value Directional Vector

(∥∥yT∥∥− ‖y‖). Thus,
(
‖x‖ −

∥∥xT∥∥) +
(∥∥xT∥∥− ∥∥xI∥∥) +

(∥∥yO∥∥− ∥∥yT∥∥) +
(∥∥yT∥∥− ‖y‖) =

θ1
I + θ1

O, and θ1
T =

√
(‖x‖ − ‖xT‖)2 + (‖yT‖ − ‖y‖)2/

√
2. Since each point on the 45-degree

line equates the variable measured on the vertical axis with the variable measured on the

horizontal axis, then
(
‖x‖ −

∥∥xT∥∥) =
(∥∥yT∥∥− ‖y‖) = k. Substituting

(
‖x‖ −

∥∥xT∥∥) =(∥∥yT∥∥− ‖y‖) = k, then θ1
T =
√

2k2/
√

2 = k, and θ1
I+θ

1
O = 2k+j where j =

(∥∥xT∥∥− ∥∥xI∥∥)+(∥∥yO∥∥− ∥∥yT∥∥). As a result, θ1
T ≤ θ1

I + θ1
O. Thus, the inequality can be turned into equality

by subtracting a residual term that captures the interactive effect between input and output-

oriented technical inefficiencies θ1
IO where θ1

T = θ1
I+θ

1
O−θ1

IO and θ1
IO = k+j is the interactive

effect between input and output-oriented technical inefficiencies. Q.E.D.

This derivation of the interactive effects based on the unit value directional vector is

illustrated in Figure 2.7.
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Corollary 1 Let θ1
T be overall technical inefficiency, θ1

I be input-oriented technical in-

efficiency, and θ1
O be output-oriented technical inefficiency derived using the unit value di-

rectional vectors. Then the interactive effect between input and output-oriented technical

inefficiencies θ1
IO is related to θ1

I and θ1
O as

θ1
IO = θ1

I +
(∥∥yO∥∥− ∥∥yT∥∥)

θ1
IO = θ1

O +
(∥∥xT∥∥− ∥∥xI∥∥)

While producers who operate on the production frontier have zero interactive effects since

θ1
T = θ1

I + θ1
O = 0, producers who operate beneath the production frontier have negative

interactive effects since θ1
T < θ1

I + θ1
O. Furthermore, there is a relationship between the

interactive effect θ1
IO, and the input and output technical inefficiencies. The interactive effect

between input and output technical inefficiencies equals the input technical inefficiency θ1
I

plus the loss of production of output
∥∥yO∥∥−∥∥yT∥∥ (that is part of output technical inefficiency)

that is forgone to reduce input and eliminate part of the input technical inefficiency ‖x‖ −∥∥xT∥∥ — see Figure 2.6. This suggests that the loss of output creates output technical

inefficiency and has an effect on reducing input technical inefficiency. Intuitively, the loss of

revenue from the production of output may encourage producers to reduce the input used in

the production process. The interactive effect also equals the output technical inefficiency θ1
O

plus the overuse of input
∥∥xT∥∥−∥∥xI∥∥ (that is part of input technical inefficiency) that is used

to produce more output and eliminate part of the output technical inefficiency
∥∥yT∥∥ − ‖y‖

— see Figure 2.6. This suggests that the overuse of input creates input technical inefficiency

and has an effect on reducing output technical inefficiency. Intuitively, the excessive cost

due to the overuse of input may encourage producers to produce more output to finance the

cost.

Comparing these alternative ways to improve efficiency is crucial in eliminating overall

technical inefficiency particularly when producers are not fully capable of reducing all the
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overuse of input or producing all the loss of production while improving efficiency due to

organizational, technological, or any other restrictions. The interactive effect between input

and output technical inefficiencies tend to lower overall technical inefficiency since input

inefficiency has an effect on reducing (improving) output inefficiency (efficiency) and output

inefficiency has an effect on reducing (improving) input inefficiency (efficiency).

Consequently, including no price information on the directional vector such as g = (−x, y)

or g = (−1, 1), the interactive effects between input and output technical inefficiencies have

negative effect on the overall technical inefficiency. Producers with larger values of the

interactive effect tend to have a lower level of overall technical inefficiency which indicates

that they are more efficient.

2.4 Endogenous Directional Vectors

When information on input and output prices is available and producers are assumed to

exhibit cost-minimizing (or revenue or profit-maximizing) behavior, technical inefficiency can

be measured by choosing an endogenous direction vector such that it projects any inefficient

producer to the cost-minimizing (or revenue or profit-maximizing) benchmark.

Following Zofio et al. (2013), the directional vector g =
(
gπx , g

π
y

)
is assumed to satisfy the

price normalization constraint pgπy + wgπx = 1 and projects any inefficient producer towards

the profit-maximizing bundle (xπ, yπ) where producers are both technically and allocatively

efficient2. Thus, the directional vector can be defined as

g =
(
gπx , g

π
y

)
=

(
x− xπ

π (p, w)− (py − wx)
,

yπ − y
π (p, w)− (py − wx)

)
(2.2)

to ensure that pgπy + wgπx = 1. Then, the directional distance function, ~DT

(
x, y; gπx , g

π
y

)
,

equals the loss of profit due to technical inefficiency and gives a measure of overall technical

inefficiency in monetary values. Note that pgπy + wgπx can be interpreted as the value of the

2The normalizing constraint of the value of the directional vector is used by Luenberger (1992) in the
context of consumer theory.
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Figure 2.7: Interactive Effects Based on the Unit Value Directional Vector
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directional vector and (π (p, w)− (py − wx)) is the difference between maximum profit and

observed profit.

Proposition 3 Let (x, y) ∈ T , (p, w) be the vector of output and input prices, and

g =
(
gπx , g

π
y

)
be a vector such that it satisfies pgπy + wgπx = 1 and projects any inefficient

producer to the profit-maximizing bundle (xπ, yπ), where producers are both technically and

allocatively efficient. Then, ~DT

(
x, y; gπx , g

π
y

)
= θπT = π (p, w)− (py − wx) and all profit inef-

ficiency is technical, since allocative inefficiency equals zero.

Proof For every (x, y) ∈ T , the projected vector (xπ, yπ) based on the directional vector

g =
(
gπx , g

π
y

)
is
(
x− θπTgπx , y + θπTg

π
y

)
∈ T or, equivalently, (x, y) + θπT

(
gπx , g

π
y

)
∈ T , where

θπT = ~DT

(
x, y; gπx , g

π
y

)
. Thus, (pyπ − wxπ) = (py − wx) + θπT

(
pgπy + wgπx

)
. Using the direc-

tional vector given in (2.2) yields, after some rearranging, θπT = π (p, w)−(py − wx). Q.E.D.

Suppose that the directional vector g =
(
gCx , 0

)
satisfies the price normalization con-

straint, wgCx = 1 and projects any inefficient producer towards the cost-minimizing bundle(
xC , y

)
where producers are both technically and allocatively efficient. Thus, the directional

vector can be defined as

g =
(
gCx , 0

)
=

(
x− xC

wx− C (y, w)
, 0

)
(2.3)

to ensure that wgCx = 1. Then, the directional input distance function ~DI

(
y, x; gCx

)
equals

the excessive cost due to technical inefficiency and gives a measure of input-oriented tech-

nical inefficiency in monetary values. Note that wgCx can be interpreted as the value of the

directional vector and (wx− C (y, w)) is the difference between observed cost and minimum

cost.

Proposition 4 Let x ∈ L (y) , w be the vector of input prices, and g =
(
gCx , 0

)
a vector
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that satisfies wgCx = 1 and projects any inefficient producer to the cost-minimizing bundle(
xC , y

)
where producers are both technically and allocatively efficient. Then, ~DI

(
y, x; gCx

)
=

θCI = wx − C (y, w) and all cost inefficiency is technical, since allocative inefficiency equals

zero.

Proof For every x ∈ L (y) , the projected vector
(
xC , y

)
based on the directional vec-

tor g =
(
gCx , 0

)
is
(
x− θCI gCx , y

)
∈ T or, equivalently,

(
x− θCI gCx

)
∈ L (y), where θCI =

~DI

(
y, x; gCx

)
. Thus, wxC = C (y, w) = wx − θCI wg

C
x , which after using the directional vec-

tor in (2.3), reduces to θCI = wx − C (y, w). Q.E.D.

Suppose that the directional vector g =
(
0, gRy

)
satisfies the price normalization constraint

pgRy = 1 and projects any inefficient producer towards the revenue-maximizing bundle
(
x, yR

)
where producers are both technically and allocatively efficient. Thus, the directional vector

can be defined as

g =
(
0, gRy

)
=

(
0,

yR − y
R (x, p)− py

)
(2.4)

to ensure that pgRy = 1. Then, the directional output distance function ~DO

(
x, y; gRy

)
equals

the loss of revenue due to technical inefficiency and gives a measure of output-oriented tech-

nical inefficiency in monetary values. Note that pgRy can be interpreted as the value of the

directional vector and (R (x, p)− py) is the difference between maximum revenue and ob-

served revenue.

Proposition 5 Let y ∈ P (x) , p be the vector of output prices, and g =
(
0, gRy

)
a vector

that satisfies pgRy = 1 and projects any inefficient producer to the revenue-maximizing bundle(
x, yR

)
where producers are both technically and allocatively efficient. Then, ~DO

(
x, y; gRy

)
=

θRO = R (x, p)− py and all revenue inefficiency is technical, since allocative inefficiency equals

zero.

103



Proof For every y ∈ P (x) , the projected vector
(
x, yR

)
based on the directional

vector g =
(
0, gRy

)
is
(
x, y + θROg

R
y

)
∈ T or, equivalently,

(
y + θROg

R
y

)
∈ P (x), where

θRO = ~DO

(
x, y; gRy

)
. Thus, pyR = R (x, p) = py + θROpg

R
y , which after using the direc-

tional vector in (2.4), reduces to θRO = R (x, p)− py. Q.E.D.

Does θπT = θCI + θRO?

Proposition 6 Let ~DT

(
x, y; gπx , g

π
y

)
= θπT be overall technical inefficiency, ~DI

(
y, x; gCx

)
=

θCI be input-oriented technical inefficiency, and ~DO

(
x, y; gRy

)
= θRO be output-oriented tech-

nical inefficiency. Then θπT = θCI + θRO ± θCRIO , where θCRIO is the interactive effect between

input and output-oriented technical inefficiencies.

Proof The sum of input and output-oriented technical inefficiency can be defined as

θCI +θRO. Since θCI = wx−C (y, w) and θRO = R (x, p)−py, then θCI +θRO = R (x, p)−C (y, w)−

(py − wx). Since θπT = π (p, w) − (py − wx) and π (p, w) R C (y, w), then θπT R θCI + θRO.

Thus, the inequality can be turned into equality by adding or subtracting a residual term that

captures the interactive effect between input and output-oriented technical inefficiencies θCRIO ,

where θπT = θCI + θRO ± θCRIO and the interactive effect is defined as the gap in the inequality,

namely θCRIO = θπT ∓
(
θCI + θRO

)
. Q.E.D.

This derivation of the interactive effects using the endogenous directional vectors g =(
gπx , g

π
y

)
, g =

(
gCx , 0

)
, and g =

(
0, gRy

)
is illustrated in Figure 2.8.

Consequently, including price information on the directional vector such as the directional

vector that projects any inefficient producer to the profit-maximizing bundle, the interac-

tive effects between input and output-oriented technical inefficiencies may have positive or
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Figure 2.8: Interactive Effects with Endogenous Directional Vectors
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Figure 2.9: Endogenous Directional Vectors Projecting to the Profit-Maximizing Bundle

negative effects on the overall technical inefficiency, depending on the relationships between

profits and costs. Given this observation, it would be interesting to examine the interactive

effects between input and output technical inefficiencies empirically using this directional

vector.

As noted by Zofio et al. (2013), the directional vector that projects any inefficient pro-

ducer to the profit-maximizing bundle does not impose any sign restrictions on the adjust-

ments of inputs and outputs. Figure 2.9 illustrates these directional vectors. As can be seen,

these directional vectors may have negative components such that input is expanded (as, for

example, from xA to xπ) or output is contracted (as, for example, from yD to yπ) to reach

the frontier at the profit-maximizing benchmark P .

Similarly, the directional vector that projects any inefficient producer to the revenue-

maximizing benchmark R may have negative components such that output is contracted (as,

for example, from yD2 to yR2 ) to reach the frontier, and the directional vector that projects

any inefficient producer to the cost-minimizing benchmark C may have negative components

such that input is expanded (as, for example, from xD2 to xC2 ) to reach the frontier — see
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Figure 2.10.

This paper shows that the derivation of the interactive effect between input and output

technical inefficiencies from the directional distance function depends on the choice of the

directional vector in which the data are projected on the frontier and whether quantities and

prices are taken into consideration. When the directional vector includes no price information

such as g = (−x, y) or g = (−1, 1), the interactive effects between input and output technical

inefficiencies have negative effects on overall technical inefficiency and consequently lower

overall technical inefficiency. When the directional vector includes price information, such as

the directional vector that projects any inefficient producer to the profit-maximizing bundle,

the interactive effects between input and output technical inefficiencies may have positive

or negative effects on overall technical inefficiency, depending on the relationships between

profits and costs.

From a theoretical perspective, this argument solves the arbitrary decomposition of over-

all technical inefficiency into input and output components. Overall technical inefficiency

does not equal the sum of input and output technical inefficiencies as previous studies claim;

it equals the sum of input and output technical inefficiencies plus an interactive effect compo-

nent which captures the interactions between them. This suggests that the overuse of inputs

creates input technical inefficiency and has an effect on output technical inefficiency. Also,

the loss of output creates output technical inefficiency and has an effect on input technical

inefficiency. From an applied perspective, producers either reduce inputs (costs), increase

output (revenue) or reduce inputs and increase outputs (increase profit), depending on their

objectives. However, the adjustability of both inputs and outputs is required for the im-

provement of producer overall efficiency, and no component of technical inefficiency should

be ignored while improving efficiency since the interactive effects between input and output

technical inefficiencies have an effect on the overall technical inefficiency.
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Figure 2.10: Endogenous Directional Vectors Projecting to the Cost-Minimizing or Revenue-
Maximizing Bundle

2.5 Numerical Illustration

Consider seven hypothetical producers P1 − P7 who use one input to produce one output.

Table 2.1 presents the data used in Figure 2.11 and the corresponding projection of the input-

output vectors based on their associated directional vectors. For simplicity and convenience

in measuring technical inefficiency, the pre-specified directional vector g = (−1, 1) is used.

Producers 1, 2 and 3 who operate on the boundary of the production frontier are overall,

input, and output technically efficient since their associated directional technology, input,

and output distance functions in the feasible directions are zero; ~DT (x, y;−1, 1) = θ1
T = 0,

~DI (y, x;−1) = θ1
I = 0, and ~DO (x, y; 1) = θ1

O = 0. However, producers 4, 5, 6, and 7 who

operate beneath the production frontier are overall, input, and output technically inefficient

since their associated directional technology, input, and output distance functions in the

feasible directions are positive.

For example, producer 6 is overall technically inefficient since ~DT (x, y;−1, 1) = θ1
T =
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Figure 2.11: Graphical Representation of the Numerical Example Given in Table 2.1

‖P6P2‖ / ‖0g‖ =
√

32/
√

2 = 4 > 0 — see row 3 of Table 2.1. Substituting θ1
T , the projected

point
(
xT , yT

)
is obtained as

(
xT , yT

)
= (x− θ1

Tgx, y + θ1
Tgy) = (12− 4× 1, 4 + 4× 1) =

(8, 8) which is the same as the coordinates of producer 2 who operates on the boundary of

the production frontier and is technically efficient.

If the direction vector g = (−1, 0) is used, producer 6 is input technically inefficient since

~DI (y, x;−1) = θ1
I = x − xI = 12 − 2 = 10 > 0 — see row 5 of Table 2.1. Substituting θ1

I ,

the projected point
(
xI , y

)
is obtained as

(
xI , y

)
= (x− θ1

Igx, y) = (12− 10× 1, 4) = (2, 4)

which is the same as the coordinates of producer 1 who operates on the boundary of the

production frontier and is technically efficient.

Similarly, if the direction vector g = (0, 1) is used, producer 6 is output technically

inefficient since ~DO (x, y; 1) = θ1
O = yO − y = 9 − 4 = 5 > 0 — see row 7 of Table 2.1.

Substituting θ1
O, the projected point

(
x, yO

)
is obtained as

(
x, yO

)
= (x, y + θ1

Ogy) = (12,

4 + 5 × 1) = (12, 9) which is the same as the coordinates of producer 3 who operates on

the boundary of the production frontier and is technically efficient. Following the same
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procedure as above for producers 4, 5, and 7, the results are reported in Table 2.1.

Table 2.1 also shows the derivation of the interactive effects between input and output-

oriented technical inefficiencies θ1
IO. Setting gy = 0, the directional vector g = (−1, 0)

allows for input contraction, holding output fixed. The directional input distance function

~DI (y, x;−1) serves as an input-oriented measure of technical inefficiency θ1
I = x−xI . Setting

gx = 0, the directional vector g = (0, 1) allows for only output expansion, holding input fixed.

The directional output distance function ~DO (x, y; 1) serves as an output-oriented measure of

technical inefficiency θ1
O = yO − y. Row 11 of Table 2.1 shows the sum of input and output-

oriented technical inefficiencies θ1
I + θ1

O. Row 12 shows the relationship between overall

technical inefficiency θ1
T and the sum of input and output-oriented technical inefficiencies

θ1
I + θ1

O. The last four rows show the derivation of the interactive effects between input

and output-oriented technical inefficiencies θ1
IO with the use of proposition 2 and corollary 1.

Producers 1, 2 and 3 who operate on the production frontier have zero interactive effects since

θ1
T = θ1

I + θ1
O = 0. However, producers 4, 5, 6, and 7 who operate beneath the production

frontier have negative interactive effects since θ1
T < θ1

I + θ1
O. The inequality can be turned

into equality by subtracting a residual term that captures the interactive effect between

input and output-oriented technical inefficiencies where the interactive effect θ1
IO is defined

as the gap in the inequality, namely θ1
IO = θ1

I + θ1
O − θ1

T . The interactive effect θ1
IO can also

be defined by using proposition 2 and corollary 1, namely θ1
IO = θ1

T +
(
xT − xI

)
+
(
yO − yT

)
,

θ1
IO = θ1

I +
(
yO − yT

)
, or θ1

IO = θ1
O +

(
xT − xI

)
.

2.6 Conclusion

This paper presents theoretical and illustrative methods to derive the interactive effect be-

tween input and output technical inefficiencies using directional distance functions. This

derivation solves the arbitrary decomposition of overall technical inefficiency into input and

output components. The results show that overall technical inefficiency does not equal the
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sum of input and output technical inefficiencies as previous studies claim. It equals the

sum of input and output technical inefficiencies plus an interactive effect component which

captures the interactions between them. I prove the results using the relationship between

the directional distance functions and both the standard distance functions and their dual

representations; cost, revenue, and profit functions. These results suggest that ignoring the

interactive effect between input and output technical inefficiencies results in a decomposi-

tion of overall technical inefficiency into input and output components that are significantly

different from the ones that incorporate it.
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Table 2.1: Results for the Numerical Example

P P1 P2 P3 P4 P5 P6 P7

(x, y) (2, 4) (8, 8) (12, 9) (4, 2) (7, 3) (12, 4) (12, 8)

θ1
T 0 0 0

√
8√
2
= 2

√
18√
2

= 3
√

32√
2

= 4
√

2√
2
= 1(

xT , yT
)

(2, 4) (8, 8) (12, 9) (2, 4) (4, 6) (8, 8) (11, 9)
θ1
I= x− xI 0 0 0 3.25 5.5 10 4

(xI , y) (2, 4) (8, 8) (12, 9) (0.75, 2) (1.5, 3) (2, 4) (8, 8)
θ1
O= yO−y 0 0 0 4 4.5 5 1

(x, yO) (2, 4) (8, 8) (12, 9) (4, 6) (7, 7.5) (12, 9) (12, 9)

I = xT−xI 0 0 0 1.25 2.5 6 3
O = yO−yT 0 0 0 2 1.5 1 0
IO = θ1

I+θ
1
O 0 0 0 7.25 10 15 5

θ1
T≤ θ1

I+θ
1
O 0 = 0 0 = 0 0 = 0 2 < 7.25 3 < 10 4 < 15 1 < 5

θ1
IO= IO − θ1

T 0 0 0 5.25 7 11 4
θ1
IO= θ1

T+I +O 0 0 0 5.25 7 11 4
θ1
IO= θ1

I+O 0 0 0 5.25 7 11 4
θ1
IO= θ1

O+I 0 0 0 5.25 7 11 4
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Chapter 3

Interactive Effects between Input and Output

Technical Inefficiencies in US Commercial Banking

3.1 Introduction

Most empirical studies that examine the inefficiency of production processes in banking em-

ploy either an input or an output-oriented measurement technique. In terms of the former,

researchers assume that outputs are exogenous and inputs endogenous and banks are fully

capable of reallocating resources when improving efficiency. A bank is an input technically

efficient if it is capable of using minimal inputs to produce a given vector of outputs. Simi-

larly, by adopting an output-oriented measurement technique, it is assumed that inputs are

exogenous and outputs endogenous and banks are fully capable of mixing production when

improving efficiency. An output technically efficient bank can produce maximal output from

a given vector of inputs. However, adopting an input (output) oriented measurement tech-

nique ignores the opposite output (input) orientation, and this restriction may substantially

bias the measures of technical inefficiency.

An efficiency survey by Berger, Hunter, and Timme (1993) suggests comparing these in-

put and output approaches with a complete approach to investigate the relationships between

input and output inefficiencies. However, few studies examine total technical inefficiency and

decompose it into input and output components either by using a profit function or a direc-

tional technology distance function. Berger, Hancock, and Humphrey (1993) and Akhavein

et al. (1997) apply a distribution-free approach and show no interactive effects between

input and output technical inefficiencies by using a profit function. More recently, Barros

et al. (2012) and Fujii et al. (2014) apply a nonparametric approach and decompose total
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technical inefficiency into input and output components by using a weighted directional dis-

tance function that takes into account the contribution of each input and output on total

technical inefficiency.

Even though these studies disaggregate and quantify the impact of input and output on

inefficiency, the arbitrary decomposition of total technical inefficiency into input and output

inefficiency components results in concluding that total technical inefficiency equals the sum

of input and output technical inefficiencies and shows no interactive effects between them.

In contrast to these studies, this paper follows Berger, Hunter, and Timme (1993) sug-

gestion and uses a complete approach, investigating the relationships among input, output,

and overall technical inefficiencies in terms of the directional distance functions. Specifically,

input, output and technology-oriented technical inefficiencies are estimated separately using

directional input, output, and technology distance functions, respectively.

A potential issue when estimating technical inefficiency using directional distance func-

tions is that inputs and outputs may be endogenous, meaning that they are correlated with

the random errors or inefficiency or both and leading to biased and inconsistent estimates

of the parameters of the production technology and the associated measures of inefficiency

— see, for example, Atkinson and Primont (2002), Atkinson et al. (2003), and O’Donnell

(2014). The literature considers two approaches to deal with this issue; one approach relies

on using instrumental variable estimation, and the other relies on employing a system of

equations approach. This paper follows the latter approach. Specifically, input, output, and

technology-oriented technical inefficiencies are estimated separately using systems of equa-

tions, consisting of directional input (output, and technology) distance function with the cost

(revenue, and profit) minimizing (maximizing) first-order conditions, respectively. Further-

more, the directional vectors of these models are allowed to be endogenous and vary across

banks to account for heterogeneity across banks. The obtained estimates of the directional

vectors can be interpreted as being optimal directional vectors — see Malikov et al. (2016).

114



The input, output, and overall technical inefficiencies are estimated with the three com-

monly used directional vectors; the unit value, the observed input-output, and the optimal

directional vectors. The unit value and the observed input-output directional vector models

are estimated without additional first-order condition equations. The optimal directional

vector models are estimated using systems of equations, consisting of directional distance

functions with the relevant first-order conditions.

To investigate the relationships among input, output, and overall technical inefficiencies,

I model the overall technical inefficiency as a linear function of a vector of explanatory bank-

specific variables that includes input technical inefficiency, output technical inefficiency, and

a term capturing the interactions between them, following Battese and Coelli (1995). These

bank-specific variables that determine overall technical inefficiency are estimated simultane-

ously with the variables that determine the frontier.

The above methodology is applied to a sample of 148 US commercial banks over the

period from 2001 to 2015. The market-average prices faced and determined exogenously

rather than the actual prices paid or received by the bank are used, following Berger and

Mester (2003). These market-average prices are more likely to be exogenous to the bank

than the bank-specific prices. The bank market-average price at a given year is the weighted

average of the other banks prices at that year excluding the bank-specific price, where the

weights are each bank respective market share at that year. To select the relevant variables,

the commonly accepted asset approach proposed by Sealey and Lindley (1977) is used. It

defines loans and other assets as outputs, while deposits and other liabilities are treated as

inputs.

Regarding regularity violations, I find that the monotonicity conditions with respect to

labor and all outputs are violated for all models at most observations. Therefore, all models

are re-estimated with the monotonicity conditions imposed at each observation, by following

the Bayesian procedure discussed in O’Donnell and Coelli (2005). Bayesian approach is
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used, mainly because this approach can easily impose monotonicity conditions and estimate

directional vectors that vary across banks.

This paper contributes to the literature in many ways. First, to the best of my knowledge,

it is the first in the literature that uses a complete approach to examine the relationships

among input, output, and overall technical inefficiencies empirically using the same data set

and the directional input, output, and technology distance functions with the three com-

monly used directional vectors; the unit value, the observed input-output, and the optimal

directional vectors. Second, the optimal directional vectors are allowed to be endogenous and

vary across banks to account for heterogeneity across banks. Third, it pays explicit attention

to the theoretical regularity conditions in order to produce inference that is consistent with

neoclassical microeconomic theory.

In providing a comparison of the three estimates of technical inefficiencies in the case of

the unit value, the observed input-output, and the optimal directional vector models, the

empirical results show that overall technical inefficiency does not equal the sum of input

and output technical inefficiencies, as previous studies claim. It equals the sum of input

and output technical inefficiencies plus an interactive effect component which captures the

interactions between them, where the increase in the output technical inefficiency reflects on

a reduction on the input technical inefficiency and vice versa.

The results also show that both input and output technical inefficiencies have signif-

icant positive effects on the overall technical inefficiency. However, the interactive effect

between input and output technical inefficiencies has a significant negative effect on the

overall technical inefficiency. This result is robust to alternative directional vectors and

model specifications. Banks with larger values of the interactive effect tend to have a lower

level of overall technical inefficiency which indicates that they are more efficient. This sug-

gests that the overuse of inputs creates input technical inefficiency and has an effect on

reducing (improving) output technical inefficiency (efficiency) and therefore improving over-
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all technical efficiency. Intuitively, the overuse of inputs whether physical inputs involving

overuse of labor or overuse of financial inputs involving overpayment of interest creates input

technical inefficiency and has an effect on reducing (improving) output technical inefficiency

(efficiency). The overuse of labor and the overpayment of interest may encourage banks to

produce more loans to pay salaries for its employees and interest rates on deposits.

Similarly, the loss of production of outputs creates output technical inefficiency and has

an effect on reducing (improving) input technical inefficiency (efficiency) and therefore im-

proving overall technical efficiency. Intuitively, the loss of production of loans creates output

technical inefficiency and has an effect on reducing (improving) input technical inefficiency

(efficiency). The loss of revenue from loans may encourage banks to reduce the number of

labor used in the production process or lower the interest rates paid on deposits. Ignoring

the interactive effect between input and output technical inefficiency results in a decomposi-

tion of overall technical inefficiency into input and output components that are significantly

different from the ones that incorporate it.

The results also indicate that the value of the interactive effect between input and output

technical inefficiencies depends on the choice of the directional vector in which the data are

projected on the frontier and whether quantities and prices are taken into consideration.

These results are quite significant, since these inefficiency components have different impli-

cations for bank performance, suggesting that the adjustability of both inputs and outputs

is required for the improvement of bank efficiency.

The rest of the paper is organized as follows. The next section provides a brief review

of directional distance functions that are used to measure input, output, and overall tech-

nical inefficiencies. Section 3 specifies the unit value, the observed input-output, and the

optimal directional vector models and the interactive effects equation. Section 4 discusses

the Bayesian procedure for estimating these models. Section 5 defines the data used in this

paper. In Section 6, the methodology is applied to a sample of US commercial banks, and
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the results are reported. Section 7 summarizes and concludes the paper.

3.2 The Directional Technology Distance Function

To model the banking production process and measure overall, input, and output technical

inefficiencies, the directional technology, input, and output distance functions proposed by

Chambers et al. (1998) are used. Consider a bank that uses x ∈ RN
+ inputs to produce y

∈ RM
+ outputs. This banking production process can be represented by the technology T ;

that is defined as the set of all feasible input-output vectors.1

T =
{

(x, y) : x ∈ RN
+ , y ∈ RM

+ , x can produce y
}

The directional technology distance function (DTDF) completely characterizes technology;

that is, it is equivalent to T . It allows for simultaneous contraction of inputs and expansion

of outputs in terms of an explicit direction vector g = (gx, gy), where gx ∈ RN
+ and gy ∈ RM

+

such that it contracts inputs in the direction gx and expands outputs in the direction gy. In

particular, the DTDF is defined as

~DT (x, y; gx, gy) = max
θT
{θT : (x− θTgx, y + θTgy) ∈ T} (3.1)

The measure of technical inefficiency derived from the DTDF is technology-oriented and

depends on the choice of the direction vector g in which the data are projected on the

frontier. Note that the DTDF constitutes an additive measure of technical inefficiency

in a given direction g, where the zero value of ~DT (x, y; gx, gy) implies full technological

efficiency. Inefficiency is indicated by ~DT (x, y; gx, gy) > 0 with higher values indicating

greater inefficiency when banks operate beneath the frontier of T . A measure of technical

inefficiency is defined as

TIT = ~DT (x, y; gx, gy)

1Standard properties are assumed on the technology T . See Chambers (1998) and Chambers et al.
(1998). These properties include the axioms of the possibility of inaction; (0, 0) ∈ T , no free lunch; if
(x, y) ∈ T and x = 0 then y = 0, and free disposability of inputs and outputs; if (x, y) ∈ T and x′ ≥ x,
y′ ≤ y then (x′, y) ∈ T and (x, y′) ∈ T . It is also assumed that the technology T is closed and convex.
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As noted by Chambers et al. (1998), the DTDF is non-negative, non-decreasing in x, non-

increasing in y, and concave in (x, y). Moreover, it satisfies the following translation property

~DT (x− αgx, y + αgy; gx, gy) = ~DT (x, y; gx, gy)− α (3.2)

where α is an arbitrary scaling factor. This property says that if the input-output vector

(x, y) is translated into (x− αgx, y + αgy), then the value of the DTDF is reduced by α (for

α ∈ R).

3.2.1 The Directional Input Distance Function

The directional input distance function (DIDF) can be derived from ~DT (x, y; gx, gy) by

setting gy = 0. The directional vector g = (gx, 0) allows only for input contraction holding

outputs fixed. In this case, equation (3.1) becomes the DIDF that allows for only input

contraction, ~DT (x, y; gx, 0) = ~DI (y, x; gx)

~DI (y, x; gx) = max
θI
{θI : (x− θIgx) ∈ L(y)} = max

θI
{θI : (x− θIgx, y) ∈ T} (3.3)

where L(y) is the input set which represents the set of all input vectors x which can produce

the output vector y, that is

L(y) =
{
x ∈ RN

+ : x can produce y
}

The DIDF serves as an input-oriented measure of technical inefficiency.

TII = ~DI (y, x; gx)

As noted by Chambers et al. (1996), the DIDF is non-negative, non-decreasing in x, non-

increasing in y, and concave in inputs x. Moreover, it satisfies the following translation

property

~DI (y, x− αgx; gx) = ~DI (y, x; gx)− α (3.4)

where α is an arbitrary scaling factor. This property says that if the input vector x is

translated into (x− αgx), then the value of the DIDF is reduced by α (for α ∈ R).
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3.2.2 The Directional Output Distance Function

The directional output distance function (DODF) can be derived from ~DT (x, y; gx, gy) by

setting gx = 0. The directional vector g = (0, gy) allows only for output expansion holding

inputs fixed. In this case, equation (3.1) reduces to the DODF that allows for only output

expansion, ~DT (x, y; 0, gy) = ~DO (x, y; gy).

~DO (x, y; gy) = max
θo
{θO : (y + θOgy) ∈ P (x)} = max

θo
{θO : (x, y + θOgy) ∈ T} (3.5)

where P (x) is the output set which represents the set of all output vectors y which can be

produced using the input vector x, that is

P (x) =
{
y ∈ RM

+ : y is producible from x
}

The DODF serves as an output-oriented measure of technical inefficiency

TIO = ~DO (x, y; gy)

As noted by Färe et al. (2005), the DODF is non-negative, non-decreasing in x, non-

increasing in y, and concave in outputs y. Moreover, it satisfies the following translation

property

~DO (x, y + αgy; gy) = ~DO (x, y; gy)− α

where α is an arbitrary scaling factor. This property says that if the output vector y is

translated into (y + αgy), then the value of the DODF is reduced by α (for α ∈ R)

3.3 Model Specification

To obtain the estimates of the directional distance functions and therefore the measure of

technical inefficiencies, this section provides the parametric specification of these functions.

This involves choosing a functional form, imposing the parameter restrictions for the trans-

lation property, modeling the interactive effects, and specifying the directional vector g.

120



3.3.1 The Quadratic Functional Form

To parameterize the functions in (3.1), (3.3), and (3.5), the quadratic functional form is used

following Chambers (1998). The reason for choosing this functional form is that it is a second-

order Taylor series approximation which is linear in the parameters and flexible enough to

provide an excellent approximation to the actual production technology. Furthermore, the

directional distance function satisfies a translation property, which can be easily imposed on

a quadratic functional form.

To avoid any estimation biases that may arise due to potential changes in bank perfor-

mance due to technological change, technical change is incorporated by a trend variable,

t, while non-neutral technical change is modeled by including terms capturing the inter-

action between trend and inputs and trend and outputs, as is common in the literature.

Thus, the directional distance functions defined in (3.1), (3.3), and (3.5) can be rewritten as

~DT (x, y, t; gx, gy), ~DI (y, x, t; gx), and ~DO (x, y, t; gy), respectively.

3.3.2 Imposing the Restrictions

The translation property can be imposed by imposing a set of parameter restrictions that

applied to the directional distance function directly during the estimation and estimating

the restricted version of the directional distance function — see, for example, Atkinson and

Tsionas (2016).

Alternatively, the translation property can be imposed by setting α equal to an arbitrarily

chosen input or the negative of an arbitrarily chosen output which is specific to each bank, say

α = −y1, and normalizing the corresponding directional vector gy1 = 1 — see, for example,

Malikov et al. (2016). Using this transformation process and applying it to the empirical

implementation that uses two inputs to produce two outputs, the translation property in

equation (3.2) can be rewritten as

~DT (x+ y1gx, y2 − y1gy2 , t; gx, gy) = ~DT (x, y, t; gx, gy) + y1 (3.6)
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Note that the output y1 disappears from the left-hand side of (3.6) because of y1−y1(1) = 0.

Rearranging equation (3.6) yields

y1 = ~DT (x+ y1gx, y2 − y1gy2 , t; gx, gy)− ~DT (x, y, t; gx, gy)

= ~DT (x+ y1gx, y2 − y1gy2 , t; gx, gy)− uT (3.7)

Adding a random error vT to equation (3.7) yields the standard stochastic frontier model

with two error terms, as follows

y1 = ~DT (x+ y1gx, y2 − y1gy2 , t; gx, gy) + vT − uT (3.8)

where vT is a two-sided random error assumed to be identically and independently distributed

(iid) with mean zero and variance σ2
vT

= Σ, vT ∼ N (0,Σ) and ~DT (x, y, t; gx, gy) = uT ≥ 0 is

a one-sided error term which captures bank-specific overall technical inefficiency. Applying

the quadratic functional form to the first term on the right-hand side of (3.8), (3.8) can be

written more explicitly as

y1 = α0 +
2∑

n=1

αnx̃n + β2ỹ2 + δtt+
1

2

2∑
n=1

2∑
n′=1

αnn′x̃nx̃n′ +
1

2
β22 (ỹ2)2

+
1

2
δttt

2 +
2∑

n=1

γn2x̃nỹ2 +
2∑

n=1

δtxntx̃n + δty2tỹ2 + vT − uT (3.9)

where x̃n = xn + y1gxn (n = 1, 2), and ỹ2 = y2 − y1gy2 , and y1 corresponds to the dependent

variable. The parameters of (3.9) must satisfy a set of parameter restrictions, including the

usual restrictions for symmetry αnn′ = αn′n (n 6= n′) and βmm′ = βm′m (m 6= m′), and

the following set of parameter restrictions that impose the translation property — see the

Appendix for proof.

β1 + β2gy2 −
2∑

n=1

αngxn = −1, γn1 + γn2gy2 −
2∑

n′=1

αnn′gxn′ = 0,

β21 + β22gy2 −
2∑

n=1

γn2gxn = 0, and δty1 + δty2gy2 −
2∑

n=1

δtxngxn = 0
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Within a panel data framework, the DTDF model in (3.9) can be notationally simplified as

y1,it = R̃T,it(g)′βT + vT,it − uT,it (3.10)

where i = 1, ..., K indicates banks; t = 1, ..., T indicates time; R̃T (g) is a vector of all

the relevant variables on the right-hand side of (3.9) including a unity for the intercept

term; and βT is the corresponding vector of coefficients (including the intercept). Note

that R̃T,it(g) is a function of g where g = (gx, gy). Formally, the dependent variable y1,it =

[y1,11 , ..., y1,1T, ..., y1,K1 , ...y1,KT ]′, the vector of all the relevant variables on the right-hand

side of (3.9), R̃T (g) =
[
1 x̃1 x̃2 ỹ2 t (x̃1)2 x̃1x̃2 (x̃2)2 (ỹ2)2 t2 x̃1ỹ2 x̃2ỹ2 tx̃1 tx̃2 tỹ2

]′
, the

vector of coefficients βT = [α0 α1 α2 β2 δt α11 α12 α22 β22 δtt γ12 γ22 δtx1 δtx2 δty2 ], the vector

of the random error vT,it = [vT ,11 , ..., vT ,1T, ..., vT ,K1 , ...vT ,KT ]′, and the vector of overall

technical inefficiency uT,it = [uT ,11 , ..., uT ,1T, ..., uT ,K1 , ...uT ,KT ]′.

Similarly, the translation property of the DIDF in equation (3.4) can be imposed by

setting α equal to an arbitrarily chosen input which is specific to each bank, say α = x1, and

normalizing the corresponding directional vector gx1 = 1. Using this transformation process,

the translation property in equation (3.4) can be rewritten as

~DI (y, x2 − x1gx2 ; gx) = ~DI (y, x; gx)− x1 (3.11)

Note that the input x1 disapears from the left-hand side of (3.11) because of x1− x1(1) = 0.

Rearranging equation (3.11) yields

−x1 = ~DI (y, x2 − x1gx2 ; gx)− ~DI (y, x; gx)

= ~DI (y, x2 − x1gx2 ; gx)− uI (3.12)

where ~DI (y, x; gx) = uI ≥ 0 represents bank-specific input technical inefficiency. Adding a

random error vI to equation (3.12) yields the standard stochastic frontier model with two

error terms, as follows

− x1 = ~DI (y, x2 − x1gx2 ; gx) + vI − uI (3.13)
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Applying the quadratic functional form to the first term on the right-hand side of (3.13),

(3.13) can be written more explicitly as

−x1 = α0 + α2x̃2 +
2∑

m=1

βmym + δtt+
1

2
α22 (x̃2)2 +

1

2

2∑
m=1

2∑
m′=1

βmm′ymym,

+
1

2
δttt

2 +
2∑

m=1

γ2mx̃2ym + δtx2tx̃2 +
2∑

m=1

δtymtym + vI − uI (3.14)

where x̃2 = x2− x1gx2 , x1 corresponds to the dependent variable, uI ≥ 0 is a one-sided error

term which captures input technical inefficiency. The parameters of (3.14) must satisfy a set

of parameter restrictions, including the usual restrictions for symmetry αnn′ = αn′n (n 6= n′)

and βmm′ = βm′m (m 6= m′), and the following set of parameter restrictions that impose the

translation property — see the Appendix for proof.

α1 + α2gx2 = 1, γ1m + γ2mgx2 = 0, α11 − α22g
2
x2 = 0,

α21 + α22gx2 = 0, and δtx1 + δtx2gx2 = 0, (m = 1, 2)

Within a panel data framework, the DIDF model in (3.14) can be notationally simplified as

− x1,it = R̃I,it(g)′βI + vI,it − uI,it (3.15)

where R̃I(g) is a vector of all the relevant variables on the right-hand side of (3.14) including

a unity for the intercept term; and βI is the corresponding vector of coefficients (including

the intercept).

When gx = 0, the DTDF model in (3.9) reduces to the DODF that allows for only output

expansion

y1 = α0 +
2∑

n=1

αnxn + β2ỹ2 + δtt+
1

2

2∑
n=1

2∑
n′=1

αnn′xnxn′ +
1

2
β22 (ỹ2)2

+
1

2
δttt

2 +
2∑

n=1

γn2xnỹ2 +
2∑

n=1

δtxntxn + δty2tỹ2 + vO − uO (3.16)

where ỹ2 = y2− y1gy2 , y1 corresponds to the dependent variable, uO ≥ 0 is a one-sided error

term which captures output technical inefficiency. The parameters of (3.16) must satisfy
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a set of parameter restrictions, including the usual restrictions for symmetry αnn′ = αn′n

(n 6= n′) and βmm′ = βm′m (m 6= m′), and the following set of parameter restrictions that

impose the translation property — see the Appendix for proof.

β1 + β2gy2 = −1, γn1 + γn2gy2 = 0, β11 − β22g
2
y2

= 0,

β21 + β22gy2 = 0, and δty1 + δty2gy2 = 0, (n = 1, 2)

Within a panel data framework, the DODF model in (3.16) can be notationally simplified

as

y1,it = R̃O,it(g)′βO + vO,it − uO,it (3.17)

where R̃O(g) is a vector of all the relevant variables on the right-hand side of (3.16) including

a unity for the intercept term; and βO is the corresponding vector of coefficients (including

the intercept).

3.3.3 Modeling the Interactive Effects

Following Battese and Coelli (1995), overall technical inefficiency, uT,it, can be modeled as

a linear function of a vector of explanatory bank-specific variables Zit that are expected to

influence uT,it. Bank-specific variables Zit include input technical inefficiency, uI,it, output

technical inefficiency, uO,it, and a term capturing the interactions between input and output

technical inefficiencies, uI,it × uO,it

uT,it = Zitδ + vu,it (3.18)

where δ is an unknown vector of coefficients (including the intercept) to be estimated, and

vu,it is an error term that is defined by the truncation of a normal distribution.

3.3.4 Specifying the Directional Vector

In specifying the directional vector, there are two approaches in the literature. The first is

to choose the directional vector a priori. The second approach is to let the data determine
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the directional vector in which the bank’s movement toward the efficient frontier is to be

estimated. Specifically, the directional vector is treated as unknown parameters which are

to be estimated. In this paper, both approaches are used and compared.

The Unit Value Directional Vector

When only quantity information on inputs and outputs is available, and price information

is unavailable, distorted or inaccurate, technical inefficiency can be measured by choosing a

pre-specified directional vector such that it projects any inefficient producer to the frontier

of T . An example of a pre-specified directional vector is the unit value direction g = (−1, 1)

— see, for example, Park and Weber (2006), and Koutsomanoli-Filippaki et al. (2009). This

type of directional vector implies that the amount by which a bank can decrease inputs and

increase outputs will be ~DT (x, y;−1, 1)× 1 units of x and y.

Input-oriented measures of technical inefficiency uI,it using the unit value direction can

be obtained by setting gx = 1 in the case of (3.15) and estimate the single equation DIDF

subject to the usual symmetry restrictions and theoretical monotonicity restrictions. Simi-

larly, output-oriented measures of technical inefficiency uO,it using the unit value direction

can be obtained by setting gy = 1 in the case of (3.17) and estimate the single equation

DODF subject to the usual symmetry restrictions and theoretical monotonicity restrictions.

Overall or technology-oriented measures of technical inefficiency uT,it using the unit value

direction can be obtained by setting g = (gx, gy) = (−1, 1) in the case of (3.10) and estimate

the system of equations that includes the DTDF and the interactive effects equation in (3.18)

subject to the usual symmetry restrictions and theoretical monotonicity restrictions, while

the translation property is already imposed by construction. More specifically, the system

can be written as y1,it

uT,it

 =

 R̃T,it(g)′

Z ′it

 [β]−

 uT,it

0

+

 vT,it

vu,it


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which can be written in a compressed form as

Yit = Rit(g)β − uT,itι+ vit (3.19)

where ι = [1, 0] and vit = (vT,it, vu,it)
′ ∼ N (0,Σ). Bank-specific variables Z is a vector

of the relevant variables on the right-hand side of (3.18) that are obtained using the unit

value direction in equations (3.15) and (3.17). In this system of equations, bank-specific

variables Z that determine overall technical inefficiency are estimated simultaneously with

the variables that determine the frontier.

The Observed Input-Output Directional Vector

Another widely used pre-specified direction is the observed input-output direction g =

(−x, y) — see, for example, Färe, Grosskopf, and Weber (2004). This type of directional

vector implies that a bank can decrease inefficiency while decreasing inputs and increasing

outputs in proportion to the initial combination of the actual inputs and outputs.

Similar to the unit value directional vector, input-oriented measures of technical ineffi-

ciency uI,it using the observed input directional vector can be obtained by setting gx2 = x2

in the case of (3.15) and estimate the single equation DIDF subject to the usual sym-

metry restrictions and theoretical monotonicity restrictions. Output-oriented measures of

technical inefficiency uO,it using the observed output directional vector can be obtained by

setting gy2 = y2 in the case of (3.17) and estimate the single equation DODF subject to the

usual symmetry restrictions and theoretical monotonicity restrictions. Overall or technology-

oriented measures of technical inefficiency uT,it using the observed input-output directional

vector can be obtained by setting gx1 = x1, gx2 = x2, and gy2 = y2 in the system of equations

(3.19). Bank-specific variables Z is a vector of the relevant variables on the right-hand side

of (3.18) that are obtained using the observed input and output directional vectors defined

in the single equations in (3.15) and (3.17), respectively. The DTDF system is estimated

subject to the symmetry restrictions and theoretical monotonicity restrictions, while the

translation property is already imposed by construction.
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The Optimal Directional Vector

When information on input and output prices is available, and the banking industry is

assumed to exhibit cost-minimizing (or revenue or profit-maximizing) behavior, technical

inefficiency can be measured by choosing an endogenous direction vector such that it projects

any inefficient bank to the cost-minimizing (or revenue or profit-maximizing) benchmark.

Therefore, the directional vector is treated as a parameter to be estimated — see, for example,

Malikov et al. (2016) for a cost-optimal directional vector.

The Cost-Optimal Directional Vector

The bank cost-minimizing objective is defined as

C(y, w) = min
x
{wx : (x, y) ∈ T}

where w ∈ RN
++ is the price vector for inputs. The bank cost-minimizing objective can be

equivalently defined in terms of the DIDF in equation (3.3) as

C(y, w) = min
x

{
wx : ~DI (y, x; gx) ≥ 0

}
.

Note that the cost function can be equivalently defined in terms of the DIDF to keep consis-

tency with the endogeneity of inputs and exogeneity of outputs. Following Luenberger (1992)

and Färe and Primont (1995), the constrained optimization problem can be represented by

an unconstrained problem as

C(y, w) = min
x

{
wx− ~DI (y, x; gx)× w′gx

}
The corresponding first-order conditions are

wn −∇xn
~DI(.)w

′gx = 0

Alternatively,

wn = ∇xn
~DI(.)λI for n = 1, 2 (3.20)
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where λI = w′gx =
∑N

n=1wngxn is the sum of direction-weighted cost and can be interpreted

as the Lagrange multiplier. The first-order conditions in (3.20) are the inverse demand

functions. In order to meet the rank condition for the identification of the model, a total

of at least the total number of potentially endogenous variables is needed as independent

equations in the system. As it is well-known, the system (3.20) is singular and only (n− 1)

equations in (3.20) can be used for the estimation — see Barten (1969) for more details.

The DIDF in (3.15) plus the (n − 1) first-order conditions in (3.20) provide a system of n

equations. Precisely, the system consists of the DIDF in (3.15) and the first-order condition

for w2. Note that ∇x2
~DI (y, x̃; gx) = ∇x2

~DI (y, x; gx) by the translation property, then the

first-order condition in (3.20) can be rewritten in terms of the parameters of (3.15) after

adding an iid normal error term vC as follows

w2 = λI

(
α2 + α22x̃2 +

2∑
m=1

γ2mym + δtx2t

)
+vC (3.21)

where x̃2 = x2 − x1gx2 . Note that, solving the first-order condition for x̃2 treats x̃2 as an

endogenous variable (as opposed to x2 ). The equivalence of working with x̃2 and working

directly with x2 holds because of ∂x̃2/ ∂x2 = 1. By allowing g to differ across banks, (3.21)

can be further written in a panel data framework as

w2,it = R̃C ,it (gi)
′βC + vC,it (3.22)

where R̃C is a vector of the relevant variables on the right-hand side of (3.21) and βC is the

corresponding vector of coefficients. βC is a subset of βI , which can be obtained using a

selection matrix AI that contains elements which are either 0 or 1, where βC = AIβI .

The DIDF system (equations (3.15) and (3.22)) is a simultaneous equation model where

the entire vector x is endogenous. The entire system can be written as −x1,it

w2,it

 =

 R̃I,it(gi)
′

R̃C,it(gi)
′

 [β]−

 uI,it

0

+

 vI,it

vC,it


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which can be written in a compressed form as

Yit = Rit(gi)β − uI,itι+ vit (3.23)

where ι = [1, 0], vit = (vI,it, vC,it)
′ ∼ N (0,Σ), and gi = (gx2i)

′
for i = 1, ..., K. The DIDF

system is estimated subject to the symmetry restrictions and theoretical monotonicity re-

strictions, while the translation property is already imposed by construction. The directional

vector gi is treated as unknown parameters which are estimated jointly with the remaining

parameters in the system. The obtained estimates of the directional vector can be interpreted

as being cost-optimal due to the inclusion of the cost-minimizing first-order conditions in

the system — see Malikov et al. (2016). That is, the estimated DIDF direction captures the

bank movement to the point on a technological frontier where costs are minimized.

The Revenue-Optimal Directional Vector

The bank revenue-maximizing objective is defined as

R (x, p) = max
y
{py : (x, y) ∈ T}

where p ∈ RM
++ is the price vector for outputs. The bank revenue-maximizing objective can

be equivalently defined in terms of the DODF in equation (3.5) as

R (x, p) = max
y

{
py : ~DO (x, y; gy) ≥ 0

}
.

Note that the revenue function can be equivalently defined in terms of the DODF to keep

consistency with the endogeneity of outputs and exogeneity of inputs. The constrained

optimization problem can be represented by an unconstrained problem as

R (x, p) = max
y

{
py + ~DO (x, y; gy)× p′gy

}
The first-order conditions for the revenue maximization problem are

pm +∇ym
~DO(.)p′gy = 0
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Alternatively,

pm = −∇ym
~DO(.)λO for m = 1, 2 (3.24)

where λO = p′gy =
∑M

m=1 pmgym is the sum of direction-weighted revenues and can be

interpreted as the Lagrange multiplier. The first-order conditions in (3.24) are the inverse

supply functions. In order to meet the rank condition for the identification of the model, a

total of at least the total number of potentially endogenous variables is needed as independent

equations in the system. As it is well-known, the system (3.24) is singular and only (m− 1)

equations in (3.24) can be used for the estimation. The DODF in equation (3.17) plus the

(m − 1) equations given in equation (3.24) provide a system of m equations. Precisely, the

system consists of the DODF in equation (3.17) and the first-order condition for p2. Note

that ∇y2
~DO (x, ỹ; gy) = ∇y2

~DO (x, y; gy) by the translation property, then the first-order

conditions in (3.24) can be rewritten in terms of the parameters of (3.17) after adding an iid

normal error term vR as follows

p2 = −λO

(
β2 + β22ỹ2 +

2∑
n=1

γn2xn + δty2t

)
+vR (3.25)

where ỹ2 = y2 − y1gy2 . Note that, solving the first-order conditions for ỹ2 treats ỹ2 as an

endogenous variable (as opposed to y2 ). The equivalence of working with ỹ2 and working

directly with y2 holds because of ∂ỹ2/ ∂y2 = 1. By allowing g to differ across banks, (3.25)

can be further written in a panel data framework as

p2,it = R̃R,it (gi)
′βR + vR,it (3.26)

where R̃R is a vector of the relevant variables on the right-hand side of (3.25) and βR is the

corresponding vector of coefficients. βR is a subset of βO, which can be obtained using a

selection matrix AO that contains elements which are either 0 or 1, where βR = AOβO.

The DODF system (equations (3.17) and (3.26)) is a simultaneous equation model where
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the entire vector y is endogenous. The entire system can be written as y1,it

p2,it

 =

 R̃O,it(gi)
′

R̃R,it(gi)
′

 [β]−

 uO,it

0

+

 vO,it

vR,it


which can be written in a compressed form as

Yit = Rit(gi)β − uO,itι+ vit (3.27)

where ι = [1, 0], vit = (vO,it, vR,it)
′ ∼ N (0,Σ), and gi = (gy2i)

′
for i = 1, ..., K. The DODF

system is estimated subject to the symmetry restrictions and theoretical monotonicity re-

strictions, while the translation property is already imposed by construction. The directional

vector gi is treated as unknown parameters which are estimated jointly with the remaining

parameters in the system. The obtained estimates of the directional vector can be interpreted

as being revenue-optimal due to the inclusion of the revenue-maximizing first-order condi-

tions in the system. That is, the estimated DODF direction captures the bank movement to

the point on a technological frontier where revenues are maximized.

The Profit-Optimal Directional Vector

The bank profit-maximizing objective is defined as

π (p, w) = max
x,y
{(p′y − w′x) : (x, y) ∈ T}

where w ∈ RN
++, and p ∈ RM

++ are the price vectors for inputs and outputs, respectively.

Chambers et al. (1998) show that the profit function can be equivalently defined in terms of

the DTDF in equation (3.1) as

π (p, w) = max
x,y

{
(p′y − w′x) : ~DT (x, y; gx, gy) ≥ 0

}
.

Following Chambers et al. (1998), the constrained optimization problem can be represented

by an unconstrained problem as

π (p, w) = max
x,y

{
(p′y − w′x) + ~DT (x, y; gx, gy) (p′gy + w′gx)

}
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The first-order conditions for the profit maximization problem are

−wn +∇xn
~DT (.)(p′gy + w′gx) = 0

pm +∇ym
~DT (.)(p′gy + w′gx) = 0

Alternatively,

wn = ∇xn
~DT (.)λT for n = 1, ..., N

pm = −∇ym
~DT (.)λT for m = 1, ...,M (3.28)

where λT = p′gy+w′gx =
∑M

m=1 pmgym +
∑N

n=1wngxn is the sum of direction-weighted profits

and can be interpreted as the Lagrange multiplier — see Hudgins and Primont (2007). The

first-order conditions in (3.28) are the inverse demand and supply functions. Note that

∇xn
~DT (x̃, ỹ; gx, gy) = ∇xn

~DT (x, y; gx, gy), and ∇ym
~DT (x̃, ỹ; gx, gy) = ∇ym

~DT (x, y; gx, gy)

by the translation property, then the first-order conditions in (3.28) can be rewritten in

terms of the parameters of (3.10) after adding iid normal error terms vπ as follows

wn = λT

(
αn +

2∑
n′=1

αnn′x̃n′ + γn2ỹ2 + δtxnt

)
+vπwn for (n = 1, 2)

p2 = −λT

(
β2 + β22ỹ2 +

2∑
n=1

γn2x̃n + δty2t

)
+vπp. (3.29)

By allowing g to differ across banks, (3.29) can be further written in a panel data framework

as

wn,it = R̃wn,it(gi)
′βwn + vπwn,it for (n = 1, 2)

p2,it = R̃p2,it(gi)
′βp2 + vπp2,it (3.30)

where R̃wn and R̃p2 are the vectors of the relevant variables on the right-hand sides of (3.29)

and βwn and βp2 are the corresponding vectors of coefficients. βwn and βp2 are subsets of βT ,

which can be obtained using a selection matrix AT that contains elements which are either

0 or 1, where βwn = ATβT and βp2 = ATβT .

In order to meet the rank condition for the identification of the model, a total of at least

N +M independent equations are needed in the system, where N +M is the total number
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of potentially endogenous variables (i.e., the total number of inputs and outputs) and is

equal to 4 in this case. More precisely, the DTDF in equation (3.10) plus the ((n+m)− 1)

first-order conditions for profit maximization given in equation (3.30) provide a system of

(n+m) equations. This system of equations is a simultaneous equation model where the

entire vector (x, y) is endogenous. Adding the interactive effects equation in (3.18), the

entire system can be written as

y1,it

w1,it

w2,it

p2,it

uT,it


=



R̃T,it(gi)
′

R̃w1,it(gi)
′

R̃w2,it(gi)
′

R̃p2,it(gi)
′

Z ′it


[β]−



uT,it

0

0

0

0



+



vT,it

vw1,it

vw2,it

vp2,it

vu,it


which can be written in a compressed form as

Yit = Rit(gi)β − uT,itι+ vit (3.31)

where ι = [1, 0, 0, 0, 0], vit = (vT,it, vw1,it, vw2,it, vp2,it, vu,it)
′ ∼ N (0,Σ), and gi = (gx1i , gx2i, gy2i)

′

for i = 1, ..., K. Bank-specific variables Z is a vector of the relevant variables on the right-

hand side of (3.18) that are obtained using the cost-optimal and revenue-optimal directional

vectors defined in the system of equations in (3.23) and (3.27), respectively. The DTDF

system is estimated subject to the symmetry restrictions and theoretical monotonicity re-

strictions, while the translation property is already imposed by construction. The directional

vector gi is treated as unknown parameters which are estimated jointly with the remaining

parameters in the system. The obtained estimates of the directional vector can then be
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interpreted as being profit-optimal due to the inclusion of the profit-maximizing first-order

conditions in the system. That is, the estimated DTDF direction captures the bank move-

ment to the point on a technological frontier where profits are maximized.

Setting all the elements of g equal to ones; gxn1 = gxn2 = ... = gxnk
= 1 for (n = 1, 2),

gy21 = gy22 = ... = gy2k = 1 without additional first-order condition equations, the system in

(3.31) reduces to (3.19) in the case of the unit value directional vector. Setting gx1i = x1i ,

gx2i = x2i , and gy2i = y2i without additional first-order condition equations, the system in

(3.31) reduces to (3.19) in the case of the observed input-output directional vector.

3.4 Bayesian Estimation

Bayesian approach is used to estimate the DIDF, DODF, and DTDF models using the

unit value and the observed input-output directional vectors defined by (3.15), (3.17), and

(3.19), and the cost-optimal, revenue-optimal, and profit-optimal directional vectors defined

by (3.23), (3.27), and (3.31), respectively. Bayesian estimation involves using a Markov

Chain Monte Carlo (MCMC) sampling algorithm to generate sequences of samples from

the joint posterior distribution of inefficiency and the unknown parameters of the model.

This paper uses Metropolis-Hastings algorithm introduced by Metropolis et al. (1953) and

Hastings (1970). Bayesian estimation and MCMC sampling algorithm have been widely

documented in the stochastic frontier literature and thus are not discussed in this paper —

see, for example, Koop and Steel (2003), and O’Donnell and Coelli (2005). The reason for

using this approach is that it combines prior information about the parameters with the

information contained in the data through the likelihood function. Thus, prior information

about the parameters such as monotonicity conditions implied by microeconomic theory can

be easily imposed through the prior distribution of the parameters. Furthermore, directional

vectors that vary across banks can be easily estimated with the Bayesian approach.

135



3.4.1 Prior Distributions

The use of Bayesian approach requires choosing prior distributions for the parameters β, Σ−1,

uit, λ
−1, and gi. For the ease of the comparison of the results among the three directional

distance function models, the same prior distributions for the parameters are used. Following

Gelfand et al. (1990), a normal prior distribution with zero mean and a large variance for β

is used to ensure that the prior distribution for β is relatively uninformative.

p(β) ∼ N(β0,Ωβ)I (β ∈ Sj (gi)) (3.32)

where β0 is a vector of zeros and Ωβ is a diagonal matrix with 104 in diagonal elements.

I (β ∈ Sj (gi)) is an indicator function which takes the value one if the constraints are satis-

fied and zero otherwise, and Sj (gi), which depends on gi, is the set of permissible parameter

values when no theoretical regularity constraints (j = 0) are imposed and when the theoret-

ical regularity constraints (j = 1) must be satisfied. The indicator function restricts prior

support to the region where the theoretical regularity constraints are satisfied.

For the covariance matrix Σ, the Wishart distribution is used first due to its conjugacy

properties with the normal sampling model. However, it is found to be biased toward large

values which result in large values for Σ and consequently large values for the inefficiency

measures. The MCMC algorithm for a system of equations is also terminated after a small

number of iterations due to the large values involved. Then, following O’Donnell and Coelli

(2005), the following prior is used

p
(
Σ−1

)
∝ Σ (3.33)

which implies that Σ−1 is fully determined by the likelihood function — see the conditional

posterior density for Σ−1 in equation (3.39).

As noted by van den Broeck et al. (1994), models based on exponential distribution

are reasonably robust to changes in prior assumptions about the parameters. Therefore, an

exponential distribution is used for the technical inefficiency uit with an unknown parameter

λ following Koop and Steel (2003); uit ∼ i.i.d. exp(λ−1). Since the exponential distribution
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is a gamma distribution when its first parameter equals one, the prior for uit can be written

as

p
(
uit | λ−1

)
= fGamma

(
uit | 1, λ−1

)
. (3.34)

According to Fernandez et al. (1997), in order to obtain a proper posterior, a proper prior for

the parameter λ should be used. Therefore, the parameter λ is assumed to have independent

exponential prior with mean equals to −1/ ln τ ∗ following van den Broeck et al. (1994). The

prior independence of λ leads to marginally prior independent of inefficiencies.

p(λ−1) = fGamma
(
λ−1 | 1,− ln τ ∗

)
(3.35)

where τ ∗ is the prior estimate of the mean of the technical efficiency distribution — see, for

example, Koop et al. (1997) and O’Donnell and Coelli (2005). My best prior knowledge of the

efficiency of US banks is the mean efficiency value of 0.4583 for DTDF with fixed directional

vector, and 0.9431 for DTDF with cost-optimal directional vector reported by Malikov et al.

(2016) who apply a Bayesian DTDF-cost system approach to large US commercial banks for

2001–2010 period. The mean output technical efficiency value of 0.9279 is reported by Feng

and Serletis (2010) who apply a Bayesian output distance function to US large banks for

2000–2005 period. To my knowledge, the input technical efficiency is not reported by any

US banking study over a comparable period. However, the mean input technical efficiency

value of 0.690 for all banks, 0.707 for small banks, and 0.735 for large banks are reported by

Marsh et al. (2003) who apply a Bayesian input distance function to US commercial banks

during 1990–2000. After reviewing the results of 50 US bank efficiency studies, Berger and

Humphrey (1997) find that the average efficiency is 0.84. Since changing τ ∗ changes the

prior moments, various values of τ ∗ within its possible range is experimented to assess the

sensitivity of the results to changes to τ ∗. The results are the same up to the number of

digits presented in Section 6, implying that the results are very robust to large changes in

τ ∗.

To account for heterogeneity in the directional vectors for banks, prior distribution for gi
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is specified as a normal prior distribution with mean G0 = 1 and a large variance to ensure

that the prior distribution for gi is relatively uninformative.

p(gi) ∼ N (G0,ΩG) (3.36)

where gi =
(
gx21 , gx22 , ..., gx2K

)
for the DIDF-cost system, gi =

(
gy21 , gy22 , ..., gy2K

)
for the

DODF-revenue system, and gi = (gx1i , gx2i , gy2i) for the DTDF-profit system, with i =

1, ..., K indexing banks. G0 is a vector of ones, and ΩG is a diagonal matrix with 104 in

diagonal elements. Note that the directional vector that projects any inefficient bank to

the cost (revenue or profit) minimizing (maximizing) benchmark does not impose any sign

restrictions on the adjustments of inputs and outputs. Therefore, these directional vectors

may have negative components such that inputs are expanded, or outputs are contracted to

reach the frontier at the cost (revenue or profit) minimizing (maximizing) benchmark — see,

for example, Zofio et al. (2013) for a profit-optimal directional vector and Atkinson et al.

(2018) for a cost and profit-optimal directional vector.

Using the priors in (3.32)–(3.36), and assuming that the prior distributions of the pa-

rameters are independent, the joint prior probability density function is therefore

f
(
β,Σ−1, uit, λ

−1, gi
)

= p(β)p
(
Σ−1

)
p
(
uit | λ−1

)
p(λ−1)p(gi). (3.37)

3.4.2 Full Conditional Posterior Distributions

Let Γ = (β,Σ−1, uit, λ
−1, gi) denotes all the parameters of the model, and Γ−a denotes all

parameters other than a. To derive the likelihood function, the Jacobian transformation

matrix from the vector of random errors to the endogenous variables (all the inputs and

outputs) for the DTDF-profit system is defined as follows

Jit (gi, β) =
∂ (vT,it − uT,it, vw1,it, vw2,it, vp2,it)

∂ (y1,it, x1,it, x2,it, y2,it)
.
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The Jacobian transformation matrix from the vector of random errors (vI,it − uI,it, vC,it)′ to

the endogenous variables (inputs) for the DIDF-cost system is

Jit (gi, β) =
∂ (vI,it − uI,it, vC,it)

∂ (x1,it, x2,it)
.

The Jacobian transformation matrix from the vector of random errors (vO,it − uO,it, vR,it)′ to

the endogenous variables (outputs) for the DODF-revenue system is

Jit (gi, β) =
∂ (vO,it − uO,it, vR,it)

∂ (y1,it, y2,it)
.

Applying Jacobian transformation, the conditional density of the endogenous variables for

bank i is

Li (Y | Γ) ∝ fNormal (Yi | Ri (gi) β − uiι, IT ⊗ Σ)
T

Π
t=1
|det (Jit (gi, β))|

where Yi = (Yi1, Yi2, ..., YiT )′, and IT denotes an identity matrix of order T . The likelihood

function of Y , given Γ is

L (Y | Γ) =

[
K

Π
i=1
fNormal (Yi | Ri (gi) β − uiι, IT ⊗ Σ)

]
K

Π
i=1

T

Π
t=1
|det (Jit (gi, β))|

Alternatively,

L (Y | Γ) =

[
K

Π
i=1

T

Π
t=1
fNormal (Yit | Rit (git) β − uitι, I ⊗ Σ)

]
K

Π
i=1

T

Π
t=1
|det (Jit (gi, β))| . (3.38)

Using Bayes’ Theorem and combining the likelihood function in (3.38) and the joint prior

distributions in (3.37), all terms that are constant with respect to the parameter can be

ignored in order to obtain the full conditional posterior distribution for each parameter in

the model. The full conditional posterior distributions for all the parameters are found to

be

p
(
Σ−1 | Y,Γ−Σ−1

)
∝ fGamma

(
Σ−1 | KT

2
,
1

2
(Qit + uitι)

′ (Qit + uitι)

)
, (3.39)

p (β | Y,Γ−β) ∝ fNormal (β | Dd,D)
K

Π
i=1

T

Π
t=1
|det (Jit (gi, β))| I (β ∈ Sj (gi)) , (3.40)

p
(
λ−1 | Y,Γ−λ−1

)
∝ fGamma

(
λ−1 | KT + 1, u′ιKT − ln τ ∗

)
, (3.41)
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p (uit | Y,Γ−uit) ∝ fNormal

(
uit | −

(Q′it (gi) Σ−1ι+ λ−1)

ι′Σ−1ι
,

1

ι′Σ−1ι

)
I (uit ≥ 0) , (3.42)

p (gi | Y,Γ−gi) ∝
[
K

Π
i=1
fNormal (Yi | Ri (gi) β − uiι, I ⊗ Σ)

]
K

Π
i=1

T

Π
t=1
|det (Jit (gi, β))|

×
K

Π
i=1
fNormal (gi | G0,ΩG)

K

Π
i=1
I (β ∈ Sj (gi)) (3.43)

where D =
(
Rit (gi)

′ (I ⊗ Σ)−1Rit (gi) + Ω−1
β

)−1
, d = Rit (gi)

′ (I ⊗ Σ)−1 (Yit + uitι) + Ω−1
β β0,

and Qit = Yit−Rit (gi) β. Note that the full conditional posterior is proportional to the func-

tion f where the missing normalizing constant can be computed by integrating the function

f . The Metropolis-Hastings algorithm does not require knowledge of this normalizing con-

stant — see Chen et al. (2000) for more details on this algorithm. I (uit ≥ 0) is an indicator

function that takes the value one if the constraint uit ≥ 0 is satisfied and zero otherwise.

Bayesian estimation for a single-equation stochastic directional distance function without

additional first-order condition equations and with a pre-specified directional vector, g =

(−1, 1) or g = (−x, y) can be implemented by setting
K

Π
i=1

T

Π
t=1
|det (Jit (gi, β))| = 1 and setting

the relevant elements of g equal to ones or gx1i = x1i, gx2i = x2i, or gy2i = y2i, and normalizing

the relevant directional vector. Bayesian estimation without theoretical regularity constraints

can be implemented by setting I (β ∈ Sj (gi)) in (3.40) and (3.43) equal to one and then

drawing sequentially from the full conditional posteriors in (3.39)–(3.43).

3.4.3 Estimating the Interactive Effects

In the Bayesian framework, Koop et al. (1997) propose a model where a time-invariant inef-

ficiency is assumed to be exponentially distributed with producer-specific mean inefficiencies

λi and independent exponential priors; ui ∼ i.i.d. exp(λ−1
i ) where λi = exp (Z ′iδ). Following

Koop et al. (1997), the inefficiency term uT,it, can be specified to be time-variant inefficiency

by including bank-specific time-varying covariates in the parameter of an exponential dis-

tribution as; uT,it ∼ i.i.d. exp(λ−1
it ), and λit = exp (Z ′itδ), where δ is an unknown vector of

coefficients (including the intercept) to be estimated. Since the exponential distribution is a
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gamma distribution when its first parameter equals one, the prior for uT,it can be written as

p (uT,it, δ | Z) = fGamma (uT,it | 1, exp (Z ′itδ)) (3.44)

Following Koop et al. (1997), the parameter vector δ is assumed to have a proper prior

independent of the other parameters. A normal prior distribution with mean δ0 and variance

Ωδ for δ is used.

p(δ) ∼ N(δ0,Ωδ) (3.45)

A large variance for δ is used to ensure that the prior distribution for δ is relatively un-

informative where δ0 is a vector of zeros and Ωδ is a diagonal matrix with 104 in diagonal

elements. Note that by conditioning on Y and Z, bank-specific variables Z are allowed to

be correlated with the variables describing the frontier Y .

The full conditional posterior for δ and uT,it can be obtained by ignoring all terms that are

constant with respect to δ and uT,it, respectively. The full conditional posterior distributions

for δ and uT,it are found to be

p (δ | Y,Γ−δ) ∝ fNormal

(
δ | δ0Ω−1

δ ι− Z ′ituT,it
ι′Ω−1

δ ι
,

1

ι′Ω−1
δ ι

)
, (3.46)

p
(
uT,it | Y,Γ−uT,it

)
∝ fNormal

(
uT,it | −

(Q′it (gi) Σ−1ι+ µit)

ι′Σ−1ι
,

1

ι′Σ−1ι

)
I (uT,it ≥ µit) (3.47)

where Qit (gi) = Yit −Rit (gi) β, and µit = Z ′itδ.

3.5 Data

The annual data on US commercial banks used in this paper is obtained from the Reports of

Income and Condition (Call Reports) over the period from 2001 to 2015. Only continuously

operating banks are examined to avoid the impact of entry through new charters and exit

through failure or merger, and to focus on the performance of a core of healthy, surviving

banks during the sample period. The data sample consists of a balanced panel of a total of

148 banks (K=148) observed over 15 years, for a total of 2220 observations.
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To select the relevant variables, the commonly accepted asset approach proposed by

Sealey and Lindley (1977) is used. It defines loans and other assets as outputs, while deposits

and other liabilities are treated as inputs. On the input side, two inputs are included;

the quantity of labor, x1, and the quantity of purchased funds and deposits, x2. On the

output side, two outputs are included; total loans y1 which is composed of consumer loans,

commercial and industrial loans, and real estate loans; and securities y2 which includes

all non-loan financial assets (i.e., all financial and physical assets minus the sum of total

loans, and physical capital (premises and other fixed assets)), so that all financial assets are

included.

While non-traditional banking activities are becoming increasingly important in identify-

ing bank outputs, the imperfect data and the wide range of activities such as securitization,

brokerage services, management of financial assets for depositors and borrowers, and others,

make the measurement of non-traditional banking activities controversial. See Stiroh (2000)

for a discussion of the different approaches to the measurement of non-traditional banking

activities. To avoid the uncertainties associated with the measurement of non-traditional

banking activities, it is not included as an additional output.

All the quantities of inputs and outputs are constructed by following the data construction

method in Berger and Mester (2003). These quantities are deflated by the consumer price

index CPI to the base year 2005, except for the quantity of labor. The data is normalized by

dividing each input and output by its sample mean prior to the estimation following Färe et

al. (2005). This normalization implies that (x, y) = (1, 1) for a bank that uses mean inputs

and produces mean outputs.

For the input and output prices, the actual price paid by the bank for each input or

the bank-specific price of input is obtained by dividing total expenses on each input by

the corresponding input quantity. Similarly, the actual price received by the bank for each

output or the bank-specific price of output is obtained by dividing total revenues from each
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output by the corresponding output quantity. Thus, for example, the bank-specific price

of labor w1 is obtained from expenses on salaries and benefits divided by the number of

full-time employees x1. The same approach is used to obtain w2, p1, and p2.

Following Berger and Mester (2003), the market-average prices faced and determined

exogenously rather than the actual prices paid or received by the bank are used. These

market-average prices are more likely to be exogenous to the bank than the bank-specific

prices. The bank market-average price at a given year is the weighted average of the other

banks prices at that year excluding the bank-specific price, where the weights are each bank

respective market share at that year. For example, the market-average price of labor that

bank i faces in the labor market L at year t is obtained as

w1it =
∑l

j=1,j 6=i

(
x1jt∑l

h=1,h6=ix1ht

)
w1jt

where l is the number of banks operating in labor market L, x1jt is the number of full-time

employees of bank j at year t and w1jt is the bank j specific price of labor at year t, which is

obtained from expenses on salaries and benefits divided by the number of full-time employees

x1jt. The same approach is used to obtain w2it, p1it, and p2it for i = 1, ..., K over the years

t = 1, ..., T . Data summary statistics are presented in Table 3.1.

3.6 Empirical Results

To investigate the relationships among input, output, and overall technical inefficiencies,

several models are estimated. Specifically, input, output, and technology-oriented technical

inefficiencies are estimated separately using the Bayesian procedure outlined in Section 3.4

and directional input, output, and technology distance functions, respectively. All of these

inefficiencies are estimated with the three commonly used directional vectors; the unit value,

the observed input-output, and the optimal directional vectors. The unit value and the

observed input-output directional vector models are estimated without additional first-order

condition equations. The optimal directional vector models are estimated using systems
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of equations, consisting of directional distance functions with the relevant first-order con-

ditions, as discussed in Section 3.3. The unit value directional vector models are referred

to as UDIDF, UDODF, and UDTDF, respectively. The observed input-output directional

vector models are referred to as VDIDF, VDODF, and VDTDF, respectively. The optimal

directional vector models are referred to as ODIDF, ODODF, and ODTDF, respectively. In

total, nine models are estimated. For each of the nine models, a total of 450,000 observations

are generated and then the first 150,000 observations are discarded as a burn-in. The simu-

lation inefficiency factor (SIF) values for all the parameters of these models are estimated to

check the mixing performance of the samplers following Kim et al. (1998). The SIF values

for the unit value, the observed input-output, and the optimal directional vector models are

reported in Tables 3.5− 3.7, suggesting that the samplers for these models have converged.

3.6.1 Imposing the Theoretical Regularity Conditions

As required by neoclassical microeconomic theory, the production technology has to satisfy

the theoretical regularity conditions of monotonicity and curvature. Monotonicity requires

that the directional distance function be non-decreasing in inputs and non-increasing in

outputs. Therefore, monotonicity conditions of the DTDF imply the following restrictions

∂ ~DT (.)

∂xn
= αn +

2∑
n′=1

αnn′xn′ +
[
αnngxn + αnn′gxn′ − γn2gy2

]
y1 +γn2y2 + δtxnt ≥ 0 (n = 1, 2) ;

∂ ~DT (.)

∂y1

= [α1gx1 + α2gx2 − β2gy2 − 1]

+
[
α11g

2
x1

+ α22g
2
x2

+ β22g
2
y2

+ α12gx1gx2 − γ12gx1gy2 − γ22gx2gy2
]
y1

+ [γ12gx1 + γ22gx2 − β22gy2 ] y2

+ [α11gx1 + α12gx2 − γ12gy2 ]x1

+ [α21gx1 + α22gx2 − γ22gy2 ]x2

+ [δtx1gx1 + δtx2gx2 − δty2gy2 ] t ≤ 0;
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∂ ~DT (.)

∂y2

= β2 + [γ12gx1 + γ22gx2 − β22gy2 ] y1 + β22y2 +
2∑

n=1

γn2xn + δty2t ≤ 0. (3.48)

When gx1 = gx2 = 0, monotonicity conditions of the DTDF in (3.48) reduces to the mono-

tonicity conditions of the DODF. Monotonicity conditions of the DIDF imply the following

restrictions

∂ ~DI(.)

∂x1

= [1− α2gx2 ] + α22g
2
x2
x1 − α22gx2x2 −

2∑
m=1

γ2mgx2ym − δtx2gx2t ≥ 0;

∂ ~DI(.)

∂x2

= α2 − α22gx2x1 + α22x2 +
2∑

m=1

γ2mym + δtx2t ≥ 0;

∂ ~DI(.)

∂ym
= βm +

2∑
m′=1

βmm′ym′ − γ2mgx2x1 + γ2mx2 + δtymt ≤ 0 (m = 1, 2) .

Curvature restrictions can be imposed by ensuring that every principal minor of the Hes-

sian matrix of odd order (even order) is non-positive (non-negative) — see, for example,

Morey (1986). However, the US banking industry is highly regulated at both the federal and

state levels, and different states change their regulatory restrictions at different times. This

implies that the curvature condition would involve a bordered Hessian matrix that accounts

for those regulatory restrictions. However, quantifying all those regulatory restrictions in

the US banking industry is not an easy task. Furthermore, Barnett (2002) notes that the

imposition of global curvature on the quadratic functional form may induce spurious vio-

lations of monotonicity. Therefore, directional distance functions are estimated subject to

theoretical monotonicity only following Färe et al. (2005) and Feng et al. (2018).

The unit value, the observed input-output, and the optimal directional vector models are

first estimated without imposing the monotonicity conditions. However, the monotonicity

conditions with respect to labor and all outputs are violated for all models at most observa-

tions. Thus, to produce inference that is consistent with neoclassical microeconomic theory,

all models are re-estimated with the monotonicity conditions imposed at each observation,

by following the Bayesian procedure discussed in O’Donnell and Coelli (2005).
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3.6.2 Technical Inefficiency Measures

Observation-specific posterior estimates of technical inefficiency are obtained from the pos-

terior conditional mean of u. The average technical inefficiency measures for each sample

year from the unit value, the observed input-output, and the optimal directional vector

regularity-constrained models are summarized in Tables 3.2− 3.4, respectively.

As can be seen in Table 3.2, the estimated mean value of DTDF is equal to 181 in the unit

value directional vector model. This average overall technical inefficiency measure indicates

that each input should be contracted by 181 units of input, while each output should be

expanded by 181 units of output on average for the bank to be technically efficient. While

the estimated mean value of DIDF is equal to 80, the estimated mean value of DODF is

equal to 149 in the unit value directional vector models. These average input and output

technical inefficiency measures indicate that each input should be contracted by 80 units of

input on average holding outputs fixed and each output should be expanded by 149 units of

output on average holding inputs fixed for the bank to be technically efficient.

Comparing technical inefficiency measures across the unit value, the observed input-

output, and the optimal directional vector models, the pre-specified unit value and observed

input-output directional vector models which leave the endogeneity of inputs and outputs

unaddressed produce lower estimates of technical inefficiency. This may result from the

dependence of empirical estimates of directional distance functions on the choice of the

directional vector.

It is apparent that the total average of input and output technical inefficiency measures

are larger than the average overall technical inefficiency measures in the case of the unit value

and the optimal directional vector models and smaller than the average overall technical

inefficiency measures in the case of the observed input-output directional vector model.

This implies that overall technical inefficiency does not equal the sum of input and output

technical inefficiencies, as previous studies claim.
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Note that the estimated value of DTDF is less than the estimated value of DIDF over the

periods 2001−2003, and less than the estimated value of DODF over the periods 2001−2008

for the unit value directional vector models. The DTDF is also less than the estimated value

of DODF in 2001 for the observed input-output directional vector model. Moreover, the

DTDF is less than the estimated value of DIDF over the periods 2001−2005 for the optimal

directional vector model. This implies that models that measure technical inefficiency on

one side of production tend to overestimate bank inefficiency measures. This suggests the

importance of using models that incorporate both input and output inefficiencies.

Furthermore, output technical inefficiency is on average larger than input technical in-

efficiency in the unit value, the observed input-output, and the optimal directional vector

models. This finding is consistent with Berger, Hancock, and Humphrey (1993) and English

et al.(1993), who find that output inefficiency measures are as large or larger than input

inefficiency measures. That is, most of the technical inefficiency in the US banking is in the

form of loss of production, rather than overuse of inputs.

3.6.3 Results on the Interactive Effects

To focus on the relationships among input, output, and overall technical inefficiencies ob-

tained from the systems of equations, consisting of DTDF and the interactive effect equations

without and with the profit-maximizing first-order conditions, the estimated parameters of

the DIDF and DODF for the three directional vector models are not discussed. The esti-

mated parameters of the DTDF, their associated 95% Bayes intervals, and their SIF values

from the unit value, the observed input-output, and the optimal directional vector regularity-

constrained models are summarized in Tables 3.5− 3.7, respectively.

As can be seen in Tables 3.5 − 3.7, UDTDF, VDTDF, and ODTDF models show that

both input and output technical inefficiencies have significant positive effects on the overall

technical inefficiency. However, the interactive effect between input and output technical

inefficiencies δIO has a significant negative effect on the overall technical inefficiency. This
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result is robust to alternative directional vectors and model specifications. Banks with larger

values of the interactive effect tend to have a lower level of overall technical inefficiency which

indicates that they are more efficient. This suggests that the overuse of inputs creates input

technical inefficiency and has an effect on reducing (improving) output technical inefficiency

(efficiency) and therefore improving overall technical efficiency. Intuitively, the overuse of

inputs whether physical inputs involving overuse of labor or overuse of financial inputs in-

volving overpayment of interest creates input technical inefficiency and has an effect on

reducing (improving) output technical inefficiency (efficiency). The overuse of labor and the

overpayment of interest may encourage banks to produce more loans to pay salaries for its

employees and interest rates on deposits.

Similarly, the loss of production of outputs creates output technical inefficiency and has

an effect on reducing (improving) input technical inefficiency (efficiency) and therefore im-

proving overall technical efficiency. Intuitively, the loss of production of loans creates output

technical inefficiency and has an effect on reducing (improving) input technical inefficiency

(efficiency). The loss of revenue from loans may encourage banks to reduce the number of

labor used in the production process or lower the interest rates paid on deposits.

The most clarifying insights come from comparing bank-specific input, output, and overall

technical inefficiency measures over the years 2001 − 2015. Figures 3.1 − 3.4 show the

interactions between input and output technical inefficiencies obtained based on the unit

value directional vector models. Figures 3.5 − 3.8 show the interactions between input

and output technical inefficiencies obtained based on the observed input-output directional

vector models. Figures 3.9− 3.12 show the interactions between input and output technical

inefficiencies obtained based on the optimal directional vector models. It is apparent from

all these figures that the increase in the output technical inefficiency reflects on a reduction

on the input technical inefficiency and vice versa.

Differences in the magnitude of the interactive effects are observed when using a pre-
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specified unit value and observed input-output directional vectors and endogenous direc-

tional vector. In particular, the interactive effects obtained based on the unit value and the

observed input-output directional vector models appear to be of low magnitudes. On the

other hand, considering banks heterogeneity in the directional vector, the interactive effect

obtained based on the optimal directional vector model appears to be of higher magnitude.

This may result from the dependence of empirical estimates of directional distance func-

tions on the choice of the directional vector or suggest a relationship between technical and

allocative inefficiency since eliminating technical inefficiency in this case requires choosing

a directional vector that projects any inefficient bank to the optimal allocation of input-

output vector given relative market prices. Further research is needed to investigate this

issue. Table 3.8 presents the minimum, maximum, and mean of the estimates of optimal

directional parameters. Letting the data select the directional vectors produces estimates of

the directional parameters with a range of variation across banks. Precisely, the estimates of

the directional parameters of gx1i range from 0.85 to 1.12 in the DTDF-profit system model.

While the estimates of the directional parameters of gx2i range from 0.81 to 1.20 in the DIDF-

cost system model, it ranges from 0.83 to 1.14 in the DTDF-profit system model. While the

estimates of the directional parameters of gy2i range from 0.56 to 1.42 in the DODF-revenue

system model, it ranges from 0.80 to 1.17 in the DTDF-profit system model.

The parameter estimates of technical change δt, and δtt obtained based on the unit

value, the observed input-output, and the optimal directional vector models appear to be

of high magnitude. Specifically, it indicates significant technological advancement by the

US banking industry over the period 2001 − 2015, which seems realistic given the recent

advances in information technologies and its effects on the US banking industry.
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3.7 Conclusion

This paper investigates the relationships among input, output, and overall technical ineffi-

ciencies in US commercial banking over the period from 2001 to 2015. Specifically, these

inefficiencies are estimated separately using DIDF, DODF, and DTDF, respectively. All of

these inefficiencies are estimated with the three commonly used directional vectors; the unit

value, the observed input-output, and the optimal directional vectors. The latter addresses

the endogeneity of inputs and outputs by using systems of equations, consisting of DIDF

(DODF, or DTDF) with the cost (revenue, or profit) minimizing (maximizing) first-order

conditions, respectively. Furthermore, the directional vectors of these models are allowed

to be endogenous and vary across banks to account for heterogeneity across banks. All of

these models are estimated using Bayesian estimation with the monotonicity conditions im-

posed at each observation in order to produce inference that is consistent with neoclassical

microeconomic theory.

To investigate the relationships among input, output, and overall technical inefficiencies,

I model the overall technical inefficiency as a linear function of a vector of explanatory bank-

specific variables that includes input technical inefficiency, output technical inefficiency, and

a term capturing the interactions between them, following Battese and Coelli (1995). These

bank-specific variables that determine overall technical inefficiency are estimated simultane-

ously with the variables that determine the frontier.

In providing a comparison of the three estimates of technical inefficiencies in the case of

the unit value, the observed input-output, and the optimal directional vector models, the

empirical results show that overall technical inefficiency does not equal the sum of input

and output technical inefficiencies, as previous studies claim. It equals the sum of input

and output technical inefficiencies plus an interactive effect component which captures the

interactions between them, where the increase in the output technical inefficiency reflects on

a reduction on the input technical inefficiency and vice versa.
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The results also show that both input and output technical inefficiencies have significant

positive effects on the overall technical inefficiency. However, the interactive effect between

input and output technical inefficiencies has a significant negative effect on the overall tech-

nical inefficiency. This result is robust to alternative directional vectors and model specifica-

tions. This suggests that the overuse of inputs creates input technical inefficiency and has an

effect on reducing (improving) output technical inefficiency (efficiency) and therefore improv-

ing overall technical efficiency. Similarly, the loss of production of outputs creates output

technical inefficiency and has an effect on reducing (improving) input technical inefficiency

(efficiency) and therefore improving overall technical efficiency. Ignoring the interactive ef-

fect between input and output technical inefficiencies results in a decomposition of overall

technical inefficiency into input and output components that are significantly different from

the ones that incorporate it.

The results also indicate that the value of the interactive effect between input and output

technical inefficiencies depends on the choice of the directional vector in which the data are

projected on the frontier and whether quantities and prices are taken into consideration.

These results are quite significant, since these inefficiency components have different impli-

cations for bank performance, suggesting that the adjustability of both inputs and outputs

is required for the improvement of bank efficiency.
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Table 3.1: Data Summary Statistics

Variable Mean 5th Percentile Median 95th Percentile Standard Deviation

Financial Assets and Liabilities

x1 333.6545 70.0000 281.0000 741.5000 239.2208
x2 1211.1000 312.4149 1030.9000 2701.0000 810.5971
y1 911.6341 173.4561 750.6042 2179.6000 686.9423
y2 402.4122 68.2664 328.4993 977.2095 308.4258
Total Assets 1350.7000 359.9879 1140.1000 3048.6000 918.6617

Bank-Specific Price

w1 59.6961 37.4599 54.5960 91.3389 24.5955
w2 0.0148 0.0014 0.0133 0.0341 0.0104
p1 0.0611 0.0388 0.0591 0.0830 0.0227
p2 0.0625 0.0217 0.0491 0.1435 0.0628

Market Price

w1 58.0550 50.7531 56.8821 63.9205 3.9677
w2 0.0148 0.0031 0.0139 0.0318 0.0093
p1 0.0612 0.0457 0.0611 0.0807 0.0096
p2 0.0578 0.0473 0.0585 0.0728 0.0079

Note: x1, the quantity of labor; x2, the quantity of purchased funds and deposits; y1

total loans which includes consumer loans, commercial and industrial loans, and real estate

loans; y2, securities which includes all non-loan financial assets; w1 and w2 are the prices of

x1 and x2, respectively; p1 and p2 are the prices of y1 and y2, respectively. All variables but

labor and input and output prices are in thousands of real 2005 US dollars.
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Table 3.2: Average Technical Inefficiency over Time Based on the Unit Value Directional
Regularity-Constrained Models

Year 2001 2002 2003 2004 2005 2006 2007 2008

UDIDF 11.8294 21.1690 31.1416 41.7216 51.9758 62.5347 72.8167 81.9493

UDODF 38.0998 54.6814 70.2523 85.5096 101.4479 116.3714 130.8457 150.5572

UDTDF 5.9640 16.8900 31.0910 48.5342 69.1852 93.1282 120.3147 150.4222

Year 2009 2010 2011 2012 2013 2014 2015 Average

UDIDF 89.1105 98.1810 107.1871 116.5829 127.2603 134.9243 145.2475 79.5754

UDODF 166.3904 184.6105 195.5057 211.9362 224.2782 248.7085 255.3833 148.9719

UDTDF 184.0269 220.6380 260.8635 304.0676 350.6689 399.8923 453.1177 180.5870
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Table 3.3: Average Technical Inefficiency over Time Based on the Observed Input-Output
Directional Regularity-Constrained Models

Year 2001 2002 2003 2004 2005 2006 2007 2008

VDIDF 1.8966 3.3405 5.6046 8.6740 12.4314 16.9193 22.0298 27.4962

VDODF 13.0282 15.6542 19.2972 24.4736 31.0880 38.8666 48.0702 60.5054

VDTDF 4.3780 16.0843 30.5473 47.7446 67.7554 90.6375 116.4475 145.0767

Year 2009 2010 2011 2012 2013 2014 2015 Average

VDIDF 33.5365 40.4244 48.2354 56.7076 66.1682 75.5638 86.3371 33.6910

VDODF 72.8146 87.7846 101.5196 118.1862 135.8242 159.1207 178.3353 73.6379

VDTDF 176.8909 211.8751 250.1111 291.5732 336.4630 384.5791 436.7667 173.7954
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Table 3.4: Average Technical Inefficiency over Time Based on the Optimal Directional
Regularity-Constrained Models

Year 2001 2002 2003 2004 2005 2006 2007 2008

ODIDF 110.3720 132.2072 155.7102 173.8357 196.3768 221.2248 246.0232 265.5990

ODODF 44.5414 74.2772 107.1022 143.4714 184.6959 228.6927 275.8839 331.7615

ODTDF 72.2921 90.7688 116.7214 148.2288 189.0018 237.5864 293.8951 357.0892

Year 2009 2010 2011 2012 2013 2014 2015 Average

ODIDF 288.3704 317.0758 345.1988 382.4024 415.2908 443.7975 474.5047 277.8659

ODODF 387.7037 450.7542 510.5639 580.8563 650.9366 735.9464 806.1380 367.5550

ODTDF 428.9286 509.1689 597.3874 694.1378 798.7750 909.8987 1029.2937 431.5449
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Table 3.5: Parameter Estimates for the Regularity-Constrained UDTDF Model

Parameter Estimate 95% Bayes Interval SIF

The Frontier

α0 10.7097 (10.5691, 10.9404) 28.9949
α1 0.3172 (0.3119, 0.3212) 26.2283
α2 0.2938 (0.2892, 0.2986) 26.6859
β2 -0.1710 (-0.1791, -0.1641) 23.4118
δt 11.3041 (11.1091, 11.5001) 30.0065
α11 -0.0610 (-0.0643, -0.0580) 12.6863
α12 0.0735 (0.0701, 0.0770) 14.2537
α22 -0.0685 (-0.0711, -0.0645) 13.3931
β22 -0.0141 (-0.0451, 0.0238) 5.3655
δtt 3.4889 (3.4595, 3.5139) 29.8515
γ12 -0.0089 (-0.0346, 0.0245) 5.5158
γ22 -0.0196 (-0.0437, 0.0221) 7.3338
δtx1 -0.0026 (-0.0169, 0.0135) 12.0490
δtx2 0.0026 (-0.0147, 0.0165) 12.4428
δty2 0.0014 (-0.0116, 0.0143) 11.5602

The Interactive Effect Equation

δ0 2.0163 (2.0121, 2.0205) 29.2707
δI 5.7224 (5.7002, 5.7444) 29.8449
δO 5.7957 (5.7527, 5.8305) 30.0774
δIO -1.2044 (-1.2258, -1.1833) 30.0231
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Table 3.6: Parameter Estimates for the Regularity-Constrained VDTDF Model

Parameter Estimate 95% Bayes Interval SIF

The Frontier

α0 8.3265 (8.3214, 8.3333) 53.1989
α1 0.1966 (0.1921, 0.2004) 53.1405
α2 0.3417 (0.3354, 0.3457) 53.1031
β2 -0.1843 (-0.1881, -0.1823) 51.9249
δt 7.8266 (7.8234, 7.8304) 52.0048
α11 -0.0348 (-0.0375, -0.0317) 52.3867
α12 0.0693 (0.0633, 0.0770) 53.2463
α22 -0.0640 (-0.0661, -0.0618) 51.5508
β22 -0.0023 (-0.0064, 0.0016) 52.9642
δtt 3.1232 (3.1164, 3.1279) 51.2509
γ12 -0.0390 (-0.0410, -0.0362) 51.3234
γ22 0.0001 (-0.0019, 0.0019) 50.6460
δtx1 0.0181 (0.0149, 0.0211) 51.8347
δtx2 -0.0054 (-0.0092, -0.0019) 52.4963
δty2 -0.0090 (-0.0112, -0.0067) 51.2171

The Interactive Effect Equation

δ0 2.4684 (2.4665, 2.4704) 49.9582
δI 1.5693 (1.5665, 1.5741) 53.0057
δO 3.5000 (3.4945, 3.5038) 53.1133
δIO -0.8709 (-0.8740, -0.8676) 52.4857
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Table 3.7: Parameter Estimates for the Regularity-Constrained ODTDF Model

Parameter Estimate 95% Bayes Interval SIF

The Frontier

α0 10.4904 (10.4588, 10.5220) 19.3941
α1 0.2325 (0.2281, 0.2370) 17.0840
α2 0.2977 (0.2935, 0.3020) 17.4929
β2 -0.2349 (-0.2384, -0.2315) 17.1590
δt 9.8543 (9.8116, 9.8996) 20.0275
α11 -0.0525 (-0.0554, -0.0498) 12.7861
α12 0.0671 (0.0634, 0.0709) 13.7315
α22 -0.0662 (-0.0688,-0.0638) 12.6097
β22 -0.0138 (-0.0448, 0.0257) 4.1099
δtt 9.0387 (8.9692, 9.1077) 19.1570
γ12 -0.0055 (-0.0314, 0.0271) 4.5671
γ22 -0.0215 (-0.0423, 0.0194) 6.7070
δtx1 0.0017 (-0.0122, 0.0147) 7.2960
δtx2 0.0029 (-0.0140, 0.0166) 9.0611
δty2 0.0049 (-0.0113, 0.0170) 8.8610

The Interactive Effect Equation

δ0 1.2458 (1.2276, 1.2639) 19.6232
δI 0.9452 (0.9294, 0.9613) 19.9741
δO 1.3628 (1.3350, 1.3905) 20.0692
δIO -2.5344 (-2.5660, -2.5026) 20.0838
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Table 3.8: Estimates of Optimal Directional Parameters

Direction ODIDF ODODF ODTDF

Vector Mean Min Max Mean Min Max Mean Min Max

gx1i 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.9928 0.8514 1.1156

gx2i 1.0063 0.8059 1.1996 0.0000 0.0000 0.0000 1.0049 0.8340 1.1441

gy1i 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

gy2i 0.0000 0.0000 0.0000 1.0049 0.5568 1.4208 0.9950 0.8022 1.1661
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Figure 3.1: Technical Inefficiency Measures Based on the Unit Value Directional Vector in 2001
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Figure 3.2: Technical Inefficiency Measures Based on the Unit Value Directional Vector in 2005
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Figure 3.3: Technical Inefficiency Measures Based on the Unit Value Directional Vector in 2010
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Figure 3.4: Technical Inefficiency Measures Based on the Unit Value Directional Vector in 2015
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Figure 3.5: Technical Inefficiency Measures Based on the Observed Input-Output Directional Vector in 2001
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Figure 3.6: Technical Inefficiency Measures Based on the Observed Input-Output Directional Vector in 2005
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Figure 3.7: Technical Inefficiency Measures Based on the Observed Input-Output Directional Vector in 2010
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Figure 3.8: Technical Inefficiency Measures Based on the Observed Input-Output Directional Vector in 2015
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Figure 3.9: Technical Inefficiency Measures Based on the Optimal Directional Vector in 2001
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Figure 3.10: Technical Inefficiency Measures Based on the Optimal Directional Vector in 2005
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Figure 3.11: Technical Inefficiency Measures Based on the Optimal Directional Vector in 2010
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Figure 3.12: Technical Inefficiency Measures Based on the Optimal Directional Vector in 2015
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[60] Chambers, R., Färe, R., Grosskopf, S., Vardanyan, M., 2013. Generalized quadratic

revenue functions. Journal of Econometrics 173, 11–21.

[61] Chang, Y., Park, J., Phillips, P., 2001. Nonlinear econometric models with cointegrated

and deterministically trending regressors. The Econometrics Journal 4, 1–36.

[62] Chen, M.–H., Shao, Q.–M., Ibrahim, J.G., 2000. Monte Carlo Methods in Bayesian

Computation. Springer, New York.

[63] Chen, Y.–Y., Schmidt, P., Wang, H.–J., 2014. Consistent estimation of the fixed effects

stochastic frontier model. Journal of Econometrics 181, 65–76.

[64] Chib, S., Greenberg, E., 1995. Understanding the Metropolis Hastings algorithm. The

American Statistican 49, 327–335.

[65] Christensen, L.R., Jorgenson, D.W., Lau, L.J., 1973. Transcendental logarithmic pro-

duction frontiers. The Review of Economics and Statistics 55, 28–45.

[66] Coelli, T.J., 2000. On the econometric estimation of the distance function represen-

tation of a production technology. Discussion Paper 2000/42, Center for Operations

Research and Econometrics, Universite Catholique de Louvain.

[67] Colombi, R., Kumbhakar, S., Martini, G.M., Vittadini, G., 2014. Closed-skew normal-

ity in stochastic frontiers with individual effects and long/short run efficiency. Journal

of Productivity Analysis 42, 123–136.

[68] Cornwell, C., Schmidt, P., Sickles, R.C., 1990. Production frontiers with cross-sectional

and time-series variation in efficiency levels. Journal of Econometrics 46, 185–200.

[69] Cuesta, R.A., 2000. A production model with firm-specific temporal variation in tech-

nical inefficiency: with application to Spanish dairy farms. Journal of Productivity

Analysis 13, 139–158.

178



[70] Cuesta, R.A., Lovell, C.A.K., Zofio, J.L., 2009. Environmental efficiency measurement

with translog distance functions: A parametric approach. Ecological Economics 68,

2232–2242.

[71] Cuesta, R., Orea, L., 2002. Mergers and technical efficiency in Spanish savings banks:

A stochastic distance function approach. Journal of Banking and Finance 26, 2231–

2247.

[72] Cuesta, R.A., Zofio, J.L., 2005. Hyperbolic efficiency and parametric distance func-

tions: with application to Spanish savings banks. Journal of Productivity Analysis 24,

31–48.

[73] Daraio, C., Simar, L., 2014. Directional distances and their robust versions: Compu-

tational and testing issues. European Journal of Operational Research 237, 358–369.

[74] Darku, A.B., Malla, S., Tran, K.C., 2013. Historical review of agricultural efficiency

studies. CAIRN Research Network.

[75] Debreu, G., 1951. The Coefficient of resource utilization. Econometrica 19, 273–92.

[76] Deprins, D., Simar, L., 1989. Estimating technical inefficiencies with correction for

environmental conditions. Annals of Public and Cooperative Economics 60, 81–102.

[77] Dickey, D.A., Fuller, W.A., 1981. Likelihood ratio statistics for autoregressive time

series with a unit root. Econometrica 49, 1057–1072.

[78] Diewert, W.E., 1971. An application of the shepherd duality theorem: A generalized

Leontief production function. Journal of Political Economy 79, 481–507.

[79] Diewert, W.E., Fox, K.J., 2008. On the estimation of returns to scale, technical progress

and monopolistic markups. Journal of Econometrics 145, 174–193.

179



[80] Diewert, W.E., Wales, T.J., 1987. Flexible functional forms and global curvature con-

ditions. Econometrica 55, 43–68.

[81] Dorfman, J.H., 1995. A numerical Bayesian test for cointegration of AR processes.

Journal of Econometrics 66, 289–324.

[82] Emvalomatis, G., 2012. Adjustment and unobserved heterogeneity in dynamic stochas-

tic frontier models. Journal of Productivity Analysis 37, 7–16.

[83] Engle, R.F., Granger, C.W.J., 1987. Cointegration and error correction: representa-

tion, estimation and testing. Econometrica 55, 251–276.

[84] English, M., Grosskopf, S., Hayes, K., Yaisawarng, S., 1993. Output allocative and

technical efficiency of the financial services sector. Journal of Banking and Finance 17,

349–366.

[85] Fang, X., Yang, F., 2014. Assessing Chinese commercial bank technical efficiency with

a parametric hyperbolic distance function. American Journal of Operations Research

4, 124–131.
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[96] Färe, R., Grosskopf, S., zaim, O., 2002. Hyperbolic efficiency and return to the dollar.

European Journal of Operational Research 136, 671–679.
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tance functions. In: Färe, R., Grosskopf, S., Primont, D. (Eds.), Aggregation, Effi-

ciency, and Measurement. Springer, New York.

187



[159] Jondrow, J., Lovell, C.A.K., Materov, I.S., Schmidt, P., 1982. On the estimation of

technical inefficiency in the stochastic frontier production function model. Journal of

Econometrics 19, 233–238.

[160] Kim, Y., Schmidt, P., 2000. A review and empirical comparison of Bayesian and classi-

cal approaches to inference on efficiency levels in stochastic frontier models with panel

data. Journal of Productivity Analysis 14, 91–118.

[161] Kim, S., Shephard, N., Chib, S., 1998. Stochastic volatility: Likelihood inference and

comparison with ARCH models. The Review of Economic Studies 65, 361–393.

[162] Koop, G., 1994. Recent progress in applied Bayesian econometrics. Journal of Eco-

nomic Surveys 8, 1–34.

[163] Koop, G., Osiewalski, J., Steel, M.F., 1994. Bayesian efficiency analysis with a flexible

form: The AIM cost function. Journal of Business and Economic Statistics 12, 339–

346.

[164] Koop, G., Osiewalski, J., Steel, M.F., 1997. Bayesian efficiency analysis through indi-

vidual effects: Hospital cost frontiers. Journal of Econometrics 76, 77–105.

[165] Koop, G., Steel, M.F., 2003. Bayesian analysis of stochastic frontier models. In: Balt-

agi, B. (Ed.), A Companion to Theoretical Econometrics. Blackwell, MA, USA.

[166] Koop, G., Steel, M.F., Osiewalsk, J., 1995. Posterior analysis of stochastic frontier

models using Gibbs sampling. Computational Statistics 10, 353–373.

[167] Koutsomanoli-Filippaki, A., Margaritis, D., Staikouras, C., 2009. Efficiency and pro-

ductivity growth in the banking industry of central and eastern Europe. Journal of

Banking and Finance 33, 557–567.

188



[168] Koutsomanoli-Filippaki, A., Margaritis, D., Staikouras, C., 2012. Profit efficiency in

the European union banking industry: A directional technology distance function ap-

proach. Journal of Productivity Analysis 37, 277–293.

[169] Kumbhakar, S.C., 1987. The specification of technical and allocative inefficiency in

stochastic production and profit frontiers. Journal of Econometrics 34, 335–348.

[170] Kumbhakar, S.C., 1990. Production frontiers, panel data, and time-varying technical

inefficiency. Journal of Econometrics 46, 201–211.

[171] Kumbhakar, S.C., Ghosh, S., McGuckin, J., 1991. A generalized production frontier

approach for estimating determinants of inefficiency in US dairy farms. Journal of

Business and Economics Statistics 9, 279–286.

[172] Kumbhakar, S.C., Heshmati, A., 1995. Efficiency measurement in Swedish dairy farms:

An application of rotating panel data, 1976–88. American Journal of Agricultural Eco-

nomics 77, 660–674.

[173] Kumbhakar, S.C., Lien, G., Hardaker, J.B., 2014. Technical efficiency in competing

panel data models: A study of Norwegian grain farming. Journal of Productivity Anal-

ysis 41, 321–337.

[174] Kumbhakar, S.C., Lovell, C.A.K., 2000. Stochastic Frontier Analysis. Cambridge Uni-

versity Press, Cambridge, UK.

[175] Kumbhakar, S.C., Parmeter, C.F., Tsionas, E.G., 2013. A zero inefficiency stochastic

frontier model. Journal of Econometrics 172, 66–76.

[176] Kumbhakar, S.C., Wang, H.–J., 2005. Estimation of growth convergence using a

stochastic production function approach. Economics Letters 88, 300–305.

189



[177] Kuosmanen, T., Fosgerau, M., 2009. Neoclassical versus frontier production models?

testing for the skewness of regression residuals. The Scandinavian Journal of Economics

111, 351–367.

[178] Lau, L.J., 1978a. Application of profit functions. In: Fuss, M., McFadden, D. (Eds.),

Production Economics: A Dual Approach to Theory and Applications. North-Holland

Publishing Co, Amsterdam.

[179] Lau, L.J., 1978b. Testing and imposing monotonicity, convexity, and quasi-convexity

constraints. In: Fuss, M., McFadden, D. (Eds.), Production Economics: A Dual Ap-

proach to Theory and Applications. North-Holland Publishing Co., Amsterdam

[180] Lau, L.J., 1986. Functional forms in econometric model building. In: Griliches, Z.,

Intriligator, M.D. (Eds.), Handbook of Econometrics. Elsevier Science, Amsterdam.

[181] Lee, S., Lee, Y.H., 2014. Stochastic frontier models with threshold efficiency. Journal

of Productivity Analysis 42, 45–54.

[182] Lee, Y.H., 1996. Tail truncated stochastic frontier models. Journal of Economic Theory

and Econometrics 2, 137–152.

[183] Lee, Y.H., Schmidt, P., 1993. A production frontier model with flexible temporal vari-

ation in technical efficiency. In: Fried, H.O., Lovell, C.A.K., Schmidt, S.S. (Eds.), The

Measurement of Productive Efficiency: Techniques and Applications. Oxford Univer-

sity Press, Oxford.

[184] Lewbel, A., Ng, S., 2005. Demand systems with nonstationary prices. Review of Eco-

nomics and Statistics 87, 479–494.

[185] Luenberger, D., 1992. Benefit functions and duality. Journal of Mathematical Eco-

nomics 21, 461–481.

190



[186] Luenberger, D., 1995. Microeconomic Theory. McGraw Hill, New York.

[187] Maddala, G.S., Wu, S., 1999. A comparative study of unit root tests with panel data

and a new simple test. Oxford Bulletin of Economics and Statistics 61, 631–652.

[188] Malikov, E., Kumbhakar, S.C., Tsionas, E.G., 2016. A cost system approach to the

stochastic directional technology distance function with undesirable outputs: The case

of U.S. banks in 2001–2010. Journal of Applied Econometrics 31, 1407–1429.

[189] Marsh, T.L., Featherstone, A.M., Garrett, T.A., 2003. Input inefficiency in commer-

cial banks: A normalized quadratic input distance approach. Working Paper 2003-

036A Federal Reserve Bank of st. Louis. http://research.stlouisfed.org/wp/2003/2003-

036.pdf

[190] McCulloch, R., Rossi, P.E., 1994. An exact likelihood analysis of the multinomial

probit model. Journal of Econometrics 64, 207–240.

[191] Meeusen, W., Van den Broeck, J., 1977. Efficiency estimation from Cobb-Douglas

production functions with composed error. International Economic Review 18, 435–

444.

[192] Mester, L., 1996. A study of bank efficiency taking into account risk-preferences. Jour-

nal of Banking and Finance 20, 1025–1045.

[193] Mester, L., 1997. Measuring efficiency at U.S. banks: Accounting for heterogeneity is

important. European Journal of Operational Research 98, 230–242.

[194] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953.

Equations of state calculations by fast computing machines. Journal of Chemical

Physics 21, 1087–1092.

191



[195] Morey, E.R., 1986. An introduction to checking, testing, and imposing curvature prop-

erties: The true function and the estimated function. Canadian Journal of Economics

19, 207–235.

[196] Mundlak, Y., 1961. Empirical production function free of management bias. Journal

of Farm Economics 43, 44–56.

[197] Nahm, D., Vu, H.T., 2013. Measuring scale efficiency from a parametric hyperbolic

distance function. Journal of Productivity Analysis 39, 83–88.

[198] Neyman, J., Scott, E.L., 1948. Consistent estimation from partially consistent obser-

vations. Econometrica 16, 1–32.

[199] Ng, S., 1995. Testing for homogeneity in demand systems when the regressors are

nonstationary. Journal of Applied Econometrics 10, 147–163.

[200] O’Donnell, C.J., 2014. Econometric estimation of distance functions and associated

measures of productivity and efficiency change. Journal of Productivity Analysis 41,

187–200.

[201] O’Donnell, C.J., Coelli, T.J., 2005. A Bayesian approach to imposing curvature on

distance functions. Journal of Econometrics 126, 493–523.

[202] Orea, L., Kumbhakar, S.C., 2004. Efficiency measurement using a latent class stochas-

tic frontier model. Empirical Economics 29, 169–183.

[203] Osiewalski, J., Steel, M.F., 1998. Numerical tools for the Bayesian analysis of stochastic

frontier models. Journal of Productivity Analysis 10, 103–117.

[204] Park, J.Y., Hahn, S.B., 1999. Cointegrating regressions with time varying coefficients.

Econometric Theory 15, 664–703.

192



[205] Park, K., Weber, W., 2006. A note on efficiency and productivity growth in the Korean

banking industry, 1992–2002. Journal of Banking and Finance 30, 2371– 2386.

[206] Parmeter, C., Kumbhakar, S.C., 2014. Efficiency analysis: A primer on recent ad-

vances. Foundations and Trends in Econometrics 7, 191–385.

[207] Pedroni, P., 2001. Fully modified OLS for heterogeneous cointegrated panels. In: Balt-

agi, B.H., Fomby, T.B., Hill, R.C. (Eds.), Non- Stationary Panels, Panel Cointegration,

and Dynamic Panels (Advances in Econometrics). Emerald Group Publishing Limited.

[208] Phillips, P.C.B., 1987. Time series regression with a unit root. Econometrica 55, 277–

301.

[209] Phillips, P.C.B., 1995. Fully modified least squares and vector autoregression. Econo-

metrica 63, 1023–1078.

[210] Phillips, P.C.B., Hansen, L.P., 1990. Statistical inference in instrumental variables

regression with I(1) processes. The Review of Economic Studies 57, 99–125.

[211] Phillips, P.C.B., Moon, H., 1999. Linear regression limit theory for nonstationary panel

data. Econometrica 67, 1057–1111.

[212] Pitt, M.M., Lee, L.–F., 1981. The measurement and sources of technical inefficiency in

the Indonesian weaving industry. Journal of Development Economics 9, 43–64.

[213] Reifschneider, D., Stevenson, R., 1991. Systematic departures from the frontier: A

framework for the analysis of firm inefficiency. International Economic Review 32,

715–723.

[214] Rho, S., Schmidt, P., 2015. Are all firms inefficient? Journal of Productivity Analysis

43, 327–349.

193



[215] Ritter, C., Simar, L., 1997. Pitfalls of normal-gamma stochastic frontier models. Jour-

nal of Productivity Analysis 8, 167–182.

[216] Roberts, G.O., Gelman, A., Gilks, W.R., 1997. Weak convergence and optimal scaling

of random walk metropolis algorithms. The Annals of Applied Probability 7, 110–120.

[217] Roberts, G.O., Smith, A.F.M., 1994. Simple conditions for the convergence of the

Gibbs sampler and Metropolis–Hastings algorithms. Stochastic Processes and their

Applications 49, 207–216.

[218] Ryan, D.L., Wales, T.J., 1998. A simple method for imposing local curvature in some

flexible consumer demand systems. Journal of Business and Economic Statistics 16,

331–338.

[219] Ryan, D.L., Wales, T.J., 2000. Imposing local concavity in the translog and generalized

Leontief cost functions. Economics Letters 67, 253–260.

[220] Satchachai, P., Schmidt, P., 2010. Estimates of technical inefficiency in stochastic

frontier models with panel data: Generalized panel jackknife estimation. Journal of

Productivity Analysis 34, 83–97.

[221] Schmidt, P., Sickles, R.C., 1984. Production frontiers and panel data. Journal of Busi-

ness and Economic Statistics 2, 367–374.

[222] Sealey, C.W., Lindley, J.T., 1977. Inputs, outputs, and a theory of production and cost

at depository financial institutions. Journal of Finance 32, 1251–1266.

[223] Serletis, A., Shahmoradi, A., 2007. Flexible Functional Forms, Curvature Conditions,

and the Demand for Assets. Macroeconomic Dynamics 11, 455–486.

[224] Shephard, R., 1953. Cost and Production Functions. Princeton University Press,

Princeton.

194



[225] Shephard, R., 1970. Theory of Cost and Production Functions. Princeton University

Press, Princeton.

[226] Sickles, R.C., 2005. Panel estimators and the identification of firm specific efficiency

levels in parametric, semiparametric and nonparametric settings. Journal of Econo-

metrics 126, 305–324.

[227] Simar, L., Vanhems, A., 2012. Probabilistic characterization of directional distances

and their robust versions. Journal of Econometrics 166, 342–354.

[228] Smith, A.F.M., Roberts, C.O. , 1993. Bayesian computation via the Gibbs sampler and

related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society

B55, 3–23.

[229] Srairi, S.A., 2010. Cost and profit efficiency of conventional and Islamic banks in GCC

countries. Journal of Productivity analysis 34, 45–62.

[230] Stevenson, R.E., 1980. Likelihood functions for generalized stochastic frontier estima-

tion. Journal of Econometrics 13, 57–66.

[231] Stiroh, K.J., 2000. How did bank holding companies prosper in the 1990s? Journal of

Banking and Finance 24, 1703–1745.

[232] Stock, J.H., 1994. Unit roots, structural breaks and trends. In: Engel, R., McFadden,

D. (Eds.), Handbook of Econometrics. Elsevier, Amsterdam.

[233] Stock, J.H., Watson, M.W., 1993. A simple estimator of cointegrating vectors in higher

order integrated systems. Econometrica 61, 783–820.

[234] Sturm, J.–E., Williams, B. , 2008. Characteristics determining the efficiency of foreign

banks in Australia. Journal of Banking and Finance 32, 2346–2360.

195



[235] Swamy, P.A.V.B., Tavlas, G.S. 1995. Random coefficient models: Theory and applica-

tions. Journal of Economic Surveys 9, 165–96.

[236] Terrell, D., 1996. Incorporating monotonicity and concavity conditions in flexible func-

tional forms. Journal of Applied Econometrics 11, 179–194.

[237] Thompson, G.D., 1988. Choice of flexible functional forms: Review and appraisal.

Western Journal of Agricultural Economics 13, 169–183.

[238] Tran, K.C., 2014. Nonparametric estimation of functional-coefficient dynamic panel

data model with fixed effects. Economics Bulletin 34, 1751–1761.

[239] Tran, K.C., Tsionas, E.G., 2013. GMM estimation of stochastic frontier model with

endogenous regressors. Economics Letters 118, 233–236.

[240] Tran, K.C., Tsionas, E.G., 2015. Endogeneity in stochastic frontier models: Copula

approach without external instruments. Economics Letters 133, 85–88.

[241] Tran, K.C., Tsionas, E.G., 2016a. On the estimation of zero-inefficiency stochastic

frontier models with endogenous regressors. Economics Letters 147, 19–22.

[242] Tran, K.C., Tsionas, E.G., 2016b. Zero-inefficiency stochastic frontier model with vary-

ing mixing proportion: Semiparametric approach. European Journal of Operational and

Research 249, 1113–1123.

[243] Tsionas, E.G., 2002. Stochastic frontier models with random coefficients. Journal of

Applied Econometrics 17, 127–147.

[244] Tsionas, E.G., 2006. Inference in dynamic stochastic frontier models. Journal of Ap-

plied Econometrics 21, 669–676.

[245] Tsionas, E.G., Christopoulos D., 2001. Efficiency measurement with nonstationary

variables: An application of panel cointegration techniques. Economics Bulletin 3,

196



1–7.

[246] Tsionas, E.G., Kumbhakar, S.C., 2014. Firm heterogeneity, persistent and transient

technical inefficiency. Journal of Applied Econometrics 29, 110–132.

[247] Tsionas, E.G., Kumbhakar, S.C., Malikov, E., 2015. Estimation of input distance

functions: A system approach. American Journal of Agricultural Economics 97, 1478–

1493.

[248] Tsionas, E.G., Tran, K.C., Michaelides, P., 2017. Bayesian inference in threshold

stochastic frontier models. Empirical Economics (Forthcoming).

[249] Tzeremes, N.G., 2015. Efficiency dynamics in Indian banking: A conditional directional

distance approach. European Journal of Operational Research 240, 807–818.

[250] Van den Broeck, J., Koop, G., Osiewalski, J., Steel, M.F., 1994. Stochastic frontier

models: A Bayesian perspective. Journal of Econometrics 61, 273–303.

[251] Waldman, D., 1982. A stationary point for the stochastic frontier likelihood. Journal

of Econometrics 18, 275–279.

[252] Wales, T.J., 1977. On the flexibility of flexible functional forms. Journal of Economet-

rics 5, 183–193.

[253] Wang, H.–J., 2002. Heteroskedasticity and non-monotonic efficiency effects of a

stochastic frontier model. Journal of Productivity Analysis 18, 241–253.

[254] Wang, H.–J., Ho, C.W., 2010. Estimating fixed-effect panel data stochastic frontier

models by model transformation. Journal of Econometrics 157, 286–296.

[255] Wang, H.–J., Schmidt, P., 2002. One-step and two-step estimation of the effects of

exogenous variables on technical efficiency levels. Journal of Productivity Analysis 18,

129–44.

197



[256] Wang, W.S., Schmidt, P., 2009. On the distribution of estimated technical efficiency

in stochastic frontier models. Journal of Econometrics 148, 36–45.

[257] Watson, M.W., 1994. Vector autoregressions and cointegration. In: Engel, R., McFad-

den, D. (Eds.), Handbook of Econometrics, Elsevier: Amsterdam.

[258] Wheat, P., Greene, B., Smith, A. 2014. Understanding prediction intervals for firm

specific inefficiency scores from parametric stochastic frontier models. Journal of Pro-

ductivity Analysis 42, 55–65.

[259] Wikstrom, D., 2016. Modified Fixed Effects Estimation of Technical Inefficiency. Jour-

nal of Productivity Analysis 46, 83–86.

[260] Wolff, H., 2016. Imposing and testing for shape restrictions in flexible parametric

models. Econometric Reviews 35, 1013–1039.

[261] Wolff, H., Heckelei, T., Mittelhammer, R.C., 2010. Imposing curvature and mono-

tonicity on flexible functional forms: An efficient regional approach. Computational

Economics 37, 309–339.

[262] Yélou, C., Larue, B., Tran, K.C., 2010. Threshold effects in panel data stochastic

frontier models of dairy production in Canada. Economic Modelling 27, 641–647.

[263] Zofio, J.L., Pastor, J.T., Aparicio, J., 2013. The directional profit efficiency measure:

On why profit inefficiency is either technical or allocative. Journal of Productivity

Analysis 40, 257–266.

198



Appendix A

A.0.1 Proof of the Parameter Restrictions that Impose the Translation Property on the

Directional Distance Functions

Since there are two inputs and two outputs in the empirical implementation, then applying

the quadratic functional form to the left hand side of (3.2) yields
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∑2
n′=1 αnn′

(
−xnαgxn′ − xn′αgxn + α2gxngxn′

)
+1

2

∑2
m=1

∑2
m′=1 βmm′

(
ymαgym′ + ym′αgym + α2gymgym′

)
+
∑2

n=1

∑2
m=1 γnm (xnαgym − ymαgxn − α2gxngym)

−
∑2

n=1 δtxntαgxn +
∑2

m=1 δtymtαgym


(A.1)
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Substitute the first three lines on the right-hand side of (A.1) with ~DT (x, y, t; gx, gy) yields

~DT (x− αgx, y + αgy, t; g) = ~DT (x, y, t; gx, gy)

+



−
∑2

n=1 αnαgxn +
∑2

m=1 βmαgym

+1
2

∑2
n=1

∑2
n′=1 αnn′

(
−xnαgxn′ − xn′αgxn + α2gxngxn′

)
+1

2

∑2
m=1

∑2
m′=1 βmm′

(
ymαgym′ + ym′αgym + α2gymgym′

)
+
∑2

n=1

∑2
m=1 γnm (xnαgym − ymαgxn − α2gxngym)

−
∑2

n=1 δtxntαgxn +
∑2

m=1 δtymtαgym


(A.2)

To satisfy the translation property in equation (3.2), the second term on the right-hand side

of (A.2) should be −α, that is

−
2∑

n=1

αnαgxn +
2∑

m=1

βmαgym

+
1

2

2∑
n=1

2∑
n′=1

αnn′
(
−xnαgxn′ − xn′αgxn + α2gxngxn′

)
+

1

2

2∑
m=1

2∑
m′=1

βmm′
(
ymαgym′ + ym′αgym + α2gymgym′

)
+

2∑
n=1

2∑
m=1

γnm
(
xnαgym − ymαgxn − α2gxngym

)
−

2∑
n=1

δtxntαgxn +
2∑

m=1

δtymtαgym

= −α (A.3)
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Following Feng et al. (2018) and dividing both sides of (A.3) by α and rearranging terms

yields (
2∑

m=1

βmgym −
2∑

n=1

αngxn + 1

)
+

(
2∑

m=1

γnmgym −
2∑

n′=1

αnn′gxn′

)
xn

+

(
2∑

m′=1

βmm′gym′ −
2∑

n=1

γnmgxn

)
ym +

(
2∑

m=1

δtymgym −
2∑

n=1

δtxngxn

)
t

+

(
1

2

2∑
n=1

2∑
n′=1

αnn′gxngxn′ +
1

2

2∑
m=1

2∑
m′=1

βmm′gymgym′ −
2∑

n=1

2∑
m=1

γnmgxngym

)
α

= 0 (A.4)

When gy1 = 1 and α = −y1, (A.4) becomes(
β1 + β2gy2 −

2∑
n=1

αngxn + 1

)
+

(
γn1 + γn2gy2 −

2∑
n′=1

αnn′gxn′

)
xn

+

(
−1

2

2∑
n=1

2∑
n′=1

αnn′gxngxn′ +
1

2

(
β11 − β22g

2
y2

)
+

2∑
n=1

γn2gy2gxn

)
y1

+

(
β21 + β22gy2 −

2∑
n=1

γn2gxn

)
y2 +

(
δty1 + δty2gy2 −

2∑
n=1

δtxngxn

)
t

= 0 (A.5)

Then, for (A.5) to hold, the following restrictions must be satisfied:

β1 + β2gy2 −
2∑

n=1

αngxn = −1, γn1 + γn2gy2 −
2∑

n′=1

αnn′gxn′ = 0,

β21 + β22gy2 −
2∑

n=1

γn2gxn = 0, δty1 + δty2gy2 −
2∑

n=1

δtxngxn = 0, and

2∑
n=1

γn2gy2gxn −
1

2

2∑
n=1

2∑
n′=1

αnn′gxngxn′ +
1

2

(
β11 − β22g

2
y2

)
= 0, (n = 1, 2).
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When gx1 = 1, α = x1, and gy = 0, (A.4) becomes

(1− α1 − α2gx2)− (γ1m + γ2mgx2) ym −
(

1

2

(
α11 − α22g

2
x2

))
x1

− (α21 + α22gx2)x2 − (δtx1 + δtx2gx2) t

= 0 (A.6)

Then, for (A.6) to hold, the following restrictions must be satisfied:

α1 + α2gx2 = 1, γ1m + γ2mgx2 = 0, α11 − α22g
2
x2 = 0,

α21 + α22gx2 = 0, and δtx1 + δtx2gx2 = 0, (m = 1, 2).

When gy1 = 1, α = −y1, and gx = 0, the following restrictions must be satisfied for (A.5) to

hold:

β1 + β2gy2 = −1, γn1 + γn2gy2 = 0, β11 − β22g
2
y2

= 0,

β21 + β22gy2 = 0, and δty1 + δty2gy2 = 0, (n = 1, 2).
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