
THE UNWERS1TY OF CALGARY

Language Design for Parallel Simulation

by

Dirk Banner

A thesis

submitted to the Faculty of Graduate Studies

in partial fulfillment of the requirements for the

degree of Master of Science

Department of Computer Science

Calgary, Alberta

February, 1991

© Dirk Baezner 1991

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1 0N4

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1 0N4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED

PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER

PERMISSION.

ISBN 0-315-99537-8

Your fife Votre relOrer,ce

Our fife Noire réIrence

L'AUTEUR A ACCORDE liNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLATRES DE
CETTE THESE A LA DISPOSITION DES

PERSONNE INTERES SEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUB STANTIELS DE CELLE-
CI NE DOI VENT ETRE IMPRIMES OU

AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Cmadc!

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled, "Language Design for Parallel Simulation"

submitted by Dirk Baezner in partial fulfillment of the requirements for the degree of Master

of Science. The research presented in this dissertation was supervised by Drs. Brian

Unger and John Kendall.

Date February 11. 1991

John Kendall, Supervisor
Dean of Science

• Brian Unger
Department of Computer Sc" - nce

Dr. Graham Birtwistle
Department of Computer Science

6c Fujimoto
Georgia Institute of Technology

li

Abstract

Much of the research into parallel simulation over the last decade focuses on the

performance of various strategies for parallel simulation. Among the most successful of

these are implementations of a paradigm called Virtual Time. Virtual Time simulations

consist of independently executing processes that communicate and synchronize their

actions solely by sending and receiving timestamped messages. The successful application

of Virtual Time to a wide class of simulation problems has already been demonstrated.

However, much of this success has been achieved without regard for the modeling and

language design issues associated with this paradigm. Specifically, existing modeling

practices and language constructs associated with sequential simulation may have to be

modified or abandoned in favor of decompositional techniques dictated by Virtual Time.

The goal of this research is to assess the impact of Virtual Time on simulation language

design. In addressing this goal, this thesis makes a number of contributions. First, the

fundamental differences between Virtual Time and sequential simulation are identified and

the impact of these differences on parallel simulation is examined. Second, a set of

language design criteria for Virtual Time is developed based on the fundamental differences

between Virtual Time and sequential simulation, and on the characteristics of existing

languages for Virtual Time. Third, key limitations of existing languages for Virtual Time

are identified. These limitations are shown to make even very basic simulation models

difficult to implement using these languages. Fourth, a set of language constructs is

developed that addresses the limitations of existing languages. These languages constructs

are embodied within a new language for Virtual Time called SimD that was designed and

implemented as part of this research. SimD was implemented on an existing

implementation of Virtual Time, called Time Warp, developed and made available by Jade

111

Simulations International Corporation. Finally, the effectiveness of SimD for developing

well-structured, efficient, parallel simulations is demonstrated using several basic examples

and two simulations implemented and executed on Time Warp.

iv

Dedication

Acknowledgements

I would like to thank Brian Unger for his enormous contributions to this research. He

supervised my initial research and subsequently continued to provide much needed

guidance in further developing my ideas and this thesis. He was also the one who

introduced me to the world of simulation and Time Warp, topics that will no doubt continue

to dominate my interests for many years to come. I would also like to thank him for having

the courage and wisdom to found Jade Simulations, thereby giving so many of us a chance

to learn and grow simply by doing what we enjoy most - parallel simulation.

I would like to thank John Kendall for agreeing to supervise the remainder of my

graduate programme and for his very helpful comments about this thesis. If you can

distinguish my work from that of others upon which it is based, it is John who should be

thanked. Most important of all, he provided a much appreciated sense of calm that

contributed significantly to the successful completion of this thesis. The games of

"telephone tag" were always good for a laugh as well.

I would like to extend a very special thank you to Greg Lomow for so many of his

contributions throughout a very rewarding friendship. His enthusiasm for me and this

research was inspiring. His insights and many helpful suggestions helped me with all

aspects of this research. He also had the courage to review early drafts of my work and

suggest numerous improvements. Of course, none of this diminishes the contributions of

Lonnie, the "pupster". Although devoted to Greg, she provided me with many hours of

joyful diversion as we chased each other around the office.

I would like to thank Richard Fujimoto for suggesting additional improvements to the

thesis, and I would like to thank both him and Graham Birtwistle for participating in my

thesis defense.

vi

I would like to thank everyone at Jade Simulations for their assistance and friendship.

Most notably, Gail Davies-Howard, Jeff Allan, and Mark Davoren. Gail somehow

managed to arrange almost regular appointments between me and Brian Unger, whether he

had time or not, and Jeff and Mark helped me clarify my ideas about parallel simulation and

language design. I'm sure Mark would have done it even if he didn't owe me lunch. In

addition, Jim Inkster was always more than willing to reminisce with me about the good

old days of Simula.

I would like to thank my parents, my brother, and his family for their support,

enthusiasm, and understanding during the many evenings and weekends it took to put all of

this together.

vu

Table of Contents

Approval Page

Abstract

Dedication v

Acknowledgements vi

Table of Contents viii

List of Tables Xi

List of Figures xii

1 Introduction 1
1.1 Parallel Processors and Parallel Programming 1
1.2 Parallel Simulation and Virtual Time 2
1.3 Research Goal 4
1.4 Contributions of this Research 5
1.5 Thesis Overview 6

2 Departure from Sequential Simulation 8
2.1 Virtual Time 8
2.2 Impact of Message-Passing 10
2.3 Designing a Parallel Simulation 12
2.4 The Chandy-Misra Approach 14
2.5 Time Warp 16
2.6 Time Warp Transparency Issues 20
2.7 Summary 24

3 Languages for Virtual Time 26
3.1 The Sim++ Parallel Simulation Language 27

3.1.1 Overview of C++ Concepts and Terminology 29
3.1.2 Sim++ Data Types 30
3.1.3 Decomposing a Simulation into Entities 32
3.1.4 Simulation Primitives 34
3.1.5 Conditional Selection of Events 36
3.1.6 Type Checking 38
3.1.7 Initialization and Execution of Sim++ Simulations 39
3.1.8 Clusters for Shared Memory among Entities 41
3.1.9 Preventing Side Effects of Causality Errors 43
3.1.10 Language Support for Time Warp 44

vu'

3.2 Comparing Sim++ to Other Languages 46
3.2.1 Extended Virtual Time 46
3.2.2 ModSim 50
3.2.3 Languages for Conservative and Optimistic Systems 52

3.3 Language Design Criteria for Virtual Time 55
3.4 Summary 58

4 Limitations of Existing Languages 60
4.1 The Barber Shop Queueing Model 60
4.2 Limiting the Size of the Barber Shop Wait Queue 63
4.3 A Variation on Barber Shop Termination 64
4.4 Adding Statistics Reporting to the Barber Shop Model 68
4.5 Extending Sim++ for Modeling Resource Competition 74
4.6 Summary 78

5 SimD: A Language Proposal for Virtual Time 80
5.1 Overview 80
5.2 SimD Data Types 81
5.3 Predicates 88
5.4 Entities 91
5.5 Event Handlers 93
5.6 Initialization of SimD Simulations 96
5.7 The Barber Shop Model Solved in SimD 96
5.8 The Resource Competition Facility Solved in SimD 100
5.9 Optimizing SimD on Time Warp 103
5.10 Summary 104

6 Experience With SimD 106
6.1 Overview of Experiments and Experimental Method 106
6.2 The Health Care System 110

6.2.1 Design Issues and Implementation 111
6.2.2 Simulation Parameters and Performance Results 113

6.3 The Mobile Communication Network 118
6.3.1 Design Issues and Implementation 118
6.3.2 Simulation Parameters and Performance Results 123

6.4 SnmmRry 127

7 Conclusion 129
7.1 Critique of SimD 129
7.2 Thesis Summary 130
7.3 Conclusions 133
7.4 Further Study and Development 136

Bibliography 139

ix

A Simi) Implementation of the Health Care System 149

B SimD Implementation of the Mobile Communication Network 159

x

List of Tables

6.1 Configuration of the Health Care System 115
6.2 Application Parameters for the Health Care System 115
6.3 Application Parameters for the Mobile Communication Network 124

xi

List of Figures

3.1 C++ Declarations for Sim++ Data Types 31
3.2 C++ Declaration for Entity Class Automobile 34

4.1 c++ code for Source and Barber Entities 61
4.2 c++ Declaration for Late Customer Predicate 67
4.3 c++ code for Barber Entity with Transparent Reports 71
4.4 c++ code for Event-Oriented Barber Entity 73

5.1 c++ Declarations for SimD Data Types 83
5.2 c++ Insertion and Extraction Operators for class Point 87
5.3 c++ Declaration for class Entity 92
5.4 SimD Predicate chain 95
5.5 SimD Barber Entity for Basic Barber Shop Model 97
5.6 SimD Predicate Chain for Barber Entity During Wait 98
5.7 SimD Predicate Chain for Barber Entity During Hold 98
5.8 SimD Barber Entity for Extended Barber Shop Model 99
5.9 SimD Predicate Chain for Extended Barber Shop Model 100
5.10 SimD RES Facility 102
5.11 SimD Predicate Chain for R.ES Facility 103

6.1 The Health Care System 111
6.2 C++ Code for Village Entity Class 112
6.3 C++ Code for Health Center Entity Class 113
6.4 Application Speedup for the Health Care System

(no added computation) 117
6.5 Application Speedup for the Health Care System

(10 milliseconds of added computation) 117
6.6 Application Speedup for the Health Care System

(20 milliseconds of added computation) 118
6.7 The Mobile Communication Network 119
6.8 C++ Declarations for the Spatial Layer Interface 121
6.9 Application Speedup for the Mobile Communication Network

(no added computation) 125
6.10 Application Speedup for the Mobile Communication Network

(10 milliseconds of added computation) 125
6.11 Application Speedup for the Mobile Communication Network

(20 milliseconds of added computation) 126

xii

Chapter 1

Introduction

During the last decade, a great, deal of attention has focused on the use of parallel

processors to execute large, complex simulations whose computational requirements cannot

be satisfied by most single processor computing systems. Such simulations often require

many hours or days of execution time and tens or hundreds of megabytes of memory to

execute a single experiment. Although many single processor computing systems can

satisfy the memory requirements of such simulations using virtual memory, it is usually at

the expense of increased execution time. In the absence of viable alternatives, researchers

are forced to simplify the models they study to reduce their processing and memory

requirements. Unfortunately, such simplifications also reduce our confidence that the

simulation is a valid representation of the physical system that it models. Without an

appropriate level of confidence, predictions about the physical system based on

observations of the logical system are meaningless.

1.1 Parallel Processors and Parallel Programming

To address the limitations of sequential simulation, many researchers are turning to parallel

processors for a solution. The term parallel processor is used throughout this thesis to

refer to multiple instruction, multiple data stream (MIMD) architectures, ranging from

tightly coupled multiprocessors that share memory to loosely coupled multicomputer

networks that communicate solely via message-passing. Parallel processors offer the

combined processing speed and memory of hundreds to thousands of processors.

1

2

However, developing software for parallel processors is significantly more difficult than

for single processor computing systems. There are two reasons for this. First, typically,

algorithms for parallel processors must be decomposed into multiple, concurrently

executing and cooperating processes. The concurrency, synchronization, and

communication among parallel processes introduces a level of complexity not present in

sequential programming. Second, many parallel programs are inherently non-

deterministic. This means that they do not necessarily produce the same results even when

the same program is executed with the same input. Non-determinism results from

variations in timing among parallel processes from one execution to the next. Non-

determinism is intolerable in simulations because it introduces a degree of randomness that

cannot be quantified. Non-determinism also complicates debugging because errors may •

not be repeatable, making it difficult to find the cause of an error and to verify when the

error has been corrected. These problems must be addressed by appropriate paradigms and

languages for parallel processors.

1.2 Parallel Simulation and Virtual Time

The execution of a simulation on a parallel processor is referred to as parallel simulation.

The goals of parallel simulation are to reduce execution time and to allow larger and more

complex systems to be simulated. The primary challenge in achieving these goals is to

preserve the causal relationships present in the simulation model in the absence of

traditional sequential techniques based on global knowledge and centralized control. The

causality constraint can be expressed in relatively simple terms [Jef85b, page 407]:

If an event A causes event B, then the execution of A and B must be

scheduled in real time so that A is completed before B starts.

3

Violation of this constraint is referred to as a causality error lFuj89].

One of the most successful paradigms for parallel simulation is Virtual Time [Jef85b].

Virtual Time simulations are composed of independently executing processes that

communicate and synchronize their actions by sending and receiving timestamped

messages. This paradigm is sufficiently general that it encompasses a number of

approaches to parallel simulation typically classified as either conservative or optimistic.

For comprehensive surveys of this and other techniques for parallel simulation see [Fuj89,

Rig89]. Among existing techniques, Virtual Time has emerged as a dominant approach to

parallel discrete-event simulation, and it is the sole focus of this thesis.

Conservative implementations of Virtual Time execute events only when they can

guarantee that doing so does not violate the causality constraint. Because of inherent

limitations in verifying that causality is preserved across multiple processors, conservative

systems often delay executing events even when it is unnecessary to do so. This can result

in deadlock. Much of the research into conservative systems has focused on techniques for

deadlock prevention, and deadlock detection and recovery The dominant conservative

approach was developed by Chandy and Misra [Cha81, Mis86].

Optimistic implementations of Virtual Time execute events even when there is a

possibility that doing so will violate the causality constraint. As a result, optimistic systems

require the ability to detect and correct causality errors when they occur. Optimistic

systems incur the additional overhead of error detection and correction for the freedom to

execute even when there is a possibility that the resulting computation will be incorrect.

The dominant optimistic approach, called Time Warp, was developed by Jefferson and

Sowizral [Jef85a].

The Virtual Time paradigm has been used successfully in simulating large, complex

systems with speedups of an order of magnitude and more reported for a number of

4

performance benchmarks executing on a variety of parallel processors [Bae89, Fuj87,

Fuj88a, Leu89, Wie89]. However, much of this success has been achieved without regard

for the modeling and language design issues associated with this paradigm. Specifically,

existing modeling practices and language constructs associated with sequential simulation

may have to be modified or abandoned in favor of decompositional techniques dictated by

Virtual Time [Jef84]. Although several languages have already been developed for Virtual

Time, this thesis will show that many of these languages contain inherently sequential

constructs or are difficult to use for representing even very basic simulation models.

1.3 Research Goal

The goal of this research is to assess the impact of Virtual Time on simulation language

design. This goal is divided into the following research questions addressed by this thesis:

1. How do the characteristics of Virtual Time differ from sequential simulation?

2. How do the characteristics of Virtual Time impact simulation language design?

3. Can languages for Virtual Time be used to develop well-structured, efficient,

parallel simulations?

In addressing these questions, this thesis focuses on discrete-event simulation, the primary

application of Virtual Time. In addition, this thesis focuses on procedural, rather than

functional or logical languages. Although some attention has been given to the use of

functional [Mar88] and logical [Cle9O, Fut88, Li89] languages for parallel simulation,

procedural languages continue to dominate the simulation literature. Finally, this thesis

focuses on Time Warp as the preferred implementation of Virtual Time. This choice is

justified by existing literature [Fuj87, Fuj88a, Fuj89, Jef87, Jef9O] which demonstrates

5

that Time Warp has fewer limitations and comparable, often superior, performance to other

implementations of Virtual Time. However, Time Warp implementations cannot currently

be made completely transparent to users. This claim and its resulting implications are

examined in Chapters 2 and 3.

1.4 Contributions of this Research

In assessing the impact of Virtual Time on simulation language design, this thesis makes

the following contributions:

1. The fundamental differences between Virtual Time and sequential simulation are

identified and the impact of these differences on parallel simulation is examined.

2. A set of language design criteria for Virtual Time is developed based on the

fundamental differences between Virtual Time and sequential simulation, and on the

characteristics of existing languages for Virtual Time. The degree to which the

existing languages satisfy the proposed design criteria is examined.

3. Key limitations of existing languages for Virtual Time are identified. These

limitations are shown to make even very basic simulation models difficult to

implement using these languages.

4. A set of language constructs is developed that addresses the limitations of existing

languages. These languages constructs are embodied within a new language for

Virtual Time called SimD that was designed and implemented as part of this

research. SimD was implemented on an existing implementation of Time Warp

developed and made available by Jade Simulations International Corporation.

5. The effectiveness of SimD for developing well-structured, efficient, parallel

simulations is demonstrated using several basic examples and two simulations

6

implemented and executed on Time Warp. A performance study of these

simulations is presented.

In addition to the contributions of this thesis, this research resulted in two refereed

conference papers on the subjects of parallel simulation language design [Bae9O] and

parallel simulation performance using Time Warp [Bae9l].

1.5 Thesis Overview

This thesis is intended to be self-contained with respect to concepts such as parallel

simulation, Virtual Time, and Time Warp. It is assumed that the reader has some

familiarity with discrete-event simulation and object-oriented programming.

Chapter 2 examines the characteristics of Virtual Time and Time Warp and how these

differ from sequential simulation. The modeling and language design issues associated

with Virtual Time are separated from those specific to Time Warp. Several proposals in the

literature for enhancing the transparency of Time Warp are examined. The Chandy-Misra

approach is also briefly summarized.

Chapter 3 surveys existing simulation languages for Virtual Time to determine how

they address the issues identified in Chapter 2. One of these languages, Sim++ [Jad9O], is

examined in some detail in that it serves as the foundation for much of the research

presented in this thesis. A set of language design criteria for Virtual Time is proposed,

based on the findings of Chapters 2 and 3.

Chapter 4 investigates by way of short examples the difficulties associated with using

Sim++ to model common types of process interactions. These difficulties are not unique to

Sim++. They are common to several existing languages for Virtual Time. The

7

shortcomings illustrated in this chapter were the primary motivation for the SimD language

proposed in Chapter 5.

Chapter 5 proposes a new language for Virtual Time called SimD, based in part on the

language design criteria outlined in Chapter 3. SimD incorporates simple, elegant solutions

to the shortcomings identified in Chapter 4 without abandoning the basic philosophy and

style of Sim++. The examples employed in Chapter 4 are reimplemented in SimD as

evidence of this claim.

Chapter 6 describes two parallel simulations that were implemented in SimD and

executed on Time Warp. The purpose in developing these simulations was to gain

experience with SimD and ;o test the implementation of SimD on Time Warp. Performance

results are presented for these simulations executing on Time Warp. The successful

implementation and execution of these simulations is provided as evidence that SimD can

be used to develop well-structured, efficient, parallel simulations.

Chapter 7 critiques the SimD language, summarizes the contributions of this research,

presents conclusions drawn from this research, and describes areas requiring further study

and development.

Chapter 2

Departure from Sequential Simulation

This chapter summarizes Virtual Time and Time Warp and outlines key areas of departure

from sequential simulation. The summaries of Virtual Time and Time Warp are sufficient

to understand the modeling and language design issues presented in the remainder of this

thesis. More detailed descriptions are given by Jefferson [Jef85b]. Proposals in the

literature for enhancing the transparency of Time Warp are also examined. These are

important for minimizing implementation-specific modeling and language design issues.

For completeness, the conservative Chandy-Misra approach is also briefly summarized.

This approach is used in several existing languages for Virtual Time surveyed in Chapter 3.

2.1 Virtual Time

One view of physical systems commonly used in simulation is that of a collection of

interrelated components that interact over time. This is the view captured by Virtual Time.

A Virtual Time system consists of independently executing processes whose execution and

interactions are tied to a logical clock that ticks simulation time. Each process has its own

local view of this clock to which are tied the execution and interactions of that process.

In Virtual Time, all interactions are represented by timestamped messages. When a

process sends a message, it must specify a receiver and receive time for the message. The

receiver of a message is the process to which the message is being sent. The receive time

of a message is the simulation time at which the receiver must receive the message. The

receive time must always be greater than or equal to the simulation time of the sending

8

9

process. A process receives all messages sent to it in order of increasing receive time. As

each message is received, the simulation time of the receiving process is advanced to the

receive time of the message. This is the only way in which the simulation time of a process

can advance. The processing of a message may involve updating the state variables of the

receiving process, as well as sending zero or more messages. A process terminates when it

has received all outstanding messages.

Ordering messages on increasing receive time is not in itself sufficient to guarantee

determinism. The implementation of Virtual Time must additionally provide some

mechanism for ordering messages with identical receive times. One possibility is to include

an identifier in each message that is unique among all messages in the simulation and that is

used to further order messages with identical receive times. The identifier must be

independent of the number of processors on which the simulation is executed and the

mapping of processes to processors. In this way, determinism is not affected by the run-

time configuration of the simulation. The exact details of this and other possible

mechanisms for determinism are beyond the scope of this thesis. It is assumed simply that

some mechanism for guaranteeing determinism is provided by the implementation of

Virtual Time.

Virtual Time differs fundamentally from sequential simulation in two ways. First,

Virtual Time processes interact solely by sending and receiving timestamped messages.

Each process has its own local state and does not directly access the states of other

processes or communicate with other processes through shared memory. Second, Virtual

Time simulations must be designed specifically for parallel execution if they are to achieve

significant reductions in execution time. Although it is common in sequential simulations

to decompose a problem into logical processes, this is typically a representational

10

convenience without regard (or need) for the ability of those processes to work in parallel.

The impact of these differences is examined in detail in the sections that follow.

2.2 Impact of Message-Passing

The primary advantage of message-passing is that Virtual Time processes can execute

concurrently on multiple processors and need not progress through simulation time at a

uniform rate. As such, there is a great deal of freedom in how processes are executed, as

long as causality is maintained. This differs from the pseudo-concurrency of sequential

simulation in which only one process executes at a time and in which all processes advance

through time simultaneously. Sequential simulations rely on these invariants to forgo the

synchronization that would otherwise be required for multiple processes to access a

common state.

By relying solely on message-passing for all process interactions, there is no need to

detect or control other forms of interactions through shared memory. For example, on

shared-memory parallel processors, it is possible to provide system calls that processes

invoke before and after accessing a shared variable. The system calls could provide

mutually exclusive access to the shared variable as well as the necessary synchronization

with respect to simulation time. The disadvantage of this approach is that it relies on the

discipline of the user to make these calls wherever necessary. In addition, shared variables

would be much more difficult and costly to implement on distributed-memory parallel

processors.

Another advantage of message-passing is its close correspondence with the event

scheduling concepts of discrete-event simulation. For example, sending a message

corresponds to scheduling an event, and receiving a message corresponds to the execution

11

of the event. These similarities facilitate the development of simulation constructs using

Virtual Time [Lom88b].

Message-passing also provides a conceptually simpler form of process interaction when

compared with traditional sequential techniques. For example, in the sequential simulation

language Simula [Dah72], processes communicate using global memory or by directly

accessing each other's state variables; to synchronize, these processes use a number of

process scheduling constructs built into the language. This dichotomy between how

processes communicate and how they synchronize can result in increased code complexity

and errors [Bae9O, Bir84]. In contrast, Virtual Time uses message-passing for both types

of interactions. Thus, a message can represent communication between processes,

synchronization between processes, or both.

In spite of the advantages of message-passing, the lack of shared memory can also

increase the complexity of some simulation problems. For example, one of the most

difficult types of problems to model using Virtual Time is one in which many or all

processes regularly access a large, global state. A common technique for modeling

problems of this type using Virtual Time is to subdivide the global state into sectors

[Bec88, Cle9O, Con9O, Gol84, Lom88b]. Each sector is a separate process and is

responsible for managing its part of the global state. Accessing the state is accomplished

by sending messages to the appropriate sector process. A problem of this type is examined

in Chapter 6.

Another problem with message-passing is that it is generally several orders of

magnitude slower than interactions through shared memory. As such, messages cannot

generally be employed as one-for-one substitutes for shared memory references. The

communication overhead resulting from such an approach could easily dominate the

execution of a parallel simulation. This implies that simulation models with many

12

interactions between processes may be unsuitable for Virtual Time or, at the very least, will

require careful structuring in order to minimize communication overhead.

2.3 Designing a Parallel Simulation

Although the characteristics of Virtual Time make it suitable for execution on parallel

processors, it is nevertheless possible to write Virtual Time simulations that perform poorly

in a parallel execution. Such simulations might include one or more of the following:

1. Processes that consume a significant fraction of the total processing time of a

simulation. The time required to execute these "hog" processes imposes a lower

bound on the execution time of the simulation, regardless of the number of

processors used to execute the simulation.

2. Multiple processes that coordinate sequentially to complete a task. In a simulation

in which two or more processes coordinate sequentially to complete a task, there is

little or no potential for parallelism among those processes if one or more such

processes are idle waiting for other processes to execute.

3. Processes with a high ratio of communication overhead to computation. If the

number of messages that processes send and receive is sufficiently high, the

performance benefits derived from executing simulation processes in parallel may

be outweighed by communication overhead.

All of the issues outlined above are performance-oriented and specific to Virtual Time.

They are not factors in the design of sequential simulations.

The importance of performance in the design of a Virtual Time simulation can be seen

as a major shortcoming of parallel simulation. As past experience with sequential

13

simulation has shown, performance considerations may be at odds with another key design

objective: readability [Béz88, page 48]:

It is a usual practice to transform a program in order to improve its

performance. This could mean adding new information to the source

program that is completely extraneous to the logical problem. This could

also mean partially or completely destroying the structure of the program.

Because of the need to consider parallelism in parallel computation, this problem is even

more acute than for sequential computation. Jenkins [Jen89, page 27] cites the experience

of a team of researchers at Sandia National Laboratories who achieved between 502 and

637 times speedup running three general, parallel computations on a 1024 processor

hypercube:

When you go to several hundred or a thousand processors, in order to get [a

high degree] of efficiency, you really have to rewrite your code in a special

way. Right now there's no way to get around that. ... If you pick the

wrong algorithm, it definitely will not scale - you can pick an algorithm that

doesn't have enough parallelism to use 1000 processors. Even if you pick

the right algorithm, the way you implement that algorithm in the high-level

language - the way you structure it when you convert it from your

mathematical description into Fortran - is going to make a big difference in

how that code performs on 1000 processors.

14

2.4 The Chandy-Misra Approach

The Chandy-Misra approach is a conservative implementation of Virtual Time. This

approach consists of processes that send and receive timestamped messages along logical,

directed channels connecting pairs of processes. The number of processes and the

connectivity among processes are established at the beginning of the simulation and are

dictated by the requirements of the application. For example, in an application in which

any process may potentially communicate with any other process, a fully-connected

communication topology is required in which each process has a directed channel to every

other process. Processes that send messages to themselves to advance simulation time or

to schedule a future activity have directed channels to themselves as well. Associated with

each channel is a timestamp that corresponds to the receive time of the last message

received along that channel. All messages sent along a channel must be in order of

increasing receive time.

Using the established communication topology and the requirement that all messages

sent along a channel be in order of increasing receive time, it is possible to guarantee that a

process receives all messages sent to it in order of increasing receive time. Specifically,

when a process attempts to receive its next message, the process is blocked until there is at

least one waiting message on each of its incoming channels. The process then receives

from among those channels the message with the lowest receive time. Unfortunately,

blocking a process while awaiting additional messages does not guarantee that those

messages will arrive. For example, it is possible that an incoming channel is empty

because the associated sending process has no messages to send along that channel at the

current simulation time. In fact, the sending process may not send any messages along that

channel for the remainder of the simulation. In these cases, the receiving process would

15

remain blocked even if other messages were waiting on other incoming channels. If all

processes are blocked waiting on one or more incoming channels for messages that never

arrive, the system is deadlocked. The termination of a simulation is a special case of

deadlock in which all processes are blocked and there are no remaining unreceived

messages. Several variants of the Chandy-Misra approach exist to cope with deadlock,

including techniques for deadlock prevention, and deadlock detection and recovery.

Deadlock prevention is accomplished by sending null messages, along channels for

which no application messages exist. In this way, there exist messages along all of a

process' incoming channels. Null messages are not received by the application, however.

Instead, they are used to advance the timestamp on the channels along which they are sent.

In effect, a null message is a guarantee from the sending process that it will not send any

future messages with a lower receive time than that of the null message along the same

channel. In this way, the receiving process has sufficient information to determine whether

or not a waiting application message can be received without the possibility of a future

message with a lower receive time arriving along an alternate, empty channel. The amount

by which a null message advances the timestamp of a communication channel is referred to

as lookahead and is entirely application dependent. For example, the receive time of the

next message a process sends may be entirely dependent upon the next message the process

receives. Although techniques exist for automatically computing lookahead under certain,

limited circumstances [Bag9O], it is generally calculated explicitly by the application.

Deadlock detection and recovery is accomplished by continuously circulating a token

among simulation processes. The token is a special message that gathers global knowledge

about the system sufficient to detect deadlock. Once deadlock is detected, a recovery

algorithm is invoked that locates the message in the system with the lowest receive time and

arranges for, it to be processed next. Instead of the circulating token, shared memory

16

parallel processor implementations can keep a global counter of the number of non-blocked

processes [Fuj87, Ree88]. The system is deadlocked if this counter drops to zero and the

system has not terminated.

2.5 Time Warp

Time Warp is an optimistic implementation of Virtual Time. Unlike the Chandy-Misra

approach, there is no requirement for a statically defined communication topology, no

concept of a channel between processes, and no requirement for messages to be sent in

order of increasing receive time, even when those messages are sent to the same pfcess.

A Time Warp process can send to any process it can identify, including itself, and can send

those messages in arbitrary order. In addition, Time Warp processes can be created and

destroyed dynamically throughout the course of the simulation.

Time Warp, like all optimistic systems, relies on detection and correction of causality

errors, not prevention. Whenever a process receives a message, no attempt is made to

determine whether or not other messages with a lower receive time may yet be sent to the

receiving process. As a result, it is possible for processes to receive messages out of

order, resulting in causality errors that must subsequently be corrected. A causality error is

detected when a message is received by a process whose simulation time has advanced

beyond the receive time of that message. Such a message is referred to as a straggler. The

erroneous computation resulting from a causality error may include an erroneous process

state as well as erroneously sent messages based on that state. Unless the erroneous

messages are eliminated before they are received and processed, secondary erroneous

computations will result in other processes. These, in turn, may lead to tertiary erroneous

computations, and so on.

17

Erroneous computations are eliminated using process rollback and message cancellation

to restore a simulation back to a point that precedes the causality error. After rolling back,

the affected processes resume executing, rereceiving the same messages as before,

excluding erroneously sent messages that have been cancelled, and including the straggler.

Although multiple processes may be involved in an erroneous computation, no global

synchronization is required for rollback and message cancellation. Rollback and message

cancellation are performed on a per process basis.

To support rollback and message cancellation, three data structures are associated with

each process: an input queue, an output queue, and a state queue. The input queue consists

of messages sent to a process and includes both the messages the process has received as

well as those it has not. The messages received by a process remain in the input queue in

case the process rolls back and must rereceive those messages. The output queue consists

of copies of the messages sent by a process. The messages in the output queue are referred

to as anti-messages and are used to cancel erroneously sent messages. The state queue

consists of copies of the state of a process from checkpoints taken throughout the process'

execution. During rollback, the process is restored to a state that precedes the causality

error.

The two most common approaches to message cancellation are aggressive cancellation

and lazy cancellation. Both approaches send anti-messages to cancel erroneously sent

messages. An anti-message is always sent to the same process as the message it is

intended to cancel and, like that message, is inserted into the input queue of the receiving

process. The existence of a message and its anti-message in the same queue causes both to

be deleted as if neither had ever existed. If the erroneous message has already been

processed when the anti-message arrives, the process first rolls back to a state prior to the

receipt of that message. This is referred to as a secondary rollback. A secondary rollback

18

may, in turn, result in tertiary rollbacks, and so on. Aggressive cancellation attempts to

minimize the spread of erroneous computation by sending the anti-messages associated

with an abandoned computation immediately upon rollback. However, sometimes the

messages sent as a result of an erroneous computation may actually be correct. This might

occur, for example, if the processing of a straggler does not change the state of the

receiving process or only changes those portions of the state that do not affect all

subsequently generated messages. To address this phenomenon, lazy cancellation

withholds the anti-messages associated with an abandoned computation and compares them

with the messages generated by the rolled back process in its subsequent forward

computation. Only those messages not regenerated are cancelled. This eliminates the

overhead associated with cancelling and resending identically regenerated messages.

However, the delay required to confirm that an erroneously sent message must be cancelled

may permit erroneous computation to spread further than with aggressive cancellation.

Because the success of one cancellation strategy over another depends on the number of

messages identically regenerated after rollback, the choice of which strategy to use is

application-specific. A performance study by Lomow et al [Lom88a] suggests that lazy

cancellation can outperform aggressive cancellation by as much as a factor of two in

simulations involving feedback. Another study by Reiher et al [Rei9Oa] found that,

although lazy cancellation typically performed slightly better than aggressive cancellation,

the difference in performance was usually only 1-2%.

Fujimoto [Fuj88a] proposes direct cancellation as an optimization of Time Warp for

shared-memory parallel processors. This approach does not use anti-messages to

implement cancellation. Instead, each process maintains pointers to the messages it has

sent. As such, it is possible to identify those messages to be cancelled simply by traversing

the appropriate message pointers. Direct cancellation reduces both the memory and

19

execution overhead of message cancellation since there is no need to create, maintain, or

send anti-messages. Since erroneous messages are cancelled more quickly, the spread of

erroneous computation is also reduced.

Depending on the number and size of messages, anti-messages, and state checkpoints,

the memory available on a parallel processor could easily be exhausted in simply

maintaining the input, output, and state queues of Time Warp processes. Fortunately, the

amount of historical information required by Time Warp to support rollback and message

cancellation can be minimized. Time Warp regularly computes and distributes a value

known as global virtual time (GVT). GVT is the minimum of all process simulation times

and all unreceived message timestamps. This value defines the minimum simulation time to

which any process can ever roll back. Messages and anti-messages with a receive time less

than GVT are no longer required and can be deleted. Similarly, for each process, all state

checkpoints but one with a simulation time less than GVT can also be deleted. The deletion

of messages, anti-messages, and saved states earlier than GVT is referred to as fossil

collection. Jefferson [Jef9O] has shown that fossil collection, in combination with a flow

control mechanism called cancelback, is sufficient for Time Warp simulations to execute in

an amount of memory comparable to that of an equivalent sequential simulation. Executed

under those constraints, a simulation is effectively serialized and unable to achieve

speedup. Several times the minimum amount of memory is generally required for

processes to execute optimistically in parallel. Efficient algorithms for computing and

distributing GVT [Bel9O] are therefore important in that the amount of memory freed

through fossil collection is tied directly to the rate at which GVT advances.

GVT is also used as a commitment threshold for actions such as input, output, error

handling, and termination. In one form or another, each of these actions involves

interactions with the external world outside the scope of the simulation. Ordinarily, any

20

one of these actions on the part of a process is tentative in that the process may roll back as

a result of an erroneous computation. For example, the act of reporting an error could itself

be erroneous if it is the result of a causality error. After the affected process rolls back, the

conditions that led to the error might no longer exist. As a result, interactions with the

external world are not permitted until the interaction is guaranteed to be correct. In Time

Warp, all actions at a simulation time greater than GVT are tentative and subject to rollback.

However, all actions at or earlier than GVT are committed and free from rollback. Thus,

when a process reports an error, the process is blocked until it rolls back or until GVT

reaches the simulation time of the error call. In the latter case, the error is real and the

execution of the simulation is aborted. Input, output, and termination are handled in a

similar manner.

2.6 Time Warp Transparency Issues

Although Time Warp supports the same abstraction as Virtual Time, implementations of

Time Warp cannot currently be made completely transparent to the user. This means that,

in many cases, simulations must be designed specifically for Time Warp in order to achieve

significant reductions in execution time or to execute at all. Specifically, simulations for

Time Warp must deal with the issues of process state size, side effects resulting from

causality errors, and interactions with the external world. This section examines these

issues as well as proposed solutions. In addition, numerous researchers have proposed

optimizations of Time Warp, sometimes at the expense of transparency. One such

optimization, which appears several times in the literature, is examined.

The primary performance issue specific to Time Warp is process state size. Due to the

overhead associated with saving and restoring states, Time Warp simulations must be

21

designed to minimize the size of process states. In one study, Fujimoto [Fuj88a] shows

that the speedup achieved by Time Warp over an equivalent sequential execution declines

from 9 to 2 as the size of process states is increased from 0 to 8000 bytes. Several

approaches to reducing the overhead associated with large states have been developed.

Abrams [Abr89] proposes dividing process states into sub-states and only saving those

sub-states modified during the processing of a given message. Currently, this approach

requires that the sub-states be identified explicitly by the application. In Sim++, it is

possible to write-lock portions of a process' state that the application will never again

modify. This approach is discussed in greater detail in Chapter 3. Like sub-states, write-

locked memory is not transparent to the user. Fujimoto et a! [Fuj88b] propose the use of

special purpose hardware known as the rollback chip to eliminate much of the overhead

associated with saving and restoring states. The rollback chip is designed to save and

restore even large process states in a fraction of the time required using existing software

techniques. In effect, the rollback chip only saves those portions of a state modified by the

processing of a message. In addition, the rollback chip is transparent to an application and

eliminates the need for facilities such as sub-states and write-locked memory that rely on an

application to explicitly optimize state checkpoints. A prototype of this chip is currently

being evaluated [Buz90]. Until the rollback chip is readily available for a wide variety of

parallel processors, techniques such as sub-states and write-locked memory will continue

to be required, as will the need to design simulations to minimize the size of process states.

Another important concern in Time Warp is ensuring that all side effects resulting from

causality errors can be eliminated. Although Time Warp is capable of rolling back the state

of a process and cancelling erroneously sent messages, there are other actions a process can

take that cannot necessarily be rolled back. These include erroneous memory references

outside the state of the process, division by zero, references through null pointers, infinite

22

loops, and stack overflow. Problems of this type are exacerbated by the fact that causality

errors are not deterministic. In the worst case, the effects of a causality error may go

undetected and lead to erroneous simulation results. Clearly, the potential problems arising

from causality errors are ominous. However, my experience with Sim++ suggests that

these problems are relatively easy to avoid. Some discussion of how this is done is

included in Chapter 3. Nevertheless, these problems do exist and current techniques for

avoiding them rely, in general, on the discipline of the user. Resolution of these problems

will depend primarily on the level of support provided by compilers and parallel

processors.

A third difficulty concerns the restrictions imposed by Time Warp on a simulation's

interactions with the external world. Specifically, Time Warp simulations are limited to

those interactions for which the Time Warp implementation provides commitment. This

typically includes basic facilities for input, output, error handling, and termination, but may

exclude other, advanced facilities specific to a given parallel processor. One approach to

this problem is to make the commitment mechanism available to the user. This is the

approach used by Tipc [Ung9O], a multi-lingual Time Warp implementation that augments

existing sequential programming languages with primitives for sending and receiving

timestamped messages. Tipc processes call wait_for_gvt prior to executing any

operation that cannot be rolled back. wait—for—pt blocks the calling process until GVT

is equal to the process' simulation time. As long as the process executes at GVT, its

actions are not subject to rollback. At the same time, however, GVT cannot advance until

the simulation time of the process advances. If many processes execute repeatedly at GVT,

the rate at which GVT advances is reduced, thereby reducing the amount of memory freed

through fossil collection and available for optimistic execution. In addition to its

performance implications, wait_for_gvt is also error prone in that it must be called prior

23

to each interaction with non-Tipc facilities. An alternative is to provide one type of process

that always executes optimistically and is subject to rollback and another type of process

that always executes at GYT. This approach is less error prone in that it clearly separates

processes that can interact directly with the external world from those that cannot. This

approach is used by Sim++ and is discussed in greater detail in Chapter 3. Either approach

can be used to transparently implement facilities requiring commitment.

Finally, a great deal of attention has focused on the development of optimized queries

for Time Warp. A query is a read-only interrogation of a process' state by another process.
11

A query consists of two parts: a query message, representing a request for information, and

a reply message, representing the response. Because the process that initiates a query must

wait for the response, a query is a form of sequential coordination between processes. As

noted in Section 2.3, this type of programming practice can have a negative impact on

performance. Nevertheless, when they exist, queries lend themselves to the following

optimization. If Time Warp encounters a straggler query message, it locates the appropriate

historical state to which the receiving process would ordinarily roll back, processes the

query message using that state, and then restores the process to its future state to continue

executing. This optimization eliminates the recomputation typically associated with a

rollback by relying on the invariant that the processing of a query message does not alter

the state of the receiving process. Typical approaches to this optimization [Bag9O, Gat88,

Jef87} require that the application explicitly identify when a message represents a query or a

reply.

West [Wes88a] proposes an optimization to Time Warp called lazy reevaluation in

which non-side-effecting messages are detected automatically by the Time Warp

implementation. Specifically, after a process has processed a straggler message, the

resulting state is compared to the process' ensuing state from its prior forward

24

computation. If the two states are identical, then the straggler message had no effect on the

process' state and the process is restored to its future state to continue executing. If the two

states differ, then all ensuing states are discarded and the process is forced to reprocess all

messages following the straggler. This optimization is shown to improve performance by

as much as 38% in applications tested. However, the success of lazy reevaluation is

extremely application-dependent. Specifically, the number of non-side-effecting messages

must be sufficiently large to outweigh the additional overhead associated with comparing

process states. Unfortunately, if the non-side-effecting messages are queries, as is often

the case, then a large number of such messages may degrade performance due to the

sequential nature of queries. The advantage of lazy reevaluation over explicit query

messages is that it is transparent to the user and, as such, does not promote an inefficient

parallel programming practice. Indeed, queries have since been removed from the Time

Warp Operating System described in [Jef87} because of this potential for abuse.

2.7 Summary

This chapter identified two fundamental differences between Virtual Time and sequential

simulation. First, Virtual Time processes communicate and synchronize their actions solely

by sending and receiving timestamped messages. Second, Virtual Time simulations must

be designed specifically for parallel execution if they are to achieve significant reductions in

execution time. An assessment of the impact of these differences showed that existing

modeling practices and language design must be adapted to Virtual Time.

Throughout this chapter, a clear distinction was maintained between the Virtual Time

paradigm and its implementation. This distinction reflects the view of this thesis that it is

inappropriate to adapt modeling practices and language design to accomodate specific

25

implementations of Virtual Time. For example, it is inappropriate to rely on the discipline

of the user to decompose a simulation to minimize process state size or to-prevent side

effects of causality errors. There are two reasons for this. First, such adaptations require

that the user understand fundamental characteristics of the implementation of Virtual Time,

even though those characteristics are not inherent to the Virtual Time paradigm or to parallel

processing. Second, additional requirements imposed by a specific implementation of

Virtual Time increase the complexity of the design and implementation of a parallel

simulation and reduce its portability to other implementations of Virtual Time.

An examination of the literature suggests that state size and other Time Warp

transparency issues can be resolved but will require support from compilers, parallel

processors, and special-purpose hardware such as the rollback chip. However, the current

state of the art in parallel simulation is such that these issues do factor into the design of a

simulation. The language survey in the following chapter examines transparent and explicit

techniques provided by existing parallel simulation languages for coping with these issues.

Chapter 3

Languages for Virtual Time

The fundamental differences between Virtual Time and sequential simulation present new

challenges for simulation language design. Many existing sequential simulation languages

provide modeling abstractions that encourage a close correspondence between a model and

its implementation [Bir84, Bir86, Mul82]. However, since these languages are not

designed for parallel processors, the abstractions they provide are not suitable for Virtual

Time. Most notably, they rely on shared memory for process interactions and assume a

pseudo-concurrency in which only one process executes at a time.

One language designed to address these problems is Sim++ [Jad9O], a simulation

library embedded in the object-oriented programming language, C++ [Str86]. Sim++ is a

commercial product developed by Jade Simulations and is designed specifically for

execution on Time Warp. Nevertheless, the modeling abstraction it provides is based on

Virtual Time, rendering the underlying Time Warp executive relatively transparent. This

chapter focuses primarily on Sim++ in that it serves as the foundation for much of the

research presented in this thesis, including the development of the SimD language proposed

in Chapter 5. Sim++ was designed by a team of developers, including myself, and was

implemented by me prior to beginning this research.

The selection of Sim++ as a starting point for this research is appropriate for several

reasons. First, Sim++ provides modeling constructs for Virtual Time similar to those

proposed by a variety of researchers. As such, it is representative of much of the ongoing

research into language design for Virtual Time. Indeed, a number of its language features

are entirely unique among existing and proposed languages. Second, since Sim++ is

26

27

designed for Time Warp, it is not subject to the additional limitations imposed by

conservative implementations of Virtual Time. Third, since Sim++ is a C++ library, it is

possible to experiment with variations of its modeling constructs without the need to write

or modify a compiler. Access to Sim++ and Jade Simulation's parallel processor were

provided for this research through the courtesy of Jade Simulations.

An overview of Sim++ is presented in Section 3.1 and is intended to provide a reading

knowledge of Sim++ sufficient to understand the examples and language design issues

discussed in this thesis. Many of these issues have also been addressed by other

researchers. Section 3.2 compares their solutions with those of Sim++. Section 3.3

proposes a set of language design criteria for Virtual Time based on the characteristics of

the languages surveyed.

Sirn++, SimD, and all of the major examples and benchmarks presented in this thesis

are implemented in C++. For the sake of brevity and clarity, a number of conventions have

been adopted for the C++ code presented throughout this thesis. Typically, the

declarations for local variables in functions are omitted. The context in which these

variables are used is sufficient in most cases to determine their type. An ellipsis (i.e., ...)

is used to indicate where C++ code, unnecessary to the discussion, has been omitted. The

tokens AND, OR, and NOT are used to represent the C++ logical operators &&, 11, and

!. Italic font is used to represent pseudo code used in place ofC++. Finally, the symbol II

denotes the beginning of a C++ comment that continues until the end of the current line.

3.1 The Sim++ Parallel Simulation Language

Sim++ is a process-oriented, discrete-event simulation language embedded in the object-

oriented programming language, C-H-. Sim+-i- simulations can be executed sequentially on

28

a sequential simulator, or in parallel using Time Warp. The sequential simulator serves as

the primary development environment for Sim++ simulations as well as a baseline for

speedup comparisons. Sim++ programs can be moved between the sequential and Time

Warp environments without source code modifications. Sim++ programs are also

transparently scaleable. This means that they can be executed on varying numbers of

processors, also without source code modifications. The number of processors is specified

at run-time in a user-supplied configuration file. Sim++ programs are deterministic

regardless of the run-time configuration used.

Sim++ simulations are defined in terms of entities and events. Entities are

independently executing objects that communicate and synchronize their actions by

scheduling and receiving events. Each entity has its own separate address space and,

generally, cannot access the member variables and functions of other entities or

communicate with other entities using shared memory. Entities and events correspond to

Virtual Time processes and messages.

The actions of all entities and the scheduling of all events is tied to a logical clock that

ticks time in an arbitrary, application-defined time scale called simulation time. Each entity

has its own local view of this clock called the entity's simulation time. Each event is tied to

this clock by means of a scheduled event time that specifies when a given entity should

receive the event. This is the simulation time at which the event occurs. Typically, an

entity receives events in order of increasing scheduled event time, the simulation time of the

entity advancing in step with these event times. Entities can also defer and cancel events,

and simulate the passage of time.

Typically, entities communicate solely by scheduling and receiving events. As an

alternative, entities that communicate frequently can be grouped into clusters. All entities

within a cluster are always executed on the same processor and are synchronized in such a

29

way that they are free to share memory and directly access each other's member variables

and functions.

The execution of a Sim++ simulation is divided into two phases: the initialization phase

and the execution phase. The initialization phase serves to create entities, group entities

into clusters, and initialize global variables. Entities may subsequently read but not modify

the values of these global variables during the execution phase. The execution phase

represents the main actions of a simulation and encompasses both the initialization and

execution of entities.

Like most simulation languages, Sim++ also provides facilities for random number

generation, data collection and reporting, linked list manipulation, formatted input and

output, tracing, and error reporting. These facilities are similar to those of other simulation

languages [Bir86, Mul82] and will not be discussed further except as they appear in

various examples throughout the thesis.

3.1.1 Overview of C++ Concepts and Terminology

C++ is an object-oriented extension of the C [Ker78] programming language. C++

provides support for common object-oriented language features such as data abstraction,

encapsulation, inheritance, and polymorphism. The key language construct by which these

abilities are possible is the class. A class is a user-defined data type consisting of named

data elements, called member variables, and a set of operations, called member functions,

that manipulate those data elements. An instance of a class is referred to as an object. Each

object has its own private copy of the member variables of its class and is subject to the

operations defined for that class. Typically, two of these operations include the creation

and destruction of the objects themselves. A constructor is a member function that

30

specifies how instances of a class are created and initialized. A destructor is a member

function that specifies how instances of a class are destroyed.

3.1.2 Sim++ Data Types

This section describes the major data types provided by Sim++. The C++ declarations for

these data types are shown in figure 3.1.

Class sim_time consists of real numbers greater than or equal to zero and is used to

represent simulation times. Values of this type are used primarily in scheduling events and

simulating the passage of time. For example, when an entity schedules an event, it must

specify a simulation time delay. The sum of this delay and the scheduling entity's

simulation time define the scheduled event time of the event.

Class sim_type consists of integers greater than or equal to zero and is used to

represent event types. When an entity schedules an event, it must specify a value of type

sim_type. This value becomes an attribute of the event and can be used to distinguish

between different kinds of events.

Class sim_entity_id is used to represent entity identifiers.. When an entity is created,

a value of type sim_entity_id is returned to the application. This value uniquely

identifies the newly created entity and is required to identify that entity when scheduling

events for it. Class sim_entity_id defines two member functions, name and

class—name, that can be used to determine an entity's name and class given its entity

identifier.

Class sim_event is used to represent events. When an entity schedules an event, an

object of type sim_event is created to represent that event. An entity receives an event

when it receives the corresponding event object. Every event has a set of attributes,

31

class Sim time { ...
class Sim type { ...

class sim_entity_id

public:
char *nameO;
char *class name Q;

class sim event

public:
sim_entity_id scheduled—by() ;
sim_entity_id scheduled _for 0;
sim time event_time 0;
Sim type type 0;
void *body;

int length();

class sim_event_id

public:
simentity_id scheduled by 0;
sim_entity_id scheduled__for 0;
sim_time event _time 0;
sim__type type 0;

const
const
const
const
const

Sim time
sim_type
sim_entity_id
Sim event
sim event— id

SIM_NO_TIME;
SIM_NO_TYPE;
S IMNO_ENTITY_ID;
S IM_NOE VENT;
S IM_NO__E VENT_ID;

Figure 3.1: c++ Declarations for Sim++ Data Types

specified by the scheduling entity, that define the event. These attributes include the

identity of the entity that scheduled the event, the identity of the entity for which the event is

scheduled, the scheduled event time of the event, the type of the event, and the body of the

event. The body of an event is used to pass arbitrary, application-specific data from the

scheduling entity to the receiving entity. Class sim_event defines the member functions

scheduled_by, scheduled_for, event_time, type, body, and length to access the

attributes of an event, scheduled—by returns an entity identifier denoting the entity that

32

scheduled the event, scheduled—for returns an entity identifier denoting the entity for

which the event is scheduled. event—time returns the simulation time for which the event

is scheduled. type returns the event type of the event, body returns a pointer to the

application-specific data in the body of the event, length returns the length, in bytes, of

the event body. If the body of an event contains no data, body returns a null pointer and

length returns zero.

Class sim_event_id is used to represent event identifiers. When an entity schedules

an event, a value of of type sim_event_id is returned to the scheduling entity. This value

uniquely identifies the scheduled event and can be used to subsequently cancel that event.

Class sim_event_id defines the member functions scheduled_by, scheduled—for,

event—time, and type to access the attributes of an event identifier. The values of these

attributes are the same as those of the event that the event identifier represents.

For each data type, a special value is used to represent invalid or uninitialized instances

of that type. For example, the value SIM_NO_TIME represents a non-existent

simulation time and is the default value of all uninitialized variables of type sim_time.

Similarly, the values SIM_NO_TYPE, SIM_NO_ENTITY_ID,

SIM_NO_E VENT, and SIM_NO_EVENT_ID are defined for the remaining data

types. -

3.1.3 Decomposing a Simulation into Entities

Most physical systems can be viewed as a set of independently acting components that

interact over time. In Sim++, these active components are represented by entities. Each

entity is an instance of an entity class and has its own set of member variables. The entity

class defines these member variables as well as the member functions that manipulate them.

Typically, an entity class is defined for each type of active component in the simulation.

33

Unlike ordinary C++ objects, entities are active objects, like the components they

represent. In other words, they execute continuously, scheduling and receiving events and

updating their individual states. The state of an entity includes its member variables, its

run-time stack, and any data structures dynamically allocated by that entity.

Entity classes are defined using the C++ class construct. They differ from ordinary

classes in three ways, however. First, all entity classes must be derived from the pre-

defined base class sim_entity. Unless derived from class sim_entity, an entity class

inherits none of the attributes or abilities of entities (e.g., the ability to schedule and receive

events). The interface to these attributes and abilities is provided through global functions.

Second, all entity classes must define a constructor and body to represent the actions of

entities of that class. The constructor of an entity serves to initialize the entity's member

variables. The sole argument to an entity constructor is an initialization event that contains

whatever run-time arguments are required to initialize the entity. The attributes of the

initialization event are specified when the entity is created. The body of an entity defines

the actions of that entity with respect to the physical component that the entity is intended to

represent. Third, all entity class declarations must include a call to the macro

SIM ENTITY. This macro hides a number of additional declarations required by the

implementation for the given entity class. As an example, the declaration of entity class

automobile is shown in figure 3.2.

All entities share a common set of entity attributes that can be accessed by the functions

sim_current, sim_çlock, sim_name, and sim_class_name. sim_current returns

an entity identifier that uniquely identifies the calling entity. Entities use this identifier

when scheduling events for themselves. sim_clock returns the current simulation time of

the calling entity. sim_name returns a string that is the name of the calling entity. The

34

class automobile : public sim_entity
public:

II member variables
double Speed;
double Fuel;

II entity constructor
automobile (sim event &init_ev);

II entity body
void bodyO;

SIM ENTITY (automobile);

automobile: : automobile(sim event &iriit_ev)

II initialize member variables
Speed = 0.0;
Fuel = 0.0;

void automobile: : body()
II main actions of an automobile

Figure 3.2: c++ Declaration for Entity Class Automobile

name of an entity is specified when the entity is created. sim_class_name returns a

siring that is the name of the calling entity's class.

3.1.4 Simulation Primitives

This section describes the Sim++ simulation primitives for scheduling, cancelling, and

receiving events, and for simulating the passage of time.

The primitive sim schedule is used to schedule events. An entity can schedule

events for any entity it can identify, including itself. Arguments to sim_schedule include

an entity identifier, a simulation time delay, an event type, and an optional data pointer and

35

length. These arguments serve to define the attributes of the event. The entity identifier

uniquely identifies the entity for which the event is being scheduled. The sum of the

simulation time delay and the scheduling entity's simulation time defines the scheduled

event time of the event. The event type defines the type of the event. The data pointer and

length define the body of the event; if omitted, the body of the event is null.

sim_schedule returns an event identifier uniquely identifying the scheduled event. As an

example, the call

ev_id = simschedule(sim_currentO, 8.0, ARRIVAL, & i, sizeof(i));

schedules an event for the calling entity with a delay of 8.0 time units. ARRIVAL is

assumed to be a constant of type sim_type. The body of the scheduled event contains a.

copy of i, where i is an arbitrary data structure. The return value of sim_schedule is

assigned to the event identifier ev_id.

The primitive sim_cancel is used to cancel an event denoted by a given event

identifier. Cancelling an event guarantees that it will not be received by the entity for which

it was scheduled. As an example, the call

sim_cancel (ev_id);

cancels the event denoted by the event identifier evid. An event can only be cancelled at a

simulation time earlier than its scheduled event time (i.e., before the event occurs).

The primitive sim_wait is used to receive events in order of increasing event time. As

an example, the call

sim_wait (ev);

assigns the calling entity's next event to the event object ev. The simulation time of the

calling entity is advanced to the event time of the received event. If an entity calls

sim_wait after it has received its last event, the entity terminates.

36

The primitive sim_hold is used to simulate the passage of time. The simulated delay

can be interrupted by any event scheduled for the calling entity with an event time that

coincides with the delay. As an example, the call

remaining = sim_hold(1O.O, ev);

simulates a delay of 10.0 time units. If the simulated delay is interrupted, the earliest

interrupting event is assigned to the event object ev, the simulation time of the calling entity

is advanced to the event time of the interrupting event, and sim_hold returns the amount

of simulation time remaining of the original delay. If the simulated delay expires without

interruption, the value SIM_NO_EVENT is assigned to ev, the simulation time of the

calling entity is advanced by 10.0 time units, and sim_hold returns 0.0.

3.1.5 Conditional Selection of Events

Using the primitives sim_wait and sim_hold, an entity receives the events scheduled for

it in order of increasing event time. Alternatively, an entity may wish to select its next

event based on whether or not the event satisfies a particular set of conditions. The

conditional selection of events is referred to as event selection. It allows an entity to receive

events out of order or to simulate delays that are uninterruptable or that can only be

interrupted by certain kinds of events. Events not selected at their scheduled event times

are deferred for later reception. Deferring an event causes it to be received and enqueued

on behalf of the receiving entity. Thus, even though an event is deferred, it is received in

order of increasing receive time, as required by Virtual Time. Sim++ provides four

primitives for event selection: sim_wait_for for receiving events, sim_hold_for for

simulating the passage of time, sim_waiting for counting deferred events, and

sim_select for receiving deferred events.

37

The conditions by which an entity receives or defers events are specified using values

known as predicates. Predicates are C++ objects that test the attributes of events.

Generally, an application does not directly match predicates to events. Instead, predicates

are passed as parameters to the event selection primitives which use them to determine

whether an entity wishes to receive or defer a given event. Several commonly used

predicates are defined by Sim++. Among these are the predicates SIM_ANY and

SIM_NONE that match any and no events, respectively, and the predicate type

sim_type_p. Instances of sim_type_p can be instantiated to match events of a specified

type. As an example, the call

sim_type_p (ARRIVAL)

instantiates a predicate that matches only those events with the event type ARRIVAL. In

addition to these pre-definedpredicates and predicate types, new predicate types can be

defined by individual applications to test any combination of event attributes.

The primitive sim_wait_for is similar to sim_wait except that the calling entity

supplies an additional predicate argument that specifies the set of conditions an event must

satisfy to be received by the entity. As an example, the call

sim_wait_for (aim type_p (ARRIVAL), ev);

assigns the calling entity's next event of type ARRIVAL to the event object ev. The

simulation time of the calling entity is advanced to the event time of the received event. All

events of the calling entity that have not been received and that precede the selected event

are deferred.

The primitive sim_hold_for is similar to sim_hold except that the calling entity

supplies an additional predicate argument that specifies the set of conditions an event must

satisfy to interrupt the simulated delay. As an example, the call

aim hold Lfor(1O.O, SIM NONE, ev);

38

simulates an uninterruptable delay of 10.0 time units. All events of the calling entity that

coincide with this delay are deferred. Alternatively, if a call to sim_hold_for is

interrupted by an event satisfying a given predicate, only those events of the calling entity

that have not been received and that precede the interrupting event are deferred.

The primitive sim_waiting is used to count deferred events satisfying a given

predicate. As an example, the call

count = sim_waiting(SIM_ANY);

assigns to count the total number of deferred events of the calling entity.

The primitive sim_select is used to receive a deferred event satisfying a given

predicate. As an example, the call

found = 3im_select(sim_type_p(ARRIVAL), ev);

selects the calling entity's earliest deferred event of type ARRIVAL. If a deferred event of

this type exists, it is assigned to the event object ev and sim_select returns the boolean

result true. Otherwise, the value SIM_NOE VENT is assigned to ev and sim_select

returns false.

3.1.6 Type Checking

As previously noted, the body of a Sim-H- event can contain arbitrary, application-specific

data. Unfortunately, to achieve this level of flexibility, the type information associated with

data copied into and out of the body of events is lost. Without type checking, it is possible

to copy data out of the body of an event into a variable whose type differs from that of the

data. Errors of this type may go undetected and lead to erroneous simulation results. To

address this problem, Sim++ supports a simple form of run-time type checking that allows

entities to include a type string in scheduled events. The type string is the type name of the

data in the body of the event and is optionally specified as an argument to sim schedule.

39

When accessing the body of the event, the receiving entity can optionally specify the type

name of the variable into which it intends to copy the given data. Sim++ compares the two

type names to ensure that the type of the data in the body of the event is the same as the

type of the variable into which the data will be copied. As an example, the call

Sim time time = simclockO;
Sim schedule(..., &time, sizeof(time), "Sim time");

schedules an event with an event body containing a copy of the simulation time at which the

event was scheduled. The type string sim_time corresponds to the type name of time

and is included as an attribute of the event. In turn, the call

Sim _wait (ev);
time = *(Sim time *) ev.bocly("sim_time");

is used to receive the scheduled event and safely copy the data out of the body of the event

into the variable time. The type string sim_time is compared for equality to the type

string attribute of the event object. The only way this type checking mechanism can fail is

if both of the type strings specified in the two individual calls are identical but incorrect. As

shown in the second of the examples above, this is highly unlikely because the type name

of the variable into which the data will be copied appears alongside every occurrence of the

corresponding type string specified when accessing the body of the event. (The type name

is used in a cast operation that converts the untyped pointer returned by body to the type of

the variable into which the data will be copied.)

3.1.7 Initialization and Execution of Sim++ Simulations

The initialization phase is a special phase in the execution of a Sim++ program that

precedes the actual simulation, represented by the execution phase. The creation of entities

and clusters and the initialization of global variables are restricted to the initialization phase.

Sim++ does not support the dynamic creation and destruction of entities nor does it permit

40

global variables to be modified during the execution phase. However, entities are permitted

to read the values of global variables during the execution phase.

Since entities are not permitted to modify global variables, they cannot be used for

communication among entities. Instead, global variables are typically used to store run-

time parameters (e.g., the duration of a simulation) and entity identifiers denoting the

entities in the simulation. They can also be used as data bases for static information (e.g.,

airport locations in an air traffic control simulation). The use of global variables reduces

the amount of data that must be distributed to entities at creation and minimizes the size of

entity states in that global data need not be duplicated within each entity's local state.

An application specifies the actions of the initialization phase by defining the function

sim_initialize. To ensure that global variables are accessible to all entities on all

processors of a parallel execution, identical invocations of sim_initialize are executed

concurrently on all processors. In this way, the same values are assigned to the same

global variables on every processor. However, to prevent sim_initialize from creating

the same entities on every processor, Sim++ only creates an entity on the one processor to

which that entity has been assigned according to a user-supplied, run-time configuration

file. It is impossible for any given invocation of sim_initialize executing on a given

processor to tell which entities were or were not created on that processor. In this way, a

simulation is indepedent of the number of processors on which it is executed as well as the

way in which entities are mapped to processors.

Simulations create entities by calling the function sim_create and passing it the name

of an entity class and an entity name. The entity class specifies the type of entity to be

created. The entity name must be unique and it serves as the name of the newly created

entity. Additional arguments to sim_create include an event type, and an optional data

pointer and length. The event type, data pointer, and length are used to construct an

41

initialization event that is passed to the constructor of the newly created entity as its sole

argument. sim_create returns an entity identifier denoting the newly created entity. As

an example, the call

autol— id = simcreate("automobile", "autol", INIT);

creates an instance of entity class automobile called autol. INIT is assumed to be a

constant of type sim_type. The return value of sim_create is assigned to the entity

identifier autol-id. If autol—id is a global variable, then all entities can use this

identifier during the execution phase to schedule events for auto!.

The execution phase follows the initialization phase and encompasses both the

initialization and execution of entities. The initialization of an entity is represented by its

constructor. The execution of an entity is represented by its body. At the beginning of the

execution phase, all entity constructors begin executing at simulation time 0.0. When an

entity's constructor returns, its body is automatically executed. When the entity's body

returns, the entity terminates. Alternatively, an entity also terminates if it waits for an event

that never occurs. The simulation terminates when all entities have terminated.

3.1.8 Clusters for Shared Memory among Entities

A cluster is a group of entities that can share memory and directly access each other's

member variables and functions. Clusters are intended to model physical systems that

contain multiple, independently acting components whose interactions are too frequent to

be efficiently represented by scheduling and receiving events. The use of clusters may

reduce the number of events required for modeling such systems but at the expense of

whatever parallelism the clustered entities could achieve by executing concurrently on

multiple processors.

42

Clusters of entities can only be created during the initialization phase. Once a cluster

has been created, all entities within that cluster remain so for the duration of the simulation.

The functions sim_begin_cluster and sim_end_clüster are used to create clusters of

entities. A call to sim_begin_cluster opens a new cluster while a call to

sim_end_cluster closes the current cluster. All entities created while a cluster is open

become part of that cluster and can directly access and share memory with other entities

within that same cluster. Entities created when there is no open cluster are completely

independent of other entities and cannot communicate or synchronize with other entities

except by scheduling and receiving events. The following code fragment creates a cluster

of two entities, autol and driver!:

Sim_ begin_ cluster 0;
autol_id = sim_create("automobiJ-e", "autol", INIT);

drivi_id sim_create("driver", "driven", INIT);
sim_end_cluster 0;

An entity accesses the states of other entities in its cluster in the same way that it

accesses a dynamically allocated object within its own state. As such, the entity must first

obtain a pointer to the entity whose state it intends to access. The function

sim_entity_ptr is used to obtain a pointer to an entity given the entity's class name and

entity identifier. As an example, the call

P = (automobile *) simentity_ptr("automobile", autol_id);

assigns to p a pointer to the entity denoted by autol_id. The given class name is used for

type checking similar to that described for events. Only entities within the same cluster can

obtain pointers toone another. sim_entity_ptr returns a null pointer if the calling entity

is not part of a cluster containing the entity denoted by the given entity identifier. Given a

pointer to entity auto!, the call

p->Speed

might be used by entity driverl to determine the current speed of the automobile.

43

Although clustering allows entities to communicate with relatively little overhead, the

entities within a cluster must still schedule and receive events in order to synchronize with

one another and to interact with other entities outside of the cluster.

3.1.9 Preventing Side Effects of Causality Errors

Sim++ refers to the side effects of causality errors as transient errors. Many such errors

are trapped by Sim++. For example, if a simulation primitive is invoked with erroneous

arguments (e.g., a negative delay to sim_schedule), Sim++ invokes the error routine

sim error which blocks the calling entity until the entity rolls back or until the error is

committed by the advance of GYT. In the former case, the error is transient and will be

corrected. In the latter case, the error is real and the execution of the simulation is aborted.

Real errors are typically detected and eliminated during the development of a simulation

executing on the sequential simulator.

Not all transient errors are trapped by Sim++. Some must be trapped by the application

itself. Most of these can be prevented by using the type checking mechanism described in

Section 3.1.6 when moving data into and out of the body of events. The type checking

mechanism invokes sim_error whenever a type conflict occurs. A causality error can lead

to a transient type conflict when an entity expects to receive one type of event and actually

receives another. Based on its expectations, the entity may try to copy data out of the body

of the event that differs in type from the data actually in the body of the event. The type

checking mechanism ensures that such transient type conflicts are handled transparently.

For other transient errors; the application must detect them and call sim_error explicitly.

For example, if an integer in the body of an event is to be used as divisor in an arithmetic

operation, the application should first check that the integer is non-zero. The application

can similarly check the validity of array indices and other sources of transient errors.

44

Although many of the techniques for preventing transient errors are additional burdens

imposed on the user by Time Warp, many of these techniques are also appropriate for

developing correct sequential simulations. For example, all of the errors noted here and in

Chapter 2 as potential side effects of causality errors can occur in sequential simulations as

well. What does differ is that error checks can be removed from sequential simulations for

efficiency once the simulation is thought to be correct. Since transient errors can occur

even in correct simulations executing on Time Warp, transient error checks are always

required unless the resulting errors can be trapped by the language or Time Warp.

3.1.10 Language Support for Time Warp

All of the language features of Sim++ presented so far are based on Virtual Time or

extensions of Virtual Time. As such, they are not specific to Time Warp. Specifically,

entities and events correspond to Virtual Time processes and messages, and the simulation

and event selection primitives are modeling abstractions that can be implemented entirely in

terms of an entity's ability to schedule and receive events [Lom88b]. The initialization

phase and clusters are extensions of Virtual Time that reduce overall memory usage and

event communication overhead. As such, they are appropriate for any implementation of

Virtual Time.

This section presents two Sim++ language features designed specifically for Time

Warp: write-locked memory and interface entities. Write-locked memory is intended to

reduce Time Warp state checkpoint overhead. Interface entities " allow Time Warp

simulations to interact directly with architecture-specific facilities not supported by Sim++.

These facilities are important for two reasons. First, the existence of these facilities

demonstrates shortcomings in Time Warp for which no viable, transparent solutions

45

currently exist. Second, the SimD language interface proposed in Chapter 5 relies on

write-locked memory to transparently optlmi7e the SimD implementation.

Write-locked memory allows an entity to lock and unlock portions of its state. By

locking a portion of its state, an entity guarantees to the Time Warp implementation that it

will no longer modify that portion of its state. Like global variables, the entity may

subsequently read but not modify the values of data structures in that portion of its state.

As a result, it becomes unnecessary to include that portion of the state in subsequent entity

state checkpoints. By unlocking a previously locked portion of its state, an entity informs

the Time Warp implementation that it intends to subsequently modify some or all of that

portion of its state. Once unlocked, that portion of the state is once again subject to state

checkpoints. The function sim_write_lock is used to lock dynamically allocated data

structures. The ability to unlock a portion of an entity's state is not yet supported. No run-

time error checking is performed to ensure that an entity does not attempt to modify write-

locked memory. This facility relies instead on the discipline of the user.

Interface entities are a special type of entity that can interact directly with architecture-

specific facilities not supported by Sim++. This entity type is intended to supplement the

formatted input and output facilities provided by Sim++. Interface entities are derived from

class sim_interface_entity. Unlike entities derived from class sim_entity, interface

entities do not execute optimistically. Instead, interface entities only execute when GVT is

equal to their entity simulation time. As a result, the events these entities schedule and

receive, and the actions that they take are always known to be correct and not subject to

rollback. Unfortunately, interface entities tend to slow the advance of GVT, potentially

slowing the execution of an entire simulation. As such, few if any interface entities are

used in most simulations.

46

3.2 Comparing Sim++ to Other Languages

This section compares Sim++ to other parallel simulation languages and systems, focusing

primarily on alternative solutions to issues addressed by Sim++ or to unique capabilities

not supported by Sim++. In addition to the languages surveyed in this chapter, other

noteworthy systems include the Time Warp Operating System (TWOS) [Jef87] and Tipc

[Ung9O]. Simulations written for TWOS have achieved speedups of an order of magnitude

or more across a variety of application domains [Ebl89, Hon89, Pre89b, Wie89].

However, TWOS provides only a minimal interface for the development of event-oriented

simulations [Jef87]. Tipc is a multi-lingual Time Warp implementation that augments

existing sequential programming languages with primitives for sending and receiving

timestamped messages. Each Tipc process is an independently executing sequential

program within a Tipc system.

3.2.1 Extended Virtual Time

The simulation and event selection primitives provided by Sim++ are based on a parallel

simulation language called Extended Virtual Time defined by Lomow [Lom88b]. Extended

Virtual Time combines the elements of Virtual Time and process-oriented simulation to

provide a language for process-oriented parallel simulation. Extended Virtual Time defines

primitives for scheduling, cancelling, receiving, deferring, and ignoring events, and for

simulating the passage of time. Two strategies for implementing Extended Virtual Time are

defined: an application approach and an integrated approach. The application approach

implements Extended Virtual Time as an application layer above Virtual Time,

implementing all of the language primitives solely in terms of a process' ability to send and

receive messages. This approach incurs excessive overhead because it is restricted by the

47

semantics of Virtual Time. The integrated approach implements Extended Virtual Time by

integrating the language primitives with an underlying Time Warp synchronization

mechanism. This approach requires modifications to the Time Warp implementation but is

shown to reduce execution time, memory usage, and communication overhead in a variety

of benchmark simulations. Currently, Sim++ is implemented using the application

approach. Given the close correspondence between Sim++ primitives and Extended

Virtual Time primitives, the performance optimizations in the integrated version of

Extended Virtual Time can also be implemented in Sim++. This is significant in that it

allows simulations to be described using primitives based on Virtual Time while allowing

those primitives to be transparently optimized for Time Warp. The remainder of this

section summarizes these optimizations.

Deferred events in Sim++ and Extended Virtual Time result when an entity receives

events out of order based on whether or not the events satisfy a given predicate. All events

not received at their scheduled event times are deferred on behalf of the entity for which

they are scheduled. In this way, an entity need not explicitly receive and buffer events that

it does not wish to process as scheduled. This same effect can be achieved through event

selection, allowing the language to implicitly buffer deferred events on an entity's behalf.

The application version of Extended Virtual Time maintains a list of deferred events as part

of each entity's state. The language defers an event by adding a copy of the event to the

entity's deferred event list. My own experience with Sim++ suggests that tens of deferred

events per entity are not uncommon in some queueing models. Since each event can be

hundreds or more bytes in length, the size of an entity's state can be thousands or tens of

thousands of bytes in size depending on the number of events the entity has deferred. The

integrated version of Extended Virtual Time integrates the deferred event list with the input

queue of the underlying Time Warp process. This approach requires that the semantics of

48

the input queue be modified to represent not only received and unreceived messages, but

also deferred messages. The effects of rollback and fossil collection on the input queue

must be modified to accomodate these new semantics. The advantage of the integrated

approach is that it eliminates the deferred event list from an entity's state. This optimization

takes advantage of the fact that, as long as an event is deferred, it is not subject to

modification and therefore need not be included in entity state checkpoints.

Both Sim++ and Extended Virtual Time provide primitives for simulating the passage

of time. One way to represent a simulated delay is for an entity to schedule an event for

itself in the future and then wait to receive that event. This is the approach used by the

application version of Extended Virtual Time. The event is scheduled and received

implicitly by the language primitive and is transparent to the application. Associated with

each such event is a message in the underlying Time Warp process' input queue, an anti-

message in the output queue, and a copy of the entity's state in the state queue when the

event is received. The events used to implement simulated delays differ from other kinds

of events in that they are always scheduled by an entity for itself and they contain no

application-specific information except that they mark the end time of the delay. The

integrated version of Extended Virtual Time uses this knowledge, combined with a scan of

the current state of the input queue, to eliminate the need for both the message and the anti-

message. A copy of the entity's state is still required, however. In effect, the message and

anti-message are implied by the state in the state queue. Specifically, if a state exists for

which there is no corresponding message in the input queue, then the missing message

represents the end of a simulated delay. The receive time of the missing message can be

determined from the timestamp on the state. As a result, the simulated delay can be

implemented without requiring that the entity schedule an event for itself. This optimization

eliminates the execution overhead associated with allocating and inserting a message and

49

anti-message into the input and output queues, and deallocating the message and anti-

message during fossil collection. In addition, this approach requires less memory since it

allocates fewer messages.

Both Sim++ and Extended Virtual Time allow entities to cancel previously scheduled

events. An event can only be cancelled at a simulation time earlier than its scheduled event

time (i.e., before the event occurs). The application version of Extended Virtual Time

cancels an event by transparently scheduling a cancel event to preempt the original event.

The cancel event is scheduled for the same entity as the original event but at an earlier event

time. In this way, an entity always receives a cancel event before the event that it preempts.

The cancel event includes an event identifier denoting the event being cancelled. The

receiving entity stores the event identifier in a cancelled event list in the entity's state. Each

application event received by an entity is compared against the event identifiers in that

entity's cancelled event list. If a matching event identifier is found, the newly received

event is ignored and the event identifier is deleted from the cancelled event list. These

actions are completely transparent to the application. The integrated version of Extended

Virtual Time uses anti-messages to implement event cancellation. Specifically, when an

entity cancels an event, the anti-message for that event is sent to annihilate the

corresponding message in the receiving entity's Time Warp input queue. Changes to

rollback, fossil collection, and the output queue of Time Warp processes are required to

correctly implement event cancellation using anti-messages. For example, it must be

possible to uncancel previously cancelled events in case of a rollback. Lomow proposes

implementations of this optimization for both lazy and aggressive cancellation. The

advantage of the integrated approach is that it eliminates the cancelled event list from an

entity's state and, since the integrated approach uses an event's own anti-message for

cancellation, no additional memory is required to maintain an anti-message for a cancel

50

event. However, in the integrated approach, an event can only be cancelled by the entity

that scheduled the event since only it has the corresponding anti-message. In the

application approach, the entity that schedules the cancel event need not be the same as the

entity that scheduled the original event. Lomow et al [Lom9l] describe a variation of the

integrated approach with the same flexibility as the application approach.

3.2.2 ModSim

ModSim [Bry89, Wes88b] is a process-oriented, discrete-event simulation language

designed to support the development and execution of large simulations. ModSim was

developed for the U.S. Army and is based on a prototype design known as the Language

for Concurrent Simulation (LCS) [Wes85]. One of the initial design objectives was that

simulations written in LCS be capable of executing on Time Warp. Currently, ModSim

executes in a number of sequential environments, but has not yet been completely

implemented on Time Warp.

ModSim is an object-oriented language with a syntax similar to Modula-2. Classes in

ModSim are referred to as object types while member variables and member functions are

referred to as fields and methods, respectively. Like Sim++, ModSim defines a special

type of object, called ProcessObj, to represent processes. ModSim processes are unique

in that each process can model multiple, independently acting components. Each

component is represented by a time-elapsing method referred to as an activity. From the

user's perspective, each activity is an independently executing method. The coordination

and execution of multiple activities within a single process is managed transparently by the

process itself. As such, a ModSim process is similar to a cluster of entities in Sim++.

Unlike the entities in a cluster, however, activities can be created and destroyed

51

dynamically throughout the course of a simulation. The same effect can be achieved in

Sim++, but requires dynamic creation and destruction of entities.

A major representational difference between ModSim processes and Sim++ clusters is

the way in which the two constructs model the states of multiple, independently acting

components. A ModSim process is a single object with one or more independently

executing methods. A Sim++ cluster is a group of one or more independently executing

entity objects. As such, a ModSim process is more appropriate for modeling multiple,

independently acting components that share a single state. A cluster is more appropriate for

modeling multiple, independently acting components where each component has a well-

defined state. This difference is primarily one of representational convenience and

conceptual clarity since both approaches are merely data abstractions for the modeled state.

ModSim processes interact using ASK and TELL statements to invoke each other's

ASK and TELL methods. ASK methods are synchronous, meaning that the calling

process waits for the called method to complete before continuing to execute. In addition,

ASK methods are non-time-elapsing. As such, the simulation time of the calling process

is unaffected by a call to an ASK method. As an example, the call

ASK Autol TO IncreaseSpeedBy(1O.0)

invokes the ASK method IncreaseSpeedBy of the process denoted by Auto!.

Alternatively, an asynchronous TELL statement can be used to schedule a method to

execute without requiring that the calling process wait for the method to complete. As an

example, the call

TELL Shipi TO SailTo("Alaska") IN 5.0

schedules the TELL method SailTo to begin executing in 5.0 time units. The scheduled

method will execute as an independent activity in the process denoted by Ship!. Upon

executing the TELL statement, the calling process continues to execute. TELL methods

52

can execute a WAIT statement that allows them to simulate the passage of time, wait for

the completion of other tell methods, or synchronize with other methods using special

objects known as triggers.

ASK and TELL statements are similar to event scheduling in Sim++, except that they

define process interactions in terms of object methods and parameters. This approach has

significant appeal since it is completely type-safe and adds few additional features to the

object-oriented interface to support process interactions. For example, ASK methods are

also used to define interactions among non-process objects. Thus, the call

ASK Autol TO IncreaseSpeedBy(1O.0)

is identical regardless of whether Autol denotes an object in the calling process' state or

another process. This approach does have a drawback in the context of parallel simulation

since the cost of object and process interactions may differ by several orders of magnitude.

By using the identical syntax for both types of operations, these differences are not explicit

to the user.

Although designed for Time Warp, ModSim contains a number of language constructs

not suited to parallel execution. Chief among these are interactions through shared and

global memory. The developers of ModSim concede that language constructs such as

global variables and ASK methods for process interactions should be avoided when

executing on Time Warp [Bry89]. ASK methods are deemed inefficient because they

block the calling process for the time required to execute the ASK method in a remote

process.

3.2.3 Languages for Conservative and Optimistic Systems

A number of researchers have proposed parallel simulation languages intended for

execution on both conservative and optimistic implementations of Virtual Time. Because of

53

the fundamental differences between conservative and optimistic systems, all of these

languages include facilities specific to individual implementations. In some cases these

facilities simply enhance performance while in others they are mandatory for correctness.

Maisie [Bag9O] extends the C programming language with constructs for message-

based simulation. The central construct of Maisie is the wait statement. wait provides

functionality similar to the event selection primitives in Sim++. It allows Maisie entities to

receive and defer messages, and simulate the passage of time, wait is also used to

transparently extract information from an application to support the underlying

implementation of Virtual Time. For example, in certain limited circumstances, wait can

be used to automatically calculate lookahead for conservative implementations. wait can

also be used for optimizations of Time Warp similar to those defined for Extended Virtual

Time to reduce the overhead associated with buffering deferred messages. In spite of these

transparent optimizations, additional information must still be specified explicitly by the

application. For the Chandy-Misra approach, entities must execute a system call for each

entity identifier they distribute to other entities. The implementation uses this information

to maintain a connectivity graph of the entities from which each entity can receive

messages. When a Maisie program executes on Time Warp, entities can send special probe

messages that are used for optimized, read-only queries of other entities' states. This

optimization was discussed at length in Chapter 2.

Yaddes [Pre89a] is a simulation specification language based on the C programming

language. The purpose of Yaddes is to evaluate the performance of different optimistic and

conservative implementations of Virtual Time. For efficiency, Yaddes uses an event

orientation rather than a process orientation. Yaddes programs are defined in terms of

logical processes, input channels, and output channels. As such, they conform to the

Chandy-Misra model for parallel simulation. This approach sacrifices some of the

54

flexibility of Virtual Time and Time Warp for a programming model that can be supported

by both conservative and optimistic systems. For example, Yaddes programs must provide

explicit information to prevent deadlock in conservative systems. However, the system

calls that provide this information have no effect in sequential and Time Warp

environments. As such, a Yaddes program written for a conservative implementation will

execute sequentially and on Time Warp without source code modifications. The reverse is

not true, however.

Common Programming Structure (CPS) [Abr89] is a C++ library for message-based

simulation. Like Yaddes, the purpose of CPS is to evaluate the performance of different

optimistic and conservative implementations of Virtual Time. CPS also uses an event

orientation. Nevertheless, CPS has many features similar to Sim++. Most notably,

initialization and execution phases, read-only global variables, read-only state (similar to

write-locked memory), and a configuration file for mapping processes to processors. As

with Sim++, the configuration file eliminates the need to specify the number of processors

or the mapping of processes to processors directly in the application, making CPS

programs transparently scaleable. One language feature of CPS not present in Sim++ is a

global directory of processes. The directory can be queried for lists of processes of a given

type. The directory eliminates the need for an application to create and maintain its own

arrays of process identifiers. The directory can also be used by separately compiled and

initialized program modules to determine the number and types of other processes in a

simulation.

55

3.3 Language Design Criteria for Virtual Time

This section outlines key language design criteria for Virtual Time. These criteria are based

on the fundamental differences between Virtual Time and sequential simulation, and on the

characteristics of the languages surveyed in this chapter. These criteria are in addition to

basic design goals such as simplicity, expressiveness, and extensibility. Several of these

criteria were first proposed by Abrams and Lomow [Abr9O].

Parallel Efficiency. Unfortunately, no decomposition techniques exist that can enforce

performance-oriented design considerations. However, languages for Virtual Time can

encourage appropriate programming practices by providing language constructs suited to

parallel execution. Of the languages surveyed, Extended Virtual Time most satisfies this

language design criterion. Many of its primitives can be integrated with Time Warp,

resulting in reduced execution time, memory usage, and communication overhead. At the

same time, these primitives provide capabilities common to process-oriented simulation.

The simulation and event selection primitives provided by Sim++ are based on Extended

Virtual Time and can be similarly optimized. A subset of these optimizations has also been

proposed for Maisie.

Explicit Costs. In order for users to develop efficient parallel simulations, they must be

aware of the costs associated with various alternative implementations of a simulation

model. Specifically, if an operation in a parallel simulation differs significantly in cost

from the equivalent operation in a sequential simulation, then those operations should

appear obviously different to the user. This would suggest, for example, that languages

for Virtual Time should not support interactions. through shared memory where such

interactions are implemented using message-passing. One alternative to this is the approach

used by Sim-i-+ which allows shared memory interactions, but only for entities in the same

56

cluster. Of the languages surveyed, ModSim least satisfies this language design criterion.

For example, the syntax of ModSim process interactions is identical to that of object

interactions. On a parallel processor, the cost of these operations typically differs by

several orders of magnitude. This language design criterion is based on the current state of

the art in parallel processors. Improved hardware support to reduce message-passing

overheads could reduce the need for this criterion.

Determinism. Given the same input, a simulation should produce the same results

regardless of its run-time configuration. Determinism is crucial for repeatable simulation

results and repeatable errors during debugging. All of the languages surveyed are

deterministic as long as determinism is provided by the underlying implementation of

Virtual Time.

Type-Safety. Even when simulations execute deterministically, the existence of

multiple, concurrently executing processes as components of a single simulation make

parallel simulations more difficult to debug than sequential simulations. As such, the

ability of type-safety to promote the development of defect-free simulations is even more

important for parallel simulation than for sequential simulation. Of the languages surveyed,

ModSim is most type-safe with compile-time type checking for both object and process

interactions. C++ provides compile-time type checking for object interactions, but not for

the event and message-based interactions of Sim++, Extended Virtual Time, and CPS.

Sim++ provides optional run-time type checking for events.

Transparency of the Implementation. This criterion is based on the conclusion in

Chapter 2 that it is inappropriate to adapt modeling practices and language design to

accomodate specific implementations of Virtual Time. Users should instead concentrate on

the requirements dictated by Virtual Time, while the underlying implementation should be

transparent to the application. None of the languages surveyed fully satisfy this criterion,

57

either because they rely to some degree on the discipline of the user, or because they

provide explicit language support for the implementation of Virtual Time. This is due to the

current state of the art in parallel processors and parallel simulation. Depending on the

implementation, transparency may only be possible with compiler and hardware support.

Transparent Scaleability. Simulations should be executable on varying numbers of

processors and with different mappings of processes to processors without source code

modifications. Typically, this requires some form of run-time configuration file. The

advantage of this approach is that it is not necessary to modify and recompile a simulation

simply to change its run-time configuration. And, by making the run-time configuration

transparent to the application, the application cannot inadvertently violate determinism by

executing different application code for different run-time configurations. Like

determinism, transparent scaleabiity is generally provided by the implementation of Virtual

Time.

Portability of Applications. Application programs should be capable of executing

sequentially or in parallel on multiple operating systems and architectures without source

code modifications. Together, transparent scaleability and portability of applications

simplify the development of parallel simulations because it is possible to develop software

on a workstation in a well supported environment while ensuring that the simulation can be

moved, without source code modifications, to a parallel processor for production runs.

Sim++ interface entities are an example of a language feature that violates this design

criterion. Interface entities are designed specifically for interactions with architecture-

specific facilities not supported by Sim++. Since Sim++ already provides facilities for

formatted input, output, tracing, and error reporting, the majority of simulations do not

require their own interface entities. As a result, interface entities can be seen as a

reasonable exception to this design criterion.

58

Enforced Restrictions. Virtual Time imposes special restrictions on parallel simulations

not present in sequential simulations. For example, interactions through shared memory

are restricted to varying degrees in most of the languages surveyed. However, this and

other restrictions are not enforced by these languages, relying instead on the discipline of

the user. Violations of these restrictions that go undetected may lead to erroneous

simulation results. The biggest obstacle is that many of these restrictions cannot be

enforced without compiler support. In some cases, the restrictions cannot be enforced until

run-time, thereby increasing execution overhead. An example of the latter is read-only

global variables in Sim++ and CPS, which can only be modified during the initialization

phase of a simulation.

3.4 Summary

This chapter surveyed six parallel simulation languages, from which were developed eight

language design criteria for Virtual Time: parallel efficiency, explicit costs, determinism,

type-safety, transparency of the implementation, transparent scaleability, portability of

applications, and enforced restrictions. None of the languages surveyed fully satisfies all

of these criteria. In some cases, this is justified in that the purpose of languages such as

CPS and Yaddes is to evaluate the performance of different optimistic and conservative

implementations of Virtual Time. As such, these languages provide an interface adequate

for researchers who wish to focus on the performance of Virtual Time implementations,

rather than on language design for parallel simulation. In contrast, Sim++ and ModSim are

both intended for the development of real simulations by industry and government with

little or no experience in parallel simulation. In the case of ModSim, portions of the

language will need to be redesigned to eliminate inherently sequential constructs. In

59

addition, both languages will require compiler support to enhance the transparency of the

underlying Time Warp implementation and to enforce restrictions. Currently, Sim++ is

implemented as a library in C++. A compiler and parallel implementation of ModSim are

under development.

Chapter 4

Limitations of Existing Languages

This chapter investigates various difficulties associated with using Sim++ to model

common types of entity interactions. To illustrate these difficulties, a basic queueing model

and several simple extensions to that model are presented, as well as a facility for resource

competition among entities. The difficulties encountered are due primarily to an inability to

extend or restrict the behaviour of the existing simulation and event selection constructs
q

according to the specific requirements of the application. These shortcomings are not

unique to Sim++. They can also be found in Extended Virtual Time and Maisie, which

have constructs similar to the simulation and event selection primitives of Sim++. The

shortcomings illustrated in this chapter were the primary motivation for the SimD language

proposed in Chapter 5. No further evaluation of ModSim was attempted since ModSim is

still being revised for use with Virtual Time and Time Warp.

4.1 The Barber Shop Queueing Model

The barber shop is a simple queueing system in which customers arrive at randomly

distributed times and wait for service. The barber shop has one barber capable of

providing up to three services for each customer: a shave, a hair wash, and a haircut. All

customers are served in the order they arrive.

This model can be implemented in Sim++ using two entities: a source entity to generate

customers arriving at the barber shop and a barber entity to serve customers. Customers

60

61

1 void source::body()
2
3
4
5
6
7
8
9 •void barber: : body()
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

while (aim clock() < Duration)

sim_h91d_for (Interarrival_time. sample 0, SIM_NONE, ev);
sim_schedule(Barber_id, 0.0, CUSTOMER);

while (true)
if (sim_waiting(sim_type_p(CUSTOMER)))

sim select (aim type_p (CUSTOMER), ev);
else

aim_wait_for (aim_type_p (CUSTOMER), ev);

if (customer wants shave)
sim_hold_for(Shave_time. sample 0, SIM_NONE, ev);

if (customer wants hair washed)
aim_ hold_ for (Wash_time. sample 0, SIN—NONE, ev);

if (customer wants hair cut)
sim_hold_for (Cut_time. sample 0, SIM_NONE, ev);

Figure 4.1: c++ code for Source and Barber Entities

are represented by events scheduled by the source entity for the barber entity. C++ code

for the body of each entity is shown in figure 4.1 (line numbers in the following

description correspond to those in figure 4.1).

The source entity repeatedly executes the following sequence of activities. The source

entity calls sim_hold_for (line 4) to model the interarrival time between successive

customers. The delay representing this interarrival time is generated by the distribution

object Interarrival_time. When called, the member function sample of this object

returns a value drawn from the random number distribution that the object represents. The

predicate SIM_NONE specifies that the given delay is uninterruptable. Since no events

are ever scheduled for the source entity, the call to sim_hold_for would not be

interrupted anyway and the choice of predicate is arbitrary. Upon expiry of the simulated

delay, the call to sim_hold_for returns and the source entity schedules an event for the

62

barber entity representing the arrival of the next customer (line 5). It is assumed that

Barber—id is an entity identifier denoting the barber entity and CUSTOMER is a

constant of type sim_type representing the arrival of a customer. The event is scheduled

with a delay of 0.0.

As noted, the barber provides up to three services for each customer. To represent the

time required for a barber to provide one of these services to a customer, the barber entity

calls sim_hold_for (lines 18, 20, and 22) signifying that it wishes a specified amount of

simulation time to elapse. The specified delays are generated by the distribution objects

Shave_time, Wash—time, and Cut—time. In each call to sim_hold_for in the barber

entity, the predicate SIM_NONE specifies that the given delay is uninterruptable.

sim_hold_for defers any, events scheduled for the barber entity with an event time that

coincides with one of these simulated delays. Since only events representing arriving

customers are ever scheduled for the barber entity, deferred events implicitly represent the

queueing of customers arriving for service.

Each time the barber entity finishes serving a customer, it immediately begins serving

the next customer, if any. The barber entity terminates when there are no more customers

to serve. In an actual barber shop, whenever the barber finishes serving a customer, the

next customer is either the customer at the beginning of the queue of waiting customers or,

if no customers are currently waiting, the barber waits for the next customer to arrive. To

represent this in Sim+-i-, the barber entity first tests if there are any deferred customer

events by calling sim_waiting (line 12). If one or more such events exist, the first of

these is selected by calling sim_select (line 13). If there are no deferred customer events,

the barber entity calls sim_wait_for (line 15) to await the next customer event scheduled

by the source entity.

63

The barber entity specifies the predicate sim_type_p(CUSTOMER) as an argument

to each of the primitives sim_waiting, sim_select, and sim_wait_for. This predicate

matches only those events whose type is that of CUSTOMER. Since customer events are

the only kind of event scheduled for the barber entity, the predicate SIM_ANY could also

have been specified. However, the former is more specific, thereby enhancing the

readability of the resulting code.

4.2 Limiting the Size of the Barber Shop Wait Queue

This section investigates an extension to the barber shop model that places an upper limit on

the number of customers that can enqueue for service at any one time. In this extended

model, an arriving customer can only enqueue for service if there is room in the queue;

otherwise, the customer is turned away.

The most natural approach to the implementation of this extended model would mirror

the preceding model description, as shown in the following code fragment:

for each new customer event
if (simwaiting(sim_type_p(CUSTOMER)) < Limit)

defer_ customer event
else

ignore customer event

Unfortunately, the queueing of customer events via event deferral cannot be encoded

explicitly by the user. Instead, event deferral is implicit and no application-specific

restrictions or extensions to the underlying deferred event list are possible. In addition to

limiting queue sizes, it may be desirable to collect queueing statistics about deferred events,

or to queue events in different lists according to application-specific criteria. In the

extended barber shop model, the only solution is for the barber entity to circumvent the

language queueing facility and explicitly receive all arriving customer events at the

application layer and then buffer those events in the application or ignore them when the

64

specified limit has been reached. By circumventing the language queueing facility, the

performance optimizations possible for Extended Virtual Time are lost.

4.3 A Variation on Barber Shop Termination

This section investigates another extension to the basic model in which the barber shop is

locked at the end of each day to prevent more customers from entering the shop.

Customers already waiting in the shop when it closes are served to completion, after which

the barber can leave.

At least two implementations alternatives of this extended model can be identified:

1. The source entity can be modified to cease generating customers once the barber

shop is locked. In this way, no additional customer events beyond those already

deferred by the barber entity will be scheduled.

2. The barber entity can process only those customer events whose event time

precedes the point at which the barber shop was locked. Additional customer

events generated by the source entity will be automatically deferred by the barber

entity but will be ignored since they represent customers that arrived after the barber

shop was locked.

The first implementation alternative is inappropriate for two reasons. First, the

proposed modification to the source entity does not reflect the model as outlined.

Specifically, locking the barber shop does not imply that no more customers will arrive at

the barber shop, only that they will no longer be served. Indeed, the barber entity may

wish to count the number of customers arriving after closing to determine how many

customers are being turned away. Second, the proposed modification does not reflect the

65

modularity of the model's decomposition. Specifically, since it is the behaviour of the

barber shop that has been altered for this model, then it is the corresponding barber entity

that should reflect those changes.

Since the second implementation alternative exhibits neither of the aforementioned

shortcomings, it would seem to be the preferable alternative. This alternative is identical to

that of the basic model in figure 4.1 except that the code for serving a customer is only

executed if the customer arrived before closing time:

if (ev.event_time() < Closing time)
if (customer wants shave)
if (customer wants hair washed)
if (customer wants hair cut)

Although this implementation is an accurate, modular representation of the model, it

requires that the barber entity explicitly receive all customer events, even if they are to be

ignored. As such, the structure of the barber entity body no longer represents only the

serving of customers, but rather the combined tasks of serving customers and ignoring

customers after closing time. Also, the barber entity's deferred events represent both

waiting customers as well as late-arriving customers that are to be turned away. Although

the barber shop model is sufficiently simple that the combination of the above tasks can be

realized without significant loss of clarity, many realistic models perform many such

distinct tasks that, if similarly integrated within the structure of a single function, would be

significantly more difficult to implement and debug.

It can be argued that if a component of a physical system performs multiple, distinct

tasks, then that component should be represented by multiple entities. For example, the

barber could be represented by a cluster of two entities, one for each task. The additional

entity represents the entrance to the barber shop, receiving all arriving customer events

generated by the source entity and discarding those with an event time greater than or equal

66

to closing time. The remaining events are rescheduled for the barber entity within the same

cluster. This approach has the added implementation overhead of an additional entity type

and the added run-time overhead of scheduling up to two events for each arriving

customer.

Rather than explicitly receiving and discarding events to be ignored, Extended Virtual

Time defines an ignoring facility that allows an entity to specify the set of events that it does

not want to receive and that it wants to treat as if they never arrived. The ignore primitive

provided by Extended Virtual Time is declared as follows:

void ignore(predicate &p);

ignore is a non-blocking primitive whose predicate argument p specifies the set of events

to be ignored. After an entity calls ignore(p), all subsequent calls to other simulation

primitives will automatically intercept and discard events satisfying p when they occur.

From the viewpoint of the application, however, it is as if the events never arrived. A

subsequent call to ignore can override p, allowing the calling entity to ignore different

events at different times throughout the course of the simulation. Using this facility, there

would be no need to modify the structure of the barber entity to cope with late-arriving

customers. Instead, the barber entity could call ignore as part of its entity initialization, as

follows:

ignore (Late customers) ;

where Late—customers is a predicate that matches customer events with an event time

greater than or equal to the barber shop's closing time. The body of the barber entity, as

shown in figure 4. 1, would be unaffected.

Unlike other predicates used in examples thus far, Late—Customers is application-

specific and cannot be represented using predefined predicate types provided by Sim++.

67

1 class late_customer_p : public predicate
2 Sim time Closing_time;
3 public:
4 late _customer_p (sim_time closing_time)
5 Closing_time = closing_time;
6
7
8 boolean match (sim event &ev)
9 if (ev.type() == CUSTOMER &&
10 ev.event_time() >= Closing_time)
11 return true;
12 else
13 return false;
14
15

Figure 4.2: c++ Declaration for Late Customer Predicate

Instead, application-specific predicates are derived from a special predicate base class,

sim_predicate. These application-specific predicates are created and used in the same

manner as the predefined predicate types provided by Sim++. Figure 4.2 shows the

declaration of a predicate class, late_customer_p, for matching events representing

customers who arrive after closing at the barber shop (line numbers in the following

description correspond to those in figure 4.2). Every predicate class has a member

function match (lines 8-14) that takes an event as its only parameter. This function tests

the attributes of the event and returns true if the event's attributes satisfy the conditions of

the predicate; otherwise, the function returns false, match is never actually invoked by

the application. Instead, instances of a predicate class are passed as parameters to Sim++

simulation primitives and they automatically invoke this function to test the attributes of

events. Since instances of a predicate class are objects, they can be parameterized when

they are created. Class late_customer_p has one such parameter, closing_time (line

4). When an instance of late_customer_p is created, closing_time is assigned to the

member variable Closing_time (line 5). In this way, the object remembers the closing

time of the barber shop. As an example, the declaration

68

late customer_p Late customers (100.0);

creates an instance of class late_customer_p called Late—customers that matches any

customer event with an event time greater than or equal to simulation time 100.0. A call to

the member function match of this predicate compares the event time of the given event

against the remembered closing time. By representing closing time as a parameter to the

predicate, the closing time of the barber shop need not be specified explicitly within the

definition of match.' Instead, it can be specified as an input parameter to the simulation,

and varied from one run to the next, thereby varying the number of customers that will be

served or ignored.

Ignoring is similar in strengths and weaknesses to event deferral. Like event deferral,

ignoring provides an enhanced abstraction for discrete event modeling by automatically

manipulating events according to application-specific predicates. Also like event deferral,

no application-specific restrictions or extensions to the ignoring facility are possible. In

other words, there is no way to count or otherwise manipulate ignored events. In the

barber shop model, for example, it may be desirable to forward ignored customers events

to another barber entity to represent a model in which late-arriving customers seek out

another barber shop with longer operating hours. In addition, although ignoring can be

used to solve the extended barber shop model, the declaration of the application-specific

predicate is significantly longer than the code changes required for the barber entity to

explicitly receive and discard unwanted events.

4.4 Adding Statistics Reporting to the Barber Shop Model

This section investigates an extension to the barber shop implementation for generating

statistics reports at regular intervals. An additional report entity is used that schedules a

report event for the barber entity for each statistics interval. The barber entity responds to

69

each such event by printing a statistics report appropriate to the application. The following

code fragment shows the body of the report entity, as described:

while (simclock() < Duration)

sim_hold_for(Report interval, SIM_NONE, ev);

simschedule(Barberid, 0.0, REPORT);

The report entity is similar to the source entity except that the report interval, denoted by

Report—interval, is constant and the events scheduled by the report entity are of type

REPORT rather than CUSTOMER.

Since the barber entity must now receive and process two types of events, its

implementation must once again be modified. At least four implementation alternatives for

the barber entity can be identified:

1. All calls to sim_wait_for and situ—hold—for in the barber entity can be modified

to return report events whenever they occur. In other words, when the barber

entity calls sim_wait_for to await the next customer, the event returned by

sim_wait_for is either a customer event or a report event. Similarly, when the

barber entity calls sim_hold_for, the simulated delay will either expire without

interruption, or be interrupted by a report event.

2. The barber entity can redefine sim_wait_for and sim_hold_for to transparently

intercept and process report events.

3. The barber entity can defer the report event until it has served the current customer

to completion.

4. The barber entity can be reimplemented in an event-oriented style.

The first implementation alternative is similar to the extended barber shop model in

Section 4.3 in which the structure of the barber entity body represented the combined tasks

of serving customers and ignoring customers after closing time. Here, by explicitly

70

receiving and processing report events, the structure is similarly overloaded to both serve

customers and print statistics reports. It has already been noted how the combination of

such unrelated tasks within the structure of a single function can complicate the resulting

implementation.

In addition, this implementation alternative leads to a significant increase in and

duplication of code. For example, the call

sim wait for (sim type_p (CUSTOMER), ev);

must be changed to

do
sim_wait_for(sim_type_p(CUSTOMER, REPORT), ev);
if (ev.type() == REPORT) print_report 0;

while (ev.type() CUSTOMER);

where sim_type_p(CUSTOMER, REPORT) is a predicate that matches an event of

type CUSTOMER or of type REPORT, and print—report is assumed to be a member

function of the barber entity. Similarly, each non-interruptable delay of the form

sim_hold_for (Shave_time, sample 0, SIM_NONE, ev);

must be changed to an equivalent interruptable delay

delay = Shave_time.sample0;
while (delay > 0.0)

delay = sim hold _for(delay, sim_type_p(REPORT), ev);
if (delay >_ 0.0) print_report 0;

If the simulated delay is interrupted by a report event, the member function print—report

is called, after which the simulated delay is resumed.

The use of interruptable delays to receive and process report events can be seen as an

abuse of the interrupt facility. Specifically, interruptable delays are intended to model

interruptable activities in the system being simulated. For example, the barber may need to

interrupt his service to a customer to answer a telephone call. Report events do not

71

void barber: : await_customer(sim_event &ev)

do
sim wait _for(sim_type_p(CUSTOMER, REPORT), ev);
if (ev.typeo == REPORT) print_report 0;

while (ev.type() CUSTOMER);

void barber: : serve_customer(sim_time delay)

while (delay > 0.0)
delay = sim_ hold_ for(delay, sim_type_p(REPORT), ev);
if (delay > 0.0) print_report 0;

void barber: : body()

while (true)
if (aim waiting(sim_type_p (CUSTOMER)))

sim select (sim_type_p (CUSTOMER), ev);
else

await_customer (ev);

if (customer wants shave)
serve _customer (Shave_time, sample 0);

if (customer wants hair washed)
serve customer(Wash_time. sample 0);

if (customer_ wants hair cut)
serve_customer (Cut_time.sample 0);

Figure 4.3: c++ Code for Barber Entity with Transparent Reports

represent interrupts in an actual barber shop. Instead, they are used only to generate

information about the simulated system.

The second implementation alternative is similar to the first except that it eliminates

much of the duplication of code by redefining the primitives sim_wait_for and

sim_hold_for to transparently intercept and process report events. C++ code defining

the resulting barber entity member functions and body is shown in figure 4.3. By

replacing sim_wait_for with await—customer and sim_hold_for with

serve—customer, the resulting barber entity body is even more readable than the basic

model of figure 4.1. However, the implementation of serve—customer still relies on

72

interrupts to receive report events. In addition, both await customer and

serve—customer combine the conceptually distinct tasks of awaiting and serving

customers with the printing of statistics reports. Finally, although the number of primitives

that are redefined for this implementation is limited to two, it may be impractical to adopt

this approach for other, more extensive models that make greater use of available

primitives. In the worst case, it may be necessary to redefine all primitives simply to

intercept and process one type of event.

In the third implementation alternative, the barber entity defers report events that

coincide with the serving of a customer. After serving a customer to completion and before

beginning to serve the next customer, the barber entity could execute the following code

fragment to process a deferred report event:

if (sim_waiting(sim_type_p(REPORT)))

aim_select (aim_type_p (REPORT), ev);

print_report 0;

Although this implementation alternative is considerably simpler than either of the first or

second alternatives, it can only be used if statistics reports need not be printed at exactly the

event time of the report events scheduled for the barber entity. Once again, the

implementation of the barber entity body is overloaded with the processing of both

customer and report events. Deferred events are similarly overloaded to represent both

waiting customers and reminders to print statistics reports.

The fourth implementation alternative restructures the barber entity in an event-oriented

style. All events in the simulation model are represented by events explicitly scheduled and

received by the application. For example, the start and end times of each service provided

by the barber are represented by events rather than by a series of simulated delays. C++

code for the barber entity body for this implementation alternative is shown in figure 4.4.

73

void barber: : body()

while (true)
sim wait (ev);

switch (ev.typeO)
case CUSTOMER:

handle _arriving_customer (ev);
break;

case END— OF— SHAVE:
handle _finished_shave (ev);
break;

case END— OF— HAIR—WASH:
handle _finished_hair_wash (ev);
break;

case END OF HAIRCUT:
handle _finished_haircut (ev);
break;

case REPORT:
print_report 0;
break;

default:
sim_error("unknown event type");

Figure 4.4: c++ code for Event-Oriented Barber Entity

All events scheduled for the barber entity are received by the single call to sim_wait in the

body of the barber entity. For each event received by the barber entity, an event handler

'function is called to carry out the actions associated with that event. When the event

handler function returns, the barber entity proceeds to receive the next event. The

processing of an event may include updating the state of the barber entity and scheduling

zero or more additional events. Event handlers do not advance simulation time, however.

In other words, they do not execute simulated delays nor do they receive events. Instead,

they represent only the instantaneous state transitions associated with the given event.

This implementation alternative differs significantly from the process-oriented style

employed in previous examples in that the body of the barber entity no longer mirrors the

sequence of activities as described for the barber shop model. As such, the conceptual gap

74

between the model and the implementation is increased. In addition, the barber entity is

less modular for interrelated tasks. For example, depending on which services a customer

requires, the barber entity might begin cutting a customer's hair immediately upon the

customer's arrival, after shaving the customer, or after washing the customer's hair. Since

each of these tasks is managed by a different event handler, each of these event handlers

must be prepared to schedule an END—OF—HAIRCUT event according to the

requirements of the individual customer. The scheduling of this event marks the beginning

of the haircut and the subsequent receipt of this event marks the end of the haircut. Other

tasks are similarly divided among multiple event handlers.

In spite of the shortcomings of the event-oriented style, it is significantly easier to add

an independent task such as regularly scheduled statistics reports to an event-oriented

barber entity. Statistics reporting is referred to as an independent task in that it does not

depend on the prior execution of other events within the barber entity, nor does it cause

other events to be executed. Simply by extending the switch statement in the body of the

barber entity and adding additional event handlers, any number of independent tasks may

be added to the barber entity.

4.5 Extending Sim-i-+ for Modeling Resource Competition

This section investigates the extensibility of the Sim++ interface by adding an application-

independent facility for mutually exclusive competition for resources. The inspiration for

this facility comes from the Demos RES facility [Bir86]. Here, a simplified parallel

implementation of the RES facility is described. This section illustrates the difficulties

associated with implementing this type of facility in Sim-i-+ and, in particular, the

difficulties associated with making this facility application-independent. In other words, it

75

is assumed that this facility is intended as a set of library routines, rather than tailoring it to

individual applications.

The representation of systems as a collection of entities competing for scarce resources

is a natural way to represent many problems. Birtwistle [Bir79] describes a simulation of a

harbour in which ships, moving in and out of port, are towed to and from harbour jetties

by tugboats. A ship moving into port to unload cargo must acquire access to a jetty. at

which to dock and two tugboats to tow it to the jetty. Once unloaded, the ship requires one

tugboat to tow it out of port. In this simulation, tugboats and jetties can both be modeled as

resources for which ships must compete.

In the parallel implementation of the RES facility, each resource is represented by an

integer denoting the number of units of that resource available. Each such integer resource

is encapsulated within a separate resource manager entity that provides mutually exclusive

access to that resource through primitives acquire and release, declared as follows:

void acquire(sim_entity_id manager, mt quantity);
void release(sim_entity_id manager, mt quantity);

An entity calls acquire to request quantity units of a resource from the resource manager

denoted by manager. If the requested units are not available immediately, acquire blocks

the calling entity until a time when the resource manager can satisfy the request. All events

received by the calling entity while blocked in acquire are deferred. An entity calls

release to return previously acquired resources back to the specified resource manager. In

the simulation of the harbour, if a ship entity requests two tugboats and all tugboats have

already been acquired, the ship will be blocked until sufficient tugboats are subsequently

released by other entities.

Since resource managers are entities, interactions between resource managers and

entities calling acquire and release must be represented by events, acquire can be

76

implemented by scheduling an acquire event for the specified resource manager and

awaiting a granted event in reply:

sim_schedule(manager, 0.0, ACQUIRE, &quantity, sizeof(quantity));
aim wait for (aim_type_p (GRANTED), ev);

The body of the event scheduled by acquire includes a copy of quantity, the number of

units of the requested resource. All events received by the calling entity while awaiting a

reply from the resource manager are automatically deferred by sim_wait_for. release

can be implemented by scheduling a release event for the specified resource manager,

informing it of the number of units of the resource being returned:

sim_schedule(manager, 0.0, RELEASE, &quantity, sizeof(quantity));

Instead of indefinitely blocking the calling entity when awaiting a reply from a resource

manager, acquire could alternatively be designed to accept an application-specific

predicate that specifies what events can interrupt a resource request:

booleaxi acquire (aim_entity_id manager, mt quantity,
aim_predicate &p, aim _event &ev);

If an event satisfying p is received by the calling entity before the resource request is

satisfied, the resource request is cancelled and the interrupting event is returned to the

calling entity in ev. If the resource request is satisfied without interruption, acquire

returns the boolean result true; otherwise, acquire returns false. Any events received by

the calling entity while blocked that do not satisfy the predicate p are deferred. The

following code fragment implements these actions:

sixnschedule(manager, 0.0, ACQUIRE, &quantity, sizeof(quantity));
sim_ wait _for(p OR sim_type_p(GRANTED), ev);
if (ev.type() != GRANTED) release(quantity);
return ev.type() == GRANTED;

acquire cancels a resource request by calling release before the resource request has been

granted. For its part, if the resource manager receives a release event for a request that has

not yet been granted, the request is assumed to have been cancelled, acquire cannot use

77

sim_cancel to cancel the resource request because the acquire event was scheduled with

zero delay. In order to wait for either an event satisfying the application-specific predicate

p or a reply from the resource manager, the call to sim_wait_for specifies the combined

predicate p OR sim_type....p(GRANTED). Unfortunately, the predicate interface

provided by Sim++ does not allow predicates to be combined in this way. Nor is it

possible to define a single predicate that specifies all of the conditions of the combined

predicate, since p is known only to the application, while sim_type_p(GRANTED) is

known only to the implementation of acquire. acquire could explicitly receive all events

and test each against both individual predicates, but, as already noted in Section 4.2, there

is no way to explicitly defer an event once it has been received.

A second difficulty concerns conflicting, simultaneous actions of the calling entity and

the resource manager. Since entities execute concurrently, it is conceivable that a resource

manager will schedule a granted event for a resource request at the same simulation time as

the acquire primitive cancels the request as a result of receiving an event satisfying the

given application-specific predicate. From its point of view, the resource manager receives

the release event scheduled by acquire and assumes that the previously acquired resources

are being returned (albeit in zero simulation time). However, having returned from its call

to acquire, the calling entity is no longer prepared to receive the granted event from the

resource manager. This unwanted event is referred to as an orphan event. The orphan

event is used solely in the implementation of acquire and should not be seen by the

application. Unfortunately, the next action the calling entity takes could be a call to

sim wait or a similar primitive through which it would receive the orphan event. Once

again, sim_cancel cannot be used to cancel the orphan event because it too was scheduled

with zero delay. To prevent the application from receiving the orphan event, it is necessary

to redefine all existing primitives that an application is likely to invoke and that could

78

receive the orphan event, including sim_wait, sim_hold, sim_wait_for, and

sim_hold_for. This differs from the barber shop example in which it was possible to

transparently intercept report events by redefining only those primitives actually used by the

application. Since the resource competition facility is intended to be application-

independent, there is no way to know which primitives will not be invoked. As a result, all

of them must be capable of intercepting the orphan event, resulting in significant

duplication of code, both to redefine primitives that already exist, and to intercept and

discard the orphan event in each primitive. This approach also lacks modularlity since

many existing primitives must be redefined to support the new facility.

4.6 Summary

This chapter developed examples of a queueing model and a resource competition facility

using the simulation and event selection primitives provided by Sim++. The ability to

receive, defer, or otherwise manipulate events according to application-specific

requirements is an appropriate abstraction for discrete event modeling because it eliminates

much of the explicit manipulation of events that would otherwise be required. However, as

illustrated in this chapter, these primitives also have significant limitiations. The most

prevalent of these is the inability to restrict or extend the semantics of the event selection

primitives. One reason for this is that the implicit actions and data structures associated

with event selection are inaccessible to the application. Another reason is an

interdependence among primitives that discourages modularity. The result is that these

primitives must frequently be used as is or circumvented altogether. A related problem is

the need to abuse modeling concepts to address non-modeling issues. Finally, predicates

appear to be a limiting factor as well in that there is no way to combine predicates in the

79

same way as logical expressions, and application-defined predicates can significantly

increase code size.

Many of the difficulties encountered with Sim++ are inherent in any set of constructs

that implicitly manipulate events without provision for application-specific restrictions or

extensions. As such, similar problems exist in Extended Virtual Time and Maisie. Without

appropriate solutions to these problems, even very basic models can be quite difficult to

implement, requiring repeated and significant restructuring to cope with simple model

extensions. An appropriate solution to these problems must encourage modular,

application-specific and application-defined event selection. One such solution is presented

in the next chapter.

Chapter 5

SimD: A Language Proposal for Virtual Time

This chapter proposes a new language for Virtual Time called SimD. SimD is designed to

support both process-oriented and event-oriented simulation design. The primary goal in

developing SimD was to address weaknesses in the event selection constructs of Sim++,

Extended Virtual Time, and Maisie, without sacrificing the potential performance

optimizations developed for Extended Virtual Time. In developing SimD, the interfaces to

many of the data types and language constructs found in Sim++ have been improved.

Sections 5.1 through 5.6 describe the key elements of SimD. Sections 5.7 and 5.8

reimplement the barber shop model and the resource competition facility in SimD to

demonstrate its effectiveness in addressing the modeling difficulties described in Chapter 4.

SimD was also used in the implementation of two parallel simulations described in Chapter

6. Section 5.9 discusses the potential for optimizing SimD by incorporating the

performance optimizations developed for Extended Virtual Time.

5.1 Overview

SimD is designed to support both process-oriented and event-oriented simulation design.

The process-oriented capabilities of SimD are similar to those of Sim++, with support for

simulated delays, scheduling, cancelling, and conditional selection of events. The event-

oriented capabilities of SimD provide a facility, called event handlers, whereby entities can

intercept and process events before they can be received by the application or after they

have been refused by the application. The combination of process-oriented and event-

80

81

oriented capabilities provides the necessary support required to address the modeling

difficulties described in Chapter 4. For example, capabilities such as deferred and ignored

events are implemented by the application using event handlers. As such, the actions and

data structures associated with these capabilities are those of the application and can be

easily modified to incorporate application-specific extensions or restrictions. This

addresses the key difficulty associated with the implicit actions and data structures of

Sim++, Extended Virtual Time, and Maisie. Further evidence of this claim is presented in

sections 5.7 and 5.8.

SimD's process-oriented and event-oriented capabilities can be implemented entirely in

terms of a process' ability to send and receive timestamped messages. As such, SimD is

independent of any particular implementation of Virtual Time. Like Sim++, SimD includes

support for separate initialization and execution phases, clusters of entities, and read-only

global variables. However, SimD is not a complete simulation language. It lacks facilities

for data collection and reporting, random number generation, error handling, and file and

console input and output. The current implementation of SimD coexists with Sim++ and is

therefore able to use Sim++ facilities that are not yet available in SimD. Where appropriate,

the names of SimD facilities are identical to the equivalent facilities in Sim++, except that

the sim_ prefix that appears in Sim++ names is omitted (this was necessary to prevent

namespace collisions since both languages coexist at run-time).

5.2 SimD Data Types

SimD defines data types similar to those of Sim++ for representing simulation time, event

types, entity identifiers, events, and event identifiers. This section summarizes significant

82

differences between the SimD and Sim++ data types. The C++ declarations for the SimD

data types are shown in figure 5.1.

SimD provides the macro EVENT—TYPE for generating unique event types. As an

example, the declaration of event types ARRIVAL and DEPARTURE would be

EVENT _TYPE (ARRIVAL);

EVENT_TYPE (DEPARTURE);

The EVENT—TYPE macro expands these declarations to

sim_type ARRIVAL unique_event_type ("ARRIVAL");

sim_type DEPARTURE unique_event_type ("DEPARTURE");

where unique—event—type is a function that returns a unique integer value each time it is

called. The equivalent declarations in Sim++ would be

sim_type ARRIVAL

sim_type DEPARTURE

= 1;

= 2;

The Sim++ approach is error prone in that it is possible to assign the same value to two or

more event types, particularly if those variables are located in different modules of a

simulation.

SimD maintains a list of the event type strings passed to unique—event—type for use

in trace output generated by the simulation primitives. As an example, trace output of the

form

airplane]. at 10.7: scheduled ARRIVAL event for airporti

with delay 8.2

is optionally generated for each scheduled event. The equivalent trace output generated by

Sim++ would be

airplanel at 10.7: scheduled event of type 1 for airporti

with delay 8.2

The Sim++ trace output can be considerably more difficult to interpret, particularly when

there are a large number of event types.

83

class sim time C ... 1;
class Sim type C ... 1;

class entity _id

class class— id

char *classnameO;

mt size();
boolean includes (entity_id eid);
entity_id operator [] (mt i);

class event

entity_id sched_byO;
entity_id ached_for C);
Sim time ached_at 0;
aim time sched_t00;
m 0 si_ type type ;

event &operator<<(char C);
event &.operator<<(int i);
event &operator<<(double d);
event &operator<<(char *s);

event &operator>>(char &c);
event &operator>>(int &i);
event &operator>>(double &d);
event &operator>>(char *s);

class event— id

entity_id sched_by0;
entity --- id ached_for 0;
Sim time ached_at 0;
sim_time ached_toO;
aim_type type C);

const Sim time NO_SIM TIME;
const Sim type NOSIM_TYPE;
const entity_id NO__ENTITY_ID;
const class _id NO—CLASS—ID;
const event NO— EVENT;
const event— id NO— EVENT— ID;

Figure 5.1: C++ Declarations for SimD Data Types

84

One data structure unique to SimD is the class identifier. Class identifiers are

represented by class class—id and are used to denote classes of entities. Applications use

class identifiers to determine the number and identity of entities of a given entity class or the

number and identity of all entities in a simulation. This eliminates the need for an

application to create and maintain arrays of entity identifiers. In addition, separately

compiled and initialized program modules can each determine what entities exist in a

simulation, without requiring the application to explicitly pass this information between

modules.

An entity is a member of an entity class if it is an instance of that class or if it is a

member of an entity class derived from that class. As an example, the call

cid = class_id("airplane");

creates a class identifier denoting all entities of or derived from entity class airplane.

Similarly, since all entities in SimD are derived from class entity, the call

cid = class_id("entity");

creates a class identifier denoting all entities in the simulation.

The information required by SimD to determine which entities belong to which entity

classes is provided by the macro ENTITY—CLASS. ENTITY—CLASS replaces the

macro SIM ENTITY in Sim++. The arguments to ENTITY—CLASS include the

name of an entity class, and the name of the entity class from which it is derived. For most

entity classes, the underlying entity class is entity. However, it is also possible to derive

an entity class from a previously derived entity class. As an example, the following code

fragment shows the declaration of entity class vehicle and entity class truck, and the

corresponding calls to ENTITY—CLASS:

class vehicle : public entity
class truck public vehicle { ...
ENTITY CLASS(vehicle, entity);
ENTITY_ CLASS (truck, vehicle);

85

Class truck is derived from class vehicle, and class vehicle is derived from class

entity.

The operations permitted on class identifiers are defined by the member functions

class_name, size, includes, and the index operator (LI). class_name returns the

name of the entity class denoted by a class identifier. size returns the number of entities in

the entity class denoted by a class identifier, includes tests whether a given entity

identifier is a member of the entity class denoted by a class identifier. The index operator

provides a convenient array notation for accessing the entity identifiers of entities in an

entity class. As an example, the call

cid = class_id("airplane");
eid = cid[O];

assigns to eid the entity identifier of the first entity in entity class airplane. (SimD

follows the C++ convention that array indexing begins with 0.)

Class event is used to represent events in SimD. Class event has similar attributes to

class sim_event in Sim++, but the names of member functions to access those attributes

differ somewhat. The member function sched_at of class event has no equivalent in

class sim_event. sched_at returns the simulation time at which the event was

scheduled.

SimD events are created explicitly by the application before being scheduled. An entity

creates an event by invoking the constructor of class event and passing it the appropriate

arguments used in initializing the attributes of the event. As an example, the call

ev = event(autol_id, 8.0, ARRIVAL);

creates an event with attributes

ev.sched_by() = self()
ev.schedfor() = autolid
ev.schedat() = time()
ev.sched_to() = time() + 8.0
ev.type() = ARRIVAL

86

where self denotes the entity identifier of the calling entity and time denotes the current

simulation time.

SimD events include an implicit event body used to pass application-specific data from

the scheduling entity to the receiving entity. The event body is organized as a stack and is

accessed through insertion (<<) and extraction (>>) operators. The scheduling entity

inserts data into an event using insertion operators and the receiving entity extracts data

from the event using extraction operators. The insertion and extraction operators are

member functions of class event. As an example, the call

ev << ± << j;

copies the values in data structures i and j into the body of the event. SimD defines

insertion and extraction operators for all of the basic C++ types (integers, real numbers,

characters, and strings). From these operators, new insertion and extraction operators can

be defined for user-defined types. As an example, figure 5.2 shows the declaration of

class point and its associated insertion and extraction operators. The approach illustrated

in this figure was used to define insertion and extraction operators for many of the data

types defined by SimD.

Once the attributes and data of an event have been established, an entity can schedule

the event with the call

schedule (ev);

SimD events offer several advantages over Sim++ events. First, the insertion operators

for the basic C++ types automatically include type information with each data item inserted

into the body of an event. This information is used by the extraction operators for the basic

C++ types to ensure that a data item being extracted from the body of an event is of the

same type as the data item actually in the body of the event. Although this type checking

87

class point

double X;

double Y;

double Z;

event &operator<<(event &ev, point &p)

ev << p.X << p.Y << p.Z;

return ev;

I

event &operator>>(event &ev, point &p)

ev >> p.Z >> p.Y >> p.X;

return ev;

Figure 5.2: c++ Insertion and Extraction Operators for Class Point

mechanism is transparent to the application, it is not foolproof. For example, it is possible

to insert user-defined data of one type into an event and extract user-defined data of another

type out of the event if the member variables of both data types are of the same basic C++

types. This problem can be addressed by associating a unique integer with each user-

defined data type and including that integer in the body of the event. This would allow the

extraction operator for a data type to ensure that it is extracting the correct type of data.

Second, the insertion operators for SimD events allow multiple data items to be inserted

into the body of an event. In Sim-H-, the body of an event is a copy of the single data

structure specified when the event was scheduled. To include multiple data items in a

Sim++ event, it would be necessary to copy the individual data items into a single,

composite structure from which the event body could then be created. Typically, a new

structure would have to be defined specifically for this purpose. Third, since all data items

are inserted into the body of an event in terms of the basic C++ components that make up

the data item, it would be straightforward to provide a capability to automatically print out

the contents of an event as an extension of the tracing facility, or to insert the data into an

88

event in a machine-independent format that would allow events to be passed between

entities executing in a heterogeneous multicomputer network.

Class event—id is used to represent event identifiers in SimD. Like SimD events,

event identifiers are created explicitly by the application. An entity creates an event

identifier by calling the constructor for class event—id and passing it an event as its

argument. As an example, the call

ev_id = event id(ev);

creates an event identifier denoting the event ev. The attributes of the event identifier are

identical to the attributes of the event it identifies. The need to create event identifiers

explicitly is less convenient than in Sim++ where they are created and returned by

sim_schedule. However, profiling of Sim++ showed that 30% of the language

overhead associated with scheduling an event came from creating and returning event

identifiers. Since event identifiers are only required for event cancellation, it is

unreasonable that every simulation and every scheduled event should incur this overhead.

The SimD approach associates the cost of event cancellation with those applications that use

it.

5.3 Predicates

SimD predicates are created using special objects called predicate generators. The predicate

generators include

s chedby_p
sched_for_p
s ched_ at_p
sched_to_p
type_p

Each predicate generator corresponds to an event attribute. The predicate generator for a

given event attribute is used to create predicates that test that attribute of an event. For

89

example, sched_at_p is used to create predicates that test the event attribute sched_at,

which specifies the simulation time at which an event was scheduled.

Predicates are created by applying a relational operator to a predicate generator. As an

example, the call

p = (sched_at_p <= 10.0);

creates a predicate that matches any event scheduled on or before simulation time 10.0.

Similarly, the call

p = (sched_by_p == autol_id);

creates a predicate that matches any event scheduled by the entity denoted by entity

identifier autol_id. In each case, the value on the right hand side of the relational

operation must be of the same type as the event attribute corresponding to the predicate

generator. In the examples shown, 10.0 is a value of type sim time and autol_id is a

value of type entity_id. The types sim_time and entity—id correspond to the types

associated with the event attributes sched_at and sched_by, respectively.

Using the logical operators AND and OR, predicates can be combined to test an event

attribute for more than one value or to test multiple event attributes. As an example, the call

P = (sched_at_p <= 10.0) AND (sched_by_p == autol_id);

creates a predicate that matches any event scheduled on or before simulation time 10.0 by

the entity denoted by autol_id. Similarly, the call

p = (type_p == ARRIVAL) OR (type_p == DEPARTURE);

creates a predicate that matches any event of type ARRIVAL or DEPARTURE.

Using the logical operator NOT, predicates can be also be negated. As an example, the

call

p = NOT (type_p == ARRIVAL);

creates a predicate that matches any event not of type ARRIVAL.

90

SimD also defines two special predicates, any_p and none_p, that match any and no

events, respectively.

SimD predicates offer several advantages over Sim++ predicates. First, SimD

predicates are more easily defined than Sim++ predicates. Since SimD predicates are

completely specified when and where they are created and used, the application need never

define predicate classes, as is sometimes the case in Sim++. Second, SimD predicates are

more readable than Sim++ predicates. This is because the conditions an event must satisfy

to match a SimD predicate are always explicit where and when the predicate is created and

used, whereas in Sim++, the conditions are encapsulated within a predicate class, typically

in a different source file from that in which the predicate is used. Third, SimD predicates

can be combined and negated in the same was as logical expressions. The inability to

logically combine predicates was noted as a significant shortcoming of Sim++ in Chapter

4. Fourth, SimD predicates are safer than Sim++ predicates. Since Sim++ predicates are

sometimes defined by the application, the event selection primitives that use them must rely

on the discipline of the user to define predicates solely for testing event attributes. Other

operations such as modifying the contents of an event or invoking a simulation primitive

are illegal actions for a predicate, but these restrictions cannot be enforced. In contrast,

SimD predicates are specified solely in terms of data types and operations defined by the

language. This means, however, that it is not possible for a SimD predicate to examine the

data in the body of an event, since that data can be of arbitrary type. My experience with

Sim++ and SimD suggests that the ability of a predicate to examine the data in the body of

an event is not required. Instead, section 5.8 shows how event handlers are used to

intercept and examine the contents of an event prior to the receipt of that event by the

application.

91

5.4 Entities

In SimD, all entities are derived from class entity. Class entity defines attributes and

capabilities required for simulation. Unlike Sim++, SimD does not distinguish between

simulation and event selection capabilities. The entity member functions that provide these

capabilities in SimD are collectively referred to as simulation primitives. Figure 5.3 shows

the declaration of class entity and related operations.

The member function self returns an entity identifier denoting the calling entity. The

member function name returns the name of the calling entity. The member function

class name returns the name of the calling entity's class. The function time returns the

current simulation time. The function current returns a pointer to the object representing

the calling entity.

The simulation primitive schedule is used to schedule an event, schedule differs

from sim_schedule in that SimD events must be created explicitly by the application

before being scheduled.

The simulation primitive cancel is used to cancel a previously scheduled event.

The simulation primitive wait combines the 'capabilities of the Sim++ primitives

sim_wait and sim_wait_for. As an example, the calls

wait (ev);
wait (ev, typey == ARRIVAL);

are equivalent to

sim wait (ev);
sim_wait_for (sim_type_p (ARRIVAL), ev);

The second argument to wait is optional and defaults to the predicate any_p.

The simulation primitive hold combines the capabilities of the Sim++ primitives

sim_hold and sim_hold_for. As an example, the calls

92

class entity

II entity attributes
entity_id self 0;
const char *nameQ;
const char *classflame0;

II simulation primitives
void schedule (event &ev);
void cancel(event_id &ev_ id);
void wait(event &ev, predicate &p);
sim_time hold(sim_time delay, event &ev, predicate &p);

void term±nate0;

II event handling capabilities
void prehandler(prediCate &p, entity_function *f);
void posthandler(predicate &p, entity_function * f);

void forward(event &ev);

entity *current 0;
sim_time time0;

Figure 5.3: c++ Declaration for Class Entity

hold(lO.0);
hold(1O.O, ev);
hold(lO.O, ev, type_p == ARRIVAL);

are equivalent to

sim hold_ for(1O.O, SIM_NONE, ev);
sim_hold(1O.O, ev);
sim_hold_for(1O.O, sim_type_p(ARRIVAL), ev);

The second and third arguments to hold are optional. When the third argument is omitted,

it defaults to the predicate any_p, meaning that the simulated delay can be interrupted by

any event. When the second and third arguments are both omitted, the third argument

defaults to none_p, meaning that the simulated delay is uninterruptable.

The simulation primitive terminate is used to terminate the actions of an entity. The

simulation terminates when all entities have terminated.

93

SimD does not provide primitives for manipulating deferred events. Deferred events,

ignored events, and similar simulation capabilities can be represented using event handlers,

as described in the following sections.

5.5 Event Handlers

Three of the languages surveyed in Chapter 3, Sim++, Extended Virtual Time, and Maisie,

provide a capability to defer events. Extended Virtual Time additionally provides a

capability to ignore events. Events are deferred or ignored on behalf of an entity by the

language, without requiring an application to explicitly receive events to be deferred or

ignored. Chapter 4 noted that there are other actions an entity may wish to perform to

process events, again without requiring that the application explicitly receive each event.

These included the ability to limit the number of deferred events, to generate statistics

reports, and to ignore non-application, orphan events. Rather than augmenting a language

with these specific capabilities, a general mechanism is proposed whereby an application

can specify arbitrary actions for processing events, without explicitly receiving those

events. This capability is provided in SimD using event-oriented simulation techniques.

Many of the modeling difficulties described in Chapter 4 can be solved quite easily using

SimD's combined process-oriented and event-oriented capabilities. In addition, capabilities

such as ignored events and deferred events have straightforward, modular implementations

using event-oriented simulation techniques.

SimD supports the creation of event handlers for processing events without explicitly

receiving events through calls to the simulation primitives wait or hold. An event handler

is an entity member function that is automatically invoked to process events that satisfy a

given predicate. Event handlers represent instantaneous state transitions associated with a

94

given event. This means that event handlers do not execute simulated delays or receive

other events. (The notion of receiving events is used exclusively in SimD to refer to calls

to wait or hold and excludes the implicit invocation of event handlers. The predicate

specified in calls to wait or hold is referred to as the active predicate.)

SimD defines two types of event handlers: prehandlers and posthandlers. Prehandlers

are used to intercept events before they can be received by the application. Posthandlers are

used to intercept events after they have been refused by the application. Any event not

received by the application or intercepted by an event handler will result in a run-time error.

SimD defines the entity member functions prehandler and posthandler to create event

handlers, The arguments to prehandler and posthandler include a predicate that

specifies the conditions an event must satisfy for the event handler to be called, and a

pointer to an entity member function that serves as the event handler. Typically, event

handlers for an entity are created during the entity's initialization, as defined by the entity's

constructor. An entity can change the predicates associated with existing event handlers by

calling prehandler or posthandler and specifying a different predicate for a previously

established event handler.

The predicates associated with event handlers need not be unique. It is permissible for

multiple event handler predicates to match the same event. It is also permissible for the

active predicate to also match the event. When more than one predicate matches the same

event, the first matching predicate determines how the event will be processed. If the

matching predicate is associated with an event handler, the corresponding entity member

function is invoked. If the matching predicate is the active predicate, the event will be

received by the application. Collectively, the active and event handler predicates are

referred to as a predicate chain. The relative positions of predicates in the predicate chain

95

order of event-predicate

comparisons

P

R

E

D

I

C

A

T

E

C

H

A

I

N

p

prehandler

predicates

active

predicate

posthandler

predicates

entity class: :body ()

Figure 5.4: SimD Predicate Chain

wait(..., p);
or

hold(..., p);

are shown in figure 5.4. To find a matching predicate, an event is compared first to the

predicates associated with prehandlers, in the order that the prehandlers were created.

Next, the event is compared to the active predicate. Finally, the event is compared to the

predicates associated with posthandlers, in the order that the posthandlers were created.

By default, once an event has been intercepted by an event handier, the event does not

continue along the predicate chain. However, my experience with event handlers has

shown that there are many cases when it is desirable for an event handler to intercept an

event, examine or modify the attributes or body of the event, and then allow the event to

continue along the predicate chain to be intercepted by another event handler or to be

received by the application. SimD defines the entity member function forward to allow an

96

event handler to forward an event to the next predicate along the predicate chain. The event

does not actually continue along the predicate chain until the executing event handler

completes.

5.6 Initialization of SimD Simulations

The SimD initialization phase is represented by an arbitrary number of initialization

functions. In this way, it is possible to define a separate initialization function for each

independent program module in a simulation. For each initialization function, there must

be a corresponding call to the macro INITIAL FUNCTION. The argument to

INITIAL FUN CTIO N is the name of the initialization function.

INITIAL—FUNCTION hides a number of declarations required by the implementation

to locate and execute all of the initialization functions at run time. The command line

arguments used to execute a SimD simulation specify what initialization functions to

execute, the order in which those functions should be executed, and what arguments to

pass to each initialization function. The initialization phase ends when all initialization

functions have finished executing.

5.7 The Barber Shop Model Solved in SimD

This section shows how SimD can be used to address the difficulties associated with the

Sim++ implementation of the barber shop model described in Chapter 4.

The SimD implementation of the barber entity for the basic barber shop model is shown

in figure 5.5. In SimD, there is no built-in deferred event list. The queue of waiting

customers in the barber entity is represented instead by the event list denoted by Waiting.

97

barber: : barber(event &ev)

Waiting = event _list("waiting customers");
posthandler (type_p == CUSTOMER, barber: : handle_customer);

void barber: : body()

while (true)
if (Waiting.cardinal(type_p == CUSTOMER) > 0)

ev = Waiting.retrieve(type_p == CUSTOMER);

else
wait(ev, type_p == CUSTOMER);

if (customer wants shave)
hold (Shave_time. sample ()

if (customer wants hair washed)
hold (Wash_time. sample 0);

if (customer wants hair cut)
hold(Cut_time.sampleO);

I

void barber: : handlecustomer(event &ev)

Waiting. store (ev);

Figure 5.5: Sim]) Barber Entity for Basic Barber Shop Model

.Waiting denotes an instance of class event—list defined by SimD. Class event—list

supports operations for enqueueing events, dequeueing and counting events that satisfy a

given predicate, and collecting and reporting queueing statistics. Events are enqueued in

the event lit by a posthandler that intercepts all events of type CUSTOMER that are

refused by the application. When there are no waiting customers, the barber entity

explicitly waits for the next arriving customer by calling wait. Figure 5.6 shows the

predicate chain associated with the barber entity during the call to wait. While serving a

customer, the barber entity executes uninterruptable delays with hold, thereby refusing to

receive other events that coincide with the simulated delays. Figure 5.7 shows the

98

order of event-predicate

comparisons

barber: : body()

type_p == CUSTOMER wait(ev, type_p == CUSTOMER);

type_p == CUSTOMER barber: : handle— customer (ev);

Figure 5.6: SimD Predicate Chain for Barber Entity During Wait

order of event-predicate

comparisons

none_p

barber: : body()

-4 .- hold(Shave_tixne.sampleO);

type_p == CUSTOMER barber: : handle— customer (ev);

Figure 5.7: SimD Predicate Chain for Barber Entity During Hold

predicate chain associated with the barber entity during one of these calls to hold. During

each call to hold, the active predicate is none_p, and all events of type CUSTOMER are

intercepted by the posthand1er barber::handle_customer and enqueued in the event list

Waiting.

To restrict the size of the queue of waiting customers, the implementation of the

posthandler can be changed to ignore arriving customers when there is no room in the.

queue. To ignore additional customers after closing time, a prehandler can be used to

intercept late customers. To generate statistics reports, a prehandiler can be used to intercept

and process report events (it is again assumed that the report events are scheduled by a

99

barber: : barber(event &ev)

prehandler (type_p = CUSTOMER AND sched_at_p >= Closing_time,
barber: : handle late customer);

prehandler(type_p == REPORT, barber: : handle_report);

Waiting = event _list("waiting customers");
posthandler (type_p == CUSTOMER, barber: : handle_customer);

void barber: : handle late customer(event &ev)

Late— customers += 1;

void barber: : handle_report (event &ev)

I

void barber: : body()

while (true)
if (Waiting.cardinal(type_p == CUSTOMER) > 0)

ev = Waiting.retrieve(type_p == CUSTOMER);
else

wait(ev, type_p == CUSTOMER);

if (customer wants shave)
hold(Shave_time.sampleO);

if (customer wants hair washed)
hold (Wash_time. sample 0);

if (customer wants hair cut)
hold (Cut_time. sample 0);

void barber: : handle_customer(event &ev)

if (Waiting.cardinal(type_p == CUSTOMER) < Limit)

Waiting. store (ev);
else

Lost— customers += 1;

Figure 5.8: SimD Barber Entity for Extended Barber Shop Model

100

order of event-predicate

comparisons

Ii type_p == CUSTOMER AND

sched_at_p >= Closing_time

type_p == REPORT

p

type_p == CUSTOMER

barber: : handle_late_customer (ev);

barber: : handle_report(ev);

barber: : body()

wait(..., p);
or

hold(..., p);

barber: : handlecustomer(ev);

Figure 5.9: SimD Predicate Chain for Extended Barber Shop Model

• separate report entity). An implementation of the barber entity that incorporates all of these

changes is shown in figure 5.8. The corresponding predicate chain is shown in figure 5.9.

Despite all three changes, the main actions of the barber entity, as defined by the entity

body, remain unchanged, and there is no need to redefine any of the existing simulation

primitives.

5.8 The Resource Competition Facility Solved in SimD

This section shows how SimD can be used to address the difficulties associated with the

Sim++ implementation of the Demos RES facility described in Chapter 4.

The two problems associated with the Sim++ implementation of the RES facility were

the inability to combine predicates in the same way as logical expressions, and the inability

to intercept and discard orphan events without redefining all existing primitives. The need

101

to combine predicates arises because there are two predicates involved in the use of the

RES facility: a predicate that matches the event scheduled by a resource manager in

response to a request for resources, and an application predicate that specifies what

application events can interrupt a request for resources. The acquire primitive described

in Chapter 4 must wait for an event that matches either of these two predicates. Orphan

events result when an entity cancels a resource request at the same simulation time as the

request is granted by the resource manager. Since these actions can occur simultaneously

in two different entities, the entity that cancelled the resource request must be prepared to

eliminate the event scheduled for it by the resource manager so that the event cannot be

received by the application.

In SimD, the ability to combine predicates using logical operators is used to address the

first of the problems encountered with Sim++. And, a prehandler is used to intercept and

discard orphan events resulting from cancelled resource requests. Implementations of

acquire and release, and the associated prehandler, demos::handle_graflted, are

shown in figure 5.10 (line numbers in the following description correspond to those in

figure 5.10). It is assumed that entities which compete for resources using acquire and

release will be derived from entity class demos. The predicate chain for a typical call to

acquire is shown in figure 5.11.

As in Sim++, acquire schedules an acquire event for the resource manager denoted by

manager to request quantity units of a resource (lines 28-32). The resource manager

will respond with a granted event once quantity units of the resource are available. In

order to distinguish the resource manager's response from orphan granted events, the event

identifier for the acquire event, denoted by Acquire—id (line 30), is included in the body

of the acquire event (line 31). The resource manager returns the event identifier in the

102

1 class demos : public entity
2 event— id Acquire Id;
3
4 void handle_granted(...);
5 boolean acquire(...);
6 void release(...);
7
8 ENTITY_CLASS(demos, entity);

9
10 demos::demos(...)
11
12
13 Acquire id = NO_ EVENT _ID;
14 prehandler (type_p == GRANTED, handle_granted);

15
16
17 void demos::handle_granted(eveflt &ev)

18
19 ev >> acquire id;
20 if (Acquire _id == acquire— id)
21 forward(ev);

22
23
24
25 boolean demos::accuire(entity_id manager, mt quantity,
26 event &ev, predicate &p)

27
28 ev = event(manager, 0.0, ACQUIRE);
29 ev << quantity;
30 Acquire id = event_id(ev);

31 ev << Acquire_id;
32 schedule(ev);
33
34 wait(ev, p OR type_p == GRANTED);
35 if (ev.type() != GRANTED) release(manager, quantity);

36 Acquire id = NO—EVENT— ID;

37
38 return ev.type() == GRANTED;

39
40
41 void demos::release(entity_id manager, mt quantity)
42 {
43 ev = event(manager, 0.0, RELEASE);
44 ev << quantity;
45 schedule(ev);

46

Figure 5.10: SimD RES Facility

103

order of event-predicate

comparisons

4. type_p == GRANTED demos: : handle_granted(ev);

demos::acquire(..., p)

p OR type_p == GRANTED -'---- wait (ev, p OR type_p == GRANTED);

Figure 5.11: SimD Predicate Chain for RES Facility

granted event to allow the prehandler (lines 17-23) to uniquely distinguish the expected

granted event from orphan granted events. The prehandler intercepts all events of type

GRANTED before they can be received by the application. Only the granted event

awaited by the current call to acquire is forwarded along the predicate chain to be received

by the call to wait (line 34). Other, orphan granted events are intercepted by the

prehandler and are ignored.

5.9 Optimizing SimD on Time Warp

It was noted in Chapter 3 that because of the similarities between the simulation constructs

of Sim++ and Extended Virtual Time, it is possible to modify the implementation of Sim-I-+

to incorporate the optimizations developed for Extended Virtual Time. Although many of

the data types and language constructs of SimD have revised interfaces, the

implementations of cancel and hold in SimD are as described for the application version

of Extended Virtual Time. As a result, both of these primitives can be optimized as

described in Chapter 3.

104

One apparant drawback of SimD is that it is not possible to achieve the same state size

reductions as achieved in Extended Virtual Time by integrating an entity's deferred event

list with its underlying Time Warp input queue. However, write-locked memory may

provide a suitable alternative. Since SimD events can only be accessed through their

attribute functions, insertion operators, and extraction operators, it is possible for an event

to be write-locked until one of the attributes of the event is changed or until data is moved

into or out of the body of the event. Each member function of class event that results in

the contents of the event being altered would be responsible for unlocking the memory

associated with the event. In this way, events that are queued in an application-specific

event list would remain write-locked and would be excluded from state save operations.

Since write-locked memory is not yet fully supported by the Time Warp implementation

used in the development of SimD, this optimization has not been implemented.

Since neither Sim++ nor SimD incorporate any of the optimizations of Extended Virtual

Time, neither implementation was found to have any significant advantage over the other in

terms of overall performance, although SimD does have slightly lower event scheduling

overhead in cases wheie event identifiers are not required.

5.10 Summary

This chapter proposed a new language for Virtual Time called SimD. Among the

contributions of this language are improved interfaces to many of the data types and

language constructs provided by Sim++, and a combined process-oriented and event-

oriented modeling paradigm that was shown to address weaknesses in the event selection

constructs of Sim++, Extended Virtual Time, and Maisie. It was argued that the unique

characteristics of SimD make resulting simulations simpler, more readable, more type safe,

105

and more modular. Although differences between SimD and Extended Virtual Time do not

permit all of the performance optimizations developed for Extended Virtual Time to be

incorporated into SimD, alternative optimizations for achieving comparable results were

suggested.

One of the most important and unexpected lessons to arise from the development of

SimD is the role of documentation and implementation as factors affecting the design of the

language. Although it was obvious from the very beginning that the use of SimD in the

development of applications would provide useful feedback towards improving the

resulting design, documentation and implementation played equally important roles towards

this end as well. Many prototype designs of SimD features which were easy to use had to

be further refined or even abandoned because they could not be easily described or because

their implementation was too complex or inefficient. Indeed, the presentation of SimD in

this chapter is intended as evidence that the resulting design can be described in relatively

simple and concise terms, and that key features can be described as a progression of

concepts, beginning with basic data types and predicates, and ending with event handlers.

Chapter 6

Experience With SimD

This chapter describes two discrete-event simulations that were implemented in SimD and

executed on Time Warp on a transputer-based, distributed-memory Meiko Computing

Surface. The purpose in developing these simulations was to gain experience with SimD

and to test the implementation of SimD on Time Warp. Both simulations have previously

been used as benchmarks to evaluate the performance of Time Warp and Extended Virtual

Time [Bae89, Bae9l, Lom88a, Lom88b]. For each simulation, the model and its

implementation in SimD are described, and performance results are presented for the

simulation executing on Time Warp. The purpose of this chapter is to demonstrate that

SimD can be used with Time Warp to develop well-structured, efficient, parallel

simulations. For a detailed performance study and analysis of both simulations, see

Lomow's thesis [Lom88b]. Both models were developed by Lomow and portions of the

model descriptions that follow are, with minor simplifications for brevity, as they appeared

in his thesis.

6.1 Overview of Experiments and Experimental Method

All experiments were executed on a sequential simulator on a single Computing Surface

node with 16 megabytes of memory, and in parallel on Time Warp on 8, 16, 24, and 32

Computing Surface nodes with 4 megabytes of memory per node. Approximately 1

megabyte of memory per node is required by the Computing Surface operating system and

for the executable object code. The sequential simulator is used as the basis for speedup

106

107

comparisons. The sequential simulator excludes all of the overhead associated with Time

Warp for process rollback, message cancellation, calculating GYT, and interprocessor

communication. The sequential simulator uses a linear list to represent the input queue of

each process, and a global splay tree [Sle85] to order the next event time of all processes.

The next event time of a process corresponds to the receive time of the first message in the

process' input queue. Processes execute in order of increasing next event time.

Each of the speedup graphs presented in the following sections is presented in terms of

application speedup. Application speedup is defined as the sequential application time

divided by the parallel application time for a given number of nodes. Application time is

the amount of time required to execute the initialization and execution phases of the

application. Application time excludes startup and shutdown overhead such as the time

required to download the executable object code to each node of the Computing Surface.

This overhead amounts to approximately 4 seconds per node and easily dominates the total

execution time for many of the parallel runs used in this study. For example, the time

required for startup and shutdown on 32 nodes is approximately 2 minutes. The

application speedup graphs are therefore intended to represent simulations in which this

overhead is only a small fraction of the total execution time.

The sequential and parallel application times are each the average of 9 runs. A different

initial seed for random number generation was used for every 3 runs. The maximum

deviation from the mean for each set of 9 runs was less than 5% for all experiments. The

sequential application times varied in length from 2 to 14 minutes. The parallel application

times varied in length from 1 to 4 minutes. The speedup achieved for these runs was

verified to be representative of the speedup achieved with longer runs of both simulations.

The use of sequential application time as the basis for speedup comparisons is generally

consistent with the presentation of speedup in the literature [Fuj87, Fuj90, Lom88b]. It

108

can be argued, however, that the sequential application time is too high since it represents

the time required to sequentially execute an application designed for parallel execution. A

more appropriate basis for speedup comparisons might be the time required to execute a

purely sequential implementation of each application, using global and shared memory for

process interactions. For the sake of simplicity and consistency with the literature, the

speedup results presented in this chapter are based on the sequential application time. It

remains to be seen how well existing implementations of Virtual Time compare with

sequential simulation techniques using global and shared memory.

In addition to the application speedup achieved by Time Warp, each graph also plots an

estimate of the potential speedup of the application on 8, 16, 24, and 32 processors.

Although the speedup for any problem executing in parallel is limited by the number of

processors on which the problem is executed, real simulations are further limited by causal

relationships between events and intra-processor and inter-processor communication

overhead. The potential speedup is calculated by a performance analysis tool that takes

these additional limitations into consideration. Using data collected by Time Warp during

the execution of a simulation, the tool simulates a parallel execution of the same simulation,

assuming a "perfect" implementation of Virtual Time with the following characteristics:

1. Each entity executes its events in the exact order that it would in a sequential

execution.

2. Reasonable delays (appropriate to the type of parallel processor) are incurred for

sending or receiving a message.

3. Two or more entities mapped to the same processor never execute simultaneously.

The resulting potential speedup excludes the additional overhead associated with existing

conservative and optimistic approaches to parallel simulation. Although Berry [Ber86] has

109

shown that Time Warp is not theoretically limited by the potential speedup calculated by

this tool, my experience and that of researchers at JPL [Rei9O] suggests that the conditions

under which Time Warp can achieve or exceed the potential speedup do not arise in

practice. This is due primarily to the much higher overheads of Time Warp, including the

time required to regularly save the states of processes, the time required to create and

maintain anti-messages, the time required to perform rollbacks, and the time required to

calculate GVT and perform fossil collection.

For the potential speedup calculated for this study, intra-processor communication

overhead was fixed at 1.0 milliseconds and inter-processor communication overhead was

fixed at 2.0 milliseconds. The value for intra-processor communication overhead is

equivalent to the time required to schedule and receive an event in SimD on the optimized

sequential simulator. This includes the time required to create and schedule the event,

context switch to the receiving entity, and receive the event. The value for inter-processor

communication overhead is based on experiments performed on the Computing Surface

using the message-passing kernel of the Time Warp implementation used in this study. In

addition to the overhead associated with intra-processor communication, inter-processor

communication further includes the time required to transmit the message between

processors via the message-passing kernel. The value for inter-processor communication

overhead excludes any delays that might typically be experienced by the message-passing

kernel when the receiving processor is busy performing input or output, or executing the

application. These additional delays have been ignored since they cannot be estimated with

any reasonable degree of accuracy. As a result, the value for inter-processor

communication overhead is a lower bound on the actual overhead. A more accurate

estimate would tend to lower the potential speedup figures calculated for this study.

110

Both simulations include a variety of parameters that vary the behaviour of the

application, resulting in diverse execution characteristics for these simulations executing in

parallel. For the results reported here, many of the parameters chosen are "typical"

configurations that represent neither a worst case nor a best case in terms of the potential

speedup of either simulation [Lom88b]. The results achieved appear consistent with those

of other studies of these simulations, although no direct comparison was attempted since

the scope of this study is limited to demonstrating the effectiveness of SimD for developing

these simulations. Indeed, one of the key differences between this and earlier studies is

that this study contained up to 10 times as many entities. The larger number of entities is

intended to demonstrate that SimD and Time Warp are suitable for large problems

containing many hundreds of entities.

6.2 The Health Care System

The health care system is an hierarchical queueing system consisting of villages and health

centers. There is one health center for each village and each village/health center pair is

referred to as a health care node. When villagers become ill, they travel to their local health

center for assessment and, when possible, treatment. If they cannot be treated locally,

patients are referred up the hierarchy to the next, more sophisticated health center where the

assessment/treatment/referral process is repeated. It is assumed that patients can always be

treated at the root of the health care system. Once treated, patients return to their home

village. Figure 6.1 illustrates a simplified view of this health care system.

111

Flow of

Patients

(health 4___.<village) (health

Figure 6.1: The Health Care System

6.2.1 Design Issues and Implementation

For the performance results that follow, villages and health centers are represented by

separate entities, and patients are represented by events. Although it has been shown

[Bae9l] that implementing each health care node as a single entity can result in as much as

40% additional speedup, the approach used here results in more readable code. Appendix

A presents a complete SimD implementation of the health care system with separate village

and health center entities.

Each village entity performs two distinct tasks: generate patients for the local health

center, and receive returning villagers. The body of the village entity is used solely to

generate patients. The interarrival time between successive patients is modeled using a call

to hold. A separate event handler is used to receive returning villagers. C++ code for the

body of the village entity and this event handler is shown in figure 6.2. By intercepting

returning villagers with an event handler, the call to hold will never be interrupted. To

interrupt the call to hold with returning villagers would be an abuse of interruptable delays,

since returning villagers do not represent an interrupt in the model.

112

void village: : handle_treated(event &treated_ev)

Outstanding = Outstanding - 1; II outstanding villagers
if (Outstanding == 0) generate_report 0;

void village: : body()

while (time() < DURATION)
Outstanding = Outstanding + 1;

hold (Interarrival_time. sample 0);
Generated = Generated + 1;

patient_ev = event(Local_health_center, 0.0, PATIENT);
patient_ev << self 0; II return patient to this village

schedule (patientev);

Figure 6.2: c++ Code for Village Entity Class

Health center entities are very similar to the barber entity described in Chapter 4. A

health center entity treats one patient at a time, in the order that patients arrive at the health

center. The body of the health center entity is used solely to model the assessment and

treatment of patients. The simulation time during which a patient undergoes assessment

and treatment is modeled using calls to hold. A separate event handler is used to receive

and enqueue patients that arrive while another patient is being treated. C++ code for the

body of the health center entity and this event handler is shown in figure 6.3.

A summary entity is used to gather and summarize statistics about the application. This

entity is a sequential bottleneck since it must receive and process an event from every other

entity in the simulation after those entities have terminated. For the results that follow, the

sequential and parallel application times exclude the time required to execute the summary

entity at the end of the simulation. The time required to execute the summary entity on

113

void health center: : body()

while (TRUE)
II get the next patient
if (Patients.emptyO)

wait(patient_ev, type_p == PATIENT);
else

patient_ev = Patients, retrieve (type_p

hold(ASSESS TIME I Personnel);
Assessed = Assessed + 1;

PATIENT);

if (Treatable.sampleO)
hold(TREAT TIME / Personnel);
Treated = Treated + 1;
patient _ev >> home _village;

treated_ev event(home_village, 0.0, TREATED);
schedule (treated_ev);

else
Referred = Referred + 1;
patient_ev >> home—village;
patient_ev = event(Next_health_penter, 0.0, PATIENT);
patient_ev << home _village;
schedule (patient_ev);

}

void health_center: : handle_patient (event &patient_ev)

}
Patients. store (patient_ev);

Figure 6.3: c++ code for Health Center Entity Class

Time Warp is approximately 1 minute. That time is a significant factor in many of the

parallel runs used in this study, but is less significant in simulations that execute for longer

periods of time.

6.2.2 Simulation Parameters and Performance Results

The configuration of the health care system used for all experiments consisted of 341 health

care nodes organized as a full, 4-way branching tree of height 5. This configuration results

114

in 682 entities with an approximate state size of 6K per entity, including language overhead

and the state saved portion of an entity's run-time stack. Approximately 1K of this state is

due to language overhead. The average computation per event for this simulation is 2.6

milliseconds. Approximately 1 millisecond of this time is due to language overhead. For

all experiments, the village and health center entities associated with a given health care

node were always mapped to the same processor. Health care nodes were mapped to

processors using a static mapping that attempts to distribute the total computation as evenly

as possible over the available processors. Static mapping requires that the simulation be

executed at least once in order to produce the necessary performance data to generate the

mapping. Static mapping assumes that subsequent runs of the same simulation will be

sufficiently similar to the first that the original mapping will result in better performance

than if entities are mapped to processors at random or round robin. This is generally true

for the configurations of both simulations presented in this chapter, since only the random

number seeds are varied between runs. However, in general, if a simulation is executed

multiple times with different sets of input parameters, it is possible that the simulation will

exhibit radically different execution characteristics for each run. Reiher and Jefferson

[Rei9Ob] present preliminary results for a dynamic load management scheme intended to

address this problem.

The number of health care personnel at each health center is based on the health center's

level in the tree. Health centers nearer to the root of the tree represent larger hospitals and

have correspondingly more personnel. These increased resources are modeled by a

corresponding decrease in service time. Table 6.1 gives the number of health care nodes at

each level of the system and the number of health care personnel at each health center.

115

Level Health Care Health Care Personnel
Nodes per Health Center

0
1
2
3
4

1
.4

16
64
256

16
8
4
2
1

Table 6.1: Configuration of the Health Care System

Parameter Value

Duration
Arrival Rate
Treatment Probability
Assessment Time
Treatment Time

100.0 time units
0.3 patients per unit time
0.9 (1.0 at root)
0.3 time units
1.0 time units

Table 6.2: Application Parameters for the Health Care System

The values of other application parameters are shown in table 6.2. The interarrival time

between patients generated by a village is drawn from a negative exponential distribution

with a mean arrival rate of 0.3 patients per unit time. The probability that a patient can be

treated at a given health center is 0.9 (except at the root of the health care system where the

probability is 1.0). The assessment and treatment times are fixed at 0.3 and 1.0 time units,

respectively, divided by the number of health care personnel at the health center.

Since each village is mapped to the same processor as its local health center, inter-

processor communication only occurs when a patient is referred to a health center on a

different processor or when a patient returns from a remote health center. Since, on

average, 90% of patients are treated locally, there is relatively little inter-processor

communication, suggesting that this configuration will result in a high degree of parallelism

among processors. This has indeed been the case with earlier studies of this model

[Bae89, Lom88a, Lom88b]. A reduced treatment probability has been found to degrade

performance, as inter-processor communication and synchronization increases.

116

Figure 6.4 shows the application speedup achieved by Time Warp for this simulation.

Figure 6.5 shows the application speedup achieved by Time Warp for the same simulation

with 10 milliseconds of additional computation per event. Figure 6.6 shows the application

speedup achieved by Time Warp for the same simulation with 20 milliseconds of additional

computation per event. The additional computation is artificial, but is still indicative of

realistic simulation problems. For example, a Sim++ simulation of an existing

telecommunication network averaged 40 milliseconds of computation per event.

With no additional computation per event, the potential speedup ranges from 5.8 to

14.8 as the number of processors is varied from 8 to 32. Time Warp achieves 28% of the

potential speedup on 8 processors, with a drop to 17% on 32 processors. The decline is

due primarily to an increase in the number of rollbacks and anti-messages, as the execution

of the simulation becomes increasingly asynchronous with the addition of processors. This

effect can be seen to varying degrees in all of the graphs for both simulations, although it is

most pronounced when the amount of computation per event is low. With less

computation per event, entities are more likely to execute forward in simulation time more

quickly and are therefore more likely to execute events out of order. With 20 milliseconds

of additional computation per event, Time Warp achieves 61% of the potential speedup on

8 processors, with a drop to 48% on 32 processors. In this case, the application speedup

achieved by Time Warp ranges from 4.7 to 12.6 as the number of processors is varied

from 8 to 32. [Bae91] reports speedups as high as 18 on 32 processors when each health

care node is implemented as a single entity.

117

Ap
pl

ic
at

io
n
S
p
e
e
d
u
p

Ap
pl
ic
at
io
n
S
p
e
e
d
u
p

32

24 -

16-

8

I • I

-a- Potential

-4- Time Warp

0 8 16 24 32

Number of Processors

Figure 6.4: Application Speedup for the Health Care System
(no added computation)

32

24-

16-

8-

I I • I

8 16 24 32

Number of Processors

-a- Potential
-4- Time Warp

Figure 6.5: Application Speedup for the Health Care System
(10 milliseconds of added computation)

118

0 8 16 24 32

Number of Processors

-a- Potential
-4- Time Warp

Figure 6.6: Application Speedup for the Health Care System
(20 milliseconds of added computation)

6.3 The Mobile Communication Network

The mobile communication network consists of multiple, indepedently acting physical

components, called platforms, that broadcast and receive bulletins while moving on a fixed-

size, two-dimensional surface. For simplicity, it is assumed that the surface is a torus with

no fixed edges. Bulletins denote information packets transmitted among platforms and they

model a simplified form of radio communication. When a platform broadcasts a bulletin,

all platforms within range of the broadcast receive the information packet. Figure 6.7

illustrates the basic components of the mobile communication network.

6.3.1 Design Issues and Implementation

Simulating the mobile communication network is considerably different than simulating a

119

N

lie

I

-wi.- platform

0 platform currentlr broadcasting

Figure 6.7: The Mobile Communication Network

queueing network. In the health care system, when a patient moves from a village to a

health center, or from one health center to another, it is clear where the patient is moving

from and where the patient is moving to. In contrast, when a platform broadcasts a

bulletin, it does not explicitly identify which platforms are to receive the bulletin. Instead,

the bulletin is delivered to exactly those platforms within range of the broadcast at the

instant the broadcast takes place.

A straightforward implementation of this model would have each broadcasting platform

schedule an event for every other platform in the simulation and have the receiving platform

decide whether or not it was actually within range. Unfortunately, for any but a small

120

number of platforms, the communication overhead of scheduling one event for every entity

for each broadcast easily dominates the execution of the simulation, and no speedup is

possible.

A typical approach to this type of problem [Bec88, Cle90, Con90, Gol84, Lom88b] is

to divide the two-dimensional surface into sectors and represent each sector by a sector

entity. This is the approach used for the performance results that follow. Each sector

entity knows the current trajectory of all platforms in its sector. Knowing the trajectory of

a platform allows the sector entity to determine the current position of the platform at any

instant in simulation time. As platforms change their trajectory, or move from one sector to

another, the platforms are responsible for informing the appropriate sector entities. When a

platform broadcasts a bulletin, it schedules an event for each sector entity that coincides

with the area of the broadcast range. The sector entities, in turn, forward the event to all

platforms determined to be in range of the broadcast.

The implementation of the mobile communication network is divided into two layers: a

spatial layer and an application layer. The spatial layer implements the sector entities and

provides primitives for modeling motion and broadcasting. The application layer uses

these primitives to implement the mobile communication network model. All interactions

with sector entities are performed by the spatial layer and are completely transparent to the

application layer. The separation of these layers is complete - there is no application-

specific knowledge in the spatial layer and there is no knowledge in the application layer

about how the motion and broadcasting primitives are implemented. Indeed, several

variations of the spatial layer were implemented and tested, without changes to the

application layer. Appendix B presents a complete implementation of the application layer

of the mobile communication network. The source code associated with the

121

class point

point (double x, double y);

event &operator<<(event &ev, point &pos);
event &operator>>(event &ev, point &pos);

class velocity

velocity(double direction, double speed);

event &operator<<(event &ev, velocity &vel);
event &operator>>(event &ev, velocity &vel);

class mobile—entity public entity

void set_position(point &pos);
void set _velocity(velocity &vel);
point current_position 0;
velocity current _velocity 0;
void broadcast (double range, event &ev);

Figure 6.8: c++ Declarations for the Spatial Layer Interface

implementation of the spatial layer has been omitted. A substantial portion of that code

deals with floating point errors and boundary conditions that obscure the key elements

involved in managing motion and broadcasts.

The interface provided by the spatial layer is shown in figure 6.8. The primitives for

modeling motion and broadcasting are member functions of entity class mobile—entity.

The application layer further derives mobile—entity for the specific requirements of the

application. All instances of an entity class derived from mobile—entity are referred to as

mobile entities. The primitives set_position and set—velocity allow a mobile entity to

initialize or change its position or velocity, respectively. The primitives

current_position and current—velocity allow a mobile entity to determine its current

position and velocity, respectively. The value returned by current—velocity is that

specified in the most recent call to set—velocity. The value returned by

current_position is a function of the position specified in the most recent call to

122

set_position, the amount of simulation time that has elapsed since the call to

set—position, and the current velocity. The primitive broadcast schedules a given event

for all mobile entities whose current position at the simulation time of the broadcast falls

within the specified range.

In addition to a sectored implementation of the spatial layer, a shared memory

implementation was also developed. In the shared memory implementation, there are no

sector entities and all mobile entities are part of a single cluster. In this way, the spatial

layer can always directly access the member variables and functions of all mobile entities in

the simulation. Although this approach has no potential for speedup from parallel

execution, it is representative of how this simulation might be implemented for efficient,

sequential execution. For example, to implement broadcast, the spatial layer of the

calling entity directly references the current position of each mobile entity in the simulation

to detrmine which of those entities are within range of the broadcast and should receive the

given event. As a result, the shared memory approach requires fewer events and is easier

to implement than the sectored approach. Specifically, the shared memory implementation

of the spatial layer required 268 lines of source code and the sectored implementation

required 779 lines of source code.

Although the difference in code size suggests that an implementation of the mobile

communication network for parallel execution is more difficult than for efficient sequential

execution, this is not necessarily the case. Depending on the characteristics of the

application, the sectored implementation may also be required for efficient sequential

execution. For example, when the number of platforms is very large (e.g., 500), the

shared memory implementation executing on the sequential simulator was found to execute

as much as 35% slower than the sectored implementation executing on the sequential

simulator, even though the sectored implementation scheduled five times as many events.

123

The reason for this is that the amount of computation required by the shared memory

implementation to determine which of the 500 platforms is within range of each broadcast

is greater than the amount of computation required to manage motion and broadcasting in

the sectored implementation. A "best case" sequential implementation of this simulation

would combine the use of sectors and shared memory, although no such implementation

was attempted for this study. For the results that follow, the sectored implementation

executing on the sequential simulator was the basis for all potential and application speedup

figures.

Once again, a summary entity is used to gather and summarize statistics about the

application. The sequential and parallel application times exclude the time required to

execute the summary entity at the end of the simulation.

6.3.2 Simulation Parameters and Performance Results

The configuration of the mobile communication network used for all experiments consisted

of 500 platforms and 16 sectors, for a total of 516 entities. The state size of each platform

entity is approximately 6K, including language overhead and the state saved portion of an

entity's run-time stack. Approximately 1K of this state is due to language overhead. The

state size of each sector entity is approximately 10K. The average computation per event

for this simulation is 3.66 milliseconds. Approximately 1 millisecond of this time is due to

language overhead. For all experiments, platform and sector entities were mapped to

processors using the static mapping scheme described in Section 6.2.2.

The values of key application parameters are shown in table 6.3. The size of the two-

dimensional surface is fixed at 100 x 100 units. The size of each of the 16 sectors used for

these experiments is fixed at 25 x 25 units. The broadcast range of each platform is fixed at

124

Parameter Value

Duration
Surface Size
Number of Sectors
Number of Platforms
Broadcast Range
Speed
Event Rate
Broadcast Probability

20.0 time units
100 x 100 units
16 (25 x 25 units each)
500
5.0 units
1.0 units per unit time
1.0 events per unit time
0.5

Table 6.3: Application Parameters for the Mobile Communication Network

5.0 units. Platforms travel in a straight line with a fixed speed of 1.0 units of distance per

unit time. The rate at which platforms broadcast a bulletin or change direction is referred to

•as the event rate and is based on a drawing from a negative exponential distribution with a

mean of 1.0 events per unit time. This means that, on average, a platform broadcasts a

bulletin or changes direction every unit of simulation time. There is equal probability that

each such event will be a broadcast or a change in direction.

With a broadcast range of 5.0 units, each broadcast covers an area of 78.5 units2 or,

approximately, 0.8% of the total surface. As a result, each broadcast is typically confined

to a single sector. Assuming that platforms are evenly distributed over the entire surface,

each broadcast reaches 3 platforms, excluding the broadcasting platform. This means that,

on average, a broadcasting platform schedules one event for the current sector, and that

sector schedules three events for the platforms in range of the broadcast. All of the results

that follow use this configuration of the application. However, with only minor changes to

the application parameters, it would be possible to significantly impact the performance of

the simulation. For example, by doubling the broadcast range, a single broadcast would

typically reach 15 platforms, requiring 12 additional events per broadcast.

Figure 6.9 shows the application speedup achieved by Time Warp for this simulation.

125

32

24-

16-

8

0

4 ,
 4

I •

0 8 16 24 32

Number of Processors

-a- Potential
-4- Time Warp

Figure 6.9: Application Speedup for the Mobile Communication Network
(no added computation)

Ap
pl
ic
at
io
n
S
p
e
e
d
u
p

32

24-

16-

8-

8 16 24

Number of Processors

32

-a- Potential

-4- Time Warp

Figure 6.10: Application Speedup for the Mobile Communication Network
(10 milliseconds of added computation)

126

Ap
pl

ic
at

io
n
S
p
e
e
d
u
p

32

24-

16-

8

0- I • I • I

0 8 16 24

Number of Processors

32

-0- Potential
-4- Time Warp

Figure 6.11: Application Speedup for the Mobile Communication Network
(20 milliseconds of added computation)

Figure 6.10 shows the application speedup achieved by Time Warp for the same simulation

with 10 milliseconds of additional computation per application event. Figure 6.11 shows

the application speedup achieved by Time Warp for the same simulation with 20

milliseconds of additional computation per application event. Application events include

only those events that are visible at the application layer. This excludes events used by

platforms to interact with sector entities. It is assumed that the amount of computation

required by sector entities to manage motion and broadcasting is already representative of

realistic applications using sectors. For the configuration of the mobile communication

network used for these experiments, approximately 40% of all events were used to interact

with sector entities and were excluded from additional computation. As a result, with 20

milliseconds of additional computation per application event, the average computation over

all events rose from 3.66 milliseconds to only 15.1 milliseconds.

127

With no additional computation per event, the potential speedup ranges from 5.7 to

13.3 as the number of processors is varied from 8 to 32. With 20 milliseconds of

additional computation per application event, the potential speedup ranges from 6.4 to

18.2. For this simulation, Time Warp achieves application speedups ranging from a low of

1.6 to a high of 8.2. On 8 processors, the application speedup achieved by Time Warp is

28-56% of the potential speedup, depending on the amount of computation per event. On

32 processors, the application speedup achieved by Time Warp is 20-45% of the potential

speedup.

6.4 Summary

This chapter described two discrete-event simulations that were implemented in SimD and

executed on Time Warp on a transputer-based, distributed-memory Meiko Computing

Surface. The development of these simulations was one of several sources of feedback

into the design of SimD presented in Chapter 5. The mobile communication network is of

particular interest for evaluating SimD in that the implementation of the model required both

a spatial layer and an application layer. Using SimD, it was possible to completely separate

the implementation of the two layers, making it possible to experiment with several

alternative implementations of the spatial layer without changes to the application layer.

This suggests that the constructs provided by SimD are appropriate for implementing

moderately complex parallel simulations consisting of multiple layers of software. The

SimD implementation of the resource competition facility shown in Chapter 5 is further

evidence of this claim.

In addition to the health care system and the mobile communication network, I have

also used SimD to implement two other simulations. The first is a simulation of an

128

adaptive routing algorithm for a multi-hop, message-passing system. The second is a

simulation of the Chandy-Misra approach to parallel simulation using deadlock detection

and recovery. Whereas the purpose in simulating the health care system and the mobile

communication network was to gain experience with SimD and test its implementation on

Time Warp, these other simulations were used to study the simulated system, not the

simulation or the language.

The existing implementation of SimD executes without errors, and simulations

implemented in SimD have been shown to execute efficiently on Time Warp. Speedups as

high as 18 on 32 processors have been achieved with a SimD implementation of the health

care system. Nevertheless, the existing implementation of SimD is a prototype and a more

complete implementation is intended.

Chapter 7

Conclusion

This chapter presents a critique of SimD, summarizes the contributions of this research,

presents conclusions drawn from this research, and describes areas requiring further study

and development.

7.1 Critique of SimD

Much of Chapters 4 through 6 was devoted to demonstrating the superiority of SimD over

other languages for Virtual Time. It was shown how SimD's data types and language

constructs provide improved interfaces to equivalent constructs in Sim++. In addition, it

was shown how the combined process-oriented and event-oriented capabilities of SimD can

be used to address limitations in Sim++, Extended Virtual Time, and Maisie. Chapter 4

showed how these limitations complicate the development of even very basic simulation

models. Chapter 5 showed how the unique characteristics of SimD can make simulations

simpler, more readable, more type safe, and more modular. Chapter 6 demonstrated the

effectiveness of SimD for developing moderately complex simulations that execute

efficiently on Time Warp.

In spite of SimD's strengths, it does not address a number of difficulties. First, since

SimD is implemented in C++, it is plagued by many of the weaknesses of C++. For

example, C++ does not support run-time type checking, automatic initialization of

variables, or automatic garbage collection. In addition, C++ does not prevent references

through invalid pointers or array references outside the bounds of an array. Based on my

129

130

experience, the lack of these capabilities makes C++ significantly more difficult to use than

Simula or comparable languages where these capabilities are present. Second, SimD does

not satisfy all of the language design criteria proposed in Chapter 3. Most notably, SimD

does not enforce restrictions related to shared and global memory, nor are all transient

errors caused by Time Warp transparent to the application. These limitations cannot be

overcome without compiler support. Third, SimD applications are required to invoke

macros like EVENT—TYPE and ENTITY—CLASS to support the language

implementation at run time. Eliminating these macros also requires compiler support.

Finally, the existing implementation lacks facilities for data collection and reporting,

random number generation, error handling, and file and console input and output. The

current implementation of SimD coexists with Sim++ and is therefore able to use Sim++

facilities that are not yet available in SimD.

7.2 Thesis Summary

The goal of this research was to assess the impact of Virtual Time on simulation language

design. This goal was divided into the following research questions addressed by this

thesis and summarized below:

1. How do the characteristics of Virtual Time differ from sequential simulation?

2. How do the characteristics of Virtual Time impact simulation language design?

3. Can languages for Virtual Time be used to develop well-structured, efficient,

parallel simulations?

Two fundamental differences between Virtual Time and sequential simulation were

identified and the impact of these differences on parallel simulation was exRmined. First,

131

Virtual Time processes interact solely by sending and receiving timestamped messages.

The primary advantage of message-passing is that processes can execute concurrently on

multiple processors and need not progress through simulation time at a uniform rate. As

such, there is a great deal of freedom in how processes are executed, as long as causality is

maintained. The primary disadvantage of message-passing is that it is generally several

orders of magnitude slower than interactions through shared memory. As such, messages

cannot generally be employed as one-for-one substitutes for shared memory references.

This makes it difficult to model problems in which many or all processes regularly access a

large, global state. Second, Virtual Time simulations must be designed specifically for

parallel execution if they are to achieve significant reductions in execution time.

Specifically, it is necessary to limit the amount of computation performed by any one

process, maximize the ability of processes to work in parallel, and minimize

communication overhead. All of these requirements are specific to Virtual Time. They are

not factors in the design of sequential simulations.

A set of language design criteria for Virtual Time was developed based on the

differences between Virtual Time and sequential simulation, and the characteristics of

existing languages for Virtual Time surveyed for this research. The proposed criteria are

parallel efficiency, explicit costs, determinism, type-safety, transparency of the

implementation, transparent scaleability, portability of applications, and enforced

restrictions. The characteristics of languages for Virtual Time suggested by these criteria

are as follows.

1. Languages for Virtual Time should encourage efficient, parallel programming

practices with language constructs that have efficient, parallel implementations.

2. Operations in a parallel simulation that differ significantly in cost from equivalent

operations in a sequential simulation should appear obviously different to the user.

132

3. Given the same input, a simulation should produce the same results regardless of

the number of processors on which the simulation is executed or the mapping of

processes to processors used.

4. Languages for Virtual Time should be fully type safe, including message-based

interactions between processes.

5. The implementation of Virtual Time should be transparent to the application.

6. The number of processors used to execute a simulation, and the mapping of

processes to processors should be transparent to the application.

7. Application programs should be capable of executing sequentially or in parallel on

multiple operating systems and architectures without source code modifications.

8. Languages for Virtual Time should enforce restrictions imposed by the Virtual Time

paradigm. Most notably, the language should prevent interactions between

processes through shared or global memory.

Key limitations of existing languages for Virtual Time were identified. The most

prevalent of these is the inability to restrict or extend the semantics of the event selection

primitives provided by Sim++, Extended Virtual Time, and Maisie. These primitives allow

a process to specify what events it is willing to receive at any given time. However, since

the implicit actions and data structures associated with event selection are inaccessible to the

application, the event selection primitives must frequently be used as is or circumvented

altogether. In addition, attempts to define new primitives based on those provided by

Sim++ was found to be quite difficult. This is due to a strong interdependence among

Sim++ primitives that discourages modularity. Specifically, it was shown that it would be

necessary to redefine many or all of the existing primitives in order to define the new

primitives. These limitations were shown to make even very basic simulation models

difficult to implement, requiring repeated and significant restructuring to cope with simple

133

model extensions. These limitations were the primary motivation for the development of

SimD.

A new language for Virtual Time called SimD was defined. Among the contributions

of this language are improved interfaces to many of the data types and language constructs

provided by Sim++, and a combined process-oriented and event-oriented modeling

paradigm that was shown to address the limitations of other languages for Virtual Time, as

outlined above. Although differences between SimD and Extended Virtual Time do not

permit all of the performance optimizations developed for Extended Virtual Time [Lom88b]

to be incorporated into SimD, alternative optimizations were suggested for achieving

comparable results. SimD was implemented on an existing implementation of Time Warp

developed and made available by Jade Simulations International Corporation.

The effectiveness of SimD for developing well-structured, efficient, parallel simulations

was demonstrated using several basic examples and two simulations implemented and

executed on Time Warp. The primary purpose in developing these simulations was to gain

experience with SimD and to test the implementation of SimD on Time Warp. The

development of these simulations was one of several sources of feedback into the design of

SimD. A performance study of these simulations was presented.

In addition to the contributions of this thesis summarized above, this research resulted

in two refereed conference papers on the subjects of parallel simulation language design

[Bae9O] and parallel simulation performance using Time Warp [Bae91].

7.3 Conclusions

The following conclusions are drawn from this research.

134

1. Existing modeling practices and language design must be adapted to Virtual Time.

Unlike sequential simulations, Virtual Time simulations communicate and

synchronize the actions of processes solely by sending and receiving timestamped

messages, and Virtual Time simulations must be designed specifically for parallel

execution if they are to achieve significant reductions in execution time. Although it

is common in sequential simulations to decompose a problem into logical

processes, this is typically a representational convenience without regard (or need)

for the ability of those processes to work in parallel. Furthermore, sequential

simulations rely on shared memory for process interactions. These abstractions are

not suitable for Virtual Time. Instead, modeling practices and language design for

Virtual Time must encourage techniques and language constructs that limit the

amount of computation performed by any one process, maximize the ability of

processes to work in parallel, and minimize communication overhead.

2. Modeling practices and language design should not be adapted to accomodate

specific implementations of Virtual Time. There are two reasons for this. First,

such adaptations require that the user understand fundamental characteristics of the

implementation of Virtual Time, even though those characteristics are not inherent

to the Virtual Time paradigm or to parallel processing. Second, additional

requirements imposed by a specific implementation of Virtual Time increase the

complexity of the design and implementation of a parallel simulation and reduce its

portability to other implementations of Virtual Time.

3. Currently, implementations of Time Warp cannot be made completely transparent to

users. This means that, in many cases, simulations must be designed specifically

for Time Warp in order to achieve significant reductions in execution time or to

execute at all. Specifically, simulations for Time Warp must deal with the issues of

135

process state size, side effects resulting from causality errors, and interactions with

the external world. Although some of these issues can be addressed through

compiler support, many require hardware support such as that provided by the

rollback chip.

4. The language design criteria proposed in this thesis - parallel efficiency, explicit

costs, determinism, type-safety, transparency of the implementation, transparent

scaleability, portability of applications, and enforced restrictions - promote the

development ofparallel simulations that are correct, efficient, and scaleable. Many

of these criteria are already proven in that they represent the best elements of

existing languages for Virtual Time.

5. Many existing languages for Virtual Time contain inherently sequential constructs

or are difficult to use for representing even very basic simulation models. ModSim

contains a number of language constructs not suited to parallel execution. Chief

among these are interactions through shared and global memory. Sim++, Extended

Virtual Time, and Maisie support event selection whereby a process can specify

what events it is willing to receive at any given time. Unfortunately, none of these

languages provide any ability to restrict or extend the semantics of the event

selection primitives. As a result, these primitives must frequently be used as is or

circumvented altogether.

6. SimD improves the structure of parallel simulations compared to other languages

for Virtual Time. SimD's data types and language constructs provide improved

interfaces to equivalent constructs in Sim++. In addition, the combined process-

oriented and event-oriented capabilities of SimD can be used to address limitations

in Sim++, Extended Virtual Time, and Maisie. These characteristics of SimD make

resulting simulations simpler, more readable, more type safe, and more modular.

136

7. SimD can be used to develop parallel simulations that achieve significant reductions

in execution time. Speedups as high as 18 on 32 processors were achieved with the

SimD implementation of the health care system with 20 milliseconds of added

computation per event [Bae9l]. With no added computation per event, speedup

never fell below 2.6 on 32 processors for either application presented in this thesis.

These speedups were achieved without the benefit of optimizations such as

integrating the simulation primitives with the underlying implementation of Time

Warp [Lom88b] or special purpose hardware such as the rollback chip [Fuj88b].

Either of these optimizations should further improve the performance of these

simulations on Time Warp.

8. The language design process must include documentation, implementation, and

experience with the language as feedback into the design. In the development of

SimD, many prototype designs of SimD features had to be further refined or even

abandoned because they could not be easily described, because their implementation

was too complex or inefficient, or because they were difficult to use.

7.4 Further Study and Development

The critique of SimD identified a number of limitations with the existing language and its

implementation in C++. The current implementation lacks a number of facilities common

to simulation languages. A more complete implementation is intended and will include

these additional facilities. The addition of compiler support is not planned. Although it

would be possible to more fully satisfy the language design criteria proposed in this thesis

using compiler support, significant changes to C++ would also be required to address

many of its inherent weaknesses. Such changes are likely to be less successful than

137

designing a completely new language that incorporates the desired design criteria and

language capabilities into the design of the language. This is the approach currently being

used in the development of MociSirn.

One area of parallel simulation language design not addressed by this research involves

the dynamic creation and destruction of processes throughout the course of the simulation.

Dynamic process creation and destruction generally also requires dynamic process

migration since the implementation of Virtual Time cannot predict how much memory a

given process will require at run time or the amount of computation that process will

perform. Dynamic process migration continues to be an active area of research [Rei9Ob].

The impact of dynamic process migration on the language implementation is significant.

Most notably, the state of a process must be completely independent of the area of memory

in which it resides so that the process can migrate to a different area of memory on a

different processor. Alternatively, the implementation of the language must be able to

identify all absolute addresses in the state of a process and adjust those addresses when the

process is migrated. Although solutions to these problems can be implemented in

software, much of the overhead associated with software techniques can be eliminated

using the rollback chip [Fuj88b].

Finally, a topic related to language design for Virtual Time is modeling techniques for

Virtual Time. The fundamental differences between Virtual Time and sequential simulation

require that simulations be designed specifically for Virtual Time if they are to achieve

significant reductions in execution time. Specifically, it is necessary to limit the amount of

computation performed by any one process, maximize the ability of processes to work in

parallel, and minimize communication overhead. Very little research has been done on the

impact of modeling techniques on the readability of simulations. Baezner et al [Bae89]

examines the impact of various modeling techniques on the performance of simulations

138

executed on Time Warp, but does not address the impact of these changes on the readability

of the simulation. Baezner et al [Bae90] examines the impact of Sim++ clusters on the

performance and readability of simulations. Finally, the results reported by Baezner et al

[Bae9l] for a SimD implementation of the health care system executing on Time Warp are

40% better than those reported in this thesis. The additional speedup was achieved by

implementing each health care node as one entity, rather than two. This approach results in

less readable code, however. Generally, the impact of modeling techniques on the

readability of parallel simulations has yet to be addressed for a broad range of applications.

In addition to the readability of parallel simulations, other modeling issues include the

decomposition of a model for significant reductions in execution time across a wide range

of input parameters, and increasing the level of detail in a model without significant

restructuring of the implementation for continued, acceptable performance. Unfortunately,

it is not always possible to know a priori what the range of input parameters to a simulation

is likely to be, or what their impact will be on parallel performance. In addition, it is often

the case that simulations are subject to change after they have been designed and

implemented, where such changes could significantly alter parallel performance. The

impact of these issues has yet to be addressed.

Bibliography

[Abr89] M. Abrams. A Common Programming Structure for Bryant-Chandy-

Misra, Time Warp, and Sequential Simulators. Proceedings of the 1989

Winter Simulation Conference, pages 661-670, December 1989.

[Abr90J M. Abrams and G. Lomow. Design Issues in General Purpose, Parallel

Simulation Languages. Technical Report No. TR-89-38, Department of

Computer Science, Virginia Tech, January 1990.

[Bae89] D. Baezner, J. Cleary, G. Lomow, and B.W. Unger. Algorithmic

Optimizations of Simulations on Time Warp. Proceedings of the SCS

Multiconference on Distributed Simulation, Simulation Series Vol. 21 No.

2, pages 73-78, The Society for Computer Simulation, March 1989.

[Bae9O] D. Baezner, G. Lomow, and ,B.W. Unger. Sim++: The Transition to

Distributed Simulation. Proceedings of the SCS Multiconference on

Distributed Simulation, Simulation Series Vol. 22 No. 1, pages 211-218,

The Society for Computer Simulation, January 1990.

[Bae9l] D.Baezner, G. Lomow, and B.W. Unger. Jade's Parallel Simulation

Environment: Sim++ and TimeWarp. To appear at 6th Distributed Memory

Computing Conference, April 1991.

[Bag90] R.L. Bagrodia and W. Liao. Maisie: A Language and Optimizing

Environment for Distributed Simulation. Proceedings of the SCS

Multiconference on Distributed Simulation, Simulation Series Vol. 22 No.

1, pages 205-210, The Society for Computer Simulation, January 1990.

139

140

[Bec88] B. Beckman, M. Di Loreto, K. Sturdevant, P. Hontalas, L. Van Warren,

L. Blume, D. Jefferson, and S. Bellenot. Distributed Simulation and Time

Warp (Part 1: Design of Colliding Pucks). Proceedings of the SCS

Multiconference on Distributed Simulation, Simulation Series Vol. 19 No.

3, pages 56-60, The Society for Computer Simulation, February 1988.

[Bel891 R. Belanger, B. Donovan, K. Morse, S. Rice, and D. Rockower.

ModSim: A Language for Object-Oriented Simulation (Reference Manual),

CACI Products Company, October 1989.

[Bel90] S. Bellenot. Global Virtual Time Algorithms. Proceedings of the SCS

Multiconference on Distributed Simulation, Simulation Series Vol. 22 No.

1, pages 122-127, The Society for Computer Simulation, January 1990.

[Ber86] 0. Berry. Performance Evaluation of the Time Warp Distributed Simulation

Mechanism. PhD thesis, University of Southern California, February

1986.

[Béz88] J. Bézivin. Design and Implementation Issues in Object-Oriented

Simulation. Simuletter, Vol. 19 No. 2, pages 47-53, June 1988.

[Bir79] G.M. Birtwistle. Demos: A System for Discrete Event Modelling on

Simula. The Macmillan Press Ltd., 1979.

jBir84] G. Birtwistle, G. Lomow, B. Unger, and P. Luker. Process Style

Packages for Discrete Event Modeling: Using Simula's Class Simulation.

Transactions of the Society for Computer Simulation, Vol. 1 No. 2, pages

175-195, December 1984.

141

[Bir86} G. Birtwistle, G. Lomow, B. Unger, and P. Luker. Process Style

Packages for Discrete Event Modeling: Demos: A Process Based Simulation

Package. Transactions of the Society for Computer Simulation, Vol. 3 No.

4, pages 279-316, October 1986.

[Bry89] O.F. Bryan, Jr. ModSim 11— An Object Oriented Simulation Language for

Sequential and Parallel Processors. Proceedings of the 1989 Winter

Simulation Conference, pages 122-127, December 1989.

[Buz90] C.A. Buzzell, M.J. Robb, and R.M. Fujimoto. Modular VME Rollback

Hardware for Time Warp. Proceedings of the SCS Multiconference on

Distributed Simulation, Simulation Series Vol. 22 No. 1, pages 153-156,

The Society for Computer Simulation, January 1990.

[Cha81] K.M. Chandy and J. Misra. Asynchronous Distributed Simulation Via a

Sequence of Parallel Computations. Communications of the ACM, Vol. 24

No. 11, pages 198-206, April 1981.

[Cle90] J.G. Cleary. Colliding Pucks Solved Using a Temporal Logic.

Proceedings of the SCS Multiconference on Distributed Simulation,

Simulation Series Vol. 22 No. 1, pages 219-224, The Society for Computer

Simulation, January 1990.

[Con90] D. Conklin, J. Cleary, and B. Unger. The Sharks World (A Study in

Distributed Simulation Design). Proceedings of the SCS Multiconference

on Distributed Simulation, Simulation Series Vol. 22 No. 1, pages 157-

160, The Society for Computer Simulation, January 1990.

142

[Dah72] O.J. Dahl, B. Myhrhaug, and K. Nygaard. Simula 67 Common Base

Language, Norwegian Computing Center Pub. S-52, Norwegian

Computing Center, Oslo, 1972.

[Ebl89] M. Ebling, M. Di Loreto, M. Presley, F. Wieland, and D. Jefferson. An

Ant Foraging Model Implemented on the Time Warp Operating System.

Proceedings of the SCS Multiconference on Distributed Simulation,

Simulation Series Vol. 21 No. 2, pages 21-26, The Society for Computer

Simulation, March 1989.

{Fuj 871 R.M. Fujimoto. Performance Measurements of Distributed Simulation

Strategies. Technical Report No. UUCS-87-026a, Computer Science

Department, University of Utah, Noyember 1987.

[Fuj88a] R.M. Fujimoto. Time Warp on a Shared Memory Multiprocessor.

Technical Report No. UUCS-88-021a, Computer Science Department,

University of Utah, November 1988.

[Fuj88b] R.M. Fujimoto, J. Tsai, and G.C. Gopalakrishnan. Design and Evaluation

of the Rollback Chip: Special Purpose Hardware for Time Warp. Technical

Report No. UUCS-88-011, Computer Science Department, University of

Utah, July 1988.

[Fuj89] R.M. Fujimoto. Parallel Discrete Event Simulation. Proceedings of the

1989 Winter Simulation Conference, pages 19-28, December 1989.

[Fuj9O1 R.M. Fujimoto. Performance of Time Warp Under Synthetic Workloads.

Proceedings of the SCS Multiconference on Distributed Simulation,

143

Simulation Series Vol. 22 No. 1, pages 23-28, The Society for Computer

Simulation, January 1990.

[Fut88] I. Futo. Distributed Simulation on Prolog Basis. Proceedings of the SCS

Multiconference on Distributed Simulation, Simulation Series Vol. 19 No.

3, pages 160-165, The Society for Computer Simulation, February 1988.

[Gat88] B. Gates and J. Marti. An Empirical Study of Time Warp Request

Mechanisms. Proceedings of the SCS Multiconference on Distributed

Simulation, Simulation Series Vol. 19 No. 3, pages 73-80, The Society for

Computer Simulation, February 1988.

[Gol84] A.P. Goldberg. Object-Oriented Simulation of Pool Ball Motion. Master's

thesis, University of California, Los Angeles, 1984.

[Hon89] P. Hontälas, B. Beckman, M. Di Loreto, L. Blume, P. Reiher, K.

Sturdevant, L. Van Warren, J. Wedel, F. Wieland, and D. Jefferson.

Performance of the Colliding Pucks Simulation on the Time Warp Operating

System. Proceedings of the SCS Multiconference on Distributed

Simulation, Simulation Series Vol. 21 No. 2, pages 3-7, The Society for

Computer Simulation, March 1989.

[Jad90] The Sim++ Programmer Reference Manual, Jade Simulations International

Corporation, 1990.

[Jef84] D. Jefferson. Future Directions in Simulation at the Conference on

Simulation in Strongly Typed Languages (Panel). Proceedings of the

Conference on Simulation in Strongly Typed Languages, Simulation Series

144

Vol. 13 No. 2, pages 123-124, The Society for Computer Simulation,

February 1984.

[Jef85a] D. Jefferson and H. Sowizral. Fast Concurrent Simulation Using the Time

Warp Mechanism. Proceedings of the SCS Multiconference on Distributed

Simulation, Simulation Series Vol. 15 No. 2, pages 63-69, The Society for

Computer Simulation, January 1985.

[Jef85b] D.R. Jefferson. Virtual Time. ACM Transactions on Programming

Languages and Systems, Vol. 7 No. 3, pages 404-425, Association for

Computing Machinery, July 1985.

{Jef87] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. Di Loreto, P.

Hontalas, P. Laroche, K. Sturdevant, J. Tupman, L. Van Warren, J.

Wedel, H. Younger, and S. Bellenot. Distributed Simulation on the Time

Warp Operating System. Operating Systems Review (Proceedings of the

Eleventh ACM Symposium on Operating Systems Principles), Vol. 21 No.

5, pages 77-93, November 1987.

[Jef90] D. Jefferson. Virtual Time II: Storage Management in Distributed

Simulation. To appear in Principles of Distributed Computation.

[Jen89] R.A. Jenkins. New Approaches in Parallel Computing. Computers in

Physics, pages 24-32, January 1989.

[Ker78} B.W. Kernighan and D.M. Ritchie. The C Programming Language.

Prentice-Hall Inc., 1978.

145

[Leu89] E. Leung, J. Cleary, G. Lomow, D. Baezner, and B. Unger. The Effects

of Feedback on the Performance of Conservative Algorithms. Proceedings

of the SCS Multiconference on Distributed Simulation, Simulation Series

Vol. 21 No. 2, pages 44-49, The Society for Computer Simulation, March

1989.

[Li89] X. Li. CSP - A Distributed Logic Programming Language for Discrete

Event Simulation. PhD thesis, University of Calgary, June 1989.

[Lom88a] G. Lomow, J. Cleary, B. Unger, and D. West. A Performance Study of

Time Warp. Proceedings of the SCS Multiconference on Distributed

Simulation, Simulation Series Vol. 19 No. 3, pages 50-55, The Society for

Computer Simulation, February 1988.

[Lom88b] G. Lomow. The Process View of Distributed Simulation. PhD thesis,

University of Calgary, September 1988.

[Lom89] G. Lomow and D. Baezner. A Tutorial Introduction to Object-Oriented

Simulation and Sim++. Proceedings of the 1989 Winter Simulation

Conference, pages 140-146, December 1989.

[Lom9l] G. Lomow, S.R. Das, R.M. Fujimoto. User Cancellation of Events in

Time Warp. Proceedings of the SCS Multiconference on Distributed

Simulation, Simulation Series Vol. 23 No. 1, pages 55-62, The Society for

Computer Simulation, January 1991.

[Mar88] J. Marti. RISE: The Rand Integrated Simulation Environment.

Proceedings of the SCS Multiconference on Distributed Simulation,

146

Simulation Series Vol. 19 No. 3, pages 68-72, The Society for Computer

Simulation, February 1988.

[Mis86] J. Misra. Distributed Discrete-Event Simulation. Computing Surveys, Vol.

18 No. 1, pages 39-65, March 1986.

[Mul82] A. Mullarney, B.E. Rector, and G.D. Johnson, Simscript 11.5

Programming Language, CACI, 1982.

[Pre89aJ B.R. Preiss. The Yaddes Distributed Discrete Event Simulation

Specification Language and Execution Environments. Proceedings of the

SCS Multiconference on Distributed Simulation, Simulation Series Vol. 21

No. 2, pages 139-144, The Society for Computer Simulation, March 1989.

[Pre89b] M. Presley, M. Ebling, F. Wieland, and D. Jefferson. Benchmarldng the

Time Warp Operating System with a Computer Network Simulation.

Proceedings of the SCS Multiconference on Distributed Simulation,

Simulation Series Vol. 21 No. 2, pages 8-13, The Society for Computer

Simulation, March 1989.

[Ree88] D.A. Reed, A.D. Malony, and B.D. McCreclie. Parallel Discrete Event

Simulation Using Shared Memory. IEEE Transactions on Software

Engineering, Vol. 14 No. 4, pages 541-553, April 1988.

[Rei9Oa] P. Reiher, R. Fujimoto, S. Bellenot, and D. Jefferson. Cancellation

Strategies in Optimistic Execution Systems. Proceedings of the SCS

Multiconference on Distributed Simulation, Simulation Series Vol. 22 No.

1, pages 112-121, The Society for Computer Simulation, January 1990.

147

[Rei9Ob] P. Reiher and D. Jefferson. Virtual Time Based Dynamic Load

Management in the Time Warp Operating System. Proceedings of the SCS

Multiconference on Distributed Simulation, Simulation Series Vol. 22 No.

1, pages 103-111, The Society for Computer Simulation, January 1990.

[Rig89] R. Righter and J.C. Wairand. Distributed Simulation of Discrete Event

Systems. Proceedings of the IEEE, Vol. 77 No. 1, pages 99-113, January

1989.

[Sle85] D.D. Sleator and R.E. Tarjan. Self-Adjusting Binary Search Trees.

Journal of the Association for Computing Machinery, Vol. 32 No. 3, pages

652-686, July 1985.

[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley

Publishing Company, 1986.

[Ung90] B. Unger, J. Cleary, A. Dewar, and Z. Mao., A Multi-Lingual Optimistic

Distributed Simulator. Transactions of the Society for Computer

Simulation, Vol. 7 No. 2, pages 121-151, June 1990.

[Wag9l] D.B. Wagner. Algorithmic Optimizations of Conservative Parallel

Simulations. Proceedings of the SCS Multiconference on Distributed

Simulation, Simulation Series Vol. 23 No. 1, pages 25-32, The Society for

Computer Simulation, January 1991.

[Wes 85] J. West. Object-Oriented Distributed Simulation. Technical Report, CAC,

1985.

148

[Wes88a] D. West. Optimising Time Warp: Lazy Rollback and Lazy Reevaluation.

Master's thesis, University of Calgary, January 1988.

[Wes88b] J. West and A. Mullarney. ModSim: A Language for Distributed

Simulation. Proceedings of the SCS Multiconference on Distributed

Simulation, Simulation Series Vol. 19 No. 3, pages 155-159, The Society

for Computer Simulation, February 1988.

[Wie89] F. Wieland, L. Hawley, A. Feinberg, M. Di Loreto, L. Blume, P. Reiher,

B. Beckman, P. Hontalas, S. Bellenot, and D. Jefferson. Distributed

Combat Simulation and Time Warp: The Model and its Performance.

Proceedings of the SCS Multiconference on Distributed Simulation,

Simulation Series Vol. 21 No. 2, pages 14-20, The Society for Computer

Simulation, March 1989.

Appendix A

SimD Implementation of the Health Care System

149

1 #include <SimD.h>
2
3 II globals for command-line arguments
4 extern sim time DURATION;
5 extem double TREAT_PROB;
6 extern sim time ASSESS_TIME;
7 extern sim time TREAT TIME;
8 extem double ARRV RATE;
9 extem mt SEED;
10 extern mt N-UMBER OF LEVELS;
11 extem mt BRANCH114G_F ACtOR;
12
13 II event types
14 EVENT TYPE(INITIAL);
15 EVENT TYPE(PATIENT);
16 EVENT TYPE(rREATED);
17 EVENT TYPE(REPORT);
18
19 II summary entity class
20 II (statistics collection and reporting)
21 class summary : public entity {
22 sim_tally_obj Generated;
23 Sim _tally_obj Assessed;
24 Sim _tally_obj Treated;
25 sim_tally_obj Referred;
26 Sim _tally _obj QLength;
27 sim_tally_obj QWait;
28 public:
29 summary(event &initial_ev);
30 void bodyO;
31
32 ENTITY_CLASS(summary, entity);
33
34 II village entity class
35 class village: public entity {
36 mt Outstanding;
37 mt Generated;
38 entity id Local _health _center;

_ne 39 simgexp_obj Interarrival_time;
40 public:
41 village(event &initial_ev);
42 void handle treated(event &treated_ev);
43 void bodyO;
44 void generate_reportO;
45
46 ENTITY_CLASS(village, entity);
47
48 II health center entity class
49 class health_ center : public entity {
50 mt Assessed;
51 mt Treated;
52 mt Referred;
53 mt Personnel;
54 entity_id Next—health—center;
55 siindraw_obj Treatable;
56 event list *Patients;
57 public:

150

58 health center(event &initialev);
59 void handle_report(event &reportev);
60 void lxidyO;
61 void treatpatient(event &patient_ev);
62 void referyatient(event &patientev);
63 void handlepatient(event &patient_ev);
64
65 ENTITY CLASS(health center, entity);

151

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

// Initialize the summary entity
summaly: :summary(event &initial_ev)

{
I/Initialize statistics objects
Generated = sim_tally_obj("Generated");
Assessed = sim tally obj("Assessed");
Treated = sim_tally_obj("Treated");
Referred = sim_tally_obj("Referred");
QLength = sim_tally_obj("QLength");
QWait = sim_tally_obj("QWait");

}

II main actions of summary entity
void summary::body()

{

II patients generated
II patients assessed
if patients treated
II patients referred
II length of patient queues
II wait time in patient queues

mt i;
mt generated;
mt assessed;
mt treated;
mt referred;
double qlength;
double qwait;
class _id vill id, heal—id;
event rcport_ev;
sim_file_id file—id;

II wait for all villages to report
villid = class _id("vilage");
for (i = 0; i < viii id.sizeO; i = i + 1) {

wait(reportev, type_p = REPORT);
report_ev >> generated;
Generated.update(generated);
sim_trace(1, "received report from %s", report_ev.schcd_by.name);

}

// Instruct all health centers to report
heal—id = class id("health center");
for (i = 0; i < heal id.sizeO; i = i + 1) {

report_ev = event(healid[i], 0.0, REPORT);
schedule(report_ev);

}

II wait for all health centers to report
for (i = 0 i < heal id.sizeO; i = i + 1)

wait(reportev, type_p = REPORT);
report_ev >> qwait>> qlength>> referred >> treated >> assessed;
Assessed.update(assessed);
Treated.update(treated);
Referred.update(referred);
QLength.update(qlength);
QWait.update(qwait);
simtrace(1, "received report from %s", report_ev.sched_byO.nameO);

}

II write report file
file_id = sim_fopen("report", "w");
simfprintf(ffleid, "%s", sim_tally_headingO);

152

124 Generated.freport(file_id);
125 Assessed.freport(file_id);
126 Treated. freport(file_id);
127 Referred.freport(file_id);
128 QLength.freport(file_id);
129 QWait.freport(file_id);
130 simfclose(fileid);
131 }

153

132 // initialize village entity
133 village: :vilage(event &initialev)
134 {
135 initialev >> Interarrival time;
136 initial cv >> Local health center;
137
138 Outstanding = 0;
139 Generated = 0;
140
141 prehandler(type_p == TREATED, village::handle_treated);
142 }
143
144 II prehandler to Intercept returning villagers
145 void village::handle_treated(event &treated_ev)
146 {
147 simtrace(1, "received treated villager from %s",
148 treated_ev.sched_by.nameO);
149
150 Outstanding = Outstanding - 1;
151 if (Outstanding == 0) generate_reportO;
152 }
153
154 II main actions of village entity
155 void village::body()
156 {
157 event patient_ev;
158
159 while (time() < DURATION) {
160 Outstanding = Outstanding + 1;
161
162 II hold until it is time to generate the next patient
163 hold(Jnterarrival_time.sampleO);
164 Generated = Generated + 1;
165
166 patient cv = event(Local health center, 0.0, PATIENT);
167 II where to return the patient after treatment
168 patient_ev << selfO;
169
170 simtrace(1, "sending sick villager to %s",
171 Local health center.nameO);
172
173 schedule(patientev);
174 }
175 }
176
177 II send statistics report to summary entity
178 void village::generate_report()
179 {
180 event report cv;
181
182 simtrace(1, "sending report');
183
184 report cv = event(entity id("summry1"), 0.0, REPORT);
185 report cv << Generated;
186 schedule(reportev);
187 }

154

188 // initialize health center entity
189 health center::health center(event &initial_ev)
190 {
191 initialev >> Treatable;
192 initial ev>> Next health center;
193 initial ev>> Personnel;
194
195 Assessed = 0;
196 Treated = 0;
197 Referred = 0;
198
199 II queue for waiting patients
200 Patients = new event _list("patients");
201 Patients->resetO;
202
203 prehandler(type_p REPORT, health center::handle_report);
204 posthandler(type_p = PATIENT, health_center::handle_patient);
205 }
206
207 II prehandler to intercept report event
208 void health_center::handle_report(event &reportev)
209 {
210 simtrace(1, "sending report");
211
212 report cv = event(entity id("summaryl"), 0.0, REPORT);
213 reportev << Assessed << Treated << Referred;
214 report_ev << Patients->qlengthO.avg() << Patients->qwaitO.avgO;
215 schedule(report_ev);
216 }
217
218 II main actions of health center entity
219 void health_center::body()
220 {
221 event patient_ev;
222
223 while (TRUE) {
224 II get the next patient
225 if (Patients->emptyO)
226 wait(patientev, type_ == PATIENT);
227 else
228 patient_ev = Patients->retrieve(type_p == PATIENT);
229
230 if (Treatable.sampleO) {
231 // treat and return patient home
232 treat_patient(patient_ev);
233 }
234 else
235 // the patient cannot be treated at this level
236 refer_patient(patient_ev);
237 }
238 }
239 }
240
241 I/treat and return the patient to the patient's home village
242 void health_center::treat_patient(event &patientev)
243 {
244 entity—id home—village;

155

245 event treatedev;
246
247 II assess and treat the patient
248 hold((ASSESS TIME + TREAT TIME) I Personnel);
249 Assessed = Assessed + 1;
250 Treated = Treated + 1;
251
252 patientev >> home—village;
253 treated__ev = event(hdme_vilage, 0.0, TREATED);
254
255 sirntrace(1, "returning treated patient to %s", home village.nameQ);
256
257 schedule(treatedev);
258 }
259
260 II send the patient up the hierarchy to a more sophisticated health center
261 void health_center::refer_patient(event &patient_ev)
262 {
263 entity—id home—village;
264
265 II assess but do not treat the patient
266 hold(ASSESS TIME I Personnel);
267 Assessed = Assessed + 1;
268 Referred = Referred + 1;
269
270 patientev >> home—village;
271 patient__ev = event(Next health center, 0.0, PATIENT);
272 patient_ev << home_village;
273
274 sirntrace(1, "referring patient to %s", Next health center.namcO);
275
276 schedule(patient_ev);
277 }
278
279 II posthandler for enqueneing patients that arrive while another patient
280 I/is being treated
281 void health center::handle_patient(evert &patient_ev)
282 C
283 II enqueue the patient
284 Patients>store(patient_ev);
285 }

156

286 II default settings for command-line arguments
287 sim time DURATION = 100.0;
288 double TREAT PROB = 0.9;
289 sim time ASSESS TIME = 0.3;
290 sim time TREAT TIME = 1.0;
291 double ARRV RATE = 0.3;
292 mt SEED = 10079;
293 mt NUMBER—OF—LEVELS =5;
294 mt BRANCHING—FACTOR = 4;
295
296 the initial function; this function is run from the command-line
297 void initialize(int argc, char *argv [])
298 {
299 event initialev;
300 class—id heal_id;
301 mt i, j, cur—node;
302 mt next—health—center;
303 mt last_position;
304 mt branch count;
305
306 II parse the command-line arguments
307 if (argo> 1) DURATION = atof(argv[1]);
308 if (argc> 2) TREAT PROB = atof(argv[2]);
309 if (argc> 3) ASSESS_TIME = atof(argv[3});
310 if (argc> 4) TREAT_TIME = atof(argv[4;
311 if (argc> 5) ARRY_RATE = atof(argv[5]);
312 if (argc> 6) SEED = atoi(argv[6]);
313 if (argo> 7) NUMBER.OF_LEVELS = atoi(argv[7]);
314 if (argc> 8) BRANCHING_FACI'OR = atoi(argv[8]);
315
316 ASSERT(DURATION > 0.0);
317 ASSERT(TREAT PROB >= 0.0);
318 ASSERT(ASSES TIME >= 0.0);
319 ASSERT(TREAT IME >= 0.0);
320 ASSERT(ARRV RATE> 0.0);
321 ASSERT(SEED 0);
322 ASSERT(NUMBER OF LEVELS > 0);
323 ASSERT(BRANCHmG —FACTOR > 1);
324
325 sim_trace(1, "run-time arguments");
326 simtrace(1, "DURATION = %f", DURATION);
327 simtrace(1, 'TREAT PROB = %f', TREAT PROB);
328 simtrace(l, "ASSESS TIME = %f", ASSESS_ TIME);
329 simtrace(1, 'TREAT TIME = %f', TREAT_ TIME);
330 simtrace(1, "ARRIV_RATE = %f", ARRV RATE);
331 simtrace(1, "SEED = %d", SEED);
332 simtrace(1, "LEVELS = %d", NUMBER OF LEVELS);
333 simtrace(1, "BRANCHING = %d", BRANCHING—FACTOR);
334
335 II create the health care hierarchy
336 next—health—center = -1;
337 last_position = 0;
338 branch count = BRANCHThrG FACIOR - 1;
339 heal—id = class id("health center");
340
341 for (i = 1 i <= NUMBER—OF—LEVELS; i = i + 1)
342 for 0 = 1; j <= (int) powBRANCHING_FATOR, i - 1); j = j + 1) {

157

343 initialev = event(NO ENTJ.TYID, 0.0, INITIAL);
344 cur node last_position + j - 1;
345 if (cur node = 0) {
346 initial_ev << (int) pow(2, NUMBER—OF—LEVELS - i);
347 initialev << NO ENTITY ID;
348 initial_ev << sim draw obj("treatable", 1.0,
349 simrandint(1, 10000, SEED));
350 }
351 else {
352 initial_ev << (int) pow(2, NUMBER_OF_LEVELS - i);
353 initial cv << heal id[next health center];
354 initial cv << sim draw obj("treatable", TREAT PROB,
355 simrandint(1, 10000, SEED));
356 }
357
358 create("health center", initialev);
359 simtrace(1, "created health center %d", cur node);
360
361 initial cv = event(NO ENTITY ID, 0.0, INITIAL);
362 initial cv << heal id[cur node];
363 initial_ev << sim_negexp_obj("interarrival time", ARRV_RATE,
364 simrandint(1, 10000, SEED));
365
366 create("village", initial cv);
367 simtrace(1, "created village %d", cur—node);
368
369 branch—count += 1;
370 if (branch count = BRANCHING—FACTOR) {
371 branclT count =0;
372 next health _center - 1;
373 } -

374 }
375 last_position -i-= (int) pow(BRANCHING_FACTOR, i - 1);
376 }
377
378 create("surnmary", NO_EVENT);
379
380 simtrace(1, "initialized simulation");
381 }
382
383 INITIAL FUNCTION(initialize);

158

Appendix B

SimD Implementation of the

Mobile Communication Network

159

1 #include <SimD.h>
2 #include "spatial.h"
3
4 II globals for command-line arguments
5 extern sim time DURATION;
6 extem mt PLATFORMS;
7 extem double RANGE;
8 extern double SPEED;
9 extern double EVENT RATE;
10 extem double BCASTPROB;
11 extern hit SEED;
12
13 II event types
14 EVENT TYPE([NITIAL);
15 EVENTTYPE(BULLET1N);
16 EVENT TYPE(REPORT);
17
18 1/ summary entity class
19 II (statistics collection and reporting)
20 class summary : public entity
21 public:
22 summary(event &initial_ev);
23 void body;
24 };
25 ENTITY CLASS(sumniary, entity);
26
27 II platform entity class
28 class platform : public mobile _entity {
29 sim_negexp_obj Eventjate_gen;
30 sim_draw_obj Bcast_prob_gn;
31 sim_uniform_obj Direction_gen;
32
33 mt Bcasts_sent;
34 mt Bcastsrcvd;
35 public:
36 platforni(event &initial_ev);
37 void handle bulletin(event &bulletinev);
38 void bodyO;
39 void generate reportO;
40
41 ENTITY_CLASS(platform, mobile entity);

160

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90 }

42 // Initialize the summary entity
43 surnmaty::summary(event &initialev)
'14

}

II main actions of summary entity
void summaiy::body()
{

mt i;
event report_ev;
mt beasts sent;
mt beasts rcvd;
mt total beasts sent;
mt total beasts rcvd;
simfileid file—id;

file—id = sim_fopen("report", "w");

II wait for all platforms to report
total beasts sent = 0;
total beasts rcvd = 0;
for (i = 0; i < PLATFORMS; i += 1) f

wait(reportev, type_p == REPORT);
reportev >> beasts rcvd>> beasts sent;

II print a report for each platform
sim_fprintf(fileid, "Report for %s", report_ev.
sim_fprintf(file_id, ");
sim_fprintf(file_id, " beasts sent = %d",
sim fprintf(file id, " beasts rcvd
sim_fprintf(fileid, ");

total beasts sent += beasts—sent;
total beasts rcvd += beasts rcvd;

}

II print totals
sinifprintf(file_id, "Totals");
sim_fprintf(ffleid,
sim_fprintf(

fileid, " total beasts sent =

total_beasts_sent);
simfprintf(

file id, " total beasts revd = %d",
total beasts revd);

simfprintf(fileid, ");

simfelose(fileid);

sched_byO.nameO);

beasts sent);
beasts rcvd);

161

91 // initialize the platform entity
92 platform::platform(event &initial_ev)
93 {
94 point start_pos;
95
96 initial _ev>> Direction_gen;
97 initial_ev >> Bcast_prob_gen;
98 initial_ev >> Event_rate_gen;
99 initialev >> start_pos;
100
101 Bcasts sent= 0;
102 Bcasts rcvd= 0;
103
104 set_position(start_pos);
105 set velocity(velocity(Direction_gen.sampleO, SPEED));
106
107 prehandler(type_p = BULLETIN, platform::handle_bulletin);
108 }
109
110 II prehandler to intercept bulletins
111 void platform::handle bulletin(event &bulletin_ev)
112 {
113 Bcasts rcvd -i-= 1;
114 } -

115
116 II main actions of platform entity
117 void platform::body()
118 {
119 while (time() < DURATION) {
120 II hold until next broadcast or direction change
121 hold(Event_rate_gen.sampleO);
122
123 if (Bcast_prob_gen.sample() == TRUE) {
124 II broadcast a bulletin
125 broadcast(RANGE, event(NO ENTITY ID, 0.0, BULLETIN));
126 Bcasts sent += 1;

127 } -

128 else {
129 II change direction
130 set velocity(velocity(Direction_gen.sampleO, SPEED));

131 }
132 }
133
134 generate_reportO;
135 terminateO;
136 }
137
138 II send statistics report to summary entity
139 void platform::generate_report()
140 {
141 event report_ev;
142
143 report_ev = event(entity id("summaryl"), 0.0, REPORT);
144 reportev << Beasts sent << Bcasts_rcvd;
145 schedule(report_ev);_

146 }

162

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
.185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

II default settings for command-line arguments
sim time DURATION = 20.0;
mt PLATFORMS = 500;
double RANGE = 5.0;
double SPEED = 1.0;
double EVENT RATE = 1.0;
double BCASTPROB = 0.5;
mt SEED = 10079;

I/the initial function; this function is run from the command-line
void initialize(int argc, char *argv[])
{

mt 1;
event initialev;

II parse the command-ilne arguments
if (argc> 1) DURATION = atof(argv[1]);
if (argo> 2) PLATFORMS = atoi(argv[2]);
if (argo> 3) RANGE = atof(argv[3]);
if (argc > 4) SPEED = atof(argv[4]);
if (argo> 5) EVENT _RATE = atof(argv{5]);
if (argo> 6) BCASTPROB = atof(argv[6]);
if (argc> 7) SEED = atoi(argv[7]);

ASSERT(DURATION> 0.0);
ASSERT(PLATFORMS > 0);
ASSERT(RANGE> 0.0);
ASSERT(SPEED >= 0.0);
ASSERT(EVENT RATE > 0.0);
ASSERT(BCASTPROB >= 0.0);
ASSERT(SEED > 0);

sim_trace(1, "duration =
sim_trace(1, "platforms =
sim_trace(1, "range
simtrace(1, "speed = %f",
simtrace(l, "event rate =
simtrace(1, "beast prob =
simtrace(1, "seed =

DURATION);
PLATFORMS);
RANGE);
SPEED);
EVENT RATE);
BCASTPROB);
SEED);

II create all platforms
for (i = 0 i < PLATFORMS; i += 1) {

initial cv = event(NO ENTITY ID, 0.0, INITIAL);

initial_ev << point(
simuniform(0.0, MAXX, SEED),
simuniform(0.0, MAX—Y, SEED));

initial
_ev << sim_negexp_obj(

"event rate", EVENT—RATE, sim randint(1, 10000, SEED));
iriitialev << sim_draw_obj(

'beast prob", BCAST PROB, sim randint(1, 10000, SEED));
initial cv << Sim_ uniform _obj(

"direction", 0.0, 360.0, sim randint(1, 10000, SEED));

}
create("platform", initial cv);

163

204 create("summary"., NO EVENT);
205 }
206
207 INITIAL FUNCTION(initialize);

164

