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Abstract 

Much of the research into parallel simulation over the last decade focuses on the 

performance of various strategies for parallel simulation. Among the most successful of 

these are implementations of a paradigm called Virtual Time. Virtual Time simulations 

consist of independently executing processes that communicate and synchronize their 

actions solely by sending and receiving timestamped messages. The successful application 

of Virtual Time to a wide class of simulation problems has already been demonstrated. 

However, much of this success has been achieved without regard for the modeling and 

language design issues associated with this paradigm. Specifically, existing modeling 

practices and language constructs associated with sequential simulation may have to be 

modified or abandoned in favor of decompositional techniques dictated by Virtual Time. 

The goal of this research is to assess the impact of Virtual Time on simulation language 

design. In addressing this goal, this thesis makes a number of contributions. First, the 

fundamental differences between Virtual Time and sequential simulation are identified and 

the impact of these differences on parallel simulation is examined. Second, a set of 

language design criteria for Virtual Time is developed based on the fundamental differences 

between Virtual Time and sequential simulation, and on the characteristics of existing 

languages for Virtual Time. Third, key limitations of existing languages for Virtual Time 

are identified. These limitations are shown to make even very basic simulation models 

difficult to implement using these languages. Fourth, a set of language constructs is 

developed that addresses the limitations of existing languages. These languages constructs 

are embodied within a new language for Virtual Time called SimD that was designed and 

implemented as part of this research. SimD was implemented on an existing 

implementation of Virtual Time, called Time Warp, developed and made available by Jade 
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Simulations International Corporation. Finally, the effectiveness of SimD for developing 

well-structured, efficient, parallel simulations is demonstrated using several basic examples 

and two simulations implemented and executed on Time Warp. 
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Chapter 1 

Introduction 

During the last decade, a great, deal of attention has focused on the use of parallel 

processors to execute large, complex simulations whose computational requirements cannot 

be satisfied by most single processor computing systems. Such simulations often require 

many hours or days of execution time and tens or hundreds of megabytes of memory to 

execute a single experiment. Although many single processor computing systems can 

satisfy the memory requirements of such simulations using virtual memory, it is usually at 

the expense of increased execution time. In the absence of viable alternatives, researchers 

are forced to simplify the models they study to reduce their processing and memory 

requirements. Unfortunately, such simplifications also reduce our confidence that the 

simulation is a valid representation of the physical system that it models. Without an 

appropriate level of confidence, predictions about the physical system based on 

observations of the logical system are meaningless. 

1.1 Parallel Processors and Parallel Programming 

To address the limitations of sequential simulation, many researchers are turning to parallel 

processors for a solution. The term parallel processor is used throughout this thesis to 

refer to multiple instruction, multiple data stream (MIMD) architectures, ranging from 

tightly coupled multiprocessors that share memory to loosely coupled multicomputer 

networks that communicate solely via message-passing. Parallel processors offer the 

combined processing speed and memory of hundreds to thousands of processors. 

1 
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However, developing software for parallel processors is significantly more difficult than 

for single processor computing systems. There are two reasons for this. First, typically, 

algorithms for parallel processors must be decomposed into multiple, concurrently 

executing and cooperating processes. The concurrency, synchronization, and 

communication among parallel processes introduces a level of complexity not present in 

sequential programming. Second, many parallel programs are inherently non-

deterministic. This means that they do not necessarily produce the same results even when 

the same program is executed with the same input. Non-determinism results from 

variations in timing among parallel processes from one execution to the next. Non-

determinism is intolerable in simulations because it introduces a degree of randomness that 

cannot be quantified. Non-determinism also complicates debugging because errors may • 

not be repeatable, making it difficult to find the cause of an error and to verify when the 

error has been corrected. These problems must be addressed by appropriate paradigms and 

languages for parallel processors. 

1.2 Parallel Simulation and Virtual Time 

The execution of a simulation on a parallel processor is referred to as parallel simulation. 

The goals of parallel simulation are to reduce execution time and to allow larger and more 

complex systems to be simulated. The primary challenge in achieving these goals is to 

preserve the causal relationships present in the simulation model in the absence of 

traditional sequential techniques based on global knowledge and centralized control. The 

causality constraint can be expressed in relatively simple terms [Jef85b, page 407]: 

If an event A causes event B, then the execution of A and B must be 

scheduled in real time so that A is completed before B starts. 
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Violation of this constraint is referred to as a causality error lFuj89]. 

One of the most successful paradigms for parallel simulation is Virtual Time [Jef85b]. 

Virtual Time simulations are composed of independently executing processes that 

communicate and synchronize their actions by sending and receiving timestamped 

messages. This paradigm is sufficiently general that it encompasses a number of 

approaches to parallel simulation typically classified as either conservative or optimistic. 

For comprehensive surveys of this and other techniques for parallel simulation see [Fuj89, 

Rig89]. Among existing techniques, Virtual Time has emerged as a dominant approach to 

parallel discrete-event simulation, and it is the sole focus of this thesis. 

Conservative implementations of Virtual Time execute events only when they can 

guarantee that doing so does not violate the causality constraint. Because of inherent 

limitations in verifying that causality is preserved across multiple processors, conservative 

systems often delay executing events even when it is unnecessary to do so. This can result 

in deadlock. Much of the research into conservative systems has focused on techniques for 

deadlock prevention, and deadlock detection and recovery The dominant conservative 

approach was developed by Chandy and Misra [Cha81, Mis86]. 

Optimistic implementations of Virtual Time execute events even when there is a 

possibility that doing so will violate the causality constraint. As a result, optimistic systems 

require the ability to detect and correct causality errors when they occur. Optimistic 

systems incur the additional overhead of error detection and correction for the freedom to 

execute even when there is a possibility that the resulting computation will be incorrect. 

The dominant optimistic approach, called Time Warp, was developed by Jefferson and 

Sowizral [Jef85a]. 

The Virtual Time paradigm has been used successfully in simulating large, complex 

systems with speedups of an order of magnitude and more reported for a number of 
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performance benchmarks executing on a variety of parallel processors [Bae89, Fuj87, 

Fuj88a, Leu89, Wie89]. However, much of this success has been achieved without regard 

for the modeling and language design issues associated with this paradigm. Specifically, 

existing modeling practices and language constructs associated with sequential simulation 

may have to be modified or abandoned in favor of decompositional techniques dictated by 

Virtual Time [Jef84]. Although several languages have already been developed for Virtual 

Time, this thesis will show that many of these languages contain inherently sequential 

constructs or are difficult to use for representing even very basic simulation models. 

1.3 Research Goal 

The goal of this research is to assess the impact of Virtual Time on simulation language 

design. This goal is divided into the following research questions addressed by this thesis: 

1. How do the characteristics of Virtual Time differ from sequential simulation? 

2. How do the characteristics of Virtual Time impact simulation language design? 

3. Can languages for Virtual Time be used to develop well-structured, efficient, 

parallel simulations? 

In addressing these questions, this thesis focuses on discrete-event simulation, the primary 

application of Virtual Time. In addition, this thesis focuses on procedural, rather than 

functional or logical languages. Although some attention has been given to the use of 

functional [Mar88] and logical [Cle9O, Fut88, Li89] languages for parallel simulation, 

procedural languages continue to dominate the simulation literature. Finally, this thesis 

focuses on Time Warp as the preferred implementation of Virtual Time. This choice is 

justified by existing literature [Fuj87, Fuj88a, Fuj89, Jef87, Jef9O] which demonstrates 
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that Time Warp has fewer limitations and comparable, often superior, performance to other 

implementations of Virtual Time. However, Time Warp implementations cannot currently 

be made completely transparent to users. This claim and its resulting implications are 

examined in Chapters 2 and 3. 

1.4 Contributions of this Research 

In assessing the impact of Virtual Time on simulation language design, this thesis makes 

the following contributions: 

1. The fundamental differences between Virtual Time and sequential simulation are 

identified and the impact of these differences on parallel simulation is examined. 

2. A set of language design criteria for Virtual Time is developed based on the 

fundamental differences between Virtual Time and sequential simulation, and on the 

characteristics of existing languages for Virtual Time. The degree to which the 

existing languages satisfy the proposed design criteria is examined. 

3. Key limitations of existing languages for Virtual Time are identified. These 

limitations are shown to make even very basic simulation models difficult to 

implement using these languages. 

4. A set of language constructs is developed that addresses the limitations of existing 

languages. These languages constructs are embodied within a new language for 

Virtual Time called SimD that was designed and implemented as part of this 

research. SimD was implemented on an existing implementation of Time Warp 

developed and made available by Jade Simulations International Corporation. 

5. The effectiveness of SimD for developing well-structured, efficient, parallel 

simulations is demonstrated using several basic examples and two simulations 
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implemented and executed on Time Warp. A performance study of these 

simulations is presented. 

In addition to the contributions of this thesis, this research resulted in two refereed 

conference papers on the subjects of parallel simulation language design [Bae9O] and 

parallel simulation performance using Time Warp [Bae9l]. 

1.5 Thesis Overview 

This thesis is intended to be self-contained with respect to concepts such as parallel 

simulation, Virtual Time, and Time Warp. It is assumed that the reader has some 

familiarity with discrete-event simulation and object-oriented programming. 

Chapter 2 examines the characteristics of Virtual Time and Time Warp and how these 

differ from sequential simulation. The modeling and language design issues associated 

with Virtual Time are separated from those specific to Time Warp. Several proposals in the 

literature for enhancing the transparency of Time Warp are examined. The Chandy-Misra 

approach is also briefly summarized. 

Chapter 3 surveys existing simulation languages for Virtual Time to determine how 

they address the issues identified in Chapter 2. One of these languages, Sim++ [Jad9O], is 

examined in some detail in that it serves as the foundation for much of the research 

presented in this thesis. A set of language design criteria for Virtual Time is proposed, 

based on the findings of Chapters 2 and 3. 

Chapter 4 investigates by way of short examples the difficulties associated with using 

Sim++ to model common types of process interactions. These difficulties are not unique to 

Sim++. They are common to several existing languages for Virtual Time. The 
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shortcomings illustrated in this chapter were the primary motivation for the SimD language 

proposed in Chapter 5. 

Chapter 5 proposes a new language for Virtual Time called SimD, based in part on the 

language design criteria outlined in Chapter 3. SimD incorporates simple, elegant solutions 

to the shortcomings identified in Chapter 4 without abandoning the basic philosophy and 

style of Sim++. The examples employed in Chapter 4 are reimplemented in SimD as 

evidence of this claim. 

Chapter 6 describes two parallel simulations that were implemented in SimD and 

executed on Time Warp. The purpose in developing these simulations was to gain 

experience with SimD and ;o test the implementation of SimD on Time Warp. Performance 

results are presented for these simulations executing on Time Warp. The successful 

implementation and execution of these simulations is provided as evidence that SimD can 

be used to develop well-structured, efficient, parallel simulations. 

Chapter 7 critiques the SimD language, summarizes the contributions of this research, 

presents conclusions drawn from this research, and describes areas requiring further study 

and development. 



Chapter 2 

Departure from Sequential Simulation 

This chapter summarizes Virtual Time and Time Warp and outlines key areas of departure 

from sequential simulation. The summaries of Virtual Time and Time Warp are sufficient 

to understand the modeling and language design issues presented in the remainder of this 

thesis. More detailed descriptions are given by Jefferson [Jef85b]. Proposals in the 

literature for enhancing the transparency of Time Warp are also examined. These are 

important for minimizing implementation-specific modeling and language design issues. 

For completeness, the conservative Chandy-Misra approach is also briefly summarized. 

This approach is used in several existing languages for Virtual Time surveyed in Chapter 3. 

2.1 Virtual Time 

One view of physical systems commonly used in simulation is that of a collection of 

interrelated components that interact over time. This is the view captured by Virtual Time. 

A Virtual Time system consists of independently executing processes whose execution and 

interactions are tied to a logical clock that ticks simulation time. Each process has its own 

local view of this clock to which are tied the execution and interactions of that process. 

In Virtual Time, all interactions are represented by timestamped messages. When a 

process sends a message, it must specify a receiver and receive time for the message. The 

receiver of a message is the process to which the message is being sent. The receive time 

of a message is the simulation time at which the receiver must receive the message. The 

receive time must always be greater than or equal to the simulation time of the sending 

8 
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process. A process receives all messages sent to it in order of increasing receive time. As 

each message is received, the simulation time of the receiving process is advanced to the 

receive time of the message. This is the only way in which the simulation time of a process 

can advance. The processing of a message may involve updating the state variables of the 

receiving process, as well as sending zero or more messages. A process terminates when it 

has received all outstanding messages. 

Ordering messages on increasing receive time is not in itself sufficient to guarantee 

determinism. The implementation of Virtual Time must additionally provide some 

mechanism for ordering messages with identical receive times. One possibility is to include 

an identifier in each message that is unique among all messages in the simulation and that is 

used to further order messages with identical receive times. The identifier must be 

independent of the number of processors on which the simulation is executed and the 

mapping of processes to processors. In this way, determinism is not affected by the run-

time configuration of the simulation. The exact details of this and other possible 

mechanisms for determinism are beyond the scope of this thesis. It is assumed simply that 

some mechanism for guaranteeing determinism is provided by the implementation of 

Virtual Time. 

Virtual Time differs fundamentally from sequential simulation in two ways. First, 

Virtual Time processes interact solely by sending and receiving timestamped messages. 

Each process has its own local state and does not directly access the states of other 

processes or communicate with other processes through shared memory. Second, Virtual 

Time simulations must be designed specifically for parallel execution if they are to achieve 

significant reductions in execution time. Although it is common in sequential simulations 

to decompose a problem into logical processes, this is typically a representational 



10 

convenience without regard (or need) for the ability of those processes to work in parallel. 

The impact of these differences is examined in detail in the sections that follow. 

2.2 Impact of Message-Passing 

The primary advantage of message-passing is that Virtual Time processes can execute 

concurrently on multiple processors and need not progress through simulation time at a 

uniform rate. As such, there is a great deal of freedom in how processes are executed, as 

long as causality is maintained. This differs from the pseudo-concurrency of sequential 

simulation in which only one process executes at a time and in which all processes advance 

through time simultaneously. Sequential simulations rely on these invariants to forgo the 

synchronization that would otherwise be required for multiple processes to access a 

common state. 

By relying solely on message-passing for all process interactions, there is no need to 

detect or control other forms of interactions through shared memory. For example, on 

shared-memory parallel processors, it is possible to provide system calls that processes 

invoke before and after accessing a shared variable. The system calls could provide 

mutually exclusive access to the shared variable as well as the necessary synchronization 

with respect to simulation time. The disadvantage of this approach is that it relies on the 

discipline of the user to make these calls wherever necessary. In addition, shared variables 

would be much more difficult and costly to implement on distributed-memory parallel 

processors. 

Another advantage of message-passing is its close correspondence with the event 

scheduling concepts of discrete-event simulation. For example, sending a message 

corresponds to scheduling an event, and receiving a message corresponds to the execution 
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of the event. These similarities facilitate the development of simulation constructs using 

Virtual Time [Lom88b]. 

Message-passing also provides a conceptually simpler form of process interaction when 

compared with traditional sequential techniques. For example, in the sequential simulation 

language Simula [Dah72], processes communicate using global memory or by directly 

accessing each other's state variables; to synchronize, these processes use a number of 

process scheduling constructs built into the language. This dichotomy between how 

processes communicate and how they synchronize can result in increased code complexity 

and errors [Bae9O, Bir84]. In contrast, Virtual Time uses message-passing for both types 

of interactions. Thus, a message can represent communication between processes, 

synchronization between processes, or both. 

In spite of the advantages of message-passing, the lack of shared memory can also 

increase the complexity of some simulation problems. For example, one of the most 

difficult types of problems to model using Virtual Time is one in which many or all 

processes regularly access a large, global state. A common technique for modeling 

problems of this type using Virtual Time is to subdivide the global state into sectors 

[Bec88, Cle9O, Con9O, Gol84, Lom88b]. Each sector is a separate process and is 

responsible for managing its part of the global state. Accessing the state is accomplished 

by sending messages to the appropriate sector process. A problem of this type is examined 

in Chapter 6. 

Another problem with message-passing is that it is generally several orders of 

magnitude slower than interactions through shared memory. As such, messages cannot 

generally be employed as one-for-one substitutes for shared memory references. The 

communication overhead resulting from such an approach could easily dominate the 

execution of a parallel simulation. This implies that simulation models with many 
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interactions between processes may be unsuitable for Virtual Time or, at the very least, will 

require careful structuring in order to minimize communication overhead. 

2.3 Designing a Parallel Simulation 

Although the characteristics of Virtual Time make it suitable for execution on parallel 

processors, it is nevertheless possible to write Virtual Time simulations that perform poorly 

in a parallel execution. Such simulations might include one or more of the following: 

1. Processes that consume a significant fraction of the total processing time of a 

simulation. The time required to execute these "hog" processes imposes a lower 

bound on the execution time of the simulation, regardless of the number of 

processors used to execute the simulation. 

2. Multiple processes that coordinate sequentially to complete a task. In a simulation 

in which two or more processes coordinate sequentially to complete a task, there is 

little or no potential for parallelism among those processes if one or more such 

processes are idle waiting for other processes to execute. 

3. Processes with a high ratio of communication overhead to computation. If the 

number of messages that processes send and receive is sufficiently high, the 

performance benefits derived from executing simulation processes in parallel may 

be outweighed by communication overhead. 

All of the issues outlined above are performance-oriented and specific to Virtual Time. 

They are not factors in the design of sequential simulations. 

The importance of performance in the design of a Virtual Time simulation can be seen 

as a major shortcoming of parallel simulation. As past experience with sequential 
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simulation has shown, performance considerations may be at odds with another key design 

objective: readability [Béz88, page 48]: 

It is a usual practice to transform a program in order to improve its 

performance. This could mean adding new information to the source 

program that is completely extraneous to the logical problem. This could 

also mean partially or completely destroying the structure of the program. 

Because of the need to consider parallelism in parallel computation, this problem is even 

more acute than for sequential computation. Jenkins [Jen89, page 27] cites the experience 

of a team of researchers at Sandia National Laboratories who achieved between 502 and 

637 times speedup running three general, parallel computations on a 1024 processor 

hypercube: 

When you go to several hundred or a thousand processors, in order to get [a 

high degree] of efficiency, you really have to rewrite your code in a special 

way. Right now there's no way to get around that. ... If you pick the 

wrong algorithm, it definitely will not scale - you can pick an algorithm that 

doesn't have enough parallelism to use 1000 processors. Even if you pick 

the right algorithm, the way you implement that algorithm in the high-level 

language - the way you structure it when you convert it from your 

mathematical description into Fortran - is going to make a big difference in 

how that code performs on 1000 processors. 
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2.4 The Chandy-Misra Approach 

The Chandy-Misra approach is a conservative implementation of Virtual Time. This 

approach consists of processes that send and receive timestamped messages along logical, 

directed channels connecting pairs of processes. The number of processes and the 

connectivity among processes are established at the beginning of the simulation and are 

dictated by the requirements of the application. For example, in an application in which 

any process may potentially communicate with any other process, a fully-connected 

communication topology is required in which each process has a directed channel to every 

other process. Processes that send messages to themselves to advance simulation time or 

to schedule a future activity have directed channels to themselves as well. Associated with 

each channel is a timestamp that corresponds to the receive time of the last message 

received along that channel. All messages sent along a channel must be in order of 

increasing receive time. 

Using the established communication topology and the requirement that all messages 

sent along a channel be in order of increasing receive time, it is possible to guarantee that a 

process receives all messages sent to it in order of increasing receive time. Specifically, 

when a process attempts to receive its next message, the process is blocked until there is at 

least one waiting message on each of its incoming channels. The process then receives 

from among those channels the message with the lowest receive time. Unfortunately, 

blocking a process while awaiting additional messages does not guarantee that those 

messages will arrive. For example, it is possible that an incoming channel is empty 

because the associated sending process has no messages to send along that channel at the 

current simulation time. In fact, the sending process may not send any messages along that 

channel for the remainder of the simulation. In these cases, the receiving process would 
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remain blocked even if other messages were waiting on other incoming channels. If all 

processes are blocked waiting on one or more incoming channels for messages that never 

arrive, the system is deadlocked. The termination of a simulation is a special case of 

deadlock in which all processes are blocked and there are no remaining unreceived 

messages. Several variants of the Chandy-Misra approach exist to cope with deadlock, 

including techniques for deadlock prevention, and deadlock detection and recovery. 

Deadlock prevention is accomplished by sending null messages, along channels for 

which no application messages exist. In this way, there exist messages along all of a 

process' incoming channels. Null messages are not received by the application, however. 

Instead, they are used to advance the timestamp on the channels along which they are sent. 

In effect, a null message is a guarantee from the sending process that it will not send any 

future messages with a lower receive time than that of the null message along the same 

channel. In this way, the receiving process has sufficient information to determine whether 

or not a waiting application message can be received without the possibility of a future 

message with a lower receive time arriving along an alternate, empty channel. The amount 

by which a null message advances the timestamp of a communication channel is referred to 

as lookahead and is entirely application dependent. For example, the receive time of the 

next message a process sends may be entirely dependent upon the next message the process 

receives. Although techniques exist for automatically computing lookahead under certain, 

limited circumstances [Bag9O], it is generally calculated explicitly by the application. 

Deadlock detection and recovery is accomplished by continuously circulating a token 

among simulation processes. The token is a special message that gathers global knowledge 

about the system sufficient to detect deadlock. Once deadlock is detected, a recovery 

algorithm is invoked that locates the message in the system with the lowest receive time and 

arranges for, it to be processed next. Instead of the circulating token, shared memory 
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parallel processor implementations can keep a global counter of the number of non-blocked 

processes [Fuj87, Ree88]. The system is deadlocked if this counter drops to zero and the 

system has not terminated. 

2.5 Time Warp 

Time Warp is an optimistic implementation of Virtual Time. Unlike the Chandy-Misra 

approach, there is no requirement for a statically defined communication topology, no 

concept of a channel between processes, and no requirement for messages to be sent in 

order of increasing receive time, even when those messages are sent to the same pfcess. 

A Time Warp process can send to any process it can identify, including itself, and can send 

those messages in arbitrary order. In addition, Time Warp processes can be created and 

destroyed dynamically throughout the course of the simulation. 

Time Warp, like all optimistic systems, relies on detection and correction of causality 

errors, not prevention. Whenever a process receives a message, no attempt is made to 

determine whether or not other messages with a lower receive time may yet be sent to the 

receiving process. As a result, it is possible for processes to receive messages out of 

order, resulting in causality errors that must subsequently be corrected. A causality error is 

detected when a message is received by a process whose simulation time has advanced 

beyond the receive time of that message. Such a message is referred to as a straggler. The 

erroneous computation resulting from a causality error may include an erroneous process 

state as well as erroneously sent messages based on that state. Unless the erroneous 

messages are eliminated before they are received and processed, secondary erroneous 

computations will result in other processes. These, in turn, may lead to tertiary erroneous 

computations, and so on. 
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Erroneous computations are eliminated using process rollback and message cancellation 

to restore a simulation back to a point that precedes the causality error. After rolling back, 

the affected processes resume executing, rereceiving the same messages as before, 

excluding erroneously sent messages that have been cancelled, and including the straggler. 

Although multiple processes may be involved in an erroneous computation, no global 

synchronization is required for rollback and message cancellation. Rollback and message 

cancellation are performed on a per process basis. 

To support rollback and message cancellation, three data structures are associated with 

each process: an input queue, an output queue, and a state queue. The input queue consists 

of messages sent to a process and includes both the messages the process has received as 

well as those it has not. The messages received by a process remain in the input queue in 

case the process rolls back and must rereceive those messages. The output queue consists 

of copies of the messages sent by a process. The messages in the output queue are referred 

to as anti-messages and are used to cancel erroneously sent messages. The state queue 

consists of copies of the state of a process from checkpoints taken throughout the process' 

execution. During rollback, the process is restored to a state that precedes the causality 

error. 

The two most common approaches to message cancellation are aggressive cancellation 

and lazy cancellation. Both approaches send anti-messages to cancel erroneously sent 

messages. An anti-message is always sent to the same process as the message it is 

intended to cancel and, like that message, is inserted into the input queue of the receiving 

process. The existence of a message and its anti-message in the same queue causes both to 

be deleted as if neither had ever existed. If the erroneous message has already been 

processed when the anti-message arrives, the process first rolls back to a state prior to the 

receipt of that message. This is referred to as a secondary rollback. A secondary rollback 
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may, in turn, result in tertiary rollbacks, and so on. Aggressive cancellation attempts to 

minimize the spread of erroneous computation by sending the anti-messages associated 

with an abandoned computation immediately upon rollback. However, sometimes the 

messages sent as a result of an erroneous computation may actually be correct. This might 

occur, for example, if the processing of a straggler does not change the state of the 

receiving process or only changes those portions of the state that do not affect all 

subsequently generated messages. To address this phenomenon, lazy cancellation 

withholds the anti-messages associated with an abandoned computation and compares them 

with the messages generated by the rolled back process in its subsequent forward 

computation. Only those messages not regenerated are cancelled. This eliminates the 

overhead associated with cancelling and resending identically regenerated messages. 

However, the delay required to confirm that an erroneously sent message must be cancelled 

may permit erroneous computation to spread further than with aggressive cancellation. 

Because the success of one cancellation strategy over another depends on the number of 

messages identically regenerated after rollback, the choice of which strategy to use is 

application-specific. A performance study by Lomow et al [Lom88a] suggests that lazy 

cancellation can outperform aggressive cancellation by as much as a factor of two in 

simulations involving feedback. Another study by Reiher et al [Rei9Oa] found that, 

although lazy cancellation typically performed slightly better than aggressive cancellation, 

the difference in performance was usually only 1-2%. 

Fujimoto [Fuj88a] proposes direct cancellation as an optimization of Time Warp for 

shared-memory parallel processors. This approach does not use anti-messages to 

implement cancellation. Instead, each process maintains pointers to the messages it has 

sent. As such, it is possible to identify those messages to be cancelled simply by traversing 

the appropriate message pointers. Direct cancellation reduces both the memory and 
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execution overhead of message cancellation since there is no need to create, maintain, or 

send anti-messages. Since erroneous messages are cancelled more quickly, the spread of 

erroneous computation is also reduced. 

Depending on the number and size of messages, anti-messages, and state checkpoints, 

the memory available on a parallel processor could easily be exhausted in simply 

maintaining the input, output, and state queues of Time Warp processes. Fortunately, the 

amount of historical information required by Time Warp to support rollback and message 

cancellation can be minimized. Time Warp regularly computes and distributes a value 

known as global virtual time (GVT). GVT is the minimum of all process simulation times 

and all unreceived message timestamps. This value defines the minimum simulation time to 

which any process can ever roll back. Messages and anti-messages with a receive time less 

than GVT are no longer required and can be deleted. Similarly, for each process, all state 

checkpoints but one with a simulation time less than GVT can also be deleted. The deletion 

of messages, anti-messages, and saved states earlier than GVT is referred to as fossil 

collection. Jefferson [Jef9O] has shown that fossil collection, in combination with a flow 

control mechanism called cancelback, is sufficient for Time Warp simulations to execute in 

an amount of memory comparable to that of an equivalent sequential simulation. Executed 

under those constraints, a simulation is effectively serialized and unable to achieve 

speedup. Several times the minimum amount of memory is generally required for 

processes to execute optimistically in parallel. Efficient algorithms for computing and 

distributing GVT [Bel9O] are therefore important in that the amount of memory freed 

through fossil collection is tied directly to the rate at which GVT advances. 

GVT is also used as a commitment threshold for actions such as input, output, error 

handling, and termination. In one form or another, each of these actions involves 

interactions with the external world outside the scope of the simulation. Ordinarily, any 
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one of these actions on the part of a process is tentative in that the process may roll back as 

a result of an erroneous computation. For example, the act of reporting an error could itself 

be erroneous if it is the result of a causality error. After the affected process rolls back, the 

conditions that led to the error might no longer exist. As a result, interactions with the 

external world are not permitted until the interaction is guaranteed to be correct. In Time 

Warp, all actions at a simulation time greater than GVT are tentative and subject to rollback. 

However, all actions at or earlier than GVT are committed and free from rollback. Thus, 

when a process reports an error, the process is blocked until it rolls back or until GVT 

reaches the simulation time of the error call. In the latter case, the error is real and the 

execution of the simulation is aborted. Input, output, and termination are handled in a 

similar manner. 

2.6 Time Warp Transparency Issues 

Although Time Warp supports the same abstraction as Virtual Time, implementations of 

Time Warp cannot currently be made completely transparent to the user. This means that, 

in many cases, simulations must be designed specifically for Time Warp in order to achieve 

significant reductions in execution time or to execute at all. Specifically, simulations for 

Time Warp must deal with the issues of process state size, side effects resulting from 

causality errors, and interactions with the external world. This section examines these 

issues as well as proposed solutions. In addition, numerous researchers have proposed 

optimizations of Time Warp, sometimes at the expense of transparency. One such 

optimization, which appears several times in the literature, is examined. 

The primary performance issue specific to Time Warp is process state size. Due to the 

overhead associated with saving and restoring states, Time Warp simulations must be 
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designed to minimize the size of process states. In one study, Fujimoto [Fuj88a] shows 

that the speedup achieved by Time Warp over an equivalent sequential execution declines 

from 9 to 2 as the size of process states is increased from 0 to 8000 bytes. Several 

approaches to reducing the overhead associated with large states have been developed. 

Abrams [Abr89] proposes dividing process states into sub-states and only saving those 

sub-states modified during the processing of a given message. Currently, this approach 

requires that the sub-states be identified explicitly by the application. In Sim++, it is 

possible to write-lock portions of a process' state that the application will never again 

modify. This approach is discussed in greater detail in Chapter 3. Like sub-states, write-

locked memory is not transparent to the user. Fujimoto et a! [Fuj88b] propose the use of 

special purpose hardware known as the rollback chip to eliminate much of the overhead 

associated with saving and restoring states. The rollback chip is designed to save and 

restore even large process states in a fraction of the time required using existing software 

techniques. In effect, the rollback chip only saves those portions of a state modified by the 

processing of a message. In addition, the rollback chip is transparent to an application and 

eliminates the need for facilities such as sub-states and write-locked memory that rely on an 

application to explicitly optimize state checkpoints. A prototype of this chip is currently 

being evaluated [Buz90]. Until the rollback chip is readily available for a wide variety of 

parallel processors, techniques such as sub-states and write-locked memory will continue 

to be required, as will the need to design simulations to minimize the size of process states. 

Another important concern in Time Warp is ensuring that all side effects resulting from 

causality errors can be eliminated. Although Time Warp is capable of rolling back the state 

of a process and cancelling erroneously sent messages, there are other actions a process can 

take that cannot necessarily be rolled back. These include erroneous memory references 

outside the state of the process, division by zero, references through null pointers, infinite 
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loops, and stack overflow. Problems of this type are exacerbated by the fact that causality 

errors are not deterministic. In the worst case, the effects of a causality error may go 

undetected and lead to erroneous simulation results. Clearly, the potential problems arising 

from causality errors are ominous. However, my experience with Sim++ suggests that 

these problems are relatively easy to avoid. Some discussion of how this is done is 

included in Chapter 3. Nevertheless, these problems do exist and current techniques for 

avoiding them rely, in general, on the discipline of the user. Resolution of these problems 

will depend primarily on the level of support provided by compilers and parallel 

processors. 

A third difficulty concerns the restrictions imposed by Time Warp on a simulation's 

interactions with the external world. Specifically, Time Warp simulations are limited to 

those interactions for which the Time Warp implementation provides commitment. This 

typically includes basic facilities for input, output, error handling, and termination, but may 

exclude other, advanced facilities specific to a given parallel processor. One approach to 

this problem is to make the commitment mechanism available to the user. This is the 

approach used by Tipc [Ung9O], a multi-lingual Time Warp implementation that augments 

existing sequential programming languages with primitives for sending and receiving 

timestamped messages. Tipc processes call wait_for_gvt prior to executing any 

operation that cannot be rolled back. wait—for—pt blocks the calling process until GVT 

is equal to the process' simulation time. As long as the process executes at GVT, its 

actions are not subject to rollback. At the same time, however, GVT cannot advance until 

the simulation time of the process advances. If many processes execute repeatedly at GVT, 

the rate at which GVT advances is reduced, thereby reducing the amount of memory freed 

through fossil collection and available for optimistic execution. In addition to its 

performance implications, wait_for_gvt is also error prone in that it must be called prior 
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to each interaction with non-Tipc facilities. An alternative is to provide one type of process 

that always executes optimistically and is subject to rollback and another type of process 

that always executes at GYT. This approach is less error prone in that it clearly separates 

processes that can interact directly with the external world from those that cannot. This 

approach is used by Sim++ and is discussed in greater detail in Chapter 3. Either approach 

can be used to transparently implement facilities requiring commitment. 

Finally, a great deal of attention has focused on the development of optimized queries 

for Time Warp. A query is a read-only interrogation of a process' state by another process. 
11 

A query consists of two parts: a query message, representing a request for information, and 

a reply message, representing the response. Because the process that initiates a query must 

wait for the response, a query is a form of sequential coordination between processes. As 

noted in Section 2.3, this type of programming practice can have a negative impact on 

performance. Nevertheless, when they exist, queries lend themselves to the following 

optimization. If Time Warp encounters a straggler query message, it locates the appropriate 

historical state to which the receiving process would ordinarily roll back, processes the 

query message using that state, and then restores the process to its future state to continue 

executing. This optimization eliminates the recomputation typically associated with a 

rollback by relying on the invariant that the processing of a query message does not alter 

the state of the receiving process. Typical approaches to this optimization [Bag9O, Gat88, 

Jef87} require that the application explicitly identify when a message represents a query or a 

reply. 

West [Wes88a] proposes an optimization to Time Warp called lazy reevaluation in 

which non-side-effecting messages are detected automatically by the Time Warp 

implementation. Specifically, after a process has processed a straggler message, the 

resulting state is compared to the process' ensuing state from its prior forward 
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computation. If the two states are identical, then the straggler message had no effect on the 

process' state and the process is restored to its future state to continue executing. If the two 

states differ, then all ensuing states are discarded and the process is forced to reprocess all 

messages following the straggler. This optimization is shown to improve performance by 

as much as 38% in applications tested. However, the success of lazy reevaluation is 

extremely application-dependent. Specifically, the number of non-side-effecting messages 

must be sufficiently large to outweigh the additional overhead associated with comparing 

process states. Unfortunately, if the non-side-effecting messages are queries, as is often 

the case, then a large number of such messages may degrade performance due to the 

sequential nature of queries. The advantage of lazy reevaluation over explicit query 

messages is that it is transparent to the user and, as such, does not promote an inefficient 

parallel programming practice. Indeed, queries have since been removed from the Time 

Warp Operating System described in [Jef87} because of this potential for abuse. 

2.7 Summary 

This chapter identified two fundamental differences between Virtual Time and sequential 

simulation. First, Virtual Time processes communicate and synchronize their actions solely 

by sending and receiving timestamped messages. Second, Virtual Time simulations must 

be designed specifically for parallel execution if they are to achieve significant reductions in 

execution time. An assessment of the impact of these differences showed that existing 

modeling practices and language design must be adapted to Virtual Time. 

Throughout this chapter, a clear distinction was maintained between the Virtual Time 

paradigm and its implementation. This distinction reflects the view of this thesis that it is 

inappropriate to adapt modeling practices and language design to accomodate specific 
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implementations of Virtual Time. For example, it is inappropriate to rely on the discipline 

of the user to decompose a simulation to minimize process state size or to-prevent side 

effects of causality errors. There are two reasons for this. First, such adaptations require 

that the user understand fundamental characteristics of the implementation of Virtual Time, 

even though those characteristics are not inherent to the Virtual Time paradigm or to parallel 

processing. Second, additional requirements imposed by a specific implementation of 

Virtual Time increase the complexity of the design and implementation of a parallel 

simulation and reduce its portability to other implementations of Virtual Time. 

An examination of the literature suggests that state size and other Time Warp 

transparency issues can be resolved but will require support from compilers, parallel 

processors, and special-purpose hardware such as the rollback chip. However, the current 

state of the art in parallel simulation is such that these issues do factor into the design of a 

simulation. The language survey in the following chapter examines transparent and explicit 

techniques provided by existing parallel simulation languages for coping with these issues. 



Chapter 3 

Languages for Virtual Time 

The fundamental differences between Virtual Time and sequential simulation present new 

challenges for simulation language design. Many existing sequential simulation languages 

provide modeling abstractions that encourage a close correspondence between a model and 

its implementation [Bir84, Bir86, Mul82]. However, since these languages are not 

designed for parallel processors, the abstractions they provide are not suitable for Virtual 

Time. Most notably, they rely on shared memory for process interactions and assume a 

pseudo-concurrency in which only one process executes at a time. 

One language designed to address these problems is Sim++ [Jad9O], a simulation 

library embedded in the object-oriented programming language, C++ [Str86]. Sim++ is a 

commercial product developed by Jade Simulations and is designed specifically for 

execution on Time Warp. Nevertheless, the modeling abstraction it provides is based on 

Virtual Time, rendering the underlying Time Warp executive relatively transparent. This 

chapter focuses primarily on Sim++ in that it serves as the foundation for much of the 

research presented in this thesis, including the development of the SimD language proposed 

in Chapter 5. Sim++ was designed by a team of developers, including myself, and was 

implemented by me prior to beginning this research. 

The selection of Sim++ as a starting point for this research is appropriate for several 

reasons. First, Sim++ provides modeling constructs for Virtual Time similar to those 

proposed by a variety of researchers. As such, it is representative of much of the ongoing 

research into language design for Virtual Time. Indeed, a number of its language features 

are entirely unique among existing and proposed languages. Second, since Sim++ is 

26 
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designed for Time Warp, it is not subject to the additional limitations imposed by 

conservative implementations of Virtual Time. Third, since Sim++ is a C++ library, it is 

possible to experiment with variations of its modeling constructs without the need to write 

or modify a compiler. Access to Sim++ and Jade Simulation's parallel processor were 

provided for this research through the courtesy of Jade Simulations. 

An overview of Sim++ is presented in Section 3.1 and is intended to provide a reading 

knowledge of Sim++ sufficient to understand the examples and language design issues 

discussed in this thesis. Many of these issues have also been addressed by other 

researchers. Section 3.2 compares their solutions with those of Sim++. Section 3.3 

proposes a set of language design criteria for Virtual Time based on the characteristics of 

the languages surveyed. 

Sirn++, SimD, and all of the major examples and benchmarks presented in this thesis 

are implemented in C++. For the sake of brevity and clarity, a number of conventions have 

been adopted for the C++ code presented throughout this thesis. Typically, the 

declarations for local variables in functions are omitted. The context in which these 

variables are used is sufficient in most cases to determine their type. An ellipsis (i.e., ...) 

is used to indicate where C++ code, unnecessary to the discussion, has been omitted. The 

tokens AND, OR, and NOT are used to represent the C++ logical operators &&, 11, and 

!. Italic font is used to represent pseudo code used in place ofC++. Finally, the symbol II 

denotes the beginning of a C++ comment that continues until the end of the current line. 

3.1 The Sim++ Parallel Simulation Language 

Sim++ is a process-oriented, discrete-event simulation language embedded in the object-

oriented programming language, C-H-. Sim+-i- simulations can be executed sequentially on 
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a sequential simulator, or in parallel using Time Warp. The sequential simulator serves as 

the primary development environment for Sim++ simulations as well as a baseline for 

speedup comparisons. Sim++ programs can be moved between the sequential and Time 

Warp environments without source code modifications. Sim++ programs are also 

transparently scaleable. This means that they can be executed on varying numbers of 

processors, also without source code modifications. The number of processors is specified 

at run-time in a user-supplied configuration file. Sim++ programs are deterministic 

regardless of the run-time configuration used. 

Sim++ simulations are defined in terms of entities and events. Entities are 

independently executing objects that communicate and synchronize their actions by 

scheduling and receiving events. Each entity has its own separate address space and, 

generally, cannot access the member variables and functions of other entities or 

communicate with other entities using shared memory. Entities and events correspond to 

Virtual Time processes and messages. 

The actions of all entities and the scheduling of all events is tied to a logical clock that 

ticks time in an arbitrary, application-defined time scale called simulation time. Each entity 

has its own local view of this clock called the entity's simulation time. Each event is tied to 

this clock by means of a scheduled event time that specifies when a given entity should 

receive the event. This is the simulation time at which the event occurs. Typically, an 

entity receives events in order of increasing scheduled event time, the simulation time of the 

entity advancing in step with these event times. Entities can also defer and cancel events, 

and simulate the passage of time. 

Typically, entities communicate solely by scheduling and receiving events. As an 

alternative, entities that communicate frequently can be grouped into clusters. All entities 

within a cluster are always executed on the same processor and are synchronized in such a 
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way that they are free to share memory and directly access each other's member variables 

and functions. 

The execution of a Sim++ simulation is divided into two phases: the initialization phase 

and the execution phase. The initialization phase serves to create entities, group entities 

into clusters, and initialize global variables. Entities may subsequently read but not modify 

the values of these global variables during the execution phase. The execution phase 

represents the main actions of a simulation and encompasses both the initialization and 

execution of entities. 

Like most simulation languages, Sim++ also provides facilities for random number 

generation, data collection and reporting, linked list manipulation, formatted input and 

output, tracing, and error reporting. These facilities are similar to those of other simulation 

languages [Bir86, Mul82] and will not be discussed further except as they appear in 

various examples throughout the thesis. 

3.1.1 Overview of C++ Concepts and Terminology 

C++ is an object-oriented extension of the C [Ker78] programming language. C++ 

provides support for common object-oriented language features such as data abstraction, 

encapsulation, inheritance, and polymorphism. The key language construct by which these 

abilities are possible is the class. A class is a user-defined data type consisting of named 

data elements, called member variables, and a set of operations, called member functions, 

that manipulate those data elements. An instance of a class is referred to as an object. Each 

object has its own private copy of the member variables of its class and is subject to the 

operations defined for that class. Typically, two of these operations include the creation 

and destruction of the objects themselves. A constructor is a member function that 
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specifies how instances of a class are created and initialized. A destructor is a member 

function that specifies how instances of a class are destroyed. 

3.1.2 Sim++ Data Types 

This section describes the major data types provided by Sim++. The C++ declarations for 

these data types are shown in figure 3.1. 

Class sim_time consists of real numbers greater than or equal to zero and is used to 

represent simulation times. Values of this type are used primarily in scheduling events and 

simulating the passage of time. For example, when an entity schedules an event, it must 

specify a simulation time delay. The sum of this delay and the scheduling entity's 

simulation time define the scheduled event time of the event. 

Class sim_type consists of integers greater than or equal to zero and is used to 

represent event types. When an entity schedules an event, it must specify a value of type 

sim_type. This value becomes an attribute of the event and can be used to distinguish 

between different kinds of events. 

Class sim_entity_id is used to represent entity identifiers.. When an entity is created, 

a value of type sim_entity_id is returned to the application. This value uniquely 

identifies the newly created entity and is required to identify that entity when scheduling 

events for it. Class sim_entity_id defines two member functions, name and 

class—name, that can be used to determine an entity's name and class given its entity 

identifier. 

Class sim_event is used to represent events. When an entity schedules an event, an 

object of type sim_event is created to represent that event. An entity receives an event 

when it receives the corresponding event object. Every event has a set of attributes, 
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class Sim time { ... 
class Sim type { ... 

class sim_entity_id 

public: 
char *nameO; 
char *class name Q; 

class sim event 

public: 
sim_entity_id scheduled—by() ; 
sim_entity_id scheduled _for 0; 
sim time event_time 0; 
Sim type type 0; 
void *body; 

int length(); 

class sim_event_id 

public: 
simentity_id scheduled by 0; 
sim_entity_id scheduled__for 0; 
sim_time event _time 0; 
sim__type type 0; 

const 
const 
const 
const 
const 

Sim time 
sim_type 
sim_entity_id 
Sim event 
sim event— id 

SIM_NO_TIME; 
SIM_NO_TYPE; 
S IMNO_ENTITY_ID; 
S IM_NOE VENT; 
S IM_NO__E VENT_ID; 

Figure 3.1: c++ Declarations for Sim++ Data Types 

specified by the scheduling entity, that define the event. These attributes include the 

identity of the entity that scheduled the event, the identity of the entity for which the event is 

scheduled, the scheduled event time of the event, the type of the event, and the body of the 

event. The body of an event is used to pass arbitrary, application-specific data from the 

scheduling entity to the receiving entity. Class sim_event defines the member functions 

scheduled_by, scheduled_for, event_time, type, body, and length to access the 

attributes of an event, scheduled—by returns an entity identifier denoting the entity that 
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scheduled the event, scheduled—for returns an entity identifier denoting the entity for 

which the event is scheduled. event—time returns the simulation time for which the event 

is scheduled. type returns the event type of the event, body returns a pointer to the 

application-specific data in the body of the event, length returns the length, in bytes, of 

the event body. If the body of an event contains no data, body returns a null pointer and 

length returns zero. 

Class sim_event_id is used to represent event identifiers. When an entity schedules 

an event, a value of of type sim_event_id is returned to the scheduling entity. This value 

uniquely identifies the scheduled event and can be used to subsequently cancel that event. 

Class sim_event_id defines the member functions scheduled_by, scheduled—for, 

event—time, and type to access the attributes of an event identifier. The values of these 

attributes are the same as those of the event that the event identifier represents. 

For each data type, a special value is used to represent invalid or uninitialized instances 

of that type. For example, the value SIM_NO_TIME represents a non-existent 

simulation time and is the default value of all uninitialized variables of type sim_time. 

Similarly, the values SIM_NO_TYPE, SIM_NO_ENTITY_ID, 

SIM_NO_E VENT, and SIM_NO_EVENT_ID are defined for the remaining data 

types. - 

3.1.3 Decomposing a Simulation into Entities 

Most physical systems can be viewed as a set of independently acting components that 

interact over time. In Sim++, these active components are represented by entities. Each 

entity is an instance of an entity class and has its own set of member variables. The entity 

class defines these member variables as well as the member functions that manipulate them. 

Typically, an entity class is defined for each type of active component in the simulation. 
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Unlike ordinary C++ objects, entities are active objects, like the components they 

represent. In other words, they execute continuously, scheduling and receiving events and 

updating their individual states. The state of an entity includes its member variables, its 

run-time stack, and any data structures dynamically allocated by that entity. 

Entity classes are defined using the C++ class construct. They differ from ordinary 

classes in three ways, however. First, all entity classes must be derived from the pre-

defined base class sim_entity. Unless derived from class sim_entity, an entity class 

inherits none of the attributes or abilities of entities (e.g., the ability to schedule and receive 

events). The interface to these attributes and abilities is provided through global functions. 

Second, all entity classes must define a constructor and body to represent the actions of 

entities of that class. The constructor of an entity serves to initialize the entity's member 

variables. The sole argument to an entity constructor is an initialization event that contains 

whatever run-time arguments are required to initialize the entity. The attributes of the 

initialization event are specified when the entity is created. The body of an entity defines 

the actions of that entity with respect to the physical component that the entity is intended to 

represent. Third, all entity class declarations must include a call to the macro 

SIM ENTITY. This macro hides a number of additional declarations required by the 

implementation for the given entity class. As an example, the declaration of entity class 

automobile is shown in figure 3.2. 

All entities share a common set of entity attributes that can be accessed by the functions 

sim_current, sim_çlock, sim_name, and sim_class_name. sim_current returns 

an entity identifier that uniquely identifies the calling entity. Entities use this identifier 

when scheduling events for themselves. sim_clock returns the current simulation time of 

the calling entity. sim_name returns a string that is the name of the calling entity. The 
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class automobile : public sim_entity 
public: 

II member variables 
double Speed; 
double Fuel; 

II entity constructor 
automobile (sim event &init_ev); 

II entity body 
void bodyO; 

SIM ENTITY ( automobile); 

automobile: : automobile(sim event &iriit_ev) 

II initialize member variables 
Speed = 0.0; 
Fuel = 0.0; 

void automobile: : body() 
II main actions of an automobile 

Figure 3.2: c++ Declaration for Entity Class Automobile 

name of an entity is specified when the entity is created. sim_class_name returns a 

siring that is the name of the calling entity's class. 

3.1.4 Simulation Primitives 

This section describes the Sim++ simulation primitives for scheduling, cancelling, and 

receiving events, and for simulating the passage of time. 

The primitive sim schedule is used to schedule events. An entity can schedule 

events for any entity it can identify, including itself. Arguments to sim_schedule include 

an entity identifier, a simulation time delay, an event type, and an optional data pointer and 
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length. These arguments serve to define the attributes of the event. The entity identifier 

uniquely identifies the entity for which the event is being scheduled. The sum of the 

simulation time delay and the scheduling entity's simulation time defines the scheduled 

event time of the event. The event type defines the type of the event. The data pointer and 

length define the body of the event; if omitted, the body of the event is null. 

sim_schedule returns an event identifier uniquely identifying the scheduled event. As an 

example, the call 

ev_id = simschedule(sim_currentO, 8.0, ARRIVAL, & i, sizeof(i)); 

schedules an event for the calling entity with a delay of 8.0 time units. ARRIVAL is 

assumed to be a constant of type sim_type. The body of the scheduled event contains a. 

copy of i, where i is an arbitrary data structure. The return value of sim_schedule is 

assigned to the event identifier ev_id. 

The primitive sim_cancel is used to cancel an event denoted by a given event 

identifier. Cancelling an event guarantees that it will not be received by the entity for which 

it was scheduled. As an example, the call 

sim_cancel (ev_id); 

cancels the event denoted by the event identifier evid. An event can only be cancelled at a 

simulation time earlier than its scheduled event time (i.e., before the event occurs). 

The primitive sim_wait is used to receive events in order of increasing event time. As 

an example, the call 

sim_wait (ev); 

assigns the calling entity's next event to the event object ev. The simulation time of the 

calling entity is advanced to the event time of the received event. If an entity calls 

sim_wait after it has received its last event, the entity terminates. 
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The primitive sim_hold is used to simulate the passage of time. The simulated delay 

can be interrupted by any event scheduled for the calling entity with an event time that 

coincides with the delay. As an example, the call 

remaining = sim_hold(1O.O, ev); 

simulates a delay of 10.0 time units. If the simulated delay is interrupted, the earliest 

interrupting event is assigned to the event object ev, the simulation time of the calling entity 

is advanced to the event time of the interrupting event, and sim_hold returns the amount 

of simulation time remaining of the original delay. If the simulated delay expires without 

interruption, the value SIM_NO_EVENT is assigned to ev, the simulation time of the 

calling entity is advanced by 10.0 time units, and sim_hold returns 0.0. 

3.1.5 Conditional Selection of Events 

Using the primitives sim_wait and sim_hold, an entity receives the events scheduled for 

it in order of increasing event time. Alternatively, an entity may wish to select its next 

event based on whether or not the event satisfies a particular set of conditions. The 

conditional selection of events is referred to as event selection. It allows an entity to receive 

events out of order or to simulate delays that are uninterruptable or that can only be 

interrupted by certain kinds of events. Events not selected at their scheduled event times 

are deferred for later reception. Deferring an event causes it to be received and enqueued 

on behalf of the receiving entity. Thus, even though an event is deferred, it is received in 

order of increasing receive time, as required by Virtual Time. Sim++ provides four 

primitives for event selection: sim_wait_for for receiving events, sim_hold_for for 

simulating the passage of time, sim_waiting for counting deferred events, and 

sim_select for receiving deferred events. 
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The conditions by which an entity receives or defers events are specified using values 

known as predicates. Predicates are C++ objects that test the attributes of events. 

Generally, an application does not directly match predicates to events. Instead, predicates 

are passed as parameters to the event selection primitives which use them to determine 

whether an entity wishes to receive or defer a given event. Several commonly used 

predicates are defined by Sim++. Among these are the predicates SIM_ANY and 

SIM_NONE that match any and no events, respectively, and the predicate type 

sim_type_p. Instances of sim_type_p can be instantiated to match events of a specified 

type. As an example, the call 

sim_type_p (ARRIVAL) 

instantiates a predicate that matches only those events with the event type ARRIVAL. In 

addition to these pre-definedpredicates and predicate types, new predicate types can be 

defined by individual applications to test any combination of event attributes. 

The primitive sim_wait_for is similar to sim_wait except that the calling entity 

supplies an additional predicate argument that specifies the set of conditions an event must 

satisfy to be received by the entity. As an example, the call 

sim_wait_for (aim type_p (ARRIVAL), ev); 

assigns the calling entity's next event of type ARRIVAL to the event object ev. The 

simulation time of the calling entity is advanced to the event time of the received event. All 

events of the calling entity that have not been received and that precede the selected event 

are deferred. 

The primitive sim_hold_for is similar to sim_hold except that the calling entity 

supplies an additional predicate argument that specifies the set of conditions an event must 

satisfy to interrupt the simulated delay. As an example, the call 

aim hold Lfor(1O.O, SIM NONE, ev); 
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simulates an uninterruptable delay of 10.0 time units. All events of the calling entity that 

coincide with this delay are deferred. Alternatively, if a call to sim_hold_for is 

interrupted by an event satisfying a given predicate, only those events of the calling entity 

that have not been received and that precede the interrupting event are deferred. 

The primitive sim_waiting is used to count deferred events satisfying a given 

predicate. As an example, the call 

count = sim_waiting(SIM_ANY); 

assigns to count the total number of deferred events of the calling entity. 

The primitive sim_select is used to receive a deferred event satisfying a given 

predicate. As an example, the call 

found = 3im_select(sim_type_p(ARRIVAL), ev); 

selects the calling entity's earliest deferred event of type ARRIVAL. If a deferred event of 

this type exists, it is assigned to the event object ev and sim_select returns the boolean 

result true. Otherwise, the value SIM_NOE VENT is assigned to ev and sim_select 

returns false. 

3.1.6 Type Checking 

As previously noted, the body of a Sim-H- event can contain arbitrary, application-specific 

data. Unfortunately, to achieve this level of flexibility, the type information associated with 

data copied into and out of the body of events is lost. Without type checking, it is possible 

to copy data out of the body of an event into a variable whose type differs from that of the 

data. Errors of this type may go undetected and lead to erroneous simulation results. To 

address this problem, Sim++ supports a simple form of run-time type checking that allows 

entities to include a type string in scheduled events. The type string is the type name of the 

data in the body of the event and is optionally specified as an argument to sim schedule. 
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When accessing the body of the event, the receiving entity can optionally specify the type 

name of the variable into which it intends to copy the given data. Sim++ compares the two 

type names to ensure that the type of the data in the body of the event is the same as the 

type of the variable into which the data will be copied. As an example, the call 

Sim time time = simclockO; 
Sim schedule(..., &time, sizeof(time), "Sim time"); 

schedules an event with an event body containing a copy of the simulation time at which the 

event was scheduled. The type string sim_time corresponds to the type name of time 

and is included as an attribute of the event. In turn, the call 

Sim _wait (ev); 
time = *( Sim time *) ev.bocly("sim_time"); 

is used to receive the scheduled event and safely copy the data out of the body of the event 

into the variable time. The type string sim_time is compared for equality to the type 

string attribute of the event object. The only way this type checking mechanism can fail is 

if both of the type strings specified in the two individual calls are identical but incorrect. As 

shown in the second of the examples above, this is highly unlikely because the type name 

of the variable into which the data will be copied appears alongside every occurrence of the 

corresponding type string specified when accessing the body of the event. (The type name 

is used in a cast operation that converts the untyped pointer returned by body to the type of 

the variable into which the data will be copied.) 

3.1.7 Initialization and Execution of Sim++ Simulations 

The initialization phase is a special phase in the execution of a Sim++ program that 

precedes the actual simulation, represented by the execution phase. The creation of entities 

and clusters and the initialization of global variables are restricted to the initialization phase. 

Sim++ does not support the dynamic creation and destruction of entities nor does it permit 
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global variables to be modified during the execution phase. However, entities are permitted 

to read the values of global variables during the execution phase. 

Since entities are not permitted to modify global variables, they cannot be used for 

communication among entities. Instead, global variables are typically used to store run-

time parameters (e.g., the duration of a simulation) and entity identifiers denoting the 

entities in the simulation. They can also be used as data bases for static information (e.g., 

airport locations in an air traffic control simulation). The use of global variables reduces 

the amount of data that must be distributed to entities at creation and minimizes the size of 

entity states in that global data need not be duplicated within each entity's local state. 

An application specifies the actions of the initialization phase by defining the function 

sim_initialize. To ensure that global variables are accessible to all entities on all 

processors of a parallel execution, identical invocations of sim_initialize are executed 

concurrently on all processors. In this way, the same values are assigned to the same 

global variables on every processor. However, to prevent sim_initialize from creating 

the same entities on every processor, Sim++ only creates an entity on the one processor to 

which that entity has been assigned according to a user-supplied, run-time configuration 

file. It is impossible for any given invocation of sim_initialize executing on a given 

processor to tell which entities were or were not created on that processor. In this way, a 

simulation is indepedent of the number of processors on which it is executed as well as the 

way in which entities are mapped to processors. 

Simulations create entities by calling the function sim_create and passing it the name 

of an entity class and an entity name. The entity class specifies the type of entity to be 

created. The entity name must be unique and it serves as the name of the newly created 

entity. Additional arguments to sim_create include an event type, and an optional data 

pointer and length. The event type, data pointer, and length are used to construct an 
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initialization event that is passed to the constructor of the newly created entity as its sole 

argument. sim_create returns an entity identifier denoting the newly created entity. As 

an example, the call 

autol— id = simcreate("automobile", "autol", INIT); 

creates an instance of entity class automobile called autol. INIT is assumed to be a 

constant of type sim_type. The return value of sim_create is assigned to the entity 

identifier autol-id. If autol—id is a global variable, then all entities can use this 

identifier during the execution phase to schedule events for auto!. 

The execution phase follows the initialization phase and encompasses both the 

initialization and execution of entities. The initialization of an entity is represented by its 

constructor. The execution of an entity is represented by its body. At the beginning of the 

execution phase, all entity constructors begin executing at simulation time 0.0. When an 

entity's constructor returns, its body is automatically executed. When the entity's body 

returns, the entity terminates. Alternatively, an entity also terminates if it waits for an event 

that never occurs. The simulation terminates when all entities have terminated. 

3.1.8 Clusters for Shared Memory among Entities 

A cluster is a group of entities that can share memory and directly access each other's 

member variables and functions. Clusters are intended to model physical systems that 

contain multiple, independently acting components whose interactions are too frequent to 

be efficiently represented by scheduling and receiving events. The use of clusters may 

reduce the number of events required for modeling such systems but at the expense of 

whatever parallelism the clustered entities could achieve by executing concurrently on 

multiple processors. 
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Clusters of entities can only be created during the initialization phase. Once a cluster 

has been created, all entities within that cluster remain so for the duration of the simulation. 

The functions sim_begin_cluster and sim_end_clüster are used to create clusters of 

entities. A call to sim_begin_cluster opens a new cluster while a call to 

sim_end_cluster closes the current cluster. All entities created while a cluster is open 

become part of that cluster and can directly access and share memory with other entities 

within that same cluster. Entities created when there is no open cluster are completely 

independent of other entities and cannot communicate or synchronize with other entities 

except by scheduling and receiving events. The following code fragment creates a cluster 

of two entities, autol and driver!: 

Sim_ begin_ cluster 0; 
autol_id = sim_create("automobiJ-e", "autol", INIT); 

drivi_id sim_create("driver", "driven", INIT); 
sim_end_cluster 0; 

An entity accesses the states of other entities in its cluster in the same way that it 

accesses a dynamically allocated object within its own state. As such, the entity must first 

obtain a pointer to the entity whose state it intends to access. The function 

sim_entity_ptr is used to obtain a pointer to an entity given the entity's class name and 

entity identifier. As an example, the call 

P = (automobile *) simentity_ptr("automobile", autol_id); 

assigns to p a pointer to the entity denoted by autol_id. The given class name is used for 

type checking similar to that described for events. Only entities within the same cluster can 

obtain pointers toone another. sim_entity_ptr returns a null pointer if the calling entity 

is not part of a cluster containing the entity denoted by the given entity identifier. Given a 

pointer to entity auto!, the call 

p->Speed 

might be used by entity driverl to determine the current speed of the automobile. 
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Although clustering allows entities to communicate with relatively little overhead, the 

entities within a cluster must still schedule and receive events in order to synchronize with 

one another and to interact with other entities outside of the cluster. 

3.1.9 Preventing Side Effects of Causality Errors 

Sim++ refers to the side effects of causality errors as transient errors. Many such errors 

are trapped by Sim++. For example, if a simulation primitive is invoked with erroneous 

arguments (e.g., a negative delay to sim_schedule), Sim++ invokes the error routine 

sim error which blocks the calling entity until the entity rolls back or until the error is 

committed by the advance of GYT. In the former case, the error is transient and will be 

corrected. In the latter case, the error is real and the execution of the simulation is aborted. 

Real errors are typically detected and eliminated during the development of a simulation 

executing on the sequential simulator. 

Not all transient errors are trapped by Sim++. Some must be trapped by the application 

itself. Most of these can be prevented by using the type checking mechanism described in 

Section 3.1.6 when moving data into and out of the body of events. The type checking 

mechanism invokes sim_error whenever a type conflict occurs. A causality error can lead 

to a transient type conflict when an entity expects to receive one type of event and actually 

receives another. Based on its expectations, the entity may try to copy data out of the body 

of the event that differs in type from the data actually in the body of the event. The type 

checking mechanism ensures that such transient type conflicts are handled transparently. 

For other transient errors; the application must detect them and call sim_error explicitly. 

For example, if an integer in the body of an event is to be used as divisor in an arithmetic 

operation, the application should first check that the integer is non-zero. The application 

can similarly check the validity of array indices and other sources of transient errors. 
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Although many of the techniques for preventing transient errors are additional burdens 

imposed on the user by Time Warp, many of these techniques are also appropriate for 

developing correct sequential simulations. For example, all of the errors noted here and in 

Chapter 2 as potential side effects of causality errors can occur in sequential simulations as 

well. What does differ is that error checks can be removed from sequential simulations for 

efficiency once the simulation is thought to be correct. Since transient errors can occur 

even in correct simulations executing on Time Warp, transient error checks are always 

required unless the resulting errors can be trapped by the language or Time Warp. 

3.1.10 Language Support for Time Warp 

All of the language features of Sim++ presented so far are based on Virtual Time or 

extensions of Virtual Time. As such, they are not specific to Time Warp. Specifically, 

entities and events correspond to Virtual Time processes and messages, and the simulation 

and event selection primitives are modeling abstractions that can be implemented entirely in 

terms of an entity's ability to schedule and receive events [Lom88b]. The initialization 

phase and clusters are extensions of Virtual Time that reduce overall memory usage and 

event communication overhead. As such, they are appropriate for any implementation of 

Virtual Time. 

This section presents two Sim++ language features designed specifically for Time 

Warp: write-locked memory and interface entities. Write-locked memory is intended to 

reduce Time Warp state checkpoint overhead. Interface entities " allow Time Warp 

simulations to interact directly with architecture-specific facilities not supported by Sim++. 

These facilities are important for two reasons. First, the existence of these facilities 

demonstrates shortcomings in Time Warp for which no viable, transparent solutions 
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currently exist. Second, the SimD language interface proposed in Chapter 5 relies on 

write-locked memory to transparently optlmi7e the SimD implementation. 

Write-locked memory allows an entity to lock and unlock portions of its state. By 

locking a portion of its state, an entity guarantees to the Time Warp implementation that it 

will no longer modify that portion of its state. Like global variables, the entity may 

subsequently read but not modify the values of data structures in that portion of its state. 

As a result, it becomes unnecessary to include that portion of the state in subsequent entity 

state checkpoints. By unlocking a previously locked portion of its state, an entity informs 

the Time Warp implementation that it intends to subsequently modify some or all of that 

portion of its state. Once unlocked, that portion of the state is once again subject to state 

checkpoints. The function sim_write_lock is used to lock dynamically allocated data 

structures. The ability to unlock a portion of an entity's state is not yet supported. No run-

time error checking is performed to ensure that an entity does not attempt to modify write-

locked memory. This facility relies instead on the discipline of the user. 

Interface entities are a special type of entity that can interact directly with architecture-

specific facilities not supported by Sim++. This entity type is intended to supplement the 

formatted input and output facilities provided by Sim++. Interface entities are derived from 

class sim_interface_entity. Unlike entities derived from class sim_entity, interface 

entities do not execute optimistically. Instead, interface entities only execute when GVT is 

equal to their entity simulation time. As a result, the events these entities schedule and 

receive, and the actions that they take are always known to be correct and not subject to 

rollback. Unfortunately, interface entities tend to slow the advance of GVT, potentially 

slowing the execution of an entire simulation. As such, few if any interface entities are 

used in most simulations. 
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3.2 Comparing Sim++ to Other Languages 

This section compares Sim++ to other parallel simulation languages and systems, focusing 

primarily on alternative solutions to issues addressed by Sim++ or to unique capabilities 

not supported by Sim++. In addition to the languages surveyed in this chapter, other 

noteworthy systems include the Time Warp Operating System (TWOS) [Jef87] and Tipc 

[Ung9O]. Simulations written for TWOS have achieved speedups of an order of magnitude 

or more across a variety of application domains [Ebl89, Hon89, Pre89b, Wie89]. 

However, TWOS provides only a minimal interface for the development of event-oriented 

simulations [Jef87]. Tipc is a multi-lingual Time Warp implementation that augments 

existing sequential programming languages with primitives for sending and receiving 

timestamped messages. Each Tipc process is an independently executing sequential 

program within a Tipc system. 

3.2.1 Extended Virtual Time 

The simulation and event selection primitives provided by Sim++ are based on a parallel 

simulation language called Extended Virtual Time defined by Lomow [Lom88b]. Extended 

Virtual Time combines the elements of Virtual Time and process-oriented simulation to 

provide a language for process-oriented parallel simulation. Extended Virtual Time defines 

primitives for scheduling, cancelling, receiving, deferring, and ignoring events, and for 

simulating the passage of time. Two strategies for implementing Extended Virtual Time are 

defined: an application approach and an integrated approach. The application approach 

implements Extended Virtual Time as an application layer above Virtual Time, 

implementing all of the language primitives solely in terms of a process' ability to send and 

receive messages. This approach incurs excessive overhead because it is restricted by the 
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semantics of Virtual Time. The integrated approach implements Extended Virtual Time by 

integrating the language primitives with an underlying Time Warp synchronization 

mechanism. This approach requires modifications to the Time Warp implementation but is 

shown to reduce execution time, memory usage, and communication overhead in a variety 

of benchmark simulations. Currently, Sim++ is implemented using the application 

approach. Given the close correspondence between Sim++ primitives and Extended 

Virtual Time primitives, the performance optimizations in the integrated version of 

Extended Virtual Time can also be implemented in Sim++. This is significant in that it 

allows simulations to be described using primitives based on Virtual Time while allowing 

those primitives to be transparently optimized for Time Warp. The remainder of this 

section summarizes these optimizations. 

Deferred events in Sim++ and Extended Virtual Time result when an entity receives 

events out of order based on whether or not the events satisfy a given predicate. All events 

not received at their scheduled event times are deferred on behalf of the entity for which 

they are scheduled. In this way, an entity need not explicitly receive and buffer events that 

it does not wish to process as scheduled. This same effect can be achieved through event 

selection, allowing the language to implicitly buffer deferred events on an entity's behalf. 

The application version of Extended Virtual Time maintains a list of deferred events as part 

of each entity's state. The language defers an event by adding a copy of the event to the 

entity's deferred event list. My own experience with Sim++ suggests that tens of deferred 

events per entity are not uncommon in some queueing models. Since each event can be 

hundreds or more bytes in length, the size of an entity's state can be thousands or tens of 

thousands of bytes in size depending on the number of events the entity has deferred. The 

integrated version of Extended Virtual Time integrates the deferred event list with the input 

queue of the underlying Time Warp process. This approach requires that the semantics of 
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the input queue be modified to represent not only received and unreceived messages, but 

also deferred messages. The effects of rollback and fossil collection on the input queue 

must be modified to accomodate these new semantics. The advantage of the integrated 

approach is that it eliminates the deferred event list from an entity's state. This optimization 

takes advantage of the fact that, as long as an event is deferred, it is not subject to 

modification and therefore need not be included in entity state checkpoints. 

Both Sim++ and Extended Virtual Time provide primitives for simulating the passage 

of time. One way to represent a simulated delay is for an entity to schedule an event for 

itself in the future and then wait to receive that event. This is the approach used by the 

application version of Extended Virtual Time. The event is scheduled and received 

implicitly by the language primitive and is transparent to the application. Associated with 

each such event is a message in the underlying Time Warp process' input queue, an anti-

message in the output queue, and a copy of the entity's state in the state queue when the 

event is received. The events used to implement simulated delays differ from other kinds 

of events in that they are always scheduled by an entity for itself and they contain no 

application-specific information except that they mark the end time of the delay. The 

integrated version of Extended Virtual Time uses this knowledge, combined with a scan of 

the current state of the input queue, to eliminate the need for both the message and the anti-

message. A copy of the entity's state is still required, however. In effect, the message and 

anti-message are implied by the state in the state queue. Specifically, if a state exists for 

which there is no corresponding message in the input queue, then the missing message 

represents the end of a simulated delay. The receive time of the missing message can be 

determined from the timestamp on the state. As a result, the simulated delay can be 

implemented without requiring that the entity schedule an event for itself. This optimization 

eliminates the execution overhead associated with allocating and inserting a message and 
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anti-message into the input and output queues, and deallocating the message and anti-

message during fossil collection. In addition, this approach requires less memory since it 

allocates fewer messages. 

Both Sim++ and Extended Virtual Time allow entities to cancel previously scheduled 

events. An event can only be cancelled at a simulation time earlier than its scheduled event 

time (i.e., before the event occurs). The application version of Extended Virtual Time 

cancels an event by transparently scheduling a cancel event to preempt the original event. 

The cancel event is scheduled for the same entity as the original event but at an earlier event 

time. In this way, an entity always receives a cancel event before the event that it preempts. 

The cancel event includes an event identifier denoting the event being cancelled. The 

receiving entity stores the event identifier in a cancelled event list in the entity's state. Each 

application event received by an entity is compared against the event identifiers in that 

entity's cancelled event list. If a matching event identifier is found, the newly received 

event is ignored and the event identifier is deleted from the cancelled event list. These 

actions are completely transparent to the application. The integrated version of Extended 

Virtual Time uses anti-messages to implement event cancellation. Specifically, when an 

entity cancels an event, the anti-message for that event is sent to annihilate the 

corresponding message in the receiving entity's Time Warp input queue. Changes to 

rollback, fossil collection, and the output queue of Time Warp processes are required to 

correctly implement event cancellation using anti-messages. For example, it must be 

possible to uncancel previously cancelled events in case of a rollback. Lomow proposes 

implementations of this optimization for both lazy and aggressive cancellation. The 

advantage of the integrated approach is that it eliminates the cancelled event list from an 

entity's state and, since the integrated approach uses an event's own anti-message for 

cancellation, no additional memory is required to maintain an anti-message for a cancel 
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event. However, in the integrated approach, an event can only be cancelled by the entity 

that scheduled the event since only it has the corresponding anti-message. In the 

application approach, the entity that schedules the cancel event need not be the same as the 

entity that scheduled the original event. Lomow et al [Lom9l] describe a variation of the 

integrated approach with the same flexibility as the application approach. 

3.2.2 ModSim 

ModSim [Bry89, Wes88b] is a process-oriented, discrete-event simulation language 

designed to support the development and execution of large simulations. ModSim was 

developed for the U.S. Army and is based on a prototype design known as the Language 

for Concurrent Simulation (LCS) [Wes85]. One of the initial design objectives was that 

simulations written in LCS be capable of executing on Time Warp. Currently, ModSim 

executes in a number of sequential environments, but has not yet been completely 

implemented on Time Warp. 

ModSim is an object-oriented language with a syntax similar to Modula-2. Classes in 

ModSim are referred to as object types while member variables and member functions are 

referred to as fields and methods, respectively. Like Sim++, ModSim defines a special 

type of object, called ProcessObj, to represent processes. ModSim processes are unique 

in that each process can model multiple, independently acting components. Each 

component is represented by a time-elapsing method referred to as an activity. From the 

user's perspective, each activity is an independently executing method. The coordination 

and execution of multiple activities within a single process is managed transparently by the 

process itself. As such, a ModSim process is similar to a cluster of entities in Sim++. 

Unlike the entities in a cluster, however, activities can be created and destroyed 
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dynamically throughout the course of a simulation. The same effect can be achieved in 

Sim++, but requires dynamic creation and destruction of entities. 

A major representational difference between ModSim processes and Sim++ clusters is 

the way in which the two constructs model the states of multiple, independently acting 

components. A ModSim process is a single object with one or more independently 

executing methods. A Sim++ cluster is a group of one or more independently executing 

entity objects. As such, a ModSim process is more appropriate for modeling multiple, 

independently acting components that share a single state. A cluster is more appropriate for 

modeling multiple, independently acting components where each component has a well-

defined state. This difference is primarily one of representational convenience and 

conceptual clarity since both approaches are merely data abstractions for the modeled state. 

ModSim processes interact using ASK and TELL statements to invoke each other's 

ASK and TELL methods. ASK methods are synchronous, meaning that the calling 

process waits for the called method to complete before continuing to execute. In addition, 

ASK methods are non-time-elapsing. As such, the simulation time of the calling process 

is unaffected by a call to an ASK method. As an example, the call 

ASK Autol TO IncreaseSpeedBy(1O.0) 

invokes the ASK method IncreaseSpeedBy of the process denoted by Auto!. 

Alternatively, an asynchronous TELL statement can be used to schedule a method to 

execute without requiring that the calling process wait for the method to complete. As an 

example, the call 

TELL Shipi TO SailTo("Alaska") IN 5.0 

schedules the TELL method SailTo to begin executing in 5.0 time units. The scheduled 

method will execute as an independent activity in the process denoted by Ship!. Upon 

executing the TELL statement, the calling process continues to execute. TELL methods 
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can execute a WAIT statement that allows them to simulate the passage of time, wait for 

the completion of other tell methods, or synchronize with other methods using special 

objects known as triggers. 

ASK and TELL statements are similar to event scheduling in Sim++, except that they 

define process interactions in terms of object methods and parameters. This approach has 

significant appeal since it is completely type-safe and adds few additional features to the 

object-oriented interface to support process interactions. For example, ASK methods are 

also used to define interactions among non-process objects. Thus, the call 

ASK Autol TO IncreaseSpeedBy(1O.0) 

is identical regardless of whether Autol denotes an object in the calling process' state or 

another process. This approach does have a drawback in the context of parallel simulation 

since the cost of object and process interactions may differ by several orders of magnitude. 

By using the identical syntax for both types of operations, these differences are not explicit 

to the user. 

Although designed for Time Warp, ModSim contains a number of language constructs 

not suited to parallel execution. Chief among these are interactions through shared and 

global memory. The developers of ModSim concede that language constructs such as 

global variables and ASK methods for process interactions should be avoided when 

executing on Time Warp [Bry89]. ASK methods are deemed inefficient because they 

block the calling process for the time required to execute the ASK method in a remote 

process. 

3.2.3 Languages for Conservative and Optimistic Systems 

A number of researchers have proposed parallel simulation languages intended for 

execution on both conservative and optimistic implementations of Virtual Time. Because of 
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the fundamental differences between conservative and optimistic systems, all of these 

languages include facilities specific to individual implementations. In some cases these 

facilities simply enhance performance while in others they are mandatory for correctness. 

Maisie [Bag9O] extends the C programming language with constructs for message-

based simulation. The central construct of Maisie is the wait statement. wait provides 

functionality similar to the event selection primitives in Sim++. It allows Maisie entities to 

receive and defer messages, and simulate the passage of time, wait is also used to 

transparently extract information from an application to support the underlying 

implementation of Virtual Time. For example, in certain limited circumstances, wait can 

be used to automatically calculate lookahead for conservative implementations. wait can 

also be used for optimizations of Time Warp similar to those defined for Extended Virtual 

Time to reduce the overhead associated with buffering deferred messages. In spite of these 

transparent optimizations, additional information must still be specified explicitly by the 

application. For the Chandy-Misra approach, entities must execute a system call for each 

entity identifier they distribute to other entities. The implementation uses this information 

to maintain a connectivity graph of the entities from which each entity can receive 

messages. When a Maisie program executes on Time Warp, entities can send special probe 

messages that are used for optimized, read-only queries of other entities' states. This 

optimization was discussed at length in Chapter 2. 

Yaddes [Pre89a] is a simulation specification language based on the C programming 

language. The purpose of Yaddes is to evaluate the performance of different optimistic and 

conservative implementations of Virtual Time. For efficiency, Yaddes uses an event 

orientation rather than a process orientation. Yaddes programs are defined in terms of 

logical processes, input channels, and output channels. As such, they conform to the 

Chandy-Misra model for parallel simulation. This approach sacrifices some of the 
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flexibility of Virtual Time and Time Warp for a programming model that can be supported 

by both conservative and optimistic systems. For example, Yaddes programs must provide 

explicit information to prevent deadlock in conservative systems. However, the system 

calls that provide this information have no effect in sequential and Time Warp 

environments. As such, a Yaddes program written for a conservative implementation will 

execute sequentially and on Time Warp without source code modifications. The reverse is 

not true, however. 

Common Programming Structure (CPS) [Abr89] is a C++ library for message-based 

simulation. Like Yaddes, the purpose of CPS is to evaluate the performance of different 

optimistic and conservative implementations of Virtual Time. CPS also uses an event 

orientation. Nevertheless, CPS has many features similar to Sim++. Most notably, 

initialization and execution phases, read-only global variables, read-only state (similar to 

write-locked memory), and a configuration file for mapping processes to processors. As 

with Sim++, the configuration file eliminates the need to specify the number of processors 

or the mapping of processes to processors directly in the application, making CPS 

programs transparently scaleable. One language feature of CPS not present in Sim++ is a 

global directory of processes. The directory can be queried for lists of processes of a given 

type. The directory eliminates the need for an application to create and maintain its own 

arrays of process identifiers. The directory can also be used by separately compiled and 

initialized program modules to determine the number and types of other processes in a 

simulation. 
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3.3 Language Design Criteria for Virtual Time 

This section outlines key language design criteria for Virtual Time. These criteria are based 

on the fundamental differences between Virtual Time and sequential simulation, and on the 

characteristics of the languages surveyed in this chapter. These criteria are in addition to 

basic design goals such as simplicity, expressiveness, and extensibility. Several of these 

criteria were first proposed by Abrams and Lomow [Abr9O]. 

Parallel Efficiency. Unfortunately, no decomposition techniques exist that can enforce 

performance-oriented design considerations. However, languages for Virtual Time can 

encourage appropriate programming practices by providing language constructs suited to 

parallel execution. Of the languages surveyed, Extended Virtual Time most satisfies this 

language design criterion. Many of its primitives can be integrated with Time Warp, 

resulting in reduced execution time, memory usage, and communication overhead. At the 

same time, these primitives provide capabilities common to process-oriented simulation. 

The simulation and event selection primitives provided by Sim++ are based on Extended 

Virtual Time and can be similarly optimized. A subset of these optimizations has also been 

proposed for Maisie. 

Explicit Costs. In order for users to develop efficient parallel simulations, they must be 

aware of the costs associated with various alternative implementations of a simulation 

model. Specifically, if an operation in a parallel simulation differs significantly in cost 

from the equivalent operation in a sequential simulation, then those operations should 

appear obviously different to the user. This would suggest, for example, that languages 

for Virtual Time should not support interactions. through shared memory where such 

interactions are implemented using message-passing. One alternative to this is the approach 

used by Sim-i-+ which allows shared memory interactions, but only for entities in the same 
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cluster. Of the languages surveyed, ModSim least satisfies this language design criterion. 

For example, the syntax of ModSim process interactions is identical to that of object 

interactions. On a parallel processor, the cost of these operations typically differs by 

several orders of magnitude. This language design criterion is based on the current state of 

the art in parallel processors. Improved hardware support to reduce message-passing 

overheads could reduce the need for this criterion. 

Determinism. Given the same input, a simulation should produce the same results 

regardless of its run-time configuration. Determinism is crucial for repeatable simulation 

results and repeatable errors during debugging. All of the languages surveyed are 

deterministic as long as determinism is provided by the underlying implementation of 

Virtual Time. 

Type-Safety. Even when simulations execute deterministically, the existence of 

multiple, concurrently executing processes as components of a single simulation make 

parallel simulations more difficult to debug than sequential simulations. As such, the 

ability of type-safety to promote the development of defect-free simulations is even more 

important for parallel simulation than for sequential simulation. Of the languages surveyed, 

ModSim is most type-safe with compile-time type checking for both object and process 

interactions. C++ provides compile-time type checking for object interactions, but not for 

the event and message-based interactions of Sim++, Extended Virtual Time, and CPS. 

Sim++ provides optional run-time type checking for events. 

Transparency of the Implementation. This criterion is based on the conclusion in 

Chapter 2 that it is inappropriate to adapt modeling practices and language design to 

accomodate specific implementations of Virtual Time. Users should instead concentrate on 

the requirements dictated by Virtual Time, while the underlying implementation should be 

transparent to the application. None of the languages surveyed fully satisfy this criterion, 
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either because they rely to some degree on the discipline of the user, or because they 

provide explicit language support for the implementation of Virtual Time. This is due to the 

current state of the art in parallel processors and parallel simulation. Depending on the 

implementation, transparency may only be possible with compiler and hardware support. 

Transparent Scaleability. Simulations should be executable on varying numbers of 

processors and with different mappings of processes to processors without source code 

modifications. Typically, this requires some form of run-time configuration file. The 

advantage of this approach is that it is not necessary to modify and recompile a simulation 

simply to change its run-time configuration. And, by making the run-time configuration 

transparent to the application, the application cannot inadvertently violate determinism by 

executing different application code for different run-time configurations. Like 

determinism, transparent scaleabiity is generally provided by the implementation of Virtual 

Time. 

Portability of Applications. Application programs should be capable of executing 

sequentially or in parallel on multiple operating systems and architectures without source 

code modifications. Together, transparent scaleability and portability of applications 

simplify the development of parallel simulations because it is possible to develop software 

on a workstation in a well supported environment while ensuring that the simulation can be 

moved, without source code modifications, to a parallel processor for production runs. 

Sim++ interface entities are an example of a language feature that violates this design 

criterion. Interface entities are designed specifically for interactions with architecture-

specific facilities not supported by Sim++. Since Sim++ already provides facilities for 

formatted input, output, tracing, and error reporting, the majority of simulations do not 

require their own interface entities. As a result, interface entities can be seen as a 

reasonable exception to this design criterion. 
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Enforced Restrictions. Virtual Time imposes special restrictions on parallel simulations 

not present in sequential simulations. For example, interactions through shared memory 

are restricted to varying degrees in most of the languages surveyed. However, this and 

other restrictions are not enforced by these languages, relying instead on the discipline of 

the user. Violations of these restrictions that go undetected may lead to erroneous 

simulation results. The biggest obstacle is that many of these restrictions cannot be 

enforced without compiler support. In some cases, the restrictions cannot be enforced until 

run-time, thereby increasing execution overhead. An example of the latter is read-only 

global variables in Sim++ and CPS, which can only be modified during the initialization 

phase of a simulation. 

3.4 Summary 

This chapter surveyed six parallel simulation languages, from which were developed eight 

language design criteria for Virtual Time: parallel efficiency, explicit costs, determinism, 

type-safety, transparency of the implementation, transparent scaleability, portability of 

applications, and enforced restrictions. None of the languages surveyed fully satisfies all 

of these criteria. In some cases, this is justified in that the purpose of languages such as 

CPS and Yaddes is to evaluate the performance of different optimistic and conservative 

implementations of Virtual Time. As such, these languages provide an interface adequate 

for researchers who wish to focus on the performance of Virtual Time implementations, 

rather than on language design for parallel simulation. In contrast, Sim++ and ModSim are 

both intended for the development of real simulations by industry and government with 

little or no experience in parallel simulation. In the case of ModSim, portions of the 

language will need to be redesigned to eliminate inherently sequential constructs. In 
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addition, both languages will require compiler support to enhance the transparency of the 

underlying Time Warp implementation and to enforce restrictions. Currently, Sim++ is 

implemented as a library in C++. A compiler and parallel implementation of ModSim are 

under development. 



Chapter 4 

Limitations of Existing Languages 

This chapter investigates various difficulties associated with using Sim++ to model 

common types of entity interactions. To illustrate these difficulties, a basic queueing model 

and several simple extensions to that model are presented, as well as a facility for resource 

competition among entities. The difficulties encountered are due primarily to an inability to 

extend or restrict the behaviour of the existing simulation and event selection constructs 
q 

according to the specific requirements of the application. These shortcomings are not 

unique to Sim++. They can also be found in Extended Virtual Time and Maisie, which 

have constructs similar to the simulation and event selection primitives of Sim++. The 

shortcomings illustrated in this chapter were the primary motivation for the SimD language 

proposed in Chapter 5. No further evaluation of ModSim was attempted since ModSim is 

still being revised for use with Virtual Time and Time Warp. 

4.1 The Barber Shop Queueing Model 

The barber shop is a simple queueing system in which customers arrive at randomly 

distributed times and wait for service. The barber shop has one barber capable of 

providing up to three services for each customer: a shave, a hair wash, and a haircut. All 

customers are served in the order they arrive. 

This model can be implemented in Sim++ using two entities: a source entity to generate 

customers arriving at the barber shop and a barber entity to serve customers. Customers 

60 
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1 void source::body() 
2 
3 
4 
5 
6 
7 
8 
9 •void barber: : body() 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

while (aim clock() < Duration) 

sim_h91d_for ( Interarrival_time. sample 0, SIM_NONE, ev); 
sim_schedule(Barber_id, 0.0, CUSTOMER); 

while (true) 
if ( sim_waiting(sim_type_p(CUSTOMER))) 

sim select ( aim type_p (CUSTOMER), ev); 
else 

aim_wait_for ( aim_type_p (CUSTOMER), ev); 

if (customer wants shave) 
sim_hold_for(Shave_time. sample 0, SIM_NONE, ev); 

if ( customer wants hair washed) 
aim_ hold_ for (Wash_time. sample 0, SIN—NONE, ev); 

if ( customer wants hair cut) 
sim_hold_for (Cut_time. sample 0, SIM_NONE, ev); 

Figure 4.1: c++ code for Source and Barber Entities 

are represented by events scheduled by the source entity for the barber entity. C++ code 

for the body of each entity is shown in figure 4.1 (line numbers in the following 

description correspond to those in figure 4.1). 

The source entity repeatedly executes the following sequence of activities. The source 

entity calls sim_hold_for (line 4) to model the interarrival time between successive 

customers. The delay representing this interarrival time is generated by the distribution 

object Interarrival_time. When called, the member function sample of this object 

returns a value drawn from the random number distribution that the object represents. The 

predicate SIM_NONE specifies that the given delay is uninterruptable. Since no events 

are ever scheduled for the source entity, the call to sim_hold_for would not be 

interrupted anyway and the choice of predicate is arbitrary. Upon expiry of the simulated 

delay, the call to sim_hold_for returns and the source entity schedules an event for the 
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barber entity representing the arrival of the next customer (line 5). It is assumed that 

Barber—id is an entity identifier denoting the barber entity and CUSTOMER is a 

constant of type sim_type representing the arrival of a customer. The event is scheduled 

with a delay of 0.0. 

As noted, the barber provides up to three services for each customer. To represent the 

time required for a barber to provide one of these services to a customer, the barber entity 

calls sim_hold_for (lines 18, 20, and 22) signifying that it wishes a specified amount of 

simulation time to elapse. The specified delays are generated by the distribution objects 

Shave_time, Wash—time, and Cut—time. In each call to sim_hold_for in the barber 

entity, the predicate SIM_NONE specifies that the given delay is uninterruptable. 

sim_hold_for defers any, events scheduled for the barber entity with an event time that 

coincides with one of these simulated delays. Since only events representing arriving 

customers are ever scheduled for the barber entity, deferred events implicitly represent the 

queueing of customers arriving for service. 

Each time the barber entity finishes serving a customer, it immediately begins serving 

the next customer, if any. The barber entity terminates when there are no more customers 

to serve. In an actual barber shop, whenever the barber finishes serving a customer, the 

next customer is either the customer at the beginning of the queue of waiting customers or, 

if no customers are currently waiting, the barber waits for the next customer to arrive. To 

represent this in Sim+-i-, the barber entity first tests if there are any deferred customer 

events by calling sim_waiting (line 12). If one or more such events exist, the first of 

these is selected by calling sim_select (line 13). If there are no deferred customer events, 

the barber entity calls sim_wait_for (line 15) to await the next customer event scheduled 

by the source entity. 
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The barber entity specifies the predicate sim_type_p(CUSTOMER) as an argument 

to each of the primitives sim_waiting, sim_select, and sim_wait_for. This predicate 

matches only those events whose type is that of CUSTOMER. Since customer events are 

the only kind of event scheduled for the barber entity, the predicate SIM_ANY could also 

have been specified. However, the former is more specific, thereby enhancing the 

readability of the resulting code. 

4.2 Limiting the Size of the Barber Shop Wait Queue 

This section investigates an extension to the barber shop model that places an upper limit on 

the number of customers that can enqueue for service at any one time. In this extended 

model, an arriving customer can only enqueue for service if there is room in the queue; 

otherwise, the customer is turned away. 

The most natural approach to the implementation of this extended model would mirror 

the preceding model description, as shown in the following code fragment: 

for each new customer event 
if ( simwaiting(sim_type_p(CUSTOMER)) < Limit) 

defer_ customer event 
else 

ignore customer event 

Unfortunately, the queueing of customer events via event deferral cannot be encoded 

explicitly by the user. Instead, event deferral is implicit and no application-specific 

restrictions or extensions to the underlying deferred event list are possible. In addition to 

limiting queue sizes, it may be desirable to collect queueing statistics about deferred events, 

or to queue events in different lists according to application-specific criteria. In the 

extended barber shop model, the only solution is for the barber entity to circumvent the 

language queueing facility and explicitly receive all arriving customer events at the 

application layer and then buffer those events in the application or ignore them when the 
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specified limit has been reached. By circumventing the language queueing facility, the 

performance optimizations possible for Extended Virtual Time are lost. 

4.3 A Variation on Barber Shop Termination 

This section investigates another extension to the basic model in which the barber shop is 

locked at the end of each day to prevent more customers from entering the shop. 

Customers already waiting in the shop when it closes are served to completion, after which 

the barber can leave. 

At least two implementations alternatives of this extended model can be identified: 

1. The source entity can be modified to cease generating customers once the barber 

shop is locked. In this way, no additional customer events beyond those already 

deferred by the barber entity will be scheduled. 

2. The barber entity can process only those customer events whose event time 

precedes the point at which the barber shop was locked. Additional customer 

events generated by the source entity will be automatically deferred by the barber 

entity but will be ignored since they represent customers that arrived after the barber 

shop was locked. 

The first implementation alternative is inappropriate for two reasons. First, the 

proposed modification to the source entity does not reflect the model as outlined. 

Specifically, locking the barber shop does not imply that no more customers will arrive at 

the barber shop, only that they will no longer be served. Indeed, the barber entity may 

wish to count the number of customers arriving after closing to determine how many 

customers are being turned away. Second, the proposed modification does not reflect the 
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modularity of the model's decomposition. Specifically, since it is the behaviour of the 

barber shop that has been altered for this model, then it is the corresponding barber entity 

that should reflect those changes. 

Since the second implementation alternative exhibits neither of the aforementioned 

shortcomings, it would seem to be the preferable alternative. This alternative is identical to 

that of the basic model in figure 4.1 except that the code for serving a customer is only 

executed if the customer arrived before closing time: 

if (ev.event_time() < Closing time) 
if ( customer wants shave) 
if (customer wants hair washed) 
if (customer wants hair cut) 

Although this implementation is an accurate, modular representation of the model, it 

requires that the barber entity explicitly receive all customer events, even if they are to be 

ignored. As such, the structure of the barber entity body no longer represents only the 

serving of customers, but rather the combined tasks of serving customers and ignoring 

customers after closing time. Also, the barber entity's deferred events represent both 

waiting customers as well as late-arriving customers that are to be turned away. Although 

the barber shop model is sufficiently simple that the combination of the above tasks can be 

realized without significant loss of clarity, many realistic models perform many such 

distinct tasks that, if similarly integrated within the structure of a single function, would be 

significantly more difficult to implement and debug. 

It can be argued that if a component of a physical system performs multiple, distinct 

tasks, then that component should be represented by multiple entities. For example, the 

barber could be represented by a cluster of two entities, one for each task. The additional 

entity represents the entrance to the barber shop, receiving all arriving customer events 

generated by the source entity and discarding those with an event time greater than or equal 
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to closing time. The remaining events are rescheduled for the barber entity within the same 

cluster. This approach has the added implementation overhead of an additional entity type 

and the added run-time overhead of scheduling up to two events for each arriving 

customer. 

Rather than explicitly receiving and discarding events to be ignored, Extended Virtual 

Time defines an ignoring facility that allows an entity to specify the set of events that it does 

not want to receive and that it wants to treat as if they never arrived. The ignore primitive 

provided by Extended Virtual Time is declared as follows: 

void ignore(predicate &p); 

ignore is a non-blocking primitive whose predicate argument p specifies the set of events 

to be ignored. After an entity calls ignore(p), all subsequent calls to other simulation 

primitives will automatically intercept and discard events satisfying p when they occur. 

From the viewpoint of the application, however, it is as if the events never arrived. A 

subsequent call to ignore can override p, allowing the calling entity to ignore different 

events at different times throughout the course of the simulation. Using this facility, there 

would be no need to modify the structure of the barber entity to cope with late-arriving 

customers. Instead, the barber entity could call ignore as part of its entity initialization, as 

follows: 

ignore ( Late customers) ; 

where Late—customers is a predicate that matches customer events with an event time 

greater than or equal to the barber shop's closing time. The body of the barber entity, as 

shown in figure 4. 1, would be unaffected. 

Unlike other predicates used in examples thus far, Late—Customers is application-

specific and cannot be represented using predefined predicate types provided by Sim++. 
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1 class late_customer_p : public predicate 
2 Sim time Closing_time; 
3 public: 
4 late _customer_p ( sim_time closing_time) 
5 Closing_time = closing_time; 
6 
7 
8 boolean match ( sim event &ev) 
9 if (ev.type() == CUSTOMER && 
10 ev.event_time() >= Closing_time) 
11 return true; 
12 else 
13 return false; 
14 
15 

Figure 4.2: c++ Declaration for Late Customer Predicate 

Instead, application-specific predicates are derived from a special predicate base class, 

sim_predicate. These application-specific predicates are created and used in the same 

manner as the predefined predicate types provided by Sim++. Figure 4.2 shows the 

declaration of a predicate class, late_customer_p, for matching events representing 

customers who arrive after closing at the barber shop (line numbers in the following 

description correspond to those in figure 4.2). Every predicate class has a member 

function match (lines 8-14) that takes an event as its only parameter. This function tests 

the attributes of the event and returns true if the event's attributes satisfy the conditions of 

the predicate; otherwise, the function returns false, match is never actually invoked by 

the application. Instead, instances of a predicate class are passed as parameters to Sim++ 

simulation primitives and they automatically invoke this function to test the attributes of 

events. Since instances of a predicate class are objects, they can be parameterized when 

they are created. Class late_customer_p has one such parameter, closing_time (line 

4). When an instance of late_customer_p is created, closing_time is assigned to the 

member variable Closing_time (line 5). In this way, the object remembers the closing 

time of the barber shop. As an example, the declaration 
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late customer_p Late customers ( 100.0); 

creates an instance of class late_customer_p called Late—customers that matches any 

customer event with an event time greater than or equal to simulation time 100.0. A call to 

the member function match of this predicate compares the event time of the given event 

against the remembered closing time. By representing closing time as a parameter to the 

predicate, the closing time of the barber shop need not be specified explicitly within the 

definition of match.' Instead, it can be specified as an input parameter to the simulation, 

and varied from one run to the next, thereby varying the number of customers that will be 

served or ignored. 

Ignoring is similar in strengths and weaknesses to event deferral. Like event deferral, 

ignoring provides an enhanced abstraction for discrete event modeling by automatically 

manipulating events according to application-specific predicates. Also like event deferral, 

no application-specific restrictions or extensions to the ignoring facility are possible. In 

other words, there is no way to count or otherwise manipulate ignored events. In the 

barber shop model, for example, it may be desirable to forward ignored customers events 

to another barber entity to represent a model in which late-arriving customers seek out 

another barber shop with longer operating hours. In addition, although ignoring can be 

used to solve the extended barber shop model, the declaration of the application-specific 

predicate is significantly longer than the code changes required for the barber entity to 

explicitly receive and discard unwanted events. 

4.4 Adding Statistics Reporting to the Barber Shop Model 

This section investigates an extension to the barber shop implementation for generating 

statistics reports at regular intervals. An additional report entity is used that schedules a 

report event for the barber entity for each statistics interval. The barber entity responds to 
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each such event by printing a statistics report appropriate to the application. The following 

code fragment shows the body of the report entity, as described: 

while ( simclock() < Duration) 

sim_hold_for(Report interval, SIM_NONE, ev); 

simschedule(Barberid, 0.0, REPORT); 

The report entity is similar to the source entity except that the report interval, denoted by 

Report—interval, is constant and the events scheduled by the report entity are of type 

REPORT rather than CUSTOMER. 

Since the barber entity must now receive and process two types of events, its 

implementation must once again be modified. At least four implementation alternatives for 

the barber entity can be identified: 

1. All calls to sim_wait_for and situ—hold—for in the barber entity can be modified 

to return report events whenever they occur. In other words, when the barber 

entity calls sim_wait_for to await the next customer, the event returned by 

sim_wait_for is either a customer event or a report event. Similarly, when the 

barber entity calls sim_hold_for, the simulated delay will either expire without 

interruption, or be interrupted by a report event. 

2. The barber entity can redefine sim_wait_for and sim_hold_for to transparently 

intercept and process report events. 

3. The barber entity can defer the report event until it has served the current customer 

to completion. 

4. The barber entity can be reimplemented in an event-oriented style. 

The first implementation alternative is similar to the extended barber shop model in 

Section 4.3 in which the structure of the barber entity body represented the combined tasks 

of serving customers and ignoring customers after closing time. Here, by explicitly 
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receiving and processing report events, the structure is similarly overloaded to both serve 

customers and print statistics reports. It has already been noted how the combination of 

such unrelated tasks within the structure of a single function can complicate the resulting 

implementation. 

In addition, this implementation alternative leads to a significant increase in and 

duplication of code. For example, the call 

sim wait for ( sim type_p (CUSTOMER), ev); 

must be changed to 

do 
sim_wait_for(sim_type_p(CUSTOMER, REPORT), ev); 
if (ev.type() == REPORT) print_report 0; 

while (ev.type() CUSTOMER); 

where sim_type_p(CUSTOMER, REPORT) is a predicate that matches an event of 

type CUSTOMER or of type REPORT, and print—report is assumed to be a member 

function of the barber entity. Similarly, each non-interruptable delay of the form 

sim_hold_for ( Shave_time, sample 0, SIM_NONE, ev); 

must be changed to an equivalent interruptable delay 

delay = Shave_time.sample0; 
while (delay > 0.0) 

delay = sim hold _for(delay, sim_type_p(REPORT), ev); 
if (delay >_ 0.0) print_report 0; 

If the simulated delay is interrupted by a report event, the member function print—report 

is called, after which the simulated delay is resumed. 

The use of interruptable delays to receive and process report events can be seen as an 

abuse of the interrupt facility. Specifically, interruptable delays are intended to model 

interruptable activities in the system being simulated. For example, the barber may need to 

interrupt his service to a customer to answer a telephone call. Report events do not 
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void barber: : await_customer(sim_event &ev) 

do 
sim wait _for(sim_type_p(CUSTOMER, REPORT), ev); 
if (ev.typeo == REPORT) print_report 0; 

while (ev.type() CUSTOMER); 

void barber: : serve_customer(sim_time delay) 

while (delay > 0.0) 
delay = sim_ hold_ for(delay, sim_type_p(REPORT), ev); 
if (delay > 0.0) print_report 0; 

void barber: : body() 

while (true) 
if (aim waiting(sim_type_p (CUSTOMER))) 

sim select ( sim_type_p (CUSTOMER), ev); 
else 

await_customer (ev); 

if ( customer wants shave) 
serve _customer ( Shave_time, sample 0); 

if (customer wants hair washed) 
serve customer(Wash_time. sample 0); 

if (customer_ wants hair cut) 
serve_customer (Cut_time.sample 0); 

Figure 4.3: c++ Code for Barber Entity with Transparent Reports 

represent interrupts in an actual barber shop. Instead, they are used only to generate 

information about the simulated system. 

The second implementation alternative is similar to the first except that it eliminates 

much of the duplication of code by redefining the primitives sim_wait_for and 

sim_hold_for to transparently intercept and process report events. C++ code defining 

the resulting barber entity member functions and body is shown in figure 4.3. By 

replacing sim_wait_for with await—customer and sim_hold_for with 

serve—customer, the resulting barber entity body is even more readable than the basic 

model of figure 4.1. However, the implementation of serve—customer still relies on 
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interrupts to receive report events. In addition, both await customer and 

serve—customer combine the conceptually distinct tasks of awaiting and serving 

customers with the printing of statistics reports. Finally, although the number of primitives 

that are redefined for this implementation is limited to two, it may be impractical to adopt 

this approach for other, more extensive models that make greater use of available 

primitives. In the worst case, it may be necessary to redefine all primitives simply to 

intercept and process one type of event. 

In the third implementation alternative, the barber entity defers report events that 

coincide with the serving of a customer. After serving a customer to completion and before 

beginning to serve the next customer, the barber entity could execute the following code 

fragment to process a deferred report event: 

if ( sim_waiting(sim_type_p(REPORT))) 

aim_select ( aim_type_p (REPORT), ev); 

print_report 0; 

Although this implementation alternative is considerably simpler than either of the first or 

second alternatives, it can only be used if statistics reports need not be printed at exactly the 

event time of the report events scheduled for the barber entity. Once again, the 

implementation of the barber entity body is overloaded with the processing of both 

customer and report events. Deferred events are similarly overloaded to represent both 

waiting customers and reminders to print statistics reports. 

The fourth implementation alternative restructures the barber entity in an event-oriented 

style. All events in the simulation model are represented by events explicitly scheduled and 

received by the application. For example, the start and end times of each service provided 

by the barber are represented by events rather than by a series of simulated delays. C++ 

code for the barber entity body for this implementation alternative is shown in figure 4.4. 
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void barber: : body() 

while (true) 
sim wait ( ev); 

switch (ev.typeO) 
case CUSTOMER: 

handle _arriving_customer (ev); 
break; 

case END— OF— SHAVE: 
handle _finished_shave (ev); 
break; 

case END— OF— HAIR—WASH: 
handle _finished_hair_wash (ev); 
break; 

case END OF HAIRCUT: 
handle _finished_haircut (ev); 
break; 

case REPORT: 
print_report 0; 
break; 

default: 
sim_error("unknown event type"); 

Figure 4.4: c++ code for Event-Oriented Barber Entity 

All events scheduled for the barber entity are received by the single call to sim_wait in the 

body of the barber entity. For each event received by the barber entity, an event handler 

'function is called to carry out the actions associated with that event. When the event 

handler function returns, the barber entity proceeds to receive the next event. The 

processing of an event may include updating the state of the barber entity and scheduling 

zero or more additional events. Event handlers do not advance simulation time, however. 

In other words, they do not execute simulated delays nor do they receive events. Instead, 

they represent only the instantaneous state transitions associated with the given event. 

This implementation alternative differs significantly from the process-oriented style 

employed in previous examples in that the body of the barber entity no longer mirrors the 

sequence of activities as described for the barber shop model. As such, the conceptual gap 
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between the model and the implementation is increased. In addition, the barber entity is 

less modular for interrelated tasks. For example, depending on which services a customer 

requires, the barber entity might begin cutting a customer's hair immediately upon the 

customer's arrival, after shaving the customer, or after washing the customer's hair. Since 

each of these tasks is managed by a different event handler, each of these event handlers 

must be prepared to schedule an END—OF—HAIRCUT event according to the 

requirements of the individual customer. The scheduling of this event marks the beginning 

of the haircut and the subsequent receipt of this event marks the end of the haircut. Other 

tasks are similarly divided among multiple event handlers. 

In spite of the shortcomings of the event-oriented style, it is significantly easier to add 

an independent task such as regularly scheduled statistics reports to an event-oriented 

barber entity. Statistics reporting is referred to as an independent task in that it does not 

depend on the prior execution of other events within the barber entity, nor does it cause 

other events to be executed. Simply by extending the switch statement in the body of the 

barber entity and adding additional event handlers, any number of independent tasks may 

be added to the barber entity. 

4.5 Extending Sim-i-+ for Modeling Resource Competition 

This section investigates the extensibility of the Sim++ interface by adding an application-

independent facility for mutually exclusive competition for resources. The inspiration for 

this facility comes from the Demos RES facility [Bir86]. Here, a simplified parallel 

implementation of the RES facility is described. This section illustrates the difficulties 

associated with implementing this type of facility in Sim-i-+ and, in particular, the 

difficulties associated with making this facility application-independent. In other words, it 
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is assumed that this facility is intended as a set of library routines, rather than tailoring it to 

individual applications. 

The representation of systems as a collection of entities competing for scarce resources 

is a natural way to represent many problems. Birtwistle [Bir79] describes a simulation of a 

harbour in which ships, moving in and out of port, are towed to and from harbour jetties 

by tugboats. A ship moving into port to unload cargo must acquire access to a jetty. at 

which to dock and two tugboats to tow it to the jetty. Once unloaded, the ship requires one 

tugboat to tow it out of port. In this simulation, tugboats and jetties can both be modeled as 

resources for which ships must compete. 

In the parallel implementation of the RES facility, each resource is represented by an 

integer denoting the number of units of that resource available. Each such integer resource 

is encapsulated within a separate resource manager entity that provides mutually exclusive 

access to that resource through primitives acquire and release, declared as follows: 

void acquire(sim_entity_id manager, mt quantity); 
void release(sim_entity_id manager, mt quantity); 

An entity calls acquire to request quantity units of a resource from the resource manager 

denoted by manager. If the requested units are not available immediately, acquire blocks 

the calling entity until a time when the resource manager can satisfy the request. All events 

received by the calling entity while blocked in acquire are deferred. An entity calls 

release to return previously acquired resources back to the specified resource manager. In 

the simulation of the harbour, if a ship entity requests two tugboats and all tugboats have 

already been acquired, the ship will be blocked until sufficient tugboats are subsequently 

released by other entities. 

Since resource managers are entities, interactions between resource managers and 

entities calling acquire and release must be represented by events, acquire can be 
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implemented by scheduling an acquire event for the specified resource manager and 

awaiting a granted event in reply: 

sim_schedule(manager, 0.0, ACQUIRE, &quantity, sizeof(quantity)); 
aim wait for ( aim_type_p (GRANTED), ev); 

The body of the event scheduled by acquire includes a copy of quantity, the number of 

units of the requested resource. All events received by the calling entity while awaiting a 

reply from the resource manager are automatically deferred by sim_wait_for. release 

can be implemented by scheduling a release event for the specified resource manager, 

informing it of the number of units of the resource being returned: 

sim_schedule(manager, 0.0, RELEASE, &quantity, sizeof(quantity)); 

Instead of indefinitely blocking the calling entity when awaiting a reply from a resource 

manager, acquire could alternatively be designed to accept an application-specific 

predicate that specifies what events can interrupt a resource request: 

booleaxi acquire ( aim_entity_id manager, mt quantity, 
aim_predicate &p, aim _event &ev); 

If an event satisfying p is received by the calling entity before the resource request is 

satisfied, the resource request is cancelled and the interrupting event is returned to the 

calling entity in ev. If the resource request is satisfied without interruption, acquire 

returns the boolean result true; otherwise, acquire returns false. Any events received by 

the calling entity while blocked that do not satisfy the predicate p are deferred. The 

following code fragment implements these actions: 

sixnschedule(manager, 0.0, ACQUIRE, &quantity, sizeof(quantity)); 
sim_ wait _for(p OR sim_type_p(GRANTED), ev); 
if (ev.type() != GRANTED) release(quantity); 
return ev.type() == GRANTED; 

acquire cancels a resource request by calling release before the resource request has been 

granted. For its part, if the resource manager receives a release event for a request that has 

not yet been granted, the request is assumed to have been cancelled, acquire cannot use 
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sim_cancel to cancel the resource request because the acquire event was scheduled with 

zero delay. In order to wait for either an event satisfying the application-specific predicate 

p or a reply from the resource manager, the call to sim_wait_for specifies the combined 

predicate p OR sim_type....p(GRANTED). Unfortunately, the predicate interface 

provided by Sim++ does not allow predicates to be combined in this way. Nor is it 

possible to define a single predicate that specifies all of the conditions of the combined 

predicate, since p is known only to the application, while sim_type_p(GRANTED) is 

known only to the implementation of acquire. acquire could explicitly receive all events 

and test each against both individual predicates, but, as already noted in Section 4.2, there 

is no way to explicitly defer an event once it has been received. 

A second difficulty concerns conflicting, simultaneous actions of the calling entity and 

the resource manager. Since entities execute concurrently, it is conceivable that a resource 

manager will schedule a granted event for a resource request at the same simulation time as 

the acquire primitive cancels the request as a result of receiving an event satisfying the 

given application-specific predicate. From its point of view, the resource manager receives 

the release event scheduled by acquire and assumes that the previously acquired resources 

are being returned (albeit in zero simulation time). However, having returned from its call 

to acquire, the calling entity is no longer prepared to receive the granted event from the 

resource manager. This unwanted event is referred to as an orphan event. The orphan 

event is used solely in the implementation of acquire and should not be seen by the 

application. Unfortunately, the next action the calling entity takes could be a call to 

sim wait or a similar primitive through which it would receive the orphan event. Once 

again, sim_cancel cannot be used to cancel the orphan event because it too was scheduled 

with zero delay. To prevent the application from receiving the orphan event, it is necessary 

to redefine all existing primitives that an application is likely to invoke and that could 
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receive the orphan event, including sim_wait, sim_hold, sim_wait_for, and 

sim_hold_for. This differs from the barber shop example in which it was possible to 

transparently intercept report events by redefining only those primitives actually used by the 

application. Since the resource competition facility is intended to be application-

independent, there is no way to know which primitives will not be invoked. As a result, all 

of them must be capable of intercepting the orphan event, resulting in significant 

duplication of code, both to redefine primitives that already exist, and to intercept and 

discard the orphan event in each primitive. This approach also lacks modularlity since 

many existing primitives must be redefined to support the new facility. 

4.6 Summary 

This chapter developed examples of a queueing model and a resource competition facility 

using the simulation and event selection primitives provided by Sim++. The ability to 

receive, defer, or otherwise manipulate events according to application-specific 

requirements is an appropriate abstraction for discrete event modeling because it eliminates 

much of the explicit manipulation of events that would otherwise be required. However, as 

illustrated in this chapter, these primitives also have significant limitiations. The most 

prevalent of these is the inability to restrict or extend the semantics of the event selection 

primitives. One reason for this is that the implicit actions and data structures associated 

with event selection are inaccessible to the application. Another reason is an 

interdependence among primitives that discourages modularity. The result is that these 

primitives must frequently be used as is or circumvented altogether. A related problem is 

the need to abuse modeling concepts to address non-modeling issues. Finally, predicates 

appear to be a limiting factor as well in that there is no way to combine predicates in the 
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same way as logical expressions, and application-defined predicates can significantly 

increase code size. 

Many of the difficulties encountered with Sim++ are inherent in any set of constructs 

that implicitly manipulate events without provision for application-specific restrictions or 

extensions. As such, similar problems exist in Extended Virtual Time and Maisie. Without 

appropriate solutions to these problems, even very basic models can be quite difficult to 

implement, requiring repeated and significant restructuring to cope with simple model 

extensions. An appropriate solution to these problems must encourage modular, 

application-specific and application-defined event selection. One such solution is presented 

in the next chapter. 



Chapter 5 

SimD: A Language Proposal for Virtual Time 

This chapter proposes a new language for Virtual Time called SimD. SimD is designed to 

support both process-oriented and event-oriented simulation design. The primary goal in 

developing SimD was to address weaknesses in the event selection constructs of Sim++, 

Extended Virtual Time, and Maisie, without sacrificing the potential performance 

optimizations developed for Extended Virtual Time. In developing SimD, the interfaces to 

many of the data types and language constructs found in Sim++ have been improved. 

Sections 5.1 through 5.6 describe the key elements of SimD. Sections 5.7 and 5.8 

reimplement the barber shop model and the resource competition facility in SimD to 

demonstrate its effectiveness in addressing the modeling difficulties described in Chapter 4. 

SimD was also used in the implementation of two parallel simulations described in Chapter 

6. Section 5.9 discusses the potential for optimizing SimD by incorporating the 

performance optimizations developed for Extended Virtual Time. 

5.1 Overview 

SimD is designed to support both process-oriented and event-oriented simulation design. 

The process-oriented capabilities of SimD are similar to those of Sim++, with support for 

simulated delays, scheduling, cancelling, and conditional selection of events. The event-

oriented capabilities of SimD provide a facility, called event handlers, whereby entities can 

intercept and process events before they can be received by the application or after they 

have been refused by the application. The combination of process-oriented and event-

80 
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oriented capabilities provides the necessary support required to address the modeling 

difficulties described in Chapter 4. For example, capabilities such as deferred and ignored 

events are implemented by the application using event handlers. As such, the actions and 

data structures associated with these capabilities are those of the application and can be 

easily modified to incorporate application-specific extensions or restrictions. This 

addresses the key difficulty associated with the implicit actions and data structures of 

Sim++, Extended Virtual Time, and Maisie. Further evidence of this claim is presented in 

sections 5.7 and 5.8. 

SimD's process-oriented and event-oriented capabilities can be implemented entirely in 

terms of a process' ability to send and receive timestamped messages. As such, SimD is 

independent of any particular implementation of Virtual Time. Like Sim++, SimD includes 

support for separate initialization and execution phases, clusters of entities, and read-only 

global variables. However, SimD is not a complete simulation language. It lacks facilities 

for data collection and reporting, random number generation, error handling, and file and 

console input and output. The current implementation of SimD coexists with Sim++ and is 

therefore able to use Sim++ facilities that are not yet available in SimD. Where appropriate, 

the names of SimD facilities are identical to the equivalent facilities in Sim++, except that 

the sim_ prefix that appears in Sim++ names is omitted (this was necessary to prevent 

namespace collisions since both languages coexist at run-time). 

5.2 SimD Data Types 

SimD defines data types similar to those of Sim++ for representing simulation time, event 

types, entity identifiers, events, and event identifiers. This section summarizes significant 
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differences between the SimD and Sim++ data types. The C++ declarations for the SimD 

data types are shown in figure 5.1. 

SimD provides the macro EVENT—TYPE for generating unique event types. As an 

example, the declaration of event types ARRIVAL and DEPARTURE would be 

EVENT _TYPE (ARRIVAL); 

EVENT_TYPE (DEPARTURE); 

The EVENT—TYPE macro expands these declarations to 

sim_type ARRIVAL unique_event_type ("ARRIVAL"); 

sim_type DEPARTURE unique_event_type ("DEPARTURE"); 

where unique—event—type is a function that returns a unique integer value each time it is 

called. The equivalent declarations in Sim++ would be 

sim_type ARRIVAL 

sim_type DEPARTURE 

= 1; 

= 2; 

The Sim++ approach is error prone in that it is possible to assign the same value to two or 

more event types, particularly if those variables are located in different modules of a 

simulation. 

SimD maintains a list of the event type strings passed to unique—event—type for use 

in trace output generated by the simulation primitives. As an example, trace output of the 

form 

airplane]. at 10.7: scheduled ARRIVAL event for airporti 

with delay 8.2 

is optionally generated for each scheduled event. The equivalent trace output generated by 

Sim++ would be 

airplanel at 10.7: scheduled event of type 1 for airporti 

with delay 8.2 

The Sim++ trace output can be considerably more difficult to interpret, particularly when 

there are a large number of event types. 
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class sim time C ... 1; 
class Sim type C ... 1; 

class entity _id 

class class— id 

char *classnameO; 

mt size(); 
boolean includes (entity_id eid); 
entity_id operator [] (mt i); 

class event 

entity_id sched_byO; 
entity_id ached_for C); 
Sim time ached_at 0; 
aim time sched_t00; 
m 0 si_ type type ; 

event &operator<<(char C); 
event &.operator<<(int i); 
event &operator<<(double d); 
event &operator<<(char *s); 

event &operator>>(char &c); 
event &operator>>(int &i); 
event &operator>>(double &d); 
event &operator>>(char *s); 

class event— id 

entity_id sched_by0; 
entity --- id ached_for 0; 
Sim time ached_at 0; 
sim_time ached_toO; 
aim_type type C); 

const Sim time NO_SIM TIME; 
const Sim type NOSIM_TYPE; 
const entity_id NO__ENTITY_ID; 
const class _id NO—CLASS—ID; 
const event NO— EVENT; 
const event— id NO— EVENT— ID; 

Figure 5.1: C++ Declarations for SimD Data Types 
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One data structure unique to SimD is the class identifier. Class identifiers are 

represented by class class—id and are used to denote classes of entities. Applications use 

class identifiers to determine the number and identity of entities of a given entity class or the 

number and identity of all entities in a simulation. This eliminates the need for an 

application to create and maintain arrays of entity identifiers. In addition, separately 

compiled and initialized program modules can each determine what entities exist in a 

simulation, without requiring the application to explicitly pass this information between 

modules. 

An entity is a member of an entity class if it is an instance of that class or if it is a 

member of an entity class derived from that class. As an example, the call 

cid = class_id("airplane"); 

creates a class identifier denoting all entities of or derived from entity class airplane. 

Similarly, since all entities in SimD are derived from class entity, the call 

cid = class_id("entity"); 

creates a class identifier denoting all entities in the simulation. 

The information required by SimD to determine which entities belong to which entity 

classes is provided by the macro ENTITY—CLASS. ENTITY—CLASS replaces the 

macro SIM ENTITY in Sim++. The arguments to ENTITY—CLASS include the 

name of an entity class, and the name of the entity class from which it is derived. For most 

entity classes, the underlying entity class is entity. However, it is also possible to derive 

an entity class from a previously derived entity class. As an example, the following code 

fragment shows the declaration of entity class vehicle and entity class truck, and the 

corresponding calls to ENTITY—CLASS: 

class vehicle : public entity 
class truck public vehicle { ... 
ENTITY CLASS(vehicle, entity); 
ENTITY_ CLASS (truck, vehicle); 
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Class truck is derived from class vehicle, and class vehicle is derived from class 

entity. 

The operations permitted on class identifiers are defined by the member functions 

class_name, size, includes, and the index operator ( LI ). class_name returns the 

name of the entity class denoted by a class identifier. size returns the number of entities in 

the entity class denoted by a class identifier, includes tests whether a given entity 

identifier is a member of the entity class denoted by a class identifier. The index operator 

provides a convenient array notation for accessing the entity identifiers of entities in an 

entity class. As an example, the call 

cid = class_id("airplane"); 
eid = cid[O]; 

assigns to eid the entity identifier of the first entity in entity class airplane. (SimD 

follows the C++ convention that array indexing begins with 0.) 

Class event is used to represent events in SimD. Class event has similar attributes to 

class sim_event in Sim++, but the names of member functions to access those attributes 

differ somewhat. The member function sched_at of class event has no equivalent in 

class sim_event. sched_at returns the simulation time at which the event was 

scheduled. 

SimD events are created explicitly by the application before being scheduled. An entity 

creates an event by invoking the constructor of class event and passing it the appropriate 

arguments used in initializing the attributes of the event. As an example, the call 

ev = event(autol_id, 8.0, ARRIVAL); 

creates an event with attributes 

ev.sched_by() = self() 
ev.schedfor() = autolid 
ev.schedat() = time() 
ev.sched_to() = time() + 8.0 
ev.type() = ARRIVAL 
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where self denotes the entity identifier of the calling entity and time denotes the current 

simulation time. 

SimD events include an implicit event body used to pass application-specific data from 

the scheduling entity to the receiving entity. The event body is organized as a stack and is 

accessed through insertion (<<) and extraction (>>) operators. The scheduling entity 

inserts data into an event using insertion operators and the receiving entity extracts data 

from the event using extraction operators. The insertion and extraction operators are 

member functions of class event. As an example, the call 

ev << ± << j; 

copies the values in data structures i and j into the body of the event. SimD defines 

insertion and extraction operators for all of the basic C++ types (integers, real numbers, 

characters, and strings). From these operators, new insertion and extraction operators can 

be defined for user-defined types. As an example, figure 5.2 shows the declaration of 

class point and its associated insertion and extraction operators. The approach illustrated 

in this figure was used to define insertion and extraction operators for many of the data 

types defined by SimD. 

Once the attributes and data of an event have been established, an entity can schedule 

the event with the call 

schedule ( ev); 

SimD events offer several advantages over Sim++ events. First, the insertion operators 

for the basic C++ types automatically include type information with each data item inserted 

into the body of an event. This information is used by the extraction operators for the basic 

C++ types to ensure that a data item being extracted from the body of an event is of the 

same type as the data item actually in the body of the event. Although this type checking 
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class point 

double X; 

double Y; 

double Z; 

event &operator<<(event &ev, point &p) 

ev << p.X << p.Y << p.Z; 

return ev; 

I 

event &operator>>(event &ev, point &p) 

ev >> p.Z >> p.Y >> p.X; 

return ev; 

Figure 5.2: c++ Insertion and Extraction Operators for Class Point 

mechanism is transparent to the application, it is not foolproof. For example, it is possible 

to insert user-defined data of one type into an event and extract user-defined data of another 

type out of the event if the member variables of both data types are of the same basic C++ 

types. This problem can be addressed by associating a unique integer with each user-

defined data type and including that integer in the body of the event. This would allow the 

extraction operator for a data type to ensure that it is extracting the correct type of data. 

Second, the insertion operators for SimD events allow multiple data items to be inserted 

into the body of an event. In Sim-H-, the body of an event is a copy of the single data 

structure specified when the event was scheduled. To include multiple data items in a 

Sim++ event, it would be necessary to copy the individual data items into a single, 

composite structure from which the event body could then be created. Typically, a new 

structure would have to be defined specifically for this purpose. Third, since all data items 

are inserted into the body of an event in terms of the basic C++ components that make up 

the data item, it would be straightforward to provide a capability to automatically print out 

the contents of an event as an extension of the tracing facility, or to insert the data into an 
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event in a machine-independent format that would allow events to be passed between 

entities executing in a heterogeneous multicomputer network. 

Class event—id is used to represent event identifiers in SimD. Like SimD events, 

event identifiers are created explicitly by the application. An entity creates an event 

identifier by calling the constructor for class event—id and passing it an event as its 

argument. As an example, the call 

ev_id = event id(ev); 

creates an event identifier denoting the event ev. The attributes of the event identifier are 

identical to the attributes of the event it identifies. The need to create event identifiers 

explicitly is less convenient than in Sim++ where they are created and returned by 

sim_schedule. However, profiling of Sim++ showed that 30% of the language 

overhead associated with scheduling an event came from creating and returning event 

identifiers. Since event identifiers are only required for event cancellation, it is 

unreasonable that every simulation and every scheduled event should incur this overhead. 

The SimD approach associates the cost of event cancellation with those applications that use 

it. 

5.3 Predicates 

SimD predicates are created using special objects called predicate generators. The predicate 

generators include 

s chedby_p 
sched_for_p 
s ched_ at_p 
sched_to_p 
type_p 

Each predicate generator corresponds to an event attribute. The predicate generator for a 

given event attribute is used to create predicates that test that attribute of an event. For 
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example, sched_at_p is used to create predicates that test the event attribute sched_at, 

which specifies the simulation time at which an event was scheduled. 

Predicates are created by applying a relational operator to a predicate generator. As an 

example, the call 

p = (sched_at_p <= 10.0); 

creates a predicate that matches any event scheduled on or before simulation time 10.0. 

Similarly, the call 

p = ( sched_by_p == autol_id); 

creates a predicate that matches any event scheduled by the entity denoted by entity 

identifier autol_id. In each case, the value on the right hand side of the relational 

operation must be of the same type as the event attribute corresponding to the predicate 

generator. In the examples shown, 10.0 is a value of type sim time and autol_id is a 

value of type entity_id. The types sim_time and entity—id correspond to the types 

associated with the event attributes sched_at and sched_by, respectively. 

Using the logical operators AND and OR, predicates can be combined to test an event 

attribute for more than one value or to test multiple event attributes. As an example, the call 

P = ( sched_at_p <= 10.0) AND ( sched_by_p == autol_id); 

creates a predicate that matches any event scheduled on or before simulation time 10.0 by 

the entity denoted by autol_id. Similarly, the call 

p = (type_p == ARRIVAL) OR (type_p == DEPARTURE); 

creates a predicate that matches any event of type ARRIVAL or DEPARTURE. 

Using the logical operator NOT, predicates can be also be negated. As an example, the 

call 

p = NOT ( type_p == ARRIVAL); 

creates a predicate that matches any event not of type ARRIVAL. 
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SimD also defines two special predicates, any_p and none_p, that match any and no 

events, respectively. 

SimD predicates offer several advantages over Sim++ predicates. First, SimD 

predicates are more easily defined than Sim++ predicates. Since SimD predicates are 

completely specified when and where they are created and used, the application need never 

define predicate classes, as is sometimes the case in Sim++. Second, SimD predicates are 

more readable than Sim++ predicates. This is because the conditions an event must satisfy 

to match a SimD predicate are always explicit where and when the predicate is created and 

used, whereas in Sim++, the conditions are encapsulated within a predicate class, typically 

in a different source file from that in which the predicate is used. Third, SimD predicates 

can be combined and negated in the same was as logical expressions. The inability to 

logically combine predicates was noted as a significant shortcoming of Sim++ in Chapter 

4. Fourth, SimD predicates are safer than Sim++ predicates. Since Sim++ predicates are 

sometimes defined by the application, the event selection primitives that use them must rely 

on the discipline of the user to define predicates solely for testing event attributes. Other 

operations such as modifying the contents of an event or invoking a simulation primitive 

are illegal actions for a predicate, but these restrictions cannot be enforced. In contrast, 

SimD predicates are specified solely in terms of data types and operations defined by the 

language. This means, however, that it is not possible for a SimD predicate to examine the 

data in the body of an event, since that data can be of arbitrary type. My experience with 

Sim++ and SimD suggests that the ability of a predicate to examine the data in the body of 

an event is not required. Instead, section 5.8 shows how event handlers are used to 

intercept and examine the contents of an event prior to the receipt of that event by the 

application. 
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5.4 Entities 

In SimD, all entities are derived from class entity. Class entity defines attributes and 

capabilities required for simulation. Unlike Sim++, SimD does not distinguish between 

simulation and event selection capabilities. The entity member functions that provide these 

capabilities in SimD are collectively referred to as simulation primitives. Figure 5.3 shows 

the declaration of class entity and related operations. 

The member function self returns an entity identifier denoting the calling entity. The 

member function name returns the name of the calling entity. The member function 

class name returns the name of the calling entity's class. The function time returns the 

current simulation time. The function current returns a pointer to the object representing 

the calling entity. 

The simulation primitive schedule is used to schedule an event, schedule differs 

from sim_schedule in that SimD events must be created explicitly by the application 

before being scheduled. 

The simulation primitive cancel is used to cancel a previously scheduled event. 

The simulation primitive wait combines the 'capabilities of the Sim++ primitives 

sim_wait and sim_wait_for. As an example, the calls 

wait (ev); 
wait (ev, typey == ARRIVAL); 

are equivalent to 

sim wait (ev); 
sim_wait_for (sim_type_p (ARRIVAL), ev); 

The second argument to wait is optional and defaults to the predicate any_p. 

The simulation primitive hold combines the capabilities of the Sim++ primitives 

sim_hold and sim_hold_for. As an example, the calls 
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class entity 

II entity attributes 
entity_id self 0; 
const char *nameQ; 
const char *classflame0; 

II simulation primitives 
void schedule (event &ev); 
void cancel(event_id &ev_ id); 
void wait(event &ev, predicate &p); 
sim_time hold(sim_time delay, event &ev, predicate &p); 

void term±nate0; 

II event handling capabilities 
void prehandler(prediCate &p, entity_function *f); 
void posthandler(predicate &p, entity_function * f); 

void forward(event &ev); 

entity *current 0; 
sim_time time0; 

Figure 5.3: c++ Declaration for Class Entity 

hold(lO.0); 
hold(1O.O, ev); 
hold(lO.O, ev, type_p == ARRIVAL); 

are equivalent to 

sim hold_ for(1O.O, SIM_NONE, ev); 
sim_hold(1O.O, ev); 
sim_hold_for(1O.O, sim_type_p(ARRIVAL), ev); 

The second and third arguments to hold are optional. When the third argument is omitted, 

it defaults to the predicate any_p, meaning that the simulated delay can be interrupted by 

any event. When the second and third arguments are both omitted, the third argument 

defaults to none_p, meaning that the simulated delay is uninterruptable. 

The simulation primitive terminate is used to terminate the actions of an entity. The 

simulation terminates when all entities have terminated. 
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SimD does not provide primitives for manipulating deferred events. Deferred events, 

ignored events, and similar simulation capabilities can be represented using event handlers, 

as described in the following sections. 

5.5 Event Handlers 

Three of the languages surveyed in Chapter 3, Sim++, Extended Virtual Time, and Maisie, 

provide a capability to defer events. Extended Virtual Time additionally provides a 

capability to ignore events. Events are deferred or ignored on behalf of an entity by the 

language, without requiring an application to explicitly receive events to be deferred or 

ignored. Chapter 4 noted that there are other actions an entity may wish to perform to 

process events, again without requiring that the application explicitly receive each event. 

These included the ability to limit the number of deferred events, to generate statistics 

reports, and to ignore non-application, orphan events. Rather than augmenting a language 

with these specific capabilities, a general mechanism is proposed whereby an application 

can specify arbitrary actions for processing events, without explicitly receiving those 

events. This capability is provided in SimD using event-oriented simulation techniques. 

Many of the modeling difficulties described in Chapter 4 can be solved quite easily using 

SimD's combined process-oriented and event-oriented capabilities. In addition, capabilities 

such as ignored events and deferred events have straightforward, modular implementations 

using event-oriented simulation techniques. 

SimD supports the creation of event handlers for processing events without explicitly 

receiving events through calls to the simulation primitives wait or hold. An event handler 

is an entity member function that is automatically invoked to process events that satisfy a 

given predicate. Event handlers represent instantaneous state transitions associated with a 
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given event. This means that event handlers do not execute simulated delays or receive 

other events. (The notion of receiving events is used exclusively in SimD to refer to calls 

to wait or hold and excludes the implicit invocation of event handlers. The predicate 

specified in calls to wait or hold is referred to as the active predicate.) 

SimD defines two types of event handlers: prehandlers and posthandlers. Prehandlers 

are used to intercept events before they can be received by the application. Posthandlers are 

used to intercept events after they have been refused by the application. Any event not 

received by the application or intercepted by an event handler will result in a run-time error. 

SimD defines the entity member functions prehandler and posthandler to create event 

handlers, The arguments to prehandler and posthandler include a predicate that 

specifies the conditions an event must satisfy for the event handler to be called, and a 

pointer to an entity member function that serves as the event handler. Typically, event 

handlers for an entity are created during the entity's initialization, as defined by the entity's 

constructor. An entity can change the predicates associated with existing event handlers by 

calling prehandler or posthandler and specifying a different predicate for a previously 

established event handler. 

The predicates associated with event handlers need not be unique. It is permissible for 

multiple event handler predicates to match the same event. It is also permissible for the 

active predicate to also match the event. When more than one predicate matches the same 

event, the first matching predicate determines how the event will be processed. If the 

matching predicate is associated with an event handler, the corresponding entity member 

function is invoked. If the matching predicate is the active predicate, the event will be 

received by the application. Collectively, the active and event handler predicates are 

referred to as a predicate chain. The relative positions of predicates in the predicate chain 
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Figure 5.4: SimD Predicate Chain 

wait(..., p); 
or 

hold(..., p); 

are shown in figure 5.4. To find a matching predicate, an event is compared first to the 

predicates associated with prehandlers, in the order that the prehandlers were created. 

Next, the event is compared to the active predicate. Finally, the event is compared to the 

predicates associated with posthandlers, in the order that the posthandlers were created. 

By default, once an event has been intercepted by an event handier, the event does not 

continue along the predicate chain. However, my experience with event handlers has 

shown that there are many cases when it is desirable for an event handler to intercept an 

event, examine or modify the attributes or body of the event, and then allow the event to 

continue along the predicate chain to be intercepted by another event handler or to be 

received by the application. SimD defines the entity member function forward to allow an 
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event handler to forward an event to the next predicate along the predicate chain. The event 

does not actually continue along the predicate chain until the executing event handler 

completes. 

5.6 Initialization of SimD Simulations 

The SimD initialization phase is represented by an arbitrary number of initialization 

functions. In this way, it is possible to define a separate initialization function for each 

independent program module in a simulation. For each initialization function, there must 

be a corresponding call to the macro INITIAL FUNCTION. The argument to 

INITIAL  FUN CTIO N  is the name of the initialization function. 

INITIAL—FUNCTION hides a number of declarations required by the implementation 

to locate and execute all of the initialization functions at run time. The command line 

arguments used to execute a SimD simulation specify what initialization functions to 

execute, the order in which those functions should be executed, and what arguments to 

pass to each initialization function. The initialization phase ends when all initialization 

functions have finished executing. 

5.7 The Barber Shop Model Solved in SimD 

This section shows how SimD can be used to address the difficulties associated with the 

Sim++ implementation of the barber shop model described in Chapter 4. 

The SimD implementation of the barber entity for the basic barber shop model is shown 

in figure 5.5. In SimD, there is no built-in deferred event list. The queue of waiting 

customers in the barber entity is represented instead by the event list denoted by Waiting. 
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barber: : barber(event &ev) 

Waiting = event _list("waiting customers"); 
posthandler (type_p == CUSTOMER, barber: : handle_customer); 

void barber: : body() 

while (true) 
if (Waiting.cardinal(type_p == CUSTOMER) > 0) 

ev = Waiting.retrieve(type_p == CUSTOMER); 

else 
wait(ev, type_p == CUSTOMER); 

if (customer wants shave) 
hold ( Shave_time. sample () 

if (customer wants hair washed) 
hold (Wash_time. sample 0); 

if (customer wants hair cut) 
hold(Cut_time.sampleO); 

I 

void barber: : handlecustomer(event &ev) 

Waiting. store ( ev); 

Figure 5.5: Sim]) Barber Entity for Basic Barber Shop Model 

.Waiting denotes an instance of class event—list defined by SimD. Class event—list 

supports operations for enqueueing events, dequeueing and counting events that satisfy a 

given predicate, and collecting and reporting queueing statistics. Events are enqueued in 

the event lit by a posthandler that intercepts all events of type CUSTOMER that are 

refused by the application. When there are no waiting customers, the barber entity 

explicitly waits for the next arriving customer by calling wait. Figure 5.6 shows the 

predicate chain associated with the barber entity during the call to wait. While serving a 

customer, the barber entity executes uninterruptable delays with hold, thereby refusing to 

receive other events that coincide with the simulated delays. Figure 5.7 shows the 
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barber: : body() 

type_p == CUSTOMER wait(ev, type_p == CUSTOMER); 

type_p == CUSTOMER barber: : handle— customer (ev); 

Figure 5.6: SimD Predicate Chain for Barber Entity During Wait 

order of event-predicate 

comparisons 

none_p 

barber: : body() 

-4 .- hold(Shave_tixne.sampleO); 

type_p == CUSTOMER barber: : handle— customer (ev); 

Figure 5.7: SimD Predicate Chain for Barber Entity During Hold 

predicate chain associated with the barber entity during one of these calls to hold. During 

each call to hold, the active predicate is none_p, and all events of type CUSTOMER are 

intercepted by the posthand1er barber::handle_customer and enqueued in the event list 

Waiting. 

To restrict the size of the queue of waiting customers, the implementation of the 

posthandler can be changed to ignore arriving customers when there is no room in the. 

queue. To ignore additional customers after closing time, a prehandler can be used to 

intercept late customers. To generate statistics reports, a prehandiler can be used to intercept 

and process report events (it is again assumed that the report events are scheduled by a 
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barber: : barber(event &ev) 

prehandler (type_p = CUSTOMER AND sched_at_p >= Closing_time, 
barber: : handle late customer); 

prehandler(type_p == REPORT, barber: : handle_report); 

Waiting = event _list("waiting customers"); 
posthandler (type_p == CUSTOMER, barber: : handle_customer); 

void barber: : handle late customer(event &ev) 

Late— customers += 1; 

void barber: : handle_report (event &ev) 

I 

void barber: : body() 

while (true) 
if (Waiting.cardinal(type_p == CUSTOMER) > 0) 

ev = Waiting.retrieve(type_p == CUSTOMER); 
else 

wait(ev, type_p == CUSTOMER); 

if (customer wants shave) 
hold(Shave_time.sampleO); 

if ( customer wants hair washed) 
hold (Wash_time. sample 0); 

if (customer wants hair cut) 
hold (Cut_time. sample 0); 

void barber: : handle_customer(event &ev) 

if (Waiting.cardinal(type_p == CUSTOMER) < Limit) 

Waiting. store (ev); 
else 

Lost— customers += 1; 

Figure 5.8: SimD Barber Entity for Extended Barber Shop Model 
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Ii type_p == CUSTOMER AND 

sched_at_p >= Closing_time 

type_p == REPORT 
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type_p == CUSTOMER 

barber: : handle_late_customer (ev); 

barber: : handle_report(ev); 

barber: : body() 

wait(..., p); 
or 

hold(..., p); 

barber: : handlecustomer(ev); 

Figure 5.9: SimD Predicate Chain for Extended Barber Shop Model 

• separate report entity). An implementation of the barber entity that incorporates all of these 

changes is shown in figure 5.8. The corresponding predicate chain is shown in figure 5.9. 

Despite all three changes, the main actions of the barber entity, as defined by the entity 

body, remain unchanged, and there is no need to redefine any of the existing simulation 

primitives. 

5.8 The Resource Competition Facility Solved in SimD 

This section shows how SimD can be used to address the difficulties associated with the 

Sim++ implementation of the Demos RES facility described in Chapter 4. 

The two problems associated with the Sim++ implementation of the RES facility were 

the inability to combine predicates in the same way as logical expressions, and the inability 

to intercept and discard orphan events without redefining all existing primitives. The need 
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to combine predicates arises because there are two predicates involved in the use of the 

RES facility: a predicate that matches the event scheduled by a resource manager in 

response to a request for resources, and an application predicate that specifies what 

application events can interrupt a request for resources. The acquire primitive described 

in Chapter 4 must wait for an event that matches either of these two predicates. Orphan 

events result when an entity cancels a resource request at the same simulation time as the 

request is granted by the resource manager. Since these actions can occur simultaneously 

in two different entities, the entity that cancelled the resource request must be prepared to 

eliminate the event scheduled for it by the resource manager so that the event cannot be 

received by the application. 

In SimD, the ability to combine predicates using logical operators is used to address the 

first of the problems encountered with Sim++. And, a prehandler is used to intercept and 

discard orphan events resulting from cancelled resource requests. Implementations of 

acquire and release, and the associated prehandler, demos::handle_graflted, are 

shown in figure 5.10 (line numbers in the following description correspond to those in 

figure 5.10). It is assumed that entities which compete for resources using acquire and 

release will be derived from entity class demos. The predicate chain for a typical call to 

acquire is shown in figure 5.11. 

As in Sim++, acquire schedules an acquire event for the resource manager denoted by 

manager to request quantity units of a resource (lines 28-32). The resource manager 

will respond with a granted event once quantity units of the resource are available. In 

order to distinguish the resource manager's response from orphan granted events, the event 

identifier for the acquire event, denoted by Acquire—id (line 30), is included in the body 

of the acquire event (line 31). The resource manager returns the event identifier in the 
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1 class demos : public entity 
2 event— id Acquire Id; 
3 
4 void handle_granted(...); 
5 boolean acquire(...); 
6 void release(...); 
7 
8 ENTITY_CLASS(demos, entity); 

9 
10 demos::demos(...) 
11 
12 
13 Acquire id = NO_ EVENT _ID; 
14 prehandler (type_p == GRANTED, handle_granted); 

15 
16 
17 void demos::handle_granted(eveflt &ev) 

18 
19 ev >> acquire id; 
20 if (Acquire _id == acquire— id) 
21 forward(ev); 

22 
23 
24 
25 boolean demos::accuire(entity_id manager, mt quantity, 
26 event &ev, predicate &p) 

27 
28 ev = event(manager, 0.0, ACQUIRE); 
29 ev << quantity; 
30 Acquire id = event_id(ev); 

31 ev << Acquire_id; 
32 schedule(ev); 
33 
34 wait(ev, p OR type_p == GRANTED); 
35 if (ev.type() != GRANTED) release(manager, quantity); 

36 Acquire id = NO—EVENT— ID; 

37 
38 return ev.type() == GRANTED; 

39 
40 
41 void demos::release(entity_id manager, mt quantity) 
42 { 
43 ev = event(manager, 0.0, RELEASE); 
44 ev << quantity; 
45 schedule(ev); 

46 

Figure 5.10: SimD RES Facility 
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4. type_p == GRANTED demos: : handle_granted(ev); 

demos::acquire(..., p) 

p OR type_p == GRANTED -'---- wait (ev, p OR type_p == GRANTED); 

Figure 5.11: SimD Predicate Chain for RES Facility 

granted event to allow the prehandler (lines 17-23) to uniquely distinguish the expected 

granted event from orphan granted events. The prehandler intercepts all events of type 

GRANTED before they can be received by the application. Only the granted event 

awaited by the current call to acquire is forwarded along the predicate chain to be received 

by the call to wait (line 34). Other, orphan granted events are intercepted by the 

prehandler and are ignored. 

5.9 Optimizing SimD on Time Warp 

It was noted in Chapter 3 that because of the similarities between the simulation constructs 

of Sim++ and Extended Virtual Time, it is possible to modify the implementation of Sim-I-+ 

to incorporate the optimizations developed for Extended Virtual Time. Although many of 

the data types and language constructs of SimD have revised interfaces, the 

implementations of cancel and hold in SimD are as described for the application version 

of Extended Virtual Time. As a result, both of these primitives can be optimized as 

described in Chapter 3. 
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One apparant drawback of SimD is that it is not possible to achieve the same state size 

reductions as achieved in Extended Virtual Time by integrating an entity's deferred event 

list with its underlying Time Warp input queue. However, write-locked memory may 

provide a suitable alternative. Since SimD events can only be accessed through their 

attribute functions, insertion operators, and extraction operators, it is possible for an event 

to be write-locked until one of the attributes of the event is changed or until data is moved 

into or out of the body of the event. Each member function of class event that results in 

the contents of the event being altered would be responsible for unlocking the memory 

associated with the event. In this way, events that are queued in an application-specific 

event list would remain write-locked and would be excluded from state save operations. 

Since write-locked memory is not yet fully supported by the Time Warp implementation 

used in the development of SimD, this optimization has not been implemented. 

Since neither Sim++ nor SimD incorporate any of the optimizations of Extended Virtual 

Time, neither implementation was found to have any significant advantage over the other in 

terms of overall performance, although SimD does have slightly lower event scheduling 

overhead in cases wheie event identifiers are not required. 

5.10 Summary 

This chapter proposed a new language for Virtual Time called SimD. Among the 

contributions of this language are improved interfaces to many of the data types and 

language constructs provided by Sim++, and a combined process-oriented and event-

oriented modeling paradigm that was shown to address weaknesses in the event selection 

constructs of Sim++, Extended Virtual Time, and Maisie. It was argued that the unique 

characteristics of SimD make resulting simulations simpler, more readable, more type safe, 
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and more modular. Although differences between SimD and Extended Virtual Time do not 

permit all of the performance optimizations developed for Extended Virtual Time to be 

incorporated into SimD, alternative optimizations for achieving comparable results were 

suggested. 

One of the most important and unexpected lessons to arise from the development of 

SimD is the role of documentation and implementation as factors affecting the design of the 

language. Although it was obvious from the very beginning that the use of SimD in the 

development of applications would provide useful feedback towards improving the 

resulting design, documentation and implementation played equally important roles towards 

this end as well. Many prototype designs of SimD features which were easy to use had to 

be further refined or even abandoned because they could not be easily described or because 

their implementation was too complex or inefficient. Indeed, the presentation of SimD in 

this chapter is intended as evidence that the resulting design can be described in relatively 

simple and concise terms, and that key features can be described as a progression of 

concepts, beginning with basic data types and predicates, and ending with event handlers. 



Chapter 6 

Experience With SimD 

This chapter describes two discrete-event simulations that were implemented in SimD and 

executed on Time Warp on a transputer-based, distributed-memory Meiko Computing 

Surface. The purpose in developing these simulations was to gain experience with SimD 

and to test the implementation of SimD on Time Warp. Both simulations have previously 

been used as benchmarks to evaluate the performance of Time Warp and Extended Virtual 

Time [Bae89, Bae9l, Lom88a, Lom88b]. For each simulation, the model and its 

implementation in SimD are described, and performance results are presented for the 

simulation executing on Time Warp. The purpose of this chapter is to demonstrate that 

SimD can be used with Time Warp to develop well-structured, efficient, parallel 

simulations. For a detailed performance study and analysis of both simulations, see 

Lomow's thesis [Lom88b]. Both models were developed by Lomow and portions of the 

model descriptions that follow are, with minor simplifications for brevity, as they appeared 

in his thesis. 

6.1 Overview of Experiments and Experimental Method 

All experiments were executed on a sequential simulator on a single Computing Surface 

node with 16 megabytes of memory, and in parallel on Time Warp on 8, 16, 24, and 32 

Computing Surface nodes with 4 megabytes of memory per node. Approximately 1 

megabyte of memory per node is required by the Computing Surface operating system and 

for the executable object code. The sequential simulator is used as the basis for speedup 

106 
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comparisons. The sequential simulator excludes all of the overhead associated with Time 

Warp for process rollback, message cancellation, calculating GYT, and interprocessor 

communication. The sequential simulator uses a linear list to represent the input queue of 

each process, and a global splay tree [Sle85] to order the next event time of all processes. 

The next event time of a process corresponds to the receive time of the first message in the 

process' input queue. Processes execute in order of increasing next event time. 

Each of the speedup graphs presented in the following sections is presented in terms of 

application speedup. Application speedup is defined as the sequential application time 

divided by the parallel application time for a given number of nodes. Application time is 

the amount of time required to execute the initialization and execution phases of the 

application. Application time excludes startup and shutdown overhead such as the time 

required to download the executable object code to each node of the Computing Surface. 

This overhead amounts to approximately 4 seconds per node and easily dominates the total 

execution time for many of the parallel runs used in this study. For example, the time 

required for startup and shutdown on 32 nodes is approximately 2 minutes. The 

application speedup graphs are therefore intended to represent simulations in which this 

overhead is only a small fraction of the total execution time. 

The sequential and parallel application times are each the average of 9 runs. A different 

initial seed for random number generation was used for every 3 runs. The maximum 

deviation from the mean for each set of 9 runs was less than 5% for all experiments. The 

sequential application times varied in length from 2 to 14 minutes. The parallel application 

times varied in length from 1 to 4 minutes. The speedup achieved for these runs was 

verified to be representative of the speedup achieved with longer runs of both simulations. 

The use of sequential application time as the basis for speedup comparisons is generally 

consistent with the presentation of speedup in the literature [Fuj87, Fuj90, Lom88b]. It 
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can be argued, however, that the sequential application time is too high since it represents 

the time required to sequentially execute an application designed for parallel execution. A 

more appropriate basis for speedup comparisons might be the time required to execute a 

purely sequential implementation of each application, using global and shared memory for 

process interactions. For the sake of simplicity and consistency with the literature, the 

speedup results presented in this chapter are based on the sequential application time. It 

remains to be seen how well existing implementations of Virtual Time compare with 

sequential simulation techniques using global and shared memory. 

In addition to the application speedup achieved by Time Warp, each graph also plots an 

estimate of the potential speedup of the application on 8, 16, 24, and 32 processors. 

Although the speedup for any problem executing in parallel is limited by the number of 

processors on which the problem is executed, real simulations are further limited by causal 

relationships between events and intra-processor and inter-processor communication 

overhead. The potential speedup is calculated by a performance analysis tool that takes 

these additional limitations into consideration. Using data collected by Time Warp during 

the execution of a simulation, the tool simulates a parallel execution of the same simulation, 

assuming a "perfect" implementation of Virtual Time with the following characteristics: 

1. Each entity executes its events in the exact order that it would in a sequential 

execution. 

2. Reasonable delays (appropriate to the type of parallel processor) are incurred for 

sending or receiving a message. 

3. Two or more entities mapped to the same processor never execute simultaneously. 

The resulting potential speedup excludes the additional overhead associated with existing 

conservative and optimistic approaches to parallel simulation. Although Berry [Ber86] has 
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shown that Time Warp is not theoretically limited by the potential speedup calculated by 

this tool, my experience and that of researchers at JPL [Rei9O] suggests that the conditions 

under which Time Warp can achieve or exceed the potential speedup do not arise in 

practice. This is due primarily to the much higher overheads of Time Warp, including the 

time required to regularly save the states of processes, the time required to create and 

maintain anti-messages, the time required to perform rollbacks, and the time required to 

calculate GVT and perform fossil collection. 

For the potential speedup calculated for this study, intra-processor communication 

overhead was fixed at 1.0 milliseconds and inter-processor communication overhead was 

fixed at 2.0 milliseconds. The value for intra-processor communication overhead is 

equivalent to the time required to schedule and receive an event in SimD on the optimized 

sequential simulator. This includes the time required to create and schedule the event, 

context switch to the receiving entity, and receive the event. The value for inter-processor 

communication overhead is based on experiments performed on the Computing Surface 

using the message-passing kernel of the Time Warp implementation used in this study. In 

addition to the overhead associated with intra-processor communication, inter-processor 

communication further includes the time required to transmit the message between 

processors via the message-passing kernel. The value for inter-processor communication 

overhead excludes any delays that might typically be experienced by the message-passing 

kernel when the receiving processor is busy performing input or output, or executing the 

application. These additional delays have been ignored since they cannot be estimated with 

any reasonable degree of accuracy. As a result, the value for inter-processor 

communication overhead is a lower bound on the actual overhead. A more accurate 

estimate would tend to lower the potential speedup figures calculated for this study. 
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Both simulations include a variety of parameters that vary the behaviour of the 

application, resulting in diverse execution characteristics for these simulations executing in 

parallel. For the results reported here, many of the parameters chosen are "typical" 

configurations that represent neither a worst case nor a best case in terms of the potential 

speedup of either simulation [Lom88b]. The results achieved appear consistent with those 

of other studies of these simulations, although no direct comparison was attempted since 

the scope of this study is limited to demonstrating the effectiveness of SimD for developing 

these simulations. Indeed, one of the key differences between this and earlier studies is 

that this study contained up to 10 times as many entities. The larger number of entities is 

intended to demonstrate that SimD and Time Warp are suitable for large problems 

containing many hundreds of entities. 

6.2 The Health Care System 

The health care system is an hierarchical queueing system consisting of villages and health 

centers. There is one health center for each village and each village/health center pair is 

referred to as a health care node. When villagers become ill, they travel to their local health 

center for assessment and, when possible, treatment. If they cannot be treated locally, 

patients are referred up the hierarchy to the next, more sophisticated health center where the 

assessment/treatment/referral process is repeated. It is assumed that patients can always be 

treated at the root of the health care system. Once treated, patients return to their home 

village. Figure 6.1 illustrates a simplified view of this health care system. 
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Figure 6.1: The Health Care System 

6.2.1 Design Issues and Implementation 

For the performance results that follow, villages and health centers are represented by 

separate entities, and patients are represented by events. Although it has been shown 

[Bae9l] that implementing each health care node as a single entity can result in as much as 

40% additional speedup, the approach used here results in more readable code. Appendix 

A presents a complete SimD implementation of the health care system with separate village 

and health center entities. 

Each village entity performs two distinct tasks: generate patients for the local health 

center, and receive returning villagers. The body of the village entity is used solely to 

generate patients. The interarrival time between successive patients is modeled using a call 

to hold. A separate event handler is used to receive returning villagers. C++ code for the 

body of the village entity and this event handler is shown in figure 6.2. By intercepting 

returning villagers with an event handler, the call to hold will never be interrupted. To 

interrupt the call to hold with returning villagers would be an abuse of interruptable delays, 

since returning villagers do not represent an interrupt in the model. 
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void village: : handle_treated(event &treated_ev) 

Outstanding = Outstanding - 1; II outstanding villagers 
if (Outstanding == 0) generate_report 0; 

void village: : body() 

while (time() < DURATION) 
Outstanding = Outstanding + 1; 

hold ( Interarrival_time. sample 0); 
Generated = Generated + 1; 

patient_ev = event(Local_health_center, 0.0, PATIENT); 
patient_ev << self 0; II return patient to this village 

schedule (patientev); 

Figure 6.2: c++ Code for Village Entity Class 

Health center entities are very similar to the barber entity described in Chapter 4. A 

health center entity treats one patient at a time, in the order that patients arrive at the health 

center. The body of the health center entity is used solely to model the assessment and 

treatment of patients. The simulation time during which a patient undergoes assessment 

and treatment is modeled using calls to hold. A separate event handler is used to receive 

and enqueue patients that arrive while another patient is being treated. C++ code for the 

body of the health center entity and this event handler is shown in figure 6.3. 

A summary entity is used to gather and summarize statistics about the application. This 

entity is a sequential bottleneck since it must receive and process an event from every other 

entity in the simulation after those entities have terminated. For the results that follow, the 

sequential and parallel application times exclude the time required to execute the summary 

entity at the end of the simulation. The time required to execute the summary entity on 
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void health center: : body() 

while (TRUE) 
II get the next patient 
if (Patients.emptyO) 

wait(patient_ev, type_p == PATIENT); 
else 

patient_ev = Patients, retrieve (type_p 

hold(ASSESS TIME I Personnel); 
Assessed = Assessed + 1; 

PATIENT); 

if (Treatable.sampleO) 
hold(TREAT TIME / Personnel); 
Treated = Treated + 1; 
patient _ev >> home _village; 

treated_ev event(home_village, 0.0, TREATED); 
schedule (treated_ev); 

else 
Referred = Referred + 1; 
patient_ev >> home—village; 
patient_ev = event(Next_health_penter, 0.0, PATIENT); 
patient_ev << home _village; 
schedule (patient_ev); 

} 

void health_center: : handle_patient (event &patient_ev) 

} 
Patients. store (patient_ev); 

Figure 6.3: c++ code for Health Center Entity Class 

Time Warp is approximately 1 minute. That time is a significant factor in many of the 

parallel runs used in this study, but is less significant in simulations that execute for longer 

periods of time. 

6.2.2 Simulation Parameters and Performance Results 

The configuration of the health care system used for all experiments consisted of 341 health 

care nodes organized as a full, 4-way branching tree of height 5. This configuration results 
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in 682 entities with an approximate state size of 6K per entity, including language overhead 

and the state saved portion of an entity's run-time stack. Approximately 1K of this state is 

due to language overhead. The average computation per event for this simulation is 2.6 

milliseconds. Approximately 1 millisecond of this time is due to language overhead. For 

all experiments, the village and health center entities associated with a given health care 

node were always mapped to the same processor. Health care nodes were mapped to 

processors using a static mapping that attempts to distribute the total computation as evenly 

as possible over the available processors. Static mapping requires that the simulation be 

executed at least once in order to produce the necessary performance data to generate the 

mapping. Static mapping assumes that subsequent runs of the same simulation will be 

sufficiently similar to the first that the original mapping will result in better performance 

than if entities are mapped to processors at random or round robin. This is generally true 

for the configurations of both simulations presented in this chapter, since only the random 

number seeds are varied between runs. However, in general, if a simulation is executed 

multiple times with different sets of input parameters, it is possible that the simulation will 

exhibit radically different execution characteristics for each run. Reiher and Jefferson 

[Rei9Ob] present preliminary results for a dynamic load management scheme intended to 

address this problem. 

The number of health care personnel at each health center is based on the health center's 

level in the tree. Health centers nearer to the root of the tree represent larger hospitals and 

have correspondingly more personnel. These increased resources are modeled by a 

corresponding decrease in service time. Table 6.1 gives the number of health care nodes at 

each level of the system and the number of health care personnel at each health center. 
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Level Health Care Health Care Personnel 
Nodes per Health Center 

0 
1 
2 
3 
4 

1 
.4 

16 
64 
256 

16 
8 
4 
2 
1 

Table 6.1: Configuration of the Health Care System 

Parameter Value 

Duration 
Arrival Rate 
Treatment Probability 
Assessment Time 
Treatment Time 

100.0 time units 
0.3 patients per unit time 
0.9 ( 1.0 at root) 
0.3 time units 
1.0 time units 

Table 6.2: Application Parameters for the Health Care System 

The values of other application parameters are shown in table 6.2. The interarrival time 

between patients generated by a village is drawn from a negative exponential distribution 

with a mean arrival rate of 0.3 patients per unit time. The probability that a patient can be 

treated at a given health center is 0.9 (except at the root of the health care system where the 

probability is 1.0). The assessment and treatment times are fixed at 0.3 and 1.0 time units, 

respectively, divided by the number of health care personnel at the health center. 

Since each village is mapped to the same processor as its local health center, inter-

processor communication only occurs when a patient is referred to a health center on a 

different processor or when a patient returns from a remote health center. Since, on 

average, 90% of patients are treated locally, there is relatively little inter-processor 

communication, suggesting that this configuration will result in a high degree of parallelism 

among processors. This has indeed been the case with earlier studies of this model 

[Bae89, Lom88a, Lom88b]. A reduced treatment probability has been found to degrade 

performance, as inter-processor communication and synchronization increases. 
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Figure 6.4 shows the application speedup achieved by Time Warp for this simulation. 

Figure 6.5 shows the application speedup achieved by Time Warp for the same simulation 

with 10 milliseconds of additional computation per event. Figure 6.6 shows the application 

speedup achieved by Time Warp for the same simulation with 20 milliseconds of additional 

computation per event. The additional computation is artificial, but is still indicative of 

realistic simulation problems. For example, a Sim++ simulation of an existing 

telecommunication network averaged 40 milliseconds of computation per event. 

With no additional computation per event, the potential speedup ranges from 5.8 to 

14.8 as the number of processors is varied from 8 to 32. Time Warp achieves 28% of the 

potential speedup on 8 processors, with a drop to 17% on 32 processors. The decline is 

due primarily to an increase in the number of rollbacks and anti-messages, as the execution 

of the simulation becomes increasingly asynchronous with the addition of processors. This 

effect can be seen to varying degrees in all of the graphs for both simulations, although it is 

most pronounced when the amount of computation per event is low. With less 

computation per event, entities are more likely to execute forward in simulation time more 

quickly and are therefore more likely to execute events out of order. With 20 milliseconds 

of additional computation per event, Time Warp achieves 61% of the potential speedup on 

8 processors, with a drop to 48% on 32 processors. In this case, the application speedup 

achieved by Time Warp ranges from 4.7 to 12.6 as the number of processors is varied 

from 8 to 32. [Bae91] reports speedups as high as 18 on 32 processors when each health 

care node is implemented as a single entity. 
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Figure 6.4: Application Speedup for the Health Care System 
(no added computation) 
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Figure 6.5: Application Speedup for the Health Care System 
(10 milliseconds of added computation) 
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Figure 6.6: Application Speedup for the Health Care System 
(20 milliseconds of added computation) 

6.3 The Mobile Communication Network 

The mobile communication network consists of multiple, indepedently acting physical 

components, called platforms, that broadcast and receive bulletins while moving on a fixed-

size, two-dimensional surface. For simplicity, it is assumed that the surface is a torus with 

no fixed edges. Bulletins denote information packets transmitted among platforms and they 

model a simplified form of radio communication. When a platform broadcasts a bulletin, 

all platforms within range of the broadcast receive the information packet. Figure 6.7 

illustrates the basic components of the mobile communication network. 

6.3.1 Design Issues and Implementation 

Simulating the mobile communication network is considerably different than simulating a 
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Figure 6.7: The Mobile Communication Network 

queueing network. In the health care system, when a patient moves from a village to a 

health center, or from one health center to another, it is clear where the patient is moving 

from and where the patient is moving to. In contrast, when a platform broadcasts a 

bulletin, it does not explicitly identify which platforms are to receive the bulletin. Instead, 

the bulletin is delivered to exactly those platforms within range of the broadcast at the 

instant the broadcast takes place. 

A straightforward implementation of this model would have each broadcasting platform 

schedule an event for every other platform in the simulation and have the receiving platform 

decide whether or not it was actually within range. Unfortunately, for any but a small 
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number of platforms, the communication overhead of scheduling one event for every entity 

for each broadcast easily dominates the execution of the simulation, and no speedup is 

possible. 

A typical approach to this type of problem [Bec88, Cle90, Con90, Gol84, Lom88b] is 

to divide the two-dimensional surface into sectors and represent each sector by a sector 

entity. This is the approach used for the performance results that follow. Each sector 

entity knows the current trajectory of all platforms in its sector. Knowing the trajectory of 

a platform allows the sector entity to determine the current position of the platform at any 

instant in simulation time. As platforms change their trajectory, or move from one sector to 

another, the platforms are responsible for informing the appropriate sector entities. When a 

platform broadcasts a bulletin, it schedules an event for each sector entity that coincides 

with the area of the broadcast range. The sector entities, in turn, forward the event to all 

platforms determined to be in range of the broadcast. 

The implementation of the mobile communication network is divided into two layers: a 

spatial layer and an application layer. The spatial layer implements the sector entities and 

provides primitives for modeling motion and broadcasting. The application layer uses 

these primitives to implement the mobile communication network model. All interactions 

with sector entities are performed by the spatial layer and are completely transparent to the 

application layer. The separation of these layers is complete - there is no application-

specific knowledge in the spatial layer and there is no knowledge in the application layer 

about how the motion and broadcasting primitives are implemented. Indeed, several 

variations of the spatial layer were implemented and tested, without changes to the 

application layer. Appendix B presents a complete implementation of the application layer 

of the mobile communication network. The source code associated with the 
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class point 

point (double x, double y); 

event &operator<<(event &ev, point &pos); 
event &operator>>(event &ev, point &pos); 

class velocity 

velocity(double direction, double speed); 

event &operator<<(event &ev, velocity &vel); 
event &operator>>(event &ev, velocity &vel); 

class mobile—entity public entity 

void set_position(point &pos); 
void set _velocity(velocity &vel); 
point current_position 0; 
velocity current _velocity 0; 
void broadcast (double range, event &ev); 

Figure 6.8: c++ Declarations for the Spatial Layer Interface 

implementation of the spatial layer has been omitted. A substantial portion of that code 

deals with floating point errors and boundary conditions that obscure the key elements 

involved in managing motion and broadcasts. 

The interface provided by the spatial layer is shown in figure 6.8. The primitives for 

modeling motion and broadcasting are member functions of entity class mobile—entity. 

The application layer further derives mobile—entity for the specific requirements of the 

application. All instances of an entity class derived from mobile—entity are referred to as 

mobile entities. The primitives set_position and set—velocity allow a mobile entity to 

initialize or change its position or velocity, respectively. The primitives 

current_position and current—velocity allow a mobile entity to determine its current 

position and velocity, respectively. The value returned by current—velocity is that 

specified in the most recent call to set—velocity. The value returned by 

current_position is a function of the position specified in the most recent call to 
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set_position, the amount of simulation time that has elapsed since the call to 

set—position, and the current velocity. The primitive broadcast schedules a given event 

for all mobile entities whose current position at the simulation time of the broadcast falls 

within the specified range. 

In addition to a sectored implementation of the spatial layer, a shared memory 

implementation was also developed. In the shared memory implementation, there are no 

sector entities and all mobile entities are part of a single cluster. In this way, the spatial 

layer can always directly access the member variables and functions of all mobile entities in 

the simulation. Although this approach has no potential for speedup from parallel 

execution, it is representative of how this simulation might be implemented for efficient, 

sequential execution. For example, to implement broadcast, the spatial layer of the 

calling entity directly references the current position of each mobile entity in the simulation 

to detrmine which of those entities are within range of the broadcast and should receive the 

given event. As a result, the shared memory approach requires fewer events and is easier 

to implement than the sectored approach. Specifically, the shared memory implementation 

of the spatial layer required 268 lines of source code and the sectored implementation 

required 779 lines of source code. 

Although the difference in code size suggests that an implementation of the mobile 

communication network for parallel execution is more difficult than for efficient sequential 

execution, this is not necessarily the case. Depending on the characteristics of the 

application, the sectored implementation may also be required for efficient sequential 

execution. For example, when the number of platforms is very large (e.g., 500), the 

shared memory implementation executing on the sequential simulator was found to execute 

as much as 35% slower than the sectored implementation executing on the sequential 

simulator, even though the sectored implementation scheduled five times as many events. 
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The reason for this is that the amount of computation required by the shared memory 

implementation to determine which of the 500 platforms is within range of each broadcast 

is greater than the amount of computation required to manage motion and broadcasting in 

the sectored implementation. A "best case" sequential implementation of this simulation 

would combine the use of sectors and shared memory, although no such implementation 

was attempted for this study. For the results that follow, the sectored implementation 

executing on the sequential simulator was the basis for all potential and application speedup 

figures. 

Once again, a summary entity is used to gather and summarize statistics about the 

application. The sequential and parallel application times exclude the time required to 

execute the summary entity at the end of the simulation. 

6.3.2 Simulation Parameters and Performance Results 

The configuration of the mobile communication network used for all experiments consisted 

of 500 platforms and 16 sectors, for a total of 516 entities. The state size of each platform 

entity is approximately 6K, including language overhead and the state saved portion of an 

entity's run-time stack. Approximately 1K of this state is due to language overhead. The 

state size of each sector entity is approximately 10K. The average computation per event 

for this simulation is 3.66 milliseconds. Approximately 1 millisecond of this time is due to 

language overhead. For all experiments, platform and sector entities were mapped to 

processors using the static mapping scheme described in Section 6.2.2. 

The values of key application parameters are shown in table 6.3. The size of the two-

dimensional surface is fixed at 100 x 100 units. The size of each of the 16 sectors used for 

these experiments is fixed at 25 x 25 units. The broadcast range of each platform is fixed at 
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Parameter Value 

Duration 
Surface Size 
Number of Sectors 
Number of Platforms 
Broadcast Range 
Speed 
Event Rate 
Broadcast Probability 

20.0 time units 
100 x 100 units 
16 ( 25 x 25 units each) 
500 
5.0 units 
1.0 units per unit time 
1.0 events per unit time 
0.5 

Table 6.3: Application Parameters for the Mobile Communication Network 

5.0 units. Platforms travel in a straight line with a fixed speed of 1.0 units of distance per 

unit time. The rate at which platforms broadcast a bulletin or change direction is referred to 

•as the event rate and is based on a drawing from a negative exponential distribution with a 

mean of 1.0 events per unit time. This means that, on average, a platform broadcasts a 

bulletin or changes direction every unit of simulation time. There is equal probability that 

each such event will be a broadcast or a change in direction. 

With a broadcast range of 5.0 units, each broadcast covers an area of 78.5 units2 or, 

approximately, 0.8% of the total surface. As a result, each broadcast is typically confined 

to a single sector. Assuming that platforms are evenly distributed over the entire surface, 

each broadcast reaches 3 platforms, excluding the broadcasting platform. This means that, 

on average, a broadcasting platform schedules one event for the current sector, and that 

sector schedules three events for the platforms in range of the broadcast. All of the results 

that follow use this configuration of the application. However, with only minor changes to 

the application parameters, it would be possible to significantly impact the performance of 

the simulation. For example, by doubling the broadcast range, a single broadcast would 

typically reach 15 platforms, requiring 12 additional events per broadcast. 

Figure 6.9 shows the application speedup achieved by Time Warp for this simulation. 
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Figure 6.9: Application Speedup for the Mobile Communication Network 
(no added computation) 
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Figure 6.10: Application Speedup for the Mobile Communication Network 
(10 milliseconds of added computation) 
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Figure 6.11: Application Speedup for the Mobile Communication Network 
(20 milliseconds of added computation) 

Figure 6.10 shows the application speedup achieved by Time Warp for the same simulation 

with 10 milliseconds of additional computation per application event. Figure 6.11 shows 

the application speedup achieved by Time Warp for the same simulation with 20 

milliseconds of additional computation per application event. Application events include 

only those events that are visible at the application layer. This excludes events used by 

platforms to interact with sector entities. It is assumed that the amount of computation 

required by sector entities to manage motion and broadcasting is already representative of 

realistic applications using sectors. For the configuration of the mobile communication 

network used for these experiments, approximately 40% of all events were used to interact 

with sector entities and were excluded from additional computation. As a result, with 20 

milliseconds of additional computation per application event, the average computation over 

all events rose from 3.66 milliseconds to only 15.1 milliseconds. 
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With no additional computation per event, the potential speedup ranges from 5.7 to 

13.3 as the number of processors is varied from 8 to 32. With 20 milliseconds of 

additional computation per application event, the potential speedup ranges from 6.4 to 

18.2. For this simulation, Time Warp achieves application speedups ranging from a low of 

1.6 to a high of 8.2. On 8 processors, the application speedup achieved by Time Warp is 

28-56% of the potential speedup, depending on the amount of computation per event. On 

32 processors, the application speedup achieved by Time Warp is 20-45% of the potential 

speedup. 

6.4 Summary 

This chapter described two discrete-event simulations that were implemented in SimD and 

executed on Time Warp on a transputer-based, distributed-memory Meiko Computing 

Surface. The development of these simulations was one of several sources of feedback 

into the design of SimD presented in Chapter 5. The mobile communication network is of 

particular interest for evaluating SimD in that the implementation of the model required both 

a spatial layer and an application layer. Using SimD, it was possible to completely separate 

the implementation of the two layers, making it possible to experiment with several 

alternative implementations of the spatial layer without changes to the application layer. 

This suggests that the constructs provided by SimD are appropriate for implementing 

moderately complex parallel simulations consisting of multiple layers of software. The 

SimD implementation of the resource competition facility shown in Chapter 5 is further 

evidence of this claim. 

In addition to the health care system and the mobile communication network, I have 

also used SimD to implement two other simulations. The first is a simulation of an 



128 

adaptive routing algorithm for a multi-hop, message-passing system. The second is a 

simulation of the Chandy-Misra approach to parallel simulation using deadlock detection 

and recovery. Whereas the purpose in simulating the health care system and the mobile 

communication network was to gain experience with SimD and test its implementation on 

Time Warp, these other simulations were used to study the simulated system, not the 

simulation or the language. 

The existing implementation of SimD executes without errors, and simulations 

implemented in SimD have been shown to execute efficiently on Time Warp. Speedups as 

high as 18 on 32 processors have been achieved with a SimD implementation of the health 

care system. Nevertheless, the existing implementation of SimD is a prototype and a more 

complete implementation is intended. 



Chapter 7 

Conclusion 

This chapter presents a critique of SimD, summarizes the contributions of this research, 

presents conclusions drawn from this research, and describes areas requiring further study 

and development. 

7.1 Critique of SimD 

Much of Chapters 4 through 6 was devoted to demonstrating the superiority of SimD over 

other languages for Virtual Time. It was shown how SimD's data types and language 

constructs provide improved interfaces to equivalent constructs in Sim++. In addition, it 

was shown how the combined process-oriented and event-oriented capabilities of SimD can 

be used to address limitations in Sim++, Extended Virtual Time, and Maisie. Chapter 4 

showed how these limitations complicate the development of even very basic simulation 

models. Chapter 5 showed how the unique characteristics of SimD can make simulations 

simpler, more readable, more type safe, and more modular. Chapter 6 demonstrated the 

effectiveness of SimD for developing moderately complex simulations that execute 

efficiently on Time Warp. 

In spite of SimD's strengths, it does not address a number of difficulties. First, since 

SimD is implemented in C++, it is plagued by many of the weaknesses of C++. For 

example, C++ does not support run-time type checking, automatic initialization of 

variables, or automatic garbage collection. In addition, C++ does not prevent references 

through invalid pointers or array references outside the bounds of an array. Based on my 
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experience, the lack of these capabilities makes C++ significantly more difficult to use than 

Simula or comparable languages where these capabilities are present. Second, SimD does 

not satisfy all of the language design criteria proposed in Chapter 3. Most notably, SimD 

does not enforce restrictions related to shared and global memory, nor are all transient 

errors caused by Time Warp transparent to the application. These limitations cannot be 

overcome without compiler support. Third, SimD applications are required to invoke 

macros like EVENT—TYPE and ENTITY—CLASS to support the language 

implementation at run time. Eliminating these macros also requires compiler support. 

Finally, the existing implementation lacks facilities for data collection and reporting, 

random number generation, error handling, and file and console input and output. The 

current implementation of SimD coexists with Sim++ and is therefore able to use Sim++ 

facilities that are not yet available in SimD. 

7.2 Thesis Summary 

The goal of this research was to assess the impact of Virtual Time on simulation language 

design. This goal was divided into the following research questions addressed by this 

thesis and summarized below: 

1. How do the characteristics of Virtual Time differ from sequential simulation? 

2. How do the characteristics of Virtual Time impact simulation language design? 

3. Can languages for Virtual Time be used to develop well-structured, efficient, 

parallel simulations? 

Two fundamental differences between Virtual Time and sequential simulation were 

identified and the impact of these differences on parallel simulation was exRmined. First, 
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Virtual Time processes interact solely by sending and receiving timestamped messages. 

The primary advantage of message-passing is that processes can execute concurrently on 

multiple processors and need not progress through simulation time at a uniform rate. As 

such, there is a great deal of freedom in how processes are executed, as long as causality is 

maintained. The primary disadvantage of message-passing is that it is generally several 

orders of magnitude slower than interactions through shared memory. As such, messages 

cannot generally be employed as one-for-one substitutes for shared memory references. 

This makes it difficult to model problems in which many or all processes regularly access a 

large, global state. Second, Virtual Time simulations must be designed specifically for 

parallel execution if they are to achieve significant reductions in execution time. 

Specifically, it is necessary to limit the amount of computation performed by any one 

process, maximize the ability of processes to work in parallel, and minimize 

communication overhead. All of these requirements are specific to Virtual Time. They are 

not factors in the design of sequential simulations. 

A set of language design criteria for Virtual Time was developed based on the 

differences between Virtual Time and sequential simulation, and the characteristics of 

existing languages for Virtual Time surveyed for this research. The proposed criteria are 

parallel efficiency, explicit costs, determinism, type-safety, transparency of the 

implementation, transparent scaleability, portability of applications, and enforced 

restrictions. The characteristics of languages for Virtual Time suggested by these criteria 

are as follows. 

1. Languages for Virtual Time should encourage efficient, parallel programming 

practices with language constructs that have efficient, parallel implementations. 

2. Operations in a parallel simulation that differ significantly in cost from equivalent 

operations in a sequential simulation should appear obviously different to the user. 
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3. Given the same input, a simulation should produce the same results regardless of 

the number of processors on which the simulation is executed or the mapping of 

processes to processors used. 

4. Languages for Virtual Time should be fully type safe, including message-based 

interactions between processes. 

5. The implementation of Virtual Time should be transparent to the application. 

6. The number of processors used to execute a simulation, and the mapping of 

processes to processors should be transparent to the application. 

7. Application programs should be capable of executing sequentially or in parallel on 

multiple operating systems and architectures without source code modifications. 

8. Languages for Virtual Time should enforce restrictions imposed by the Virtual Time 

paradigm. Most notably, the language should prevent interactions between 

processes through shared or global memory. 

Key limitations of existing languages for Virtual Time were identified. The most 

prevalent of these is the inability to restrict or extend the semantics of the event selection 

primitives provided by Sim++, Extended Virtual Time, and Maisie. These primitives allow 

a process to specify what events it is willing to receive at any given time. However, since 

the implicit actions and data structures associated with event selection are inaccessible to the 

application, the event selection primitives must frequently be used as is or circumvented 

altogether. In addition, attempts to define new primitives based on those provided by 

Sim++ was found to be quite difficult. This is due to a strong interdependence among 

Sim++ primitives that discourages modularity. Specifically, it was shown that it would be 

necessary to redefine many or all of the existing primitives in order to define the new 

primitives. These limitations were shown to make even very basic simulation models 

difficult to implement, requiring repeated and significant restructuring to cope with simple 
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model extensions. These limitations were the primary motivation for the development of 

SimD. 

A new language for Virtual Time called SimD was defined. Among the contributions 

of this language are improved interfaces to many of the data types and language constructs 

provided by Sim++, and a combined process-oriented and event-oriented modeling 

paradigm that was shown to address the limitations of other languages for Virtual Time, as 

outlined above. Although differences between SimD and Extended Virtual Time do not 

permit all of the performance optimizations developed for Extended Virtual Time [Lom88b] 

to be incorporated into SimD, alternative optimizations were suggested for achieving 

comparable results. SimD was implemented on an existing implementation of Time Warp 

developed and made available by Jade Simulations International Corporation. 

The effectiveness of SimD for developing well-structured, efficient, parallel simulations 

was demonstrated using several basic examples and two simulations implemented and 

executed on Time Warp. The primary purpose in developing these simulations was to gain 

experience with SimD and to test the implementation of SimD on Time Warp. The 

development of these simulations was one of several sources of feedback into the design of 

SimD. A performance study of these simulations was presented. 

In addition to the contributions of this thesis summarized above, this research resulted 

in two refereed conference papers on the subjects of parallel simulation language design 

[Bae9O] and parallel simulation performance using Time Warp [Bae91]. 

7.3 Conclusions 

The following conclusions are drawn from this research. 
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1. Existing modeling practices and language design must be adapted to Virtual Time. 

Unlike sequential simulations, Virtual Time simulations communicate and 

synchronize the actions of processes solely by sending and receiving timestamped 

messages, and Virtual Time simulations must be designed specifically for parallel 

execution if they are to achieve significant reductions in execution time. Although it 

is common in sequential simulations to decompose a problem into logical 

processes, this is typically a representational convenience without regard (or need) 

for the ability of those processes to work in parallel. Furthermore, sequential 

simulations rely on shared memory for process interactions. These abstractions are 

not suitable for Virtual Time. Instead, modeling practices and language design for 

Virtual Time must encourage techniques and language constructs that limit the 

amount of computation performed by any one process, maximize the ability of 

processes to work in parallel, and minimize communication overhead. 

2. Modeling practices and language design should not be adapted to accomodate 

specific implementations of Virtual Time. There are two reasons for this. First, 

such adaptations require that the user understand fundamental characteristics of the 

implementation of Virtual Time, even though those characteristics are not inherent 

to the Virtual Time paradigm or to parallel processing. Second, additional 

requirements imposed by a specific implementation of Virtual Time increase the 

complexity of the design and implementation of a parallel simulation and reduce its 

portability to other implementations of Virtual Time. 

3. Currently, implementations of Time Warp cannot be made completely transparent to 

users. This means that, in many cases, simulations must be designed specifically 

for Time Warp in order to achieve significant reductions in execution time or to 

execute at all. Specifically, simulations for Time Warp must deal with the issues of 
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process state size, side effects resulting from causality errors, and interactions with 

the external world. Although some of these issues can be addressed through 

compiler support, many require hardware support such as that provided by the 

rollback chip. 

4. The language design criteria proposed in this thesis - parallel efficiency, explicit 

costs, determinism, type-safety, transparency of the implementation, transparent 

scaleability, portability of applications, and enforced restrictions - promote the 

development ofparallel simulations that are correct, efficient, and scaleable. Many 

of these criteria are already proven in that they represent the best elements of 

existing languages for Virtual Time. 

5. Many existing languages for Virtual Time contain inherently sequential constructs 

or are difficult to use for representing even very basic simulation models. ModSim 

contains a number of language constructs not suited to parallel execution. Chief 

among these are interactions through shared and global memory. Sim++, Extended 

Virtual Time, and Maisie support event selection whereby a process can specify 

what events it is willing to receive at any given time. Unfortunately, none of these 

languages provide any ability to restrict or extend the semantics of the event 

selection primitives. As a result, these primitives must frequently be used as is or 

circumvented altogether. 

6. SimD improves the structure of parallel simulations compared to other languages 

for Virtual Time. SimD's data types and language constructs provide improved 

interfaces to equivalent constructs in Sim++. In addition, the combined process-

oriented and event-oriented capabilities of SimD can be used to address limitations 

in Sim++, Extended Virtual Time, and Maisie. These characteristics of SimD make 

resulting simulations simpler, more readable, more type safe, and more modular. 
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7. SimD can be used to develop parallel simulations that achieve significant reductions 

in execution time. Speedups as high as 18 on 32 processors were achieved with the 

SimD implementation of the health care system with 20 milliseconds of added 

computation per event [Bae9l]. With no added computation per event, speedup 

never fell below 2.6 on 32 processors for either application presented in this thesis. 

These speedups were achieved without the benefit of optimizations such as 

integrating the simulation primitives with the underlying implementation of Time 

Warp [Lom88b] or special purpose hardware such as the rollback chip [Fuj88b]. 

Either of these optimizations should further improve the performance of these 

simulations on Time Warp. 

8. The language design process must include documentation, implementation, and 

experience with the language as feedback into the design. In the development of 

SimD, many prototype designs of SimD features had to be further refined or even 

abandoned because they could not be easily described, because their implementation 

was too complex or inefficient, or because they were difficult to use. 

7.4 Further Study and Development 

The critique of SimD identified a number of limitations with the existing language and its 

implementation in C++. The current implementation lacks a number of facilities common 

to simulation languages. A more complete implementation is intended and will include 

these additional facilities. The addition of compiler support is not planned. Although it 

would be possible to more fully satisfy the language design criteria proposed in this thesis 

using compiler support, significant changes to C++ would also be required to address 

many of its inherent weaknesses. Such changes are likely to be less successful than 
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designing a completely new language that incorporates the desired design criteria and 

language capabilities into the design of the language. This is the approach currently being 

used in the development of MociSirn. 

One area of parallel simulation language design not addressed by this research involves 

the dynamic creation and destruction of processes throughout the course of the simulation. 

Dynamic process creation and destruction generally also requires dynamic process 

migration since the implementation of Virtual Time cannot predict how much memory a 

given process will require at run time or the amount of computation that process will 

perform. Dynamic process migration continues to be an active area of research [Rei9Ob]. 

The impact of dynamic process migration on the language implementation is significant. 

Most notably, the state of a process must be completely independent of the area of memory 

in which it resides so that the process can migrate to a different area of memory on a 

different processor. Alternatively, the implementation of the language must be able to 

identify all absolute addresses in the state of a process and adjust those addresses when the 

process is migrated. Although solutions to these problems can be implemented in 

software, much of the overhead associated with software techniques can be eliminated 

using the rollback chip [Fuj88b]. 

Finally, a topic related to language design for Virtual Time is modeling techniques for 

Virtual Time. The fundamental differences between Virtual Time and sequential simulation 

require that simulations be designed specifically for Virtual Time if they are to achieve 

significant reductions in execution time. Specifically, it is necessary to limit the amount of 

computation performed by any one process, maximize the ability of processes to work in 

parallel, and minimize communication overhead. Very little research has been done on the 

impact of modeling techniques on the readability of simulations. Baezner et al [Bae89] 

examines the impact of various modeling techniques on the performance of simulations 
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executed on Time Warp, but does not address the impact of these changes on the readability 

of the simulation. Baezner et al [Bae90] examines the impact of Sim++ clusters on the 

performance and readability of simulations. Finally, the results reported by Baezner et al 

[Bae9l] for a SimD implementation of the health care system executing on Time Warp are 

40% better than those reported in this thesis. The additional speedup was achieved by 

implementing each health care node as one entity, rather than two. This approach results in 

less readable code, however. Generally, the impact of modeling techniques on the 

readability of parallel simulations has yet to be addressed for a broad range of applications. 

In addition to the readability of parallel simulations, other modeling issues include the 

decomposition of a model for significant reductions in execution time across a wide range 

of input parameters, and increasing the level of detail in a model without significant 

restructuring of the implementation for continued, acceptable performance. Unfortunately, 

it is not always possible to know a priori what the range of input parameters to a simulation 

is likely to be, or what their impact will be on parallel performance. In addition, it is often 

the case that simulations are subject to change after they have been designed and 

implemented, where such changes could significantly alter parallel performance. The 

impact of these issues has yet to be addressed. 
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1 #include <SimD.h> 
2 
3 II globals for command-line arguments 
4 extern sim time DURATION; 
5 extem double TREAT_PROB; 
6 extern sim time ASSESS_TIME; 
7 extern sim time TREAT TIME; 
8 extem double ARRV RATE; 
9 extem mt SEED; 
10 extern mt N-UMBER OF LEVELS; 
11 extem mt BRANCH114G_F ACtOR; 
12 
13 II event types 
14 EVENT TYPE(INITIAL); 
15 EVENT TYPE(PATIENT); 
16 EVENT TYPE(rREATED); 
17 EVENT TYPE(REPORT); 
18 
19 II summary entity class 
20 II (statistics collection and reporting) 
21 class summary : public entity { 
22 sim_tally_obj Generated; 
23 Sim _tally_obj Assessed; 
24 Sim _tally_obj Treated; 
25 sim_tally_obj Referred; 
26 Sim _tally _obj QLength; 
27 sim_tally_obj QWait; 
28 public: 
29 summary(event &initial_ev); 
30 void bodyO; 
31 
32 ENTITY_CLASS(summary, entity); 
33 
34 II village entity class 
35 class village: public entity { 
36 mt Outstanding; 
37 mt Generated; 
38 entity id Local _health _center; 

_ne 39 simgexp_obj Interarrival_time; 
40 public: 
41 village(event &initial_ev); 
42 void handle treated(event &treated_ev); 
43 void bodyO; 
44 void generate_reportO; 
45 
46 ENTITY_CLASS(village, entity); 
47 
48 II health center entity class 
49 class health_ center : public entity { 
50 mt Assessed; 
51 mt Treated; 
52 mt Referred; 
53 mt Personnel; 
54 entity_id Next—health—center; 
55 siindraw_obj Treatable; 
56 event list *Patients; 
57 public: 
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58 health center(event &initialev); 
59 void handle_report(event &reportev); 
60 void lxidyO; 
61 void treatpatient(event &patient_ev); 
62 void referyatient(event &patientev); 
63 void handlepatient(event &patient_ev); 
64 
65 ENTITY CLASS(health center, entity); 
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66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 

// Initialize the summary entity 
summaly: :summary(event &initial_ev) 

{ 
I/Initialize statistics objects 
Generated = sim_tally_obj("Generated"); 
Assessed = sim tally obj("Assessed"); 
Treated = sim_tally_obj("Treated"); 
Referred = sim_tally_obj("Referred"); 
QLength = sim_tally_obj("QLength"); 
QWait = sim_tally_obj("QWait"); 

} 

II main actions of summary entity 
void summary::body() 

{ 

II patients generated 
II patients assessed 
if patients treated 
II patients referred 
II length of patient queues 
II wait time in patient queues 

mt i; 
mt generated; 
mt assessed; 
mt treated; 
mt referred; 
double qlength; 
double qwait; 
class _id vill id, heal—id; 
event rcport_ev; 
sim_file_id file—id; 

II wait for all villages to report 
villid = class _id("vilage"); 
for (i = 0; i < viii id.sizeO; i = i + 1) { 

wait(reportev, type_p = REPORT); 
report_ev >> generated; 
Generated.update(generated); 
sim_trace(1, "received report from %s", report_ev.schcd_by.name); 

} 

// Instruct all health centers to report 
heal—id = class id("health center"); 
for (i = 0; i < heal id.sizeO; i = i + 1) { 

report_ev = event(healid[i], 0.0, REPORT); 
schedule(report_ev); 

} 

II wait for all health centers to report 
for (i = 0 i < heal id.sizeO; i = i + 1) 

wait(reportev, type_p = REPORT); 
report_ev >> qwait>> qlength>> referred >> treated >> assessed; 
Assessed.update(assessed); 
Treated.update(treated); 
Referred.update(referred); 
QLength.update(qlength); 
QWait.update(qwait); 
simtrace(1, "received report from %s", report_ev.sched_byO.nameO); 

} 

II write report file 
file_id = sim_fopen("report", "w"); 
simfprintf(ffleid, "%s", sim_tally_headingO); 
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124 Generated.freport(file_id); 
125 Assessed.freport(file_id); 
126 Treated. freport(file_id); 
127 Referred.freport(file_id); 
128 QLength.freport(file_id); 
129 QWait.freport(file_id); 
130 simfclose(fileid); 
131 } 
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132 // initialize village entity 
133 village: :vilage(event &initialev) 
134 { 
135 initialev >> Interarrival time; 
136 initial cv >> Local health center; 
137 
138 Outstanding = 0; 
139 Generated = 0; 
140 
141 prehandler(type_p == TREATED, village::handle_treated); 
142 } 
143 
144 II prehandler to Intercept returning villagers 
145 void village::handle_treated(event &treated_ev) 
146 { 
147 simtrace(1, "received treated villager from %s", 
148 treated_ev.sched_by.nameO); 
149 
150 Outstanding = Outstanding - 1; 
151 if (Outstanding == 0) generate_reportO; 
152 } 
153 
154 II main actions of village entity 
155 void village::body() 
156 { 
157 event patient_ev; 
158 
159 while (time() < DURATION) { 
160 Outstanding = Outstanding + 1; 
161 
162 II hold until it is time to generate the next patient 
163 hold(Jnterarrival_time.sampleO); 
164 Generated = Generated + 1; 
165 
166 patient cv = event(Local health center, 0.0, PATIENT); 
167 II where to return the patient after treatment 
168 patient_ev << selfO; 
169 
170 simtrace(1, "sending sick villager to %s", 
171 Local health center.nameO); 
172 
173 schedule(patientev); 
174 } 
175 } 
176 
177 II send statistics report to summary entity 
178 void village::generate_report() 
179 { 
180 event report cv; 
181 
182 simtrace(1, "sending report'); 
183 
184 report cv = event(entity id("summry1"), 0.0, REPORT); 
185 report cv << Generated; 
186 schedule(reportev); 
187 } 
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188 // initialize health center entity 
189 health center::health center(event &initial_ev) 
190 { 
191 initialev >> Treatable; 
192 initial ev>> Next health center; 
193 initial ev>> Personnel; 
194 
195 Assessed = 0; 
196 Treated = 0; 
197 Referred = 0; 
198 
199 II queue for waiting patients 
200 Patients = new event _list("patients"); 
201 Patients->resetO; 
202 
203 prehandler(type_p REPORT, health center::handle_report); 
204 posthandler(type_p = PATIENT, health_center::handle_patient); 
205 } 
206 
207 II prehandler to intercept report event 
208 void health_center::handle_report(event &reportev) 
209 { 
210 simtrace(1, "sending report"); 
211 
212 report cv = event(entity id("summaryl"), 0.0, REPORT); 
213 reportev << Assessed << Treated << Referred; 
214 report_ev << Patients->qlengthO.avg() << Patients->qwaitO.avgO; 
215 schedule(report_ev); 
216 } 
217 
218 II main actions of health center entity 
219 void health_center::body() 
220 { 
221 event patient_ev; 
222 
223 while (TRUE) { 
224 II get the next patient 
225 if (Patients->emptyO) 
226 wait(patientev, type_ == PATIENT); 
227 else 
228 patient_ev = Patients->retrieve(type_p == PATIENT); 
229 
230 if (Treatable.sampleO) { 
231 // treat and return patient home 
232 treat_patient(patient_ev); 
233 } 
234 else 
235 // the patient cannot be treated at this level 
236 refer_patient(patient_ev); 
237 } 
238 } 
239 } 
240 
241 I/treat and return the patient to the patient's home village 
242 void health_center::treat_patient(event &patientev) 
243 { 
244 entity—id home—village; 

155 



245 event treatedev; 
246 
247 II assess and treat the patient 
248 hold((ASSESS TIME + TREAT TIME) I Personnel); 
249 Assessed = Assessed + 1; 
250 Treated = Treated + 1; 
251 
252 patientev >> home—village; 
253 treated__ev = event(hdme_vilage, 0.0, TREATED); 
254 
255 sirntrace(1, "returning treated patient to %s", home village.nameQ); 
256 
257 schedule(treatedev); 
258 } 
259 
260 II send the patient up the hierarchy to a more sophisticated health center 
261 void health_center::refer_patient(event &patient_ev) 
262 { 
263 entity—id home—village; 
264 
265 II assess but do not treat the patient 
266 hold(ASSESS TIME I Personnel); 
267 Assessed = Assessed + 1; 
268 Referred = Referred + 1; 
269 
270 patientev >> home—village; 
271 patient__ev = event(Next health center, 0.0, PATIENT); 
272 patient_ev << home_village; 
273 
274 sirntrace(1, "referring patient to %s", Next health center.namcO); 
275 
276 schedule(patient_ev); 
277 } 
278 
279 II posthandler for enqueneing patients that arrive while another patient 
280 I/is being treated 
281 void health center::handle_patient(evert &patient_ev) 
282 C 
283 II enqueue the patient 
284 Patients>store(patient_ev); 
285 } 
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286 II default settings for command-line arguments 
287 sim time DURATION = 100.0; 
288 double TREAT PROB = 0.9; 
289 sim time ASSESS TIME = 0.3; 
290 sim time TREAT TIME = 1.0; 
291 double ARRV RATE = 0.3; 
292 mt SEED = 10079; 
293 mt NUMBER—OF—LEVELS =5; 
294 mt BRANCHING—FACTOR = 4; 
295 
296 the initial function; this function is run from the command-line 
297 void initialize(int argc, char *argv []) 
298 { 
299 event initialev; 
300 class—id heal_id; 
301 mt i, j, cur—node; 
302 mt next—health—center; 
303 mt last_position; 
304 mt branch count; 
305 
306 II parse the command-line arguments 
307 if (argo> 1) DURATION = atof(argv[1]); 
308 if (argc> 2) TREAT PROB = atof(argv[2]); 
309 if (argc> 3) ASSESS_TIME = atof(argv[3}); 
310 if (argc> 4) TREAT_TIME = atof(argv[4; 
311 if (argc> 5) ARRY_RATE = atof(argv[5]); 
312 if (argc> 6) SEED = atoi(argv[6]); 
313 if (argo> 7) NUMBER.OF_LEVELS = atoi(argv[7]); 
314 if (argc> 8) BRANCHING_FACI'OR = atoi(argv[8]); 
315 
316 ASSERT(DURATION > 0.0); 
317 ASSERT(TREAT PROB >= 0.0); 
318 ASSERT(ASSES TIME >= 0.0); 
319 ASSERT(TREAT IME >= 0.0); 
320 ASSERT(ARRV RATE> 0.0); 
321 ASSERT(SEED 0); 
322 ASSERT(NUMBER OF LEVELS > 0); 
323 ASSERT(BRANCHmG —FACTOR > 1); 
324 
325 sim_trace( 1, "run-time arguments"); 
326 simtrace(1, "DURATION = %f", DURATION); 
327 simtrace(1, 'TREAT PROB = %f', TREAT PROB); 
328 simtrace(l, "ASSESS TIME = %f", ASSESS_ TIME); 
329 simtrace(1, 'TREAT TIME = %f', TREAT_ TIME); 
330 simtrace(1, "ARRIV_RATE = %f", ARRV RATE); 
331 simtrace(1, "SEED = %d", SEED); 
332 simtrace(1, "LEVELS = %d", NUMBER OF LEVELS); 
333 simtrace(1, "BRANCHING = %d", BRANCHING—FACTOR); 
334 
335 II create the health care hierarchy 
336 next—health—center = -1; 
337 last_position = 0; 
338 branch count = BRANCHThrG FACIOR - 1; 
339 heal—id = class id("health center"); 
340 
341 for (i = 1 i <= NUMBER—OF—LEVELS; i = i + 1) 
342 for 0 = 1; j <= (int) powBRANCHING_FATOR, i - 1); j = j + 1) { 
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343 initialev = event(NO ENTJ.TYID, 0.0, INITIAL); 
344 cur node last_position + j - 1; 
345 if (cur node = 0) { 
346 initial_ev << (int) pow(2, NUMBER—OF—LEVELS - i); 
347 initialev << NO ENTITY ID; 
348 initial_ev << sim draw obj("treatable", 1.0, 
349 simrandint(1, 10000, SEED)); 
350 } 
351 else { 
352 initial_ev << (int) pow(2, NUMBER_OF_LEVELS - i); 
353 initial cv << heal id[next health center]; 
354 initial cv << sim draw obj("treatable", TREAT PROB, 
355 simrandint(1, 10000, SEED)); 
356 } 
357 
358 create("health center", initialev); 
359 simtrace(1, "created health center %d", cur node); 
360 
361 initial cv = event(NO ENTITY ID, 0.0, INITIAL); 
362 initial cv << heal id[cur node]; 
363 initial_ev << sim_negexp_obj("interarrival time", ARRV_RATE, 
364 simrandint(1, 10000, SEED)); 
365 
366 create("village", initial cv); 
367 simtrace(1, "created village %d", cur—node); 
368 
369 branch—count += 1; 
370 if (branch count = BRANCHING—FACTOR) { 
371 branclT count =0; 
372 next health _center - 1; 
373 } - 

374 } 
375 last_position -i-= (int) pow(BRANCHING_FACTOR, i - 1); 
376 } 
377 
378 create("surnmary", NO_EVENT); 
379 
380 simtrace(1, "initialized simulation"); 
381 } 
382 
383 INITIAL FUNCTION(initialize); 
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Appendix B 

SimD Implementation of the 

Mobile Communication Network 
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1 #include <SimD.h> 
2 #include "spatial.h" 
3 
4 II globals for command-line arguments 
5 extern sim time DURATION; 
6 extem mt PLATFORMS; 
7 extem double RANGE; 
8 extern double SPEED; 
9 extern double EVENT RATE; 
10 extem double BCASTPROB; 
11 extern hit SEED; 
12 
13 II event types 
14 EVENT TYPE([NITIAL); 
15 EVENTTYPE(BULLET1N); 
16 EVENT TYPE(REPORT); 
17 
18 1/ summary entity class 
19 II (statistics collection and reporting) 
20 class summary : public entity 
21 public: 
22 summary(event &initial_ev); 
23 void body; 
24 }; 
25 ENTITY CLASS(sumniary, entity); 
26 
27 II platform entity class 
28 class platform : public mobile _entity { 
29 sim_negexp_obj Eventjate_gen; 
30 sim_draw_obj Bcast_prob_gn; 
31 sim_uniform_obj Direction_gen; 
32 
33 mt Bcasts_sent; 
34 mt Bcastsrcvd; 
35 public: 
36 platforni(event &initial_ev); 
37 void handle bulletin(event &bulletinev); 
38 void bodyO; 
39 void generate reportO; 
40 
41 ENTITY_CLASS(platform, mobile entity); 
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45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62. 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 } 

42 // Initialize the summary entity 
43 surnmaty::summary(event &initialev) 
'14 

} 

II main actions of summary entity 
void summaiy::body() 
{ 

mt i; 
event report_ev; 
mt beasts sent; 
mt beasts rcvd; 
mt total beasts sent; 
mt total beasts rcvd; 
simfileid file—id; 

file—id = sim_fopen("report", "w"); 

II wait for all platforms to report 
total beasts sent = 0; 
total beasts rcvd = 0; 
for (i = 0; i < PLATFORMS; i += 1) f 

wait(reportev, type_p == REPORT); 
reportev >> beasts rcvd>> beasts sent; 

II print a report for each platform 
sim_fprintf(fileid, "Report for %s", report_ev. 
sim_fprintf(file_id, "); 
sim_fprintf(file_id, " beasts sent = %d", 
sim fprintf(file id, " beasts rcvd 
sim_fprintf(fileid, "); 

total beasts sent += beasts—sent; 
total beasts rcvd += beasts rcvd; 

} 

II print totals 
sinifprintf(file_id, "Totals"); 
sim_fprintf(ffleid,  
sim_fprintf( 

fileid, " total beasts sent = 

total_beasts_sent); 
simfprintf( 

file id, " total beasts revd = %d", 
total beasts revd); 

simfprintf(fileid, "); 

simfelose(fileid); 

sched_byO.nameO); 

beasts sent); 
beasts rcvd); 
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91 // initialize the platform entity 
92 platform::platform(event &initial_ev) 
93 { 
94 point start_pos; 
95 
96 initial _ev>> Direction_gen; 
97 initial_ev >> Bcast_prob_gen; 
98 initial_ev >> Event_rate_gen; 
99 initialev >> start_pos; 
100 
101 Bcasts sent= 0; 
102 Bcasts rcvd= 0; 
103 
104 set_position(start_pos); 
105 set velocity(velocity(Direction_gen.sampleO, SPEED)); 
106 
107 prehandler(type_p = BULLETIN, platform::handle_bulletin); 
108 } 
109 
110 II prehandler to intercept bulletins 
111 void platform::handle bulletin(event &bulletin_ev) 
112 { 
113 Bcasts rcvd -i-= 1; 
114 } - 

115 
116 II main actions of platform entity 
117 void platform::body() 
118 { 
119 while (time() < DURATION) { 
120 II hold until next broadcast or direction change 
121 hold(Event_rate_gen.sampleO); 
122 
123 if (Bcast_prob_gen.sample() == TRUE) { 
124 II broadcast a bulletin 
125 broadcast(RANGE, event(NO ENTITY ID, 0.0, BULLETIN)); 
126 Bcasts sent += 1; 

127 } - 

128 else { 
129 II change direction 
130 set velocity(velocity(Direction_gen.sampleO, SPEED)); 

131 } 
132 } 
133 
134 generate_reportO; 
135 terminateO; 
136 } 
137 
138 II send statistics report to summary entity 
139 void platform::generate_report() 
140 { 
141 event report_ev; 
142 
143 report_ev = event(entity id("summaryl"), 0.0, REPORT); 
144 reportev << Beasts sent << Bcasts_rcvd; 
145 schedule(report_ev);_ 

146 } 
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147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
.185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 

II default settings for command-line arguments 
sim time DURATION = 20.0; 
mt PLATFORMS = 500; 
double RANGE = 5.0; 
double SPEED = 1.0; 
double EVENT RATE = 1.0; 
double BCASTPROB = 0.5; 
mt SEED = 10079; 

I/the initial function; this function is run from the command-line 
void initialize(int argc, char *argv[]) 
{ 

mt 1; 
event initialev; 

II parse the command-ilne arguments 
if (argc> 1) DURATION = atof(argv[1]); 
if (argo> 2) PLATFORMS = atoi(argv[2]); 
if (argo> 3) RANGE = atof(argv[3]); 
if (argc > 4) SPEED = atof(argv[4]); 
if (argo> 5) EVENT _RATE = atof(argv{5]); 
if (argo> 6) BCASTPROB = atof(argv[6]); 
if (argc> 7) SEED = atoi(argv[7]); 

ASSERT(DURATION> 0.0); 
ASSERT(PLATFORMS > 0); 
ASSERT(RANGE> 0.0); 
ASSERT(SPEED >= 0.0); 
ASSERT(EVENT RATE > 0.0); 
ASSERT(BCASTPROB >= 0.0); 
ASSERT(SEED > 0); 

sim_trace(1, "duration = 
sim_trace(1, "platforms = 
sim_trace(1, "range 
simtrace(1, "speed = %f", 
simtrace(l, "event rate = 
simtrace(1, "beast prob = 
simtrace(1, "seed = 

DURATION); 
PLATFORMS); 
RANGE); 
SPEED); 
EVENT RATE); 
BCASTPROB); 
SEED); 

II create all platforms 
for (i = 0 i < PLATFORMS; i += 1) { 

initial cv = event(NO ENTITY ID, 0.0, INITIAL); 

initial_ev << point( 
simuniform(0.0, MAXX, SEED), 
simuniform(0.0, MAX—Y, SEED)); 

initial 
_ev << sim_negexp_obj( 

"event rate", EVENT—RATE, sim randint(1, 10000, SEED)); 
iriitialev << sim_draw_obj( 

'beast prob", BCAST PROB, sim randint(1, 10000, SEED)); 
initial cv << Sim_ uniform _obj( 

"direction", 0.0, 360.0, sim randint(1, 10000, SEED)); 

} 
create("platform", initial cv); 
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204 create("summary"., NO EVENT); 
205 } 
206 
207 INITIAL FUNCTION(initialize); 
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