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measure for “best” in human learners. The science of bias is premature and,
as yet even a taxonomic classification is not agreed upon, let alone a theory

that supplies design rules for creating learners.

This paper develops a descriptive framework of the kind that must pre-
cede a generative theory of bias. First, it establishes a set of criteria, or relative
measures, for comparing inductive learning systems and their biases. Then, a
framework is derived by separating bias into two components: static and dy-
namic. Dynamic bias is that part of the learner which changes while a concept
is being discovered. In order to function within our world, systems must have
dynamic bias, and this is where research must concentrate. Examples from
Mitchell’s version space learning system [Mitchell 1977] dominate the third
section of the paper, and illustrate each distinguished form of bias. STABB
[Utgoff 1986] adds a type of dynamic bias, enabling it to increase the descrip-
tion language of version space. The final section elaborates dynamic bias by
explaining ETAR [Heise 1989, Heise & MacDonald 1989a, Heise & MacDonald
1989b], a complete system which learns robot assembly tasks as it operates in
the real world. ETAR uses a focus mechanism to determine important informa-
tion from an example and to significantly reduce the concept choices during
generalization. It is able to learn tasks such as stacking blocks and sorting
or selecting objects (all in the real world) from sequences of robot motions
recorded as a user physically leads the robot to complete the task. Dynamic
bias makes learning possible. All real world learners would benefit from the

ability to shift attention dynamically.

2 What is a Good Bias?

Comparison between learners is difficult. Many “local” relative measures are
used, such as the inability to learn particular concepts or the speed in learn-

ing common concepts. This paper uses three evaluation criteria to compare



inductive learners and their biases:!

Computational complexity measures the time and space required to com-
pute an hypothesis that is consistent with a set of observations [Russell &
Grosof 1990]. Since every learner searches through its hypothesis space
either directly or implicitly, complexity is chiefly related to the size of
the hypothesis space. It also depends on factors such as the organization
of the hypothesis space, how often the hypotheses must be generated,
and the traversing mechanism. Practical algorithms require time and
space to be polynomial in all the parameters that influence the outcome
(such as the number of features describing an example, the number of

examples, and the size of the learned concept description) [Valiant 1984].

Example complexity measures the number of observations required to in-
duce an appropriate hypothesis. The human teacher or user is often
responsible for generating the examples. As the number of necessary
examples increases, so does the difficulty of the teacher’s job. Certainly

any system with the ambition of helping users?

must keep the required
examples at a minimum. To learn a goal from fewer examples, a system
must make a larger inductive “leap” or generalization, and is a better
learner than a system which requires additional examples to derive the
same conclusion. Again, one aim for the number of required examples
is that it be polynomial in all parameters [Shvaytser 1990], though we
expect that it should be better. Additional restrictions on the examples,

such as the need for a specific order (e.g. [Andreae 1984]), may also be

considered as increasing the example complexity.

1{Angluin & Smith 1983] uses various efficiency measures (alternative measures of com-
plexity, similar to those in this paper) and an inferability criterion (corresponding to this
paper’s learnability criterion).

20r learning in a dangerous world, where mistakes have dire consequences, and every
example is potentially destructive to the learner.
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Figure 1: Components of an inductive learner

Learnability is the last, and most difficult, of the comparison measures.
In simple terms, it is the number of concepts that a system can learn.
But, when has learning occurred, is it complete, and has the correct
concept been identified? We evaluate human learning with performance
tests, conversation, and analysis of further examples. Artificial learners
have not been subject to the same assessment, rather four (theoretical)
models are used: identification in the limit [Angluin & Smith 1983, Gold
1967], probably approximately correct (PAC) learning [Valiant 1984],
frequently approximately correct (FAC) learning [Dietterich 1989], and

exact match.

These three criteria — computational complexity, example complexity,
and learnability — are generally trade-offs. For instance, when few exam-
ples are available the computational complexity may increase, for equivalent

learnability.

3 A Framework for Bias

This section separates the bias functionality of a typical learner model to

distinguish two forms: static and dynamic. An inductive learner has three
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parts, as shown in figure 1:

Examples. This includes all that is input to the learner from the external
world. Generally, the examples are explicitly supplied by the user or
observed by the learner’s sensory mechanism. Each example contains
features from an example vocabulary. These features are bound together
by the example formalism to make up a complete example. E.g. if the
features are “diamond” and “10” with the conjunction formalism, then

the example is the 10 of diamonds (“10 A diamond”).

Background knowledge. This information is present in the system before
learning begins. It consists of a vocabulary and formalism, as well as a
list of relations on the vocabulary. An example of a relation might be
that “diamond” is an instance of “suit”. This knowledge may be used

to generate the hypothesis space for the learner, and has been termed

knowledge bias [Hirsh 1990].

Learning algorithm. This is the heart of the learner and contains three

components:

1. Hypothesis space: a (possibly infinite) set of all potential concepts
which the system may learn. It is formed by taking all concept vo-
cabulary primitives (conceptual bias [Genesereth & Nilsson 1987],
concept language bias [Russell & Grosof 1990]) and combining them
in all possible ways according to the allowed hypothesis formalism
(logical bias [Genesereth & Nilsson 1987], or composition bias [Mac-
Donald & Witten 1988]). Preference ordering bias [Genesereth &
Nilsson 1987] may force a fixed order on the elements in the hy-

pothesis space.



2. Translation: a process which transforms the input examples into a

form suitable for the search algorithm

3. Search: the technique for traversing the hypothesis space.

As in Utgoff’s definition (see the introduction), it is precisely the back-
ground knowledge and the learning algorithm that are the bias and determine
the concept that is learned. Most researchers explicitly code their inductive
learners, and whenever the system is to work in a different domain, the back-
ground knowledge and/or the learning algorithm are re-designed. This is the
first category of bias. A bias is static if it does not change while the system
attempts to learn a concept. A learner is entirely static if its behaviour, apart
from the input examples, is determined before viewing the examples. In other
words, in a static system one can always predict the search space, the search
algorithm, and the features present in the preprocessed examples, regardless
of the actual input examples. The input examples determine the path and ter-
mination of the search. Many of today’s artificial learners possess only static

bias.

In contrast, dynamic bias changes the learning algorithm while a concept
is being acquired, so the system’s behaviour cannot be predicted until the
examples are known. The example transformation, the search space, and
the search strategy may change as examples are processed. Figure 2 shows
how dynamic bias extends the inductive learner model. Two dynamic biasing
techniques can be identified, and both are apparent in the machine learning
literature. Dynamic bias can either expand (magnify) or shrink (focus) what

is considered by the learner.

Focus. The attention of the learner may be directed to specific features in
the feature space, structures within the hypotheses, or strategies of the
potential search algorithms. The most common use is focusing in the

search space, where certain hypotheses are preferred (for example ETAR
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Figure 2: Dynamic bias added to an inductive learner

prefers to form loops and branches at the points in a task where nearby
objects’ roles change), effectively causing the space to shrink with each
example presentation. The aim is to decrease the computational and
example complexities, while maintaining the same learnability as the

corresponding static system.

Magnify. A search space may not contain a description for a given example
set. In this case the bias is too strong, and the components of the learning
algorithm must be expanded. Most often knowledge of the underlying
structure and the domain are needed, enabling the system to add new
concepts to the hypothesis space, modify the search algorithm, or look
for more information in the examples. For instance, additional internal

nodes might be added to an object type hierarchy, such as “polygon”






static [ magnify focus | focus +
magnify
Initial measures
knowledge 29 29 29 29
learnability 12 12 4+ 12 12 +
Learning “circle” (in hierarchy)
computational complexity 29 29 71 71
example complexity 22.5 22.5 2 | 2 |
concept learned yes yes yes yes
Learning “polygon” (not in hierarchy)
computational complexity 29 3 7 7 1111 ]
example complexity 22.5 45 1 2 | 3 |
concept learned no | yes/no 1 | no yes 1

Figure 4: Comparison of various biases under version space.

with respect to the search space, obtaining the main result in figure 4 — a

comparative table of complexities and learnability for the biases.

First, we examine the three measures for static bias in the version space
system. In figure 3, the vocabulary bias is a fixed set of size and shape features
while the hypothesis formalism is ordered pairs of these. Concepts are related
to each other by a general-to-specific partial order. The size of the hypothesis
space, simply measured as the sum of the number of concepts plus the number
of relations, is a good indication of the approximate computational complexity
of the learner. There are initially 12 concepts and 17 relations, giving a total
of 29. The search algorithm ensures that each of the concepts in the hierarchy
may be learned if proper examples are given. Since no additional concepts
can be learned, the learnability is 12. We will limit the example complexity to
indicate the minimum number of examples required to isolate a concept and
the difficulty with which these examples would be chosen. A simple formula
divides the minimum number of examples by the probability of choosing a
feasible set of such examples. In version space, two correctly chosen positive

examples are always necessary and sufficient in determining the S set, as long



3 Moreover, each parent of

as the desired concept is not one of the leaves.
the concept must be eliminated for the G' set to meet S. Sometimes one
negative example will eliminate more than one parent. The minimum number
required is then the size of a smallest set (disjoint from S) so that each parent
covers at least one member. Thus, for a tree-structured hierarchy, version
space can always learn with three (two positive and one negative) properly
chosen examples. The difficulty of choosing proper concepts is a monotonically
increasing function dependent on the total number of possible examples and
the complexity of the hierarchy. We simply calculate this as the inverse of the
probability of chosing the correct examples, assuming that no example may be
repeated. For figure 3, we begin with one positive example (2 possibilities out
of 6), followed by either another positive example (1 in 5) and then a negative
(4 in 4), or a negative example (4 in 5) and then a positive (1 in 4) to yield

2[1.2+ 2.1 =L Hence, the example complexity is 3 - £ = 22.5.

STABB extends version space with magnification to increase learnability
by expanding the applicable vocabulary, with a small cost in computational
complexity. It assumes the initial system bias is strong so that the hypothesis
space is always overly restricted. When it is apparent that a desired con-
cept cannot be learned, built-in rules augment the hypothesis space, thereby
weakening the bias and hopefully including the goal concept. The “magnify”
column of figure 4 summarizes the complexities for STABB. When a concept
is already present in the hierarchy (e.g. “circle”), STABB behaves identically

to version space.

Traditional version space cannot learn the concept “polygon” since two
positive examples (“large square” and “small triangle”) cause the S set to

cross the G set if a negative example (“small circle”) has been seen. At this

3When the concept is one of the leaves, i.e. an explicit example, only one positive example
exists.
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Figure 5: STABB constructs new concept

point, STABB fires its heuristics to discover the gap in the knowledge hierarchy
and add a new concept above “square” and “triangle”. Unfortunately, many
of STABB’s rules are domain specific and hard to transfer. Generally, STABB
would execute the domain specific rules first, and if unsuccessful, then a domain
independent least disjunction heuristic adds concepts into the hierarchy. In
this paper we use only the latter. Adding least disjunctions may result in
problems, since the heuristic assumes that the unseen examples are positive
and often builds a description that is too encompassing. The search space can
become cluttered with useless knowledge, so the computational complexity
increases with no gain in learnability. For example, consider three examples:
+ small square, — small circle, + large triangle. STABB generates a new
concept, newcon, shown in figure 5. The system incorrectly assumes this is
the concept it is searching for, though it contains an unnecessary condition
(large, y). If (large, circle) was stated negative as the third example, then
STABB would build the new polygon concept as (x, square) V (x, triangle).
When properly done, the hypothesis space increases by four (one concept plus

three relations) and learnability increases. The example complexity increases
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Figure 6: Focused version space hierarchy

to 45 since an additional example was required to place the polygon concept.

Since the color feature is not important when learning about shapes, a
teacher might only give examples with the shape feature. In this case, a
suitable focus bias would quickly reduce the hierarchy to that of figure 6. Now
the computational complexity is only 7, while learnability remains the same.
Furthermore, any two distinct examples enable any concept to be learned,
hence the example complexity is 2. Focused version space, like the static one,

still cannot learn concepts not in the original hierarchy.

A combination of focus and magnify provides an excellent bias. This
learner can generate and converge on the polygon concept with any set of
three distinct examples. Computational complexity is reduced (11). Example

complexity is also lower (3), while the learnability increases.

5 Dynamic Attention in ETAR

This section examines the real world robot learner that inspired this paper.
ETAR (Example-based Task Acquisition in Robots) reads examples in the
form of sampled numerical joint data, as the user controls a six-axis robot
arm to demonstrate the task, and constructs a simple assembly task procedure.
The main problem was to reduce the potential search space when looking for
relevant features and program structures, and this was achieved by focusing,

ETAR’s primary form of bias.

ETAR explicitly depends on the examples to dynamically and continu-

ously limit the size of the search space. This is essential since ETAR operates
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in a real robot domain, hence its search space is enormous. Furthermore, its
hypotheses must describe space and time dependencies so that loops, branches,
sequences, and object relations are formed. ETAR’s focus of attention mecha-
nism limits the relevant vocabulary and chooses the possible structures com-
patible with each observation. Thus, the focus of attention biases both the

feature space and the hypothesis space.

ETAR’s initial bias is a knowledge base of information about potential
objects in its environment. Each new example forces the system to choose a
subset of the applicable features. In this way the focus of attention mechanism,
currently a fixed locality constraint, highlights the important features in an
example. As user traces are recorded, so are the objects that are close to
the robot. The features of these nearby objects are crucial to generalizing
each step of the task. When more examples of the same task are noted, the
vocabulary is further circumscribed by the intersection of the features from
corresponding nearby objects in each example. Suppose that part of the task
is to pick up an object. The first example grasps a cylinder, while a second
grasps a cuboid. Clearly, radius is not a suitable attribute on which to base
the generalization since it is not a descriptor of cuboids. On the otherhand,

height should be considered.

The focus of attention also limits the structure of the learned tasks. ETAR

allows three control structures, all of whose production is governed by focusing:

Sequencing. Each task example is recorded as a joint sequence while the user
moves the robot, hence, sequencing is explicitly presented. However,
many steps in this sequence may be useless or may contain unnecessary
precision. For instance, when the robot is moved to grasp a block, the
exact path travelled does not matter during the few seconds when it
moves through uncluttered space before approaching the block. Focus-

ing distinguishes the important points along the path (where the robot
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is close to an object and where the user slows down). The remaining
points are partitioned into a sequence of primitive motions (translate,
rotate, translate-rotate, moveto, and grip) augmented with the appro-
priate position arguments. These motions are grouped according to the
objects in the robot’s focus at the time. Each motion group is called a
focus of attention group, and may be viewed as a subtask. The result is
a number of traces of the task, which ETAR goes on to merge into one

procedural description.

Loop. The search for loops is limited to repetition in the primitive motions
about points in the task where the focal objects play the same role. The
role is determined by the user who describes a robot’s task in a functional
format. Suppose one task example is stack(blockl, block2) and another
is stack(block3, block4), then block! and block3 have the same role (as do
block2 and block{). Objects not explicitly specified have the same role

as each other — extra objects, non-essential to the task.

The first step in generating a loop is to search for a focus of attention
group which contains a motion which begins or stops affecting other
objects during its task, i.e. a grip motion. Once determined, this group
is the head of the potential loop and the search continues for another
group in which the same action occurs on another object with the same
role. The groups between these two form the body of the loop. Search

continues until the entire loop is generated.

Branch. All the examples of a task are matched together to form a generalized
task procedure. Matching occurs between corresponding steps (primitive
motions) in each example. Branches are a side-effect; the result of an
impossible match. Special care is taken so that focus of attention groups

only match to other groups that contain objects with the same role.
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Thus, matching (and branching) is determined by one pass through each

example.

Sequences, loops, and branches form the outer structure of a task. The
inner structure is induced after the loop and branch conditions, and the primi-
tive motion arguments are learned. Loop and branch conditionals are found by
a simple discrimination operation? on the features and values of the objects in
the focus of attention. Since primitive motion arguments are numerical posi-
tions, ETAR introduces another formalism: function composition of addition,
multiplication, subtraction, and division. Every primitive motion argument
is discovered by inducing a composite numerical expression of the features in
the focus of attention. Focusing controls the entire structure of the learned
task, reducing the example complexity, and drastically decreasing the com-
putational complexity by cutting down the potential branches and loops that
may be formed to make the final procedure. Learnability is somewhat reduced,
but the simple focus on nearby objects seems powerful since — in a static en-
vironment — it brings all manipulatable objects to the learner’s attention, as

the arm moves.

ETAR demonstrates the potential of, and need for, focus as a form of
dynamic bias. The focusing mechanism is effective but simple, and suggests
several important extensions for investigation in table 1. These factors and

others will ultimately combine to form a theory of focus.

Note that the model of figure 2 allows for both the input and the learning
algorithm to modify the dynamic bias. It is interesting that one theory of hu-
man attention allows both unexpected or interesting input events to interrupt
and redirect the sensory system, and allows higher “executive” level processes
to shift attention so that learning and/or performance are improved [Glass &

Holyoak 1986].

4Similar to AY.
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The goal of a task Its characteristics may affect task motions.

Variable focus distance The robot should also look around itself, in the
neighborhood of the objects it is manipulating.

Speed Objects moving quickly, especially towards the
robot, must be in the focus.

Exceptions Falsified pre-conceptions must be focused on.

New arrivals Objects entering a scene should be noted.

Instruction Someone may point to an object to indicate that
it is important.

Previous errors Objects which may have caused errors in the past
deserve special attention.

Table 1: Possible extensions for ETAR.

6 Conclusion

We must work towards a deeper understanding of bias so that we reason about
and choose appropriate biases for learning systems. Humans direct their at-
tention very specifically, and as they appear to be good learners, our intuition
is to emphasize a similar bias mechanism. We must abandon the notion of
never changing, preprogrammed hypothesis spaces and concentrate on active

filtering processes, which generate potential concepts and modify search “on
the fly”.

For the moment, a formal predictive theory is a premature goal. This
paper develops a descriptive framework of the kind that must precede a gener-
ative theory of bias. We examine computation and example complexities, and
learnability as measures to compare learning. A learner comprises examples,
background knowledge and a learning algorithm, where examples are trans-
lated to suit a search strategy over an hypothesis space. With this model we
propose an important distinction for bias — static versus dynamic — then
decompose dynamic bias into techniques that focus or magnify components of

the learning algorithm.

The version space strategy is applied to a simple hierarchy, contrasting
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static, magnify, and focus bias with respect to the search space, and obtain-
ing a comparative set of results for the complexities and learnability. ETAR
— an implemented real world robot task learner — demonstrates the poten-
tial of, and need for, focus as a form of dynamic bias. Focusing controls the
structure of the learned task, reducing the example complexity, and drasti-
cally decreasing the computational complexity by constraining the potential
branches and loops. Learnability is somewhat reduced, but the simple focus
on nearby objects seems powerful since — in a static environment — it brings

all manipulatable objects to the learner’s attention, as the arm moves.

Learning systems must rely heavily on dynamic biasing mechanisms to
focus and magnify the learning process, if they are to learn a variety of real

world tasks within an acceptable complexity.
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