
THE UNIVERSITY OF CALGARY

Fast Ideal Arithmetic in Quadratic Fields

by

Reginald Sawilla

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

CROSS-DISCIPLINARY DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

and

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 2004

© Reginald Sawilla 2004

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Fast Ideal Arithmetic in Quadratic

Fields" submitted by Reginald Sawilla in partial fulfillment of the requirements for

the degree of CROSS-DISCIPLINARY DEGREE OF MASTER OF SCIENCE.

Chair, Supervisor, Dr. H.C. Williams
Department of Mathematics and Statistics

Co-Supervisor, Dr. M.J. Jacobson
Department of Computer Science

Dr. M.L. Bauer
Department of Mathematics and Statistics

Dr. R. Scheidler
Department of Computer Science

Tole- ;2100tv

Date

Dr. B.H.
Department of Electrical and Computer
Engineering

11

Abstract

Ideal multiplication and reduction are fundamental operations on ideals and are used

extensively in class group and infrastructure computations; hence, the efficiency of

these operations is extremely important. In this thesis we focus on reduction in real

quadratic fields and examine all of the known reduction algorithms, converting them

whenever required to work with ideals of positive discriminant. We begin with the

classical algorithms of Gauss and Lagrange and move on to the algorithm Rickert de-

veloped for the closely related case of positive definite binary quadratic forms. Given

any reduction technique, we present a general method computing the relative gen-

erator necessary for infrastructure computations. Rickert's algorithm along with an

algorithm of Schönhage are adapted to ideals of real quadratic fields. We present a

new method which combines the ideas of Lehmer, Williams, and others into a particu-

larly simple algorithm. All of these algorithms have been implemented and compared

with the Jacobson-Scheidler-Williams adaptation of NUCOMP in a cryptographic

public key-exchange protocol. We conclude showing that Schonhage's algorithm is

asymptotically the fastest but not useful in practice, JSW-NUCOMP is the fastest

practical method when multiplying and reducing, and the new algorithm is the fastest

method when only reduction is required.

111

Acknowledgments

I would like to thank my supervisor, Dr. Hugh Williams, for his invaluable advice,

both professional and scholarly. His tireless work in establishing the Centre for In-

formation Security and Cryptography (CISaC) has developed a fertile research envi-

ronment among the best anywhere. This environment and the opportunity to study

under his tutelage are the primary reasons I chose the University of Calgary.

I also thank my co-supervisor, Dr. Michael Jacobson. His friendly encouragement

and patient help have been greatly appreciated on many occasions. The camaraderie

we have shared has contributed significantly to the enjoyment of this experience. I

thank both of my supervisors for their excellence and the huge role they have played

in the development of this thesis.

Thank you to the other members of my examining committee, Dr. Mark Bauer,

Dr. Renate Scheidler and Dr. Behrouz Far. The time and effort you have spent

reading the thesis and giving advice is greatly appreciated. I would like to especially

thank Dr. Scheidler who has put up with more of me than duty requires due to her

close proximity to my office.

I have so appreciated my fellow students for their practical help with academic

questions, patience in listening to my talks, and for their friendship. I have thoroughly

iv

enjoyed the good times, food and games we have shared and have learned many things

about myself, Calgary and other countries and cultures through them.

I would like to thank Dr. Amir Akbary at the University of Lethbridge for intro-

ducing me to number theory and cryptography. In two summer research sessions he

generously gave me the freedom to pick any mathematical topic of study and pursue

any angle of research that interested me. He liberally gave of his time and resources

and was a significant factor in my decision to pursue graduate studies.

I am grateful to NSERC, iCORE, Dr. Williams, Dr. Scheidler and the University

of Calgary for the funding provided to make this degree possible. The funding has

taken many forms including research stipends, funds to attend conferences and work-

shops, and provision of computer equipment, all of which has enriched the academic

experience.

I especially thank my wife Darcie who has been so supportive throughout my

education. Similarly, I am indebted to each of my children Shafir, Aliya, Ciara, and

Eve who have all made sacrifices.

Most of all I am grateful to God for his guidance, wisdom and favour. Apart from

Him, I can do nothing.

v

Dedication

I dedicate this thesis to:

My father: Though his time on earth was cut short, his influence upon me has been

profound.

My mother: To whom I am forever indebted for her endless encouragement, support

and prayers.

My wife: The most important person in my life and best friend.

vi

Contents

Approval Page ii

Abstract iii

Acknowledgments iv

Dedication vi

Contents vii

List of Tables ix

List of Figures x

List of Algorithms xi

Frequently Used Notation xii

1 Introduction 1
LI. Ideal Arithmetic 1
1.2 Organization Of The Thesis 4

2 Algebraic Number Theory Concepts 6
2.1 Algebraic Number Fields 6
2.2 Ideals 14
2.3 Class Group and Class Number 18

3 Multiplication and Reduction Theory 24
3.1 Multiplication 25
3.2 Equivalence 26

3.2.1 Equivalence Classes 26
3.2.2 Relative Generator 31

vii

3.3 Reduction 34
3.3.1 Purpose of Reduction 34
3.3.2 Classical Reduction of Ideals (Lagrange) 34

3.4 Finding a Reduced Representative 41
3.5 Binary Quadratic Forms 42

4 Applications to Secure Communication

5 Survey of Improved Algorithms

51

57
5.1 Rickert's Algorithm 58
5.2 Schonhage's Algorithm 63
5.3 Schnorr and Seysen's Algorithm 73
5.4 A New Algorithm For Ideal Reduction 78
5.5 Shanks' Algorithm - NUCOMP 84
5.6 Improvements to NUCOMP 87
5.7 Complexity 92

6 Implementation and Timings 95
6.1 General Principles 95
6.2 Lehmer's Extended GCD Algorithm 98
6.3 Rickert's Algorithm 101
6.4 Schonhage's Algorithm 103
6.5 A New Algorithm For Ideal Reduction 107
6.6 Jacobson-Scheidler-Williams NUCOMP 109
6.7 Timings 112

7 Conclusion 119

Bibliography 122

A An Improved Composition Algorithm 129

vii'

List of Tables

5.1 Known Reduction Algorithm Complexity Results 94

6.1 Calculation of Qj P and R 109
6.2 Average Key Exchange Times In Seconds 114
6.3 Single Key Exchange Times In Seconds 115
6.4 Estimating Functions For Key Exchange Times 117

ix

List of Figures

4.1 Message And Key Transmission 52

5.1 Magic Matrix 85

6.1 Key Exchange Comparison 115
6.2 Key Exchange Comparison (Logarithmic) 116

x

List of Algorithms

3.1 Rho(p) - one continued fraction expansion step 36
3.2 Continued Fraction Reduction (Matrix) 37
3.3 Continued Fraction Reduction (Ideal) 38
3.4 Continued Fraction Reduction (Implementation) 39
3.5 Near Reduced Ideal (Ideal) 42
3.6 Gaussian Reduction (Matrix) 48
3.7 Gaussian Reduction (Ideal) 49
3.8 Gaussian Reduction (Implementation) 50

5.1 Rickert—Style Reduction Algorithm (Matrix) 61
5.2 Rickert—Style Reduction Algorithm (Ideal) 62
5.3 Schonhage Reduction (Matrix) 64
5.4 Make Positive (Matrix) 65

5,5 Monotone Reduction - MR (Matrix) 66
5.6 Simple Step Above 2 (Matrix) 71
5.7 Simple Step Above 2 (Ideal) 72
5.8 Efficient Ideal Reduction (Ideal) 82
5.9 Efficient Ideal Reduction (Matrix) 83
5.10 Jacobson-Scheidler-Williams NUCOMP (Basic) 93

6.1 Lehmer's Extended GOD (with Jebelean's condition) 100
6.2 Rickert—Style Reduction Algorithm (Implementation) 102
6.3 Schönhage Reduction (Implementation) 103
6.4 Make Positive (Implementation) 104
6.5 Monotone Reduction - MR (Implementation) 105
6.6 Simple Step Above 2 (Implementation) 106
6.7 Efficient Ideal Reduction (Implementation) 108
6.8 Jacobson-S cheidler-Williams NUCOMP (Implementation) 111

xi

Frequently Used Notation

General

Approximately equal to 23

Is an element of 7

Subset or subring 7

Summation 15

U Product 61

fa] Ceiling of a 61

[aj Floor of a 23

a Single-precision approximation of a 58

Jal Absolute value of a 23

(a, b, c) Binary quadratic form 43

[qo,. .. , c} Simple continued fraction expansion 35

det M Determinant of the matrix M 29

(Pi R,Qi A matrix 26

{ajlT} Set comprised of elements ai subject to condition T 15

a +- b Set a to the value of b 36

A, Bi Sequences from a simple continued fraction expansion 35

cia c divides a 21

xli

12 2 x 2 identity matrix 27

C Field of complex numbers 7

Q Field of rational numbers 7

Ring of rational integers 8

gcd Greatest common divisor 25

Functions

AM Function representing the action of the matrix M on a quadratic
irrational 28

cbN Function representing the action of the matrix N on a 2 x 2 ma-
trix 29

f : A - B A function f mapping from A into B 12

a i-p b Element a maps to the element b 29

f(a) Polynomial f evaluated at c 7

f(n) = 0(g(n)) Big-O, f(n.) ≤ cg(m) for some constant c when n is sufficiently
large 34

Groups, Rings and Fields

[E: F] Degree of E over F 7

Conjugate of the quadratic irrational element c 14

AK Discriminant of the number field K 12

OK Ring of integers of the number field K 9

PGL(2, Z) The factor group GL(2, Z)/ ± 12 27

Q(iJ) Quadratic number field and D is a square-free integer 12

{ai,a2,...,afl} Set orbasis 11

F(a) Extension field formed by adjoining a to F 7

K An algebraic number field 8

Ideals

ci ci = 2 if D 1 (mod 4), and ci = 1 otherwise 13

cth Ideal ct multiplied by ideal b 15

a Ii Ideal a is equivalent to ideal b 19

[a] Equivalence class of the ideal a 19

a7L G b7L 7L-module 21

N(a) Norm of the ideal a 21

(Q, P) Ideal generated by Q/ci and (P + 22

Matrix corresponding to the ideal (Q, P) 26

ai Ideal a- = (Q, P) 26

Cei Quadratic irrational corresponding to the ideal (Q, P) 27

A Set of matrices 2t for a fixed K = Q(/) 26

XFj Relative generator such that ctj = ('I')a0 26

R R = (P2 - D) IQ where (Q, F) is an ideal 26

p(Q, P) One continued fraction expansion step on the ideal 36

xiv

Chapter 1

Introduction

1.1 Ideal Arithmetic

In 1801, a man who is unquestionably one of the greatest mathematicians of all time,

published a Latin work which is one of the most brilliant documents in number theory.

The man was the German mathematician Karl Friedrich Gauss (1777-1855) and the

work was the Disquisitiones Arithmeticae.

One of his many considerable contributions detailed in the book is the first rigorous

explanation of the theory of binary quadratic forms. These pleasing mathematical

objects are simple and yet profound. Algebraic number theory was developing at

about the same time and binary quadratic forms were soon seen to be directly related

to ideals of quadratic number fields. This relation combines the magnificence of

abstract algebra with the elegance of number theory into a fascinating package.

A quadratic number field is an extension of the field of rational numbers which

is formed by adjoining the square-root of an integer (which is not a perfect square)

1

1.1. IDEAL ARITHMETIC 2

to the field. The rationals contain a special subset of numbers, namely the rational

integers. The concept of an integer may be extended to quadratic number fields and,

as with the rational integers, these integers have the algebraic structure of a ring.

In this thesis we concentrate on ideals of the ring of integers. Although the

concepts discussed here are applicable to real and imaginary quadratic fields, our

implementations specifically focus on the real case. Reduction in the imaginary case

has already been analysed and in fact, the reader will soon notice that the imaginary

case may be treated as a simplification of the real case.

Objects in our physical world are regularly grouped into equivalence classes. For

example, sorting buttons into containers by colour, or soda pop onto shelves by size.

Ideals are grouped into equivalence classes as well and when we are given an ideal,

our goal is to find an ideal in the same equivalence class which is represented by small

parameters. In addition, we require an algebraic number which, when multiplied by

the original ideal, yields an ideal with small parameters. This process is known as

reduction and our goal is to find the most efficient algorithms implementing it.

Ideals of quadratic fields have many applications including finding solutions to the

Fell equation, calculating the fundamental unit and regulator of a real quadratic field,

factoring integers, and cryptographic key agreement protocols. These applications in-

volve ideal multiplication. When ideals are multiplied, the parameters characterizing

them often double in bit size. In this thesis we compare several algorithms that find

a reduced ideal equivalent to this product.

In an application such as cryptographic key exchange, the efficiency of the reduc-

tion procedure is extremely important. Without good techniques, reduction consumes

an overwhelming share of the computing time. We will see that the best approach

1.1. IDEAL ARITHMETIC 3

is one introduced by Shanks which in effect performs the reduction before the ideals

are even multiplied.

To reach this conclusion, we have generalized all of the binary quadratic form

reduction algorithms, most for the first time, to work with ideals of real quadratic

fields. Since in this case, we have a cycle of reduced ideals rather than a unique

reduced representative, it was necessary to develop a technique that computes the

relative generator so that a representative from the cycle can be chosen. In practice,

it is infeasible to compute the relative generator exactly; consequently, the algorithms

have been implemented using the (f,p) representation of Jacobson, Scheidler and

Williams which provides an approximation of the relative generator with guaranteed

numerical accuracy.

This is the first comparison of ideal reduction in real quadratic fields and the most

complete look at general reduction in quadratic fields. The breadth of the research

provides a comprehensive understanding of the state of reduction theory and has led

to the development of a very efficient, elegant, new algorithm based on the ideas of

several of the techniques presented in this work. This new reduction algorithm is the

fastest practical method for reducing ideals in quadratic fields when multiplication is

not required.

In order to determine which algorithms work better in practice, a careful imple-

mentation of the algorithms was written in the C programming language utilizing

the GNU multi-precision library. The calculations were precisely optimized to ensure

that any duplication of computing effort was eliminated. This is the first implemen-

tation of many of these algorithms and the most extensive comparison to date of

reduction algorithms for ideals of real quadratic fields. The library is available in the

1.2. ORGANIZATION OF THE THESIS 4

code repository of the Centre for Information Security and Cryptography (CISaC) at

the University of Calgary.

1.2 Organization Of The Thesis

We begin in Chapter 2 with an introduction to the theory of algebraic number fields.

The concepts are introduced in terms of arbitrary degree number fields and then

specialized to quadratic number fields where appropriate. We formally introduce the

ring of integers, ideals, fractional ideals and class group. Most of the notation used

throughout the thesis is introduced here.

From Chapter 3 onward we work exclusively with quadratic number fields. Chap-

ter 3 introduces multiplication and covers reduction in detail. The relative generator

is discussed and a method is developed which may be used to calculate it from within

any reduction algorithm. The classical reduction algorithms of Lagrange and Gauss

are presented, both theoretically, utilizing matrices and ideals, and practical imple-

mentations. When working with imaginary quadratic fields, a unique reduced ideal is

obtained without any additional effort; however, real quadratic fields require choosing

a representative from the cycle of reduced ideals. With the exception of this proce-

dure, all of the concepts in this chapter apply to both real and imaginary quadratic

fields.

One application of ideals is to the exchange of a secret cryptographic key by

two parties across public communication channels. In Chapter 4, concepts of secure

communication are explained and a key agreement protocol is outlined. Thousands

of reductions are used in this process; accordingly, it provides an excellent test-bed

1.2. ORGANIZATION OF THE THESIS 5

for comparing ideal reduction algorithms.

Chapter 5 contains the bulk of the research in this thesis. The algorithms of

Rickert, Schonhage and Schnorr-Seysen are presented in terms of ideals for the first

time. The Schnorr-Seysen algorithm is reworked into the language of continued frac-

tions. With this presentation, it is easy to see its relation to some of the other

algorithms. Shanks' method of reducing before multiplying, which he dubbed NU-

COMP, is explained along with improvements by many individuals. A new algorithm

using continued fractions in a similar style to Schnorr-Seysen and modern NUCOMP

is introduced.

Practical implementations and timings of most of the algorithms are presented

in Chapter 6. General programming concepts in addition to Lehmer's method of

computing the GOD open the chapter. We continue with comments on implementa-

tion and finish with several tables and graphs comparing the reduction algorithms'

performance during a key exchange.

Finally, concluding remarks on the algorithms are given and topics for further

research are suggested.

Chapter 2

Algebraic Number Theory

Concepts

In this chapter we present some of the basic theory of algebraic number fields and de-

scribe how these general concepts specifically relate to the particular case of quadratic

number fields. We introduce the ring of integers, ideals of this ring, fractional ideals

and the class group. This chapter also serves to set much of the notation that will

be used throughout the thesis. Most of the proofs of statements in this chapter are

readily available and so are not presented here. Some example sources are, [Fra98]

for abstract algebra, [5T87] for algebraic number theory and [WW87] for ideals of

orders of quadratic fields.

2.1 Algebraic Number Fields

Before introducing some of the core concepts of algebraic number theory we first give

a brief review of field theory. Recall that a field is comprised of a set of elements

6

2.1. ALGEBRAIC NUMBER FIELDS 7

along with two operations. For our purposes, it is natural to denote the operations

as + and which respectively represent addition and multiplication. In a field, one

of the elements from the set is the additive identity (usually called zero and denoted

0) and another is the multiplicative identity (usually called one and denoted 1). The

field is closed, associative, and commutative under both operations. Each element

of the field has an additive inverse and the non-zero elements have a multiplicative

inverse. Finally, multiplication distributes over addition.

A field E is an extension field of a field F if E and F share the same operations

and F C E. E is a finite extension of degree n over F if B is of finite dimension n

as a vector space over F. We denote the degree of B over F by [E: F]. If we adjoin

a single element (not in F) to F, we have a simple extension of F. The base field

typically considered in algebraic number theory is Q, the field of rational numbers.

Theorem 2.1. Every finite extension of the field Q is a simple extension.

In other words, the extension field B = Q(ai, a2,... ,a,) for some finite number

n is equivalent to the extension field Q(a) for some a. One can see quite easily that

a will be an element of the field E.

As stated earlier, we are interested in algebraic number fields. Each word here

has significance.

Definition 2.2. An element a is algebraic over a field F if a is the zero of a non-zero

polynomial with coefficients in F. That is, f(a) = 0 for some non-zero polynomial

f(x) E F[x}.

Definition 2.3. An element of C, the field of complex numbers, that is algebraic

over Q is called an algebraic number.

2.1. ALGEBRAIC NUMBER FIELDS 8

Example 2.4. is an algebraic number since it is a zero of the polynomial 1(x) =

X' - 6; however, it can be shown that we cannot find a polynomial with coefficients

in Q such that f(ir) = 0, therefore, ir is not an algebraic number.

Definition 2.5. We say K is an algebraic number field if K is a subfield of C and

the degree of K over Q is finite.

The integers 7Z are the building blocks of Q. By construction, algebraic numbers

are fundamentally related to Q and an analogue of the rational integers exists for

algebraic number fields. We may generalize the concept of an integer according to

the following definition.

Definition 2.6. A complex number a is an algebraic integer if it is a zero of a monic

polynomial with coefficients in Z. That is, a is an algebraic integer if a E C and

there exists a polynomial

1(x) = x + an-1X'- 1 + + a1x + a0 (ai E Z)

such that f(a) = 0.

Example 2.7. \/T is an algebraic integer because it is a zero of f(x) = x2 + 1. The

algebraic number 1 is a zero of polynomials such as f(x) = 2x - 1 and f(x) x -

however, the first is not monic and the second does not have all coefficients in Z. One

can easily prove that a polynomial with the required properties does not exist and so

is not an algebraic integer.

It is important to know the structure of the set of algebraic integers. As in the

case of Z, multiplicative inverses of the elements do not exist in general. Hence, the

algebraic integers do not form a field; however, they do form a ring, just as Z does.

2.1. ALGEBRAIC NUMBER FIELDS 9

Theorem 2.8. The algebraic integers of a number field K form a ring, denoted OK

(or just 0 if the context is clear), and referred to as the ring of integers of K. Further,

OK is a free 7Z-module of rank [K: Q}.

Since a number field K is defined to be a finite extension of Q, by Theorem 2.1

we know that K = Q(a) for some algebraic number a E K. Now we will show that

we may consider a to be not just an algebraic number but an algebraic integer. We

first require the following lemma.

Lemma 2.9. If K is a number field, then for any a E K there exists m E Z such

that ma E (9.

Proof. Let a € K and [K: QJ = n, then a is a zero of a polynomial of the form

a0 a1 a

Ui b.
(a,b€Z)

Note that we may assume that all of the coefficients are integers since if k = lcm[bi, b2,.. . ,

f(a)=O = kf(a)=O

where all coefficients of kf(x) are integers. Hence, a is a zero of a polynomial

f(x)=ao+a1x+••.+a,xTh (aj€Z)

Our goal now is to make the polynomial monic. Note that if we multiply the expression

2.1. ALGEBRAIC NUMBER FIELDS 10

by a 1 we obtain

a'f(x) = a0a 1 + a1a 1x + + a_1a'x 1 + ax

= a0a 1 + (aia 2)(ax) + . .. + a_i (an x) 1 + (ax)

Setting y = ax and a = aa we obtain 71

a 1f(y/a) = a + ay + ... + a_1y 1 + y

which has a zero a' = aa. Hence, we have

g(a') = a + acV + .. + a_1(&)' + (a')'' = 0 (a E 7Z)

which is what we wanted to show. 0

Using this lemma we may prove,

Proposition 2.10. If K = Q(a) is a number field, then K = Q(a') where a' is an

algebraic integer.

Proof. Let K = Q(a) be a number field, then, as mentioned previously, a is an

algebraic number. By the previous lemma, there exists m € Z such that a' = ma E 0.

Since m is also in Q, Q(a) = Q(ma), and therefore K = Q(a') with a' E 0. 0

Theorem 2.11. If E = F(a) is a simple extension of a field F and [E: F] = n is

finite, then every element /3 E E can be uniquely written as

(ai E F)

2.1. ALGEBRAIC NUMBER FIELDS 11

By Proposition 2.10 and Theorem 2.11 every number field K has a basis B =

where a E 0. Since 0 is a ring, this basis consists entirely of

algebraic integers. By Theorem 2.8 we know a Z-basis exists for 0; in other words,

there exists a basis {ai, a2,. . . , a,} such that for any element ,@ E 0

and

0 = a1a1 + a2a2 + + anan

(ai E Z) ai E 0)

(1≤i≤rt)

However, it need not be the case that B is a Z-basis for 0. For example, consider

K = Q(\/5), then B = {1, /} is a basis for K but 1̀ 215- is an integer in K since it is

a zero of the polynomial x2_x_1=0. Yet 1 a+bv1 for any a,bEZ,hence

B is not a Z-basis for 0.

Definition 2.12. Let K be a number field of degree mover Q and let B = {ai, a2,. . . , a,}

be a Z-basis for 0. Then B is an integral basis for K.

An important invariant of K is the discriminant.

Theorem 2.13. If a is algebraic over a field K, then there exists a unique monic

polynomial f of minimal degree with rational coefficients such that f (a) = 0. We say

f is the minimal polynomial of a over K.

Theorem 2.14. Let K = Q(a) be a number field of degree n over Q. Then there

2.1. ALGEBRAIC NUMBER FIELDS 12

exist n distinct monomorphisms) : K -+ C (1 ≤ i ≤ n). Let aj = Ai (a), then the aj

are the distinct zeros of the minimal polynomial of a over Q.

Definition 2.15. For any element a of a number field K, the A(a) are the K-

conjugates of a.

Definition 2.16. Let {a1, a2,... , a,} be an integral basis for a number field K, then

the discriminant of K, denoted AK (or just A if the context is clear), is

2

Al(al) .Xi(a2)

A2(al) A2(a2)

A(al) A(a2)

Quadratic Number Fields

With the exception of Q, quadratic number fields are the simplest algebraic number

fields. We will now discuss these concepts in this context. First, we characterize all

quadratic number fields.

Proposition 2.17. Number fields of degree 2 over Q are precisely of the form Q(VT)

for square-free integers D.

Proof. Let K = Q(a) be a degree 2 number field over Q. By Proposition 2.10, we

may assume a E 0. This implies that a is a zero of a monic degree 2 polynomial

f(x) = x2 + bx+cwith b,cE Z.

By the quadratic formula,

_b±V'b2_4c

2

2.1. ALGEBRAIC NUMBER FIELDS 13

Since b, c E Z we can write b2 - 4c = r 2 D with D square-free and r, D E Z. Thus we

have

_b±V'r2D —b±r/ —b r
= =—±— VD_ .

Since b,r E Z, Q, we have Q(a) = Q(it) where D is square-free. 0

Definition 2.18. Let D E 7Z be square-free and let K = Q(V'). If D> 0, we say

K is a real quadratic field; if D < 0, we say K is an imaginary quadratic field.

Theorem 2.19. The ring of integers of a quadratic field has the following character-

ization:

IZii ifD1 (mod 4)
=J 2]

Z [v/-D—] ifD2,3 (mod 4)

The properties of quadratic fields are often characterized by the same set of cases

used above. We will simplify the notation by making use of the following definition.

Definition 2.20.

12 ifD1 (mod 4)
cr= 1 ifD2,3 (mod 4)

We also set w = and so 0 becomes Z[w]. The monomorphisms of a
0

2.2. IDEALS

quadratic field are

14

We denote the conjugate of an element a by & The discriminant of Q(\/) is

calculated to be

2

1w

2.2 Ideals

(u_1_ c7_1±\/) (2) 2

An algebraic number field does not necessarily have unique factorization. While trying

to solve Fermat's last theorem, Kummer devised the notion of ideal numbers. Using

ideal numbers, he could again obtain a unique factorization and this helped him to

solve Fermat's last theorem for a wide class of prime exponents. Dedekind extended

the power of ideal numbers by generalizing the concept to arbitrary rings.

Definition 2.21. Let R be a ring, then A is an ideal of R if for every a, b E A and

r E R we have a - b E A and ar E A. Informally, an ideal is a subring with the

additional property of absorption.

Note. Recall from Theorem 2.8 that 0 forms a ring, thus we may consider the ideals

of 0. By convention, we represent the ideals of 0 using Gothic notation. Following

the notation of Hungerford [Hun8O], we denote the fact that the ideal a is a subring

of 0 by a c 0.

2.2. IDEALS 15

As in the case of 0, we wish to impose some algebraic structure on the set of

ideals. We would like to form a group and so we need to define a binary operation

among ideals.

Definition 2.22. Let a and ti be ideals; we define ideal multiplication to be

ab = f 11 aibi I ai E a, bi E b,i E N}.

In words, the product of two ideals is the set of all finite sums of the products of

elements of a and b.

It can be shown that ideals are closed under multiplication. That is, the product

of two ideals is again an ideal. It is also not hard to apply the definitions and see that

they are associative, commutative, and have identity element 0, and hence form a

monoid. Unfortunately, we fail when we try to find element inverses. Using Z as an

example, it is immediately clear that given an ideal m7L, we are not be able to find an

ideal nZ (with m,n E 74m 0 0,1) so that (m7L)(n7L) = rnn7L = Z. Hence, we need

to introduce an analogue to the rational numbers.

Definition 2.23. We define a to be a fractional ideal of 0 if

a = c'b for some (ordinary) ideal b and non-zero c E 0

To avoid confusion, an ideal that is not a fractional ideal is sometimes called an

integral ideal.

Example 2.24. To find the fractional ideals of Z we take 0 = Z in the above

2.2. IDEALS 16

definition and obtain

a = c't = c'(bZ)

=Z=qZ

(b,cEZ,cO)

(qEQ).

Again, we may apply the definitions and see that fractional ideals are associative,

commutative, and have identity element 0. The definition of fractional ideals was

designed to make inverses exist, the construction of which is given by the following

proposition.

Theorem 2.25. Let K be a number field with ring of integers 0 and let a be a

non-zero fractional ideal, then a has inverse

cr'={cEK I ca.0}

yielding ac 1 = cr1a = 0.

With this result in hand we are able to state the structure of the fractional ideals

of 0.

Theorem 2.26. The non-zero fractional ideals of a ring of integers 0 form an abelian

group with identity element 0 under the operation of ideal multiplication. The group

of fractional ideals of 0 is denoted by F.

As we saw by the definitions of ideal inverses and multiplication, ideals can have

quite a complex description. On the other hand, there is a special type of ideal

that requires only a single element to describe it. We first introduce the concept of

generators.

2.2. IDEALS 17

Definition 2.27. Let X be a subset of 0. We denote by a = (X) the smallest ideal

of 0 that contains X. The elements of X are called the generators of a. If X is finite,

consisting of the elements a1, a2,... , a,, we may write a = (al, a2,... ,

Definition 2.28. An ideal of a ring R with a multiplicative identity is called principal

if it is generated by a single element of R. In symbols, the ideal generated by a is

denoted by (a) and

(a) = far I r E R}

Example 2.29. If we take 0 = Z[i],

(3)={3rIrEZ[i]}

= {3(a + bi) I a, b E Z}

is a principal ideal.

Definition 2.30. The ideal (0) is the zero ideal.

The following remarkable result shows that any ideal of 0 can be generated with

just two elements.

Theorem 2.31. Let a be a non-zero ideal of 0 and a 77 0 an element of a, then there

exists ,8 E a such that a = (a,13).

Definition 2.32. A fractional ideal a of 0 is a principal fractional ideal if a =

for some principal (integral) ideal b = (b) and non-zero c E 0.

2.3. CLASS GROUP AND CLASS NUMBER 18

Using our previous notation, a = (b/c) with b, c E 0, c 0. One readily observes

that the set of principal fractional ideals P is a subset of J and also that P is closed

under multiplication. These facts classify P as a subgroup of L.

Notice that the only difference in the definition of fractional ideals and principal

fractional ideals is that b is required to be principal. The difference between principal

ideals and principal fractional ideals is the denominator c in the generator. This idea

extends to the generators of non-principal fractional ideals as well.

2.3 Class Group and Class Number

We know from group theory that every subgroup of an abelian group is also abelian

and so P is abelian. Some subgroups have a special property that is exhibited in a

relationship between the elements of the parent group and the subgroup itself.

Definition 2.33. A subgroup H of a group G is called normal if gH = Hg for all

gEG.

Theorem 2.34. If C is abelian, every subgroup H of G is normal.

Theorem 2.35. If C is a group and H is a normal subgroup of C, then the set of

cosets

{gH I g E G}

is a group under the operation (aH)(bH) = abH if and only if H is normal. This

group is called a factor group and is denoted C/H.

2.3. CLASS GROUP AND CLASS NUMBER 19

All of the components required for a factor group are available to us. Using the

abelian group F, and? a normal subgroup of .F, we define the class group.

Definition 2.36. Let .F be the abelian group of fractional ideals and? the normal

subgroup of principal fractional ideals. The class group of 0, denoted fl, is defined

to be the factor group

We will show that 71 is always finite. The order or fl is referred to as the class number

and denoted h.

By the definition of a factor group,

= a E JC1

and so we see that 7-1 partitions the elements of .F into cosets. If a E ? then ap is

simply? (? is closed under multiplication) so all principal ideals of F are gathered

into one of the cosets of 7-1. If every ideal of F is principal, we have F =?, thus?

is the only element of 7-1 and h = 1.

Definition 2.37. Two fractional ideals a and b are said to be equivalent if they map

to the same element of 7-1. This relationship is denoted a - b and the equivalence

class of a is denoted [a].

This tells us that if a '-' b then ()a = b where 01, 02 E 0, 'ct'2 =h 0, and ()
is a principal fractional ideal. Alternatively, (b1)a = (0 2)b where () and (''2) are

principal ideals.

2.3. CLASS GROUP AND CLASS NUMBER 20

Definition 2.38. Let a and b be equivalent ideals. The term relative generator refers

to the number ' generating a principal fractional ideal such that (')a = b.

The definition of equivalence was given in terms of fractional ideals but the fol-

lowing theorem gives an important relationship to ideals.

Theorem 2.39. Every equivalence class contains an integral ideal. Consequentially,

every fractional ideal is equivalent to an integral ideal.

Proof. Let a E F, then

a = c'b

ca =

(c0 E O,b 0)

Now since (c) E 7, a is equivalent to b. Given that a was arbitrary, every equivalence

class contains an ideal.

Rings have a parallel to factor groups, the concept of a factor ring. To form a

factor group, the subgroup was required to be normal. Similarly, factor rings require

that the subring be an ideal.

Theorem 2.40. If R is a ring and A is a subring of R, then the set of cosets

{r + A I r E R}

is a ring under the operations (a+A)+(b+A) = a + b + A and (a+A)(b+A) = ab+A

if and only if A is an ideal. This ring is called a factor ring and is denoted R/A.

2.3. CLASS GROUP AND CLASS NUMBER 21

It can be shown that if a is a non-zero ideal then the factor ring 0/a is finite,

hence we can make the following definition.

Definition 2.41. The norm of a non-zero ideal a is defined to be the order of the

factor ring of 0 by a. In symbols,

N(a) = 10/al

The concept of Z-bases apply to ideals also and we have the following important

fact.

Theorem 2.42. Let K be a number field of degree n over Q, then any non-zero ideal

a of 0 has an n element 7L-basis.

Let w = as before. Each non-zero ideal a of the ring of integers of a

quadratic field may be written uniquely as the Z module

a= a7L(b+cw)7Z

where a, b, c E Z, a, c> 0, 0:5 b < a, cia, cib, aciN((b+ew)). Setting Q = au/c, P =

bu/c + ci - 1, S = c we see that this is the same as

a = S QZ@S(P + JD—) Z

where Q/a, P, S E Z, crQIP2 - D and Q, P > 0. Q/cr is the least positive rational

integer in a; the norm of a is easily calculated as SQ/cr. Since the only variables in

this representation are Q, P and 5, we use the notation (5) (Q, P) to represent the

ideal.

2.3. CLASS GROUP AND CLASS NUMBER 22

Definition 2.43. An ideal is primitive if it has no rational prime divisors.

We will usually work with ideals where S = I. In this case, by the structure of 0

and the fact that Q/cr is the least element in a, the ideal is primitive, and we simply

write (Q,P).

To prove the class group is finite, we require that for any given norm, there are

only a finite number of ideals of that norm. This comes as a corollary to the following

two theorems. We will state the first and prove the second.

Theorem 2.44. Any integer belongs to only a finite number of ideals of 0.

Theorem 2.45. For any non-zero ideal a, N(a) E a.

Proof. Let a be a non-zero ideal of 'O and let x E 0. Since N(a) is the order of 0/a,

N(ct)(x + a) = 0 + a (0 + a is the additive identity)

N(a)(1 + a) = 0 + a (setting x = 1 e 0)

N(a)+a=0+a

= N(a) E a

Corollary 2.46. Only finitely many ideals have a given norm.

0

Proof. By Theorem 2.44 there are only a finite number of ideals that contain the

integer N(a) and by Theorem 2.45, every ideal has its norm as an element. Therefore,

only a finite number of ideals can have a given norm. 0

With one more fact, we can prove that the order of the class group is finite. The

proof of the following lemma uses a theorem of Minkowski relating to lattices and a

2.3. GLASS GROUP AND GLASS NUMBER 23

tighter bound than we claim here is possible. Our bound reflects only the concepts

we have introduced and any fixed bound would do. We state the result here as a

lemma and refer the interested reader to [ST87].

Lemma 2.47. Every non-zero ideal is equivalent to an ideal with norm at most /ILi.

Theorem 2.48. The class group 7-1 forms a finite abelian group.

Proof. The fact that 7-1 is abelian follows from the fact that 1P and P are abelian.

To show that 7-1 is finite, let [a] E 7-1 and let L be the discriminant of K. By

Theorem 2.39, a t where b is an integral ideal. By Lemma 2:47, there exists an

integral ideal c with norm at most where b '-'-' c. Hence, [a] = [b] = [c]. Now by

Corollary 2.46, only a finite number of ideals have a given norm. This means that for

each i from 1 to IVIAII, there are a finite number of ideals with norm i. Summing
together, we obtain only a finite number of ideals that have the properties of C. Since

every equivalence class contains an ideal like c, the number of equivalence classes is

finite. That is, 7-1 is finite. 0

This theorem tells us a tremendous amount of information about the structure

of 7-1. For example, the Fundamental Theorem of Finite Abelian Groups says that

any finite abelian group is isomorphic to the direct product of cyclic groups of prime

power order. Therefore,

7-1 p1 Za2 . Zpn

where ai,pi E N and the p, are (not necessarily distinct) primes. Additionally, this

factorization is unique up to the ordering of the factors.

Chapter 3

Multiplication and Reduction

Theory

From this point on, we restrict our .focus to ideals of quadratic fields with particular

emphasis on real quadratic fields. Throughout, we assume the field K = Q(/) is

fixed where D is square-free.

In this chapter, we begin with an overview of ideal multiplication and present

the algorithms of Arndt and Shanks. We determine the equivalence class of an ideal

and provide a method of calculating the principal ideal relating two equivalent ideals.

Reduction is described and the classical algorithms of Lagrange and Gauss are pre-

sented. An approach to choosing a unique reduced representative that is equivalent

to the product of two ideals is explained. As well, a method is introduced which

converts algorithms for working with forms to those for ideals. This chapter forms

the foundation upon which the work of Chapters 5 and 6 is based.

24

3. 1. MULTIPLICATION 25

3.1 Multiplication

In Definition 2.22, ideal multiplication was defined as

ab = { aibi I a E cL,b E b,i E N}.

While this is a useful theoretical definition, it is impossible to implement on a com-

puter. Since we are restricting our focus to quadratic fields, the task of computing the

product of two ideals is quite simple. An algorithm of Arndt is described in [Bue89]

that gives the following method of computing the product of two primitive ideals of

the same discriminant. To multiply c = (Qa, Pa) and ' = (Qb, Pb) resulting in the

product (S)(Qo, F0), compute

cr8 = gcd (Qa, Qb, Pa + Pb) = QaX + QbY + (Pa + Pb)Z,

,. QaQb
'O= oS

P0 QaPbX + QbPaY + (PaPb + D)Z).

The reason we need to compute the above greatest common divisor (GOD) is

that even though we are multiplying two primitive ideals, their product need not be

primitive. The above calculations ensure that we have cth = (S)(Qo, P0) with (Qo, F0)

primitive. Shanks presented the following computationally more efficient algorithm

in [Sha7l].

crG = gcd(Qa, Qb) = QaX + QbY,

cYS=gcd(C,Pa+ Pb) =GZ+(Pa+P)W,

(3.1)

3.2. EQUIVALENCE 26

U (Pb - Pa)XZ - RaW (mod Qb/S),

, QaQi,
-

0-82

PO= 9 +Pa.
cr8

Note. Throughout this thesis, if the symbol R is used in the context of an ideal (Q, P),

it always refers to the integer (P2 - D)/Q. In cases where it is subscripted, the same

subscripts apply to Q and P.

3.2 Equivalence

In Definition 2.37 two ideals are defined to be equivalent if they are in the same

equivalence class and this in turn implies that a principal fractional ideal relates them.

Here, we provide an explicit calculation of the equivalence class of an ideal and show

how to compute a generator of the principal fractional ideal relating two equivalent

ideals. This provides the groundwork to easily calculate the relative generator in the

subsequent reduction algorithms.

3.2.1 Equivalence Classes

By Definition 2.37 we know that if two ideals a0 = (Qo, P0) and aj = (Q, P) are

equivalent, then there exists a relative generator Wj such that a = (j) a0. Concep-

tually, the computations are easier to follow if they are worked in terms of matrices.

Let the matrix j = () correspond to aj. For a fixed K = Q(-,/—D), let the set

of all such matrices be denoted by A. Recall that (Q, P) is notation for the ideal

generated by Q/a and (P + \/)/o. It will be convenient for us to represent the

3.2. EQUIVALENCE 27

quotient of these two generators by the quadratic irrational

Quo. Qi

Definition 3.1. By GL(2, 7Z) we denote the general linear group of 2 x 2 integral

matrices which are invertible. Over Z this simply means that they have determinant

±1. PGL(2, Z) is the factor group GL(2, Z)/ ± 12. That is, () and (: :) are
equivalent in PGL(2, Z).

By [KW9O, Prop. 3i], the ideals cio and a are equivalent if and only if there exists

a matrix M = () E PGL(2, Z) such that = ac0 + b co0 + d Using these concepts we

may compute a general formula characterizing all ideals equivalent to a given ideal.

Proposition 3.2. The equivalence class of an ideal (Qo, P0) is given by

NO, Ps)] = (Q, P)

(d2Qo + 2cdP0 + c2Ro),

6(bdQo + (ad + bc)Po + acRo),

=ad—bc=±1, a,b,c,dE7/.

(3.2)

Proof. Let a0 - 0+/ be given, then cj = is equivalent to a0 if, and only if,
- Qo Qi

for some M= (a b ePGL(2,Z),

(Po + -\ID)
aa0+b Qo

au - Ca0 + d - (Po + \ - C cP0+dQ0 + C\ Qo I

- (aPo + bQ0 + a\/\ (CPO cPo + dQ0 - cV

- CPO + dQ0 + c\/) + dQ0 - c.\ID)

3.2. EQUIVALENCE 28

bdQ + (ad + bc)PQ0 + ac(P - D) + (ad - bc)Qorn

d2Q + 2cdPQo + c2(P - D)

e(bdQo + (ad + bc)Po + acRo) +

e(d2Qo + 2cdP0 + c2Ro)

Qi

(E = ad - bc)

0

Compare this with the action of a matrix on 910. Let N = () with e, f, g, h E Z;
then

I e2Qo + 2egP0 + g2Ro efQo + (eh + fg)Po + ghRo I

NT 0N = efQo + (eh + fg)Po + ghRo f2Qo + 2fhPo + h2R0) . (3.3)

Since Proposition 3.2 characterizes the equivalence class of an ideal, comparing the

elements of M and N shows that all ideals (Q, P) equivalent to (Qo, P0) are given

by

\T/ \ /

(Qi .&\ (d b Qo .p0\ Id b
I I=I I I II
Pi R, \ c a) \\PoRo,/\ca

We define two functions that represent these actions.

Definition 3.3. The function AM where M = () € POL(2, Z) represents the

action of the matrix M on the irrational number a0 corresponding to a0.

AM:

Qo e(d2Qo + 2cdP0 + c2Ro) - Qi

3.2. EQUIVALENCE 29

with e = detM.

Definition 3.4. The function ON where N = () E PGL(2, Z) represents the action

of the matrix N on the matrix % corresponding to a.

ON A

Q0 P0 (Qo P0 N = (Pi
QPO RO) \PO RO) R.i

with e = detN.

A natural question is to inquire about the structure of these functions. The proof

that A = {AM I ME PGL(2,Z)} and = {q5N I NE PGL(2,Z)} form groups under

function composition with identity elements çbi and A1, where I = ±12, is straight-

forward. Composition in A is given by AM1 °,\m, = AM1M2 while composition in 4D is

given by ON, 0q5N2 = cbN2N1.

In the course of this thesis, we move seamlessly between transformations of irra-

tionals corresponding to ideals, and transformations of matrices corresponding to ide-

als, so it is important to establish that these groups of functions are in fact isomorphic.

This way we know that for any transformation acting on the matrix corresponding to

an ideal, there is a unique transformation acting on the irrational corresponding to

the same ideal. For example, if the groups were not isomorphic, we could not easily

calculate the relative generator of an ideal obtained using 9Aj = q5p (t0).

3.2. EQUIVALENCE . 30

Proposition 3.5. Let A andD be as defined in Definitions 3.3 and 3.4. Then

AME— N

(a b'\ 1db
defined by M = i— N =

\c d) ca

is a group isomorphism.

Proof. Let M, MI, M2,N,N1,N2,N'EPGL(2,Z),M=(), and N=(). ca

Well-defined: Observe that AM = A_M and ON = q'-N. Since A and form groups,

the functions A and 0 comprising them are bijections. Hence, Am, = Am, =

±M1. Also,

e(AM) = ON = G(A-M).

Hence, Am, = Am, e(AM1) = e(AM2) and so (9 is well-defined.

Operation preserving: Let M = () and N = (di 1i) then

e(AM1AM2) = e(AM1M2) = ONI

/ - / c1b2+d1d2 a1b2+b1d2 \
where N - c1a2+d1c2 alal-I-blcz) Similarly,

e(AM1)e(AVJ-2) = 4N1cN2 = /-'N2Ni =

Injective: We will calculate Ker(e) = {AM I e(AM) = Oil. Let M and N be as given

3.2. EQUIVALENCE 31

above and set e = det M.

e(AM) = qi

01V = 01

(dQ + 2cdP + c2R bdQ + (ad + bc)P + acR

\pdQ + (ad + bc)P + acR b2Q + 2abP + a 2 R

6=1, a=d=±1, andb=c=O

M=N=I

= Ker() = {A1}

= e is injective

(QP

PR

Surjection: Let cbN be given and let M, N be as above, then ®(AM) = ON-

3.2.2 Relative Generator

Let us write cj = AM(ao) semantically as

(ai" (a b" (ao

') cd)1

El

By [KW9O, Prop. 3ii], the relative generator is Tj = 6(d + co) and so (Q, P) =

(W) (Q0, P0). Writing)'M in this form shows clearly that

(a b (a\ (co

cd) I)

3.2. EQUIVALENCE 32

In other words, MY1 = AM-i. Calculating Ti' we find

(d —b

a

= 62(a - c) = a - cc j

Putting everything together, any algorithm in this thesis can be thought to use

qr E to produce a reduced ideal (Q, Pj. If N = () then cj = AM (ao) where

M = (n). In this case,

To be explicit,

Wj =6(a+tho) = e (a+cP0 ')

- -

W, 1 =d—ccx,=d c
Qi

(Q, P) = (16 a + 6c0 - (Qo, P0)
Qo

/
(Q, P) = d - C) (Q, P)

Additionally, we can generalize [JSW, Lemma 6.3] and define

F=aP0+cR0 , G=aQo+cPo ,

F'=bP0+dR0 , G'=bQ0+dP0 .

(3.4)

(3.5)

3.2. EQUIVALENCE 33

Then,

Qj = (a2Qo + 2acP0 + c2Ro) P = e(abQo + (ad + bc)Po + cdRo) (3.6)

=6(aG+cF) , =e(bG+dF)

= F2(b2Qo + 2bdP0 + d2Ro)

=e(bG'+dF')

Qj and P can be given expressly in terms of Q0 and Po by making the appropriate

substitution for R0:

Q =e (a2QO+2acP+c2')

a2Q + 2acQPo + c2P02 c2D
=€

Qo
G2—c2D

=e Qo

Pi=(abQo+ (ad +bc)Po+cd
P02 — D

Qo
abQ + (ad + bc)QPo + cdP - cdD

Qo
GG' - cdD

=
Qo

(3.7)

(3.8)

Alternatively, if Qj has been computed, a computationally more efficient formula for

Pu s

Pu=e(bG+dF)=&(ad C 6G+dF)

= d(aG + eF) - C d6(aG + cF) - 62G

3.3. REDUCTION 34

= dQ— G
C

(3.9)

In subsequent chapters, these formulas will allow us to perform many reduction steps

without needing to calculate Q, P, and R at each step.

3.3 Reduction

3.3.1 Purpose of Reduction

It is clear from the multiplication formulas of Section 3.1 that the magnitude of the

parameters Qo and P0 of the product ideal is O(QaQb). Theoretically this does not

pose a problem; however, it is not practical to compute with numbers that grow this

fast. Informally, reduction is the process of finding an ideal with parameters bounded

in magnitude by /Z5 that is equivalent to an ideal with larger parameters.

Definition 3.6. An ideal a = (Q, P) of 0 is reduced if a is primitive and there does

not exist an element /3 0 a such that Ifil < N(a) and 1$1 < N(a). For ideals

of positive discriminant where a = (P + /)/Q, this is equivalent to a > 1 and

1< Ee < 0. This is the case if0<P<\/, 0<Q<P+ VDT and Q+P>V.

Ideals of negative discriminant are reduced if I2P I <Q <R or 0 ≤ 2P ≤ Q ≤ R.

3.3.2 Classical Reduction of Ideals (Lagrange)

Lagrange reduction of an ideal (Qo, P0) of positive discriminant is the process of

developing the simple continued fraction expansion of (P0 + /)/Qo. To develop the

simple continued fraction expansion of a real number a, we let a0 = a, qj = Lad

3.3. REDUCTION 35

and a 1 = 1/(a - qi). Note that a 1 > 1 for all i ≥ 0. Using these definitions, a

may be written as

1
a = qo +

1
q1+

1
q2+

1

We write the above compactly as

a = [qo, qi, q,. .. , a]

The variables qj are termed partial quotients. If we define the sequences

A.2 = 0, A_1 = 1, A, = qA_1 + A_2

B. 2 = 1, B_1 = 0, B = qB_1 + B_2
(3.10)

then the rational numbers A/B [qo, q,... q4 are termed the convergents of the

simple continued fraction expansion of a. If a is rational then a = [qo, q1,... ,

for some n E N. If a is irrational, then we have an infinite continued fraction and

lim A/B = a.
Z-+00

With this notation, the sequence of ideals { (Q, .P)} is generated by

P+\/ 1qO

Pj+\/l
Q - ,qi,. . . ,qj_i, I

3.3. REDUCTION 36

where the values qj, Q,, P, are obtained from Algorithm 3.1 below.

Algorithm 3.1 Rho(p) - one continued fraction expansion step

Input: D

Output: p(Q, P) = (Qi+i, P1)

qj+—

Pj+i - qQ - Pi

Q+ D— F1
Qi

return (Q+, P+1)

By the previous discussion of continued fractions, aj = > 1. for i > 0.

This is the first condition of the reduction criterion and guarantees that Qj > 0 if

IPI <\/, and P and Qj have the same sign if jPjj > From the latter fact we

may conclude that if Qj > 0 and P < \/, then IP I <v'. Under these conditions,

ã < 0; hence, by Theorem 4.2 of [WW87], (Q, P) is reduced. This provides a

simplified reduction criterion for use with this method of reduction. We emphasize

that this criterion may only be used if cj > 1 which is only generally guaranteed

for i > 0. One further observation we may make from the formula for Q+i is that

the sign of Qj+j is the opposite of Qj when P+1 > \/75 and remains the same if

Pj+i

We now illustrate how to use the ideas of Sections 3.2.1 and 3.2.2 to create an algo-

rithm that implements Lagrange reduction and calculates a relative generator. First,

we derive a theoretical algorithm using matrices and use it to develop a theoretical

algorithm using ideals and a practical algorithm which is easily implemented.

To find the matrix that effects Lagrange reduction, we need to solve for N and s

3.3. REDUCTION 37

in Definition 3.4. A little arithmetic yields the matrix (') and e = — 1. Hence,
we have Algorithm 3.2 which effects a full reduction using matrices.

Algorithm 3.2 Continued Fraction Reduction (Matrix)

Input: 9AO = (Po D I\ P0 R0)'

Output: Ni such that = ON(to) and (Q, P,) is reduced

[Initialization]
i — O

NO ' '2

[Reduction]
while (Q, P) is not reduced do

IPi+v
qi — [Q

(Q+ p1\\ - i_' (qj
kP +1 Rj+1) -

- N (_1)
+1

return 9tj, N

— 1'\ T (Q Pi') (qi
0) \Pi 1k -'

—1
0

Now we will translate this into an algorithm which uses only ideals. We want to

determine the relative generator at each step in the algorithm so that (b+1) ctj =

The relative generator corresponding to no reduction step is '' = 1; we can confirm

this using (3.4) and the identity matrix in which case a = d 1, b = c = 0 and

1. The relative generator for every other step corresponds to the matrix (. 1 0
in which case a = qi, b = c = —1, d = 0 and e = —1. Plugging these values into (3.4)

yields —(qj - 5). These calculations give Algorithm 3.3.

Now to create an algorithm that is useful in practice, we can show that in Algo-

3.3. REDUCTION 38

Algorithm 3.3 Continued Fraction Reduction (Ideal)

Input: a0 = (Qo, P0)
Output: aj, Ti, such that aj = (4ao and aj is reduced

[Initialization I

[Reduction
while aj is not reduced do

qi - Lad
4- ai - qi

aj1 4- (P+i)cti
i4— i+1

[Compute relative generator]

_ fl
2=0

return aj, W

rithm 3.2 the matrices N and det(N) are given by

N = (A 1 —A 2

B_2

det(N) - A_2B_1 = (1)

(3.11)

(3.12)

Hence, Tj = (- 1)(A_1 - B_1ao) = (B_2 +B_1)1 by Equations (3.4) and (3.5).

To find the values for P+1 and R 4 we compute

\ /

(Q+i Pi+i (qi —1 (Q P (qi —1
0)) t\ 1 0

3.3. REDUCTION 39

qQ- P

qQ- P

-Qi [-,I-D]

(3.13)

We are now in a position to present Algorithm 3.4. The computations for Q+

and Pi+i utilize some efficiencies discovered by Termer. The justification for the

computation of Q+i can be seen by inspection of the matrix of Equation (3.13). The

formula for is obtained by solving r = P + - qQ (the remainder of

Pi+ t\/ j) for qQ - P.

Algorithm 3.4 Continued Fraction Reduction (Implementation)

Input: ci0 = (Qo, P0), D
Output: c = A) Pi), Wj, such that nj = (W) a0 and flj is reduced
Note: The {A} do not need to be calculated unless they are required by an external
algorithm.

[Initialization]
i4- O
A. 2 -O,A. 1 4--1,B. 2 +-1,B...1<-O

P - DQi
R0<-

Qo

[Reduction]
while (Q, P) is not reduced do

qj [Pi +L]] r P + [,I-D] - qQ (simultaneously)

- -Q
<-- [v'-D-] -

Q+i - q(P - P 1) -
4-- qA_1 + A_2, B - qB_i + B_2

i4- i+1

[Compute relative generator]

\ Qi IT) - Bi.2 + B 1

return Pi, Pi) , iIi

3.3. REDUCTION 40

We will see in Chapter 5 that many of the faster reduction algorithms do not

completely reduce the ideal but come within a few Lagrange steps of being reduced.

Therefore, the Lagrange algorithm is often used after the completion of other reduc-

tion algorithms to finish the reduction. The following lemma is an important technical

result that simplifies the computation of the relative generator in these cases.

Lemma 3.7. If (Q, P) = (d — c(P')) (Q') F'), then calling Algorithm 3.4 with

(Q') P') and initializing B_2 - d, B_1 <-- —c produces (Q", F") and W such that

P") P") = (W)(Q,P).

Proof. Let N' () be such that 9J.' = ON' (9A) and let 9J!' = qri' (L') where N" is

returned from Algorithm 3.2 on input of W. This implies that

(a b) (1 o) i—i /
N'N"= 11(qj)

c d 0 1 j=o-1 0

j "a b) (A_i _A_2) ' / qj

= c d —B_1 B_2 =o —1

Hence, if in Algorithm 3.2 we set

(for some i)

(by (3.10) and (3.11))

(A_1 —A_2'\ (a b'\ (i
N0 +— instead of

—B_1 B_2) c d)

0

1

the matrix N returned is N'N" from which we may calculate the relative generator

such that (') (Q", F") = (Q, F). In the case of Algorithm 3.4 we do not need the

{A} sequence, only the {B} sequence. By Equation (3.5), the values c and d from

(Q, F) = (d - c("Y)) (Q') F') are obtained from the bottom row of the matrix

3.4. FINDING A REDUCED REPRESENTATIVE 41

N'; therefore, all that is required is to set B_2 i- d and B_1 - —c in which case the

relative generator returned satisfies (Q", P") = (1Q) (Q, P). El

3.4 Finding a Reduced Representative

In the case of imaginary quadratic fields, it is well known that for any ideal a0, there

is a unique reduced ideal a, equivalent to it. For real quadratic fields, we know

that there can be many equivalent reduced ideals. If the p-operation of Algorithm

3,1 is applied to a reduced ideal a7., then p'(a7.) is reduced for any m ≥ 0 (see, for

example, [WW87]). The ideals produced are ultimately periodic and so form a cycle

of reduced ideals; in fact, this cycle contains all of the reduced ideals equivalent to

a7.. Each equivalence class in the class group contains exactly one cycle and so the

number of distinct cycles of 0 is equal to the class number. If a, is the quadratic

irrational corresponding to a7., then one may move in the reverse direction of p in the

cycle by developing the simple continued fraction expansion of — r; this operation is

denoted p' and pp'(a7.) = p'p(a7.) = a7., if a, is reduced.'

If we use Algorithm 3.3 to reduce an ideal ao to a, with r minimal, we know

by [vtWOl, Cor. 4.6] that if (W7.)ao = a7., then IWD ≤ 1. We can pick a unique

representative from the cycle in the following manner. Let Oi = Ai - Bjc r (see

Equation (3.4)) be the relative generator of two reduced ideals cs, and in the

cycle of reduced ideals; that is, (0)a1. = Applying Equation (3.4), it is easy

'Concepts we won't require but are related are that if a is reduced, n> 0 is minimal such that
a = p7 (a), and 'I', is the associated relative generator, then 'I' is the fundamental unit and in W
is the regulator. If a and b are equivalent reduced ideals such that a = (T) 6, then In I WI modulo the
regulator is the Shanks distance, from a to b. These concepts were further developed by Shanks and
termed the infrastructure of the class group by him. For further details, see [Sha72], [Len82] and
[Sch82].

3.5. BINARY QUADRATIC FORMS 42

to show that 1 = 00 < 0. < 02 < ••• < Oi for all i. Hence, for some i we obtain

(0iWr)I0 = a j where 10iIf,J ≤ 1 < 10j+lWrI. The ideal a,. j is referred to as the near

reduced ideal of a0. Note that the term "near reduced" does not imply that the ideal

is not fully reduced. The idea is that a0 and a j are near to each other since the

relative generator is close to 1.

Algorithm 3.5 is a theoretical algorithm illustrating the procedure to obtain a near

reduced ideal. For a practical implementation, see [JSW].

Algorithm 3.5 Near Reduced Ideal (Ideal)

Input: A reduced ideal a and irrational number If, where I'rI ≤ 1 and (W,.)ao =
Output: A near reduced ideal a,+i and number Oi such that (OiWr)ao =

[Initialization]

00 *-. 1

[Compute near reduced ideal]
while I0i+iWrI <1 do
i—i+1

qi - La+d
Oj+i .' Oi(r+i

- (0+i)a

return O

3.5 Binary Quadratic Forms

Ideals of quadratic fields and binary quadratic forms are closely related objects. Most

of the algorithms presented in this thesis were originally presented in the language of

binary quadratic forms. An in-depth discussion and proof of the equivalence of ideals

and classes of forms is readily available in works such as [Bue89] or [Coh93]. In this

3.5. BINARY QUADRATIC FORMS 43

section we show how to convert the algorithms for forms into algorithms for ideals

and present the classical Gaussian reduction of forms.

Definition 3.8. A binary quadratic form is a function f(x, y) = ax' + bxy + cy2 with

a, b, c, x, y E Z. It is written compactly as (a, b, c) and its discriminant is defined to

be A = b2 - 4ac. Note that 0,1 (mod 4).

Definition 3.9. If gcd(a, b, c) = 1 then (a, b, c) is a primitive quadratic form. The

form (a, b, c) is definite if t < 0 and indefinite if A > 0.

The above references ([Bue89], [0oh93]) show that a form (a, b, c) can be put in

correspondence with the ZL-module

aZ (_b+f&)

This is not a one-to-one mapping as many distinct forms correspond to a single

Z-module. To convert algorithms for working with forms to those for ideals, we

use the Z-module from the above correspondence and set it equal to an arbitrary

Z-module that uses our representation of ideals.

Hence, one correspondence that will work is

a= and b=1
a 2 a

3.5. BINARY QUADRATIC FORMS 44

Equating the rational parts of the right hand side equation,

2P

0•

We do not have (nor do we require) a one-to-one mapping between ideals and forms

but this does give us a correspondence so that we may translate the algorithms. In

fact, for the algorithms, we may further simplify the correspondence to a = Q/cr and

b = 2P/o-. A few more calculations confirm that c = R/a.

Gaussian reduction is the standard method used to reduce forms. We first outline

the reduction method and then translate it for use with ideals. Later, we will compare

this method with Lagrange's method.

Definition 3.10. Two forms f and g are properly equivalent (denoted f '-i g) if there

exists an integral 2 x 2 matrix () with determinant 1 (a unimodular 2 x 2 matrix)
such that g(x, y) f(x', y') where () = () (). The forms are improperly

equivalent if the matrix has determinant — 1.

Forms with negative discriminant are reduced if Ibi < a < c or 0 ≤ b ≤ a ≤ c

and forms with positive discriminant are reduced if k/ - 21a11 < b < \/. For

any arbitrary form f, traditional Gaussian reduction reduces a form by applying the

unimodular transformations

N=

0 \ (1 q\\

1\') orN= \0 i)
where the computation of q will be given later in this section. Using the matrix

3.5. BINARY QUADRATIC FORMS 45

(0
we obtain

t_1 0)

'L(0 1

v) —i o) y) —x

The matrix
(1

1

= (a, b, c) = ay' + b(—x)y + c(—x)'

(a,b,c) (c,—b,a)

gives

"\ qy = (1 q) (x X + =

k\Y') t0 1) ky) k v

3.5. BINARY QUADRATIC FORMS 46

NT (a
b/2

and the matrix

as before.

With the matrix (.2k j) we obtain

(1 q

01

(o _i' (a b/2 (o 1

I%\ o) b/2) _l 0
(_b/2 _ (0
a b/2)-10

_(C —b/2

k\—b/2 a

= (a, b, c) rJ (c, — b, a)

yields

(1 o" (a b/2" (i q

q 1) b/2) o i
a b/2 1q

aq + b/2 bq/2 + o 1
(()

(a aq+b/2

3.5. BINARY QUADRATIC FORMS 47

I a ci using the first transformation and minimize the size of b using the second

transformation. To find the appropriate value for q, we use Euclidean division to find

qsuch that b= —2aq+r with —a <r ≤ a.

Note that various steps may be combined into one. For example, if we apply the

first transformation, followed by the second we obtain

(a,b,c)r'i(c,2cq—b,a—bq+cq2) . (3.14)

Readers familiar with forms will have noticed that we have allowed matrices of

negative determinant in the reductions of Section 3.3.2. When computing with forms,

such transformations are often not allowed since the resulting form is not necessarily

properly equivalent to the initial form. The Lagrange reduction technique would need

to be modified slightly to be used with forms but ideals may use standard Gaussian

reduction. This is given in terms of matrices as Algorithm 3.6 and in terms of ideals

as Algorithm 3.7.

To produce an algorithm that is useful in practice, we use the same procedure

utilized in the previous section. In this case we arrive at the sequences

= 1, X_1 = 0, Xi = qX_1 - X_2

=0, Y 1 = 1, Y = qiY-1 -

and obtain the matrix

N (x 2 Xi-1

3.5. BINARY QUADRATIC FORMS 48

Algorithm 3.6 Gaussian Reduction (Matrix)

Input: 9AO = (Po Qo D
r)'

Output: 9ii, N such that 9Ai = ON, (%) and (Q, Pj) is reduced

[Initialization]
i+— O

NO 12

[Reduction]

while (Q, P.$) is not reduced do

R qj- IRI [Pi
1R4

/Q+i p 1\ to 1\T p\ (0 —1'

ii+1 i+) = \1 qj) pj (Qi R) i qj)

N+1—N(o1 qi—i)

i4— i+1

return Qt, N

Note that det(N) = 1 for all i since det (? ;) = 1; hence, Equations (3.4) and (3.5)

give Ti = Xi-2 + '2ão = (11_ - Y_2c)'. These algorithms assume D > 0; if

D <0, the only change is that qj L.P/Rj].

In [KW9O], Kaplan and Williams give another version of Gaussian reduction.

Their version is identical to the Lagrange reduction of Section 3.3.2 except that the

value of qj is given by

- Q
qj— IQIL IQI

3.5. BINARY QUADRATIC FORMS 49

Algorithm 3.7 Gaussian Reduction (Ideal)

Input: ao = (Q0, P0), D
Output: aj, Ij such that aj = ('1)ao and aj is reduced

[Initialization]
i4— O

D2
.L0 -

Qo

[Reduction]
while aj is not.reduced do

qi4-jj[IRiI
4-

(b +i)ai
+1

[Compute relative generator

Wi - Hoi
j=o

return a, W

They prove that Lagrange reduction terminates in at most

max(
/ 1og(Qo/2v') +) 2)
\2log(1 + \/g)/2

reduction steps while their Gaussian reduction terminates in at most

max(1Q01 + 1)2

steps. Buchmann proves in [BucO3, Thm. 6.5.3] that an ideal is reduced by the

3.5. BINARY QUADRATIC FORMS 50

algorithm presented here in at most

1 log IN-) P +2 -2 (2

steps.

Algorithm 3.8 Gaussian Reduction (Implementation)

Input: a0 = (Qo, P0), D
Output: a = (Q, P), W, such that aj = (Jzj)ao and aj is reduced

[Initialization]

RO4 l'0 D
Qo

[Reduction]
while (Q, P) is not reduced do

P+Lv'J' qj r - p + [VD-] - qj I I (simultaneously)
I I P" I

qj - sign(R4q

Q+i -

Pi+i - [-\I-D] - ri

- Q + q(P i - P)
yi - -

i4- i+1

[Compute relative generator]

1p-vT\

Qi)
return (Q, Pi) , tI'

Chapter 4

Applications to Secure

Communication

One application of ideals is the exchange of a secret key by two parties across pub-

lie communication channels. In this chapter, core concepts of secure communication

are explained and a key agreement protocol utilizing ideals of real quadratic fields

is outlined. In the process of exchanging keys, thousands of reductions are needed;

accordingly, it provides an excellent system in which to benchmark the reduction al-

gorithms as well as demonstrate the important role they play in a real-life application.

For two parties to communicate securely across publicly accessible channels, they

must first agree upon the cryptosystem that they will use as well as a key that will

enable their communication to remain private. By convention, we refer to the two

communicating parties as Alice and Bob. To use symmetric-key cryptography, Alice

and Bob require a common key. This key must somehow be securely communicated

between the two of them. The security of the delivery method depends upon their

51

52

security requirements. It may take the form of delivery in person, by trusted courier

or perhaps an electronic channel that they know is sufficiently secure during the

transmission of the key. After the key has been exchanged, Alice then encrypts her

message and the ciphertext is sent across insecure public channels where we assume

there are eavesdroppers who may obtain the ciphertext. This information is reflected

in Figure 4.1. If the parties are across town, a key may be delivered in person;

however, should one wish to communicate with someone on another continent he has

never met, the problem becomes much more difficult.

Eavesdropper

Message Transmission

(Public Channel)

Key Transmission
, - - - - - - _ — - - -

Alice (Secure Channel)

Figure 4.1: Message And Key Transmission

Bob

We refer to this as the key distribution problem and it was this obstacle which

was a road block for the proliferation of secure communications. In their seminal pa-

per [DH76], Whitfield Diffie and Martin Hellman revolutionized the science of cryp-

tography by providing a method of exchanging keys over insecure public channels,

53

completely obviating the need for a secure channel. Their idea was to use a one-way

function, which can informally be defined as a function f such that if we are given x

in the domain of f, f(x) is easy to compute, but given y in the range of f, finding x

such that f(x) = y is computationally difficult.

In their paper, the one-way function they proposed for key exchange was expo-

nentiation in a finite cyclic group. Reversing this operation is known as the Discrete

Logarithm Problem (DLP). The problem is, given a finite cyclic group' G generated

by g, to quickly compute (deterministically in polynomial time) the integer x (with

0 ≤ x < I Cl where I Cl denotes the number of elements of C) given the element gX•

A proof that this problem is a one-way function would require a proof that there

does not exist a deterministic polynomial time algorithm that computes x. Since this

problem can clearly be solved nondeterministically in polynomial time, a proof that

a deterministic algorithm does not exist would also prove the well-known complexity

theory conjecture that P 54 Jf7'•2 Because the DLP (nor any other problem) has not

been proved to be a one-way function, the most we can say is that it has resisted the

intensive efforts of many gifted mathematicians and only modest progress has been

made toward a solution.

Should Alice and Bob wish to exchange a key, the protocol is:

1. Agree on a finite cyclic group C and a generator g. (public)

2. Alice picks a random integer x with 0 < x < ICJ. (secret)

3. Bob picks a random integer y with 0 <y < JGJ. (secret)

'In fact, all that is required is a finite semi-group.
2p is the set of decision problems that can be solved deterministically in polynomial time and

HP is the set of decision problems that can be solved nondeterministically in polynomial time.

54

4. Alice computes a = gX, and sends a to Bob. (public)

5. Bob computes b = gY, and sends b to Alice. (public)

6. Alice computes k = F. (secret)

7. Bob computes k' = a. (secret)

Since k = bl = (g Y)X = gYX = g XY = (gX)Y = ay = k', they now share a common

key. Note that an eavesdropper has all of the information required to compute the

key, but since finding x given gZ is computationally infeasible if IGI is large, the key

may be considered secret.'

The focus of this thesis is on real quadratic fields but we mention that an imaginary

quadratic field based key exchange was introduced by Buchmann and Williams in

[BW88a]. This cryptosystem is based on a finite group, namely the class group.

Here, Alice and Bob agree on a class group, which is specified by the imaginary

quadratic field Q(/), and an element g of the group (an equivalence class). While

each equivalence class contains an infinite number of elements, a unique reduced

ideal exists in each class which may be considered the class representative. They

exponentiate g as per the Diffie-Hellman protocol, and the key is based upon the

reduced result. Imaginary quadratic field cryptography has been extensively studied

by Buchmann and Hamdy in [BRO1].

The majority of today's popular cryptosystems rely on the difficulty of factoring

or solving the DLP in a finite group. In [BW9O], Buchmann and Williams introduced

It should be mentioned that the Diffie-Hellman protocol might not actually require the DLP
to be solved in order to break the system. If a fast method is found that can find gX1 given gX and
g?J then the system is broken. This is referred to as the Diffie-Hellman problem and it is not known

whether the Diffie-Hellman problem and DLP are equivalent. Certainly solving the DLP will break
the Diffie-Hellman key exchange, but the converse might not be true.

55

the first Diffie-Heilman type public-key exchange system not based on a finite group.

Instead, it is based on the set of reduced principal ideals of a real quadratic field. We

have closure on this set under the operation of multiplication followed by reduction;

however, under this operation we lose associativity and hence we do not have a group.

To pick a reduced representative from the set, we use Algorithm 3.5. Since this key

exchange is not based on a group structure, it may possibly remain secure even if the

DLP for finite groups is solved.

The following is a theoretical key-exchange protocol utilizing ideals of the ring of

integers of a real quadratic field. In practice, an exact representation of the relative

generators cannot be sent because the size of the parameters defining them is expo-

nential in D. Hence, an approximation such as the (1 p) representation of [JSW]

must be used instead. This is explained further in Chapter 6.

1. Agree on a real quadratic field K = Q(v') where D > 0 is square-free and a

reduced principal ideal g E ° K• (public)

2. Alice picks a random integer x with 0 < x < VDT . (secret)

(We know that the number of elements in the set of reduced principal ideals is

usually bounded by

3. Bob picks a random integer y with 0 < y < (secret)

4. Alice computes c and Wa such that a is the near reduced ideal of Ox with

a = (W)ox. She sends a and Wa to Bob. (public)

5. Bob computes b and Wb such that b is the near reduced ideal of By with b =

(W4)?. He sends b and Wb to Alice. (public)

56

6. Alice computes t and Tk such that t is the near reduced ideal of ((Wl)b)x Yx

with t = (secret)

7. Bob computes V and " k' such that V is the near reduced ideal of ((W;')ct)V = xv

with V = (I'w)'. (secret)

Since j?J = and by definition, the near reduced ideal is unique, we know

= ' and Wk = Wk'. If the relative generators are approximated by an (f, p)

representation, we cannot guarantee that t = instead, we only know that V

{p 2(), p'(), , p(), p2()}. In practice, we have found that the approximation can

be made sufficiently accurate so that the keys match. To eliminate any ambiguity, a

second short communication protocol is described in [JSW] that establishes a prov-

ably unique key. In the protocol, Alice computes an additional five bits based upon

her key and sends this information to Bob. From this information, Bob is able to

ensure that their keys match.

Note that in order for this key exchange to be secure, the set of reduced principal

ideals must be sufficiently large. Discriminants D that give a high level of security

are discussed in [JSWO1]. An ElGamal type public-key cryptosystem and digital

signatures (see [E1G85]) may also be implemented. Further details may be found in

[BBT94].

Chapter 5

Survey of Improved Algorithms

Multiplication and reduction are the fundamental operations on ideals in quadratic

fields and as such we want them to be as efficient as possible. Here we present

several algorithms which improve on the computational efficiency of performing these

operations. In this chapter, the algorithms are presented both in terms of matrices

and ideals. The matrix versions of the algorithms clarify how the implementations

&e derived in the following chapter and both facilitate the combination of various

algorithms and make these techniques immediately transferable to binary quadratic

forms. Without the matrix algorithms it would be very difficult to determine how to

compute (in practice) a relative generator corresponding to an ideal that has been

reduced by combining two or more techniques. The ideal algorithms serve to unify

the presentation in this thesis with that found throughout the literature.

57

5. 1. RICKERT'SALGOPJTHM 58

5.1 Rickert's Algorithm

A computer performs its calculations using binary numbers of a fixed length called a

word; for most of today's computers, the length of a word is 32 bits. Following are

two example numbers converted to a computer word.

Base 10 32 bit representation

23 000000000000000000000000000 10111

2' 10000000000000000000000000000000

Numbers that fit in one word are called single-precision; numbers requiring more than

one word are called multi-precision.

In [Leh38], Lehmer describes a method of speeding up the Euclidean Algorithm

by working with single-precision numbers in some calculations rather than multi-

precision numbers. If we are given numbers a and b (without loss of generality,

a > 0) and want to find q and r such that b = aq + r, 0 ≤ r < a, we generally

set q = Lb/ai and r = b - aq. Lehmer noticed that usually all that is required to

compute q are the leading digits of a and b - the tails often have no effect on the

result. Therefore, we should approximate a and b by taking only the leading (word

size) bits of each, say a and i, respectively.' Now, set q = Iva] and r = b - aq.

This is a simplification of the original algorithm. In his paper, Lehmer generates

new approximations based on the initial values for a and until he knows the q values

they yield are no longer correct. Then a multi-precision catch-up step is performed

1This assumes they were the same length to start with. If not, the shorter number is padded in
front with zeros.

5.1. RICKERT'S ALGORITHM 59

and new approximations are taken. The full version of the modern algorithm can be

found in the next chapter.

Rickert used this idea in [Ric89] to speed up the reduction algorithm for imaginary

quadratic forms. Here, we let k be the maximum length of the numbers a, b and c

minus the size of a computer word. Then set a = [a/2 k] , = [b/2 k] , = Lc/2ci.

We then reduce the form (a, b, a) and combine the unimodular matrices used in that

reduction to give a single transformation matrix which is then applied to the full form

(a, b, c). We continue this procedure until (a, b, c) is reduced. The advantage is that

most of the operations and reduction calculations are performed on single or double

precision numbers with comparatively few operations needing to be computed on the

full multi-precision form.

We apply this technique to an ideal a. = (Q, P) by taking single precision ap-

proximations & Pi and .2 of Q, P and R. Let j5 = - j j = Qi

 and reduce .P) in Q (\/). From this procedure we obtain ' =

a + Cjj such that is reduced in Q (/). Using the coefficients a and c,
compute = a + Cj and partially reduce cj by taking aj1 = (+ 1)aj.

Even if Di > 0, 13j need not be positive if a naive approach to computing D

is used. For a simple example, consider Qi = 28, Pi = 23, R = 17 and D =

53. If k = 2 then Qi = [28/22] = 7, .Pj = [23/22] = 5, R = [17/22] = 4 and

bi = 52 - (7)(4) = —3. Either the algorithm used in the single-precision reductions

must take this into account or a different computation for bi must be used. Some

possibilities are discussed in the following chapter.

Conceptually, if bi > 0 and Lagrange reduction (Algorithm 3.3) is used to re-

duce (Q, F), this procedure embeds the partial quotients [go, 41,... , qj] used in the

5.1. RICKERT'SALGOPJTHM 60

reduction of (j, j) into the reduction of P) so that

- - .

I-I = qo, q1,... , q2,

When we compute the approximations Q, P and f?,, if one of them is 0, or if

(, .) is a reduced ideal, a full multi-precision reduction step is taken on (Q, P)

instead, and then the procedure is continued with approximations. We continue this

process until a fully reduced ideal a, is obtained. The procedure is given in detail as

Algorithms 5.1. and 5.2.

5.1. RICKERT'S ALGORITHM 61

Algorithm 5.1 Rickert—Style Reduction Algorithm (Matrix)

Input: 9AO = (Po
Qo 0 D

R0)'
Output: Qt, N such that 2t = N(to) and (Q, P) is reduced

[Initialization]
i4— O

[Reduction]
while (Q, P) is not reduced do
k <- max(max([log2 Q1 [log2 P1, flog2 Ru) - (word size), 0)

QPj/2 Q/2']LPu/2'4- 'J LP,,/2"jj

D4—Pj2—QRi

if an entry of j is 0 or (j, P) is reduced in Q

[Full multi-precision reduction]

Pi+vqj4— Q

(—i qj —1 N 1

- (-1)N(,N

else
[Single-precision reduction]

2tj+i, N Algorithm 3.2 or 3.6 A)
- (det N)NTQtuN

+1

return Qt, N Nj

(A) then

5.1. RICKERT'S ALGORITHM 62

Algorithm 5.2 Rickert—Style Reduction Algorithm (Ideal)

Input: a0 = M, Po), D
Output: aj, JLj such that aj = ('4ao and aj is reduced

[Initialization]

[Reduction]
while aj is not reduced do
k - max(max([log2 Q], flog2 Pil [log2 Ru) - (word size), 0)

LQi/'i , R <- LPu/2c] , ii

if one of Qj P or R., is 0 or (j, .P) is reduced in Q

[Full multi-precision reduction]

qi<— [Q

<- - qi

(b—i) then

else
[Single-precision reduction]

- Relative generator (with 67--i replaced by from reducing a in
) using Algorithm 3.2 or 3.6. Q (\/

<-

i—i+1

return aj, wj=H'cbj

5.2. SCHONHAGE'S ALGORITHM 63

5.2 Schönhage's Algorithm

The divide and conquer technique was used by Schönhage [Sch91] to give an asymp-

totically fast method of reducing forms.: We present the algorithm here in terms of

ideals and show how to compute the relative generator.

To use divide and conquer, the problem of reducing an ideal must be somehow

split into smaller subproblems. The idea Schonhage had was to find an ideal that is

minimal above some value s.

Definition 5.1. (Q, F) is minimal above above s> 0 if

1. Q,P,R≥sand

2. (a) Q-2P+R<sor

(b) P—Q<sandP--R<s

We will show that if an ideal is minimal above 1 then it is at most one step from

being reduced. Before looking into the details of this method, we present an overview

of the algorithm. To satisfy the first condition of Definition 5.1 for any value of s,

we need Q, P and R positive to start with; this is accomplished with Algorithm 5.4.

We then find an ideal minimal above 1. Lastly, we do the final reduction step and

terminate. The main components are combined as Algorithm 5.3. The algorithm

returns a reduced ideal and relative generator.

Make Q, P and R Positive

The first step in making Q, P and R positive is to ensure Q + R> 0. If Q + R < 0

then negate Q, P and R. We obtain a rationale for this approach by considering the

5.2. SCHONHAGE'S ALGORITHM 64

Algorithm 5.3 Schonhage Reduction (Matrix)

Input: 9A Q (P D PR'

Output: 9t', N such that W = ON(9) and (Q', P') is reduced

2L', N1 sign - Algorithm 5.4 (2) {Make positive}
9', N2, •-- Algorithm 5.5 (a', —1) {Main reduction}

', N3 - Algorithm 3.2 (p1', D) {Final Lagrange reduction steps}

N i- N1N2N3
91V +- sign .

return ?t', N

associated matrix (). If) = N () then (-Q,:) = ON (: :), that
is, the steps are the same to reduce (Q, P) as to reduce (-Q, —F).

Second, we want to ensure that P > 0. If P < 0, we use the matrix N = (-9w)

and corresponding function ON from Definition 3.4 to see that (Q, P) (R, —F).

From Equation (3.4), this transformation is realized by (R, —P) = (/_P) (Q, P).

At this point we know that Q + R> 0 which guarantees that at most one of Q or

Ris negative. If Q <0, then using ON where N = () we set Q - Q+2P+R, P

P + R, and leave R unchanged. Since Q ± R, F, and R were positive, we know the

new values for Q, F, and R are positive. A similar argument works with the matrix

N = (j) if R < 0. The full algorithm to make the ideal parameters positive is given

as Algorithm 5.4.

Monotone Reduction

To find an ideal minimal above 1 we use the divide and conquer MR algorithm

(Algorithm 5.5). The first step is to partially reduce (Q, P) until it is minimal above

5.2. SCHONHAGE'S ALGORITHM 65

Algorithm 5.4 Make Positive (Matrix)

Input: 91
= ()

Output: ?L', N, sign, such that all entries of 9i! are positive and 9A' = (sign)çbN(9t)

[Initialization]
9i[-9t,N 4-12

[Ensure Q' + R' ≥ 0 and P'> 0
if (Q' + R' < 0) then

sign <-- —1
else

sign - 1
if (P' < 0) then

/ (R' —F'
-P/ Q
(0 1

N4— N1 0

[Ensure Q', F', k are all positive]
{Q' + R' ≥ 0 implies at most one of Q' or k is negative.}
if (Q' <0) then

, (Q'+2P'+R' P'+R'
4- P'+R' R'

(
NN11 0

else if (R' < 0) then

(' PI + Q1 Q'+2P'+R'

(1 1
NN0 1

return 9L', N, sign

(1 + max(Q, 2P, R))/2. To achieve this partial reduction we recurse into MR with

larger s values until at some point only a few reduction steps are needed to reduce

the ideal minimal above that .s value. Once this recursion unwinds, the algorithm is

5.2. SCHONHAGE'S ALGORITHM 66

called again and asked to reduce, minimal above 1, the ideal that was just partially

reduced.

Giving a bit more detail, suppose the MR algorithm is called with the param-

eters Q, P, R, s. If Q, F, R are all less than 4s then we do a few simple steps,

which we will explain later, until (Q, F) is minimal above .s; otherwise, we recurse

by increasing the threshold by max(Q, 2P, R))/2. That is, we choose a new value

= (s + max(Q, 2P, R))/2 and execute Q', P', R', b1 - MR(Q, F, R, .s'). This gives

(Q', F') minimal above s'. Now, a few reduction steps are taken (producing rela-

tive generator 2) until Q', F' and k are all less than s'. Then MR is called again

with the original s but the new parameters corresponding to the partially reduced

ideal. Thus, we execute Q', F', k, ,03 +- MR(Q', F', R', s). We compute the relative

generator W - b1b2'/ 3 and return the values Q', F', R', W.

In the actual algorithm we often work with only the leading bits of Q, F and

R to speed up calculations in a style similar to Lehmer's GCD algorithm. The full

algorithm for monotone reduction used in the recursion is annotated and given as

Algorithm 5.5. In the following section we explain how steps 5 and 9 use Algorithm 5.6

to reduce the ideal corresponding to 91; these are the only steps in which the ideal is

being reduced.

Algorithm 5.5 Monotone Reduction - MR (Matrix)

Input: t=(
P R)

Output: 91, N such that 9t' = ON(9) and (Q', F') is minimal above 2

[Initialization]

[1. If sufficiently small in size, skip to end]
if min(Q', 2F', k) ≥ 2m+2 then

5.2. SCHONHAGE'S ALGORITHM 67

[2. Calculate size of operands and split if necessary]
n - max([1092 Q'j , [log2 2P'] , [log2 R']) - m + 1
if m < n then
m' f- m, p - 0

else
m' n, p— m — n + 1
Split QL' as W = 22t1+2t0 (0 ≤ Q0, PO, RID < 2')

[3. Calculate half-way point]
h - m' + [n/2]
if min(Q', 2P, k) ≥ 2' then

[4. Recursive call - reduce (Q, P) minimal above 2'
', N - MR(QL', h)

[5. Reduce until max(Q', 2P, R') <2']
while max(Q', 2P', R') > fh do

if (Q', F') is minimal above 2"' then
break

else
9C', N' Algorithm 5.6 (QL', m')

if (Q', F') is not minimal above 2' then

[6-7. Recursive call - reduce (Q', F') minimal above m']
2L', N' - MR(t',m')
N+— NN'

[8. Update tails]
if p> 0 then

2t' - 2' + NT0N

{from step 5}
{from step 1}

[9. Reduce above m]
while (Q', F') is not minimal above 21 do

2L', N' +- Algorithm 5.6 (?t', m')
N+— NN'

return 2t', N

5.2. SCHONHAGE'S ALGORITHM 68

Simple Steps

Reduction in the MR algorithm is accomplished via the use of two basic steps. These

reduction steps are designed so that the ideal parameters Q, P, and R remain positive.

The first of these is called a low step. Here, Q remains unchanged and the reduction

is

(5.1)

R'—Q-2P+R.

The second is called a high step and it is symmetric, leaving R unchanged with the

reduction

Q'<—Q-2P+R,

R'4— R.

The matrices which effect these reductions are,

IandH=I
/

0 1! —11

low step high step

The restriction that all of the ideal parameters remain positive provides a unique

reduction path using the above steps. Observe that once it is not possible to take a

5.2. SCHONHAGE'S ALGORITHM 69

low step or high step without one of Q, P or R becoming negative, (Q, P) is minimal

above 1 and hence almost reduced. To prove these claims, observe that at each stage,

an entry in the subsequent reduction is Q - 2P + R. If this is positive then

(Q—P)+(R—P)>O

=(P—Q)+(P—R)<O.

This implies that at most one of P - Q and P - R can be positive. Choosing the

positive course, we have a unique reduction path. The Divide and Conquer technique

requires a generalization of this idea. Instead of simply requiring that Q, P, and R

be positive, we require that they be greater than 2m for some m E Z. As we will

soon show, this criterion also provides a unique reduction path and we observe from

Definition 5.1 that once it is not possible to take a low step or high step without one of

Q, P or R becoming less than 2m, (Q, F) is minimal above 2". Given Q, F, R> 2m,

Q-2P+R>2m

=(P—Q)+(P—R)< —2'

= At most one of P - Q and P - R is greater than 2

Since a low step requires the calculation of P - Q and a high step requires P - R,

only one of these steps satisfies the condition that all parameters be greater than 2m

We may make these steps more efficient by combining consecutive low steps as

(-jo). This gives the formulas

5.2. SCHONHAGE'S ALGORITHM 70

P'4—P—qQ,

R'—q2Q--2qP+R.

We may find the optimal value of q so that all coefficients are greater than 2 by

seeing that D = P'2 - QR' =:>. P'2 ≥ D + 2mQ, if R' ≥ 2. Now we have two

conditions on P':

1)Pt = P_ qQ≥D + 2mQ q< P_D+2mQ

p12>1J.I2mQ

2)P'= P — qQ≥2m q< 2

minimal above constraint

Hence, the optimal value of q is

IF _ti
q= [], t = max(/D + 2mQ, 2m) .

Consecutive high steps may be combined with q found symmetrically as

-
q= [P R ti t=max(\/D+2mR, 2m) .

Given Q, P and R, one combined set of low steps or one combined set of high steps

is referred to as a simple step. Algorithms 5.6 and 5.7 perform the simple step

operation. In the following chapter, the implementation is based on Algorithm 5.6

while Algorithm 5.7 is provided to clarify how the ideal and relative generator are

affected by each simple step.

5.2. SCHONHAGE'S ALGORITHM 71

Algorithm 5.6 Simple Step Above 2 (Matrix)

Input: = Qi (Pi), m where (Q, P) is an ideal that is to be reduced one Pi R4
simple step above 2
Output: 9Lj, N such that Q4-+l = ON(2t) and (Q+ P+1) has been reduced a
simple step

D i- - QR {Store in a lookup table indexed by Qj, P,, R}

if (P > Qj) then
[Low step]
t4max(1\/D+2mQj1, 2)

IPi — t
q4_ Qi

N (0 1 —q)

else
[High step]

t4—mac([v'D+2'Rj1, 2)

q< A li— —t
(1 o

N+—
1

N"9,LN

return N

Finishing The Reduction

With these definitions in place, we are now able to show that if the MR. algorithm

is called with a value between 0 and 1 it yields an ideal within one step of being

reduced.

Proposition 5.2. An ideal (Q, P) minimal above 1 is within one step of being reduced.

5.2. SCHONHAGE'S ALGORITHM 72

Algorithm 5.7 Simple Step Above 2 (Ideal)

Input: aj=(Q, Pi) ,m
Output: a4 = (Q+, P+1), 'çb +i such that a.ji = (¼+i)aj and
reduced a simple step above 2m

D + j2 - {Store in a lookup table indexed by Q, P,, R}

if (P > Q,) then
[Low step]
t4_max([/D+2mQj1, 2)

1i-tPQiq+—
- 1

else
[High step]
t4_max(1\/D+2m1, 2)

pi- t
q+— 1 1

- 1 - q5i

- (+i)ai

return n.+1, i+1

has been

Proof Without loss of generality, assume Q <R.

D> 0 = P2 > QR = P> Q (D is not a square)

Also, this implies that condition 2b of Definition 5.1 is impossible.

(Q, P) minimal above 1

=Q-2P+R<1 (definition)

Q-2P+R<0 (D is not square)

=R<2P—Q

5.3. SCHNORR AND SEYSEN'S ALGORITHM 73

(P—Q)2=P2—Q(2P—Q)<P2—QR=D

O<P — Q<v

Taking a low step (recall Equation (5.1)) yields

=o<'</

O<ID - P'2I=IQ'R'I<D

Q'<\/or 191 <v'f5

=- (Q', P') or (R', —F') is reduced

(see, for example, [WW87, Thm 4.3])

(O<Q<P)

(P'=P—Q)

(D = P'2 - Q'R')

5.3 Schnorr and Seysen's Algorithm

In November 1982, Seysen wrote an unpublished manuscript entitled "An Improved

Composition Algorithm." An updated paper under the same title, coauthored with

Schnorr, was produced in August 1983. Since the paper is not generally available, a

reproduction has been included as Appendix A. Although never published, this paper

contains the essential idea of the later algorithms described in Sections 5.4 and 5.6.

The original algorithm was cast in the language of forms but we present it here

in terms of ideals with minor corrections. Also, the notation and arguments of the

proof have been changed to the standard notation of continued fractions. Note that

the style of the proof has not changed - the authors were indeed using techniques

equivalent to continued fraction theory although their notation would suggest that

perhaps they were unaware of it.

5.3. SCHNORR AND SEYSEN'S ALGORITHM 74

Recall from Section 3.1 that multiplication of two reduced ideals (Qa, Pa) and

(Qb, Pb) of the same discriminant yielding (S)(Q0, F0) = (Qa, Pa)(Qb, Pb) requires the

calculation of

oS=gcd(Qa,Qb,Pa+ Pb) = XQ+YQb+Z(P+ Pb) , (5.2)

U = Y(P, - Pa) + ZRb (mod Qa/8),

,- QaQi
'= oS2

Q
Po= bU —+ Pb.

crS

By Equation (3.3) and [WW87, Thm 4.31, reducing (Qo, F0) involves finding e and

g such that lQrI = Ig2Qo + 2egPo + g2Ro <v'.

Using Equations (5.2) we may derive

Qr = e2Qo + 2egPo + g2Ro

+ 2egPb + 2g + 2,5'bU g2S2P g2S2D
-

- e2QaQb + + 92Q&U2

82 Q. Q. QaQb QaQb

= + g U2) + 2gPb e-Q. + u) + 928 - S (2b- (22(•g +2 e9Q 2 (S2

S(2b
= - - (4+9U) 2+29Pb(4i-9U) + 92sRb) (5.3)

The authors recognized that (e + 9u) is the dominant term in this equa-

tion and so decreasing its magnitude would decrease the size of Qr. The extended

Euclidean algorithm on input of Qa/S and U outputs numbers e and g such that

gcd(Qa/S, U) = e(Qa/S) + gU. This is exactly the dominant term in Equation (5.3)

and the GCD is the smallest possible integer value (in absolute value) it can take. De-

5.3. SCHNORR AND SEYSEN'S ALGORITHM 75

veloping the simple continued fraction of U/(Qa/S) is essentially the same procedure

and also computes the numbers e and g.

To decrease the size of Qr, we show that we do not need to develop the entire

continued fraction expansion but only a portion of it. Let [qo, qi,... , q,,] be the partial

quotients of the simple continued fraction expansion of the rational number

define Ai and Bi as in Equation (3.10), and

= U, C_1 = Qa/S, Ci = C_2 - qC_1 (5.4)

By Equation (3.12), AB_1 - = (_ l)_1; therefore, by Proposition 3.2 (with

a - B_1, b - —A_1, c +- —B, d - Ad), if we let a' = (_ 1)i_1, then (Q0,P0) is

equivalent to

(a'(AQ0 - 2ABP0 + BR0),a'(—A_1AQ0 + (AB_1 + A_1B)P0 - B_1BR0))

(5.5)

If we find r such that

Cr<
QaV

<Cr_i ,
Qb

(5.6)

and combine this with the fact that the remainders {Cr} are strictly decreasing, we

obtain the following relations

BrCr_i + B,-, C, = C_1 (continued fraction theory)

BC, < 13rCri <BrCr i + B,-,C, = Qa (5.7)

5.3. SCHNOFtR AND SEYSEN'S ALGORITHM 76

B,:5 Qa/S < Qa/8

Cr-i Q. VDT

V Qb
p2 e QaQb

S2./—D

(by (5.6))

(5.8)

which will soon be used to place a bound on IQr I but we first require the following

lemma from continued fraction theory.

Lemma 5.3. Let C_2 and C_1 be given and A, Bi and C, defined as previously

stated, then

Ci = (-1)'(AC_1 - BC-2)

Proof (by strong induction).

Base cases:

i = —2 (- 1) 3(A_2C_1 - B_2C_2) = —(—C_2) =

i = —i (_I)-2 (A-IC-1 - B_1C_2) =

Induction hypothesis: Let k ≥ 0 e Z be fixed and assume

Ci = (- 1) 1(AC_1 - BC-2) (-2 ≤ i < k)

Under this assumption, we get

Ck = Ck_2 - qkCk_1

5.3. SCHNORR AND SEYSEN'S ALGORITHM 77

= (-1)'3(Ak_2C_l - Bk_2C_2) - q(_1)k_2 (Ak.. 1C_l -

= (1)11((Ak_2C_l - Bk_2C_2) + (qkA_1C_1 - qkBk_1C_2))

= (-1)'' ((qkAk_1 + Ak_2)C_l - (qkBk1 + Bk_2)C_2)

= (-1)'(AkC..i - BkC 2).

Applying this lemma we obtain

ICrI = I4rC_i - BC-21

='A'BrUt.

Substituting these values into Equation (5.3) we have

IQrI≤ - (QbC2+2PbBrCr+Br2SRb)l

S (Q0/ + 2Pb9, + , % SRb
-

≤
VD

(since (Q, Pb) is reduced)

(by (5.6 - 5.8))

E

By [WW87, Cor. 4.2.1], (Qr, Pr) is within a few steps of being reduced. In their imple-

mentation, Schnorr and Seysen compute (Qo, F0) and then reduce it using Equation

(5.5). The saving of this method over reducing (Qo, F0) classically is that the oper-

ations are simpler since we are taking the continued fraction of a rational number

instead of a quadratic irrational. Also, the calculation of the values Q,, P,, and R

at each stage is traded for the calculation of Ai and Bi and so we are working with

5.4. A NEW ALGORITHM FOR IDEAL REDUCTION 78

smaller numbers. We will see later that this is essentially the idea that Atkin de-

veloped in his improvement to Shanks' algorithm except that he also found a way

to compute (Qr, Pr) directly (without first needing to compute (Qo, P0)) with in-

termediate operands not usually exceeding Thus, this algorithm will not be

implemented in the following chapter.

5.4 A New Algorithm For Ideal Reduction

Recall from Section 3.3.2 that the Lagrange algorithm to reduce an ideal (Qo, F0) of

positive discriminant is achieved through the continued fraction expansion of (P0 +

/)/Qo. The sequence of ideals (Q, P) is generated by

Fb+\/ [
 - qo, q1,. . . , qj, Qi+1 j

where the values qj, P+i are obtained from Algorithm 3.1.

Observe that after multiplication of two reduced ideals, the values of P0 and Qo in

the resulting ideal (Qo, P0) typically have magnitude D; hence, adding VDT to P0 does

not usually affect the value of the quotient obtained. That is, P0/Q0 (Po+v')/Q0.

This means we may eliminate from the computations for some time. The question

we ask then is, "At what point do we need to include /75 again?" Surprisingly, we

do not need to include it at all.

Suppose the partial quotients of the continued fraction expansion of P0/Q0 are

given by [go, ii,... , 4]. We embed a portion of this sequence into the continued

5.4. A NEW ALGORITHM FOR IDEAL REDUCTION 79

fraction expansion of (P0 +

PQ+\/_140) - Pr+i+\/l
- qi, . . . q,

Qr+i j
(r<m)

where the Qr+i and r+1 values could be computed at each step along the way, or

by formulae presented later starting in Equation (5.9). Note that this was also the

case in the Schnorr-Seysen algorithm except that we embedded the partial quotients

of Q/S instead.

Although the quotients may differ from the "correct" expansion, each new ideal is

of course still equivalent to the previous one. What we will show is that this process

reduces the size of Qj such that Qr+il < I—D for some r, and further that this

guarantees (Qr+i) Pr+i) is reduced. In addition, we show that the technique used to

reduce ideals of positive discriminant also reduces ideals of negative discriminant.

In the following discussion, we assume that Qo is positive. This poses no problem

since (Qo,P0) = (—Q0, P0).

Theorem 5.4. Given an ideal (Qo, F0) of positive discriminant, let [go, , q] be

the partial quotients of the simple continued fraction expansion of P0/Q0. Embedding

these quotients into the continued fraction expansion

vrD— Pr+l+V']
Qo - 140,41, . . . -

Qr+i

yields a reduced ideal (Qr+i, Pr+i) for some r ≤ m.

Proof. This is similar to Lagrange reduction except that the quotients j as defined

5.4. A NEW ALGORITHM FOR IDEAL REDUCTION 80

above are used instead. Let

A_2 = 0, A_1 = 1, Ai = qjAj-j + A_2

B 2=1, B..1 = 0, B = B 1 + B 2 .

Then by Equations (3.7), (3.9) and (3.11) we know

G=Q0A—P0B,

G2—DB
= (_)i+1 (Qo)
- (1 (GiGi_l - DBBi_l) - G - Q 1B_1

-- Qo - B

(5.9)

(G2 D22\
and so Qr+il <max (Qo Qo ,i r) We want to show that each of these components

\

is less than \/Z5 for a suitable choice of r.

From continued fraction theory we know that Aj1Bj approximates P0/Q0. In

particular, we have the bound (see [Ros00, Cor. 12.3])

Ai P0 1
Tj To < BB+i

QoAj — PoBj 1

Q0B

B+1

BB +1

(5.10)

Since Qo is positive, each qj > 0 for i ≥ 1 (o might be 0 or negative) and the sequence

5.4. A NEW ALGORITHM FOR IDEAL REDUCTION 81

{B} is strictly increasing for i ≥ —1; therefore, at some point we obtain r such that

Br < <Br+i

This bound, along with Equation (5.10) gives

and

c2 r
-. _____

D2
"J O 1-'r+l

DB

Qo

Therefore I Qr+il < T5 and so (Qr+i, Pr+i) is reduced by [WW87, Thm 4.3].

(5.11)

The proof and algorithm are readily adapted to the case of ideals of negative

discriminant. Here, we do not have the concept of embedding the quotients into a

continued fraction expansion but the proof did not depend on this intuition. We

replace D by IDI throughout the proof and so we have

G +\ Qr+i = (_1)r+1 (r2 - D B) = (_ 1)r+1 (G IDIB
Qo)

G + IDIBI
IQr+iH Qo I 2 v'

By [Coh93, Prop 5.4.3], (Qr+i, Pr+i) is reduced within 3 steps of Algorithm 3.8.

The algorithm is presented in terms of ideals as Algorithm 5.8, and in terms of

5.4. A NEW ALGORITHM FOR IDEAL REDUCTION - 82

matrices as Algorithm 5.9. We include the matrix version of the algorithm to unify

the presentation of the algorithms in this thesis, facilitate the integration of this

method into other reduction methods, and provide an algorithm which may easily be

adapted to binary quadratic forms.

Algorithm 5.8 Efficient Ideal Reduction (Ideal)

Input: a0 = (Q0, PO), D, where Qo, P0 >0
Output: Ideal a- and such that ajj = (Wj+i)ao.
D < 0, aj is within 3 steps of being reduced.

[Initialization]
i - —2
A 2 i-0, A 14- 1,B.. 2 4--1, B.*- 0

1- Po, C_1 - Qo

[Continued fraction expansion of Po/Qo]

while B 1 < do
VI 'DI

i*—i+1
q+i - LC.-.i/Cd, Cj1 - C_1 -
Aj+j— q+ A + A_1, B+1 - q+1B + B_1

[Compute and Qj1]
(—l)'(A, - Ba0)

- (W1)ao

return aj+i, W 1

If D>0, aj 1 is reduced, if

5.4. A NEW ALGORITHM FOR IDEAL REDUCTION 83

Algorithm 5.9 Efficient Ideal Reduction (Matrix)

Input: 2t0 = (Poo.P0\D R0)'
Output: tj+1, N such that tj1 = qN(?to). If D > 0, (Q+, P) is reduced, if

D <0, (Q+,, P 1) is within 3 steps of being reduced.

[Initialization]
i - —2
N 12

(C 2,C. 1) —(P0,Q0)

[Continued fraction expansion of P0/Q0]

while I N2,iI < VTO do

q+i <- LC-i/Ci] , Ci - Cd_i -
/qj 1-1 —1.

NN1)
[Compute L+1]

N4_N(qj+' _1_1 —i o) {Backup one step}

i+1"-- ON(tO)

return tj+1, N

5.5. SHANKS' ALGORITHM - NUCOMP 84

5.5 Shanks' Algorithm - NUCOMP

In 1978, Shanks first published some thoughts on what he called the "Magic Matrix"

with further details added at a conference in 1988 [Sha78, 5ha89]. He published this

work in terms of binary quadratic forms of negative discriminant; however, we have

translated it here into the language of ideals. The matrix allows one to compute a

reduced ideal equivalent to the product of two ideals without actually computing the

unreduced product. Recall that the parameters of a reduced ideal are approximately

the same size as V—D and the parameters of the product of two reduced ideals are

approximately the same size as D. The matrix has the innovative feature that it

encapsulates all of the information about the two ideals being multiplied as well as

their product, without actually requiring the computations relating to the multipli-

cation. This allows us to compute with numbers which are only as large as /5 and

avoid computing with numbers as large as D. Shanks' motivation in developing this

algorithm was that he was limited on his programmable calculator to computing with

10 significant digits. As we will see, this algorithm allowed him to work with binary

quadratic forms whose discriminant was twice that size.

We will multiply two reduced ideals a = (Q, P) and c = (Qg, P0") and obtain

a product that is within a few steps of being reduced. Rather than computing the

unreduced product (Qo, P0) and then reducing it, we find ideals cç. = (Q, P,) and

= (Q, F') equivalent to c and c (respectively) that have the property that when

they are multiplied, we obtain an ideal (Qr, Pr) that is within a few steps of being

reduced. The advantage of this method is that we work with numbers of magnitude

O(V) rather than 0(D).

5.5. SHANKS' ALGORITHM - NUCOMP 85

Let aS = gcd(Q, Q, P + F0") and assemble the magic matrix as follows:

/r)F !'0 Dt I DI!

(' 0 ' C)
as us as

V W

0

S

We compute U, V, W by solving the following equations:

C)! C)!! D0II DI
2

cr5 cr8 a
Q101 Pot + Poll R'

crS as a

r5 as a

(5.12)

In Figure 5.1 we relabel the entries of the matrix so that the follow-up is a bit simpler.

Q /,.
'iI

pQ•la
S/cr

(ad_i b_1 Cj_i d_1

ai bi Ci d

Mi/a I R/a

Figure 5.1: Magic Matrix

What the figure indicates is that as we move from the initial ideals a'0 and ag

to ci and a, we may easily compute the parameters of the intermediate ideals. To

calculate Q of c, compute the determinant of the 2 x 2 matrix formed from the first

and fourth columns. To calculate Q' of a', compute the determinant of the matrix

5.5. SHANKS' ALGORITHM - NUCOMP 86

formed from the second and fourth columns and so on. It is not necessary, but in this

manner it is possible to compute the two ideals di and c' that are being multiplied

to obtain the product di di' = (S)(Qj, P) given by following equations:

Qi = a_1b_1 + cj_1d_1

2P
= a_1b + ab_1 + cj_1d + cjd_1

a

—.=ab+cd
a

(5.13)

To compute Row+i from rows Rowi and Row-1, Shanks' idea was to compute an

approximation to P and R using only single precision floating point arithmetic and

then with Equation (3.14) in mind, compute qj such that —R <qRj - P ≤ R.. He

then calculated the next row of the matrix by computing

Row+i = Row-1 - qRow

The process terminates once qj = 0. The product ideal is determined according to

Equations (5.13) and we have an ideal that is almost reduced.

NUCOMP works with numbers approximately half the size of classical algorithms

but due to the many extra computations required, its time efficiency is not signif-

icantly better. At each step, approximations are taken to P and R that require

a combined six multiplications and four additions. After that, four multi-precision

multiplications and subtractions in the Row+i = Row-1 - qiRowi computation are

required.

Shanks' aim was not faster computations; his concern was that he be able to

5.6. IMPROVEMENTS TO NUCOMP 87

work with forms of larger discriminant on his programmable calculator. Since the

parameters of the forms did not exceed \/2 when using NUCOMP, he could compute

with forms whose discriminant length was 20 digits long rather than the maximum 10

digit discriminant he would be limited to if the calculation of the unreduced product

was required. The stage was set for others to build on this work and improve the

time efficiency.

5.6 Improvements to NUCOMP

Upon reading Shanks' algorithm, Atkin [Atk] found some key improvements. He

realized that rather than computing quotients from approximations of P, and R., all

that was really required was to perform a Euclidean division on the first column of the

matrix until it was less than This allowed him to take advantage of Lehmer's

GOD algorithm, something that was not possible with Shanks' method, and also

provided an earlier stopping point since Shanks continued until the qj calculated was 0.

Using the labelling from Figure 5.1, we compute qj and a+1 such that a_1 = qjaj+aji

with 0 ≤ a 1 < jail. We then update column 4 by setting d 1 = d_1 - We

don't calculate the second and third columns as we go along but once we arrive at

an a+1 small enough, we calculate the values b 1, b, Cj, Cj using a_1, a, d_1, d.

This is a huge savings since we don't need to compute an approximation to P and

R each time, nor do we compute the middle two columns. Cohen improved on

the computational efficiency of Atkin's formulas in [Coh93] and the algorithm was

implemented and analysed for quadratic forms of negative discriminant by Düllmann

in {BDW9O}.

5.6. IMPROVEMENTS TO NUCOMP 88

To apply this algorithm to ideals of positive discriminant, it is again important to

keep track of the relative generator so that a unique reduced ideal can be computed.

In [vdPO3], van der Poorten noticed that the distances between ideals could be worked

out using Atkin's variant of the NUCOMP algorithm with very little additional effort.

The technique used was similar to the method outlined in Section 3.2.2. In this case,

we keep track of the standard {B} convergents and use these to compute the relative

generator. In fact, the {B} become the fourth column in the magic matrix. This

work was implemented with Jacobson in [JvdPO2] in the language of quadratic forms.2

Recently, Jacobson, Scheidler and Williams have worked to bring all of these

ideas together in the language of ideals {JSW}.3 To simultaneously multiply and

reduce two reduced ideals (Q,,, P,,) and (Qb, Pb), we compute 5, X, Y, Z such that

crS = gcd(Qa, Qb, Pa + Pb) = XQa + YQb + Z(Pa + Pb). Then compute U = Y(Pb -

Pa) + ZRb (mod Q,,/S). To complete the multiplication we would set Qo =

and P0 = + Pb; however, we don't want do this just yet. If we actually performed
as

this multiplication, Qo and P0 would have magnitude D and then we would need to

reduce them to magnitude \/. What we want to do instead is work with numbers

whose magnitude is less than

Instead of multiplying and then using the continued fraction expansion of (P0 +

./.)/Qo to reduce the ideal, we find an approximation using the smaller terms that

21n this thesis we have elected to use Shanks' ordering of the magic matrix for both historical
and aesthetic reasons. Readers familiar with [vdPO3] may apply the following translation to use the

magic matrix as presented here: [vdPO3] ai bi cj d
This Thesis di ai bi Cj

'Readers familiar with [JSW] may use the same map as given for [vdPO3]; also, the variables d
and R have opposite sign.

5.6. IMPROVEMENTS TO NUCOMP 89

we know:

Qo

Pb+
- as

Qo
UQb

 aS
- Qo QaQb

cr82

Pb+\/ U

- QO Qa/8

Now notice that

Pb + v/ —D 2,,/—D 2

QO D/'

while

so (P0 + \/)/Qo may be approximated by U/(Qa/S) since Pb

on the result. Reminiscent of Sections 5.3 and 5.4, let [go,

quotients of the simple continued fraction expansion of
QaIS

quotients into the continued fraction expansion

pO+\/L - - Pr+i+/1
Qo - I

qo,
Qr+i J

has little effect

] be the partial

Embedding these

5.6. IMPROVEMENTS TO NUCOMP 90

yields a sequence of equivalent ideals. Jacobson, Scheidler and Williams show that if

we use initial values

Q.
a_1 = --

Qb

as

C_i = Pa + 1 b

d_1 = 0

a0 = U

bO 1 (b. 1u + (Pb Pa))
a_1

Co = _—(ciU + cTSRb)

d0 = 1

and calculate the continued fraction expansion of a_i/ao while also updating the d,

then at any point we may compute

bj=_L(ajb_i+dj(Pb_Pa))
a_1
1

cj = - (ac_i + odSRb)
a_1

Putting this in the context of Shanks' Magic Matrix, we have the following initial

entries:

'Qa/S Qb/US Pa + Pb 0

Co 1

We may compute the product (Q, P) with the following formulas (note the improved

formula for P i - compare with (5.13)):

= (-1)'(ab + cd)

P i = (- 1)'(a_1b + c_id) + Pb

5.6. IMPROVEMENTS TO NUCOMP 91

Due to the amalgamation of multiplication and reduction, presenting a theoret-

ical version of the algorithm in terms of matrices or ideals would serve to confuse

rather than enlighten the reader. For this reason, we give a basic implementation

version of Jacobson-Scheidler-Williams NUCOMP as Algorithm 5.10 and a complete

implementation is presented in the following chapter.

The version presented here contains improvements relating to the relative genera-

tor computation. To see that the new relative generator calculation is correct, observe

that the NUCOMP reduction loop embeds partial quotients ,... , j] (for some

i) into the continued fraction expansion

- P+l+\/:
 = qo, qi, . . . , qt, ,-

and the Lagrange reduction loop embeds partial quotients [qi+i, q+2,. . . , q+] (for

some j) into the continued fraction expansion

Pi+1+vIi I
= q+i, qi+2, . . . , qt+j,

Combining these two we obtain,

- -

Qo = qo, qi, . . . , d i, qi+i, qi+2, . . . , Q.+.+i

Hence, we may view these two reduction loops as a single loop for the purpose of

computing the relative generator. Algorithm 3.4 tells us that all that is required to

5.7. COMPLEXITY 92

compute the relative generator is the sequence {B}. Specifically, the formula is

(Qo, P0) = (B+ _1 +
- vfD—

k. Q++i))
(Q++ .P++1)

The {B} computed in Algorithm 3.4 are in fact the absolute values of the {d}

computed in the NUCOMP algorithm. The advantages of computing the relative

generator in this new manner are:

1. The calculations of G and G' are not required.

2. Storing the qj in the Lagrange reduction loop is not required.

3. Computing the sequence {T} is traded for computing the extra {B} whose

magnitude is much smaller.

5.7 Complexity

There has been surprisingly little study done to provide insight into the time and

space complexity of reduction algorithms. The most complete study the author is

aware of was done by Biehi and Buchmann in [BB97]. Here they improve upon

Lagarias's proof in [Lag8O] that classical reduction is bounded by O(rt(M(m)) where

n in our case can be considered to be the bit length of the discriminant and M(n) is

the time required to multiply two n-bit integers. Classical multiplication algorithms

have running time 0(m2) and Schönhage's multiplication algorithm is asymptotically

better with running time O(mlognloglogn). Hence, reduction may be performed in

time 0(m3) using classical multiplication and 0(n2lognloglog m) using Schönhage's

multiplication algorithm.

5.7. COMPLEXITY 93

Algorithm 5.10 Jacobson-Scheidler-Williams NUCOMP (Basic)

Input: Two reduced ideals (Qa, Pa) and (Qb, P) and also D
Output: A reduced product (Q, P) and relative generator IF where
(W)(Qa,Pa)(Qb,Pb) = P, P)

[Initialization]

Find S,X,Y,ZsooS=gcd(Qa,Qb,Pa+ Pb) =XQa+YQb+Z(Pa+Pb)
Rb4—(P—D)/Qb

U Y(Pb Pa) - ZRb (mod Qa/S), (with 0 ≤ U < QaIS)
a_1 Q,,/S, a0 - U
d.1 = 0, d0 - 1 (Note: {IdI} are the usual convergents {B})
i4-0

[Continued fraction expansion of U/(Qa/S)]
while a> / 5 do

i4— i+1
qi - , a - a_2 - qjaj_1
d - d_2 - qd_1

[Compute I
_L (ai.c+di(Pb_Pa))

Cj 4- (aj(Pa + Pb) + cTdSRb)
a_1

Cj_1 4- -- (aj_i(Pa + Pb) + crd_lSRb)
a_1

Q+i - (_ 1)i+l(a bj + cd)

4- (- 1)'(a_ib + cj_id) + Pb

[Final Lagrange Reduction Steps]

(Q, P), W - Algorithm 3.4 (Qi+i, P+1)

return (Q, P), 'I'

b+—

where B_2 - d_iI and B_1 - Idil

Biehl and Buchmann improve the combination of classical reduction with classical

multiplication to 0(n2). The proof uses the same idea as the well-known proof that

the Euclidean GCD of two numbers may be computed in 0(n2). That is, a more

careful analysis is possible since the size of the parameters decrease as the reduction

5.7. COMPLEXITY 94

progresses.

Schonhage shows in [Sch91] that his reduction algorithm takes time O(log m M(n))

and sousing Schonhage multiplication, his reduction is bounded by O(n(log n)2 log log m).

Unfortunately, the results we have are of little value in the cases of Schonhage reduc-

tion with classical multiplication and classical reduction with Schonhage multiplica-

tion. This information is reflected in the following table.

Algorithm
Classical Multiplication
Schanhage Multiplication

Classical Reduction Schonhage Reduction
0(m2) O(m2logm)

O(n2 log n. log log n) O(n(log m)2 log log n)

Table 5.1: Known Reduction Algorithm Complexity Results

It would be highly desirable to know if Schönhage reduction could be proved to be

better than 0(n2) using classical multiplication. Similarly, we are interested to know

how tight the bound on classical reduction with Schonhage's multiplication could be

shown to be.

Chapter 6

Implementation and Timings

6.1 General Principles

In this chapter we give fit for implementation versions of the algorithms introduced

in the previous chapter. We also compare most of the algorithms and present tim-

ings for various sizes of discriminant. We have not implemented the Schnorr-Seysen

algorithm because it is nearly identical to JSW-NUCOMP but will clearly be slower

since it requires the computation of the unreduced product. Also, Shanks' original

NUCOMP has not been implemented because it is already known to be slower than

JSW-NUCOMP.

The algorithms are presented here as pseudo-code and tested using a full C imple-

mentation. We start with some general principles that apply to all of the algorithms

and should be considered by anyone implementing them.

• Multi-precision floating point operations should be avoided as they are very

costly in terms of computation time. Instead, adapt any such calculations to

95

6.1. GENERAL PRINCIPLES 96

use integer arithmetic. For example, the floor of a rational number should

not be computed using floating point operations but instead using an integer

function in the programming language that performs this operation on input of

the numerator and denominator of the rational number.

• If the computer hardware represents numbers in binary, multiplications or di-

visions by 2' for k e Z should be implemented using bit shifts.

• With packages such as the GNU multi-precision library (GMP), a specific func-

tion exists for exact integer divisions. This function should be used whenever

possible; for example, the computation of R = (P2 - D)/Q is an exact division.

• Variables are listed with subscripts but these are only included for elucidation

and the programmer must take care to carry only as many variables as is nec-

essary.

• The computation (_ l)i should not be computed directly. If the computation of

i is necessary, then examining the least significant bit will indicate whether i is

even or odd and (- I)' is determined with this information. If i is not required,

track the value of (_l)i via a sign variable.

• If algorithms require the value RO for efficiency, this is computed in the initial-

ization section and updated along with the Q and P values throughout. In

practice, the programmer should determine if it is beneficial to carry this value

between procedures and adjust the algorithms appropriately. In our case of key

exchange, there are frequent multiplications and the R value is required for only

one of the two ideals in the formulas. Since there is no benefit to computing R

6.1. GENERAL PRINCIPLES 97

in the algorithm that determines the near reduced ideal, we do not compute R

in that algorithm since we would be computing it twice as often as we need to.

• These algorithms assume a fixed field Q(\/D-); therefore, D, and [•Y_Dj

should be precomputed and available globally to avoid computing this value in

each function that requires it.

• When performing calculations involving a multi-precision number and a single-

precision number, utilize functions specifically designed for this purpose when-

ever they are available.

• Statements such as

q +— rdb , r+- b- qa

can usually be implemented with commands that return both the quotient

and remainder simultaneously. This applies to both single and multi-precision

operands.

• Operations with multi-precision variables should take advantage of pointers if

they are available. In particular, passing multi-precision variables by value to

and from functions should be avoided.

For each individual reduction, the integer coefficients of the relative generator

are manageable; however, the number of reductions involved in computations such

as a key exchange soon cause them to grow out of control. As we mentioned in

Chapter 4, an exact representation cannot be used because the integer coefficients

grow so large they are simply impossible to store. In the C implementation of these

6.2. LEHMER'S EXTENDED GCD ALGORITHM 98

algorithms we have used the (f, p) representation of ideals presented in [JSW] to

obtain an approximation to 1Q . For fixed p E N, 2"d/2" is an approximation to W

such that

2W

2P

where d, f E N, k e Z, 2P <d ≤ 2', and 1 ≤ f < 2. That is,

2kd 1_ 1 2 k d / 1)
_\) 2p(\1 + 2p

A full explanation of (f, p) representations and an analysis of appropriate choices

for p may be found in [JSWO1] and [JSW]. The W values returned by these algorithms

are shown as exact values. When programming, an approximation such as that just

described would need to be used.

6.2 Lehmer's Extended GCD Algorithm

Recall from Section 5.1 that Lehmer had a method of speeding up GCD computations.

Many of the following algorithms use his idea of taking a single-precision approxima-

tion to a multi-precision number, performing computations with the approximation,

and then applying a catch-up to the multi-precision number based on the work done

on the approximation.

When computing the GCD, Lehmer provides a test which determines when the

single-precision steps no longer yield the correct quotients. In [Jeb95], Jebelean sim-

plified the condition tested and it is this improved version that is presented as Algo-

6.2. LEHMER!S EXTENDED GCD ALGORITHM 99

rithm 6.1. For a full discussion of Lehmer's algorithm and Jebelean's condition we

refer the reader to Sorenson's analysis given in [Sor95].

Often in our algorithms the GCD is not actually required and it is desirable to

exit the GCD algorithm early. If it is sufficient to find numbers Aj and B such

that AC_1 + BC-2 ≤ M for some M ≥ gcd(C_2, C_1), then the condition while

C_1 > 0 at the first step in the main loop may simply be replaced with the condition

while C_2 > M.

Computing the continued fraction expansion of a rational number involves the

same procedure as computing the GCD of the numerator and denominator of that

number. Whenever an algorithm requires the GCD of two multi-precision numbers

or the continued fraction expansion of a multi-precision rational number, Lehmer's

GOD algorithm should be used. Substituting Lehmer's algorithm into the appropriate

places is straight-forward and so we have not explicitly included it in the following

algorithms to avoid unnecessary clutter.

6.2. LEHMER!S EXTENDED GCD ALGORITHM 100

Algorithm 6.1 Lehmer's Extended GCD (with Jebelean's condition)

Input: Non-negative integers C_2 and C_1 with C_2 ≥ C_1
Output: (A_1) B_1, G) such that A_1C_1 + B_1C_2 = G = gcd(C_2, C_1)
Note: The variables Aj and B3 correspond in absolute value to the standard sequence
from the continued fraction expansion of C_2/C_1.

[Initialization]
A. 2 - 0, A 1 4-i, B 2 4-1, B 1 <- 0

i4— O' j 4- 0

[Main ioop]
while > 0 do
k - max([log2 G52] + 1 - (word size), 0)

[C3_/2'j, r_i 4- [Cj_1/21c]

a_24-0, a_14-1, b_2 4-1, b_14-0

[Euclidean step]
while r,.1 > 0 do {Exit is usually at Jebelean's condition}

qj - Lr_2/r_ii, r - - qjrj_i
a +- a_2 - qjaj_1, b - b_2 - qb_1

[Jebelean's condition]
if i is even then

if (ri < —as) or (r_ - ri < b - b_1) then break
else

if (r, < —b) or (r 1 - ri < a - a 1) then break

[Multi-precision step]
if i = 0 then {No correct single-precision steps}
Q +- [C/C 1j, C - C 2 - QC31
Aj - - Q44j_1, B - B52 - QB3

else
- _2C_1 + b 2C 2, C+ - a iCji + b 1C 2
i- a 2Aj1 + b_2A_2, A+ 4- a_iA i + b_1A_2

- a_Bj_1 + b_2B12, B5+ - a. 1B11 + b_1B 2
j4-j+i+i, i4--1

return (A 1, B 1, G1i2)

6.3. PJCKERT'SALGOPJTHM 101

6.3 Rickert's Algorithm

The implementation of Rickert's algorithm is given as Algorithm 6.2. We could have
p2 D

computed Rj+2 as instead of the way it is presented; however, this would
i+2

require a multi-precision squaring and a multi-precision division which are both costly,

particularly the division. We instead trade this for three multiplications of a multi-

precision number by a single-precision number.

The algorithm uses Algorithm 3.4 to do the single-precision reduction. There is a

possibility that the convergents returned by Algorithm 3.4 will produce an overflow

when they are multiplied later in Algorithm 6.2. For this reason, it is important to

test that the convergents remain less than (word size)/2 in length in Algorithm 3.4

and exit early if necessary.

As discussed in the previous chapter, A may be negative. We can ensure it

is positive by setting Qj = (Q/IQI) tIQiI/2ci , = (P/P4) 1IPiI/2'1 and P11 =

(Rj/RjI) L iI/2kJ; then,

2 1F4\
p2 [i1iI1>(hi) 'I]

Here we used the fact that P2—QR= D >0 = P2 > QR. Since F2 >

we also have Pj2 - QR = bi > 0. Another approach would be to take the floor in

each case and if .5i <0, simply set Q - -Q and recalculate A which will now be

positive.

6.3. RICKERT'S ALGORITHM 102

Algorithm 6.2 Rickert-Style Reduction Algorithm (Implementation)

Input: (Q0, P0), D
Output: (Q) P), Tj such that (Q, .P) = (W)(Q0,P0)

[Initialization]
B_2 - 1, B_1 - 0, i - 0

P- D

Q0
Reduction [Reduction]

while IQI > -,I—D do
k - max(max(flog2 Q1, flog2 .P1, 11092 Ru) - (word size), 0)

(Q/IQD LIQuI/21c] (P/IPI) [IPiI/2d1
- (R/R4) [IRd/2']

if Qj, PorRjis0or IQil VDj
[Full multi-precision reduction]

Compute qj,rj so that P + = qQ + r (0≤rj < AD

+- /—D] - r, Q+i - q(P - P 1) - R, R1 - —Q
Ru-i 4 -B_1, Ru +- qB_1 - 8 i-2 Z - -i + i.

else
[Single-precision reduction]

a, a', b, b' - Last two Ai and Bi from Algorithm 3.4 ((j,), /)
- ab' - ba' (Compute using Equation (3.12))

Qu+2 - e(a2Qu - 2abP + b2R)
6(-aa'Qu + (ab' + a'b)P - bb'R)

R, +2 6(a'2Q - 2a'b'P + b'2Rj)
Bi +- -a'B_1 + b'B_.2
B+1 - aB_1 - bB_2
i4- i+2

[Compute relative generator]

Pi
'\ Qi IT) - B_ + B_1

return Pi, Pi) , Ti

6.4. SCHONHAGE'SALGOPJTHM 103

6.4 Schönhage's Algorithm

We present the implementations of the various algorithms of Schonhage's method.

The transformations are straight-forward except perhaps for the calculations pertain-

ing to 1J in Algorithm 6.3.

Algorithm 6.3 Schönhage Reduction (Implementation)

Input: ci=(Q,P),D
Output: ci' = (Q', P), T such that ci' = ()a and ci' is reduced

[Initialization]
P2—D

R* — Q

[Make Positive]
Q',P',R',c1, di, sign - Algorithm 6.4 (Q,P,R)

[Main Reduction]

F', R', (a2 2) Algorithm 6.5 (Q', F', R, —1)
C2 d2

C3 . a2c1 + c2d1, d3 - b2c1 + d1d2
if sign = —1 then

..QI, P' <- R' - —R'

[Final Lagrange Reduction Steps]
(Q') F'), ' - Algorithm 3.4 ((Q', F'), D) where B_2 - d3 and B - —c3.

return ci', W

) is returned by the main reduction algorithm, namely Algorithm The matrix (

6.5. To compute the relative generator we need to multiply this matrix on the left by

the matrix returned by Algorithm 5.4. However, by Lemma 3.7 all we require in the

Lagrange algorithm that finishes the reduction are the two elements from the second

row of this product. The two elements from row 2 are a2c1 + c2d1 and b2c1 + d1d2 and

this calculation only requires c1 and d1 from Algorithm 6.4; hence, we only return

c1 and d1 from the full (di) that was computed in the theoretical version of the

6.4. SCHONHAGE'S ALGORITHM 104

"Make Positive" Algorithm 5.4. Initializing B_2 and B_1 as we have will yield the

correct relative generator by Lemma 3.7.

Algorithm 6.3 accepts as input an ideal and returns a reduced equivalent ideal

along with its relative generator. The supporting algorithms are listed in the order

in which they are called.

Algorithm 6.4 Make Positive (Implementation)

Input: Q, P, R where (Q, P) is an ideal.

Output: Q',P',R',c,d,sign, where (d+c(', VD)) (Q1, PI) = (Q, P) and

Q', F', R' are all positive.

[Initialization]
4- Q, P - F, R' - R

c 0, d - 1 {Denotes c and d of Definition 3.4}

[Ensure Q' + R' ≥ 0 and P'> 0]
if (Q' + R' < 0) then
Q'4— -Q', F' - —F', k - —R'
sign - —1

else
sign - 1

if (F' < 0) then
R', F' 4- -F', <--

C 4- —1, d - 0

[Ensure Q', F', k are all positive]
if (Q' < 0) then
Q'4—Q'+2F'+R',P'4—P'+R',R'4--R'
c<—c+d,d4—d

else if (R' < 0) then

4-- Q', F' 4- Q' + F', k 4- Q' + 2P'+ R'
C 4- c, d - c + d

return Q', F', R', c, d, sign

6.4. SCHONHAGE'S ALGORITHM 105

Algorithm 6.5 Monotone Reduction - MR (Implementation)

Input: Q, P, R, m where (Q, P) is an ideal.
Output: Q', P', R', N where N is a matrix tracking the relative generator and (Q', P')
is minimal above 2m

[Initialization]
1- Q P'<-- F, +- R

[1. If sufficiently small in size, skip to end]
if min(Q', 2P', R') < 2m+2 then

N.' 12

else

[2. Calculate size of operands and split if necessary]

n - max(L'092 Q'] , [log2 2P'j , [log2 R'j) - m + 1
if m ≤ m then
M 1 - m, p - 0

else
M/ — n., p— m— n+1
Split Q',P',R' as Q' = Qo + 21'Q (0 ≤ Qo < 2')

P'=P0+2P1 (0≤Po<2)
R'=R1+2R1 (0≤Ro<2)

<- Qi, F' <- F1, R <- R1

[3. Calculate half-way point]
h <- m'+ [n/2]
if min(Q', 2P', k) < 2h then

N < I2

else
[4. Recursive call - reduce (Q, F) minimal above 2h]
Q',P',R',N <- MR(Q') PI) R',h)

[5. Reduce until max(Q', 2P', R') <2"]
while max(Q', 2P', k) > 2"' do

if (Q', F') is minimal above 2' then
break

else
Q', F', R', N <- Algorithm 6.6 (Q', F', R', N, m')

if (Q', F') is not minimal above 2' then

[6-7. Recursive call - reduce (Q', F') minimal above m']
Q', F', R', N' <- MR(Q', F', R', m')

6.4. SCHONHAGE'S ALGORITHM 106

N<— NN'

[8. Update tails]
if p> 0 then
F - aP0 - cR0, C - aQo - cP0

aG — cF
- 2F'—bG+dF

R' - 2R + b2Q0 + 2bdP0 + d2R0

[9. Reduce above m]
while (Q', P') is not minimal above 21 do

Q', P', R', N - Algorithm 6.6 (Q', P', R', N, m')

return Q', P', R', N

Algorithm 6.6 Simple Step Above 2 (Implementation)

Input: Q,P,R,N,m where (Q, P) is an ideal and N = (a b)
Output: Q', P', R', N' where (Q', F') has been reduced one simple step

D p2 - QR {Store in a lookup table indexed by Q, F, R}

if (F> Q) then
[Low step]

t—max([/D+2Q1, 2m)
IP—t

q*_[Q

Q'—Q,P'--P—qQ,R'4--R—q(P+P')

NI __ (a b — aq
c d—cq

else
[High step I
t4max(1\/D+2mRl, 2m)

IP—t

R'+—R)P'--P—qR,Q'---Q—q(P+PI)

N / e—/ a — bq b
k\c—dq d

return Q', F', R', N'

6.5. ANEW ALGORITHM FOR IDEAL REDUCTION 107

6.5 A New Algorithm For Ideal Reduction

In this section we present an implementable version of the algorithm introduced in

Section 5.4 and discuss some possible modifications to compute R. Given C_2 and

C_1, by Equation (5.4) the remainders in the continued fraction expansion of C_2/C_1

are defined to be

Ci = C_2 - jC_i

In Algorithm 6.7, we set C_2 = P0 and C....1 = Qo and so Lemma 5.3 tells us that

Ci = (-1)'(AC_1 - BC-2); hence, Gj = (- 1) -'C. This eliminates the necessity

of calculating the {A}.

From the inequality given in Equation (5.11) we observe that the {B} are bounded

in magnitude by /[j. If the continued fraction expansion of P0/Q0 is implemented

using Lehmer's extended GOD algorithm, most of the calculations in Algorithm 6.7

will involve relatively small numbers.

Unlike all of the other algorithms presented in this thesis, the knowledge of R0

does not give any advantage in the computations. Equation (3.6) gives the following

formulas which utilize R0. The formula is also given for the computation of Ai since

Ai and A_1 are also required.

A G+P0B
i- Qo

F=AP0—BR0

Q+i = (-1)'(AG - BF)

P i = (-1)'(—A_1G + B_1F)

6.5. A NEW ALGORITHM FOR IDEAL REDUCTION 108

Algorithm 6.7 Efficient Ideal Reduction (Implementation)

Input: ao = Po) Po), D, where Qo, P0 >0
Output: Ideal aj1 and W 1 such that aj = (W +i)ao (If D > 0,
D <0, cj is within 3 steps of being reduced.)

Initialization]
i - —2
B_2 < 1 B_1 - 0
C_2 - P0, C_1 - QO

[Continued fraction expansion of P0/Q0]

while B 1 < [VL Qo/ Iv/-I—DIJ i] do
i—i+1
qi+i - LC-1/C] , C1i <- C_i - qj1C
B+1 - q+1B + B_1

[Compute (Q+,, P+1) and W+1]
C—DB

Q+(_1)i(Qo)
(-1)'C - Q+iB_i

Pi+1 <- B

B 1+B(' - ' Q+i ID—)
return (Qi+i, P+1), i+1

is reduced, if

= (-1)'(—A_1G_1 + B_1F_1)

We present Table 6.5 which summarizes the calculations by a count of each type of

operation.

The size of the denominator in the divisions is important, so note that to calculate

Qj, P without R0 requires a division by Qo, which is usually the same size as D when

exchanging keys, and a division by Bi which is approximately the same size as

The two divisions utilizing knowledge of R0 are both by Qo. In the case of calculating

6.6. JACOBSON-SCHEIDLER.-WILLIAMS NUCOMP 109

Calculated Multiplications Divisions Additions

Without R0 Qi, A 4 2 2
Utilizing R0 Q, P, 8 2 5
Without R0 Q, P,, R 5 3 3
Utilizing R0 Q, P, R 12 2 7

Table 6.1: Calculation of Q, P and 1:k-

R, without knowledge of R0, the extra division is by Qj which is approximately the

same size as

6.6 Jacobson-Scheidler-Williams NUCOMP

In the last chapter we presented a basic version of the Jacobson-Scheidler-Williams

NUCOMP algorithm. Here we present a full version with various speedups.

From Shanks' formulas given in Equation (3.1), the GOD computation of three

numbers must be done in two stages, so we give the details of the computation. The

first GCD calculation is

cTC = gcd(Qa, Qb) = WQa + XQb.

The W variable is not actually required in the algorithm. Since extended GOD

functions are often optimized to benefit from the situation where only one variable is

required, the programmer should take advantage of this.

We require on input that Qa > Qb and then check if Qa < If this is the

case, the product (Qa, P.) (Qb, Pb) is already reduced and we may avoid the reduction

1The size of Qo is discussed in Section 3.3.1 while the sizes of Bi and Qj come from the proof of
Theorem 5.4.

6.6. JACOBSON-S CHEIDLER.-WILLIA MS NUCOMP 110

steps.

As noted in their paper, the final reduction may take advantage of Tenner's for-

mulas by computing the previous Q value. Using the subscripts of the algorithm and

our notation for R this corresponds to calculating Q, and setting Rj - -Q. Since

there are only a very few reduction steps needed after the main reduction loop (in

practice, from 0 to 3), there is no advantage to using any other method than Lagrange

reduction with Tenner's formulas.

6.6. JACOBSON-S CHEIDLER-WILLIA MS NUCOMP 111

Algorithm 6.8 Jacobson-Scheidler-Williams NUCOMP (Implementation)

Input: Two reduced ideals (Qa, Pa) and (Qb, Pb) as well as D with Qa ≥ Qb> 0
Output: Reduced (Q, P) and IF such that R) (Q., P.) (Qb, Pb) = (Q, P)

[Initialization]
Find C, W, X so crC = gcd(Qa, Qb) = WQa + XQb (do not compute W)
Find S, Y, Z so crC = gcd(G, Pa + Pb) = YG + Z(Pa + Pb)

Rb - (P - D)/Qb
U XY(Pb - Pa) - ZRb (mod Q,,/S) (with 0 ≤ U < Q,,/S)

a...1 .' Q,,/8, a0 - U
d_1 = 0, d0 - 1, i - —1

[If product is reduced, skip to end]

if Qa/S < then

QQaQb p9..L+pb (mod Q) W-1
U S2 us

else

[Continued fraction expansion of U/(Qa/S)]

while a 1> do

i—i+1
qi - La.i/ad , a+1 - a_ - qjaj, d+i - d_1 - qd

[Compute Q+,, P,+i, Rj+i]

b— -- (ai Q b + di(Pb — Pa))
a_1 as

--- (ai...i + d_l(Pb - Pa))
a_1 aS

c - ----(aj(Pa + Pb) + cTdSRb)

Cj_ (aj_i(Pa + Pb) + ad_lSRb)

- (-1)'(ab + cjd)
P 1 - (-1)'(a_1b + c_1d) + Pb
R.j+i E- (_ 1)i+l(aj_ibj_i + c_1d_1)

[Final Lagrange Reduction Steps]
(Q, P), W - Algorithm 3.4 ((Q,, P 1), D) where B_2 - d_iI, B_1 - Id I,
and the R 4 computed above is used.

return (Q,P), W

6.7. TIMINGS 112

6.7 Timings

In this section we present timings for most of the algorithms in this thesis with the

intent of discovering the best algorithm to use for each application. We have not

implemented the Schnorr-Seysen algorithm because it is the same as JSW-NUCOMP

except that it requires the computation of the unreduced product ideal. Thus in an

application that requires both multiplication and reduction, it will clearly be slower

than JSW-NUCOMP. As well, it cannot be used strictly for reduction since it requires

knowledge of the terms Qa/S and U used in the multiplication. We have also not

implemented the original NUCOMP since it is less efficient than the improved version

of Section 5.6.

The algorithms were tested by performing a cryptographic key exchange using

ideals with different sizes of discriminant. A key exchange involves exponentiating an

ideal using the square-and-multiply method; after each squaring or multiplication, the

product is reduced and then the near reduced ideal is computed. Hence, this method

provides a convenient way of generating a diverse set of ideals for testing reduction.

In all of the key exchanges except NUCOMP, Shanks' formulas given in Equation

(3.1) were used for all ideal multiplications. In the case of squaring an ideal, these

can be optimized in a straight-forward manner. This eliminates one of the GOD

computations and simplifies some of the other equations.

For discriminants with a bit length of 2c for k E {7, 8,9, 10, 11, 12, 13}, 1000

keys were exchanged. Since we are increasing the bit lengths exponentially, the time

involved per key exchange quickly becomes unmanageable. For discriminants with

k E {14, 15, 16, 17}, we have exchanged just one key but this gives a good indication

of the relative performance of the algorithms.

6.7. TIMINGS 113

3
The exponent bound used in the key exchange algorithm is 2 ,,k-4 where k =

[log2 1092 Lj as above. This bound was not chosen to reflect a desired difficulty for

an adversary to obtain the key but rather to increase uniformly the number of mul-

tiplications and reductions required and thus the work performed by the algorithm.

This formula doubles the bit-length of the exponent bound as the bit-length of the

discriminant doubles. The constants in the expression were chosen to match the

exponent bound of 2384 used in [JSWJ for discriminants of approximately 23460.

In that paper they used discriminants ranging in size from 795 to 5704 bits and

the corresponding exponent bounds ranged from 160 to 512 bits. Hamdy estimates

in [Ham02] that solving the discrete logarithm problem in imaginary quadratic fields

for these sizes of discriminant provides 80 to 256 bits of security for cryptographic

protocols based on that problem. Vollmer shows in [Vo100] that the best-known algo-

rithm for solving the DLP in real quadratic fields has the same asymptotic complexity

as the best-known algorithm that solves the problem in imaginary quadratic fields;

hence, these sizes of discriminant should offer at least the same level of security in

real quadratic fields (see [Jac00]).

All timings were taken on a computer with the following configuration:

• Platform: IBM x330 Server

• Processor: Dual Pentium IV Xeon 2.8 GHz

• RAM: 1GB

• Operating System: Red Hat Linux Release 9

• Linux Kernel: 2.4.20-28.9smp

6.7. TIMINGS 114

• Compiler: gcc 3.2.2

• Multi-precision Library: GMP 4.1.2

Table 6.2 compares the average number of seconds required per party to exchange

one key. At the start of each of the 1000 rounds, a random discriminant of the desired

bit length was generated, as well as exponents for the two parties. The initial ideal

used was p5(1). Each algorithm was then called in turn to be used in the key exchange.

The timings are for the entire key exchange including the multiplication, reduction

and near computations. The keys of both parties were compared to ensure they

matched. Additionally, the keys returned by each of the algorithms were compared

to ensure that each algorithm indeed generated the same key.

k Bit Size Gauss Lagrange Rickert New NUCOMP Schonhage
7 128 0.0083 0.0023 0.0025 0.0020 0.0018 0.0075
8 256 0.0638 0.0092 0.0091 0.0067 0.0063 0.0323
9 512 0.2487 0.0385 0.0382 0.0250 0.0238 0.1407

10 1024 1.3642 0.1946 0.1815 0.1137 0.1042 0.6114
11 2048 10.3750 1,0936 0.9874 0.6093 0.5489 2.7226
12 4096 64.5476 6.7283 5.9236 3.5253 3.1004 12.5681
13 8192 487.0460 45.1150 38.5300 22.0800 18.4800 61.9850

Table 6.2: Average Key Exchange Times In Seconds

Note that Gaussian reduction is the slowest reduction algorithm by a wide margin.

The performance is so slow that in Table 6.3 the reader will notice that it is no longer

being compared. Also, the Lagrange and Rickert algorithms are included only until

they are clearly slower than Schönhage's Algorithm.

6.7. TIMINGS 115

k Bit Size Lagrange Rickert New NUCOMP Schönhage

14 16384 327,24 271.88 149.58 123.72 326.94
15 32768 2429.52 2037.32 1055.73 866.95 1828.28
16 65536 7503.17 6106.82 10931.36
17 131072 55829.51 45129.55 68678.16

Table 6.3: Single Key Exchange Times In Seconds

The following two graphs reflect the information contained in Tables 6.2 and 6.3.

The graph in Figure 6.1 is based on a subset of the data in Table 6.2 and plots the

length of time to exchange a key against the bit size of the discriminant. The graph

in Figure 6.2 is a logarithmic graph which helps to make clear the complexity of the

various algorithms.

60

50

40
Q.
I-

30

w 20

10 /
512 1024 2048 4096 8192

Discriminant Bit Size

—Gauss — Lagrange —'-' Rickert — New — NUCOMP —Schonhage

Figure 6.1: Key Exchange Comparison

6.7. TIMINGS 116

S
e
c
o
n
d
s
 P
er

 P
ar

ty

100000

10000

1000

100

10

1

0.1

1024 48 4096 8192 16384 32768 65536 131072

Discriminant Bit Size

—Gauss — Lagrange — Rickert —New —NUCOMP — Schonhage

Figure 6.2: Key Exchange Comparison (Logarithmic)

From the graph in Figure 6.2 it is clear that Schönhage's algorithm will eventually

be faster than all of the other algorithms. Microsoft Excel's least squares trendline

provides the equations in Table 6.4 which give an estimate of the time in seconds that

each algorithm will take to exchange a key. The first column of functions is in terms

of the bit length of A and the second is in terms of 1092 1092 .

6.7. TIMINGS 117

Algorithm 1092 L 1092 1092 1

Gauss 4.9255 x i0 (1092)2.8O76 4.9255 x 10 61.9461 1092 1092 2

Lagrange 1.0527 x i0 (1092)2.7274 1.0527 x iO e18905 log2 log2L

Rickert 1.2268 x i0 (1092 z)26939 1.2268 x iO- e' 8673 log2 log2
New 1.1395 x iO (1092 L)2639' 1.1395 x 10-9 e18293 10921092
NUCOMP 1.3400 x i0 (1092)2.6039 1.3400 x 10-9 e18049 10921092
Schonhage 68.656>< i0 (1092)23073 68.656>< 10-9 e'•5993 1092 1092

Table 6.4: Estimating Functions For Key Exchange Times

Based on these estimating functions, we may obtain an approximation for when

we expect Schonhage's algorithm to overtake NUCOMP.

68.656 x 10 e15993 1092 1092 A = 1.3400 x io-9 e1.8049 10921092
68.656

=' = (1.8O491.5993)log2 log2
1.3400

1092 1092 A
= in 51.236 19.146

0.2056

1092 2'"

In other words, we would only expect to benefit from using Schonhage's algorithm

once A is approximately 580, 000 binary digits long. As a decimal number, L

10175,000. This is an extremely large number which indicates that Schönhage's algo-

rithm would rarely be used in practice.

For practical applications, JSW-NUCOMP is the fastest method available for all

sizes of discriminant when both multiplication and reduction is required. From the

data given, we may extrapolate that the new reduction algorithm is the best method

to use for all sizes of discriminant when only reduction is required. We reach this

conclusion by noticing that the timings include the three steps of multiplication,

6.7. TIMINGS 118

reduction and finding the near reduced ideal. The multiplication step in all of the

reduction-only timings is exactly the same and so any differences in performance

are completely due to the time involved in reducing the ideal and finding the near

reduced ideal. Hence, in applications such as solving norm equations, computing the

ideal class group, and computing the ideal class number, the new reduction algorithm

is the optimal choice.

Chapter 7

Conclusion

In this thesis we reviewed all of the known reduction algorithms for ideals. With

the exception of the Jacobson-Scheidler-Williams NUCOMP, this is the first time the

modern algorithms have been presented in this language. It is also the first time that

the algorithms of Gauss, Rickert, Schonhage, and Schnorr-Seysen have been adapted

to ideals of positive discriminant. We provided an easy method of calculating the

relative generator from any type of reduction algorithm and provided many example

implementations using this method.

We saw that the Schnorr-Seysen algorithm anticipated the new algorithm of Sec-

tion 5.4 and the improvements to NUCOMP presented in Section 5.6. All of the

algorithms with the exception of the Schnorr-Seysen and Shanks algorithms were

implemented and compared. The Schnorr-Seysen algorithm was not implemented

because the technique is nearly identical to Jacobson-Scheidler-Williams NUCOMP

except that efficient formulas for multiplication are not used. Shanks' NUCOMP

was not implemented because it is clearly less efficient than the modern NUCOMP

119

120

algorithm and our goal is to find the best algorithm to use in each situation.

We saw the similarity of the algorithms in Sections 5.3, 5.4 and 5.6. They all

embed the quotients of an approximation to (P0 + v')/Qo into the continued fraction

expansion of (P0 + v'b)/Q0 but the logic by which they were discovered was radically

different.

For practical purposes, NUCOMP is the best algorithm to use when multipli-

cation and reduction are both required. Through the work of Shanks, Atkin, van

der Poorten, Jacobson, Scheidler and Williams we have the ability to compute a re-

duced product without actually computing with any parameters near the size of the

unreduced product. If all that is required is to reduce an ideal, the new reduction

algorithm presented here is the winner according to the data.

Schonhage's algorithm is asymptotically the fastest and is the only algorithm

incorporating high-efficiency design techniques with its divide-and-conquer strategy.

In the future we may see other strategies used, such as the greedy method, dynamic

programming or randomization, which could produce highly efficient algorithms. As

we saw, sometimes the asymptotic efficiency of an algorithm does not translate into

something which is useful in practice.

Further work which may done in this area includes:

• Using the new algorithm in place of Lagrange reduction in the single-precision

reductions of Rickert's algorithm.

• Incorporating Lhmer-style single precision calculations into Schonhage's algo-

rithm. For example, the while loops and their simple steps may benefit from

this.

121

• Further practical efficiencies may be derived in Schonhage's algorithm from

performing some separate action once the parameters get close to the base case.

• The key exchange may be made more efficient by using better exponentia-

tion techniques such as those described in [MvOV97]. For example, windowing

trades off some precomputation in exchange for fewer and faster calculations

during the main exponentiation loop.

• After reducing an ideal with any of the reduction algorithms, Algorithm 3.5 is

called to find a near reduced ideal. Andreas Stein at the University of Illinois

(Urbana-Champaign) is considering the possibility of adapting the reduction

procedure to eliminate or reduce the number of steps required to find a near

reduced ideal.

• The algorithms utilizing continued fractions may be able to benefit from Shanks'

Baby-Step Giant-Step method to take giant steps toward a near reduced ideal.

• Adapting these techniques to higher degree number fields and function fields.

• Comparing the reduction algorithms across a wide range of sizes of Q and P

for a fixed D.

Undoubtedly, it is clear that there is an abundance of work to be done in this

area of research. Advancements will be immediately applicable to diverse areas such

as solving the Fell equation, cryptography, and calculating the fundamental unit or

regulator of a quadratic field.

Bibliography

[Atk] A.O.L. Atkin, Letter to D. Shanks on the programs NUDUPL and NU-

COMP, 12 December 1988, From the Nachlass of D. Shanks, made avail-

able by Hugh C. Williams.

[BB97] I. Biehi and J.A. Buchmann, An analysis of the reduction algorithms

for binary quadratic forms, 1997.

[BBT94] I. Biehi, J.A. Buchmann, and C. Thiel, Cryptographic protocols based

on discrete logarithms in real-quadratic orders, Advances In Cryptology

- CRYPTO '94 (Heidelberg), vol. Lecture Notes in Computer Science,

Springer, 1994, pp. 56-60.

[BDW9O] J.A. Buchmann, S. Dflhlmann, and H.C. Williams, On the complexity

and efficiency of a new key exchange system, Advances In Cryptology—

EUROCRYPT '89 (Houthalen, 1989), Lecture Notes in Comput. Sc.,

vol. 434, Springer, Berlin, 1990, pp. 597-616. MR 92a:11150

[BHO1] J.A. Buchmann and S. Hamdy, A survey on IQ cryptography, Public-key

Cryptography And Computational Number Theory (Warsaw, 2000), de

Gruyter, Berlin, 2001, pp. 1-15. MR 2003e:94064

122

BIBLIOGRAPHY 123

[Buc03] J.A. Buchmann, Algorithms for binary quadratic

forms, Internet preprint, www.cdc.informatik.tu-

darmstadt.de/buchmann/AlgorithmsForQuadraticForms.ps, 2003.

[Bue89] D.A. Buell, Binary Quadratic Forms, Springer-Verlag, New York, 1989,

Classical theory and modern computations. MR 92b:11021

[BW88a] J.A. Buchmann and H.C. Williams, A key-exchange system based on

imaginary quadratic fields, J. Cryptology 1 (1988), no. 2, 107-118. MR

90g:11166

[BW88b] , On the infrastructure of the principal ideal class of an algebraic

number field of unit rank one, Math. Comp. 50 (1988), no. 182, 569-579.

MR 89g:11098

[BW9O] , A key exchange system based on real quadratic fields (extended

abstract), Advances In Cryptology—CRYPTO '89 (Santa Barbara, CA,

1989), Lecture Notes in Comput. Sci., vol. 435, Springer, New York,

1990, pp. 335-343. MR 91f:94014

[Coh93] H. Cohen, A Course In Computational Algebraic Number Theory, Grad-

uate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR

94i:11105

[D1176] W. Diffie and M.E. Heilman, New directions in cryptography, IEEE

Trans. Information Theory IT-22 (1976), no. 6, 644-654. MR 55 #10141

[E1G85] T. ElGamal, A public key cryptosystem and a signature scheme based

on discrete logarithms, Advances In Cryptology (Santa Barbara, Calif.,

BIBLIOGRAPHY 124

1984), Lecture Notes in Comput. Sci., vol. 196, Springer, Berlin, 1985,

pp. 10-18. MR 87b:94037

[Fra98] J.B. Fraleigh, A First Course In Abstract Algebra, sixth ed., Addison-

Wesley Publishing Co., Don Mills, Ont., 1998.

[Ham02] S. Hamdy, Ober die sicherheit und effizienz kryptographischer verfahren

mit klassengr'uppen imaginär-quadratischer zahlkörper, Ph.D. thesis,

Technische Universität, Darmstadt (Germany), 2002.

[Hun80] T.W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73,

Springer-Verlag, New York, 1980, Reprint of the 1974 original. MR

82a:00006

[Jac00] M.J. Jacobson, Jr., Computing discrete logarithms in quadratic orders,

J. Cryptology 13 (2000), no. 4, 473-492. MR 2003b:94046

[Jeb95] T. Jebelean, A double-digit Lehmer-Euclid algorithm for finding the

GCD of long integers, J. Symbolic Comput. 19 (1995), no. 1-3, 145-

157, Design and implementation of symbolic computation systems

(Gmunden, 1993). MR 96h:11128

[JSW] M.J. Jacobson, Jr., R. Scheidler, and H.C. Williams, An improved real

quadratic field based key exchange procedure, Submitted.

[JSW01] , The efficiency and security of a real quadratic field based key

exchange protocol, Public-key Cryptography And Computational Num-

ber Theory (Warsaw, 2000), de Gruyter, Berlin, 2001, pp. 89-112. MR

2003f:94062

BIBLIOGRAPHY 125

[JvdP02] M.J. Jacobson, Jr. and A.J. van der Poorten, Computational aspects of

NUCOMP, Algorithmic Number Theory: 5th International Symposium,

ANTS-V, Sydney, Australia, July 7-12, 2002. Proceedings (New York)

(C. Fieker and D.R. Kohel, eds.), Lecture Notes in Computer Science,

vol. 2369, Springer, 2002, pp. 120-133.

[KW90] P. Kaplan and K.S. Williams, The distance between ideals in the orders

of a real quadratic field, Enseign. Math. (2) 36 (1990), no. 3-4, 321-358.

MR 92e:11028

[Lag80] J.C. Lagarias, Worst-case complexity bounds for algorithms in the theory

of integral quadratic forms, J. Algorithms 1 (1980), 142-186.

[Leh38] D.H. Lehmer, Euclid's algorithm for large numbers, The American

Mathematical Monthly 45 (1938), no. 4, 227-233.

[Len82] H.W. Lenstra, Jr., On the calculation of regulators and class numbers

of quadratic fields, Number Theory Days, 1980 (Exeter, 1980), London

Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cam-

bridge, 1982, pp. 123-150. MR 86g:11080

[MvOV97] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook Of Ap-

plied Cryptography, CRC Press Series on Discrete Mathematics and its

Applications, CRC Press, Boca Raton, FL, 1997, With a foreword by

Ronald L. Rivest. MR 99g:94015

BIBLIOGRAPHY 126

[Ric89] N.W. Rickert, Efficient reduction of quadratic forms, Computers And

Mathematics (Cambridge, MA, 1989), Springer, New York, 1989,

pp. 135-139. MR 90f:11049

[RosOO] K.H. Rosen, Elementary Number Theory And Its Applications, fourth

ed., Addison-Wesley, Reading, MA, 2000. MR 2000i:11001

[5BW94] R. Scheidler, J.A. Buchmann, and H.C. Williams, A key-exchange pro-

tocol using real quadratic fields, J. Cryptology 7 (1994), no. 3, 171-199.

MR 96e:94015

[Sch82] R.J. Schoof, Quadratic fields and factorization, Computational Meth-

ods In Number Theory, Part II, Math. Centre Tracts, vol. 155, Math.

Centrum, Amsterdam, 1982, pp. 235-286. MR 85g:11118b

[Sch91] A. Schonhage, Fast reduction and compostion of binary quadratic forms,

International Symposium On Symbolic And Algebraic Computation (IS-

SAC), ACM Press, 1991, pp. 128-133.

[SchOl] R. Scheidler, Cryptography in quadratic function fields, Des. Codes

Cryptogr. 22 (2001), no. 3, 239-264. MR 2001m:94049

[5ha71] D. Shanks, Class number, a theory of factorization, and genera, 1969

Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State

Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Provi-

dence, R.I., 1971, pp. 415-440. MR 47 #4932

[Sha72] , The infrastructure of a real quadratic field and its applications,

Proceedings Of The Number Theory Conference (Univ. Colorado, Boul-

BIBLIOGRAPHY 127

der, Cob., 1972) (Boulder, Cob.), Univ. Colorado, 1972, pp. 217-224.

MR 52 #10672

[Sha78] , A matrix underlying the composition of quadratic forms and its

implications for cubic extensions, Notices Amer. Math. Soc. 25 (1978),

A305.

[Sha89] , On Gauss and composition. 1, II, Number Theory And Applica-

tions (Banff, AB, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,

vol. 265, Kluwer Acad. Pubi., Dordrecht, 1989, pp. 163-178, 179-204.

MR 92e:11150

[Sor95] J. Sorenson, An analysis of Lehmer's Euclidean GCD algorithm, Pro-

ceedings Of The 1995 International Symposium On Symbolic And Alge-

braic Computation (New York, NY, USA), ACM Press, 1995, ISBN:0-

89791-699-9, pp. 254 - 258.

[ST87] I. Stewart and D. Tall, Algebraic Number Theory, second ed., Chapman

and Hall Mathematics Series, Chapman & Hall, London, 1987. MR

88d:11001

[vdP03] A.J. van der Poorten, A note on NUCOMP, Math. Comp. 72 (2003),

no. 244, 1935-1946 (electronic). MR 1 986 813

[vtWol] A.J. van der Poorten, H.J.J. te Riele, and H.C. Williams, Computer

verification of the Ankeny-Artirt-Chowla conjecture for all primes less

than 100000000000, Math. Comp. 70 (2001), no. 235, 1311-1328. MR

2001j:11125

BIBLIOGRAPHY 128

[Vol00] U. Vollmer, Asymptotically fast discrete logarithms in quadratic num-

ber fields, Algorithmic Number Theory (Leiden, 2000), Lecture Notes

in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 581-594. MR

2003b:11135

[WV\187] H.C. Williams and M.C. Wunderlich, On the parallel generation of the

residues for the continued fraction factoring algorithm, Math. Comp. 48

(1987), no. 177, 405-423. MR 88i:11099

Appendix A

An Improved Composition
Algorithm

The unpublished paper, An Improved Composition Algorithm by C.P. Schnorr and
M. Seysen, is reprinted here with permission.

129

130

An Improved Composition Algorithm

C.P. Schnorr and N. Seysen

Fachbereich Nathmatik

Universjtt Frankfurt

August 1983

Abstract We propose an improved composition, algori.thm for binary

quadatio forms with negative disdriminant i. Given. 10 reduced forms

we compute a representative (A3 , B31C3) o:E the,

product class by Shnkths formulae. We describe a norel way to reduce

(A31B3,C3)by adapting the Euclidean algorithm to the paiftiular st'ruc-,

ture of (A31B,C3) . The new reduction: method takes about the same number'

of rithmetica1 opertions a6 the Gauss - reduction, but it works on

integers Y1I /3 whereas Gaus- reduction opiarateg on integers of

oder JAI . Eence, if long intege arithmetic is'-implemented by standard

software, thEn the new reduction method for compoition is about 4 times

faster than. Gauss - reduction.

This research has been done under BNFT-at 083108.

131

1. Introduction and Notations

We consider binary quadratic forms AX2 + B X Y + c Y7 , A,B,C € Z, nbtation

(A,B,C). Our forms shall be positive, i.e. A,C>O and priiti.ve, i.e.

gcd(A,B.C) 1 , and will have negative discriminant &.= B2 - 4 A C < 0

Forms are written in matrix notation -

(A B!? x
AX2+BXY+ CY2 (X, y) 1B/2 c• l.y

Two forms (A,B,C) , (A,B11 C') are SL2'(Z) - equivalent if there exists a

(2,2) integer matrix M with dat M = 1 (i.e. ME SL2(Z)) such that

(let MT be the transpose of M)

.. 1'A B/2 ' A' B2
Ml IM

B'/2 C'

Since SL2 (Z) is -a group this yields an'equivalence e],a,tion.

According to Gauss the SL2 (Z)-equivalence classes of forms with discri-

minant i form an abelian group Q(4) . The goup operation is called

composition. Efficient routines, for composition are important for the

calculations in G() and in particular for the factoring algorithms of

Shanks (197i) and Schnorr, Lenstra (1982)

SL2(Z)-ecauialence classes of forms are represented by reduced forms.,

(A,B,C) is reduced if l3lAC . n SL 2 (Z)-equivalence claths H either

contains exactly one reduced form or two reduced forms (A,±B,C).. In- the '

latter case H is ambiguous, i.e. H2= 1. Every reduced form satisfies

A and AC l/3l

Given two reduôed forms (A,B.,C.) , i1,2 r with the same discriminant E

copositinn is done in two stages.

A representat±.ve (A3 ,B3 ,C3) of the product class is computed by Shanks

formulae. We give a novel algorithm, fox reducing (A3,B3,C3)

132

2. The Shanks I5 formulae

A form (A31B3 ,C3) of the prbduct class of. two reduced forms (A. 1B. 1c),

i= 1,2 , with the same discriminant A , is gi'cten as follows (see Lenstra

L198)p.

d := god (A11A2 ,(B1+B2)/2)

Compute X,p,'v € z with

d = 11A1 + + \(B* B/2

H : = (A-(B B2)J2 - C) mod (A /d) ; 0

A3 ;, A1 A2/d

113; B2 + 2A2 B"d

= (B 2 - L.)/(4 A3)

In order to compute A41,V one first applies the extended Eucli ean algo-,

rithm (see Knuth (198,1), a]gorith X, 45.2) to A11 A2 This yields. ? 4L

with gcd(A1 .A2) PA, + XA2... A second application of the extended ' Eucliean

algorithm o gc 1 A2) and(B -- B 2 V2 yields 7k!, .f with

d = gcd(A11A2)'+ \' (E+ B)/2 . Hence 'ji = p'p , v

In general gcd(A11A2) will be rather small, therefore the cost of the

Euclidean algorithm applied to -gcd(2 1 ,A2) and (B1+ B2)/2 can be neglected.

Our procedr for reducing (A3 ,B31C) in section 3 is based on the follow-

ing idea.

Reducing the form.- (A3 ,B3 ,c3) means to consiruct some M € SL(Z) such that

in

1 'B/2)' = " - MT. (A B3/2 1
B/2 91J,.- ' B/2

becomes minimal. With N = J •we have
Ci

d A2 A1
= -{--- (— p -1- Rr)2 +rB2d 'd (-- p Rr) * r- 2 C 2 d]

which has the dominant term. Al (-i-- p • Rr)2 -. We minimi.e 2 by minimizing

Al
+ Hr which can be done by applying the extended Euclidean algorithm

to A1/d and H -

133

3. The new reduction algorithm

W..l.o.g. let A2 ≤A1 (otherwise interchange (A1 ,B,CI) with (A21E,C2)).

0) - A1 A2 /d2 \4M/3 then put (A,B,C) (A,B,C) and stop

(Application of the extended Euclidean algorithm to A1/d and P..)

• u? u u 01'.
v v, v

2) while v >

1 0 A1/d

0. 1 R

I do

i:0

ui:•I1 U?l u+1 0 1 •u: u u•• ; i :=- i+1

4+1 1+1 v 1 1 - Luk/vJ [vi v v

vi

3) (_1)i u

2

4) J

A31 B/21 = MT{ A3 B3J

i - j/2 -

..It easily follows from det (I? 1 that det 1 . Hence (A,B,C)

is SL2(Z) -eqi4va1ent to (A31 B3 ,C3) . The ,nèt theorems show that a educed

form is obtained from (A,B,C) with only a few arithmetical steps.

Theorem 1 A - V)3M

Th eorem 2 Let (A,B,C) be a form atisfy1jng

IA HI? 1 (1 oV (A S/2 (1 0

Put li/2 J lx i.J 1B12 'C '1.

B = B+2?C, s ' tfjes'. ii ≤ C .'Then

IB<A<2.5'/iT

with X&z such that

II ≤ A

(Hence either •(A,B,C? or is reduced and SL2(Z)-equivalent

to (A,H,C) .)

134

4. The efficiency of the reduction algorithm'

We compare our algorithm to the Gauss - 'reductiofl which, applied to

(A3 ,B3 ,C3), does the following:

while (A3 ,B 31C3) is not reduced do

B : B3. - 1B3/C3ic3 -

(A3 ,B 31C3) : (C31 B,(B2 -)/(4C3))

In practise' the Gauss- reduction generates almost the sme'seguence of forms

as the algorithm described in section 3. Let (A,B,C) be the form after

the i-th Gauss - reduction step. Then ,in general, *ith s=6 rare exceptions:

I 3 ? B/2 MT : B3/2 M

B/2 C B3/2 C.3

A closer inspection shows that the number of arimet.cal steps is almost

the same for both reduction algorithms. Nevertheless, algorithm 3 iv more

eficient since it operates on integers of half the binary length.

Call an integer with absolute value V11. (IM, IEI, resp'.) single preci-

sion (double precision, triple precision, rest.).

The loop, step2, of the .new' rduction algorithm' operates i4ith single pre-

cision integers, whereas Gauss - reduction operates with doub16 presicion

integers. Step 4 and the .finai ridiiction, see theorem 2, tequirb t' most

12 mu1tipliations some of which have double and- triple precision arguments.

In case that the arithmetic on long integers is .implemented in software

the loop (i.e. step 2) of the new reduction algorithm, is about 4 times

faster than Gauss - reduction - For large integers this by far dominates

the additional costs of the at most.- 12 multiplications on double and triple

precision integers 'at the end. We have extersive1y tested the new reduction

method, and we have used it for an efficient implementation of the integer

factoring algorithm of Schnorr and Lenstra (1984) .

135

Summing up the cost for the composition of two equivalence classes of G()

xepr.eaeted by reduced forms, we obtain

Corollary 3 The average cost for composition in G(A) is essentially

the cost of 1.5 applications of the extended Euclidean algorithm to

integers of order vi'XT

Proof By Sharikss formulae A31B3 ,C3 can essentially be computed (neg-

lecting a fLxed number of arithmetical steps) at the cost of computing

gcd(A1 2 and gcd(gcd(A1.,A 2),. (B1+ B)/2) via, the extended Euclidean alo-

rithm. For random x,yn the expected value of gcd(x,y) is about - 2. inn

which shows, that the average cost of computing gcd(gcd(A1,A2), (E1'fB.2)/2)

can be neglected: in fçt 1/i2 = 71V6 implies that gcd(x,y)

occurs with probability .about '. Therefore the expected value o'

gcd(x,y) for random x,y≤n is about 's-' .E 1/i. - j inn. Since
7r2 7r

/ ViI/3 > (} l/3)'' algorithm 3 traverses about hlf of the extended

Euclidean algorithm applied to, and 1- with '? 11R ≤ Vi' ij3' . By

theorems .1',2 the number of the remaining steps to redue A , ;C) i.e'

bounded by a fLxed 'constant..

Remarks The standard version of the extended Euclidean algorithm, see

Knuth (180), 4.5,2 , applied to x, y ≤ n on the average ta3cs about

0.83 Inn iterations. An iteration corresponds to step 2 of algorithm. 3.

This yields 'a total of O(n2-) bit operations .f or the extended Euclidean

algorithm on integers x , y , see Knuth (1981), 4.5.2, exercise 30.

There exist asymptotically' faster god- algorithms bas'e.d on the fast

Fourier transform. The algorithm of Schônhage (1971) only takes

0(n (In ri)lnln.n) bit operations for n- bit integers.

136

5. Proof of Theorem 1

he i . and the A in steps 3,4 of algorithm 3 according to step 4 satisfy

12 ii• i2
(vi) A3 V1 V 2 B3 + '2 3

We conclude from + 2 A R/d, A=B_ 4 A3 c3 ,.A3 =

() 31

2 + 172 2AR/dj + (11$(33_)/(4 A3)

= (vAA2/d2+vivi 2 i(B+ 2 A2 /d)+(4 2 a2 (4 A1A2il[(B2+2A2 z,/a)2 . j

()2 Ai 2 /d2+v .i .B2+ 2.R/d)

1.+ (v)2 d2 (A1A2) 1 (A2C2 +B2 A2 R/d+ A22 R/d2)

[(vj + R14)2 + Vi 2
+ Rv)+(v C2d•]

Induction on i yields . - v * R = It follows

j [(v+ B2 v v + (v)2

Since the vi decrease with .i1 the stop rule of step 2 implies

V VIA i/3 < v -1 . ui

Lemma 4 Iu v1 < A1/d

Proof of lemma 4 We first-prove by induction pn I

V V Vi u S 0 for i)O

The assertion holds for i = 0 since ' u O= 02. .

Suppose \i' .v ≤ 0 . Step 2 yields for. = Lu-/vJ 0

v1 q1 v) =

which completes the induction

qi(17)2 0

0

(1)

(2)

137

0 1

• q i_-I
L

o i•
UO2 U93

1 q0 02 v `3

= ± 1/d

4 v - u vI = A1 /d. Clearly. v,u> 0 and by. (2) u, v 12

1ave distinct sign. Therfore

Iu vI ≤ ,Iu v -. u - vJ = A/d3 2

We continue the .proof or' theorem 1 - Obviously 141 4 1 or i o.

Therefore lemma 4 implies

IvvI A/d

Moreover

Hence

(,vj :5 A1/(a 141)

Al / A2

• v.2 l < 2I 2/.-14- 1/3 V'lAI/3

We combine the bounds (2)'r(3),(4) on

and obtain.

a
3 - AlI -- (çi)2 + B2 4 + c2 a: A ' 3 •- -

• d A2 VI1I/3 + IB2I A1
A2 • a

= vM/ + IB2I + A2 C2 / /[AI/3

and

A1 A2 C2•

+ dVjI/3

(by 1ema 4)

(by . (2))

(vj)2

(3)

(4)

with (1-)

We have IB2I< -A2 <\/1K1/3 Ad A2 C 2. < IL/3I since (A,B21C2) is

reduced. This imp#es -

138

6.. Proof of Theoren 2

The theorem is true in case IBI ≤ C. So let us assume 131 >C.

Case 1 c < 'IIM/3

Proof by contradiction- thupose

• - IM

4131 ll

This implies

+ LiI •<

Using cE we obtain

- C •< Y'IM/3
131

From this equation we cqnc],uj i/V3 < IB,I//f—Al < '5, hence JB I>VIA.1/3

Since IBI C '= C this yields C > '.IIM/3 , a contradiction.

Case C >.VI/3

Coisider the form' (A,B,C) (A-. 2113 -1+4C, 131 - 4'C , C) . It is sufficieni

to show. • jE 1 < c , ji I <

Proof of IBI < C - .: We have .JBI :5A'= (13 2 +jAj.)/(4c) .nd therefore

4C- IBI'.≤ lW. I8I≤.:A (32 +IA)/(4C) also implies

vThi/3 < C (131 hence V/IBL+ 13I/lf> The'

last inequality impl,ths either 1BI/VIT <. 1/\/ or IBJ/\/il > /2

Since 131 > C > \[ILl/3 we obtain IBI .>. y'ii'XT"..

This implies 4C'lBi<LJBI < VIAi/3 . On,.the other had, byth.a.ssump-

tion of theorem 2, we have

......
,lB -4C < (2.5 - 4/V"i')V'IXT. < 0.2 /1j <

Hence Il = lIBI-4c1 ≤ V14113 < C

139

Proof of AB :5. A- : We conclude from 2.5\/ii ≥ A ≥

C = (22+ I4I)/(4A) ≤ 121/4 + I&l/(4A)

≤ A/4 + IL 1/(4 1 BI) ≤ \/iXi(2.5/4 + 1A4\/)) < 0.77 vi'Xi

We conclude from FBI < A < 2.5VIX'j ,, C

121 -4 C 0.2 V1AT< - /(4 0.77ViXT) -/(4.i)

• (4.0 1,21)2 -

4'C
A - 2 I.1 t 4C

On 'the other hand IBI A implies 4C - IBI ≤ 4C+ A 21B1. Hence

References

Gauss, C.F.

Knuth; D.E.

Lenstra, R.W.

Schnorr, C.P.

Schonbage, A..

Shanks, D.

IBI - 4C I ≤ - 2121 'I- 4C

]its'uisitimnes zi1thm.eticae. Leipzig 801..

German translation: Untersuciuzigen ber ôhere Azi.tbmetik.

Springer, Berlin (1889).

The'Art of Computer Programming, Volume2, Seminumerical
Algorithms. Second Edition.
Addison- Weley (1981).

Jr. : On the calculation of regulators and clss numbers of -

adratic fields.

in: J.V. Armitage (ed). Journes Artbmtiqé 1980, Cambridge,

University Press (1982), £23-ISO.

and Le'istra, E. W. Jr. : A. Monte Carlo factoring algith

with 14.nèar storage.'

Mathematics of ComputatLon (1984).

Schxielle .Berechiwng von ettenbruchenttickiungen.
Acta Informatia '1 (1971.), 152-157

• Class number, a. theory of factorization and genera.

Proc. Syxup. 'Pure Math. Amer. Math. Soc. 20 (.197t) ,' 4i5-440.

