Browsing by Author "Gomez, Alwyn"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Cerebral physiologic insult burden in acute traumatic neural injury: a Canadian High Resolution-TBI (CAHR-TBI) descriptive analysis(2024-09-04) Stein, Kevin Y.; Gomez, Alwyn; Griesdale, Donald; Sekhon, Mypinder; Bernard, Francis; Gallagher, Clare; Thelin, Eric P.; Raj, Rahul; Aries, Marcel; Froese, Logan; Kramer, Andreas; Zeiler, Frederick A.Abstract Background Over the recent decades, continuous multi-modal monitoring of cerebral physiology has gained increasing interest for its potential to help minimize secondary brain injury following moderate-to-severe acute traumatic neural injury (also termed traumatic brain injury; TBI). Despite this heightened interest, there has yet to be a comprehensive evaluation of the effects of derangements in multimodal cerebral physiology on global cerebral physiologic insult burden. In this study, we offer a multi-center descriptive analysis of the associations between deranged cerebral physiology and cerebral physiologic insult burden. Methods Using data from the Canadian High-Resolution TBI (CAHR-TBI) Research Collaborative, a total of 369 complete patient datasets were acquired for the purposes of this study. For various cerebral physiologic metrics, patients were trichotomized into low, intermediate, and high cohorts based on mean values. Jonckheere–Terpstra testing was then used to assess for directional relationships between these cerebral physiologic metrics and various measures of cerebral physiologic insult burden. Contour plots were then created to illustrate the impact of preserved vs impaired cerebrovascular reactivity on these relationships. Results It was found that elevated intracranial pressure (ICP) was associated with more time spent with cerebral perfusion pressure (CPP) < 60 mmHg and more time with impaired cerebrovascular reactivity. Low CPP was associated with more time spent with ICP > 20 or 22 mmHg and more time spent with impaired cerebrovascular reactivity. Elevated cerebrovascular reactivity indices were associated with more time spent with CPP < 60 mmHg as well as ICP > 20 or 22 mmHg. Low brain tissue oxygenation (PbtO2) only demonstrated a significant association with more time spent with CPP < 60 mmHg. Low regional oxygen saturation (rSO2) failed to produce a statistically significant association with any particular measure of cerebral physiologic insult burden. Conclusions Mean ICP, CPP and, cerebrovascular reactivity values demonstrate statistically significant associations with global cerebral physiologic insult burden; however, it is uncertain whether measures of oxygen delivery provide any significant insight into such insult burden.Item Open Access Cerebrovascular pressure reactivity and brain tissue oxygen monitoring provide complementary information regarding the lower and upper limits of cerebral blood flow control in traumatic brain injury: a CAnadian High Resolution-TBI (CAHR-TBI) cohort study(2022-12-23) Gomez, Alwyn; Sekhon, Mypinder; Griesdale, Donald; Froese, Logan; Yang, Eleen; Thelin, Eric P.; Raj, Rahul; Aries, Marcel; Gallagher, Clare; Bernard, Francis; Kramer, Andreas H.; Zeiler, Frederick A.Abstract Background Brain tissue oxygen tension (PbtO2) and cerebrovascular pressure reactivity monitoring have emerged as potential modalities to individualize care in moderate and severe traumatic brain injury (TBI). The relationship between these modalities has had limited exploration. The aim of this study was to examine the relationship between PbtO2 and cerebral perfusion pressure (CPP) and how this relationship is modified by the state of cerebrovascular pressure reactivity. Methods A retrospective multi-institution cohort study utilizing prospectively collected high-resolution physiologic data from the CAnadian High Resolution-TBI (CAHR-TBI) Research Collaborative database collected between 2011 and 2021 was performed. Included in the study were critically ill TBI patients with intracranial pressure (ICP), arterial blood pressure (ABP), and PbtO2 monitoring treated in any one of three CAHR-TBI affiliated adult intensive care units (ICU). The outcome of interest was how PbtO2 and CPP are related over a cohort of TBI patients and how this relationship is modified by the state of cerebrovascular reactivity, as determined using the pressure reactivity index (PRx). Results A total of 77 patients met the study inclusion criteria with a total of 377,744 min of physiologic data available for the analysis. PbtO2 produced a triphasic curve when plotted against CPP like previous population-based plots of cerebral blood flow (CBF) versus CPP. The triphasic curve included a plateau region flanked by regions of relative ischemia (hypoxia) and hyperemia (hyperoxia). The plateau region shortened when cerebrovascular pressure reactivity was disrupted compared to when it was intact. Conclusions In this exploratory analysis of a multi-institution high-resolution physiology TBI database, PbtO2 seems to have a triphasic relationship with CPP, over the entire cohort. The CPP range over which the plateau exists is modified by the state of cerebrovascular reactivity. This indicates that in critically ill TBI patients admitted to ICU, PbtO2 may be reflective of CBF.Item Open Access Prognostic value of near-infrared spectroscopy regional oxygen saturation and cerebrovascular reactivity index in acute traumatic neural injury: a CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Cohort Study(2024-03-14) Gomez, Alwyn; Froese, Logan; Griesdale, Donald; Thelin, Eric P.; Raj, Rahul; van Iperenburg, Levi; Tas, Jeanette; Aries, Marcel; Stein, Kevin Y.; Gallagher, Clare; Bernard, Francis; Kramer, Andreas H.; Zeiler, Frederick A.Abstract Background Near-infrared spectroscopy regional cerebral oxygen saturation (rSO2) has gained interest as a raw parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed to identify threshold values of rSO2 and rSO2-based CVR at which outcomes worsened following traumatic brain injury (TBI). Methods A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using rSO2 and cerebral perfusion pressure) as well as COx_a (using rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logistic regression, respectively. Results In the cohort of 129 patients, there was no identifiable threshold for raw rSO2 at which outcomes were found to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival and favorable outcomes, while percent time above − 0.05 was uniformly found to have the best discriminative value. Conclusions In this multi-institutional cohort study, raw rSO2was found to contain no significant prognostic information. However, rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold of 0.2 and exposure-based threshold of − 0.05, above which clinical outcomes markedly worsened. This study lays the groundwork to transition to less invasive means of continuously measuring CVR.