Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • PRISM

  • Communities & Collections
  • All of PRISM
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Paulson, Scott"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Carbon Formation on Stainless Steel 304H in the Convection Section of an Ethane Cracking Plant
    (Taylor & Francis, 2015) Ramezanipour, Farshid; Singh, Anand; Paulson, Scott; Farag, Hany; Birss, Viola; Thangadurai, Venkataraman
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Effect of sintering temperature on microstructure, chemical stability, and electrical properties of transition metal or Yb-doped BaZr0.1Ce0.7Y0.1M0.1O3?? (M = Fe, Ni, Co, and Yb)
    (Frontiers Media SA, 2014-03-13) Mirfakhraie, Behzad; Ramezanipour, Farshid; Paulson, Scott; Virss, Viola; Thangadurai, Venkataraman
    Perovskite-type BaZr0.1Ce0.7Y0.1M0.1O3?? (M = Fe, Ni, Co, and Yb) (BZCY-M) oxides were synthesized using the conventional solid-state reaction method at 1350–1550°C in air in order to investigate the effect of dopants on sintering, crystal structure, chemical stability under CO2 and H2S, and electrical transport properties. The formation of the single-phase perovskite-type structure with an orthorhombic space group Imam was confirmed by Rietveld refinement using powder X-ray diffraction for the Fe, Co, Ni, and Yb-doped samples. The BZCY-Co and BZCY-Ni oxides show a total electrical conductivity of 0.01 and 8 × 10?3 S cm?1 at 600°C in wet H2 with an activation energy of 0.36 and 0.41 eV, respectively. Scanning electron microscope and energy-dispersive X-ray analysis revealed Ba and Co-rich secondary phase at the grain-boundaries, which may explain the enhancement in the total conductivity of the BZCY-Co. However, ex-solution of Ni at higher sintering temperatures, especially at 1550°C, decreases the total conductivity of the BZCY-Ni material. The Co and Ni dopants act as a sintering aid and form dense pellets at a lower sintering temperature of 1250°C. The Fe, Co, and Ni-doped BZCY-M samples synthesized at 1350°C show stability in 30 ppm H2S/H2 at 800°C, and increasing the firing temperature to 1550°C, enhanced the chemical stability in CO2/N2 (1:2) at 25–900°C. The BZCY-Co and BZCY-Ni compounds with high conductivity in wet H2 could be considered as possible anodes for intermediate temperature solid oxide fuel cells.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8Feo.2O3 cathodes
    (Eslevier, 2006) Birss, Viola I.; Liu, Jingbo; Co, Anne C.; Paulson, Scott
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode
    (Royal Society of Chemistry, 2015) Chen, Min; Paulson, Scott; Kan, Wang Hay; Thangadurai, Venkataraman; Birss, Viola

Libraries & Cultural Resources

  • Contact us
  • 403.220.8895
Start Something.
  • Digital Privacy Statement
  • Privacy Policy
  • Website feedback

University of Calgary
2500 University Drive NW
Calgary Alberta T2N 1N4
CANADA

Copyright © 2023

The University of Calgary acknowledges the traditional territories of the people of the Treaty 7 region in Southern Alberta, which includes the Blackfoot Confederacy (comprised of the Siksika, Piikani, and Kainai First Nations), as well as the Tsuut’ina First Nation, and the Stoney Nakoda (including the Chiniki, Bearspaw and Wesley First Nations). The City of Calgary is also home to Metis Nation of Alberta, Region 3. The University of Calgary acknowledges the impact of colonization on Indigenous peoples in Canada and is committed to our collective journey towards reconciliation to create a welcome and inclusive campus that encourages Indigenous ways of knowing, doing, connecting and being.