Browsing by Author "Pike, Ian"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemOpen AccessIs Blood Alcohol Level a Good Predictor for Injury Severity Outcomes in Motor Vehicle Crash Victims?(2011-09-14) Mann, Bikaramjit; Desapriya, Ediriweera; Fujiwara, Takeo; Pike, IanExperimental studies in animals suggest that alcohol may influence pathophysiologic response to injury mechanisms. However, biological evidence for the alcohol-injury severity relationship provides conflicting results. The purpose of our retrospective cross-sectional study in 2,323 people was to assess whether blood alcohol level (BAC) adversely influences injury severity in victims of motor vehicle collisions (MVCs). We found no difference in mortality OR 1.09 (0.73–1.62), or length of hospital stay, and a trend for lower ISS score was found in the high-alcohol group (). Furthermore, the high-alcohol group demonstrated a lower adjusted rate of severe head injury OR 0.65 (0.48–0.87), chest injury OR 0.58 (0.42–0.80), and serious extremity injury OR 0.10 (0.01–0.76). The findings of our study do not demonstrate a dose-response relationship between alcohol consumption and injury severity in MVCs. This study implies that higher BAC may lead to less severe injuries, without impacting mortality or length of hospital stay, however, further research is required to elucidate the nature of this relationship.
- ItemOpen AccessIs Blood Alcohol Level a Good Predictor for Injury Severity Outcomes in Motor Vehicle Crash Victims?(Hindawi Publishing Corporation, 2011-05-25) Mann, Bikaramjit; Desapriya, Ediriweera; Fujiwara, Takeo; Pike, Ian
- ItemOpen AccessReducing Injuries in Soccer (Football): an Umbrella Review of Best Evidence Across the Epidemiological Framework for Prevention(2020-09-21) Owoeye, Oluwatoyosi B A; VanderWey, Mitchell J; Pike, IanAbstract Soccer is the most popular sport in the world. Expectedly, the incidence of soccer-related injuries is high and these injuries exert a significant burden on individuals and families, including health and financial burdens, and on the socioeconomic and healthcare systems. Using established injury prevention frameworks, we present a concise synthesis of the most recent scientific evidence regarding injury rates, characteristics, mechanisms, risk and protective factors, interventions for prevention, and implementation of interventions in soccer. In this umbrella review, we elucidate the most recent available evidence gleaned primarily from systematic reviews and meta-analyses. Further, we express the exigent need to move current soccer injury prevention research evidence into action for improved player outcomes and widespread impact through increased attention to dissemination and implementation research. Additionally, we highlight the importance of an enabling context and effective implementation strategies for the successful integration of evidence-based injury prevention programs into real-world soccer settings. This narrative umbrella review provides guidance to inform future research, practice, and policy towards reducing injuries among soccer players.
- ItemOpen AccessThe built environment and active transportation safety in children and youth: a study protocol(2019-06-11) Hagel, Brent E; Macpherson, Alison; Howard, Andrew; Fuselli, Pamela; Cloutier, Marie-Soleil; Winters, Meghan; Richmond, Sarah A; Rothman, Linda; Belton, Kathy; Buliung, Ron; Emery, Carolyn A; Faulkner, Guy; Kennedy, Jacqueline; Ma, Tracey; Macarthur, Colin; McCormack, Gavin R.; Morrow, Greg; Nettel-Aguirre, Alberto; Owens, Liz; Pike, Ian; Russell, Kelly; Torres, Juan; Voaklander, Donald; Embree, Tania; Hubka, TateAbstract Background Active transportation, such as walking and biking, is a healthy way for children to explore their environment and develop independence. However, children can be injured while walking and biking. Many cities make changes to the built environment (e.g., traffic calming features, separated bike lanes) to keep people safe. There is some research on how effective these changes are in preventing adult pedestrians and bicyclists from getting hurt, but very little research has been done to show how safe various environments are for children and youth. Our research program will study how features of the built environment affect whether children travel (e.g., to school) using active modes, and whether certain features increase or decrease their likelihood of injury. Methods First, we will use a cross-sectional study design to estimate associations between objectively measured built environment and objectively measured active transportation to school among child elementary students. We will examine the associations between objectively measured built environment and child and youth pedestrian-motor vehicle collisions (MVCs) and bicyclist-MVCs. We will also use these data to determine the space-time distribution of pedestrian-MVCs and bicyclist-MVCs. Second, we will use a case-crossover design to compare the built environment characteristics of the site where child and youth bicyclists sustain emergency department reported injuries and two randomly selected sites (control sites) along the bicyclist’s route before the injury occurred. Third, to identify implementation strategies for built environment change at the municipal level to encourage active transportation we will conduct: 1) an environmental scan, 2) key informant interviews, 3) focus groups, and 4) a national survey to identify facilitators and barriers for implementing built environment change in municipalities. Finally, we will develop a built environment implementation toolkit to promote active transportation and prevent child pedestrian and bicyclist injuries. Discussion This program of research will identify the built environment associated with active transportation safety and form an evidence base from which municipalities can draw information to support change. Our team’s national scope will be invaluable in providing information regarding the variability in built environment characteristics and is vital to producing evidence-based recommendations that will increase safe active transportation.