Show simple item record

dc.contributor.advisorHay, Geoffrey
dc.contributor.authorRahman, Mir Mustafizur
dc.date.accessioned2014-09-30T20:30:37Z
dc.date.available2014-11-17T08:00:51Z
dc.date.issued2014-09-30
dc.date.submitted2014en
dc.identifier.citationRahman, M. M. (2014). Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25617en_US
dc.identifier.urihttp://hdl.handle.net/11023/1865
dc.description.abstractIn collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated ‘protocol’ to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13-14, 2012 at night (11:00 pm - 5:00 am) over The City of Calgary, Alberta (~825 km2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers) - are: (a) Thermal Urban Road Normalization (TURN) - used to mitigate the microclimatic variability within a thermal flight line based on varying road temperatures; (b) Automated Polynomial Relative Radiometric Normalization (RRN) - which mitigates the between flight line radiometric variability; and (c) Object Based Mosaicking (OBM) - which minimizes the geometric distortion along the mosaic edge between each flight line. A modified Emissivity Modulation technique is also described to correct H-res TIR images for emissivity. This combined radiometric and geometric post-processing protocol (i) increases the visual agreement between TABI-1800 flight lines, (ii) improves radiometric agreement within/between flight lines, (iii) produces a visually seamless mosaic, (iv) improves hot-spot detection and landcover classification accuracy, and (v) provides accurate data for thermal-based HEAT energy models.en_US
dc.language.isoeng
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subjectGeography
dc.subject.classificationThermal Infrared Remote Sensingen_US
dc.subject.classificationHigh Spatial Resolutionen_US
dc.subject.classificationDigital Image Processingen_US
dc.subject.classificationThermal Urban Road Normalization (TURN)en_US
dc.subject.classificationRelative Radiometric Normalizationen_US
dc.subject.classificationTABI-1800en_US
dc.subject.classificationAutomationen_US
dc.titleDeveloping a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping
dc.typedoctoral thesis
dc.publisher.facultyGraduate Studies
dc.publisher.institutionUniversity of Calgaryen
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/25617
thesis.degree.nameDoctor of Philosophy
thesis.degree.namePhD
thesis.degree.disciplineGeography
thesis.degree.grantorUniversity of Calgary
atmire.migration.oldid2674
dc.publisher.placeCalgaryen
ucalgary.item.requestcopytrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.