• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development and characterization of a synthetic bone analogue for surgical training

Thumbnail
View
Thesis
Download
Thesis (11.43Mb)
Advisor
Anglin, Carolyn
Author
Blair-Pattison, Aubrey
Committee Member
Anglin, Carolyn
Ramirez-Serrano, Alejandro
Di Martino, Elena
Boyd, Steven K
Hu, Richard W
Accessioned
2016-01-18T18:09:20Z
Available
2016-01-18T18:09:20Z
Issued
2016-01-18
Submitted
2016
Other
spine
orthopaedic
material
Subject
Engineering--Biomedical
Type
Thesis
Metadata
Show full item record

Abstract
Spinal surgeries often require screws to be placed through small cylindrical pedicles in the vertebra, beside the spinal cord, to anchor rods for spinal fusion and correction. More experienced surgeons have fewer malplaced pedicle screws. In the current training paradigm, residents primarily learn the procedure on live patients. The objective of this research was to create a synthetic bone analogue with realistic tactile feedback to improve resident training. Forces encountered during pedicle cannulation and breaching were measured ex vivo. These were used to create a cost-effective bone model that replicated the forces as well as specific heterogeneous features of bone, distinct from current bone models. Of six residents who used the new bone analogues, five had fewer breaches in the simulated environment after practice than before.
Corporate
University of Calgary
Faculty
Graduate Studies
Doi
http://dx.doi.org/10.5072/PRISM/25638
Uri
http://hdl.handle.net/11023/2754
Collections
  • The Vault: Electronic Theses and Dissertations

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017