An Atomic Source of Quantum Light

Date
2012-10-25
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis presents the experimental demonstration of an atomic source of narrowband nonclassical states of light. Employing four-wave mixing in hot atomic Rubidium vapour, the optical states produced are naturally compatible with atomic transitions and may be thus employed in atom-based quantum communication protocols. We first demonstrate the production of two-mode intensity-squeezed light and analyze the correlations between the two produced modes. Using homodyne detection in each mode, we verify the production of two-mode quadrature-squeezed light, achieving a reduction in quadrature variance of 3 dB below the standard quantum limit. Employing conditional detection on one of the channels, we then demonstrate the generation of single-photon Fock states as well as controllable superpositions of vacuum and 1-photon states. We fully characterize the produced light by means of optical homodyne tomography and maximum likelihood estimation. The narrowband nature of the produced light yields a resolvable temporal wave-function, and we develop a method to infer this wave function from the continuous photocurrent provided by the homodyne detector. The nature of the atomic process opens the door to a new direction of research: generation of arbitrary superpositions of collective atomic states. We perform the first proof-of-principle experiment towards this new field and discuss a proposal for extending this work to obtain full control over the collective-atomic Hilbert space.
Description
Keywords
Physics--Atomic, Optics
Citation
MacRae, A. (2012). An Atomic Source of Quantum Light (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/24840