• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic analysis and the effect upon mouse infection of nucleic acid metabolizing genes in the Lyme disease spirochete

Thumbnail
Download
ucalgary_2013_hardy_pierre-olivier.pdf (2.809Mb)
Advisor
Chaconas, George
Author
Hardy, Pierre-Olivier
Accessioned
2013-04-09T17:04:09Z
Available
2013-06-15T07:01:51Z
Issued
2013-04-09
Submitted
2013
Other
Borrelia burgdorferi
Lyme disease
antigenic variation
DNA damage
RNA helicase
murine infection
genetic manipulation
Subject
Genetics
Microbiology
Biology--Molecular
Biology--Molecular
Type
Thesis
Metadata
Show full item record

Abstract
The Lyme spirochete Borrelia burgdorferi causes the most prevalent vector-borne infection in North America. In this study, the importance of DNA metabolizing genes for the infectivity, persistence and survival to DNA damage in B. burgdorferi was determined. During the infection of a vertebrate host, B. burgdorferi undergoes antigenic variation by DNA recombination at vlsE, which encodes for an immunogenic surface lipoprotein required for the persistence of the spirochete. In the present study, eight gene targets were disrupted and only the RuvAB Holiday junction branch migrase subunits affected the switching at vlsE and the persistence of B. burgdorferi in mice. The disruption of these eight genes was part of a wider study aiming to identify nucleic acid metabolizing genes involved in switching at vlsE. Although no other genes were found to strongly affect switching, the disruption of the DEAH-box RNA helicase HrpA abolished the infectivity of B. burgdorferi. Since the complementation of hrpA in trans could not be achieved, the restoration of the wild-type gene by allelic exchange was used as an alternate strategy for complementation. The restoration of the wild-type hrpA did restore infectivity, confirming the importance of hrpA. Point mutations were also introduced by allelic exchange in motifs required for either the RNA helicase or the ATPase activity of HrpA. To avoid an intial screen of a large number of clones by sequencing, a strategy was adapted to confirm by PCR the presence of the mutation in the gene. Infection of mice with these B. burgdorferi hrpA mutants confirmed that the RNA helicase activity, in addition of the ATPase activity, is required for the survival of B. burgdorferi in the mouse. Finally, a strategy was adapted to expediently compare the cell density of multiple cultures. This strategy was used to measure the importance of 25 nucleic acid metabolizing genes for survival of B. burgdorferi to DNA damage. Using this strategy, the nucleotide excision repair pathway was shown to be the sole repair pathway to be significantly involved in repair of UV-induced DNA damage in B. burgdorferi.
Corporate
University of Calgary
Faculty
Graduate Studies
Doi
http://dx.doi.org/10.11575/PRISM/26269
Uri
http://hdl.handle.net/11023/592
Collections
  • The Vault: Electronic Theses and Dissertations

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017