• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • Legacy Theses
  • View Item
  •   PRISM Home
  • Graduate Studies
  • Legacy Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional genomics reveals novel o-demethylases involved in the biosynthesis of codeine and morphine in opium poppy

Thumbnail
Download
thesis_Hagel_2009.pdf (132.4Mb)
Advisor
Facchini, Peter J.
Author
Hagel, Jillian M.
Accessioned
2017-12-18T22:02:07Z
Available
2017-12-18T22:02:07Z
Issued
2009
Metadata
Show full item record

Abstract
Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a versatile model system to study plant alkaloid metabolism. The biosynthesis of morphine and related alkaloids in opium poppy occurs via a complex, multistep pathway beginning with the amino acid tyrosine. Corresponding genes encoding many of the enzymes involved in morphine biosynthesis have been isolated. However, molecular clones are not yet available for some enzymes, and enzyme activity accounting for two key O-demethylation steps leading from thebaine to morphine has yet to be detected. As part of a functional genomics platform aimed at isolating new genes, 1H nuclear magnetic resonance (NMR) metabolite profiling was used to characterize six varieties of opium poppy exhibiting altered alkaloid accumulation profiles. Aqueous and chloroform extracts of six different opium poppy cultivars were subjected to chemometric analysis. Principal component analysis of the 1H NMR spectra for latex extracts clearly distinguished two varieties, including a low-alkaloid variety "P" and a high-thebaine, low-morphine cultivar "T." Loading plots confirmed that morphinan alkaloids contributed predominantly to the variance in latex extracts. Relatively few differences were found in the levels of other metabolites, indicating that the variation was specific for alkaloid metabolism. This finding provided a rational basis for a microarray-based, comparative transcriptomics approach, wherein the transcriptome of T poppy stem was compared with those of high-morphine cultivars. This study led to the isolation of thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM), which together represented the first identified 0-demethylases in the 2-oxoglutarate/Fe(II)-dependent dioxygenase family. It was shown that gene-specific silencing of T6ODM and CODM dramatically alters morphinan alkaloid profiles of opium poppy.
Bibliography: p. 170-193
 
Some pages are in colour.
 
Place
Calgary
Doi
http://dx.doi.org/10.11575/PRISM/3230
Uri
http://hdl.handle.net/1880/104231
Collections
  • Legacy Theses

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017