• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
  •   PRISM Home
  • Graduate Studies
  • The Vault: Electronic Theses and Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing intrinsic and stratigraphic Q in VSP data with information measures

Thumbnail
View
main article
Download
main article (14.21Mb)
Advisor
Innanen, Kris
Author
Lv, Siming
Committee Member
Lines, Laurence
Trad, Daniel
Accessioned
2018-01-19T00:51:43Z
Available
2018-01-19T00:51:43Z
Issued
2018-01-08
Date
2018-06
Classification
Education--Sciences
Geophysics
Statistics
Subject
Stratigraphic filtering
Shannon entropy
Seismic attenuation
Type
master thesis
Metadata
Show full item record

Abstract
Short-period multiples in finely layered geological media modify a seismic pulse as it propagates. This effect, called stratigraphic filtering, or extrinsic attenuation, is characterized by strong attenuation and dispersion of seismic amplitudes. It is similar to, and in fact very difficult to distinguish from, the effect produced by processes of seismic amplitude loss due to friction (or intrinsic attenuation). This is an important and difficult fact for interpreters of seismic data, because it means that similar data signatures are produced by very different geological and petrophysical features of the Earth. In this thesis I seek data analysis methods with the ability to amplify small differences produced by the processes of intrinsic attenuation and stratigraphic filtering, with the aim of discriminating between the two. In a zero-offset vertical seismic profiling (VSP) data set, at any instant in time we have access to a snapshot of the seismic wavefield along the principal direction of wave propagation. In practice, such a snapshot has the form of discrete amplitude values being assigned to each of a set of discrete depth values. Regarding this snapshot as a ``message'', made up of a sequence of ``letters'', or amplitude values, drawn from an ``alphabet'' of allowable amplitudes, permits the data to be analyzed using information-theoretic methods. For instance, Shannon entropy, which measures the degree of disorder within a message, can be assigned to each snapshot, and the time evolution of this number can be determined directly from a VSP data set. It is hypothesized that processes of intrinsic and extrinsic attenuation cause significant and measurable differences in the evolution of the entropy, which means this information measure could be utilized to help distinguish between the two. I analyze this with synthetic VSPs based on real well-log data, pointing out the important role of amplitude bin size in this information measure and the variability of results that should be expected as bin size changes. I point out with these examples that intrinsic and extrinsic attenuation processes tend to have opposite influences on entropy versus time curves. A field data set example is suggestive that the relative strength of stratigraphic filtering and intrinsic attenuation can be estimated in this way.
Faculty
Science
Institution
University of Calgary
Doi
http://dx.doi.org/10.5072/PRISM/5359
Uri
http://hdl.handle.net/1880/106278
Collections
  • The Vault: Electronic Theses and Dissertations

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017