Show simple item record

dc.contributor.advisorGhannouchi, Fadhel M.
dc.contributor.advisorOblak, Daniel
dc.contributor.authorNoweir, Mahmood
dc.date2021-06
dc.date.accessioned2021-03-01T14:55:21Z
dc.date.available2021-03-01T14:55:21Z
dc.date.issued2021-02-22
dc.identifier.citationNoweir, M. (2021). Radio over Fiber Transceiver's Architectures for Wireless and Satellite Communications (Unpublished doctoral thesis). University of Calgary, Calgary, AB.en_US
dc.identifier.urihttp://hdl.handle.net/1880/113123
dc.description.abstractThe development of the fifth-generation (5G), and beyond, of wireless communications motivates researchers to design innovative architectures in order to guarantee the delivery of data rate as high as 10 Gbps. The existing 4G wireless access architectures broadcast radio frequency (RF) signals below 6 GHz. This congestion in the available spectrum limits the data speed to a few hundred Mbps. Researchers investigated the option of using millimeter wave (mm-wave) between 30-300 GHz as wireless carriers to broadcast and transmit signals with data speed up to 10 Gbps and higher. The need for an efficient wire or wireless broadband link between base stations is vital to allow a variety of applications and services (like interactive HD TV, internet video, augmented reality, vehicle telematics, high-speed train, the wireless cloud office, etc.) to be delivered simultaneously and seamlessly. Using lasers in generating mm-wave carriers is still an active area of research since the 1990s, due to its overall design simplicity and efficiency. By modulating laser light, using a radio-frequency signal, it becomes possible to transmit the latter over standard optical fiber cables, for which the loss in the telecommunication band is as low as 0.2 dB/km. Radio-over- fiber (RoF) technology combines the advantages of radio and photonic devices. RoF technology, therefore, allows extending the distance between central stations and wireless end-users, thus maximizing the coverage of micro-cell and macro-cell based networks. In addition, photonics and RoF can be seen as enabling technologies to generate radio signals at mm-wave frequencies in a cost-effective manner. Hence, RoF technology will lead to reduced Capital Expenditure (CAPEX), and Operational Expenditure (OPEX), compared to traditional all-electronic networks. The electrical-optical-electrical conversion process in RoF links inevitably comes with impairments that degrade the signal quality. Simpler setups, using cheaper off-the-shelf components, can still lead to an acceptable performance by boosting the input RF signal power before optical modulation. Amplification of the RF signal carried by optical fiber is commonly adopted to minimize the impact of photo-detection noise on the dynamic range at the receiver. Unfortunately, this amplification causes the RoF system to behave non-linearly, leading to distortions during the electrical-optical-electrical conversion process that degrades the overall signal quality. To overcome this problem and linearize the RoF link, in this thesis, we propose a novel full-duplex RoF transceiver (TRx) architecture, augmented with an effective digital predistortion (DPD) technique to mitigate the non-linearities of the RoF TRx using a memory polynomial (MP) model. This thesis deals with the implementation of RoF TRx and provides solutions to some of the observed impairments in the electro-optical systems. In the first phase of the research project, the design of a single RoF fronthaul downlink transmitter is built and supported by experimental validation. The second phase of the project is conducted to enhance and upgrade the capability of RF signal generation and bandwidth of the RoF TRx. The third phase is focused on the establishment of a bidirectional link between central baseband unit (BBU) to remote radio head (RRH) and to integrate it with a free-space optics. The fourth phase is accomplished by building dynamic DPD models, which provide on-line feedback information from the RRHs through an established pre-calibrated observation path.en_US
dc.language.isoengen_US
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.en_US
dc.subjectDSPen_US
dc.subject5Gen_US
dc.subjectRadio over fiberen_US
dc.subjectlaser telecommunicationen_US
dc.subjectDigital predistortionen_US
dc.subjectSatellite communicationsen_US
dc.subjectfree space opticsen_US
dc.subjectLinearizationen_US
dc.subjectImpairment mitigationen_US
dc.subject4Gen_US
dc.subjectWireless communicationen_US
dc.subjectmillimeter waveen_US
dc.subject.classificationEducation--Mathematicsen_US
dc.subject.classificationEducation--Technologyen_US
dc.subject.classificationOpticsen_US
dc.subject.classificationEngineering--Electronics and Electricalen_US
dc.subject.classificationEngineering--System Scienceen_US
dc.titleRadio over Fiber Transceiver's Architectures for Wireless and Satellite Communicationsen_US
dc.typedoctoral thesisen_US
dc.publisher.facultySchulich School of Engineeringen_US
dc.publisher.institutionUniversity of Calgaryen
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/38655
thesis.degree.nameDoctor of Philosophy (PhD)en_US
thesis.degree.disciplineEngineering – Electrical & Computeren_US
thesis.degree.grantorUniversity of Calgaryen_US
dc.contributor.committeememberFapojuwo, Abraham O.
dc.contributor.committeememberHelaoui, Mohamed
ucalgary.item.requestcopytrueen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.