• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Graduate Studies
  • Legacy Theses
  • View Item
  •   PRISM Home
  • Graduate Studies
  • Legacy Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acceleration of finite-difference time-domain electromagnetic simulations using graphics processor units

Download
2004_Krakiwsky_Sean_E.pdf (20.23Mb) Embargoed until: 2200-01-01
Advisor
Turner, Laurence E.
Okoniewski, Michal
Author
Krakiwsky, Sean E.
Accessioned
2005-08-16T17:07:08Z
Available
2005-08-16T17:07:08Z
Issued
2004
Type
Thesis or Dissertation, MSc
master thesis
Metadata
Show full item record

Abstract
The Finite-Difference Time-Domain (FDTD) method is used extensively in microwave engineering and optics for Electromagnetic (EM) simulations. However, FDTD runs too slowly for some simulations to be practical, especially when run on standard desktop computers, but even when run on clusters of computers or supercomputers. The suitability of Graphics Processor Units (GPUs) for the acceleration of FDTD has been investigated. It is demonstrated that consumer GPUs can be used to accelerate two-dimensional FDTD simulations by a factor of roughly seven, relative to compiler-optimized code running on an Intel CPU of similar technology generation. In order to demonstrate this acceleration, an off-the-shelf GPU has been programmed to solve three 2-dimensional electromagnetic problems: (i) a cavity resonator; (ii) a band­gap structure with periodic boundaries; and (iii) a waveguide with ceramic fingers and Perfectly Matched Layer (PML) boundaries. OpenGL is the Application Programming Interface (API) used to program the GPU.
Bibliography: p. 65-66
 
Place
Calgary
Doi
http://dx.doi.org/10.11575/PRISM/21787
Uri
http://hdl.handle.net/1880/41684
Collections
  • Legacy Theses

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017