• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

STOCHASTIC COMPUTING IN NEURAL NETWORKS

Thumbnail
Download
1987-276-24.pdf (3.970Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Gaines, Brian R.
Cleary, John G.
Accessioned
2008-02-26T20:32:20Z
Available
2008-02-26T20:32:20Z
Computerscience
1999-05-27
Issued
1987-08-01
Subject
Computer Science
Type
unknown
Metadata
Show full item record

Abstract
In conventional information systems uncertainty in information is regarded as "noise", and treated as a problem. In neural networks, however, uncertainty is an intrinsic feature of much of the information processing, with many of the computations involving the deliberate injection of stochastic processes. This paper analyzes uncertainty in information representation and processing in terms of the benefits arising, their theoretical foundations, their practical applications, and their hardware implementation. It gives a new perspective on network computations and the information involved. As an example of this approach the paper analyzes the representation of analog quantities by stochastic sequences of bits. Benefits of this approach are both theoretical and practical. Realization of communication links between units is greatly simplified and the number of wires needed in interconnecting VLSI chips correspondingly reduced. The hardware realization of basic operations on analog quantities is very simple, for example, in some cases a single and-gate can be used as a multiplier. The stochastic approach also gives elegant solutions to problems including learning, representation of system controllers, uncertain inference, and partial differential equations.
Notes
We are currently acquiring citations for the work deposited into this collection. We recognize the distribution rights of this item may have been assigned to another entity, other than the author(s) of the work.If you can provide the citation for this work or you think you own the distribution rights to this work please contact the Institutional Repository Administrator at digitize@ucalgary.ca
Corporate
University of Calgary
Faculty
Science
Doi
http://dx.doi.org/10.11575/PRISM/30614
Uri
http://hdl.handle.net/1880/45480
Collections
  • Science Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017