• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
  •   PRISM Home
  • Science
  • Science Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LEARNING ARITHMETIC READ-ONCE FORMULAS

Thumbnail
Download
1992-487-25.pdf (4.345Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Bshouty, Nader H.
Hellerstein, Lisa
Hancock, Thomas R.
Accessioned
2008-02-27T16:49:17Z
Available
2008-02-27T16:49:17Z
Computerscience
1999-05-27
Issued
1992-08-01
Subject
Computer Science
Type
unknown
Metadata
Show full item record

Abstract
A formula is read-once if each variable appears at most once in it. An arithmetic read-once formula is one in which the operators are addition, subtraction, multiplication, and division. We present polynomial time algorithms for exact learning (i.e. interpolation) of arithmetic read-once formulas computing functions over a field. We present an algorithm that uses randomized membership queries (i.e. substitutions) to identify such formulas over large finite fields and infinite fields. We also present a deterministic algorithm that uses equivalence queries as well as membership queries to identify arithmetic read-once formulas over small finite fields. We then non-constructively show the existence of deterministic membership query (interpolation) algorithms for arbitrary formulas over fields of characteristic 0 and for division-free formulas over large or infinite fields. For our algorithms we assume we are able to efficiently perform arithmetic operations on field elements and compute square roots in the field. It is shown that the ability to compute square roots is necessary, in the sense that the problem of computing n-1 square roots in a field can be reduced to the problem of identifying an arithmetic formula over n variables in that field. Our equivalence queries are of a slightly non-standard form, in which counterexamples are required not to be inputs on which the formula evaluates to 0/0. This assumption is shown to be necessary for fields of size o(n/logn), for which we prove there exists no polynomial time identification algorithm that uses just membership and standard equivalence queries.
Notes
We are currently acquiring citations for the work deposited into this collection. We recognize the distribution rights of this item may have been assigned to another entity, other than the author(s) of the work.If you can provide the citation for this work or you think you own the distribution rights to this work please contact the Institutional Repository Administrator at digitize@ucalgary.ca
Corporate
University of Calgary
Faculty
Science
Doi
http://dx.doi.org/10.11575/PRISM/30479
Uri
http://hdl.handle.net/1880/45746
Collections
  • Science Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017