Show simple item record

dc.contributor.authorUddin, M.S.
dc.contributor.authorRoy, C.K.
dc.contributor.authorSchneider, K.A.
dc.contributor.authorHindle, A.
dc.description.abstractClone detection techniques essentially cluster textually, syntactically and/or semantically similar code fragments in or across software systems. For large datasets, similarity identification is costly both in terms of time and memory, and especially so when detecting near-miss clones where lines could be modified, added and/or deleted in the copied fragments. The capability and effectiveness of a clone detection tool mostly depends on the code similarity measurement technique it uses. A variety of similarity measurement approaches have been used for clone detection, including fingerprint based approaches, which have had varying degrees of success notwithstanding some limitations. In this paper, we investigate the effectiveness of simhash, a state of the art fingerprint based data similarity measurement technique for detecting both exact and near-miss clones in large scale software systems. Our experimental data show that simhash is indeed effective in identifying various types of clones in a software system despite wide variations in experimental circumstances. The approach is also suitable as a core capability for building other tools, such as tools for: incremental clone detection, code searching, and clone management.en_US
dc.titleOn the Effectiveness of Simhash for Detecting Near-Miss Clones in Large Scale Software Systemsen_US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record