• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • SurfNet
  • Surfnet
  • View Item
  •   PRISM Home
  • SurfNet
  • Surfnet
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seeing through the Fog: An Algorithm for Fast and Accurate Touch Detection in Optical Tabletop Surfaces

Thumbnail
Author
Wolfe, Christopher
Graham, T.C.Nicholas
Pape, Joseph A.
Accessioned
2015-07-30T20:22:47Z
2015-07-30T23:01:06Z
Available
2015-07-30T20:22:47Z
2015-07-30T23:01:06Z
Issued
2010
Type
unknown
Metadata
Show full item record

Abstract
Fast and accurate touch detection is critical to the usability of multi-touch tabletops. In optical tabletops, such as those using the popular FTIR and DI technologies, this requires efficient and effective noise reduction to enhance touches in the camera's input. Common approaches to noise reduction do not scale to larger tables, leaving designers with a choice between accuracy problems and expensive hardware. In this paper, we present a novel noise reduction algorithm that provides better touch recognition than current alternatives, particularly in noisy environments, without imposing higher computational cost. We empirically compare our algorithm to other noise reduction approaches using data collected from tabletops at research labs in Canada and Europe.
Refereed
Yes
Url
http://dx.doi.org/10.1145/1936652.1936666
Publisher
ACM
Doi
http://dx.doi.org/10.1145/1936652.1936666
Uri
http://hdl.handle.net/1880/50508
http://hdl.handle.net/1880/50764
Collections
  • Surfnet

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017