• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • SurfNet
  • Surfnet
  • View Item
  •   PRISM Home
  • SurfNet
  • Surfnet
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of optimized staffing for feature development and bug fixing

Thumbnail
Author
Rahman, Md. Mainur
Sohan, S.M.
Maurer, Frank
Ruhe, Guenther
Accessioned
2015-08-04T20:52:19Z
Available
2015-08-04T20:52:19Z
Issued
2010
Type
unknown
Metadata
Show full item record

Abstract
Skill level and productivity varies substantially between developers. In current staffing practices, however, developers are largely treated as the same. In this paper, an empirical analysis of the tow formulations of assignment of developers to tasks and bug fixing activities is studied. Two related problems are considered: (i) Assignment of developers to bug fixing with the objective to achieve best match between requested skill profile and assigned developer's skill profile. (ii) Assignment of developers to feature-related tasks in iterative development process. Two optimization approaches have been customized to determine qualified staffing plans. They are based on greedy optimization respectively genetic algorithm (GA). Empirical analysis is done for nine milestones of the open source Eclipse JDT project and two industrial case study projects. The main conclusion drawn from the analysis is that substantial savings can be achieved from optimized staffing policies when compared to the manual plans formerly applied. More specifically, the GA results are mostly the best, and the (lightweight) Greedy search becomes the better the bigger the look-ahead time L. Overall, the results are considered as decision support in finding better staffing policies in shorter time.
Refereed
Yes
Url
http://dx.doi.org/10.1145/1852786.1852841
Publisher
ACM
Doi
http://dx.doi.org/10.1145/1852786.1852841
Uri
http://hdl.handle.net/1880/50830
Collections
  • Surfnet

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017