Nitric oxide chemistry effects in hypersonic boundary layers

Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
AIAA Journal
Abstract
Simulations of gas seeding into a hypersonic boundary-layer flow were performed using OpenFOAM® to investigate and quantify errors associated with quantitative planar laser-induced fluorescence thermometry and velocimetry techniques. A modified version of the compressible rhoCentralFoam solver was used to simulate multicomponent chemically reactive flows. Simulations replicated conditions used in NASA Langley Research Center’s 31 in. Mach 10 facility with a wedge model oriented at various angles of attack with respect to the freestream flow in the test section. Adverse chemistry effects from the reaction of nitric oxide with molecular oxygen were investigated at various facility running conditions. Specifically, the effect of heat release on velocity and temperature profiles that would be obtained using the nonintrusive laser measurement techniques was assessed. The effect of any potential adverse chemistry reactions was found to be negligible.
Description
Keywords
Citation