• Information Technology
  • Human Resources
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
My UCalgary
Webmail
D2L
ARCHIBUS
IRISS
  • Faculty of Arts
  • Cumming School of Medicine
  • Faculty of Environmental Design
  • Faculty of Graduate Studies
  • Haskayne School of Business
  • Faculty of Kinesiology
  • Faculty of Law
  • Faculty of Nursing
  • Faculty of Nursing (Qatar)
  • Schulich School of Engineering
  • Faculty of Science
  • Faculty of Social Work
  • Faculty of Veterinary Medicine
  • Werklund School of Education
  • Information TechnologiesIT
  • Human ResourcesHR
  • Careers
  • Giving
  • Library
  • Bookstore
  • Active Living
  • Continuing Education
  • Go Dinos
  • UCalgary Maps
  • UCalgary Directory
  • Academic Calendar
  • Libraries and Cultural Resources
View Item 
  •   PRISM Home
  • Schulich School of Engineering
  • Schulich School of Engineering Research & Publications
  • View Item
  •   PRISM Home
  • Schulich School of Engineering
  • Schulich School of Engineering Research & Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equation of state for methane in nanoporous material at supercritical temperature over a wide range of pressures

Thumbnail
Download
Main article (1.904Mb)
Download Record
Download to EndNote/RefMan (RIS)
Download to BibTex
Author
Chen, Zhangxing (John)
Wu, K.
Li, X.
Dong, X.
Accessioned
2017-03-13T22:07:06Z
Available
2017-03-13T22:07:06Z
Issued
2016-01
Type
journal article
Metadata
Show full item record

Abstract
The methane storage behavior in nanoporous material is significantly different from bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores wall to the methane intermolecular interaction, and the geometric constraint. By linking the macroscopic properties of methane storage to the microscopic properties of methane molecules-nanopores wall molecules system, we develop an equation of state for methane at supercritical temperature over a wide range of pressure. Molecular dynamic simulation data demonstrate that this equation is able to relate very well the methane storage behavior with each of key physical parameters, including pore size, shape, wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simply and powerful in application.
Grantingagency
NSERC
Refereed
Yes
Sponsorship
Industrial consortium in Reservoir Simulation and Modelling; Foundation CMG; Alberta Innovates.
Department
Chemical & Petroleum Engineering
Faculty
Schulich School of Engineering
Institution
University of Calgary
Publisher
Nature: Scientific Reports 6
Doi
http://dx.doi.org/10.1038/srep33461
http://dx.doi.org/10.11575/PRISM/35031
Uri
http://hdl.handle.net/1880/51857
Collections
  • Schulich School of Engineering Research & Publications

Browse

All of PRISMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Download Results

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

  • Email
  • SMS
  • 403.220.8895
  • Live Chat

Energize: The Campaign for Eyes High

Privacy Policy
Website feedback

University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
CANADA

Copyright © 2017