Show simple item record

dc.contributor.authorHall-Beyer, Mryka
dc.date.accessioned2017-06-01T22:57:06Z
dc.date.available2017-06-01T22:57:06Z
dc.date.issued2017-05-25
dc.identifier.urihttp://hdl.handle.net/1880/52062
dc.descriptionThis is a narrated Powerpoint. The text of the narration also appears in the notes. It will play on Adobe acrobat, however because of the audio it may take more than a minute to download before auto-opening. It may be preferable to download the file before playing, for slower connections.en_US
dc.description.abstractThis item contains three parts: a narrated module providing an overview of practical and theoretical aspects of using remote sensing images of multiple dates; a case study of applying Principal Components Analysis (PCA) to a regional vegetation dataset to extract temporal patterns over 6 years; and a case study of applying harmonic analysis adapted for use with temporal spatial datasets to the extraction of data informing about spatial detail of ecoregional definition. The module and case studies are intended for the use of advanced remote sensing students and researchers. Material may be used and adapted/updated, with attribution.en_US
dc.language.isoenen_US
dc.rightsAttribution Non-Commercial Share-Alike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectremote sensingen_US
dc.subjectmultitemporalen_US
dc.subjecthypertemporalen_US
dc.subjectchange detectionen_US
dc.subjectprincipal components temporalen_US
dc.subjectharmonic analysisen_US
dc.titleAdvanced overview of multitemporal and hypertemporal remote sensing techniquesen_US
dc.typelearning objecten_US
dc.description.refereedNoen_US
dc.publisher.facultyArtsen_US
dc.publisher.departmentGeographyen_US
dc.publisher.institutionUniversity of Calgaryen_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/9990


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution Non-Commercial Share-Alike 4.0 International
Attribution Non-Commercial Share-Alike 4.0 International