The viability of a 3D forward dynamic model of walking as a research tool to enhance clinical understanding of gait abnormalities

dc.contributor.advisorRonsky, Janet L.
dc.contributor.authorScovil, Carol Yvonne
dc.date.accessioned2005-08-16T17:23:57Z
dc.date.available2005-08-16T17:23:57Z
dc.date.issued2004
dc.descriptionBibliography: p. 184-207en
dc.description.abstractForward dynamic models are powerful tools which, alongside clinical gait analysis, can be used to evaluate abnormal walking conditions in a controlled environment to gain insight into movement adaptation strategies. This study explored the feasibility of using forward dynamic simulation models of walking to enhance clinical understanding of the link between pathological conditions and human walking patterns. A 3D, forward dynamic single leg model of walking was developed using kinematic pelvis drivers to allow the reproduction of the entire stance phase of normal walking. The model simulated normal walking for the last 60% of the stance phase of gait successfully, but was unable to reproduce normal walking immediately after heel strike. Increases in model complexity including a 3D knee and complex ground contact model have improved upon existing models in literature. The use of pelvis kinematic drivers was rejected, and the incorporation of a second leg was recommended to increase the clinical relevance of this model. Rotational malunion of the tibia (RMT) is a condition in which the distal end of the tibia is rotated with respect to the proximal end, about the long axis of the bone, due to improper healing following severe tibial fracture. RMT has been associated with gait adaptations and linked to non-physiological joint loading and osteoarthritis (Eckhoff, 1994). To augment a clinical study of RMT, the single leg walking model was evaluated for use in modelling RMT during the last 60% of stance phase. The single leg model was sensitive to geometric changes similar to RMT values. In addition, the model indicated similar trends to those seen in clinical data. A new method for the quantification of model sensitivity to input parameters was developed. Using this method, the simulations of running and walking were more sensitive to muscle model and joint stiffness and damping parameters than the range of values in literature. In addition, the sensitivity of many model parameters was greater than the clinical changes due to RMT. These results stress the importance of the measurement of subject specific model parameters, particularly in clinical populations. The research presented here provides tools to enhance the potential of forward dynamic walking models to contribute to the clinical evaluation of gait pathology.
dc.format.extentxix, 207 leaves : ill. ; 30 cm.en
dc.identifier.citationScovil, C. Y. (2004). The viability of a 3D forward dynamic model of walking as a research tool to enhance clinical understanding of gait abnormalities (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/19377en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/19377
dc.identifier.isbn0612936406en
dc.identifier.lccAC1 .T484 2004 S3653en
dc.identifier.urihttp://hdl.handle.net/1880/41978
dc.language.isoeng
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.titleThe viability of a 3D forward dynamic model of walking as a research tool to enhance clinical understanding of gait abnormalities
dc.typedoctoral thesis
thesis.degree.disciplineMechanical and Manufacturing Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameDoctor of Philosophy (PhD)
ucalgary.item.requestcopytrue
ucalgary.thesis.accessionTheses Collection 58.002:Box 1536 520492053
ucalgary.thesis.notesUARCen
ucalgary.thesis.uarcreleaseyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_Scovil_2004.pdf
Size:
107.43 MB
Format:
Adobe Portable Document Format
Description:
Collections