Determining the Maximal Physiological Steady State in Cycling with Precision: Critical Power Estimations or Self-selected Exercise Intensity?

atmire.migration.oldid4831
dc.contributor.advisorMurias, Juan M.
dc.contributor.advisorMillet, Guillaume Y.
dc.contributor.authorMattioni Maturana, Felipe
dc.contributor.committeememberPaterson, Donald H
dc.contributor.committeememberMacIntosh, Brian
dc.contributor.committeememberPassfield, Louis
dc.date.accessioned2016-08-31T15:00:23Z
dc.date.available2016-08-31T15:00:23Z
dc.date.issued2016
dc.date.submitted2016en
dc.description.abstractGiving the inherent limitations of critical power (CP) testing and the demanding maximal lactate steady state (MLSS) protocol, this thesis aimed: i) to compare the power outputs (POs) derived from two methods of estimating CP (i.e., the power-time relationship (CPHYP) and the 3-minute all-out test (CP3MIN)) and the determined MLSS; and ii) to test cyclists’ ability to predict their highest sustainable PO (CPSELF). Thirteen healthy young participants (26±3 yr; 69.0±9.2 kg; 174±10 cm; 60.4±5.9 mL·kg-1·min-1) were tested. PO at MLSS was lower than CPHYP and CP3MIN (p<0.05). PO at CPSELF was similar (p>0.05) to MLSS. The mean difference between the measures of MLSS and CPSELF was zero, and both methods presented similar (p>0.05) metabolic responses. The disagreement between CPHYP and CP3MIN with the PO at MLSS questions the ability of CP to estimate the maximal steady state, while CPSELF may offer an alternative approach to predict it with more precision.en_US
dc.identifier.citationMattioni Maturana, F. (2016). Determining the Maximal Physiological Steady State in Cycling with Precision: Critical Power Estimations or Self-selected Exercise Intensity? (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/25609en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/25609
dc.identifier.urihttp://hdl.handle.net/11023/3238
dc.language.isoeng
dc.publisher.facultyGraduate Studies
dc.publisher.facultyKinesiology
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subjectPhysiology
dc.subject.classificationpower-time relationshipen_US
dc.subject.classification3-minute all-outen_US
dc.subject.classificationmaximal lactate steady stateen_US
dc.subject.classificationexercise intensity thresholdsen_US
dc.titleDetermining the Maximal Physiological Steady State in Cycling with Precision: Critical Power Estimations or Self-selected Exercise Intensity?
dc.typemaster thesis
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameMaster of Science (MSc)
ucalgary.item.requestcopytrue
Files