A Self-tuning power system stabilizer

dc.contributor.advisorMalik, Om P.
dc.contributor.authorCheng, Shi-Jie
dc.date.accessioned2005-07-21T21:44:03Z
dc.date.available2005-07-21T21:44:03Z
dc.date.issued1986
dc.descriptionBibliography: p. 221-232.en
dc.description.abstractThis thesis proposes a new self-tuning control strategy. This control strategy makes use of the recursive least squares identification technique with a variable forgetting factor and the poleshifting self-tuning control method with the variable pole-shifting factor. The use of the variable forgetting factor guarantees good parameter tracking and the variable pole-shifting factor always results in a very smooth control action and a very stable closed-loop system. A self-tuning power system stabilizer based on the proposed self-tuning control strategy is investigated extensively in the thesis from different aspects. A single-machine infinite -bus system is used to simulate the property of the proposed stabilizer in improving the system dynamic stability and transient stability. A multi-machine power system with an infinite bus is used to investigate the ability of the proposed stabilizer to cooperate with other stabilizers and the inter-connections between the various parts of a large power system. A multi-machine model with the multi-mode oscillations is used to examine the performance of the proposed stabilizer in damping out both the local and the inter-tie oscillations. A single-machine infinite-bus system with the series capacitor compensated transmission line is used to study the interaction between the proposed stabilizer and the sub-synchronous resonance problem. All these results show that the proposed stabilizer works effectively in various power system situations. A dual rate self-tuning control technique presented in this thesis aims to further improve the performance of the proposed self-tuning control strategy. In this technique the system identification and the control are performed separately. In this way, the control rate of the micro-computer based self-tuning controller can be increased considerably. Simulation of a stabilizer using dual rate self tuning control technique shows a greatly improved performance. Implementation of the dual rate self-tuning power system stabilizer and the on-line test results are also presented in this thesis. The laboratory environment implementation results verify the theoretical analysis and the simulation results, and show the possibility of the practical use of the proposed self-tuning stabilizer.
dc.format.extentxx, 271 leaves : ill. ; 30 cm.en
dc.identifier.citationCheng, S. (1986). A Self-tuning power system stabilizer (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/19616en_US
dc.identifier.doihttp://dx.doi.org/10.11575/PRISM/19616
dc.identifier.isbn0315299266en
dc.identifier.lccTK 1005 C434 1986en
dc.identifier.urihttp://hdl.handle.net/1880/23800
dc.language.isoeng
dc.publisher.institutionUniversity of Calgaryen
dc.publisher.placeCalgaryen
dc.rightsUniversity of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission.
dc.subject.lccTK 1005 C434 1986en
dc.subject.lcshElectric power system stability
dc.subject.lcshSystem analysis
dc.subject.lcshStability
dc.titleA Self-tuning power system stabilizer
dc.typedoctoral thesis
thesis.degree.disciplineElectrical Engineering
thesis.degree.grantorUniversity of Calgary
thesis.degree.nameDoctor of Philosophy (PhD)
ucalgary.item.requestcopytrue
ucalgary.thesis.accessionTheses Collection 58.002:Box 575 215772178
ucalgary.thesis.notesoffsiteen
ucalgary.thesis.uarcreleaseyen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis_Cheng_1986.pdf
Size:
94.42 MB
Format:
Adobe Portable Document Format
Description:
Thesis
Collections