Thermo-Electro-Optical Properties of Disordered Nanowire Networks

Abstract

Metallic nanowire networks are promising candidates for next-generation transparent conductors, owing to their exceptional electrical and thermal conductivity, high optical transparency, and mechanical flexibility. A nanowire network is a disordered arrangement of nanowires that exhibits no discernible long-range order or periodicity. Previous studies have placed significant emphasis on the individual analysis of electrical resistance, optical transmission, and thermal conduction in diverse network materials. Nonetheless, insufficient focus has been devoted to comprehending the relationship between the multiple extrinsic and intrinsic variables that characterize a disordered nanowire network (or an ensemble of them) and the trade-offs that arise when investigating the system response trio of namely electrical/ optical/thermal natures. This thesis presents a comprehensive computational study that exclusively employs theoretical and numerical models to examine the thermoelectric and optical characteristics of two types of disordered metallic nanowire networks: (i) junction-based random nanowire networks and (ii) seamless random nanowire networks. The raw materials that compose their nanowires are metals namely, silver, gold, copper, and aluminium and we used a variety of computational tools to obtain prominent physical quantities that infer the network’s performance such as sheet (electrical) resistance, optical transmission, and temperature variation. A range of adjustable parameters, including those pertaining to geometrical structure in device design, have been systematically tuned in order to conduct a figure of merit analysis with respect to thermal and electrical conduction, and optical transmission of the network materials. Moreover, we obtained local current and temperature mappings that detail the conduction mechanisms used by the networks to propagate signals through their disordered skeleton. We verified that, under certain conditions, junction-based and seamless nanowire networks fall into the same temperature distribution mechanisms that can be generally described with Weibull probability density functions. This study offers valuable insights into the electrical/optical/thermal performance of disordered nanowire networks prone to transparent conductor applications.

Description
Keywords
Citation
Esteki, K. (2023). Thermo-electro-optical properties of disordered nanowire networks (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.