A Comprehensive Capacity Expansion Planning Model for Highly Renewable Integrated Power Systems

Journal Title
Journal ISSN
Volume Title
Due to the depletion of conventional energy and environmental concerns, the trend toward increasing integration of renewable energy resources brings new challenges to power system planning and operation. The fluctuation of renewable energy resources is the main concern of system planners for their efficient deployment. Incorporating a more precise and detailed model of system constraints is inevitable to deal with these resources' intermittent and volatile nature. However, due to the various aspects and computation complexity of the capacity expansion problem, it is vital to have a thorough understanding of the most affecting constraints on the system planning. The unique characteristics of power systems, along with the integration of renewable energy resources and modern technologies such as energy storage, require developing a profound model for planning future infrastructure based on the available data. The primary objective of this research is to investigate and evaluate various aspects of power systems and develop a comprehensive capacity expansion model utilizing linear optimization techniques. The thesis includes the development of a data set for long-term planning purposes, a co-optimization expansion planning (CEP) model for identifying optimal transmission and generation expansion, modeling of storage technology and reserves, and reducing the network size to ensure model tractability. The framework was designed to facilitate the seamless integration of renewable energy sources and improve the performance of the whole power system, ensuring a smooth transition towards a high-renewable energy future. This tool intends to provide system planners and stakeholders in the generation and transmission sectors insights into future realizations of high-renewable power systems. The model can also be used as a benchmark for future planning studies and adjusted for any possible future assumptions.
power system planning, coordinated generation and transmission expansion planning, generation and transmission cooptimization
Parvini, Z. (2023). A comprehensive capacity expansion planning model for highly renewable integrated power systems (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.