An overview of AVF maturation and endothelial dysfunction in an advanced renal failure
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Abstract Life expectancy in patient with established kidney failure is considerably shortened with worsening quality of life. Through the provision of renal replacement therapy, survival and quality of life of advanced renal disease patients can be markedly improved. Haemodialysis and peritoneal dialysis are the treatment modalities in patients with end-stage renal disease. The efficiency of haemodialysis treatment relies on the functional status of vascular access. Vascular access and its related problems represent the main factors that determine a rise in the rate of incidence of the disease among haemodialysis patients and, consequently, a rise in the healthcare expenses. Arteriovenous fistula is the most efficient method, as it has a low risk of infection and mortality, and can ensure long-term functional access. However, maturation of an arteriovenous fistula is a complex process and is not well understood; significant numbers of arteriovenous fistula fail to develop sufficiently prior to their use for haemodialysis due to either lack of vessel maturation or spontaneous thrombosis. There are multiple blood markers and human factors that contribute to the maturation of fistula. Endothelial function is one of the most important determinants of arteriovenous fistula maturation. Early fistula failure is usually due to thrombosis which can be triggered by haematoma, by low flow rates resulting from low blood pressure, or by a hypercoagulable state. Impairment of endothelial function is associated with decreased arterial remodelling and final venous lumen diameter. Arteriovenous fistula anastomoses need early proliferation of endothelial cells to restore the barrier, permeability, and biochemical monitoring roles of endothelial cells in managing vascular repair, local thrombosis, neointimal hyperplasia, and inflammation. The purpose of this review was to discuss the maturation of AVF and endothelial dysfunction.